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Abstract

The earliest computer programs used for engineering design focused on detailed geomet-

ric design. Subsequently, computer programs for algorithmically performing the preliminary
design of specific well-defined classes of objects became commonplace. However, due to the
need for extreme flexibility, it appears unlikely that conventional programming techniques
will prove fruitful in developing computer aids for engineering conceptual design.

The use of symbolic processing techniques, such as object-oriented programming and
constraint propagation, facilitates such flexibility. Object-oriented programming allows pro-
grams to be organized around the objects and behavior to be simulated, rather than around

fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative
statements to be understood as designating multi-directional mathematical relationships
among all the variables of an equation, rather than as uni-directional assignment to the
variable on the left-hand side of the equation, as in conventional computer programs.

The research presented here has concentrated on applying object-oriented program-
ming and constraint propagation to the development of a general-purpose computer aid
for engineering conceptual design. Object-oriented programming techniques are utilized

to implement a user-extensible database of design components. The mathematical rela-
tionships which model both the geometry and physics of these components are managed
via constraint propagation. In addition to this component-based hierarchy, special-purpose
data structures are provided for describing component interactions and supporting state-
dependent parameters.

In order to investigate the utility of this approach to conceptual design, three sample
design problems from the field of aerospace engineering have been implemented using the
prototype design tool, Rubber Airplane: a long-endurance surveillance aircraft, a subsonical

transport aircraft, and a small-payload launch vehicle. The additional level of organizational
structure obtained by representing design knowledge in terms of components is observed to
provide greater convenience to the program user, and to result in a database of engineering

information which is easier both to maintain and to extend.

Thesis Supervisor: Mark Drela
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Problem Statement

The goal of engineering design is the description of a physical device which performs a given

task while satisfying the limitations of the governing specifications. Engineering design can

typically be characterized by three stages:

Conceptual Design: Determination of the feasibility of various potential designs, and

identification of the dominant tradeoffs.

Preliminary Design: Thorough verification of the most promising designs, with the ob-

jective of identifying the design best suited for full analysis.

Detailed Design: Development of a complete description of the final design.

In aerospace design, where considerable resources are required for detailed design, the costs

associated with committing such resources have naturally led to increased emphasis on

improving productivity and reliability in the conceptual and preliminary design stages.

One ready source for such improvements is the use of computers, due to their enhanced

speed and accuracy in numerical calculations, as well as their superior ability to manage

complexity.

While the benefits of computers for numerical applications have long been recognized

and exploited, it is only recently that computers have begun to be utilized to help manage

the complexity of large-scale engineering problems. While database technology has aided

information management for decades, the use of computers to help account for causality

and other dependencies among data in such applications as planning, fault diagnosis, and

design is comparatively new.

In engineering design, the earliest applications of computers were in performing discipline-

specific analyses (e.g., aerodynamics, structures), through a fixed sequence of calculations



which modeled the relevant physical phenomena. The task of integrating the results of such

analyses, however, was left to the human designers.

The first programs intended specifically for design were in the area of geometric design

(i.e., drafting), beginning with the pioneering work of Ivan Sutherland in the early 1960's

[36]. Such Computer-Aided Design (CAD) programs typically allow the user to manipulate

various points, lines, and curves in three dimensions via a set of straightforward transfor-

mations (e.g., translation, rotation, extrusion) in order to represent the geometry of an

engineering artifact. This simple and intuitive approach affords great flexibility to the user,

and is therefore applicable to a wide range of mechanical design tasks.

However, the CAD approach is limited to geometric analysis, and is therefore best

suited to problems in constructive geometry and the detailed design of, for example, the

interfaces between design components which have been previously sized-on the macro-

scopic scale-by other means. This is because, in the overall design of many engineering

artifacts, geometry is itself dependent upon multiple underlying analyses. In aircraft de-

sign, for example, wing geometry (e.g., position, planform dimensions, cross-section, skin

thickness, arrangement of internal supports) is itself dependent upon such factors as choice

of materials, cruising speed and altitude, wing weight, total vehicle weight, and location

of the wing with respect to the vehicle center of gravity. While efforts have been made

to integrate certain forms of engineering analysis into conventional CAD packages (most

notably finite-element thermal and structural analyses), current CAD systems do not offer

general support for non-geometric analyses.

The question of interest, then, is how might the support and flexibility afforded by CAD

systems in detailed geometric design be made available to the engineer faced with a new

problem in conceptual or preliminary design?

The research described herein is focused on considering answers to this question, specif-

ically with regard to conceptual design. The issue of flexibility is particularly critical in

conceptual design, for, insofar as the goal of conceptual design is to explore alternatives,

the computational requirements cannot be specified at the outset. A computer aid for con-

ceptual design must therefore be able to compensate for this initial lack of knowledge, while

still being able to support the variety of engineering analyses (e.g., geometry, performance,

structures, aerodynamics, propulsion) required to support the design task. This work will

examine two specific approaches to providing the required support and flexibility:

" object-oriented programming, and

* constraint propagation.

Object-oriented programming techniques will be exploited as a means of flexible data repre-

sentation, allowing for the incremental description and development of the design problem.



Constraint propagation is utilized as a means of removing directionality from the mathe-

matical analyses, thus providing additional flexibility.

These two approaches are combined in a prototype computer-based design tool, Rubber

Airplane, which allows solutions to engineering design problems to be incrementally devel-

oped through the manipulation of constraint-based descriptions of the physical components

and analytical models which comprise them. The resulting models allow the designer to

propose various alternative solutions to a design task-perhaps based on varying computa-

tional paths-in order to test the consequences of design decisions.

1.2 Conventional Approaches to Computer-Assisted Design

Before examining the alternative approaches investigated in this research, it is perhaps ad-

vantageous to first review past efforts in the area of computer aids for engineering design.

As indicated above, the earliest applications for computers in the area of design were basi-

cally drafting tools. Because shape information and spatial transformations can be readily

represented numerically, geometry-oriented CAD systems, most of which employ fairly con-

ventional programming techniques, are able to provide a high degree of flexibility. However,

the level of detail provided by such systems is generally best suited to the later stages of

engineering design.

With respect to conceptual and preliminary design, however, the use of computers (in

the domain of aerospace engineering, at least) has historically centered around conventional

sequential programs for performing a predetermined series of calculations which model the

geometry and physics of a given design. Typically, a set of input values for such parameters

as basic dimensions, desired performance characteristics, and mission profile is required,

based upon which various structural, aerodynamic, performance, and propulsion analyses

may be performed. The sequence of these analyses is fixed, as is the set of variables for which

input values may be specified (i.e., the base variables). For this reason, such programs are

fairly limited in application, being restricted to vehicles derived from a particular baseline

design (e.g., twin-engine, propeller-driven general aviation aircraft [18]), or, in some cases,

to a more general class of vehicle-types (e.g., cargo transport aircraft [19]). This limited

applicability often makes such programs unacceptable for conceptual design, where implicit

assumptions on basic vehicle configuration and/or mission profile may be overly restrictive.

In recognition of this deficiency, various attempts to widen the range of applicability of

such programs have focused on the integration of large numbers of independently-developed,

discipline-specific programs, linked by a common database of design variables (e.g., the

ACSYNT program in use at NASA's Ames Research Center [16]), or, more recently, by

means of an expert system which oversees the execution of the programs (e.g., Boeing



Aerospace's Preliminary Design Tool [7,26]). One shortcoming of the database approach,

however, is that the user is generally required to specify the interface among the various

modules (i.e., which subprograms to use, and the order in which to apply them). This

usually requires that each user have some familiarity with the capabilities of all of the

various database modules; unfortunately, this requirement makes such systems difficult

both to use and to maintain. For example, the Aircraft Design & Analysis System (ADAS),

developed at the Delft University of Technology [2], provides the user with access to an

extensive database of single-equation design relationships associated with the preliminary

design of subsonic aircraft, as derived from the text of Reference [38].1 However, while it

can be useful to manipulate the design program at the level of individual equations, use of

ADAS requires manual specification of the sequencing of the individual relationships to be

used; for large design problems, this can be a formidable task, indeed.

On the other hand, the use of expert systems to manage the interface between sub-

programs shows much promise for alleviating such burdens on the user. The Engineous

program [37], for instance, is an expert system which links a set of engineering programs for

the design of aircraft jet engines, including structural, aerodynamic, and thermal analyses.

The rules which comprise the Engineous program are responsible not only for guiding the

sequence of application of the individual subprograms, but also for monitoring the vari-

ous programs' outputs and arranging for nested, iterative cycling among the subprograms,

based on performance requirements.

Ultimately, though, the flexibility of both the database and the expert system approaches

to subprogram integration are limited by the inherent directionality of the constituent sub-

programs. While the ordering between subprograms is variable, the sequence of operations

within a single subprogram is fixed; thus, while there may be multiple sets of base variables

consistent with all feasible arrangements of the subprograms, complete freedom in choice

of base variables is not possible. This observation is part of the motivation for the research

described here. Practically speaking, though, most large engineering organizations have

considerable resources invested in the sorts of discipline- and vehicle-specific programs dis-

cussed above; in such cases, program integration is a much more economical alternative to

improving computer support for design than development of experimental systems which

rely on more advanced programming techniques.

'Note that by relying on a single source for the analytical methods, problems with compatibility among
modules are reduced.



1.3 Object-Oriented Programming

1.3.1 Description

Conventional computer languages allow the programmer to represent the solution to a prob-

lem as a sequence of instructions or operations to be performed in order to compute the

desired result. These operations are performed on a set of variables (which serve as la-

bels or place-holders), and may involve simple arithmetic calculations, or more complex

conditional or iterative constructs; additionally, subroutines or functions may typically be

defined to capture frequently-used subsequences of instructions. Nevertheless, such pro-

grams can ultimately be reduced to a series of sequential operations which implement the

desired analysis.

An alternative approach to computer programming, referred to as object-oriented pro-

gramming, relies instead on a description of the programming problem in terms of objects

to be manipulated, rather than variables to which values are assigned. Objects are defined

by instance variables whose values characterize their properties, and by methods which

describe the operations which may be performed on them. Together, a set of corresponding

instance variables and methods delineate a particular class of objects, individual instances

of which are actually manipulated by the program. And while instances share the same

methods and instance variables, the specific values of these instance variables can vary

among instances.

To demonstrate by way of an example, consider the class of objects automobile. This

object-class could be described in terms of instance variables such as engine-size, the number

of cylinders in the engine, fuel capacity, fuel available, empty weight, total weight, number

of doors, number of passengers, color, gear shift location, etc., as well as methods for adding

and removing passengers and fuel, accelerating and decelerating, etc. (The exact details

would depend upon the nature of the problem being modeled.) Based upon this class,

individual automobile instances would then be created: one instance might be a red four-

door with a V8 engine, while a second might be a blue two-door with only four cylinders.

Thus, the first instance would have the values "red", "4", and "8" for its instance variables

"color", "number of doors", and "number of cylinders", respectively; the second instance

would have the values "blue", "2", and "4" for those instance variables. The various methods

mentioned above could then be applied to these instances as part of, say, a traffic simulation

to monitor fuel consumption and introduction of pollutants, based on traffic signal locations.

Thus, application of the acceleration method to a particular instance would be required to

update its instance variable for available fuel, just as adding or removing a passenger would

affect the instance's "total weight" instance variable.

An additional useful feature of most object-oriented programming languages is the abil-



ity to specify inheritance paths when defining new object classes. Inheritance allows one

to describe new object classes in terms of previous classes, and aids program modularity

by allowing code common to multiple classes to be shared among them. Classes which

are inherited are referred to as superclasses, while inheriting classes are referred to as

subclasses. Typically, subclasses inherit all of the instance variables and methods defined

for their superclasses, though it is usually possible to override default values of inherited

instance variables, as well as provide subclass-specific methods which replace or modify

the inherited methods. Such modification of inherited properties is referred to as spe-

cialization. For this reason, any given class is considered to be "more specific" than its

superclasses (since it may specialize them), and "less specific" than its subclasses.

Thus, if one wished to extend the traffic simulation example introduced above to in-

clude other vehicle types, it might be appropriate to create a lower-level moving-object

superclass, which all of the vehicle types could inherit. This class could provide instance

variables for such common attributes as position and velocity, as well as methods for ac-

celerating and decelerating. Subclasses of moving-object might then include classes such

as motorcycle, bicycle, and truck, in addition to the original automobile class. Some

object-oriented programming languages also permit multiple inheritance (i.e., the abil-

ity of a class to specify more than one superclass) in which case it might be advisable

to introduce an additional ground-vehicle superclass, which might provide such instance

variables as "color", "number of passengers", and "number of wheels", as well as methods

for adding and removing passengers. Each subclass could then specify additional vehicle-

specific instance variables, such as the "number of doors", "number of cylinders", and "gear

shift location" "number of wheels" instance variables suggested above for the automobile

class. And while the acceleration and deceleration methods for the moving-object class

might only change an instance's "velocity" instance variable, the automobile, truck, and

motorcycle classes would require a specialized acceleration method which also decreases

an instance's "available fuel" instance variable. 2

The primary advantage of object-oriented programming is, therefore, in the area of

data abstraction, the ability to encapsulate some subset of a program's functionality in

such a way that interaction with other parts of the program is simplified. Specifically,

object-oriented programming allows parts of a program to be represented as objects, whose

interfaces are specified by the object's methods: no knowledge of internal structure or rep-

resentation is required by users of these objects. In addition, by providing a common set

of methods for a group of object-types, the program code which manipulate these objects

need not even know what specific kind of object is being manipulated: the objects them-

2 Though no such specialized method would be required for the bicycle class, nor would any of the
proposed classes require a specialized fuel-changing deceleration method.



selves thus become responsible for the details of their responses to a request to perform a

given operation (i.e., method). Note, then, that in the example traffic simulation introduced

above, all of the various vehicle-types provide acceleration and deceleration methods. When

the program wishes to change the speed of a vehicle or set of vehicles, it merely requests

that the vehicles apply the corresponding methods; it need not determine which vehicles

are trucks and which are bicycles in order to perform the appropriate vehicle-specific accel-

eration procedures, since these procedures are already associated with the objects to which

they apply. Inheritance and specialization can therefore be viewed as means for facilitating

data abstraction, insofar as their use requires the specification of a common interface across

multiple object-classes, due to the inherited methods.

Finally, as suggested above, a primary requirement of a computer system for supporting

conceptual design is flexibility. An additional advantage of object-oriented programming

is the ability to make available a large variety of object-types (i.e., classes), which may be

instantiated as needed. For design applications, then, one might consider providing classes

which represent the various possible design components, which the user may incorporate

into his design as he sees fit. The system might then also provide methods which allow

these components to be manipulated in order to size and position them, in accordance with

the appropriate engineering analyses.

In this way, the object-oriented approach makes feasible computer aids for design which

provide a flexible environment for representing the sort of incrementally evolving design

which typifies the conceptual design process. The next point to consider, then, is the means

by which the required engineering analyses may be incorporated into such a shifting model

of the design problem. As these analyses are primarily mathematical in nature, constraint

propagation is suggested as a flexible means for managing the mathematical relationships

which govern the design solution.

1.3.2 Historical Background

Object-oriented programming has many of its foundations in the programming language,

SIMULA [10]. The first completely object-oriented programming language was Smalltalk

[14]; originally, Smalltalk ran only on special-purpose, dedicated hardware, and featured an

interactive, window-based programming environment which was itself implemented primar-

ily in Smalltalk. Based on the success of the Smalltalk language, various object-oriented

extensions to other languages have been implemented, such as the Flavors [39] system for

LISP, which pioneered the use of multiple inheritance. More recent examples of such ex-

tensions include the Common Lisp Object System (CLOS) [3], which features so-called



multi-methods3 , and the C++ extension to the C programming language [9].

Object-oriented programming is also related to Artificial Intelligence research in knowl-

edge representation on the theory of frames [25]. In Minsky's original paper on the subject,

a frame is considered to be "a data-structure for representing a stereotyped situation, like

being in a certain kind of living room, or going to a child's birthday party". Thus, frames

are intended to provide a means for associating related pieces of information, which may

be both descriptive and procedural in nature. In object-oriented programming, descriptive

knowledge is normally represented by instance variables, while methods are used to repre-

sent procedural information. The concept of class-instantiation is less directly applicable

to frames, however, since frames typically include descriptive information which is invari-

ant from situation to situation, as well as that which is dependent upon circumstances.4

Finally, it should also be noted that in the field of rule-based systems, the term "frame"

has adopted a more restrictive meaning; here, a frame refers specifically to a data structure

with various named slots which are pointers to either static or dynamic values, as well as

a set of associated rules which are triggered by references to these slots.

Numerous applications in simulation, AI, systems programming, and graphics have ap-

plied the principles of object-oriented programming. The following section will describe

several object-oriented programs developed for engineering design.

1.3.3 Object-Oriented Design Tools

As indicated above, a major focus of conceptual design is the sizing and positioning of the

various physical components which comprise an engineering artifact, such that the resulting

combination performs the desired task. In light of this, the applicability of object-oriented

programming to representing this aspect of the design process is clear: a set of objects (i.e.,

the components) is being manipulated (i.e., "sizing" and "positioning"). Furthermore, at

least some of these manipulations are object-specific; though a single, universal represen-

tation for the "positioning" operation is conceivable, the process of "sizing" is typically

component-dependent (e.g., sizing the tires of a vehicle has little in common with the pos-

sible approaches for sizing, say, a lifting surface). Thus, there is a need for specialization.

It is also possible to group sets of similar objects (e.g., wings, horizontal and vertical sta-

bilizers, winglets, and canards are all forms of airfoils), suggesting opportunities to employ

inheritance.

In recent years, a number of computer aids for engineering design have been developed

3 A multi-method is a method which dispatches based on the types of one or more of its arguments, in
contrast to more standard methods which are associated with just a single object-class

*However, this distinction is disappearing, as well. CLOS, for example, allows for the definition of class
variables, whose values are shared by all instances of a class (as opposed to instance variables, for which
each instance of a class has an individual-though not necessarily unique-value).



which attempt to exploit one or more features of object-oriented programming. For the

purpose of contrast with the present work, a brief review of these programs is presented

below.

GRADE

The GRADE program, developed at Lockheed-Georgia [8], provides the user with the means

to specify the geometry of the various components of a transport aircraft (e.g., wing, tail,

fuselage, engines, cargo box), graphical representations of which are updated based upon

the supplied dimensions. Once the component dimensions are provided, their values may

be used, in combination with a description of the desired mission profile, as the inputs to

a conventional design analysis program, GASP [19]. The analysis program then verifies

the feasibility of the design, and can vary a subset of the input dimensions in order to

optimally satisfy the mission performance requirements. Finally, these amended values for

the dimensions may be used by GRADE to revise its display of the component geometries,

which the designer may further modify, repeating the entire process iteratively.

GRADE does not itself utilize object-oriented programming techniques, nor is GRADE

responsible for any design analysis. Instead, it serves primarily as a graphical interface to

the (preexisting) GASP aircraft sizing program. The innovative contribution of GRADE,

however, is that this interface is object-oriented: the user is provided with a choice of

possible components to include, and is then guided through the selection of the chosen

components' dimensions. GRADE is also capable of maintaining some dependency infor-

mation among the components, specifically in the form of attachments. (For instance, the

location of any wing-mounted engines will change as the position of the wing is varied.)

Additionally, output of the underlying analysis program is presented by means of the same

user-specified combination of components.

The Concept Modeler

Serrano's "Concept Modeler" [32] is the successor to his earlier research on the constraint-

based MATHPAK program (see Section 1.4.2, below). The Concept Modeler expands upon

the capabilities of MATHPAK by providing a set of basic objects which the user may

select among for incorporation into a design. Associated with each object-type is a set of

parameters and a set of constraints which govern these parameters. The program supports

the interactive addition and removal of both objects and constraints, and a graph-based

form of constraint propagation (again, see Section 1.4.2) is employed to permit redirection

of constraint calculations.

The Concept Modeler employs a building-block metaphor, insofar as the user is provided

with a set of basic object-types which may be instantiated and combined as desired in order



to solve a particular design problem. These object-types include: shaft, bearing, gear, link,

support, pivot, ground, spring, damper, cam, follower, and vector. (The program is geared

towards mechanical engineering conceptual design.) In addition, specialized interfaces are

provided for connecting pairs of these objects (e.g., connecting a gear to a shaft, or a pair

of gears to one another).

Like GRADE, however, The Concept Modeler is limited in its application of object-

oriented programming techniques. While the program itself is written in object-oriented

LISP, the program-user is not able to take advantage of the underlying object-oriented

representations: no means has been implemented by which the user might define new object-

types or interfaces, or add parameters to existing objects.

Commercial Systems

Whereas GRADE relies on a conventional sizing program for design analysis, and Ser-

rano's Concept Modeler utilizes constraint propagation, two recent commercial programs

for object-oriented design, ICAD Inc.'s ICAD program [29] and Wisdom Systems' Concept

Modeller [24], both employ a rule-based approach for representing design relationships.

Additionally, the two programs provide a complete object-oriented language for describing

design components, and arranging them in part/sub-part hierarchies. Based upon a set of

geometric primitives (e.g., block, cylinder, cone, extrusion, body of revolution), the user is

able, by means of inheritance, to specify arbitrarily complex part descriptions, in terms of

inherited classes, part-specific parameters, and rules for computing parameter values. These

rules take the form of LISP expressions for computing a parameter, based upon values for

other parameters, which are assumed known. Thus, these required parameters represent

the antecedents of a rule, and the computed value is its consequent. Note that there are

no limitations on the contents of the expressions in these rules; they may be used to model

geometric as well as physical phenomena.

Relationships between parts (i.e., connections within an assembly, relative sizing, etc.)

are specified by means of the aforementioned part/sub-part hierarchy. All part definitions

may specify sub-parts, and the rule which governs any parameter of a part within a given

part/sub-part hierarchy may reference the value of parameters of any other part within the

hierarchy, by specifying the appropriate path through the part/sub-part tree. In addition,

means are provided for symbolically describing the relative orientations of parts and sub-

parts; specifically, one part may literally be specified as being "above", "below", "in front

of", etc., another part.

While access to the capabilities of a full object-oriented language for describing design

components adds a great deal of flexibility to these two programs, the use of uni-directional

rules for computing parameter values limits their applications to problems in which the



design path is at least partially known in advance; i.e., the design of a given sub-assembly,

as represented by a single part/sub-part hierarchy, must follow a particular sequence of

operations, as embedded in the associated rules. As such, the approach is not well-suited

to conceptual design, though it may be appropriate to certain classes of preliminary design

tasks.5

The rule-based approach, though, is not without its advantages, foremost among which

is its convenience for implementing demand-driven calculation-i.e., the ability to delay

calculation of a given parameter until its value is needed, thus reducing the load on the com-

puter. (Parameter values may be required for geometry display, or by request of the user.)

Demand-driven calculation is implemented in rule-based systems by employing backward-

chaining to perform rule evaluations: backward-chaining orders rule-application according

to rule consequents, rather than rule antecedents. Thus, given a request for the value of

a particular parameter, the rule which computes it is examined. If values are available

for all of the parameters which are required to apply the rule, it is applied, and thus the

requested value is computed. If values have yet to be computed for any of the required

(antecedent) parameters, though, their rules are in turn examined for possible application,

which may then trigger further rule applications, recursively. In this fashion, a chain of rule

applications is established to perform the supporting calculations needed to compute the

requested parameter.

In contrast, a forward-chaining system would apply a given rule immediately upon de-

termining that values for all of the antecedent parameters are available. Since this rule

application will provide a value for an additional parameter (i.e., the rule's consequent

parameter), additional rule applications may result. Thus, forward-chaining causes all cal-

culations to be performed as they become possible; backward-chaining delays calculations

until they are needed in order to compute a required value. Finally, note that use of

backward-chaining assumes that it is always possible to arrange the rules so that a required

computation becomes possible-i.e., that a chain of rule applications can be established

leading back to a set of completely known parameters.

1.4 Constraint Propagation

1.4.1 Description

As indicated at the beginning of this chapter, conventional programming languages are

used to solve problems based on a sequence of instructions. The sequential nature of such

languages makes computer programs based on these languages highly directional; indeed

'For instance, both programs have been successfully applied by engineering firms who are routinely
required to provide custom solutions to fairly limited classes of design problems, based on an inventory of
standardized parts (e.g., heat exchangers, boilers, fans) [29,24].



the individual instructions which comprise these programs are themselves highly directional.

For example, while the simple algebraic statement, a = b + c, suggests a set of relationships

among the three variables, a, b, and c, specifically,

a = b+c

b = a-c

c = a-b

the same statement, as part of a conventional computer program, represents the uni-direc-

tional assignment to the variable a of the sum of the previously-assigned values of the other

two variables, b and c. Thus, although the declarative form of a mathematical relationship

(e.g., a = b+c) implies multiple imperative forms (such as those listed above), conventional

programming languages are limited to use of the single, given declarative form. If a different

(i.e., imperative) form is desired, the program must be re-written.

While this approach is usually adequate for most programming problems, there are cases

in which it is desirable to specify a non-directional relationship among program variables,

and have the computer determine which form is appropriate to apply, based on the available

information. The body of techniques adopted for implementing this alternate computational

approach are collectively referred to as "constraint propagation". As such, two basic tasks

are required of a constraint propagation system, specifically:

1. Derivation of the various imperative forms of a relationship based on a specified declar-

ative form.

2. Monitoring the values of the variables governed by a relationship, and determining

when to apply a particular form of the relationship in order to calculate a value for

one of its parameters.

Various methods have been used for performing each of these two tasks, some of which are

described below in Section 1.4.2.

The advantage to using constraint propagation to represent the mathematical equations

which govern a problem is-as with object-oriented programming techniques-added flex-

ibility. In conventional programs, the exact direction in which a relationship is applied, as

well as the order in which each equation in a set of equations is executed, must be specified

in advance. With constraint propagation systems, only the content of each mathematical

relationship is specified in advance; the direction and sequencing of equation-application is

determined by the computer at run-time, based on available data. Thus, the relationships

are treated as constraints to be satisfied, rather than instructions to be executed.



For example, given the declarative form a = b + c, if values are available for both b and

c, then a may be computed using the specified declarative form. If, on the other hand,

values for a and b are known, then the imperative form c = a - b may be used to compute

a value for c. In the first case, b and c are the base variables of the constraint, while a

is the derived variable. In the second case, a has become a base variable (along with b),

and c is the derived variable.

Above, it is also indicated that constraint propagation may be used to determine an

appropriate ordering for the application of a set of relationships. Given a set of simultaneous

equations, constraint propagation may be used to determine the sequence in which the

equations should be applied in order to compute values for as many derived variables as

possible, based on the specified base variables. For example, given the set of constraints,

a = b+c

c = d-e

d = c-a

and base variables a and b, constraint propagation may begin by using the first equation to

calculate a value for c, as above. Once this equation has been used to compute c, though, the

third equation-in its declarative form-may next be used to compute a value for d. This

value for d, in combination with the value computed for c, may then be used to compute a

value for e, using an imperative form of the second equation, specifically, e = d - c. Thus,

in addition to selecting the directions in which the relationships are applied, constraint

propagation is also used to establish the order in which they are applied.

It is because of its flexibility in handling mathematical relationships that the constraint

propagation approach is particularly well-suited to computer applications in conceptual

design. As discussed above, computer aids for conceptual design must be able to cope with

the continual evolution and refinement of the designer's model of both the design problem

and its solution. As new ideas are developed and examined, corresponding analytical models

must be introduced to facilitate this examination. Constraint propagation provides a means

for flexibly managing these mathematical models in a changing environment.

First of all, constraint propagation permits the analyses to be performed to be described

via declarative statements of the mathematical relationships which model the analyses,6 but

does not require that the equations be applied in this declarative form: the designer is free

to choose whichever design variables he considers relevant as base variables, relying on the

computer to determine the exact means by which values for the remaining output variables

'Note that, in the implementation described in Chapter 3, declarative constraint specifications may be
based on either analytic or numerical analyses.



are calculated. In addition, it allows for the incremental addition of new analyses (or the

incremental removal of unwanted analytical models) to the evolving description of the design

problem, since constraint propagation may be used to determine the sequencing of the new

analyses, as well.

1.4.2 Implementation Schemes

As suggested above, constraint propagation provides a means of avoiding the underlying

directionality of conventional computer programs, as well as the implicit directionality of

the rule-based approach described in the Section 1.3.3. A number of techniques for imple-

menting constraint propagation have been investigated, including

" local propagation of known states,

" rule-based inversion,

" graph transformation and term-rewriting,

" symbolic algebra, and

" numerical techniques.

Each of these approaches is described below, in conjunction with the various research efforts

that have applied them.

Local Propagation of Known States

In this approach, as developed by Steele [34] in what is widely regarded as the seminal work

on constraint propagation, each constraint is monitored until values are available for all of

the associated parameters, save one. 7 The constraint is then used to compute a value for

this remaining parameter. Assignment of a value to this parameter may result in other

constraints being reduced to the state of having exactly one unknown parameter, and thus

these constraints become ready for application as well.

For example, consider the set of constraints,

F(w, z, y) = 0

G(x, y) = 0

H(x, y, z) = 0

7Actually, there are certain cases in which a constraint may be applied even if there is more than one
unknown. See, for example, in the discussion of rule-based inversion below, those cases for the multiplication
operator in which only one multiplicand is known, but its value is zero.



where each of the constraints is given in so-called normal form (i.e., all parameters appear

on the left-hand side of the equation, and the right-hand side of the equation is zero).

Specifying parameters whose values are known with a superscript "K", and those whose

values are unknown with a superscript "U", if initially only the value of x is known, the

system may be described thus:

F(wU, XK YU) = 0

G(XK, YU) = o

H(yU, zu) = 0

Here, only one constraint has exactly one unknown parameter, and each of the two remaining

constraints has two unknown parameters. Applying local propagation of known states,

then, the second equation, involving constraint G, may be applied to compute a value for

parameter y. The set of unused constraints is then reduced to

F(wU, XK YK) = 0

H(yK, zU) = 0

where the parameter y is now labeled as being a known parameter. Thus, both of the

remaining constraints now have exactly one unknown parameter, so that constraint F may

used to compute a value for parameter w, and constraint H may be used to compute a

value for parameter z.

A set of equations to be solved using local propagation of known states may therefore

be viewed as a network of linked constraints, with the parameters serving as arcs in this

network. If flow through this network is assumed to flow along arcs away from the constraint

which computes a parameter, flow out of a constraint node is observed to become possible

only when all but one of the arcs into a node carry flow. The evolution of flow through the

network of constraints introduced in the example above is depicted in Figure 1.1, starting

from (a) the initial state, through (b) propagation of constraint G, and concluding with (c)

propagation of constraints F and H.

Note, though, that this approach is inadequate for systems of equations which include

cycles. Given, for example, a pair of constraints which share the same two unknowns,

local propagation is unable to solve the simultaneous equations, since neither of the two

constraints has exactly one unknown. The same is true of larger systems; mathematically,

however, systems of equations which contains the same number of parameters as equations

are generally solvable, particularly when they represent physically realizable systems.
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Figure 1.1: Local propagation of known states.

An advantage of local propagation, though, is its ability to keep track of dependencies

within the constraint network; since computations only become possible when a given con-

straint has only a single unknown parameter, it is a simple matter when performing the

corresponding calculation to note which constraint is responsible for the value assignment.

In a similar fashion, local propagation also facilitates incorporation of retraction. When

the value of a known parameter is retracted, it is marked as unknown, and any parameters

computed by constraints which previously relied on the retracted parameter's value are

also retracted. This retraction may, in turn, trigger further retractions. In this way, all

dependent values-and only dependent values-are retracted, without having to resort to

re-solving the entire constraint network.

Rule-Based Inversion

While local propagation of constraints allows for the automation of constraint application, it

does not indicate the means by which declarative specifications of constraints may be applied

imperatively. The approach taken by Steele [34] was to require the network of constraints

to be built up from combinations of primitive arithmetic operations, for which individual

inversion rules were provided. Supported primitive operations for integer arithmetic in-

cluded addition, multiplication, minimization, maximization, and conditional equality. The

inversion rules for addition, for example, are:

Addition Constraint: c = a + b

e Given a andb: c=a+b.

" Given b and c: a = c -b.



* Given c anda: b=c-a.

The inversion rules for multiplication, though, are somewhat more complicated:

Multiplication Constraint: c = a x b

* Given a and b: c = a x b.

* Given a = 0: c =0.

" Given b=O: c=O.

* Given b and c, b # 0: a = c/b.

" Given a and c, a 6 0: b= c/a.

Note that two cases are left undefined (specifically, those in which division by zero would

be required). Inversion of the maximization and minimization operators also leaves certain

cases undefined.'

In this manner, once local propagation determines that a given single-operator constraint

may be ready for application, the corresponding inversion rules are consulted. When the

known parameters of the constraint satisfy one of the preconditions of its inversion-rules,

the corresponding calculation may be performed.

Graph Transformation and Term Rewriting

Two related approaches which also take advantage of a rule-based specification of math-

ematical properties are graph transformation and term rewriting. Both techniques

rely on pattern-matching to invert constraints as well as propagate them, by examining a

system of equations and a set of variable-assignments, and determining possible substitu-

tions. Assigned values are substituted directly, and then rules for algebraic transformations

are applied in order to isolate unknown variables, to facilitate further substitutions. If

such transformations allow the value of an unknown to be computed, the corresponding

assignment is made.

After substituting, the resulting system of equations is itself examined for possible sub-

stitutions. In this way, the substitution process serves to reduce the system of equations

(resulting in fewer unknowns, and fewer individual equations). Reduction is applied re-

cursively, until no further substitutions are possible. Recursive substitution will ultimately

terminate under one of three conditions:
8The maximum- and minimum-value operators can signal contradictions, as well. Consider the case, for

example, in which values for a and c are known for the constraint c = max(a, b). If a < c, then it must be

the case that b = c. If a = c, then the value of b is indeterminate. If a > c, though, a contradiction exists

within the constraint network.



* The system of equations has been solved.

" Not all parameters have been computed, but no further reductions are possible. In

this case, either the set of transformation rules is incomplete, or the original system

of equations was underconstrained.

" All parameters have been computed, but some equations remain unused. In this

case, either the original system of equations included some redundant equations, or,

if the unused equations contradict any of the computed values, the original system of

equations was overconstrained.

In the case where the original system was underconstrained, additional constraints or vari-

able assignments are required in order to solve it completely. If the system was overcon-

strained, some constraints or variable assignments must be retracted in order to achieve

consistency.

As a simple example of this process, consider the set of equations,

z-2z = 5y-2y2

x = 4w

w = X-3z

z= 1

where the single variable-assignment, z = 1, is simply regarded as a fourth equation, in

addition to the three mathematical constraints. To solve this system of equations, transfor-

mation rules are required for constants, multiplication, addition, and quadratic equations.

Substituting in for the constant value of z, the system is reduced to

x-2 = 5y-2y2

x = 4w

w = z-3

Two different substitutions are possible at this point, since X and w appear isolated on the

left-hand side of the second and third equations, respectively. Choosing to substitute for x

yields the system,

4w-2 = 5y-2y2

X = 4w

w = 4w-3



where the second equation has been retained intact, since it will be needed to compute x

should the value of w become known. At this point, the third equation has been reduced

to the point where it involves only a single unknown, w. Through a series of algebraic

transformations,

w = 4w - 3 == -3w =-3

=> w =1

it may be determined that the value of w is 1. Substituting in for this constant value, then,

the system of equations is reduced to:

4-2 = 5y-2y2

x = 4x1

Applying a few transformations concerning arithmetic operations on constant values, it is

readily determined that the value of x is 4, and only a single equation remains:

2 = 5y - 2y 2

At this point, rules involving only arithmetic will be inadequate. In this case, the system

must observe that, by rearranging terms slightly, the quadratic form,

2y 2 - 5y + 2 = 0

results. It is then a simple matter to apply the appropriate algebraic transformation for

quadratic equations to isolate the final remaining unknown parameter, y. Once this param-

eter is isolated, a series of arithmetic transformations must be applied in order to compute

its value:

2 51 ± (-5)2 - (4 x 2 x 2)
2y-5y+2=0 == y=2 2 x 2

51± /25 -16
4

5i3~4

1
y=2,-

2



Note that the pattern-matcher which triggers transformation rules must be able to rec-

ognize each of the reducible expressions within these equations, and that rules must be

available for each of the required transformations. On the other hand, as seen in this exam-

ple, there are often alternative substitution paths which may be followed; thus, provision

can be made for recovering from choices which result in dead-ends. This ability to exam-

ine alternate branches during the solution process also makes this approach amenable to

parallel-processing implementations.

Unfortunately, though, it is difficult to maintain dependency information when employ-

ing this approach, because transformation is often accompanied by loss of information. As

transformations are applied, the original constraints are destroyed; additionally, assignment

of parameter values occurs as a side effect of the substitution process. Thus, there is no

context from which dependencies may be inferred. Furthermore, because of this inability

to track dependencies, retraction of assigned values generally requires re-solving the entire

system of equations. Another difficulty with this approach is ensuring completeness and

consistency. As suggested above, a large number of transformation rules is required to thor-

oughly support the algebraic transformation of systems of non-linear equations; straight-

forward substitution will fail in cases where multiple non-linear constraints are involved,

suggesting the need for rules which pertain only to certain classes of non-linear systems. In

addition, circularity within the rule-base must be avoided, to prevent the possible repeated

application of sets of rules which perform complementary transformations.

Graph transformation and term rewriting do have certain advantages over local propa-

gation, though, due primarily to their ability to examine the global interactions within sys-

tems of equations. The most significant of these advantages is the ability to solve systems

of equations which contain cycles. From the perspective of these alternative approaches,

local propagation may be viewed as applying only those transformations which concern the

substitution of constant values for individual constraint parameters. By adding the ability

to substitute symbolic expressions for constraint parameters, transformation systems are

able to break down cycles among the constraints. Furthermore, by adding explicit rules

for transforming complex expressions-such as the quadratic equation encountered in the

example above-transformation systems are also able to solve certain non-linear equations

for which local propagation is inadequate. Finally, in the case where the original system

of equations is underconstrained, even though some parameters will remain unknown, the

transformation process will yield a simplified set of equations, derived from the original

system. This simplified system may be made available to the user to guide in the selection

of additional parameter assignments, in order to completely constrain the system.

The earliest work on graph transformation for constraint management was done by

Gosling at Carnegie-Mellon University [15]. Here, propagation of constraints was used in



support of a program for graphical layout. In this program, graph transformation is applied

in those cases where local propagation is inadequate, and is employed to convert networks

which cannot be solved using local propagation into networks which can be. A more recent

application of the graph transformation approach is Serrano's MATHPAK system for me-

chanical design [31], in which constraint propagation is used to govern the shape, position,

and dimensions of three-dimensional solids which are combined as elements of mechani-

cal drawings. In using MATHPAK, the user builds up a drawing from a combination of

three-dimensional primitives; parameters can be assigned to the dimensions of these primi-

tives, and interactively linked via constraints. Given a set of initial values for some of the

parameters, the MATHPAK program attempts to solve the entire constraint network via

substitution methods. Constraints are represented as trees linking operators and parame-

ters, and transformations are performed through direct substitution of sub-trees.

Term-rewriting relies on pattern-matching applied to actual constraint specifications

(i.e., mathematical expressions), rather than to graph-based representations of constraint

networks. Research by Leler at the University of North Carolina at Chapel Hill on this

approach resulted in the BERTRAND programming language [23], which may be used

both for the specification of constraint problems, and for the definition of transformation

rules. Because the language for describing problems and the language for defining problem-

solving rules are unified, BERTRAND enables the use of more complicated, aggregate

data-structures-similar to the record programming construct in the Pascal programming

language, struct in C, or defstruct in LISP-than are permitted in other constraint-

propagation systems. In addition to simple variables, then, aggregate data structures may

be constrained, thus simplifying problem representation. Furthermore, the transforma-

tion language is also capable of specifying rules which govern the transformations them-

selves. This permits the use of high-level constraint operations, such as conditionalization

on boolean parameter-values.

Symbolic Algebra

Symbolic algebra is the application of computers to the solution of mathematical equations

expressed in symbolic form. Whereas conventional programs are designed to perform com-

putations on numerical data based on symbolic expressions, the function of symbolic algebra

systems is to manipulate the expressions themselves, performing such operations as sym-

bolic integration and differentiation, simplification, and determination of roots. As such,

symbolic algebra has broad applicability; inversion of constraint specifications in support

of constraint propagation is but one of its uses.

Graph transformation and term-rewriting represent a subset of the techniques available

for performing symbolic algebra. The most complete symbolic algebra systems generally uti-



lize multiple schemes for guiding the transformation of mathematical expressions, including

rule-based substitution and transformation methods, as well as more mundane approaches

such as table-lookup.9 Examples of symbolic algebra systems include Macsyma [4] and

Mathematica [40].

Numerical Techniques

An alternative approach to performing constraint inversion is to apply numerical techniques.

Given a general constraint specification of the form,

y = F(zi, z2, -. - -,ti,.--.-

it is a straightforward process to transform it into the normal form,

0 = F(zi, z2, X3,..., z;,i... ) - Y = FN(y, i,) zT2, . ... ,) zi, . .. )

In attempting to satisfy a constraint, then, the transformed constraint, FN, may be viewed

as an error term. Various numerical techniques, such as relaxation or the Newton-Raphson

method, may be applied in order to minimize this error, thereby satisfying the constraint.

The advantages of this approach are its generality-there are no limitations on constraint

linearity, for example-and ease of implementation. Unfortunately, though, these numer-

ical methods can suffer from stability problems, insofar as they require adequate initial

conditions on which to base the numerical analysis.

Numerical techniques have been applied in several constraint propagation systems,

including Sutherland's SketchPad program [36] for geometric design and the Paper Air-

plane program [11,20] for engineering preliminary design, as well as the original version of

Borning's ThingLab program [5] for computer-aided simulation. ThingLab is particularly

noteworthy for its integration of constraint-propagation into the SmallTalk environment

for object-oriented programming, to support the interactive development and operation of

computer-based simulations. In ThingLab, constraints may be used to govern the proper-

ties of object-classes defined for a particular simulation problem; the resulting model of the

behavior being simulated is therefore non-directional, due to its underlying constraint-based

description. The simulation, or perhaps just parts of it, can therefore be run "backwards",

affording greater freedom to experiment with the system being modeled.

Hybrid Approaches

In practice, most constraint propagation systems rely on multiple techniques, in order to

improve both efficiency and completeness. Indeed, in his presentation of the desired charac-

'For example, efficient algorithms for performing symbolic integration typically include explicit checks
for well-known integrals, mimicking the approach most humans take in attempting to solve an integration
problem (i.e., consulting the CRC Handbook).



teristics of a constraint-based system for supporting architectural design, Gross [17] points

out the advantages gained by not relying on a single methodology, so that cooperating tech-

niques can accommodate the one another's shortcomings. As mentioned above, Gosling's

use of graph transformation was introduced to help treat those cases for which local propa-

gation is inadequate. In this case, use of a second approach improves completeness. In the

area of efficiency, exclusive reliance on symbolic algebra for performing constraint inversion

can degrade program responsiveness, because there is a great deal of overhead inherent

in such powerful techniques (e.g., there is a large body of possible transformations to be

considered). For this reason, use of symbolic algebra is reserved for those cases in which

other techniques-such as a less general, more domain-specific set of rules for graph trans-

formation or term-rewriting-are insufficient.

Similarly, because numerical techniques have general applicability but are prone to sta-

bility problems, they are also employed in a number of systems as secondary methods. For

example, the MARKSYMA program [30] for parametric design, developed at the Rensselaer

Polytechnic Institute, employs term-rewriting for solving polynomial equations, resorting to

numerical techniques for solving non-polynomial constraints and systems of simultaneous

equations. The MATHPAK program, discussed above, also allows the use of numerical

techniques when its implementation of graph transformation fails. Interestingly, even when

numerical iteration is used to solve the constraints, MATHPAK still relies on the under-

lying graph-transformation algorithms to compute constraint derivatives-required when

calculating, for example, the Jacobian matrix for a system of equations-analytically, via

symbolic differentiation.

1.4.3 Constraint Propagation for Design

As indicated in the preceding sections, a number of constraint propagation systems have

been implemented specifically for design applications. Paper Airplane and MARKSYMA

allow the user to specify a set of parameters and equations which model a design problem,

and, upon selection of a set of parameters to be used as input variables, apply constraint

propagation to compute values for the remaining parameters. MATHPAK follows a similar

approach, but also includes the ability to associate parameter values with geometric dimen-

sions, allowing for graphical display of the designed artifact. Serrano's Concept Modeler

(see Section 1.3.3), the successor to MATHPAK, provides a set primitive object-types, taken

from the domain of mechanical engineering conceptual design, whose governing equations

are specified as constraints.

Curiously, an additional feature which all of these constraint-based design tools share is

that all constraint propagation is performed in unison (i.e., in "batch-mode" style), rather

than interactively. That is, constraint propagation is delayed until a complete set of param-



eters, equations, and input values is provided, and then, upon final instruction by the user,

the entire network of constraints is solved simultaneously. In contrast, other constraint

propagation programs, such as Steele's, propagate individual constraints as soon as they

become ready for propagation.

1.5 Overview of the Dissertation

Noting the potential advantages of these two programming techniques-object-oriented pro-

gramming and constraint propagation-it has been the intent of this research effort to

investigate the practicality and utility of their application to aiding in the solution of real-

istic problems in engineering conceptual design. Much work has therefore been devoted to

the implementation of a computer program, dubbed Rubber Airplane, which utilizes these

techniques in support of conceptual design.

This dissertation, then, is intended to document the development of this program, and

its performance on a set of representative design problems. The current chapter has at-

tempted to establish the motivation for this research, by identifying past and current trends

in computer aids for engineering design, and suggesting improvements which can be derived

from alternative approaches. Chapter 2 describes component-modeling, an application

of object-oriented programming to the description of design problems in terms of compo-

nents and their interactions. Component definitions are based-on class-like associations of

component-specific attributes and the constraints which relate those attributes, in order to

model the relevant physics and geometry. Interactions among components are specified by

similar object-structures, referred to as design links, which are also defined in terms of

attributes and constraints. Chapter 2 also introduces the notion of design states, which

provide a means for automatically incorporating stepwise time-dependency on the values of

designated component attributes.

Chapter 3 describes the implementation of constraint propagation employed in the Rub-

ber Airplane computer program. Specifically, an augmented form of local propagation of

known states is described, which applies a heuristically-derived assumption on the nature

of engineering design constraints to efficiently detect cycles within the constraint network.

Such cycles are then solved as simultaneous equations. Constraint inversion and solution

of simultaneous equations is performed using numerical techniques. Furthermore, all con-

straint propagation, including detection and solution of cycles, is performed interactively.

Chapter 4 discusses the application of Rubber Airplane to three test cases. These

representative design tasks focus on the configuration and sizing of three aerospace vehicles,

a long-endurance, manned surveillance aircraft, a commercial transport aircraft, and a

small-payload launch vehicle. Included is an account of the various strategies employed



in implementing the requisite analyses for these design problems, as well as observations

regarding the benefits and shortcomings of the component-modeling approach in supporting

the design analyses. Note that, in order to demonstrate the range of analyses which may

be employed in using this approach, a complete LISP-based implementation of the vortex-

lattice method for computing airfoil aerodynamics has been implemented for the two aircraft

test cases, and integrated with the Rubber Airplane program.

Chapter 5 summarizes the results of this research, and compares its contributions with

related efforts. Areas meriting further investigation are also suggested. Finally, for com-

pleteness, discussions of the program's support for design-parameter dimensions and units,

interactive geometry display, and window-based user interface are presented in Appen-

dices A, B, and C, respectively.



Chapter 2

Component Modeling

2.1 Motivation

2.1.1 The Function-Modeling Approach: Paper Airplane

Prior to commencing work on the current project, the author was involved in the devel-

opment of the Paper Airplane program, mentioned in Section 1.4.2. Paper Airplane was a

direct application of constraint propagation to engineering preliminary design: the program

allowed the user to enter a set of variables and equations, referred to respectively as design

variables and design functions and, upon fixing values for certain of the design vari-

ables, constraint propagation was employed to compute values for the remaining variables,

by means of the available design functions.

Insofar as the interaction between the program and the user occurs at the level of indi-

vidual functions and variables, then, Paper Airplane may be said to adhere to a function-

modeling approach, in which design problems are described directly in terms of the math-

ematical equations which model them. The design programs ADAS [2], MARKSYMA [30],

and MATHPAK [31], also discussed in Chapter 1, are similarly observed to employ the

function-modeling approach.

Near the end of the Paper Airplane project, the author began investigating the possibility

of adding a "long term memory" [11] to the program, for storing a library of commonly-

used functions and variables. Soon after commencing this line of research, however, it was

discovered that the resulting library, based upon the individual design functions and design

variables to be used by the program, was unwieldy. Building up the description of a design

problem from the elements of this database required attention to be focused at a rather

fine level of detail, making the process time-consuming and awkward. To overcome these

inconveniences, an alternative approach was sought.



2.1.2 Component-Modeling

The primary shortcoming of the function-modeling approach is its lack of sufficient or-

ganizational structure. It provides little means for unifying related information, beyond

associating design functions with the design variables they govern. Thus, the paradigm

presents no straightforward scheme for grouping interconnected design functions, or for re-

lating design variables which are conceptually linked, though not mathematically related.

For example, the design variables which depict the planform geometry of an airfoil-i.e.,

span, root and tip chords, aspect ratio, taper ratio, and sweep-are all needed to com-

pletely describe the planform, though not all are directly dependent upon one another. A

group of three equations is required to specify the mathematical relationship among the

first five of these parameters, and the final parameter, sweep, is completely independent of

the others (at least, as far as defining the geometry is concerned). In building a library of

design information, it is desirable to make the relationship among these design variables and

design functions explicit; no clear means for doing so is afforded by the function-modeling

approach.

Note, though, that the common feature of the functions and variables presented in

this example is that they provide a partial description of a particular design component,

specifically, an airfoil. Based on this observation, and inspired by the component-based

interface used in GRADE (see Section 1.3.3), an alternative approach is suggested, based on

component-modeling. Observing that engineered artifacts may often be readily described

in terms of the physical components which comprise them, organizing design information

based upon components, rather than upon the individual functions and variables which

describe them, should result in a database which is easier to use. In solving a design

task using this approach, the designer is able to model the problem by combining the

appropriate physical objects required; in contrast, the function-modeling approach requires

greater effort, since it focuses attention at a finer level of detail (i.e., the individual equations

and parameters).

Furthermore, the component-modeling approach is able to take advantage of object-

oriented programming techniques, such as inheritance and specialization. Such techniques

provide significant opportunities for simplifying database maintenance and development, by

allowing those persons who are responsible for collecting and systematizing design informa-

tion to take advantage of the underlying component-based associations. When extending

the database, for example, specialization and inheritance allow new component descriptions

to be incrementally developed from existing component definitions. Insofar as inheritance

encourages sharing of code, program maintenance is also facilitated: since parameters or cal-

culations common to multiple components may be specified just once as part of a component

superclass, making improvements or correcting errors in such code is simplified. Addition-



ally, because design parameters are directly associated with the physical components they

describe, specification-and, therefore, display-of component geometry, as derived from

these parameters, is straightforward.

In utilizing object-oriented programming techniques, then, components are represented

by classes, which may be instantiated in order to build up an appropriate design represen-

tation. It is the actual instances which are manipulated and sized to solve a given design

problem: the classes themselves are not altered: the use of instantiable classes to store static

design knowledge results in a database which is not itself changed during the actual design

process. Note that the principle of maintaining a database of domain knowledge (here, the

library of classes which represent the available design components) which is independent of

the algorithms which will process this data is not unique to this approach: on the contrary,
the benefits of this technique have long been recognized in the domain of expert systems

[6], where rule specification is independent of the inference algorithms which will be used

to process these rules.

Finally, it should be noted that this approach is not necessarily original to this work.

A number of the object-oriented design programs discussed in Section 1.3.3 of Chapter 1

employ a similar strategy. The predefined component-types available in Serrano's Con-

cept Modeler [32], and the user-defined part/sub-part hierarchy utilized in the ICAD [29]

and Wisdom Systems [24] programs, both represent alternative implementations of the

component-modeling approach.

2.1.3 Intent

In investigating the utility of the component-modeling approach, it has been the goal of this

research to develop a software tool which supports realistic engineering design based on an

extensible database of instantiable design components. Thus, several basic requirements

must be met, including support for:

" object-oriented description of design components, including relevant parameters, as

well as component geometry;

" specification of the mathematical constraints which govern the integration of these

components into a viable design solution;

" instantiation of component descriptions; and

" satisfaction of the governing equations, based upon user-supplied values for a subset

of the component parameters.

The prototype design tool, Rubber Airplane, has satisfied these requirements, integrating

them into a graphical, mouse-driven interface for instantiating design components, and



displaying their attributes and geometry.

During the process of developing this program, however, several deficiencies in the orig-

inal approach were uncovered. First, there are often numerous design variables and design

functions which are not directly associated with any one individual component. Examples

from aircraft design include:

9 parameters which describe the vehicle as a whole, such as gross weight, flight speed,

and cruising range;

e parameters which do not describe physical characteristics of the design, such as at-

mospheric properties, and development and operating costs;

e constraints governing these non-physical parameters; and

e constraints governing multiple components, such as the attachment of one component

to another, or the aerodynamic interference between two or more components.

To address this inadequacy, a second type of object, the design link, has been introduced.

Design links do not represent the physical objects which comprise the design, but rather

represent the interrelationships between those physical objects. Design links may specify

their own parameters, thus providing for the definition of design variables which represent

the gross properties or non-physical characteristics of a design. In addition, however, design

links may also define constraints which govern not only their own parameters, but those of

other components, as well. In this way, the mathematical constraints required to model the

integration of multiple constraints may be specified.

While the problem of non-physical parameters and multi-component constraints was

recognized and addressed fairly early in the project, a second shortcoming took longer

to discover. This difficulty concerned the representation of time-dependent behavior, and

became problematic while attempting to implement the mission-performance modules for

the first test case (see Chapter 4). Mission-performance analysis, such as the calculation of

overall fuel consumption, often depends strongly upon the gross properties of the vehicle,

such as net weight, thrust, lift, and drag. However, these properties vary with time over the

course of the mission profile. Thus, there is a specific value for vehicle weight associated with

takeoff, another with cruise, and one or more with each of the various climb and descent

phases. Initially, mission performance for the first test case was implemented by means of a

design link with individual weight, lift, thrust, and drag parameters for each of the individual

flight conditions. For this particular mission, there were nine such flight conditions. This

solution was quickly judged unacceptable, however, because of its inflexibility. Such a

comprehensive design link is too strongly tied to an individual design problem; a design



involving only five flight conditions would require development of another completely new,
problem-specific mission-performance design link.

To overcome this inadequacy, a third object-type has been implemented, the so-called

design state. Design states are provided for the purpose of representing the various phases

of a vehicle's mission; thus, in the aircraft example mentioned above, design states repre-

senting the various flight conditions (e.g., takeoff, landing, cruise, etc.) would be available

for instantiation. In conjunction with the addition of design states, component and link

parameters may be optionally specified as state-dependent parameters, indicating that

multiple copies of such parameters should be created, one for every design state present.

Thus, parameters which have multiple values, dependent upon the flight condition (e.g.,
vehicle weight, thrust, lift, and drag, as suggested above), may be implemented as state-

dependent parameters, and appropriate state-specific instances of these parameters-as well

as the constraints which govern them-will be created automatically, as new design states

are added. In this way, a flexible means of incorporating stepwise time-dependent phenom-

ena into the design model is introduced.

In the remainder of this chapter, details of the implementation of this approach will be

presented. Section 2.2 will present the implementation of design components, Section 2.3

will cover design links, and Section 2.4 will discuss design states. Note that, for convenience,
the generic term "design entity" will be used to refer to design components, design links,
and design states, collectively.

The prototype design tool, Rubber Airplane, has been implemented using the program-

ming language LISP. A superset of Common Lisp [35], including the Flavors [39] extension

for object-oriented programming has been used. The program runs on both Symbolics 3600

and Texas Instruments Explorer Lisp Machines. LISP macros are provided for defining

component-, link-, and state-classes via a text editor; this data is represented internally by

means of defstruct data structures, as are attribute and constraint specifications. Actual

instances of design entities are represented as Flavor instances, as are the data structures

representing the attributes and constraints of these design entities.

2.2 Component Representation

2.2.1 Overview of Design Components

As indicated above, component-modeling is introduced as a means of organizing related

portions of design information. Thus, a component is to be defined in terms of the set of

design variables and design functions which are used to describe it. As such, the component-

modeling approach does not replace the function-modeling approach; rather, it augments

it. Nevertheless, it is useful to introduce an alternative terminology. Thus, in the context of



component-modeling, design variables are referred to as attributes of the components with

which they are associated. Similarly, the design functions associated with a component are

referred to as its constraints.

In keeping with the object-oriented programming paradigm, design components are

represented as objects. Thus, component objects, to be manipulated by the designer, will

be instances of corresponding component-classes. To facilitate component-definition,

multiple inheritance is supported, such that new component-classes may reference one or

more component-class superclasses. Component subclasses inherit both the attributes and

constraints of their superclasses, subject to specialization. Inheritance paths are based

upon computation of a class precedence list for each class, which provides a complete

and unambiguous ordering of its superclasses.

In this way, instantiation of a given component-class results in the creation of a new

component object, with a set of attributes and constraints as specified by the component-

class and its subclasses. Values of these attributes may be varied, triggering calculations

based on the corresponding constraints. If component geometry has been specified, changes

in attribute values also cause the geometry display to be updated appropriately.

2.2.2 Attribute Representation

Attribute Specification

Two basic types of component attributes are provided in Rubber Airplane, based on the

values which may be assigned to them. Values of scalar attributes must be floating-point

numbers. Discrete attributes take on specific values as selected from a corresponding

value-list. Support for intermediate types of parameters, such as integers (whose values

are numerical, though the set of possible values is not continuous), or composite parame-

ters, such as vectors, matrices, and complex numbers, is not present, though, as discussed

below, extension of the current system to incorporate such attribute-types is not infeasible.

Nevertheless, the majority of component attributes may be represented as scalar attributes:

since there are no restrictions on the computations performed by Rubber Airplane con-

straints, scalar attributes may be rounded to represent integral values, or combined as

array-elements, as desired.

In defining scalar attributes, the numerical algorithms employed to perform constraint

inversion require specification of an order-of-magnitude value, in order to guide selection

of seed-values. In addition, suggested low-value and high-value bounds may be specified,

to improve seed-value selection for these algorithms. When not explicitly declared, approx-

imate bounds are calculate by scaling the (required) order-of-magnitude value. Note that

these bounds are not strictly enforced, though the program does notify the user in the event

that they are violated. Additionally, an initial value for the parameter may be specified; if



none is provided, the order-of-magnitude value is used.

To improve program utility, a units-conversion package has been incorporated into Rub-

ber Airplane. As such, definition of scalar attributes also requires specification of the di-

mensions of each attribute, as well as declaration of the units in which the attribute's order-

of-magnitude, low-value, and high-value are given. Compatibility between corresponding

attribute dimensions and units is required.

As indicated above, discrete attributes are limited to values chosen from their value lists.

Thus, the primary element of the definition of a discrete attribute is the specification of its

value-list. Value lists may be specified as explicit lists of LISP data, or as symbols, whose

LISP values are assumed to be lists. Value-lists represented by symbols are "recomputed"

each time they are required, by evaluating the symbol.1 This feature is provided in order

to facilitate modification of the value-list in cases where the same value-list is referred to by

multiple discrete attributes, or where the list must be constructed at run-time. Like scalar

attributes, an initial value may be specified; otherwise, the initial value defaults to the first

element of the attribute's value-list.

Discrete attributes are assumed to be dimensionless. Nevertheless, there are no restric-

tions on the contents of discrete attribute value-lists. When value-lists are comprised of

data-structures with no standard printed representation, however, special accommodations

must be made for displaying them, as well as for storing discrete-attribute values in data files

between work sessions. Thus, discrete-attribute definitions may also specify value-printer

and value-saver properties. The value-printer specification should be a function which,

given a value from the corresponding attribute's value-list, returns a string representation of

that value. The value-saver specification should be a function which, when similarly given

a value from the value-list, returns a LISP form which evaluates to that value. These two

properties thus provide for the presentation and retrieval of arbitrarily complex values for

discrete attributes.

Finally, user-supplied documentation may be associated with either type of attribute

specification. This option is provided to support annotation of attribute-dependent ex-

planatory text, such as intended usage, or references to source material.

Of course, supporting only attribute specifications which represent floating-point scalar

values or list-based discrete values can be restrictive. As mentioned above, it is possible to

simulate additional data-types using the supported types, but this requires additional work

on the part of the constraint programmer, since he must handle the details of the simulation

himself, within the corresponding constraint definitions. It is certainly the case that these

additional data-types are routinely encountered in engineering design. For example, integer

'It is perhaps more technically accurate to say that such value-lists are "dereferenced" each time they
are accessed.



values are required when employing discretization to model complex continuous phenomena.

Similarly, moments of inertia of the physical objects comprising a design are most readily

represented via matrices.

Thus, in order to relieve the user of such burdens, it would be advantageous to provide

direct support for all the types of data required. In the case of vectors, matrices, and

complex numbers, it is primarily a matter of implementing techniques for composing scalar

attributes into aggregate data structures. Means for accessing, modifying, and displaying

such composite data-types would be required. Implementing integer-valued attributes would

likely be more difficult, since they assume an infinite range of numerical values-similar to

floating-point scalar attributes-as selected from a non-continuous set of possible values-

much like discrete attributes. They thus share the representational simplicity of numerical

data with the computation difficulties associated with discrete data (i.e., problems with

constraint inversion).

Attribute Declaration

The Rubber Airplane program provides two means for defining the attributes to be associ-

ated with a design entity. The first is by means of the def attribute macro, to be describe

here. For convenience, attribute declarations may also be incorporated into the class defi-

nitions of the design entities with which they are to be associated. For details on the latter

approach, see Sections 2.2.5, 2.3.3, and 2.4.2.

Two forms of the defattribute macro are recognized, one for defining scalar attributes,

and one for defining discrete attributes. The basic form for defining scalar attributes is:

(defattribute (entity-class attribute-name)

:documentation documentation-string

: comment comment-string

:low-value suggested-low-value

:order-of-magnitude suggested-order-of-magnitude

:high-value suggested-high-value

:value default-initial-value

:dimensions dimensions-string

:units units-string)

where the ordering of the keyword arguments-i.e., those preceded by an identifying key-

word (a symbol preceded by a colon, such as ":documentation", ":comment", ":value",

and ":dimensions" )-is insignificant. Furthermore, all keyword arguments are optional,

with the exception of the suggested-order-of-magnitude, dimensions-string, and units-string

arguments. In fact, the units-string argument may also be omitted if the attribute is non-



dimensional, as indicated by specifying an empty string for the attribute's dimensions-string.

The syntax for specifying dimensions and units is described in Appendix A.

The entity-class argument is required to identify the component-, link-, or state-class

with which the attribute is to be associated, and is specified as a LISP symbol. The

attribute-name may be specified as a string or as a symbol. A string may be used to control

capitalization when displaying the attribute's name, but must not contain any characters

not normally allowed in symbols (e.g., spaces, tabs, carriage returns), since attributes are

referenced as symbols within constraints. In addition, for reasons to be presented below (see

Section 2.3.3), the character "@" may not be used in the name of an attribute, regardless of

whether it is specified as a symbol or as a string. Note that the Rubber Airplane program

performs explicit checks on the validity of attribute-names to ensure compliance with these

restrictions. The remaining elements of the attribute definition correspond directly to the

scalar-attribute properties discussed in the preceding section, with the exception of the

comment-string argument. The comment-string argument is provided for annotation of the

code itself rather than the attribute; as indicated above, the documentation-string argument

is provided for supplying commentary to be passed on to attribute instances.

The format for defining discrete attributes with the def attribute macro is

(defattribute (entity-class attribute-name)

:documentation documentation-string

: comment comment-string

:value-list value-list-specification

:value default-initial-value

:value-printer value-printer-function

:value-saver value-saver-function)

Again, all keyword arguments are optional, with the exception of the value-list-specifica-

tion. The meaning and syntax of the entity-class and attribute-name arguments are the

same as for scalar-attributes. Similarly, the remaining arguments serve to delineate the

properties of discrete attributes discussed in the preceding section, except for the comment-

string argument, which serves the same purpose as it does when defining scalar attributes.

Note that, if not specified, the value-printer-function and value-saver-function arguments

effectively default to the identity function. 2

Finally, note that because the two forms of the defattribute macro have different syn-

tactic requirements-specifically, each scalar attribute definition requires specification of the

suggested-order-of-magnitude, dimensions-string, and units-string arguments, while discrete

2The LISP identity function is a function of one argument, which performs no computation, but merely
returns its argument, unchanged. It is thus functionally equivalent to the LISP expression, (lambda (x)
x).



attribute definitions require specification of the value-list-specification argument-discerning

the user's intent when employing this macro is a straightforward process. Ambiguous cases

which satisfy all or part of both sets of requirements signal an error.

Example Attribute Definitions

As an example of the definition of a scalar attribute, consider the following def attribute

specification for the span attribute of an airfoil component-class for representing lifting

surfaces:

(defattribute (airfoil span)

:documentation "Span of an airfoil planform."

:comment "Is this a good value for order-of-magnitude?"

:low-value 10 :order-of-magnitude 25 :high-value 100

:value 30 :dimensions "1" :units "ft")

As indicated above, the comment-string argument is ignored. This attribute is designated

as having the dimensions of length, by means of the "1" specification for the dimensions-

string argument. The units-string, "ft", indicates that the specifications for the suggested-

low-value, suggested-order-of-magnitude, suggested-high-value, and default-initial-value are

all given in units of feet. (For further details regarding the specification of dimensions

and units, see Appendix A.) As an example of a non-dimensional scalar attribute, the

following specification for the aspect-ratio attribute of the same airfoil component-

class is presented:

(defattribute (airfoil "Aspect-ratio")

:documentation "Measure of planform two-dimensionality."

:low-value 1 :order-of-magnitude 10 :high-value 30

:dimensions "")

Note the absence of a units-string specification. Additionally, the default-initial-value spec-

ification is omitted, indicating that the suggested-order-of-magnitude, 10, should be used.

Finally, as an example of the definition of a discrete attribute, here is one possible spec-

ification for a flaps-deployed? attribute for the airfoil component-class is presented:

(defattribute (airfoil flaps-deployed?)

:documentation "Flag indicates deployment status of airfoil flaps."

:value-list '(t nil)

:value-printer yes-no-string

:value nil)



(defun yes-no-printer (boolean)

"Returns an appropriate string, based on the value of BOOLEAN."

(if boolean "Yes" "No"))

The value-list-specification for this attribute is simply a list of LISP symbols representing

the logical values for true and false, t and nil. The default-initial-value is nil, indicating

that, by default, the flaps are not deployed. Note that in addition to the def attribute

specification, definition of an auxiliary LISP function, yes-no-string, is included. This

function serves as the value-printer-function for the flaps-deployed? attribute; as its

documentation string indicates, this auxiliary function, defined using standard LISP syntax,

simply returns the appropriate string, "Yes" or "No", corresponding to the logical value of its

argument. Note that since the value-list-specification for this attribute consists of standard

symbols, no specification of the value-saver-function is required. Indeed, the value-printer-

function argument is specified here merely for aesthetic purposes, and is also not strictly

required.

2.2.3 Constraint Representation

Constraint Specification

Both equality and inequality constraints may be associated with design entities in Rubber

Airplane. The body of a constraint is the sequence of calculations which implements the

mathematical relationship to be represented by the constraint. Specifically, the body of a

constraint specifies the series of operations to be performed based on the values of a set of

input parameters in order to compute values which constrain the output parameters.

Note, however, that the adjectives "input" and "output" refer only to the single, uni-

directional form of the constraint designated by its body; the use of constraint propagation

means that an alternative form of the constraint may ultimately be employed to constrain

an input parameter, using previously-assigned values for the output parameters. The exact

form of the constraint to be applied depends upon the user's choice of base variables.

In the case of constraints associated with component-classes, input and output param-

eters must refer to attributes already defined for the component-class. In specifying an

attribute to serve as an input or output parameter, the required units must also be speci-

fied. (The syntax for specifying units is described in Appendix A). Appropriate conversions

are automatically incorporated into the constraint, as needed. Finally, as was the case with

attribute specifications, documentation may be associated with a constraint specification.



Constraint Declaration

The def constraint macro is provided for defining Rubber Airplane constraints. The basic

format of a def constraint statement is:

(def constraint (entity-class constraint-name constraint-type)

C(outputl output-unitsl) (output2 output-units2) ... )

((inputi input-unitsl local-namel) Cinput2 input-units2 local-name2) ... )

documentation-string

constraint-body)

The entity-class argument identifies the component-, link-, or state-class with which the

constraint is to be associated, and is specified as a LISP symbol. The constraint-name

may be specified as either a symbol or a string. Note that, unlike attribute-names (see

Section 2.2.2), there are no restrictions on the contents of constraint-names specified as

strings.

The constraint-type argument indicates the type of the constraint; two types of equality

constraints and four types of inequality constraints are supported. Thus, the constraint-type

argument must be one of six recognized keywords, :equality, :one-way, :greater-than,

:less-than, :greater-than-zero, and :less-than-zero. A constraint-type of : equality

is used to designate equality constraints which may be inverted during constraint propaga-

tion. Equality constraints which are not to be inverted are specified by declaring the value

:one-way for the constraint-type argument.3 If the constraint is an inequality constraint

specifying a lower bound on the output parameter, 4 based upon some function of the input

parameters, the constraint-type should be :greater-than. Similarly, if an upper bound is

to be computed, the constraint-type should be :less-than. For convenience, the constraint-

type argument may be specified as either :greater-than-zero or :less-than-zero if the

desired bound is simply the constant value, zero. Finally, note that the default value for

the constraint-type argument is :equality; if no constraint-type is explicitly declared, it is

assumed that the constraint is an equality constraint, and that it may be inverted.

Thus, the first argument to the def constraint macro is a list which identifies the

constraint, and indicates its type. The second argument is a list of the output-variables

for the computation indicated in the constraint-body. Each element of this list is itself a

list, the first element of which is the name of the attribute to be computed, specified as

a LISP symbol, and the second element of which is a string indicating the units in which

the computed value will be returned (see Appendix A for details). The program verifies

the compatibility of the indicated units with the declared dimensions of the corresponding
3 As discussed in Chapter 3, all constraints involving discrete attributes, as well as those having multiple

output parameters, must be declared :one-way constraints.
'Inequality constraints may have only one output parameter.



attribute. Note that only constraints with a constraint-type of :one-way may specify mul-

tiple outputs. Other constraints may specify only a single output-variable; in such cases,
the outer set of parentheses may be omitted.

The third argument to the defconstraint macro is a list of the input-variables for the

computation embodied in the constraint-body. As with the output-variables, each element

of this list is itself a list. These sublists are comprised of either two or three elements:

" The first element of the sublist should be a symbol naming the attribute which is to

serve as an input-variable for the constraint.

" The second element of the sublist should be a string (see Appendix A) indicating

the units in which the value of this attribute is to be supplied to the constraint-body

when applying the constraint. Compatibility of the indicated units with the declared

dimensions of the attribute is verified by the Rubber Airplane program.

" The third element of the sublist, which is optional, should be a symbol which will

serve as an alias for the attribute's name within the constraint-body.

There are no restrictions on the number of input-variables which may be specified for a

constraint. As with output parameters, though, if only a single input parameter is to be

specified, the outer set of parentheses may be omitted.

The documentation-string argument allows user-specified commentary to be associated

with a constraint definition. The constraint-body argument describes the body of the con-

straint, as defined above. It is specified as a series of LISP expressions representing the

desired sequence of operations for computing the values of the output-variables based upon

the values of the input-variables. Input-variables are referred to within the constraint-body

by their names, expressed as symbols, or by the appropriate aliases, when declared (see

above). The value or values returned by the final expression in the constraint-body should

correspond to the computed values for the output-variables; thus, a form which returns mul-

tiple values, such as the LISP values function, is required in the case of multiple-output

constraints. Finally, note that no specification of input variables or the constraint-body

argument is required for constraints whose constraint-type is either :greater-than-zero

or :less-than-zero.

Example Constraint Definitions

The first example constraint definition implements the mathematical relationship which

defines the aspectratio attribute introduced in Section 2.2.2 in conjunction with a hypo-

thetical airfoil component-class:



(defconstraint (airfoil "Definition of Aspect Ratio" :equality)

(aspect-ratio "")

((span "Im") (wing-area "m2" S))

"Implements the definition of aspect ratio as an equality constraint."

(/ (* span span) S)))

The constraint is named by the string "Definition of Aspect Ratio". As defined, the

output parameter for this constraint is the non-dimensional aspect-ratio attribute. The

input parameters are the span and wing-area attributes, whose values are expected to

be in metric units when the constraint is applied. The value for aspect-ratio is actually

computed by dividing the square of the span by the wing-area, at least when the constraint

is to be applied as defined. Note also the use of the local alias, "S", for the wing-area

attribute within the body of the constraint. The remaining component of this constraint

definition, the string which appears between the input parameter specifications and the

constraint-body, is the constraint definition's documentation-string argument.

As an example of a constraint with multiple output parameters, consider the follow-

ing :one-way constraint, which purports to calculate the aerodynamic coefficients for the

airfoil component-class, based on its planform dimensions.

(defconstraint (airfoil aerodynamic-coefficients :one-way)

((lift-slope "deg -1") (drag-slope "deg -1") (1-over-d ""))

((aspect-ratio "") (span "Ift") (sweep "deg")

(root-chord "ft") (tip-chord "ft"))

"Computes the lift and drag coefficients, by calling

MAGIC-AERODYNAMICS-FUNCTION."

(multiple-value-bind (cl-alpha cd-alpha)

(magic-aerodynamics-function

aspect-ratio sweep root-chord tip-chord span)

(values cl-alpha cd-alpha (/ cl-alpha cd-alpha))))

Here, the hypothetical magic-aerodynamics-function is expected to return two values, the

slopes of the lift and drag curves, based on the planform dimensions, expressed in English

units. The constraint itself returns multiple values, the two slopes (in units of inverse

degrees) and their quotient, corresponding to the three output parameters, lift-slope,

drag-slope, and 1-over-d.

The following code implements a simple inequality constraint, governing the sign of the

aspect-ratio attribute:

(defconstraint (airfoil "Sign of Aspect Ratio" :greater-than-zero)



(aspect-ratio "")

"Ensures correct sign for the aspect-ratio attribute.")

Since the constraint-type argument has a value of :greater-than-zero, no input-param-

eters or constraint-body are required. A slightly more complicated inequality constraint,
which simply compares the values of the value of 1-over-d attribute to some user-specified

minimum, minimum-l-over-d, might be defined as follows:

(defconstraint (airfoil "Minimum L/D" :greater-than)

(1-over-d "") (minimum-l-over-d "")

"Enforces minimum bound on the lift-to-drag ratio."

minimum-1-over-d)

Note that the constraint-body consists merely of the name of the input parameter, "minimum-

1-over-d". Also note that since only one input parameter is specified, the outer set of

parentheses-which would otherwise be required to delimit the input parameters-has been

omitted. (The same is true of the outer set of parentheses for the output parameters, which

have been omitted for all of these examples, except for the aerodynamic-coefficients

constraint.) Finally, as an example of an inequality constraint which performs a computa-

tion, the following alternative implementation of the previous example is presented:

(defconstraint (airfoil "Minimum Lift" :greater-than)

(lift "N") ((drag "N") (minimum-l-over-d ""))

"Enforces a minimum bound on the airfoil's lift,

based on MINIMUM-L-OVER-D."

(* drag minimum-l-over-d))

Rather than directly bounding the 1-over-d attribute, this (admittedly contrived) con-

straint employs the minimum-l-over-d attribute to establish an inequality relationship

between the airfoil's lift and drag attributes.

2.2.4 Implementation of Inheritance

Issues in Supporting Multiple Inheritance

As discussed above, object-oriented programming techniques are employed to simplify def-

inition of component-, link-, and state-classes, by facilitating incremental development and

promoting database modularity. The key to these advantages is inheritance among classes,

specifically, inheritance of both attributes and constraints by design-entity subclasses. Ad-

ditionally, inherited attributes and constraints may be overridden, when desired, via special-

ization: an attribute or constraint of a superclass which has the same name as one defined



locally by the subclass will not be inherited. Local specifications are preferred over inherited

specifications. Furthermore, specializations, unless they are themselves overridden, are also

inherited.

In the case where several superclasses of a given class specialize the same attribute

or constraint, though, which particular specialization is to be inherited? It is the role of

the class precedence list, introduced in Section 2.2, to make this determination. The class

precedence list is a ranking of all the superclasses-direct or indirect-associated with a

class; in addition, the class precedence list for a class includes the class itself, at the top of

this ranking. The exact set of attribute and constraint specifications to be associated with a

class may therefore be completely determined by traversing its class precedence list. First,
the specifications local to the class itself are incorporated. Next, those of the second class

in the precedence list are incorporated, except for those specifications which share the same

name as a specification which has already been incorporated. This procedure is applied, in

turn, to each class in the precedence list, adding specifications only for those attribute- and

constraint-names not already present.

Single inheritance allows at most one superclass to be declared for each new class.

Construction of the class precedence list for such cases is straightforward. The first member

of the class precedence list is, of course, the class itself. The second member is its superclass.

The third is the superclass's superclass, and so on until a base class (i.e., one with no

superclasses of its own) is encountered.

An appropriate algorithm for constructing the class precedence list in the case of mul-

tiple inheritance is not so obvious. When multiple superclasses are declared as the direct

superclasses of a new class, some means is required for ordering the superclasses' super-

classes. This task is made more difficult by the fact that a given class's superclasses may

themselves share superclasses. The ordering of direct superclasses must be preserved; addi-

tionally, inheritance relationships among the various direct and indirect superclasses must

be maintained.

Rather than attempt to devise a new algorithm for computing class precedence lists

under multiple inheritance, it was decided to take advantage of the collective efforts of

various members of the computer science community by instead adopting a published algo-

rithm. Specifically, the algorithm developed for the Common Lisp Object System (CLOS)

[3], recently accepted by the American National Standards Institute (ANSI) as part of the

Common Lisp language specification, has been implemented.

Computation of the Class Precedence List

This algorithm begins with the local precedence order, which is derived directly from

the definition of a class. The class definition is required to specify an ordered list of direct



superclasses. Furthermore, each class is assumed to implicitly include the top-level class-

denoted (in typical LISP fashion) by the symbol "t"-as the final member of its list of

direct superclasses. The class t thus serves as a sort of universal superclass. For each

class, then, the local precedence order is determined simply by adding the class itself to

the beginning of this ordered list. Thus, if a class C specifies as its direct superclasses

the ordered list (C1 , C2, C3, ... , C,), class C's local precedence order is the ordered list

(C, C1, C2, C3,..., C, t). The goal of the algorithm is to determine a total ordering on C
and all of its superclasses which remains consistent with the local precedence order of each

of those classes.

Based on the local precedence order of class C, a set of local precedence pairs is

generated, in which each pair denotes the precedence of one class over its immediate suc-

cessor. Continuing the notation introduced above, which is itself based on the notation of

Reference [3], this set may be written as

Rc = {(C, C1), (C1, C2), (C2, C3), (Cn-1, Cn), (Cn, 0)

To compute the class precedence list for a class and all of its superclasses, the union of these

sets of local precedence pairs is required. Denoting Sc as the set of class C and all of its

superclasses, direct and indirect, the union of all local precedence pairs, designated R, is

R= Rc
cESc

In cases where the individual sets of local precedence pairs are consistent, the union R

will provide a partial ordering on Sc; a topological sorting of R will generate the class

precedence list for S. If the individual sets are not consistent, however, topological sorting

will fail, due to the presence of circularity among the superclasses, and R is itself said to

be inconsistent.

Topological sorting is performed by examining the precedence pairs, in order to identify

a class c in Sc such that no other class precedes c according to the pairs present in R. The

first such class will be C, the class being defined. When such a class c is found, such that no

pairs of the form (b, c) are present in R, all other pairs referring to c, which will of course be

of the form (c, d), are removed from R. The class c is also removed from Sc, and added to

the end of the class precedence list currently under construction. This process is repeated,

until no such classes c-i.e., classes with no predecessors-are found.

If the process has stopped and R is empty, then the sorting has been completed suc-

cessfully. Only the top-level class t will remain in Sc, and, upon adding class t to the end

of the class precedence list, construction of the class precedence list is concluded. If this is

not the case, however, then the set R is inconsistent, since each class remaining in Sc, with

the exception of t, has a predecessor among those remaining classes. Circularity is present,



insofar as there must be a chain of classes cl,... , cn, such that c; precedes ci+1, and cn

precedes cl. The precedence pairs in R include a loop, and no consistent class precedence

list may be derived.

Finally, note that it may sometimes be the case that there are multiple classes remaining

in SC which have no predecessors according to the partial ordering specified by R. Since it is

desired that the process of computing the class precedence list be deterministic and therefore

predictable, a selection criterion is required. Thus, given a choice among several classes with

no predecessors, the class which has a direct subclass latest in the class precedence list, as

it has been computed so far, is chosen. Since, for each class, there is an ordering among

its direct superclasses, it will be the case that only one such class among the possible

candidates will be found. If there is no such candidate class, then it is again the case that

R is inconsistent; it does not specify a complete partial ordering.

To be more specific, let N1,..., Nm, m > 2, be the classes in Sc which have no prede-

cessors in R, and (C1,... , Cn), n > 1, be the class precedence list constructed so far. Class

C1 will be the most specific class (i.e., C itself, where C is the class for which the class

precedence list is being computed), and Cn is the least specific. Selection among the Ni

classes is therefore determined by finding the largest value for j, where 1 < j < n, such that

there exists a k, where 1 < k < m, for which Nk is a direct superclass of C,. Class Nk is

the class to be added next to the class precedence list for C. As indicated in Reference [3],

The effect of this rule for selecting from a set of classes with no predecessors is

that the classes in a simple superclass chain are adjacent in the class precedence

list and that classes in each relatively separated subgraph are adjacent in the

class precedence list. For example, let T and T2 be subgraphs whose only

element in common is the class J. Suppose that no superclass of J appears

in either T1 or T2. Let C1 be the bottom of T1; and let C2 be the bottom of

T2. Suppose C is a class whose direct superclasses are C1 and C2 in that order,
then the class precedence list for C will start with C and will be followed by all

classes in T1 except J. All the classes of T 2 will be next. The class J and its

superclasses will appear last.

In using this algorithm, then, a "clustering" effect is observed. All superclasses of the first

direct superclass precede those of the second direct superclass, except those which are shared

by both. The same is true of the second and third direct superclasses. Shared superclasses

appear after the unshared superclasses of the last direct superclass which inherits them.

It is observed, then, that the CLOS algorithm addresses both of the concerns mentioned

above. Ordering of direct superclasses is preserved, as are the inheritance relationships

among direct superclasses and their own superclasses. Additionally, means for detecting



Class Superclasses Local Precedence Pairs
component none {(component, t)}

distribution none {(distribution, t)}
planform component {(planform, component), (component, t)}
thickness distribution {(thickness, distribution), (distribution, t)}
camber distribution {(camber, distribution), (distribution, t)}
wing planform {(wing, planform), (planform, camber),

camber (camber, thickness), (thickness, t)}
thickness

fin thickness {(f in, thickness),
planform (thickness, plant orm), (plant orm, t)}

tail wing {(tail, wing), (wing, f in), (f in, t)}
fin I

Table 2.1: Classes and superclasses for class precedence list examples.

circular inheritance paths-in the form of inconsistencies within the partial ordering of the

inherited classes-are provided.

Examples

To illustrate the procedure described in the preceding section, consider the set of classes

and superclasses presented in Table 2.1. To compute the class precedence list for component-

class wing, the sets S and R must first be constructed, where, as indicated above, S is the

set consisting of class wing and all of its superclasses, and R is the union of the sets of local

precedence pairs for all of the sets in S. Applying the information in Table 2.1, then, it is

seen that for class wing,

S = {wing, planform, camber, thickness, component, distribution, t}

R = {(wing,plant orm), (plant orm, camber), (camber, thickness),

(thickness, t), (planf orm, component), (component, t),

(camber, distribution), (thickness, distribution), (distribution, t)}

The class wing has no precedents in R, and is therefore chosen first. This class is then

removed from S, as are all pairs which include it in R. The sets are then reduced to

S = {plantorm, camber, thickness, component, distribution, t}

R = {(planform, camber), (camber, thickness), (thickness, t),

(plantorm, component), (component, t), (camber, distribution),

(thickness, distribution), (distribution, t)}



and the resulting precedence list, so far, is (wing). Class planform is the next class to be

chosen according to the algorithm, yielding the result (wing planform), and the sets are

reduced to

S = {camber, thickness, component, distribution, t}

R = {(camber, thickness), (thickness, t), (component, t),

(camber, distribution), (thickness, distribution), (distribution, t)}

At this stage, there are two classes-camber and component-which have no precedents in

R, so the one which has a direct subclass closest to the end of the current class precedence

list should be added next. The only direct subclass of class camber which is already in the

class precedence list is wing. Class planform is a direct subclass of class component, and

since planform follows wing in the class precedence list, component is to be added next.

The current result, therefore, is (wing planform component). Removing class compo-

nent and its pairs from S and R, respectively, results in

S = {camber, thickness, distribution, t}

R = {(camber, thickness), (thickness, t),

(camber, distribution), (thickness, distribution), (distribution, t)}

Therefore, class camber is added next, yielding (wing planform component camber), and

sets S and R are reduced to

S = {thickness,distribution,t}

R = {(thickness, t), (thickness, distribut ion), (distribution, t)}

Class thickness is added next, yielding

S = {distribution,t}

R = {(distribution,t)}

and a class precedence list of (wing planform component camber thickness). The fi-

nal selection from R is, therefore class distribution, giving the result (wing planform

component camber thickness distribution). The sets S and R have now been reduced

to

S= {t}

R={}

Class S has only one remaining element, the universal superclass t. Class R has been

reduced to the empty set. According to the algorithm, then, computation of the class



precedence list has been successful, and the only remaining step is the addition of class t

to the class precedence list for wing, yielding the final result (wing planform component

camber thickness distribution t).

As indicated above, however, it is certainly possible to specify a set of superclasses

which cannot be ordered. Indeed, the superclasses specified for class tail in Table 2.1 are

inconsistent, since the superclass wing specifies that class planform should precede class

thickness, while superclass fin specifies the reverse ordering. Classes wing and f in are not

themselves inconsistent, but their combination, as required by class tail, is inconsistent.

No class precedence list can be constructed for class tail; attempting to do so results in

an error.5

2.2.5 Definition of Component-Classes

Component Definition Syntax

As discussed above, components are defined as classes in terms of the attributes and con-

straints with which they are associated. Additionally, component-classes may specify one

or more superclasses, whose attributes and constraints are to be inherited, subject to spe-

cialization. The actual mechanism for defining new component-classes in Rubber Airplane

is the def component macro. The syntax for this macro is as follows:

(def component entity-class

attribute-specifications

superclasses

option

option

The entity-class argument should be a LISP symbol which names the component-class.

This symbol is also used when employing the detattribute and def constraint macros to

associate attributes and constraints with the component-class (see Sections 2.2.2 and 2.2.3).

The superclasses argument should be a list of symbols, each of which identifies a component-

class which is to serve as a direct superclass of the new component-class. As indicated in

the Section 2.2.4, the ordering of classes within the list of superclasses is significant.

The attribute-specifications argument should be a list of attribute specifications, similar

in syntax to attribute definitions declared via the defattribute macro. As mentioned in

Section 2.2.2, this argument provides an alternative means for associating attributes with

'Of course, one simple means for reconciling this inconsistency is to simply change the ordering of the
superclasses for either wing or fin. This change would validate the use of these two classes as mutual
superclasses of class tail.



component-classes. It is provided for the purpose of syntactic similarity with other LISP

extensions for object-oriented programming, such as the det flavor and def class macros

of Flavors [39] and CLOS [3], respectively. Each attribute specification is itself a list, of the

form

(attribute-name keyword keyword-arg keyword keyword-arg ... )

where attribute-name is a symbol or string which names the attribute, as in def attribute,

and the alternating keywords and keyword-arguments are identical to those recognized by

def attribute (see Section 2.2.2). Both scalar and discrete attributes may be defined in

this manner.

The final arguments to the detcomponent macro is a set of options which allow for

further description of the component-class. A listing of the supported def component options

appears in Table 2.2. Note that it is not necessary to specify any options. To take advantage

of the mouse-based user-interface for component-class instantiation, however, it is necessary

to at least declare a library category for the class, via the :category option. Furthermore,

use of the :required-attributes option allows a component-class to define constraints

which refer to attributes not directly associated with the class; it is assumed that the

corresponding attributes, with the specified dimensions, will be defined by some other class

in any class precedence list which includes this component-class.

The Base Component-Class

A final element to the definition of Rubber Airplane component-classes is the presence of

a base component-class, called "design-component". Rubber Airplane requires all instan-

tiable component-classes to include this class in their class precedence lists; it is thus similar

in nature to CLOS's universal superclass, "t" (see Section 2.2.4). Class design-component

need not be a direct superclass of each component-class, but each instantiable class (i.e.,
those for which the :abstract-component option is not specified) must include it as either

a direct or indirect superclass.

The role of the design-component class is to provide standard attributes for those

properties which are common to all design components: reference position, center of grav-

ity, mass, and weight. The code which defines this component-class, including support-

ing constraints, appears in Figures 2.1-2.2. Note that design-component is an abstract

component-class, and therefore it cannot be directly instantiated.

In addition to design-component, another built-in component-class, design-component-

attachment, is also provided. This class is intended to provide a simple means for relating

the position of two component-instances, by declaring one of the two to be the supe-

rior of the other, which is itself referred as to the inferior component. The definition



Option Description

Specifies string as the documentation-string for the

(:documentation string) component-class.

Specifies string as an ignored comment. Provided

( comment string) for annotation of the defcomponent code itself.

Declares a hierarchical path of library categories for
locating the component-class. Category catl will

: category be a top-level category, and cai2 through cain will
call cai2 .. . cain) be successive sub-categories. Categories not already

present are automatically created.

Declares that the component-class is an abstract

:abstract-component class, which may not be instantiated, but may serve
as a superclass for another component-class.

Declares comp1, comp2, ... as component-classes

which must be present as (indirect) superclasses of
Sreqired-compnenthe component-class, upon instantiation. The argu-

ments compi, comp2, ... should be symbols naming

defined component-classes. Only valid in conjunc-
tion with the :abstract-component option.

Declares atl, aii2, ... as attributes, with cor-

responding dimensions dims1, dims2, ... , which

must be present as (inherited) attributes of the

ati dimsl) (00~ dims2) )component-class, upon instantiation. Arguments
atil, att2, ... should be symbols or strings, and
arguments dimsl, dims2, ... should be dimension-

strings. Only valid in conjunction with the
:abstract-component option.

Declares that instances of the component-class

:no-attachment should not have a superior component associated
with them. (See Section 2.2.5 for a discussion of
component superiors.)

Table 2.2: Supported options for the def component macro.



(defcomponent design-component

(("Position-X"
:documentation
"Absolute X-coordinate for the component's reference position."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "in")

("Position-Y"
:documentation

"Absolute Y-coordinate for the component's reference position."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im")

("Position-Z"
:documentation
"Absolute Z-coordinate for the component's reference position."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im"))

()
:abstract-component
(:documentation "Defines position attributes for design components."))

(defattribute (design-component "Mass")

:documentation "Mass of the component."

:low-value 0.01 :order-of-magnitude 100 :high-value 10000 :value 1

:dimensions "im" :units "kg")

(defattribute (design-component "Weight")
:documentation "Weight of the component."
:low-value 0.01 :order-of-magnitude 100 :high-value 10000 :value 10

:dimensions "f" :units "lbf")

(defconstraint (design-component "Gravity") (weight "N") ((mass "kg"))
"Computes the weight of a component at sea level on Earth."

(let ((g 9.807))
(* g mass)))

Figure 2.1: LISP definition for the base component-class, design-component.



(defattribute (design-component "CG-XI")
:documentation
"Absolute X-coordinate for the component's center-of-gravity position."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im")

(defattribute (design-component "CG-Y")

:documentation
"Absolute Y-coordinate for the component's center-of-gravity position."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im")

(defattribute (design-component "CG-Z")

:documentation
"Absolute Z-coordinate for the component's center-of-gravity position."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im")

(defattribute (design-component "Moment-X")
:documentation "X-component of the moment arm of the component's mass."

:low-value -1000000 :order-of-magnitude 10 :high-value 1000000

:dimensions "im 1" :units "kg m")

(defattribute (design-component "Moment-Y")

:documentation "Y-component of the moment arm of the component's mass."

:low-value -1000000 :order-of-magnitude 10 :high-value 1000000

:dimensions "in 1" :units "kg m")

(defattribute (design-component "Moment-Z")
:documentation "Z-component of the moment arm of the component's mass."

:low-value -1000000 :order-of-magnitude 10 :high-value 1000000

:dimensions "im 1" :units "kg m")

(defconstraint (design-component "X Moment") (moment-x "kg m")

((mass "kg") (cg-x "m"))

"Computes the x-component of the moment arm about the origin."

(* mass cg-x))
(defconstraint (design-component "y Moment") (moment-y "kg M")

((mass "kg") (cg-y "I"))

"Computes the y-component of the moment arm about the origin."

(* mass cg-y))
(defconstraint (design-component "z Moment") (moment-z "kg m")

((mass "kg") (cg-z "im"))

"Computes the z-component of the moment arm about the origin."

mass cg-z))

Figure 2.2: Additional attribute and constraint definitions for the base component-class,
design-component.



(defcomponent design-component-attachment

() ()
:abstract-component
(:required-attributes (position-x "1") (position-xesuperior "1")

(position-y "1") (position-y~superior "1")

(position-z "1") (position-zAsuperior "1"))

(:documentation
"Provides simple attachment constraints for design components."))

(defattribute (design-component-attachment "Attach-X")

:documentation "X position of object relative to its superior."
:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "im")

(defattribute (design-component-attachment "Attach-Y")

:documentation "Y position of object relative to its superior."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im")

(defattribute (design-component-attachment "Attach-Z")

:documentation "Z position of object relative to its superior."

:low-value -100 :order-of-magnitude 10 :high-value 100 :value 0

:dimensions "1" :units "Im")

(defconstraint (design-component-attachment attachment-x) (position-x "Im")

((attach-x "im") (position-xesuperior "im"))

"Relates the component's Position-X to the Position-X of its superior."

(+ attach-x position-xtsuperior))
(defconstraint (design-component-attachment attachment-y) (position-y "Im")

((attach-y "im") (position-yesuperior "Im"))

"Relates the component's Position-Y to the Position-Y of its superior."

(+ attach-y position-yesuperior))
(defconstraint (design-component-attachment attachment-z) (position-z "im")

((attach-z "im") (position-zesuperior "im"))

"Relates the component's Position-Z to the Position-Z of its superior."

(+ attach-z position-zesuperior))

Figure 2.3: LISP definition for class design-component-attachment, a second built-in Rub-

ber Airplane component-class, which provides a simple means for attaching one component

to another.



of this component-class is presented in Figure 2.3. Whenever such a declaration is made,

the attributes and constraints of class design-component-attachment are automatically

added to the inferior component. In addition, aliases for the position-x, position-y, and

position-z attributes of the superior component are also added to the inferior, where they

are named position-xesuperior, position-yesuperior, and position-zesuperior, re-

spectively. As indicated in Figure 2.3, these aliases are referred to by the attachment-x,

attachment-y, and attachment-z constraints of class design-component-attachment,

and are listed as :required-attributes for the class. The Rubber Airplane program

supports the interactive declaration and retraction of superior and inferior component-

instances.

Example Component Definitions

Two example component definitions have already been presented: those for Rubber Air-

plane's two built-in component-classes, design-component and design-component-attach-

ment (see Figures 2.1- 2.3). As an example of a user-defined component-class, consider the

following definition of an abstract component class, planform-mixin:

(def component planform-mixin

((span

:documentation "Span of an airfoil planform."

:comment "Is this a good value for order-of-magnitude?"

:low-value 10 :order-of-magnitude 25 :high-value 100

:value 30 :dimensions "1" :units "ft")

(wing-area

:documentation "Two-dimensional wing surface area."

:low-value 100 :order-of-magnitude 750 :high-value 2000

:dimensions "12" :units "ft2")

("Aspect-ratio"

:documentation "Indication of airfoil two-dimensionality."

:low-value 1 :order-of-magnitude 10 :high-value 30

:dimensions "")

("Taper-ratio"

:documentation "Ratio of tip-chord to root-chord."

:low-value 0 :order-of-magnitude 1 :high-value 1

:dimensions ""))

()
:abstract-component

(:comment "Need to add root-chord and tip-chord attributes.")



(:category aerodynamics lifting-surfaces mixins)

(:documentation

"Provides attributes for describing the planform of an airfoil."))

This abstract class6 is intended to provide its subclasses with the attributes required to

represent the planform geometry of an airfoil. It is not itself instantiable, since it provides

only a partial description of airfoil components. Note also that, for completeness, various

constraints should be added to this component-class, such as the following:

(defconstraint (planform-mixin "Definition of Aspect Ratio" :equality)

(aspect-ratio "")

((span "Im") (wing-area "m2"))

"Implements the definition of aspect ratio as an equality constraint."

(/ (* span span) wing-area)))

(defconstraint (planform-mixin "Definition of Taper Ratio" :equality)

(taper-ratio "")

((tip-chord "Im") (root-chord "im"))

"Implements the definition of taper ratio as an equality constraint."

(/ tip-chord root-chord)))

Thus, not only does the abstract component-class planform-mixin provide the required

attributes, it also implements the appropriate mathematical relationships between them.

If we assume that an abstract component-class for describing airfoil cross-sections, class

cross-section-mixin, is also available, then it is possible to combine these superclasses

into an instantiable airfoil class, as follows:

(def component airfoil

()
(cross-section-mixin planform-mixin design-component)

(:category aerodynamics lifting-surfaces)

(:documentation

"Combines planform and cross-section descriptions

to provide a complete airfoil description."))

6 Note that the use of the term "mixin" in the name of this class follows the tradition of Flavors [39],
where it is conventional to refer to an uninstantiable class which implements a single, particular feature
as a "mixin", since it is only useful when mixed together with other classes. Thus, since planforu-mixin
describes a specific, general aspect of airfoils, its name has been chosen to reflect its intended role in the
class hierarchy.



This component-class need not provide any attributes or constraints of its own, since it

inherits the necessary specifications from its superclasses: airfoil-section-mixin pro-

vides the cross-section representation, planform-mixin implements the planform data, and

design-component-whose presence here is required because airfoil is not an abstract

class, and none of its other superclasses inherit class design-component-defines attributes

and constraints for specifying the position and mass-properties of the component-class.

One might consider that the use of the abstract superclasses cross-section-mixin and

planf orm-mixin in this example is inefficient: why not combine their attributes and con-

straints directly into the airfoil component-class and do away with the abstract classes

altogether, since all airfoils must include planform and cross-section information, anyway?

Actually, there is an advantage to separating the two aspects of airfoil design into individ-

ual, abstract component-classes. This advantage follows from the object-oriented approach

adopted in Rubber Airplane, and manifests itself in the form of code reusability

It is because airfoil planform and cross-section geometry are independent of one an-

other that the separation is possible: there are no geometrical constraints which depend

upon both descriptions. Furthermore, while the set of parameters required to describe

the planform is basically fixed, multiple cross-section representations are possible. For in-

stance, the shape of the cross section could be constant along the span. Alternatively,

it might vary continuously between one fixed cross-section at the root of the airfoil, and

a second fixed cross-section at the tip. In the first case, attributes and constraints de-

picting but a single cross-section are required. In the second case, two sets of attributes

and constraints are required. In Rubber Airplane these two approaches might be im-

plemented by providing two different component-classes, single-cross-section-mixin

and dual-cross-section-mixin. Combining either of these two abstract classes with the

planf orm-mixin and design-component component-classes would result in a valid airfoil

component-class. In fact, two different airfoil component-classes, say single-section-

airfoil and dual-section-airfoil could co-exist in the component-class hierarchy. As

indicated above, because planform and cross-section geometry are independent, no changes

to class planform-mixin are needed to make it compatible with one or the other cross-

section descriptions. The definition of component-class planform-mixin can therefore be

shared by both airfoil classes. If planform representation had been included in the definition

of the airfoil component-classes, it would be necessary to implement it twice.



2.3 Design Link Representation

2.3.1 Overview of Design Links

As mentioned in Section 2.1.3, there are several cases in which it is desirable to specify design

parameters and constraints which are not associated with any one particular component.

Vehicle gross properties, flight conditions, and various non-physical characteristics (e.g.,

development costs) are examples of such "component-less" attributes. Similarly, design

constraints on such parameters, as well as constraints which simultaneously relate the at-

tributes of multiple components, have no obvious association with a single component-class.

Forcing such attributes and constraints to be associated with a specific component-class

would not facilitate program modularity, since it would introduce unwanted dependencies

between component-classes. For this reason, a second type of design entity, the design link,

is introduced. Class definitions for design links may specify their own attributes and con-

straints, in the same manner as component-classes. In addition, however, design links can

also specify a set of design entities, the attributes of which may be referenced by the design

link's constraints. These design entities are referred to as the linkages of the design link.

In addition to specifying constraints which access the attributes of a link-class's linkages,

link-classes may also define collector constraints, which declare an attribute of the link to

be either the sum or product of a collection of attributes obtained by applying a collection

predicate to all of the attributes of all of a design's components, links, and states, not just

those specified as linkages. All attributes which satisfy the collection predicate are included

in the collector constraint. Collector constraints therefore provide a means for implementing

summation, II-product, minimization, and maximization constraints of the forms

Y = X 1 x; = X1+z2+...+Xz,

Y = HE 1 X; = X1 -X2-...-n
y = min'I x; = min(xi,X2,.. ., )

y = maxi x; = max(xi,x2,...,2)

Collector constraints provide a flexible means for introducing constraints which are indepen-

dent of the types of objects present in a design. Knowledge of the types of each component

in an aircraft design, for example, is not needed in order to compute the vehicle's gross

weight: a collector constraint which sums of all the component's weight attributes provides

a design-independent method for performing the required calculation.

2.3.2 Linkages

The :required-attributes option to the def component macro, as describe in Section 2.2.5,

provides one means for defining constraints which reference attributes not directly defined by

a component-class. This feature basically permits component-classes to define constraints



on inherited attributes. Design links provide an alternate means for defining constraints

which refer to attributes not directly provided by their owners: linkages.

The definition of each link-class includes specification of a set of linkages. Linkage

specifications are used to identify those design entities which may be accessed as linkages

by actual instances of the link-class. Each linkage specification is a list of the form

(linkage-name predicate-keyword predicate-argument predicate-argument ... )

The first element of the specification, the linkage-name, should be a LISP symbol; this sym-

bol may be used in the link-class's constraints to access the attributes of the design entity

which will serve as a linkage. For reasons discussed below, this symbol may not contain

the character, "@". The second element should be a keyword, which names one of the

recognized linkage predicates. A listing of the linkage predicates provided by Rubber Air-

plane appears in Tables 2.3-2.4. The remaining elements of the specification, the predicate-

argument elements, serve as the arguments to the predicate chosen as the predicate-keyword

argument. A description of the arguments appropriate to each recognized predicate is given

in Tables 2.3-2.4.

When the link-class is instantiated, all component-, link-, and state-class instances

present in the current design are examined, to see if they satisfy any of the linkage specifica-

tions. The user is then presented with a menu giving the name of each linkage specification

and a list of those design entities which satisfy the corresponding predicate; one design

entity is then selected for each of the linkage specifications to serve as the corresponding

linkage for the new link-class instance.

As examples of valid linkage specifications, consider the following:

(wing :class airfoil)

(bottom-component :attributes height position-z)

(complicated-example :and (:class design-component)

(:not (:class airfoil))

(:or (:attributes lift)

(:attributes induced-drag))

In the first example, a linkage named "wing" is specified, which should be an instance of

component-class airfoil. In the second case, which might be appropriate for a design

link intended to stack one or more components, the bottom-component specification will

match any design entity which has an attribute named "height" and an attribute named

"position-z". The final example-which illustrates the use of the boolean combinatorial

predicates, :and, :or, and :not-will select any design component (i.e., instances of class

design-component) which is not of class airfoil, and has either a lift attribute or an

induced-drag attribute (or both).



Predicate Description

Selects design entities which are instances of class
class-name or one of its subclasses. The argument
class-name should name a defined component-, link-,
or state-class.
Selects component-instances whose superiors (i.e., the

:superior-class component to which they are attached, see Sec-
(:suerir-casstion 2.2.5) are instances of class class-name or one

of its subclasses. The argument class-name should
name a defined component-class.

Selects design entities with attributes whose names
and dimensions match all those specified by the att

atti s) dimsand dims arguments to the predicate. One or more
''d )attribute/dimensions-pair arguments are required, for

which the aft specification should be a LISP symbol
corresponding to the desired attribute name, and the
dims specification should be a string indicating the
required dimensions, using the format described in
Appendix A.

Selects design entities which satisfy all of the linkage

:and p-ed pt-ed predicates specified by the pred arguments. The pred-
icates are applied in the order in which they appear
in the specification; predicate application continues
until one of the predicates proves false, or all are ap-
plied successfully. Each pred argument should itself
be a list of the form

(predicate-keyword
predicate-argument predicate-argument ... )

where predicate-keyword is a keyword naming a link-
age predicate, and the predicate-argument arguments
supply the appropriate arguments for the linkage
predicate.

Table 2.3: Linkage predicates provided for defining link-classes.



Predicate Description

Selects design entities which satisfy at least one of the

(or pred pred linkage predicates specified by the pred arguments.
The predicates are applied in the order in which they
appear in the specification; predicate application con-
tinues until one of the predicates proves true, or all
are determined to be false. The format of the pred
arguments is the same as for the :and linkage predi-
cate.
Selects design entities which do not satisfy the linkage

:not pred) predicate specified by the pred argument. The format
of the pred argument is the same as for the argument
of the :and linkage predicate.

Selects design entities which satisfy the LISP pred-
icate indicated by the LISP-pred argument. The
LISP-pred argument should be a symbol or lambda-
expression identifying a LISP function of one argu-
ment, which should accept a Rubber Airplane design
entity as its argument, and return a boolean value
indicating predicate satisfaction.

Table 2.4: Linkage predicates provided for defining link-classes (continued).



Finally, note that the :predicate linkage predicate is provided so that selectors which

cannot be defined using the other linkage specifications may nevertheless be specified by

giving the link-class implementor access to the underlying LISP software which supports the

Rubber Airplane program. Use of the :predicate linkage predicate typically requires some

knowledge of the internal programming details of Rubber Airplane, however; it is therefore

not intended for casual use. In fact, in implementing the test cases discussed in Chapter 4,

there has not been any need to resort to its use. So, while it has been made available-for

completeness's sake, if nothing else-its use has not been justified by practice.

2.3.3 Definition of Link-Classes

Link Definition Syntax

Like components, design links are defined as classes, based on their attributes, constraints,

and superclasses. Link-class definitions are specified using the def link macro, the syntax

of which is

(def link entity-class

linkage-specifications

attribute-specifications

superclasses

option

option

Note that the arguments to the def link macro are very similar to those of def component.

As with def component, the entity-class argument should be a LISP symbol which will serve

as the name of the link-class. This name may be used in conjunction with the def attribute

and def constraint macros to associate attributes and constraints with the link-class (see

Sections 2.2.2 and 2.2.3). The superclasses argument should be a list of symbols identifying

the link-classes which are to serve as direct superclasses of the new entity-class link-class.

The construction of class precedence lists for link-classes follows the same algorithm as for

component-classes (see Section 2.2.4); thus, as with def component, the ordering of classes

within the list of superclasses is significant.

As with def component, a number of options may be specified as the final arguments to

the deflink macro. A listing of the recognized options is presented in Table 2.5; note that all

supported def link options provide analogous features to the corresponding def component

options. As with defcomponent, specification of deflink options is not required, though

specification of the : category option is required for interactive instantiation of link-classes

using the Rubber Airplane user-interface.



Option Description

Specifies string as the documentation-string for the

(:documentation string) link-class.

Specifies string as an ignored comment. Provided

(:comment string) for annotation of the def link code itself.

Declares a hierarchical path of library categories for
locating the link-class. Category cati will be a top-

(:category level category, and cat2 through catn will be succes-
cati cat2 ... catn) sive sub-categories. Categories not already present

are automatically created.

Declares that the link-class is an abstract class,

:abstract-link which may not be instantiated, but may serve as

a superclass for another link-class.

Declares linki, link2, ... as link-classes which must

be present as (indirect) superclasses of the link-class,

linki fink2 ... ) upon instantiation. The arguments linki, Iink2,
... should be symbols naming defined link-classes.

Only valid in conjunction with the :abstract-link
option.

Declares atti, att2, ... as attributes, with corre-

sponding dimensions dims1, dims2, ... , which must

be present as (inherited) attributes of the link-

(atti dimsl) C att2 dims2) class, upon instantiation. Arguments atti, att2, ...
should be symbols or strings, and arguments dims1,
dims2, ... should be dimension-strings. Only valid

in conjunction with the :abstract-link option.

Table 2.5: Supported options for the def link macro.



(deflink design-link ()
() ()

:abstract-link
(:documentation

"Basic link type. Has no attributes or constraints of its own."))

Figure 2.4: LISP definition for the base link-class, design-link.

There is, of course, no defcomponent analog to the remaining argument to def link,

the linkage-specifications argument. This argument should be a list, each element of which

is a linkage specification, as described in the preceding section, Section 2.3.2. As indicated

there, these linkage specifications will be used to identify the design entities to which the

design link may be applied when the link-class is instantiated. In addition, note that all

linkage specifications are, by necessity, inherited. Furthermore, specifying a linkage with

the same name as an inherited linkage does not override the inherited specification; rather,

all linkage specifications provided by the link-classes in the class precedence list which share

the same name are combined using the :and linkage predicate. In this way, none of the

requirements of any of the superclasses are lost, but specialization still remains possible.

A primary purpose of design links is the implementation of constraints which simultane-

ously reference the attributes of multiple design entities. As indicated above, the constraints

of a link-class may access the attributes of its linkages by means of the linkage-names which

appear as the first element of each linkage specification. Specifically, linkage attributes are

accessed by appending the linkage-name to the end of the attribute's name, inserting an "@"

character between them to serve as a delimiter. (This is the reason why, as indicated above,

and in Section 2.2.2, names of both link-class linkages and design-entity attributes may not

themselves contain this character.) Thus, a link-class with a linkage named "f orward-wing"

could reference the corresponding wing instance's span attribute as either an input or output

parameter of one of its constraints using the name "spanOforward-wing".

The Base Link-Class

As with components, there is a base link-class, class design-link, which must be present as

a superclass of all instantiable link-classes. Unlike the des ign-component component-class,

design-link provides no attributes or constraints of its own; its use is required simply

to introduce a standard means of identifying design links within the class hierarchy. For

instance, class design-link may be used as an argument to the :class linkage predicate

(see Section 2.3.2), or as an argument to the :owner-class collection predicate (see below,

Section 2.3.4). The actual def link definition for the design-link link-class is presented



in Figure 2.4.

Example Link Definitions

As an example of a link-class definition, consider the following possible definition for an

abstract link which supports the modeling of the aerodynamic interference between two

airfoils:

(deflink airfoil-interference-mixin

((forward-airfoil :class airfoil)

(aft-airfoil :class airfoil))

((separation-x

:documentation "Lengthwise separation of the airfoils."

:low-value 10 :order-of-magnitude 25 :high-value 100

:dimensions "1" :units "Ift")

(separation-z

:documentation "Heightwise separation of the airfoils."

:low-value -5 :order-of-magnitude 5 :high-value 25

:dimensions "1" :units "Ift")

(downwash

:documentation "Downwash on the aft airfoil."

:order-of-magnitude 5 :dimensions "A" :units "deg"))

()
:abstract-link

(:category aerodynamics interference)

(:documentation

"Provides basic attributes for computing interference effects

between two (horizontally-oriented) airfoils."))

In addition to specifying three basic attributes, two linkages are specified, one for each

of the two airfoil components which, logically enough, are both required to be instances

of the airfoil component-class. Based on these linkages, the following constraints can

be defined for computing the separation-x and separation-z attributes of link-class

airfoil-interference-mixin:

(defconstraint (airfoil-interference-mixin "Lengthwise Separation")

(separation-x "Im")

((position-xforward-airfoil "Im") (position-xaft-airfoil "im"))

"Computes the lengthwise separation between the two airfoils."

(- position-xAforward-airfoil position-xaft-airfoil))



(defconstraint (airfoil-interference-mixin "Heightwise Separation")

(separation-z "Im")

((position-zeforward-airfoil "'m") (position-zeaft-airfoil "Im"))

"Computes the heightwise separation between the two airfoils."

(- position-ztforward-airfoil position-ztaft-airfoil))

Note the use of the "@" character to reference the attributes of linkages, as described above.

In these two examples, the positions of the two airfoils are accessed in order to compute the

x- and z-components of the distance vector which separates the two airfoils.

To extend this example, consider the use of this abstract class as a superclass of an

instantiable aerodynamic interference link-class:

(deflink canard-wing-interference

((forward-airfoil :class canard)

(aft-airfoil :class wing))

()

(airfoil-interference-mixin design-link)

(:category aerodynamics interference)

(:documentation

"Provides basic attributes for computing interference effects

between two (horizontally-oriented) airfoils.")

(:comment "Need canard-specific constraint on downwash."))

Here, the linkages inherited from airfoil-interference-mixin have been specialized,

such that the forward-airfoil linkage is required to be an instance of component-class

canard, and the aft-airfoil linkage is required to be an instance of component-class

wing. As indicated in Section 2.3.3, however, these new linkage specifications do not su-

persede the inherited specifications; rather, all linkage specifications with a common name

are merged via the :and linkage predicate. Thus, the effective linkage specifications for

link-class canard-wing-interference are

((forward-airfoil :and (:class canard) (:class airfoil))

(aft-airfoil :and (:class wing) (:class airfoil)))

Since component-classes canard and wing are likely to be subclasses of component-class

airfoil, the merging of linkage specifications is not strictly necessary in this case. More

complicated cases (e.g., when combining more diverse link-classes than those employed in

this example), however, necessitate the merging of linkage specifications in order to ensure

satisfaction of all linkage requirements of the link-classes present in the class precedence

list.



2.3.4 Collector Constraints

Overview of Collector Constraints

Collector constraints provide design links with a second means for constraining attributes

owned by other design entities, independent of their linkages. Specifically, collector con-

straints may be used to implement summations or products of related attributes; they

may also be used to find the minimum or maximum value associated with a collection of

attributes. In this way, collector constraints are completely independent of the specific

components, links, and states present in a given design, but they still have access to the

attributes of these design entities.

Attributes to be related via a collector constraint are selected by means of collection

predicates. Collection predicates are similar to linkage predicates, but whereas linkage

predicates are used to identify suitable design entities, collection predicates are used to

select attributes. Given a collector constraint and its collection predicate, all attributes a,

which satisfy the predicate are grouped together as the constraint's summation, 1-product,

minimum-value, or maximum-value terms. The collector constraint must also specify an

output parameter A; thus, the resulting constraint will assume one of four possible forms:

A = a;

A = lai

A = min ai

A = max ai

Only scalar attributes may serve as input and output parameters of collector constraints.

Note that, for dimensional reasons, all attributes to be summed or examined for a mini-

mum or maximum value must have the same dimensions as the constraint's output variable.

Additionally, since the number of terms to be combined by a collector constraint is indeter-

minate, it is further required that both the output parameter (A) and all input parameters

(ag) for a fl-product collector constraint be dimensionless: this is the only way to ensure

the dimensional validity of such constraints.

Finally, it should be mentioned that summation and product collector constraints, once

instantiated, are treated as normal equality constraints by the Rubber Airplane program.

Thus, they are subject to inversion during the course of constraint propagation: if a value

is made available for the collector constraint's output parameter by some other means,

the collector constraint may be used to compute a value for one of its input parameters.

Due to the difficulties associated with inverting the operators used to find least and greatest

values (see Footnote fn:min-max on page 27), minimum-value and maximum-value collector



constraints are treated as uninvertible.

Collector Constraint Specification

The def collector macro is provided for defining collector constraints. The basic format

for def collector is

(def collector (link-class collector-name collector-type)

output-parameter

collection-predicate

documentation-string)

The link-class argument should be a symbol identifying the link-class with which the collec-

tor constraint is to be associated. The collector-name argument should be a string or symbol

which names the constraint. As with other constraints, collector constraints are subject to

inheritance and specialization; inherited collector constraints are superseded by the pres-

ence of a constraint with the same name in association with a class which appears higher

in the inheriting link-class's class precedence list. The third argument, collector-type, must

be one of four keyword symbols, either :sum, :product, :min, or :max; the collector-type

serves to indicate whether a summation, 1-product, minimum-value, or maximum-value

collector constraint is desired.

The output-parameter argument should be a symbol naming an attribute which is to

serve as the left-hand-side of the summation or product relationship represented by the

collector constraint. This output-parameter attribute may be an attribute defined by the

collector constraint's own link-class, or an attribute inherited by the link class; it may also

be an attribute of one of the link-class's linkages, accessed using the "@" syntax introduced

above. The documentation argument should be a string describing the intended role of the

collector constraint, and is optional.

The remaining argument to defcollector is the collection-predicate argument. As

indicated above, the collection predicate is used to identify those attributes which are to be

grouped together for summation or multiplication. The form in which collection predicates

are specified is as follows:

(predicate-keyword predicate-argument predicate-argument ... )

The first element of the specification, the predicate-keyword, should be a keyword, which

names one of the recognized linkage predicates. A listing of the linkage predicates defined

for Rubber Airplane appears in Tables 2.6-2.7. As can be seen in this table, many of the

predicate keywords available for defining collection predicates are very similar in nature to

those provided for defining linkage specifications (see Section 2.3.2). One unique addition



Predicate Description

Selects attributes whose names are the same as att-
name. The att-name argument should be either a
string or a symbol.

Selects attributes whose names contain the sequence
of characters specified by att-name-substring as a sub-

( t:name-contains string. The att-name-substring argument should be
att-name-substring) either a string or a symbol.

Selects attributes whose owners are design entities
which are instances of class class-name or one of its
subclasses. The argument class-name should name a
defined component-, link-, or state-class.

Selects attributes of component-instances whose su-

periors (i.e., the component to which they are at-
(:owner-superior-class tached, see Section 2.2.5) are instances of class class-

class-name) name or one of its subclasses. The argument class-
name should name a defined component-class.

Selects attributes whose owners are inferior compo-
nents to the component represented by the linkage-

(:owner-inerior-of name linkage associated with the link-class instance
for which the collector constraint has been defined.

Selects attributes based upon direct querying of

(:query) the program user. This collection predicate causes
the user to be prompted for final determination of
whether or not a given attribute meets the collection
criteria.

Table 2.6: Collection predicates provided for defining collector constraints.

is the :owner-inferior-of predicate keyword, which allows collection to be based on

the inferiors of one of a link-class's linkages. The remaining elements of the specification

represent the arguments appropriate to the predicate which appears as the predicate-keyword

argument. Tables 2.6 and 2.7 include descriptions of the appropriate arguments for each

recognized predicate keyword. Note that all string comparisons are performed using the

Common Lisp function string-equal, which is not case-sensitive; note also that symbols

are coerced into strings prior to name comparison.

Finally, note that four "synonyms" for def collector macro are also provided: def sum,

defproduct, defmin, and defmax. The syntax for these macros is



Predicate Description

Selects attributes which satisfy all of the collection

(:and pred pred ) predicates specified by the pred arguments. The pred-
icates are applied in the order in which they appear
in the specification; predicate application continues
until one of the predicates proves false, or all are ap-
plied successfully. Each pred argument should itself
be a complete and valid collection predicate specifi-
cation.
Selects attributes which satisfy at least one of the
collection predicates specified by the pred arguments.

(:or pred pred .) The predicates are applied in the order in which they
appear in the specification; predicate application con-
tinues until one of the predicates proves true, or all are
determined to be false. Each pred argument should it-
self be a complete and valid collection predicate spec-
ification.
Selects attributes which do not satisfy the collection

:not pred) predicate specified by the pred argument. The pred
argument should itself be a complete and valid col-
lection predicate specification.

Selects attributes which satisfy the LISP predicate

eLISP-pred) indicated by the LISP-pred argument. The LISP-pred
argument should be a symbol or lambda-expression
identifying a LISP function of one argument, which
should accept a Rubber Airplane attribute-instance
as its argument, and return a boolean value indicating
predicate satisfaction.

Table 2.7: Collection predicates provided for defining collector constraints (continued).



(def sum (link-class collector-name)

output-parameter

collection-predicate

documentation-string)

(defproduct (link-class collector-name)

output-parameter

collection-predicate

documentation-string)

(defmin (link-class collector-name)

output-parameter

collection-predicate

documentation-string)

(defmax (link-class collector-name)

output-parameter

collection-predicate

documentation-string)

where the various arguments to detsum, defproduct, defmin, and defmax play the same

role as the corresponding arguments to detcollector. In fact, the only difference between

these macros and the detcollector macro is the absence of the collector-type argument;

for def sum, it is assumed to be :sum, for defproduct it is assumed to be :product, and so

on. These additional macros simply provide a shorthand notation for defining the various

types of collector constraints.

Collector Constraint Examples

Before presenting an example collector constraint, first consider the following link-class

definition:

(deflink aircraft-gross-properties

()
((overall-height

:documentation "Overall height of the vehicle."

:order-of-magnitude 10 :dimensions "l" :units "Im")

(gross-weight

:documentation "Net vehicle weight."



:order-of-magnitude 100000 :dimensions "f" :units "lbf")

(net-lift

:documentation "Net vehicle lift."

:order-of-magnitude 1QOOOO :dimensions "f" :units "lbf")

(net-thrust

:documentation "Net thrust of all engines."

:order-of-magnitude 10000 :dimensions "f" :units "lbf")

(net-drag

:documentation "Net vehicle drag."

:order-of-magnitude 10000 :dimensions "f" :units "lbf"))

(design-link)

(:category mission-performance gross-properties)

(:documentation

"Provides attributes and collector constraints for computing

vehicle gross properties."))

Note that this link has no linkages. It instead relies on collector constraints for determining

the net height, weight, lift, thrust, and drag for the vehicle. Using this approach, there is

no need to know the exact component breakdown of the aircraft-as would be required in

order to specify linkages for each of the components-in order to be able to compose the

appropriate maximum-value and summation constraints.

Based on this link-class definition, then, the collector constraint for determining the net

lift for the vehicle might take the form:

(defcollector (aircraft-gross-properties "Vehicle Net Lift" :sum)

net-lift

(:name-contains "lift")

"Collects lift attributes to compute overall vehicle lift.")

Note however, that this definition is somewhat flawed: the attribute which serves as its out-

put parameter, net-lift, also satisfies the collection predicate, since its name, "net-lift",

contains the string "lift" as a substring. Having an attribute appear as variable on both

sides of a summation or 11-product equation is mathematically nonsensical; the constraint

definition is in error. Fortunately, the Rubber Airplane program explicitly checks for this

condition, so that the above definition would, in fact, be acceptable. The following specifi-

cation, however is better formed and explicitly avoids this problem:

(defcollector (aircraft-gross-properties "Vehicle Net Lift" :sum)

net-lift

(:and (:owner-class design-component) (:name-contains "lift"))



"Collects lift attributes to compute overall vehicle lift.")

By restricting the class of design entities to be examined for the desired attributes, the link-

class's own net-lift attribute becomes ineligible for collection, since its owner, which will

be an instance of link-class aircraf t-gross-properties, does not include the design-com-

ponent component-class as a superclass. This form of the constraint is also somewhat clearer

in conveying the intention of the constraint, since it explicitly indicates that the summation

is to be applied over the components of the design. In addition, it is also more efficient than

the original constraint definition, since the name comparison is only applied to attributes

whose owners first satisfy the class restriction.

The other three summation collector constraints for this link class, corresponding to its

three remaining attributes, may be defined using the def aum macro, as follows:

(defsum (aircraft-gross-properties "Vehicle Net Drag") net-drag

(:and (:owner-class design-component) (:name-contains "drag"))

"Collects drag attributes to compute overall vehicle drag.")

(defsum (aircraft-gross-properties "Vehicle Net Thrust") net-thrust

(:and (:owner-class design-component) (:name-contains "thrust"))

"Collects thrust attributes to compute overall vehicle thrust.")

(defsum (aircraft-gross-properties "Vehicle Gross Weight")

gross-weight

(:and (:owner-class design-component) (:named "weight"))

"Collects weight attributes to compute overall vehicle weight.")

Note that the collection predicate for the third constraint, "Vehicle Gross Weight", em-

ploys the :named predicate, rather than the :name-contains predicate. This is because, as

indicated in Section 2.2.5, the built-in design-component component-class includes spec-

ification of a weight attribute. Thus, the less-specific :name-contains predicate is not

needed, since the exact name of the weight attribute is known in advance.

Finally, the defmax macro may be used to define a collector constraint which computes

the height of the vehicle (in order to check hangar clearance, for example). Assuming that

each component specifies a z-max attribute which represents the maximum z-coordinate of

its geometry, the overall height of the vehicle may be computed using a constraint of the

form

(defmax (aircraft-gross-properties "Vehicle Height") overall-height

(:and (:owner-class design-component) (:named z-max))

"Finds maximum z-coordinate among all component-attributes.")



where, as was the case with the "Vehicle Gross Weight" constraint, the :named collector

predicate can be used since z-max has been assumed to be a universal attribute, common

to every component.

2.4 Design State Representation

2.4.1 Overview of Design States

It is the role of design states, the third and final type of design entity implemented for

Rubber Airplane, to aid in the representation of time-varying phenomenon. This is accom-

plished by automatically creating new instances of pre-selected attributes and constraints

as new design states are added. These attributes and constraints are referred to as being

state-dependent, and each state-specific copy of such an attribute or constraint is referred

to as a state-instance of that attribute or constraint. Thus, while designing an aircraft,

attributes for vehicle lift, drag, weight, and thrust might be designated as state-dependent

attributes; by instantiating a new design state for each flight leg of the aircraft's mission

profile, a new state-instance for each of these attributes is created, one for each flight seg-

ment. Design states might also be used to model varying orbital conditions for a spacecraft,

or the mode-specific behaviors of some mechanical device.

Design states, like components and links, are defined as classes, with their own attributes

and constraints. As discussed below, however, this feature turns out to be of little practical

value: programming of design knowledge is simplified if design states do not specify their

own attributes or constraints, but merely serve as "placeholders" for the state-dependent

attributes and constraints defined by a design's components and links. Since, nevertheless,

means have been provided for defining state-classes in Rubber Airplane, the method for

doing so is presented below. Following this discussion, Section 2.4.3 will describe Rub-

ber Airplane's provisions for declaring the state-dependency of component- and link-class

attributes and constraints.

2.4.2 Definition of State-Classes

State Definition Syntax

State-classes are defined in much the same fashion as component- and link-classes. Specifi-

cally, the def state macro is provided for this purpose, the syntax of which is as follows

(def state entity-class

attribute-specifications

superclasses

option



option

As with def component and def link the entity-class argument should be a LISP symbol

which names the state-class. This symbol will serve as the name of the state-class, and is

used when defining attributes and constraints for the class by means of the def attribute

and def constraint macros (see Sections 2.2.2 and 2.2.3), as well as when referring to the

class in a linkage specification or collection predicate, or as the direct superclass of another

state-class. The superclasses argument is a list of symbols which name the state-classes

which will serve as the direct superclasses of the current state-class. The construction of

class precedence lists for state-classes follows the same algorithm as for component- and link-

classes; as indicated in Section 2.2.4, the ordering of classes within the list of superclasses

is significant.

The final set of arguments to the defstate macro allows for the selection of various

class-specific options, much like those provided for the def component and deflink macros.

A listing of the available options appears in Table 2.8; as can be seen in Table 2.8 these op-

tions provide analogous features to the corresponding def component and def link options.

Similarly, specification of def state options is not mandatory, though declaration of the

:category option is required for interactive instantiation of state-classes using the Rubber

Airplane program's user-interface.

The Base State-Class

In addition to the base component- and link-classes, design-component and design-link,

a base state-class, design-state is also provided. All instantiable state-classes (i.e., those

which do not include specification of the : abstract-state option as part of their def state

definition) are required by the program to include class design-state as a superclass. Like

the design-link link-class, design-state does not define any attributes or constraints of

its own; its use provides a standard means for identifying design states within the Rubber

Airplane class hierarchy, and when employing the various class-based linkage and collection

predicates (see Sections 2.3.2 and 2.3.4). Furthermore, as discussed in greater detail below,

it is usually unnecessary to directly associate attributes and constraints with state-classes.

For most purposes, then, it is the case that design-state is the only state-class needed

to support the desired design analyses. The def state definition for the design-state

state-class is given in Figure 2.4.



Option Description

Specifies string as the documentation-string for the

(:documentation string) state-class.

Specifies string as an ignored comment. Provided

( comment string) for annotation of the defstate code itself.

Declares a hierarchical path of library categories for
locating the state-class. Category catl will be a top-

(:category level category, and cat2 through cain will be succes-
cafl cai2 ... cain) sive sub-categories. Categories not already present

are automatically created.

Declares that the state-class is an abstract class,

:abstract-state which may not be instantiated, but may serve as
a superclass for another state-class.

Declares state, state2, ... as state-classes which

must be present as (indirect) superclasses of the
(reuied-states ... state-class, upon instantiation. The arguments

statel, state2, ... should be symbols naming de-

fined state-classes. Only valid in conjunction with
the :abstract-state option.

Declares atil, att2, ... as attributes, with corre-

sponding dimensions dimsl, dims2, ... , which must

be present as (inherited) attributes of the state-

(atti dimsl) OWn dims2) class, upon instantiation. Arguments atti, atti, ...
should be symbols or strings, and arguments dimsl,
dims2, ... should be dimension-strings. Only valid

in conjunction with the :abstract-state option.

Table 2.8: Supported options for the def state macro.

(defstate design-state
() ()

(:documentation
"Basic state type. Has no attributes or constraints of its own.

Note that this state-class is instantiable; it is not

an :ABSTRACT-STATE."))

Figure 2.5: LISP definition for the base state-class, design-state.



Example State Definitions

The first example state-class is an abstract class which can be instantiated to provide the

design with access to the altitude-dependent properties of the atmosphere in which the

vehicle is to be operating. The definition for this atmosphere-mixin state-class, omitting

the relevant constraints, is

(defstate atmosphere-mixin

((altitude

:documentation "Altitude for vehicle operation."

:low-value -1000 :order-of-magnitude 30000

:dimensions "1" :units "Ift")

(density

:documentation "Ambient density at altitude."

:low-value 0 :order-of-magnitude 1 :high-value 2

:dimensions "I 1-3" :units "kg m-3")

(pressure

:documentation "Ambient pressure at altitude."

:low-value 0 :order-of-magnitude 1 :high-value 2

:dimensions "p" :units "atm")

(temperature

:documentation "Ambient temperature at altitude."

:low-value 0 :order-of-magnitude 15 :high-value 40

:dimensions ""))

0
:abstract-state

(:category flight-conditions atmosphere mixins)

(:documentation

"Provides attributes and constraints for representing

standard Earth atmosphere."))

This state-class specifies attributes for the atmospheric properties (density, temperature,

and pressure), as well as an attribute for the altitude at which the vehicle is to operate.

It is assumed that appropriate constraints for relating these properties to altitude are also

associated with the class.

Based upon the definition of this abstract state-class, an instantiable subclass which

represents an aircraft flight condition may be defined:

(defstate flight-condition

((alpha



:documentation "Vehicle angle of attack."

:low-value -10 :order-of-magnitude 0 :high-value 15

:dimensions "A" :units "deg")

(speed

:documentation "Vehicle flight speed."

:low-value 75 :order-of-magnitude 500 :high-value 700

:dimensions "1 t-1" :units "kt"))

(atmosphere-mixin design-state)

(: category flight-conditions)

(:documentation

"Provides attributes for representing a single aircraft

flight condition."))

By creating one instance of this flight-condition state-class for each of the flight-legs

associated with the design's mission-profile, individual attributes for the atmospheric and

operational properties for each segment are made available to the constraints which model

the relevant design relationships.

2.4.3 State-Dependent Attributes and Constraints

Specification of State-Dependency

As discussed above, state-dependent attributes and constraints are those attributes and

constraints for which multiple copies are to be created, one for each design state present

in the design. Of course, most attributes and constraints-such as those describing com-

ponent geometry (e.g., fuselage length, landing gear dimensions) or those modeling fixed

or single-occurrence behaviors (e.g., operating costs, takeoff distance)-need not be treated

as state-dependent.7 A number of design parameters, however-such as gear deployment,

flight conditions, and vehicle weight-do represent time-varying phenomenon, and are best

implementing using state-dependent attributes and constraints.

To take advantage of the presence of design states, then, some means is needed for

designating those attributes and constraints which are to be considered state-dependent.

To implement annotation of state-dependent attributes, an additional keyword argument,

:state-dependent?, has been added to those supported for attribute specifications via

def attribute, def component, and def link. The argument for this keyword should be

either t or nil, which are the LISP symbols used to denote boolean truth values of "true"

and "false", respectively. Note that if the : state-dependent? specification is not explicitly

"For convenience, such attributes and constraints will be referred to as state-independent.



declared in the definition of an attribute, the attribute is by default assumed to be state-

independent.

As an example, consider an alternative implementation of the atmosphere-mixin state-

class, presented above, as a design link. Each of its attributes would then have to be

annotated as being state-dependent, in order to achieve the same functionality as the original

state-class. Thus, the link-class and its attributes would be defined as follows:

(deflink atmosphere-mixin

()

((altitude

:documentation "Altitude for vehicle operation."

:state-dependent? t

:low-value -1000 :order-of-magnitude 30000

:dimensions "1" :units "it")

(density

:documentation "Ambient density at altitude."

:state-dependent? t

:low-value 0 :order-of-magnitude 1 :high-value 2

:dimensions "m 1-3" :units "kg m-3")

(pressure

:documentation "Ambient pressure at altitude."

:state-dependent? t

:low-value 0 :order-of-magnitude I :high-value 2

:dimensions "p" :units "atm"))

()

:abstract-link

(:category flight-conditions atmosphere mixins)

(:documentation

"Provides attributes and constraints for representing

standard Earth atmosphere."))

(defattribute (atmosphere-mixin temperature)

:documentation "Ambient temperature at altitude."

:state-dependent? t

:low-value 0 :order-of-magnitude 15 :high-value 40

:dimensions "")

where the definition of the temperature has been moved to a def attribute statement in

order to show the use of the state-dependent annotation with both syntax forms. Because



Rubber Airplane does not permit mixing of design-entity types when specifying superclasses,

the flight-conditions state-class would also have to be redefined as a link-class:

(deflink flight-conditions

((alpha

:documentation "Vehicle angle of attack."

:state-dependent? t

:low-value -10 :order-of-magnitude 0 :high-value 15

:dimensions "A" :units "deg")

(speed

:documentation "Vehicle flight speed."

:state-dependent? t

:low-value 75 :order-of-magnitude 500 :high-value 700

:dimensions "1 t-i" :units "kt"))

(atmosphere-mixin design-link)

(: category flight-conditions)

(:documentation

"Provides attributes for representing a single aircraft

flight condition."))

As with the attributes of the atmosphere-mixin link-class, the attributes of this f light-

conditions link-class must also be declared state-dependent.

Note, however, that no additional syntax is required for defining state-dependent con-

straints. Any constraint associated with a component- or link-class which employs a

state-dependent attribute as either an input or output parameter is automatically rec-

ognized as being a state-dependent constraint. For example, one might define for the

atmosphere-mixin link-class introduced above a constraint representing the state equation

of a gas:

(def constraint (atmosphere-mixin "State Equation")

(pressure "N") ((density "kg m-3") (temperature "K"))

"Implements the state equation of a gas as an equality constraint."

(let ((R 287.0)) ;; Units are "m2 s-2 K-1"

(* density R temperature)))

Since all three of the parameters for this constraint are state-dependent, the constraint itself

must be state-dependent.

In practice, it is observed that every state-dependent constraint has at least one state-

dependent input parameter, and all of its output parameters are state-dependent. A state-

dependent constraint which does not follow this pattern is pathological:



* If a constraint specifies state-dependent output parameters but no state-dependent

input parameters, then it must be the case that all copies of these state-dependent

attributes will have the same values. If this is so, then state-dependent attributes are

not needed.

* If a constraint specifies one state-dependent input parameter and no state-dependent

output parameters, then it must be the case that all copies of this state-dependent

attribute will have the same value. Again, if this is so, a state-dependent is not needed.

* If a constraint specifies multiple state-dependent input parameters but all output

parameters are state-independent, then it is mathematically consistent, but it is not

likely that the constraint has been specified in its clearest form. This case is not strictly

erroneous, but it is very likely that the constraint definition could be improved.

* If a constraint specifies multiple output parameters, some of which are state-dependent,

but some are not, then it will be the case that, since the constraint must necessarily be

a :one-way constraint and therefore not invertible, the multiple copies of this state-

dependent constraint will compute multiple and potentially contradictory values for

the state-independent attributes. For this reason, such a constraint is not well-formed.

These observations allow Rubber Airplane to perform additional error-checking on con-

straints involving state-dependent attributes. Constraints which do not fit the pattern

described above are flagged as erroneous, and suggestions for repairing or improving the

constraint definition may be offered.

Finally, note that association of state-dependent attributes and constraints with state-

classes is not permitted. Such a specification would not be logically consistent: given three

instances of a state-class which specifies a single state-dependent attribute, should there be

nine copies of this attribute (i.e., three copies-corresponding to the three design states-for

each of the three design states), or just three (i.e., exactly one for each design state)? Rubber

Airplane signals an error when the user attempts to define a state-dependent attribute or

constraint for a state-class.

Design Links and State-Dependency

As mentioned in the preceding section, design constraints need not be explicitly annotated as

being state-dependent. This is true even of constraints associated with link-classes, though

identification of state-dependent constraints must sometimes be delayed until instantiation

of the constraint specifications. For components, state-dependent constraints may be iden-

tified when they are defined. This is because constraints associated with a component-class



may only reference the class's own attributes; determination of which attributes are state-

dependent, if any, is readily performed. Because constraints associated with a link-class

may also reference the attributes of its linkages, such determination is not always possible

until the link-class is instantiated and the linkages' attributes become available. For this

reason, it is also the case that errors in constraints which reference state-dependent linkage-

attributes-such as those described in the preceding section-cannot always be recognized

prior to constraint instantiation. Unfortunately, it becomes the responsibility of the user

defining such constraints to ensure their consistency and correctness, if instantiation errors

are to be avoided.

An additional complication involving link-class constraints and state-dependency con-

cerns those constraints which need to access only particular state-instances of a state-

dependent attribute. In the case where the state-dependent attribute is owned by the same

link-class as such a constraint, then it is only necessary to specify the desired design states

as linkages of the link-class, in which case the normal "@" syntax may be used to access the

desired attributes. For instance, if the atmosphere-mixin link-class defined above wished

to constrain the state-instance of the angle-of-attack attribute, alpha, corresponding to a

design state named "Cruise", it would first be necessary to allocate a linkage for this design

state. The specification for such a linkage might be:

(cruise-state :class design-state)

When the link-class is instantiated, design state "Cruise" should be selected as the design

entity for this linkage-specification; then, any constraint which references the attribute

alphaecruise-state will access the desired state-instance.

It is more often the case, however, that a link-class would be required to constrain a

particular state-instance of one of its linkage's state-dependant attributes. In this case, the

conventional "@" syntax is insufficient. For this reason, a double-"@" form is introduced to

augment the original syntax. Once again, it is necessary to specify linkages for the design

states corresponding to the desired state-instances. Using this new syntax, then, the format

for referencing state-dependent attributes of linkages is

att-nameQatt-linkageQstate-linkage

where att-name is the name of the state-dependent attribute associated with the link-

age whose name appears in the att-linkage position, and state-linkage is the name of

the linkage which references the appropriate design state. Thus, if a link-class named

takeoff-analysis needs to access the state-instance of the state-dependent density at-

tribute of the flight-conditions link-class associated with a "Takeoff" design state, it

would be necessary for the takeoff-analysis link-class to specify two linkages, one for the

flight-conditions link-class, and one for the design-state instance, as follows:



((flight-conditions :class flight-conditions)

(takeoff-state :class design-state))

Assuming the "Takeoff" design state is selected as the takeoff-state linkage, then the

name "densityeflight-conditionsetakeoff-state" may be used to access the desired

attribute.

2.4.4 Impracticality of design-state Subclasses

In Section 2.4.2, above, an example flight-conditions class is introduced to demonstrate

the use of the def state macro for defining state-classes. In Section 2.4.3, however, this class

is redefined as a link-class with state-dependent attributes. At first, it might appear that, in

actual use, the state-class representation is preferred, since the parameters associated with

the class-flight speed, air density, etc.-directly describe a given design point, and, after

all, that is the intended role of design states. Furthermore, implementation as a link-class

introduces the need for the rather awkward double-"@" syntax, discussed above.

On the other hand, it is certainly the case that these parameters are, indeed, state-

dependent, so perhaps the link-class formulation has certain advantages, as well. Indeed, as

was indicated earlier, it was observed during the course of implementing and using design

states, that direct association of attributes and constraints with state-classes is undesirable;

the benefits of associating state-dependent attributes with component- and link-classes far

outweigh the aesthetic advantages of implementing them as state-independent attributes

of state-classes. These advantages are due primarily to the ability of Rubber Airplane

to transparently define state-dependent constraints. If a state-dependent parameter, such

as air density, is implemented as a state-independent attribute of a state-class, it becomes

impossible to define a state-dependent constraint on this parameter. Individual constraints,

which reference separate linkages for each of the state-class instance which provide this

attribute, must be defined.

As a simple example of such a constraint, consider the definition of the lift coefficient

of an airfoil:

CL =L
{ pV2g

where CL is the lift coefficient, L is the airfoil's actual lift, p is the atmospheric density, V

is the flight speed, and S is the airfoil's wing area. Whereas the lift, lift coefficient, and

wing area might be implemented as attributes of an airfoil component-class, the flight

speed and air density would likely be implemented either as attributes of a design state,

or as state-dependent attributes of a design link. In either event, the constraint which

implements this mathematical relationship would have to be associated with a link-class,

such as, say, airfoil-aerodynamics, since it simultaneously references attributes from



multiple design entities. If the latter approach is taken, then only two linkages are required

for the hypothetical airfoil-aerodynamics link-class:

((flight-conditions :class flight-conditions)

(wing :class airfoil))

Assuming that component-class airfoil specifies a wing-area attribute, as well as state-

dependent lift and lift-coefficient attributes, and that density and speed are state-

dependent attributes of link-class flight-conditions, the lift-coefficient constraint may

be implemented as follows:

(defconstraint (airfoil-aerodynamics "Lift Coefficient")

(lift-coefficientewing "")

((liftewing "N" L) (densityeflight-conditions "kg m-3" rho)

(speedeflight-conditions "Im s-i" V) (wing-areatwing "m2" S))

"Implements the definition of airfoil lift coefficient."

(/ L (* 1/2 rho V V S)))

This single constraint specification will yield multiple state-instances, one for each design

state present in the design.

If, on the other hand, the flight-condition parameters are associated with a state-class,

instead of a link-class, multiple constraint definitions and multiple linkage-specifications, one

for each expected design state, will be required. This approach is not modular, since the

link must be modified if the set of design states is increased or decreased, and negates many

of the benefits originally derived from the introduction of design states (see Section 2.1.3).

For this reason, the association of attribute and constraint specifications with state-classes,

while supported by Rubber Airplane, is not advised. Thus, there should never be any need

to define additional state-classes beyond the built-in design-state class.

2.5 Additional Representational Issues

2.5.1 Design Entity Instantiation

As mentioned briefly in Section 2.1.3, component-, link-, and state-classes are represented

by defstruct data structures. These data structure have slots for storing the names,

options, names of superclasses, and class precedence lists associated with design-entity

classes, as well as for lists of their attribute and constraint specifications. Component-class

structures also have a slot for storing component-geometry descriptions, which relate the

values of a component's attributes to its three-dimensional geometry (see Appendix B);

link-class structures are provided with a slot for storing linkage specifications. Attribute

and constraint specifications are themselves stored as defstruct data structures. Different



defstruct-types are provided for scalar and discrete attributes, and well as for equality,

inequality, and collector constraints, in order to accommodate the varying storage needs for

these specifications.

When instantiating design entities, Flavor instances are created. There are three basic

Flavor-types, one for each of the three types of design entities. These Flavor structures

include instance variables for storing a design entity's name, the class structure upon which

it is based, and lists of its attributes and constraints. Design-component instances also

include instance variables for interfacing between its attributes and geometry; design-link

instances include an instance variable which stores an association list8 which groups linkage

names with the design entities which serve as the actual linkages.

Instantiation of a design-entity class also results in instantiation of the attribute and

constraint specifications associated with the class, including any inherited specifications.

Attributes and constraints are also represented by Flavor instances. Instance variables are

provided for the various properties included in the specifications. In addition, attribute

instances include instance variables which list those constraints for which the attribute is

an input parameter, and those for which it is an output parameter. Similarly, constraint

instances include instance variables which list the attributes which serve as their input

and output parameters. The presence of these lists is intended to facilitate constraint

propagation, as discussed in Chapter 3.

State-dependent attributes and constraints are also represented by Flavor instances.

These instances maintain association lists between their state-instances and the design states

for which they have been created. They are also responsible for producing the appropriate

state-instances when new design states are added, and for destroying state-instances as

unwanted design states are removed. Note that, for each design (see Section 2.5.2), one

design state is designated as the current or focus state. When a state-dependent attribute

or constraint receives a request for state-specific data or to display itself, the request is

automatically forwarded to the state-instance corresponding to the design's focus state.

2.5.2 Auxiliary Data Structures

The Rubber Airplane program allows users to work on more than one design project at the

same time. Each such project is represented by a Rubber Airplane design object, each

of which maintains its own independent set of components, links, and states. Individual

designs may be saved into text-files, which stores both the contents of a design (i.e., its set

8An association list is a LISP data structure comprised of a list of pairs. The first element of each pair is
considered to be a "key", based upon which the second element of the pair-the "data"-may be retrieved.
Common Lisp includes built-in functions for creating and manipulating association lists, including both a
function for looking up the "data" item associated with a given "key", and a function for retrieving the
"key" associated with a given piece of "data".



of design entities), as well as its status (i.e., all user-assigned values for its design-entities'

attributes). These design objects are themselves controlled by Rubber Airplane's so-called

top-level object, which keeps a list of all the designs. This top-level object also controls the

program's user-interface (see Appendix C), which allows the user to display and manipulate

both textual and graphical representations of any one of the current designs.



Chapter 3

Constraint Propagation

3.1 Introduction

Component-modeling, as discussed in Chapter 2, is introduced as a means for adding flexi-

bility to the process of modeling a design problem. By taking advantage of object-oriented

programming techniques, component-modeling allows a description of the design task to be

developed incrementally, by adding, removing, and modifying the components, links, and

states which are used to represent the design.

Constraint propagation is similarly employed to add flexibility to the mathematical anal-

yses associated with the design process. As indicated in Chapter 1, constraint propagation

allows a single declarative statement of a mathematical equation-such as a = b + c-to be

used to infer multiple imperative forms-in this case, b = a - c and c = a - b. Thus, the

mathematical relationships which govern a design problem may be treated as data to be

manipulated by the program, rather than as explicit instructions for calculating a specific

design parameter (i.e., the variable appearing on the left-hand side of the equation). Design

relationships may be used to compute any of their associated parameters, based on known

values for the remaining parameters. Furthermore, the order in which the relationships are

applied may be varied; constraints are applied as the supporting parameter-values become

available. Use of constraint propagation thus frees both the programmer and the user from

concern over the direction and sequencing of program calculations, relegating these decisions

to the computer.

In this chapter, the algorithms employed by Rubber Airplane to implement constraint

propagation are presented. Section 3.2 discusses the algorithm responsible for local propaga-

tion of Rubber Airplane constraints. Section 3.4 introduces modifications to this algorithm

which support the detection and solution of simultaneous equations within the constraint

network. Section 3.5 briefly describes an experimental integration of the local-propagation

algorithm with a Fortran-based optimization program.

Finally, note that, unlike its predecessor Paper Airplane, Rubber Airplane attempts



to perform all constraint propagation-both local and loop-based-interactively. As fixed

values are assigned to the base variables by the user, computations are performed automat-

ically; there is no need for the user to request that constraint propagation take place. This

alternative approach is possible because of the superior performance of the Lisp Machine

hardware for which Rubber Airplane has been written in comparision to the more conven-

tional computer architecture for which Paper Airplane was developed. Thus, while there

are some similarities in the algorithms used by the two programs (cf. Reference [20]), the

differences which are present are primarily motivated by the desire to improve the utility

of constraint propagation by allowing it to occur interactively.

3.2 Local Propagation

3.2.1 Overview

Local propagation is the process whereby individual constraints are propagated, and the

results made available for further propagation. Whenever a value is supplied for one of a

constraint's parameters, this constraint is examined for possible propagation. In the case of

single-output constraints, if values are available for all but one of a constraint's parameters,

the constraint may be used to calculate a value for the remaining, unknown parameter. The

availability of this computed value may enable further constraint propagations; the process

thus repeats itself, recursively. Multiple-output constraints-which are not invertible-may

be propagated only when values are available for all of the constraint's input parameters.

Note that, during the course of local propagation, constraints are examined singly. No

global analysis is performed; local propagation does not, therefore, enable either the identi-

fication or processing of cycles within a network of constraints. Although such cycles may

represent a mathematically solvable set of simultaneous equations, local propagation can

only be used to propagate constraints individually. While it is often the case that simul-

taneous equations may be solved via local propagation through appropriate sequencing of

the relevant constraints, there are also circumstances in which this is not possible (e.g.,

two equations in two unknowns). Local propagation must be augmented if the solution of

constraint cycles is required.

3.2.2 Data Structures

As indicated in Chapter 2, attributes and constraints are represented as Flavor instances.

Several of the instance variables associated with these data structures are used to support

constraint propagation.

Values of both scalar and discrete attributes may be computed via local propagation

(though, as indicated in Chapter 2, only uni-directional constraints may reference discrete



attributes). Instance variables associated with both types of attributes which are accessed

during constraint propagation are listed in Table 3.1.

Note that Rubber Airplane permits the user to supply new values for the order-of-

magnitude, low-value, and high-value instance variables of scalar attributes, in order to

override those provided by the corresponding attribute specifications. In this way, unusual

design circumstances need not require modification of class definitions; individual attribute-

instances may themselves be modified. The value declared in the corresponding attribute

specification for the value-list instance variable of a discrete attribute, however, may not be

overridden.

Constraint propagation is applied to both omni-directional and uni-directional (i.e.,

:one-way) equality constraints. In the latter case, although constraint inversion is pro-

hibited, constraint propagation may still be employed to order constraint application. The

constraint instance variables which are used during propagation are listed in Table 3.2. Note

that the additional instance variable required for invertible constraints, compiled-normal-

function, acts as an error term for the constraint, indicating the degree to which the current

values of the input and output parameters satisfy the constraint.

3.2.3 Algorithm for Local Propagation

The implementation of local constraint propagation employed by Rubber Airplane is based

upon monitoring of the value-supplier associated with each attribute, which is stored by its

value-supplier instance variable. Whenever a value is assigned to an attribute, specification

of a value-supplier for that value is also required. At any given time, each attribute will

have one of three possible values for its value-supplier:

* a constraint, implying that the attribute's current value was computed using that

constraint;

* the keyword ":user", indicating that the current value has been explicitly assigned

to the attribute by the user; or

" the keyword ":guess", representing the lack of a reliable value for the attribute.

Values supplied by the user, as well as those computed by constraints, are assumed fixed.

Only when an attribute's value-supplier is :guess may constraint propagation be employed

to calculate a new value for it. Such attributes are therefore referred to as free parameters

of the constraint.

Initially, all attributes have a default value-supplier of :guess, assigned during attribute

instantiation. Whenever an attribute's value becomes fixed (i.e., its value-supplier is either

:user or a constraint), the attribute polls all of its constraints, stored in its forward-

constraints and reverse-constraints instance variables, to see if any of them are perfectly



Object Type Instance Variable Description

Attribute value Stores the value of the attribute instance, in
Rubber Airplane internal units.

value-supplier Indicates the source for the attribute's cur-
rent value. Should be either a constraint (in-
dicated that the value was computed using
the constraint), the keyword :user (indicat-
ing that the value was explicitly assigned to
the attribute by the program operator), or the
keyword :guess (indicating that, lacking any
other source, a default value was assigned by
the program).

time-tag Stores the time at which the current value
was assigned, represented in Common Lisp
"Universal Time" format (see Reference [35]).
The value of this instance variable is updated
whenever a new value is assigned by the user,
or computed by a constraint.

forward-constraints Maintains a list of the constraints for which
this attribute instance is an output parame-
ter.

reverse-constraints Maintains a list of the constraints for which
this attribute instance is an input parameter.

Scalar Attribute order-of-magnitude Stores the order-of-magnitude specification
for the attribute instance, in Rubber Airplane
internal units.

low-value Stores the low-value specification for the at-
tribute, in Rubber Airplane internal units.

high-value Stores the high-value specification for the at-
tribute, in Rubber Airplane internal units.

Discrete Attribute value-list Stores a list of the possible values for the at-
tribute, or a symbol which evaluates to such
a list.

Table 3.1: Attribute instance variables used in constraint propagation.



Object Type Instance Variable Description

Equality Constraint output-parameters Stores a list of the attributes which
serve as output parameters for the
constraint.

input-parameters Stores a list of the attributes which
serve as input parameters for the
constraint.

parameters Stores a combined list of the input
and output parameters for the con-
straint.

computed-parameters Maintains a list of the attributes
whose current values were computed
using the constraint.

compiled-function Stores a compiled LISP function
which performs any required unit
conversions and executes the opera-
tions listed in the body of the corre-
sponding constraint specification.

Invertible Constraint compiled-normal-function Stores a compiled LISP function
which calls the function stored by
the compiled-function instance vari-
able, and subtracts the result from
the current value of the constraint's
input parameter. (Note that all in-
vertible constraints have but a single
output parameter).

Table 3.2: Constraint instance variables used in constraint propagation.



constrained. Defining the degree of a constraint as the count of its output parameters,

a constraint is considered to be "perfectly constrained" whenever the number of the con-

straint's attributes whose value-suppliers are :guess is equal to its degree. The degree of

a constraint indicates the number of parameters which may be computed using the con-

straint, whether it is used "as is", or is inverted; thus, a constraint only becomes perfectly

constrained when the number of free parameters of the constraint matches its degree.

If any such perfectly constrained constraints are found, they are immediately used to

compute values for their free parameters. The constraint then serves as the value-supplier for

these free parameters, whose values thus become fixed, causing the constraint propagation

process to be called recursively. Note that, once a constraint has been used to compute

a value for one or more of its attributes in this manner, it will no longer have any free

parameters, and thus there is no danger of it being propagated again.

Actually, in the case of uni-directional (i.e., :one-way) constraints, propagation may

only take place when the set of free parameters exactly matches the constraint's set of output

parameters. Since it is the case that all multiple-output constraints are uni-directional, it

turns out that some simplification in the algorithm is possible. If the degree of a constraint

is unity, then propagation may be used to compute any free parameter. If the degree is

greater than one, then propagation can only occur when the free parameters match the

output parameters.

Value-suppliers are also used to implement constraint retractions. The values and value-

suppliers of computed attributes may not be changed. User-supplied values, however, can

be retracted. This is done by changing the value-supplier of the appropriate attribute from

:user to :guess. When this takes place, each of the attribute's constraints, as listed in

its forward-constraints and reverse-constraints instance variables, are examined. If any of

these constraints has one or more other attributes listed in its computed-parameters instance

variables, these attributes are removed from the list and their value-suppliers are revised:

rather than listing the constraint as their value-suppliers, the value-supplier of each will

be changed to :guess. This change may itself yield further retractions; like propagation,

constraint retraction can call itself recursively.

Note that, when retracting a calculation, only the value-supplier of an attribute is

changed-its value is unaffected, and remains set to the value previously computed by the

constraint. This is done for reasons of both simplicity and practicality. With respect to

practicality, it is observed that the numerical inversion and loop-solving techniques discussed

below are most reliable when applied to computing the results of small, incremental changes

in attribute values. Maintaining computed values beyond constraint retraction makes them

available to the numerical algorithms, thereby improving program performance.



Similarly, if the user wishes to assign a new user-supplied value to an attribute, the

old user-supplied value must first be retracted. This is done to simplify maintenance of

the proper dependency relationships. Note that it is not actually necessary for the user

to explicitly perform these steps; if an attribute's current value-supplier is :user and the

user wishes to change its value without changing the supplier, the program interface auto-

matically carries out a temporary change in the attribute's value-supplier from :user to

:guess-causing the appropriate retractions to occur-before the new value is assigned,

after which the original value-supplier, :user, is restored.

To summarize, local propagation and retraction of constraints is implemented as follows:

1. Initially, the value-supplier instance variable of all attributes is :guess.

2. All changes in the value-supplier of an attribute are monitored. Five types of changes

are possible:

(a) From :guess to :guess.

(b) From :guess to :user.

(c) From :guess to a constraint.

(d) From :user to :guess.

(e) From a constraint to :guess.

Note that only Cases 2a, 2b, and 2d may be instigated by the user.

3. In Case 2a, nothing happens.

4. In Cases 2b and 2c, constraint propagation takes place:

(a) Examine each of the constraints listed in the forward-constraints and reverse-

constraints instance variables of the attribute, in order to identify those which

are perfectly constrained. A constraint is perfectly constrained when it has the

same number of output parameters as free parameters (i.e., attributes whose

value-suppliers are :guess).

(b) For each perfectly-constrained constraint:

9 If the constraint is omni-directional, it must be the case that there is exactly

one free parameter. The constraint is used to compute the value of this free

parameter, and may be inverted, if necessary. The value-supplier for this

computed value is the constraint itself. The free parameter is added to the

list maintained by the constraint's computed-parameters instance variable.
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" If the constraint is uni-directional and the constraint's free parameters match

its output parameters, use the constraint to compute values for its output

parameters. The computed values are assigned to the appropriate attributes;

the value-supplier for these new values is the constraint itself. The output

parameters are added to the list maintained by the constraint's computed-

parameters instance variable.

* All other cases would require the inversion of a uni-directional constraint;

therefore, no action is taken.

5. In Cases 2d and 2e, constraint retraction takes place:

(a) Examine each of the constraints listed in the forward-constraints and reverse-

constraints instance variables of the attribute, in order to identify those whose

computed-parameters instance variables are non-empty lists.

(b) For each such constraint, iterate through the list of attributes which appear as the

constraint's computed-parameters. The value-supplier of each of these attributes,

which should be the constraint itself, is changed to :guess; their values remain

unchanged. Each of the attributes is removed from the list maintained by the

constraint's computed-parameters instance-variable.

As mentioned above and is apparent from this enumeration, since both propagation and

retraction cause additional changes in the value-suppliers of the affected attributes, both of

the two processes are recursive.

3.2.4 An Example

To illustrate the use of the algorithm detailed in the preceding section, consider a simple

constraint network created by instantiating a hypothetical airfoil component-class, for

which the following two constraints have been defined:

(defconstraint (airfoil "Definition of Aspect Ratio")

(aspect-ratio "")

((span "Im") (wing-area "m2" S))

"Implements the definition of aspect ratio as an equality constraint."

(/ (* span span) S)))

(def constraint (airfoil "Finite-Wing Lift Slope")

(cl-alpha "")

((cl-alphainf "") (oswald "") (aspect-ratio ""))

"Approximates the effect of finite wingspan on lift-curve slope."
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Figure 3.1: Constraint network for local propagation example.

(/ cl-alpha-inf (+ 1 (1 cl-alpha-inf pi oswald aspect-ratio))))

where it has been assumed that component-class airfoil also provides definitions for the

required attributes. The span, aspect-ratio, and wing-area attributes referenced here

represent the parameters which describe the planform geometry. Attribute oswald denotes

the Oswald's efficiency factor for the airfoil, which is a measure of the ellipticity of the

airfoil's lift distribution. The remaining two attributes, cl-alpha and cl-alpha.inf, rep-

resent the slope of the airfoil's lift-curve, with respect to angle of attack, for the finite and

infinite aspect-ratio cases, respectively. The resulting constraint network is depicted graph-

ically in Figure 3.1, where the attributes and constraints are written using mathematical,

rather than LISP, notation. The correlation between the two notations is also given in

Figure 3.1.

For this example, it is assumed that the user has provided values for the wing-area,

span, oswald, and cl-alpha attributes (i.e., the planform and required performance have

been specified, but the airfoil cross section has not been chosen). The value-supplier for

each of these attributes is, therefore, :user, while :guess is the value-supplier for both

the aspect-ratio and cl-alpha..inf attributes. These initial conditions are depicted in

Figure 3.2(a), where the superscripts "U" and "G" are used to designate value suppliers of

:user and :guess, respectively.

Initially (Figure 3.2(a)), the aspect-ratio constraint, C-1, has one free parameter, while

the lift-slope constraint, C-2, has two. Constraint C-1 is thus perfectly constrained, and
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Figure 3.2: Constraint propagation of constraints C-1 and C-2 (a) before propagation of
C-1, and (b) after propagation of C-1.

may be used to compute a value for aspect-ratio (AR). As indicated in Section 3.2.3,

constraint C-1 will be examined whenever the value-supplier of any of its attributes is

modified. Thus, once the value-supplier of both the span (b) and wing-area (S) attributes

have been set, the program will immediately determine that constraint C-1 is perfectly

constrained and ready for propagation. At this point, the appropriate calculation is per-

formed, the new value is assigned, and the value-supplier of the aspect-ratio attribute

becomes constraint C-1, as denoted by the superscript "C-1" in Figure 3.2(b). In addi-

tion, the aspect-ratio attribute becomes a computed parameter of constraint C-1,

and is added to the list maintained by its computed-parameters instance variable, which

was previously empty. Furthermore, since the value-supplier of aspect-ratio is no longer

:guess, constraint C-2 has become perfectly constrained (Figure 3.3(a)). Its only remain-

ing free parameter is cl-alpha-inf (CL'), which may then be computed by inverting the

mathematical relationship (see Figure 3.3(b)), and the value-supplier of cl-alpha.inf be-

comes constraint C-2, as indicated by the superscript "C-2" in Figure 3.3(b). Finally, the

cl-alpha..inf attribute is added to constraint C-2's list of computed-parameters (which

should previously have been empty). At this stage, since none of the constraints involving

cl-alpha.inf are perfectly constrained, constraint propagation is terminated.

Thus, both constraints have been propagated in order to compute values for the aspect-

103



(b)

Figure 3.3: Constraint propagation of constraints C-1 and C-2 (a) before propagation of
C-2, and (b) after propagation of C-2.

ratio and cl-alpha-inf attributes, based upon user-supplied values for the other at-

tributes. If the user wishes to change the value of one of the latter attributes, however,

the propagation must first be revoked, so that the new value may be propagated. (As

mentioned in Section 3.2.3, the program interface automatically invokes constraint retrac-

tion whenever a user-supplied value is altered; the user need not initiate retraction as a

separate operation.) Once retraction takes place, the new user-supplied value is assigned

to the appropriate attribute, its value-supplier becomes :user once more, and constraint

propagation proceeds as before.

To illustrate the retraction process, consider continuing the example introduced above,

and retracting the user-supplied value for the span attribute. As indicated in Figure 3.4(a),

the first step is to change the value-supplier of this attribute from :user to :guess. Next,

any constraints which refer to the attribute are examined to see if they have any computed

parameters. In this case, only constraint C-1 accesses span, and it does, indeed, have a

single computed parameter, aspect-ratio. This computation is retracted (Figure 3.4(b)),

by setting the value-supplier of aspect-ratio to :guess; recall that the attribute's value is

unaffected. The attribute is also removed from constraint C-i's list of computed parameters.

Furthermore, because the value-supplier of aspect-ratio has changed from constraint C-1

to :guess, however, additional constraint retraction is required.
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I

Figure 3.4: Constraint propagation of constraints C-1 and C-2 (a) before rectraction of
C-1, and (b) after retraction of C-1.

Attribute aspect-ratio is a parameter of both constraints. At this point, however, only

one of them, constraint C-2, has any computed parameters. Examination of its computed-

parameters instance variable reveals that the value-supplier of attribute cl-alpha.int must

be retracted. Its value-supplier is therefore set to :guess (see Figure 3.5(b)), and it is

removed from C-2's list of computed parameters (which will now be empty). Since none of

the constraints involving attribute cl-alpha.int have any computed parameters, constraint

retraction has been completed.

3.3 Constraint Inversion

3.3.1 Computation of Attribute Values

In the preceding section, little discussion was devoted to the means by which constraints are

actually used to compute values for the attributes whose values they relate. In some forms

of constraint propagation, such as substitution and transformation systems (see Chapter 1),

the process by which constraints are propagated and the process by which parameters are

computed are interwoven; indeed, they are the exact same process. Alternatively, however,

the approach adopted here-local propagation based upon value-suppliers-has the advan-

tage that these two processes are completely independent. The means by which attribute
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(a)

Figure 3.5: Constraint propagation of constraints C-1 and C-2 (a) before retraction of C-2,
and (b) after retraction of C-2.

values are calculated using individual constraints has no bearing on the constraint propa-

gation mechanism, which is therefore only responsible for selecting which attributes are to

be computed by the constraints, and the order in which these calculations should occur.

When constraint propagation has determined that a constraint is to be used to compute

a value for its output parameters, it is a straightforward process to use the LISP function

stored as the compiled-function instance variable of the constraint to compute the desired

values, using the current values of its input parameters as the arguments to this function.
As indicated in Table 3.2, this function is based on the body specification provided by the
constraint's def constraint definition (see Chapter 2). It also performs the appropriate

unit conversions on the input and output values. 1

If it is decided that a constraint is to be used to compute a value for one of its input pa-
rameters, then it is necessary to invert the constraint. 2 As indicated above, since the means

by which parameters are computed is divorced from the actual propagation mechanism, a

'Note that the values of the input parameters must be converted from Rubber Airplane internal units
to the constraint's units; the output value(s) must be converted to Rubber Airplane internal units from
constraint units.

2 Recall that Rubber Airplane requires all invertible constraints to be of degree unity. Since all multiple-
output constraints must therefore be uninvertible, it is never necessary to solve for multiple input parameters
simultaneously. Note that numerical techniques for inverting multiple-output constraints have been imple-
mented for Paper Airplane; see Reference [21].
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multitude of approaches are possible. Transformation of individual constraint bodies, or

other symbolic algebra techniques, could be employed. Based on simplicity of implemen-

tation and past experience with the Paper Airplane program, however, numerical inversion

based upon the Newton-Raphson method was selected.

3.3.2 Numerical Inversion

The advantage of numerical techniques is their generality. Using numerical techniques, the

set of mathematical operations performed by a constraint may be treated as a "black box".

Rule-based and symbolic algebra techniques may limit the types of operations which may be

included in the body of a constraint, based upon the completeness of the available transfor-

mation rules. Furthermore, it is not unusual in engineering design that constraints include

such operations as numerical integration or table-lookup which cannot be represented an-

alytically; symbolic inversion techniques are inadequate in such cases. Since numerical

techniques rely solely upon observation of the output values of a constraint corresponding

to a set of input values, such restrictions do not apply.3

The specific numerical method adopted for Rubber Airplane is the Newton-Raphson

technique, used for finding the zeroes of a function. Given a function, f(x), the Newton-

Raphson technique may be used to find those values of x for which for which if(z)I < e (i.e.,
f(x) - 0), where E is some arbitrarily small number indicating the desired precision for the

numerical analysis. The process by which such values for x are computed is as follows:

1. Select an initial seed value for x, referred to as x;, which is presumed to be close in

value to one of the zeroes of f(x).

2. Compute f(xi) and f'(x;). The derivative is typically calculated numerically, using a

formula such as:
, f(X+A)-f(X-AX)

f (zn) 2A2Az

3. If if(zi)I< e, then x is the desired zero.

4. If If(x;)|;> e, then a new value for x is chosen, zi+1 , corresponding to the point where

the tangent to f(x) at x intersects the x-axis, i.e.,

= -f(z;)

X;+1 = z; - Xi
f'(z;)

5. Return to Step 2, repeating the process, substituting xi+1 for z;.

This procedure is illustrated graphically in Figure 3.6.
3 0f course, numerical techniques do not perform well when constraint parameters may take on only

discrete values. It is for this reason that Rubber Airplane requires that all constraints involving discrete
attributes be uninvertible.
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y =f(x)

Figure 3.6: The Newton-Raphson technique for numerically locating the zeroes of a function.
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To actually use the Newton-Raphson method to simulate constraint inversion, it is

necessary to transform constraints into normalized form. Rubber Airplane constraints are

defined using the defconstraint macro (see Chapter 2) in the form y = f(zi, 2, ... ),

where y represents the output parameter and X1, 2,... represent the input parameters.

The corresponding normalized form is

F(y, z1,) z2, ...) =Y - f(zi, z2, ---

It is rather straightforward to modify the LISP code given in the body of a def constraint

specification in order to produce a LISP function which implements the normalized form

of the corresponding constraint. This function, when compiled, is stored as the compiled-

normal-function of each instance of the constraint; when constraint propagation requires

solution of the constraint for one of its input variables, the Newton-Raphson method is

applied to this function, holding the values of all other attributes constants. Thus, to

calculate a value for one of the input variables, Xk E X1, X2, .. ., the Newton-Raphson method

is employed to find roots of the function g(xk) = F(y, x1 , z2 ... )
As mentioned above, however, use of the Newton-Raphson method requires selection

of an initial seed value, for the first iteration of the algorithm. In order to determine an

appropriate seed value, Rubber Airplane first generates a list of candidate seed values for

the desired input parameter. The normal form of the constraint is evaluated for each of the

candidate seed values; the value which yields the result of least magnitude (i.e., the result

closest to zero) is selected as the initial seed value for the numerical analysis. The list of

candidate seed values consists of the following:

" the current value of the attribute which is to be computed;

" its order-of-magnitude value; and

" a logarithmic distribution (see Section 3.3.3) between the low-value and high-value

specifications associated with the attribute.

Note that, while examining this list, should it be determined that one of the candidate seed

values is itself a zero (i.e., should the corresponding value of the normal form satisfy the

appropriate convergence criterion), it is immediately returned as the computed value for

the attribute; Newton-Raphson iteration is not required for such cases.

3.3.3 Logarithmic Distribution between Attribute Bounds

As indicated in the preceding section, selection of the initial seed value for the Newton-

Raphson analysis requires generation of a list of candidates. Included among these candi-

dates is a logarithmic distribution of values based upon the low-value and high-value bounds

associated with the attribute whose value is to be computed.
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To logarithmically divide an interval between two limits, al and a,, into n subdivisions,

the lower limit, al, is successively multiplied by the factor,

(log au -log a)
e n

until the value of the upper limit, au, is reached (i.e., n times). Thus, the logarithmic

distribution between these two limits may be written

{ (log au -log ai) 2(log au -log al)
ldn(ai, au) = ale n , aie n

3(log au -log al)
ale "

(n-1)(log au -log a1)
aie n , au

where the ith element in the logarithmic distribution is given by

i(log au -log al)
ai,n = ale n

The reason logarithmic distribution was chosen for generating candidate Newton-Raphson

seed values is because, for large intervals, a logarithmic distribution divides the interval ac-

cording to the orders of magnitude included in the interval (i.e., logarithmically), while

for small intervals, the interval is divided approximately linearly. Thus, the four-interval

logarithmic distribution between 1 and 10, 000 is

{1, 10, 100, 1,000, 10,000}

while the four-interval logarithmic distribution between 1 and 10 is

{1, 1.7783, 3.1623, 5.6234, 10}

and the four-interval logarithmic distribution between 1 and 2 is

{1, 1.1892, 1.4142, 1.6818, 2}

This feature has the advantage that, when there is a large disparity between the upper

and lower bounds, a more suitable set of test values is generated. In such cases, a linear

distribution would be likely to result in a set of candidate values which all have the same

order of magnitude; for example, the four-interval linear distribution between 1 and 10,000

is

{1, 2500.75, 5000.5, 7500.25, 10, 000}

Note that all the intermediate values are of order of magnitude O(103). If the actual zero is

near one of the two bounds, it may then be the case that none of the generated candidates is

a suitable seed value. The logarithmic distribution provides a more diverse set of candidates
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under such circumstances, and still yields a reasonable range of values when the bounds are

close to one another in value.

Furthermore, note that the mathematical description of the elements of a logarithmic

distribution presented above provides for the extension of the logarithmic distribution be-

yond the given upper and lower limits. As indicated above, the elements of an n-interval

logarithmic distribution are computed by evaluating the expression

i(log au-log a)

ai,n = aie n

for integral values of i between zero and n (inclusive). By choosing integral values of i which

are either less than zero or greater than n, the distribution may be extended beyond the

prescribed upper and lower limits, al and au. Thus, for a six-interval distribution which is

extended once beyond each of its bounds, n = 4 and i varies from -1 to 5. If the lower and

upper bounds are 1 and 10,000, respectively, the values in such an extended distribution

would be

{0.1, 1, 10, 100, 1,000, 10,000, 100,000}

The same distribution with lower and upper bounds of 1 and 10, respectively, is

{0.5623, 1, 1.7783, 3.1623, 5.6234, 10, 17.783}

The actual distribution chosen for the generation of candidate seed values is a ten-interval

logarithmic distribution which is twice-extended beyond the upper and lower bounds spec-

ified for the corresponding attribute. For such a distribution, n = 6 and i varies from -2

to 8.

3.4 Computational Loops

3.4.1 Overview

As discussed above, local propagation is inadequate for solving constraint networks which

involve cycles. For this reason, some means of recognizing constraints which must be solved

simultaneously is required. Local propagation must be augmented by some form of global

analysis for the detection and solution of simultaneous equations. At the same time, this

global analysis must be compatible with the local propagation techniques already imple-

mented. This means that individual constraints must be treated as indivisible "black boxes";

analytical approaches such as symbolic algebra and network transformation are not pos-

sible. Global analysis should also be performed interactively, and its operation should be

transparent to the user.

The first step taken in attempting to meet these requirements was to adopt a heuristic

first employed by Paper Airplane, which assumes that, in engineering design, simultaneous
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equations almost exclusively appear in the form of computational loops. This term is

here meant to imply that such simultaneous equations can, without resort to any other form

of algebraic manipulation besides substitution, be reduced to at most two equations in two

unknowns.4 It could alternatively be asserted that such systems of equations are charac-

terized by the property that, by positing an assumed value for just one of the unknowns,

values for all of the remaining unknowns are readily calculable, without needing to solve an

additional set of simultaneous equations.

This heuristic was inspired by the observation that most conventional computer pro-

grams for aircraft design include a primary iteration loop which computes the vehicle's

gross weight by first assuming a value for it. This assumed value is then used to compute

the weights of the various components of the vehicle, which are then summed in order to

determine a revised gross-weight estimate. This estimate is used to recompute the compo-

nent weights, which are once more summed to calculate a new value for the gross weight.

The process is repeated until convergence upon a stable value for the gross weight is ob-

served. In this manner, the set of simultaneous equations governing the component and

gross weights is solved by constructing a computation loop based on an assumed value for

the gross weight.

Thus, rather than search for all possible cycles within a constraint network, attention

is focused on identifying the computational loops. If the assumption above is valid, this

approach will be adequate for handling the majority of simultaneous equations encountered

in solving engineering design problems. The means by which such computational loops are

detected, and the techniques used for solving them, are discussed in the following sections.

Note that, due to reliance on numerical algorithms for solving constraint loops, only in-

vertible constraints, involving only scalar attributes, are eligible for use as elements of a

computational loop.

3.4.2 Loop Detection

Loop Construction

The first step in detecting computational loops is recognition of the individual constraints

which may be combined to form such loops. Once such constraints have been identified,

actual loop construction may be attempted. As discussed above, however, most of the

simultaneous equations present in a constraint network can be solved using local propagation

only. In order to avoid conflict with the local propagation algorithm, then, it is necessary

to delay all loop construction attempts until local propagation has been completed.

For this reason, rather than immediately attempting loop construction once a candidate

'Note that if a system can be reduced in this manner to but a single equation in one unknown, then such
a system can be solved using the local propagation technique presented above.
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Object Type Instance Variable Description

Scalar Attribute loop-supplier Indicates the assumed source for the at-
tribute's value in the loop currently under
construction. Should be either a constraint
(indicating that the value may be computed
using the constraint), the keyword :assumed
(indicating that a known value for the at-
tribute has been assumed in order to construct
the loop), or the symbol nil (indicating that,
lacking any other source, the attribute's value-
supplier should also serve as its loop-supplier).

Invertible Constraint in-loop? Stores a boolean flag, either t ("true") or nil

("false"), indicating whether or not the con-
straint has been used as a loop-supplier in the
loop currently under construction.

Table 3.3: Additional attribute and constraint instance variables used in loop propagation.

loop constraint has been found, the constraint is instead added to queue of candidate

loop constraints, to be processed only after local propagation has concluded. At this point,

loop propagation may be attempted, by examining each of the queued constraints in

turn. In attempting loop construction, the first step is re-examination of the candidate

constraint. This is because, between the queuing of the constraint and the actual attempt

at loop construction, local propagation may have eventually caused this constraint to be-

come perfectly constrained, and applied it to compute the value of one of its attributes.

Thus, if the first constraint in the queue is observed to have any attributes listed in its

computed-parameters instance variable, the constraint is removed from the queue, and the

next candidate constraint is examined for computed parameters. It may be the case that

all the constraints in the queue will be rejected in this manner. If, however, a candidate

constraint with no computed parameters is found, the next step is selection of a suitable

loop variable. This loop variable will be an attribute whose value is to be assumed known.

Thus, the loop variable plays the same role as the gross-weight variable in the iteration loop

discussed in the preceding section. Based on this assumed value, calculation of values for

other attributes may become possible, which in turn enable calculation of a new value for

the loop variable, thus closing the loop. Note that, to support loop propagation, two more

attribute and constraint instance variables are required, in addition to those indicated in

Tables 3.1 and 3.2. These additional instance variables are listed in Table 3.3.

As with local propagation, it is not necessary to deal with actual attribute values while

attempting loop propagation; instead, it is once more possible to divorce loop calculation

from loop construction through the use of loop-suppliers, which play an analogous role
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to the value-suppliers employed in local propagation. The loop-supplier of an attribute can

have one of three possible values:

" the keyword ":assumed", indicating that the attribute has been selected as the loop

variable;

" a constraint, implying that the attribute's value can be computed using that con-

straint, assuming a known value for the loop variable; or

" the LISP symbol nil indicating that no loop-supplier has otherwise been assigned to

the attribute, and that the current value of its value-supplier (which may be either a

constraint, :user, or :guess) should be used as the attribute's loop-supplier.

Use of the loop-supplier enables loop construction to be performed using the algorithm

originally developed for local propagation. Before loop construction begins, all attributes'

loop-suppliers are nil, as are the in-loop? instance variables of all constraints. A loop

variable is then chosen, by selecting the free parameter of the candidate loop constraint

which has the most loop-eligible constraints. A constraint is said to be loop-eligible

as long as its computed-parameters instance variable is the empty list (i.e., the constraint

has not already been used during local propagation) and its in-loop? instance variable

is nil (i.e., the constraint has not already been used during the current attempt at loop

construction). By choosing the attribute with the largest number of loop-eligible constraints,

loop construction is accelerated, since the largest number of constraints become immediate

candidates for addition to the loop about to be built (i.e., the largest number of constraints

will have their degrees of freedom-with respect to loop construction-reduced by one).

Consider, for example, the following set of constraints representing a simplified aircraft

gross weight calculation:

C-0: W1 = fi(WT)
C-1: W2 = f2(WT)
C-2: W3 = f3(WT)
C-3: WT = W1 + W2 + W3

where WT represents the gross weight, and W1, W2, and W3 represent three component

weights. The first three equations relate individual component weights to the total vehicle

weight, while the fourth relationship, C-3, computes gross weight as the sum of the compo-

nent weights. Assume that the four parameters have yet to be calculated by other means

(i.e., all have a value-supplier of :guess), and that each of the four equations represents

a loop-eligible constraint. If the first constraint, C-0, is queued as a candidate loop con-

straint, the corresponding candidate loop variables will be W1 and WT. Parameter W1 has

two loop-eligible constraints (C-0 and C-3), but parameter WT, being a free parameter of
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all four of the indicated constraints, has four. Thus, WT is the best choice for loop variable

for this set of simultaneous equations, since constraints C-0, C-1, and C-2 all become im-

mediately available for local propagation of loop-suppliers once the loop-supplier of WT is

set to :assumed. Had W1 been selected as the loop variable, only constraint C-0 would be

available for local propagation of loop-suppliers.

Note, though that the success of this loop-detection algorithm does not depend upon

the choice of loop variable: if a computational loop 5 may be constructed which includes

the candidate loop constraint, the algorithm will find this loop, regardless of the choice

of loop variable. The criterion presented above has been selected only to accelerate loop

propagation. Furthermore, note that this algorithm for loop detection is also insensitive to

the choice of loop constraint. If a computational loop exists, this algorithm would succeed

in constructing it given any of the included constraints as an initial loop constraint.

Once a loop variable is chosen, it is assigned a loop-supplier of :assumed, and local

propagation of loop-suppliers is performed. Each of the loop variable's constraints is ex-

amined to identify those which are loop-eligible. If any such loop-eligible constraint is then

observed to be perfectly constrained according to the loop-suppliers of its attributes, the

constraint is added to the loop currently under construction: its in-loop? instance variable

is set to t (i.e., "true"), and the constraint becomes the loop-supplier of its free parameter.

(Since only invertible constraints are eligible for loop propagation, and all invertible con-

straints are of degree unity, such constraints will always have exactly one free parameter

when they are perfectly constrained.) The loop-eligible constraints of this free parameter

are then examined, and, if any of these are perfectly constrained, loop propagation continues

recursively.

There are two circumstances under which local propagation of loop-suppliers may ter-

minate. First, like local propagation of value-suppliers, the process may simply run out

of constraints which are, or have become, perfectly constrained. In this case, loop con-

struction has failed, because no constraint has been found to close the loop by enabling

computation of the original loop variable, which was assumed known. (In the gross weight

analogy introduced above, the iteration loop is closed by the constraint which calculates

the gross weight by summing the component weights, which were themselves calculated

based on the assumed gross weight.) Loop construction may then be attempted on the next

candidate in the queue of potential loop constraints; this process is repeated until either

loop construction succeeds, or the queue is exhausted.

Alternatively, however, local propagation of loop-suppliers may encounter a constraint

whose in-loop? instance variable is nil, but has zero free parameters (i.e., based on the loop-

'Recall that, in this document, the phrase "computational loop" strictly refers to set of simultaneous
equations which is of the form anticipated by the heuristic presented in Section 3.4.1.
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suppliers of its attributes). Such a constraint is referred to as a closing constraint, because

it may be used to close the loop. A constraint which has not been used to compute a value for

any of its parameters, but nevertheless has zero free parameters, is overconstrained. Recall,

though, that the loop variable was only assumed known; this assumption artificially reduced

the number of degrees of freedom of the system of equations by one. The resulting discovery

of an overconstrained constraint thus indicates the successful discovery of a computational

loop within the constraint network. This overconstrained constraint will necessarily have

among its parameters either the loop variable, or one or more attributes whose loop-supplier

is another constraint (otherwise, it should have earlier been eligible for local propagation

based upon value-suppliers).

In the example introduced above, if parameter WT is selected as the loop variable,

local propagation of loop-suppliers-using the first three of the four constraints-may be

employed to assign loop suppliers to each of the three component weights. Thus, the loop-

supplier for parameter W1 would be constraint C-0, the loop-supplier for W2 would be

constraint C-1, and the loop-supplier for W3 would be constraint C-2. Under these circum-

stances, however, loop-suppliers would have been assigned to all four of the parameters as-

sociated with constraint C-3, though the constraint itself remains loop-eligible. Constraint

C-3 has thus become overconstrained, and may therefore serve as the closing constraint for

this loop, to be used in computing the value of the loop variable, WT, based on the values

of the other three loop parameters.

As might be expected, under most circumstances the original loop variable will indeed

be a parameter of the closing constraint. However, because the loop variable is selected from

the parameters of but a single constraint (i.e., the constraint found at the head of the queue

of candidate loop constraints), it may be the case that the original choice of the loop variable

was, in some way, non-optimal. In such cases, the loop variable may not itself be a parameter

of the loop's closing constraint. A valid computational loop has indeed been constructed,

but-for calculation and propagation purposes-some reorganization is required to correct

such "blemished" loops. This is a rather straightforward process, however, once the loop

has been constructed.

Once a closing constraint has been identified, then, the required constraints must be

collected together to form a computational loop. Loops are themselves represented as lists

of pairs, each pair consisting of an attribute and the constraint which will be used to

compute it within the loop. The first member of the computational loop will be a pair

consisting of the loop variable and the closing constraint, representing the fact that the

closing constraint enables the calculation of the original, assumed parameter. Next, all of

the parameters of the closing constraint are examined. If any of them have a loop-supplier

which is a constraint, a pair consisting of the attribute and its loop-supplier are added to
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the beginning of the loop. The parameters of all such loop-supplier constraints are similarly

examined, and any additional attribute/loop-supplier pairs are added onto the beginning

of the loop. This process continues recursively until all of the dependencies which support

the closing constraint have been collected. Note that, because new pairs are always added

at the beginning of the loop, the loop's original pair, containing the loop variable and the

closing constraint, will actually be the last element of the completed loop structure.

It might seem more efficient to simply keep a record of all the loop-supplier assignments

made during loop construction, and use this record to represent the computational loop. As

a matter of fact, it is, indeed, necessary to maintain such a record, so that all loop-supplier

and in-loop? instance variables can be reset after loop construction has been attempted, in

preparation for subsequent loop construction efforts. However, because the local propaga-

tion algorithm presented here performs a depth-first search through the constraint network,

it turns out that there may be some search branches which do not actually contribute

to the closing of the loop. While performing the calculations needed to solve the loop,

these branches may therefore be ignored. By explicitly collecting only those attribute/loop-

supplier pairs upon which the closing constraint is dependent, these "dead-end" branches

are pruned from the final computational loop. Computational loops are thus reduced to

minimum size, improving both the performance and the stability of the numerical algo-

rithms used to solve them (see Section 3.4.3). Note that, since loop construction employs

the same search mechanism as normal local propagation of constraints, it will be the case

that, once the corresponding loop is solved, these extraneous branches may be solved using

local propagation alone.

As indicated above, after the computational loop has been constructed, it becomes

possible to repair those loops for which the loop variable is not a parameter of the closing

constraint. If such cases, it is a straightforward matter to examine the resulting loop to

determine which of its parameters should have been chosen as the loop variable, simply by

determining which of the attributes appears most frequently as a parameter of all of the

loop's constraints. According to the heuristic which forms the basis of this loop detection

scheme, this is the attribute which should be chosen as the loop variable. The loop can

then be reconstructed based on the new loop variable. In practice, it has been observed

that this new loop variable will always be a parameter of the new loop's closing constraint.

Note that since this computation can be executed very efficiently; for convenience the im-

plementation has chosen to perform it on all newly constructed loops, regardless of whether

or not the loop variable is a parameter of the closing constraint. If the loop variable selected

by this procedure does not match the original loop variable, a new computational loop is

constructed. Under certain circumstances, this new loop can actually have fewer elements

than the original, which, as indicated above, improves the performance of the numerical

117



algorithms employed to actually solve computational loops.6

After construction of an acceptable computational loop has been completed, the appro-

priate loop solution algorithm (see Section 3.4.3) may then applied to compute values for its

attributes, using the corresponding constraints. Numerical techniques are employed, and

thus iteration is required. Once these values have been computed, it is necessary to assign

the appropriate values and value-suppliers to the attributes. For convenience, a two-step

process is employed. First, all of the values are assigned, without modifying the attributes'

value-suppliers, which will all be :guess. Then, in order to forestall future attempts to

propagate the closing constraint, the loop variable is added to the list of computed param-

eters maintained by the computed-parameters instance variable of the closing constraint,

which previously should have been empty. Next, the closing constraint is assigned as the

value-supplier for the loop variable (this is why it is necessary that the loop variable be

an actual parameter of the closing constraint). This change in the value-supplier of the

loop variable will automatically invoke local propagation. As a result, the appropriate

constraints will be assigned as the value-suppliers of the attributes with which they were

associated within the computational loop. (This is true because the algorithm used for

local propagation of value-suppliers is identical to the algorithm used for local propagation

of loop-suppliers while constructing the loop.) Also, because the correct values have already

been assigned to these attributes, and current values are always examined while performing

local-propagation calculations (see Section 3.2), the computations resulting from this local

propagation will incur only a small performance penalty. Furthermore, because the loop

variable is a parameter of the closing constraint and local propagation is used to assign

the other value-suppliers, this approach has the additional advantage that there is no need

to alter the process by which constraint propagations are retracted: the retraction process

detailed in Section 3.2 applies equally well to loop-based constraint calculations.

It will also be the case that any secondary calculations made possible by the solution

of the loop will also be performed during the course of this local propagation. Then, once

local propagation has been completed, the queue of candidate loop constraints will once

more be examined, allowing further loop construction to be attempted. Note that, while

this approach does not allow for the nesting of computational loops, the fact that the queue

is re-examined after each successful loop propagation means that later computational loops

can be based upon the calculations performed by earlier computational loops.

The process by which computational loops are detected and constructed may thus be

summarized as follows:

1. Initially, the loop-supplier instance variable of all attributes is nil, as is the in-loop?

6Specifically, this will be the case if the original loop constraint was actually on an extraneous or "dead-
end" branch, as described above.
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instance variable of all constraints.

2. During local propagation, identify candidate loop constraints (see Section 3.4.2) and

add them to a queue of such constraints. Candidate constraints should only be added

to the queue once; there is no need for duplicate appearances of constraints within

the queue. After local propagation has been completed, proceed to Step 3.

3. Remove the first constraint from the queue. If this constraint is loop-eligible (i.e., the

value of its computed-parameters instance variable is the empty list and the value of

its in-loop? instance variable is nil), proceed to Step 4; if not, repeat this step.

4. Count the loop-eligible constraints associated with each of the constraint's free pa-

rameters. The free parameter with the most loop-eligible constraints is selected as

the loop variable.

5. Set the loop-supplier of the loop variable to :assumed. Add the attribute and its

loop-supplier to an on-going record of loop-supplier assignments.

6. Examine all of invertible equality constraints associated with this attribute. For each

such constraint, based upon the loop-suppliers associated with its parameters,

9 If the constraint is loop-eligible but has no free parameters, proceed to Step 9.

e If the constraint is loop-eligible and has exactly one free parameter, then

(a) Set the in-loop? instance variable of the constraint to t.

(b) Set the loop supplier of the attribute which is the constraint's free parameter

to be the constraint. Add the attribute and the constraint to the record of

loop-supplier assignments.

(c) Repeat Step 6 for the attribute identified as the constraint's free parameter.

Note that, due to this presence of Step 6c, this process is potentially recursive.

7. No computational loop can be constructed based on the selected loop variable. For

each attribute mentioned in the record of loop-supplier assignments, set its loop-

supplier instance variable to nil. For each constraint mentioned in the record of

loop-supplier assignments, set its in-loop? instance variable to nil.

8. Return to Step 3.

9. This loop-eligible constraint with zero free parameters is the closing constraint. Con-

struct a computational loop as follows:

(a) The first pair placed in the loop consists of the loop variable and the closing

constraint.
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(b) For this constraint, examine the loop supplier of each of its parameters. If its

loop-supplier is a constraint,

i. Construct a pair consisting of the parameter (an attribute) and its loop

supplier (a constraint).

ii. Add this pair to the beginning of the current computational loop structure.

iii. Repeat Step 9b for the constraint which serves as the parameter's loop-

supplier.

Note that this, too, is a recursive process.

10. For each attribute mentioned in the record of loop-supplier assignments, set its loop-

supplier instance variable to nil. For each constraint mentioned in the record of

loop-supplier assignments, set its in-loop? instance variable to nil.

11. Examine each of the attributes in the computational loop, determining the frequency

with which each appears as a parameter of the loop's constraints. If the attribute

which appears most frequently is not the loop variable for the current loop, return to

Step 5, using this attribute as the loop variable for a second round of loop construction.

Note that if a new loop is deemed necessary, this test does not have to be repeated

for the new loop.

12. Solve the computational loop in order to compute values for the attributes in the loop.

13. Assign these values to the attributes, without changing their value-suppliers.

14. Add the loop variable to the closing constraint's list of computed parameters (which

previously should have been empty).

15. Assign the closing constraint as the value-supplier for the loop variable, thus triggering

local propagation and returning to Step 2.

As indicated above, there is no need to modify or supplement the algorithm presented in

Section 3.2 for performing constraint retractions to account for the presence and solution of

computational loops. In Section 3.4.3 of this chapter, however, certain minor modifications

to this loop-propagation algorithm are suggested, which enable more effective use of iteration

loops in solving for the attributes of computational loops; see Section 3.4.3 for details.

Selection of Candidate Loop Constraints

In the description of the loop detection algorithm presented above, the means by which

candidate loop constraints are selected for addition to the queue was not described. Dur-
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ing the course of this research, a number of different approaches were investigated before

deciding upon the current selection strategy.

One common factor among these approaches, however, was the modification of the orig-

inal local propagation algorithm to incorporate the selection process. Note in the algorithm

presented in Section 3.2 that local propagation is initiated whenever the value-supplier of

an attribute is changed. The next step is to count the number of free parameters associated

with each of the attribute's constraints, to determine which, if any, have become perfectly

constrained. Because the count of a constraint's free parameters is an important factor

in assessing a constraint's utility as a loop constraint, it is at this point that the selec-

tion process takes place. Whenever an attribute's constraints are examined for possible

local propagation, those which are not found to be perfectly constrained are also examined

for possible loop propagation. Any of an attribute's invertible equality constraints which

pass the selection criterion are added to the queue of candidate loop constraints, to be

processed after local propagation has concluded. Note that this approach is particularly

efficient because propagation, both local and loop-based, is only enabled by changes in at-

tribute value-suppliers. Testing for loop constraints as part of the local propagation process

ensures that the minimum subset of constraints is examined.

Recall that the loop detection algorithm is based on assuming a loop-supplier for the

chosen loop variable. Local propagation of loop-suppliers is then performed, in order to find

a closing constraint. In order for loop propagation to succeed at all, it is thus necessary that

at least one of the loop variable's constraints have exactly two free parameters-the loop

variable itself, as well as one other attribute. Otherwise, local propagation of loop-suppliers

will fail immediately, since none of the loop variable's constraints will become perfectly

constrained upon assignment of the loop variable's loop-supplier.

For this reason, the first approach taken was to queue only those constraints which

were observed to have exactly two free parameters. By selecting a loop variable from the

parameters of such constraints, at least the first stage of loop propagation is guaranteed to

succeed. Of course, due to the nature of constraint propagation, the loop may ultimately

include constraints which have more than two free parameters. Nevertheless, as explained

above, the loop must include at least one constraint which, after local propagation, had

exactly two free parameters.

For most situations, this strategy proved adequate. Two mitigating factors must be

recalled, however:

9 When attempting to construct a computational loop, if no loop can be developed from

the first constraint on the queue, it is removed from the queue.

e Loops can include constraints which, after local propagation, still had more than two
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free parameters.

Consider the case in which, after local propagation has been completed, a particular con-

straint has four free parameters. Loop propagation is then attempted, based on some

candidate loop constraint, which, based on the above selection criterion, must have had two

free parameters after local propagation was completed. Assume that, during the course of

loop propagation, propagation of loop-suppliers encounters this constraint which has four

free parameters, but loop-suppliers have been assigned for only two of them, so that loop

propagation cannot use this constraint. Furthermore, assume that this attempt at loop

propagation fails, but, had the constraint in question had only three free parameters, the

loop could have included this constraint and would have succeeded. Finally, assume also

that the fourth free parameter of this constraint has no other constraints.

Thus, if the user were to assign a value to this fourth parameter, its value-supplier (and,

effectively, its loop-supplier) would be set to :user, and the loop propagation which pre-

viously failed would now succeed. Because it failed, however, the original loop constraint

has been removed from the queue. And, even if the required user-supplied value were to

be assigned, loop propagation would still not succeed, because no loop constraint would

be available. The only constraint associated with this attribute, the constraint which pre-

viously had four free parameters, still has three free parameters. It would not pass the

selection criterion. Since there are no other constraints associated with this attribute, no

new constraints would be added to the queue. No means are available for detecting the

computational loop which has now been created; the algorithm has failed.

The first attempt at correcting this deficiency involved a slight alteration to the loop

propagation algorithm: instead of using a single queue for storing candidate loop constraints,

two were provided. The original selection criterion was retained; candidates detected during

local propagation were added to the first queue. After termination of local propagation,

the loop propagation algorithm proceeded as above, by attempting to construct loops using

successive elements of the first constraint queue. Rather than discard those constraints

for which loops could not be constructed, however, such constraints were added to the

second queue. After loop propagation was completed, the two queues were switched. In

this manner, the above problem was avoided by effectively maintaining a permanent queue

of all those constraints with exactly two free parameters.

This solution was quickly deemed unworkable, however, because the queue rapidly grew

to a prohibitively large size. Loop detection thus became very time-consuming, since it

required repeated processing of this large queue. The advantages of linking candidate selec-

tion with local propagation were effectively lost, since constraints were being re-examined

without regard for changes-or lack thereof-in the value-suppliers of their attributes. If

loop propagation were to continue to be performed interactively, an alternative solution was
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required.

For this reason, it was decided to modify the selection criterion, rather than the prop-

agation algorithm. Instead of selecting only constraints with exactly two free parameters,

all constraints with two or more free parameters were deemed eligible as candidate loop

constraints. The second queue was removed; loop constraints which failed the first attempt

at loop propagation were removed from the queue until changes in their attribute's value-

suppliers caused them to be enqueued once more. Because constraints with more than

two free parameters could be enqueued, the difficulty associated with such constraints, as

described above, is avoided.

Of course, this means that a larger number of constraints will be enqueued during the

course of local propagation, which might suggest longer processing times, as was the case

with the previous modification. In practice, however, it is observed that the additional

processing time is not prohibitive: most of these constraints cannot actually be used to

construct a computational loop and, furthermore, the amount of computation required to

confirm this, using the algorithm presented in Section 3.4.2, is minimal. The efficiency

gained from not continually re-examining constraints-as was required by the original al-

gorithm modification-more than compensates for this small performance penalty.

In addition, this alternative selection criterion enables the use of another means for

improving algorithm performance. Observe that all computational loops must necessarily

consist only of constraints which have two or more free parameters: a constraint with

only one free parameter is eligible for local propagation. Note also that a constraint may

only be used in one computational loop, since it may only be used to compute a single

parameter. As indicated in Section 3.4.2, any constraint of an actual computational loop

could be used as its initial loop constraint. As a corollary to this statement, it may also be

observed that if a constraint is used during an unsuccessful attempt at loop propagation,

any subsequent attempt to use the constraint during loop construction will also fail, unless

some intermediate change in attribute value-suppliers has occurred.

For this reason, when using the new selection criterion, whenever a constraint is used

as the loop-supplier of an attribute during loop propagation based on some other loop

constraint, this constraint, if present, may be removed from the queue of candidate loop

constraints. This is possible because, regardless of the success or failure of the current loop

propagation attempt, any subsequent attempts to use this constraint would result in exactly

the same loop. There is thus no need to attempt to use this constraint as a loop constraint.

If the current loop construction effort succeeds, the constraint will no longer be available.

If it fails, then later use of this constraint as a loop constraint will also fail. The only

way such an attempt could succeed is if some change in attribute value-suppliers has taken

place between the two attempts, which enables the construction of a true computational
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loop. This change in value-suppliers, however, must necessarily enqueue at least one of

the constraints present in this loop. For this reason, the removal from the queue of those

constraints which meet the above description is justified.

Specifically, then, whenever the in-loop? instance variable of a constraint is set to

t, any occurrence of the constraint within the queue of candidate loop constraints may

be removed. Not surprisingly, this modification can substantially reduce the number of

candidate loop constraints which must be examined. The resulting performance benefits

make this approach even more preferable than the original modification to the algorithm;

this final revised approach is quite acceptable for use in interactive loop detection.

In summary then, during the course of local propagation, while examining the con-

straints of an attribute to find those which are perfectly constrained, any invertible equality

constraint which has two or more free parameters is enqueued as a candidate loop con-

straint. Furthermore, Step 6 of the loop propagation algorithm presented in Section 3.4.2

(see page 119) may be altered such that, whenever the in-loop? instance variable of a

constraint is set to t, all occurrences of the constraint within the queue of candidate loop

constraints (of which there should be at most one) may be removed.

Example Loop Detection

To illustrate the above process, consider the following three mathematical constraints, ex-

pressed in normalized form:
C-0: E(v, z) = 0
C-1: F(w, z, y) = 0
C-2: G(y, z) = 0
C-3: H(x, z) = 0

Assume that the value of parameter w has been supplied by the user. Its value-supplier

is, therefore, :user. All other parameters have a value-supplier of :guess. The loop-

suppliers of all the parameters is nil, indicating that the respective value-suppliers should

serve as loop-suppliers, as well. These initial conditions are depicted in Figure 3.7(a),

where superscripts are used to denote both value-suppliers and loop-suppliers. The first

superscript indicates the value-supplier of a parameter, the second its loop-supplier.

Setting the value-supplier of w to :user will trigger local propagation. This parameter

has only one constraint, C-1, and it is not perfectly constrained. Since C-1 has multiple

free parameters, it is instead added to the queue of possible loop constraints. At this point,

local propagation has been completed; loop propagation may be attempted. The first (and

only) constraint on the queue is C-1, the parameters of which are examined for selection of

a loop variable.

Constraint C-1 has two free parameters, x and y. Parameter x has three loop-eligible

constraints, while y has only two, so x is chosen as the loop variable. Its loop-supplier
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Figure 3.7: Loop propagation of constraints C-0 through C-4 (a) before loop propagation,
and (b) after selection of the loop variable.

is set to :assumed, as indicated by the superscript "A" in Figure 3.7(a), and this loop-

supplier assignment is recorded for later retraction. The next step is to examine each of z's

loop-eligible constraints, in turn, for possible propagation of loop-suppliers. The first such

constraint is C-0. Only one of its parameters, v, has a loop-supplier of :guess (actually, its

loop-supplier is nil, and its value-supplier is :guess), indicating that, for loop propagation

purposes, C-0 is perfectly constrained. Its in-loop? instance variable is set to t; note

that, at this point, if C-0 were also in the queue of candidate loop constraints, it would be

removed. Also, C-0 is made the loop-supplier of v, and a record is made of this assignment.

Since v no longer has any loop-eligible constraints, control is returned to parameter x, for

examination of its second loop-eligible constraint, C-1.

Constraint C-1 is also perfectly constrained according to the loop-suppliers of its at-

tributes, and therefore may be used in the loop to compute y. Its in-loop? instance variable

is set to t (constraint C-1 is not present in the constraint queue and therefore need not be

removed), constraint C-1 is made the loop-supplier of parameter y, and the loop-supplier

assignment is noted in the ongoing record. This is the stage of loop propagation depicted

in Figure 3.8(a).

At this point, the other constraints associated with y are examined. Parameter y has

only one remaining loop-eligible constraint, C-2. Examination of the loop-suppliers associ-
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Figure 3.8: Loop propagation of constraints C-0 through C-4 (a) after initial propagation
of the loop variable, and (b) after detection of the closing constraint.

ated with the parameters of C-2 reveals that it has one remaining free parameter, z. The

in-loop? instance variable of constraint C-2 is set to t, and C-2 becomes the loop-supplier

for parameter z, as indicated in Figure 3.8(b). A record is made of this fourth loop-supplier

assignment.

The constraints of parameter z are now examined, and it is observed that z now has

one loop-eligible constraint, C-3. Constraint C-3 has two parameters, z and z. The loop-

supplier of x is :assumed, and the loop-supplier of z is constraint C-2. For the purposes

of loop propagation, then, constraint C-3 has no free parameters. It may therefore be used

as the closing constraint for the current loop, and construction of the computational loop

structure may begin. The first pair added to the computational loop consists of the loop

variable and the closing constraint:

{(z, C-3)}

Constraint C-3 has one other parameter, and because its loop-supplier is a constraint,

another pair is added to the computational loop:

{(z, C-2), (x, C-3)}

Next, the parameters of C-2 are examined. Parameter z is already present in the computa-

tional loop, but y, whose loop-supplier is the constraint C-1, is not. A pair for y is therefore
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Figure 3.9: Loop propagation of constraints C-0 through C-4 (a) before all local propaga-
tion, and (b) after propagation of the closing constraint.

added:

{(y, C-1), (z, C-2), (x, C-3)}

The next step is to examine the parameters associated with the newly added constraint, C-

1. The loop-supplier of y is a constraint, but y is already present in the computational loop.

The loop-supplier of z is : assumed, and the loop-supplier of w is :user, so no computational

loop entries are required for these parameters. The computational loop has been completed.

Examination of this loop shows that each of the parameters in the loop is a parameter of

two of the loop's constraints. Thus, any of the loop's parameters is a good choice for loop

variable, including x. Furthermore, z is, indeed, a parameter of the closing constraint; the

computational loop need not be recomputed.

At this point, all loop-supplier assignments may be retracted, by consulting the record

which was kept during the loop propagation process. Note that constraint C-0, though it

served as a loop-supplier during propagation, was not included in the final computational

loop. This is why it was necessary to keep the record of loop-supplier assignments: not all

of the necessary retractions can be inferred from the final loop structure.

Next, the computational loop is passed on to the appropriate loop-solving algorithm

so that values for the loop's attributes may be computed. These computed values are

assigned to the attributes, without modifying their values suppliers, and the loop variable,
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Figure 3.10: Loop propagation of constraints C-0 through C-4 (a) after propagation of
constraints C-0 and C-1, and (b) after propagation of constraint C-2.

X, is assigned as the computed parameter of the closing constraint, C-3. Ignoring loop-

suppliers now, the current status of the constraint network is as depicted in Figure 3.9(a).

Next, constraint C-3 is assigned as the value-supplier for z, as indicated in Figure 3.9(b).

This value-supplier assignment causes both C-0 and C-1 to become perfectly constrained,
allowing the "computation" of both v and y. Recall that the appropriate value for y,
consistent with the parameters and constraints present in the computational loop, has

already been assigned to it. Only the value for v need actually be computed, since v was

not included in the computational loop. The appropriate value-suppliers are assigned to

these two parameters, as indicated in Figure 3.10(a). The computed-parameters instance

variables of the two constraints are also modified.

At this point, constraint C-2 is observed to be perfectly constrained, and may be used

to "compute" z. As depicted in Figure 3.10(b), constraint C-2 is assigned as the value

supplier for z. Similarly, z is made a computed parameter of constraint C-2. After this

step has been taken, none of the constraints associated with z are observed to be perfectly

constrained, and local propagation is concluded. In this manner, the effects of the solution

of the computational loop are propagated through the constraint network.
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3.4.3 Loop Computation

Overview

Two techniques are available for the solution of computational loops in Rubber Airplane:

simultaneous Newton-Raphson and a simple iteration loop method. Both methods are nu-

merical and iterative in nature. Initially, only the Newton-Raphson method was supported.

Unfortunately, problems with the stability of this method were encountered when attempt-

ing to solve particularly large computational loops (e.g., the weight loop of an aircraft

design, see Chapter 4). For this reason, a second method, based on construction of a simple

iteration loop, was added. The program chooses which method to apply based on the size

of the computational loop. Small loops are solved using the simultaneous Newton-Raphson

method, and large loops are solved as iteration loops. A threshold parameter is provided,
the value of which represents the maximum loop size for which the Newton-Raphson method

may be applied. Based upon experimentation with the various test cases (see Chapter 4),
this parameter has been set at five. Computational loops involving more than five pairs of

attributes and constraints are solved using iteration loops.

Simultaneous Newton-Raphson

The one-dimensional Newton-Raphson method, presented in Section 3.3.2, is a technique for

locating the zeroes of a function of one variable. The simultaneous Newton-Raphson method

allows for the determination of the points in a multi-dimensional space which represent the

zeroes of a set of simultaneous equations.

To describe the method, then, consider a vector of n parameters,

and a set of n simultaneous equations governing these parameters:

fi(x1, z2, . . ., Xn)

The simultaneous Newton-Raphson method provides a means for numerically computing a

value for X for which P(i) = 0, i.e., a set of values for the parameters X1, X2, ... , Xn for

which the values of all of the governing functions fi, f2,..., fn are simultaneously zero:
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f1(Xi, X2 , ... , X) = 0

f2 (z1,X 2 ,... , X) = 0

fn(zi,X2 ,... ,X) = 0

A numerical search through the n-dimensional parameter space, based on partial derivatives

and starting from the initial values of the parameters, is employed to find the desired

zero. Actually, since this is a numerical method, precise zeroes are not found. Rather, an

arbitrarily small convergence parameter, e must be chosen; the search will return values of

' for which the magnitude of F(:) is smaller than E, i.e., IF(F)I< E.

The steps in this search are as follows:

1. Select an initial set of values for the elements of E, referred to as E;, which are presumed

to be close in value to one of the zeroes of F(g).

2. Compute F(x;) and the Jacobian matrix of partial derivatives at X,

The partial derivative is typically calculated numerically, using a difference formula

such as

of 3  f,(z1,z2, .. .,X z+-t Az,... zxa) - f,(zi, x 2 , . .. , z - Azk, . ..

Ozk1 I 2Azk

where the values of all the parameters (except zk) are held constant at the values

specified by s;.

3. If |F(z;)| < E, then S; is the desired zero.

4. If IF(Z)|;> E, then a new value for i is chosen, 241 corresponding to the point where

the gradient vector at i, intersects the 1f(z) = (I plane, i.e.,

i+1 = i;-(J)1z)

Note that this step requires the inversion of the Jacobian matrix.

5. Return to Step 2, repeating the process, substituting zi+ for z,.
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As can be seen, this algorithm is basically an extension into multiple dimensions of the

original (single-dimension) Newton-Raphson method.

In applying this technique to the solution of computational loops, the parameter vector,

x, will be a vector whose elements are the values of the loop's attributes. The elements of the

function vector, F(i), are calculated by applying the LISP functions stored as the compiled-

normal-function instance variables of the loop's constraints to the attribute-values stored

in X or, for those parameters which are not being solved for in the loop, the corresponding

attributes' current values. The final result for F will yield the solution-values for the loop

attributes.

As mentioned above, however, stability problems were encountered when this technique

was applied to very large computational loops (e.g., a twenty-element loop for computing

the gross weight and various component weights of an aircraft design, see Chapter 4): the

algorithm would not converge. The reason for this instability is the need for good initial

conditions when employing the Newton-Raphson iteration. In the case of one-dimensional

Newton-Raphson, employed for numerical constraint inversion (see Section 3.3.2), a sim-

ple search strategy has been implemented to provide suitable initial conditions. Because

simultaneous Newton-Raphson involves multiple parameters, searching for appropriate ini-

tial conditions within the corresponding multi-dimensional space is too costly. Instead, the

current (pre-iteration) values of the loop's attributes are used to provide the initial values

for the parameter vector. While some of these values may provide a good starting point for

Newton-Raphson iteration, it is always possible that one or more of these attribute-values

will lead to divergence rather than convergence. As the size of the computational loop

grows, the likelihood of such poor initial conditions grows, since more attribute-values are

involved. To overcome these difficulties associated with large computational loops, then, a

second solution method has been adopted.

Iteration Loops

During the course of this research, it has been observed that, of the computational loops

encountered in the course of implementing the various test cases (see Chapter 4), all were

either very small, involving only two or three attribute/constraint pairs, or very large,

involving twenty or more such pairs. As indicated in the preceding sections, the simulta-

neous Newton-Raphson method is well-suited to solving the smaller computational loops,

computing the required solutions both quickly and reliably, but encounters difficulty when

presented with larger loops.

It has also been observed that these larger loops are typically based on calculation of

vehicle weight characteristics. Recalling the heuristic basis on which computational loops

are constructed (see Section 3.4.1), it was therefore deemed appropriate to solve such loops
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in the same manner as they are solved in conventional computer programs for vehicle design,

by constructing a simple iteration loop which assumes a value for the loop variable, applies

the loop's constraints to compute values for the remaining parameters, and then, based on

these computed values, uses the closing constraint to compute a new value for the loop

variable, repeating this process until convergence upon a stable value for the loop variable

is observed.

To implement this technique, it is a simple matter to iterate through the computational

loop structure, as it has been described in Section 3.4.2, applying the constraint from each

pair in the loop to compute a value for the corresponding attribute, holding the values of all

of its other parameters constant; recall that the final pair in the computational loop consists

of the loop variable and the closing constraint. Convergence is detected by monitoring the

value of the loop variable from one pass through the loop to the next. As is the case when

employing the simultaneous Newton-Raphson method, the current pre-iteration values of

the loop's attributes are used as the initial conditions for this analysis.

The only difficulty encountered in applying this approach has been a strong sensitivity

to the choice of closing constraint. As mentioned above, most of the large loops encountered

to date have involved calculation of vehicle and component weights. For such loops, it is

important to the stability of this method that the summation constraint which collects all

of the component weights in order to compute the total vehicle weight serve as the closing

constraint. In the loop-detection algorithm described in Section 3.4.2, however, there is no

guarantee that this will always be the case.

For example, consider a set of constraints for computing the component and gross

weights of an aircraft, where the component weights are computed as some fraction of

the gross weight. Assume that the vehicle gross weight has been chosen as the loop vari-

able, and that loop detection has proceeded to the point where two loop-eligible constraints

remain, one which computes the fuselage weight as a fraction of the gross weight, and an-

other which computes the gross weight as the sum of all component weights, including the

fuselage weight. One of these two constraints must be chosen for examination, if loop prop-

agation is to proceed. If the fuselage-weight constraint is chosen next, it may serve as the

loop supplier for the fuselage weight, based on the assumed value for the gross weight. The

summation constraint will then serve as the closing constraint, which is the desired outcome

from the point of view of iteration-loop stability. If the weight-summation constraint is cho-

sen next, however, it will serve as the loop-supplier for the fuselage weight parameter, again

based on the assumed value for the gross weight. It will be the fuselage-weight constraint,

which also has vehicle gross weight as one of its parameters, which is selected as the closing

constraint. When this path is taken, it has been observed that the iteration-loop technique

is less likely to converge.
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For this reason, a slight modification to the loop detection algorithm is required. Note

that, in Section 3.4.2, no criterion for ordering the propagation of loop-eligible constraints

is indicated: loop-eligible constraints are propagated as soon as they are observed to be

perfectly constrained. Unfortunately, this approach enables non-optimal choices for loop

closing constraints to be made, as described above. To overcome this problem, it is neces-

sary to introduce a means for ranking loop-eligible constraints prior to propagation. One

approach, the approach employed in Rubber Airplane, is to maintain an ordered queue of

all perfectly constrained loop-eligible constraints; loop propagation then proceeds by prop-

agating the first element of the queue, rather than propagating such constraints as soon

as they are encountered while examining the forward-constraints and reverse-constraints

instance variables of the corresponding attribute instances.

A criterion for ordering these constraints is also required. Recall that the immediate

objective of this ordering is to ensure that, for weight-like loops, the summation constraint be

selected as the closing constraint. It is therefore desirable that propagation of this constraint

be delayed. The overall objective, however, is improving the convergence characteristics

of iteration loops. In the example presented above, a choice had to be made between

propagating the fuselage-weight constraint and the weight-summation constraint. Note that

the fuselage-weight constraint basically relates only two of the loop's parameters, the weight

of the fuselage and the net weight of the entire vehicle. The summation constraint, however,

relates not only these two parameters, but all of the other component-weight parameters, a

majority of which are also likely to be parameters of the computational loop, as well. The

summation constraint is therefore much more dependent upon the calculations performed by

the constraints which precede it in the iteration loop (i.e., those which compute the various

component weights), than is the fuselage-weight constraint. It is this lack of dependency

of the fuselage-weight constraint which makes it a poor choice for closing constraint, and

inhibits iteration-loop convergence.

Thus, although the argument has been presented in terms of a specific example, there is

an underlying general principle at work here, which suggests that, for stability, the choice

of closing constraint for an iteration loop should be based upon constraint interdependen-

cies. Fortunately, the implementations of local and loop-based propagation employed here

provide a ready means for measuring such interdependences. Note that loop propagation is

based upon loop-suppliers, which in turn get their initial values from the attributes' value-

suppliers. Thus, while loop propagation is taking place, these value-suppliers are always

available as a means for gauging the progress of loop propagation. Specifically, recall that

a constraint becomes ready for loop propagation when the loop-suppliers of its parameters

indicate that the constraint is perfectly constrained. If, however, this constraint is observed

to have a large number of free parameters according to the value-suppliers of its attributes,
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then it must be the case that the constraint is highly dependent upon the loop propaga-

tions which have already been performed. If the constraint has a relatively small number

of free parameters-again, based upon value-suppliers rather than loop-suppliers-then the

constraint is correspondingly less dependent upon previous loop propagations.

This observation suggests, then, that an appropriate criterion for ordering constraints for

loop propagation is to rank the constraints whose parameters' loop-suppliers indicate that

they are perfectly constrained according to the constraint's number of free parameters, as

indicated by those parameters' value-suppliers. Constraints with fewer such free parameters

should be located earlier in the queue; those with more-such as the weight-summation

constraint in the example above-are placed later in the queue, thereby delaying their

propagation. One means for implementing this ranking is by maintaining an ordered queue

of the constraints which are determined to be ready for loop propagation. Thus, Step 6 of

the original loop propagation algorithm (see Section 3.4.2) is subdivided into three separate

steps, as follows:

6.A. Examine all of invertible equality constraints associated with this attribute (i.e., the

attribute which has just been assigned a new loop-supplier). For each such constraint,

based upon the loop-suppliers associated with its parameters,

e If the constraint is loop-eligible but has no free parameters, proceed to Step 9.

* If the constraint is loop-eligible and has exactly one free parameter, then add

this constraint to queue of constraints ready for loop propagation.

6.B. Sort the queue of loop-ready constraints according to the number of free parame-

ters associated with each constraint, based on value-suppliers. Those with fewer free

parameters are ranked ahead of those with larger numbers of free parameters. 7

6.C. Remove the first constraint from the queue, and perform the following sequence of

operations:

1. Set the in-loop? instance variable of the constraint to t.8

2. Set the loop supplier of the attribute which is the constraint's free parameter

to be the constraint. Add the attribute and the constraint to the record of

loop-supplier assignments.

7 Actually, it is not necessary to repeatedly re-sort this queue. Since the count of a constraint's free

parameters-based on value-suppliers-does not change during loop propagation, and because only one

constraint is added to the queue at a time, it is most efficient to perform sorting as constraints are enqueued.

In this way, it is only necessary to perform enough comparisons to determine the location in the queue at

which the newly added constraint should be inserted.
"Recall that, as indicated in Section 3.4.2, at this point, any occurrence of this constraint in the queue

of candidate loop constraints may be removed.
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3. Return to Step 6.A, applying it to the attribute identified as the constraint's free

parameter.

By modifying the loop propagation algorithm in this manner, improved performance of the

iteration loop method is observed, due to the corresponding changes in structure of the

resulting computational loops.

In closing, note that while it is not a particularly efficient approach, the use of itera-

tion loops has proved a reliable method for solving the types of large computational loops

encountered in the test problems implemented thus far. When combined with the more ver-

satile simultaneous Newton-Raphson method, these two techniques have proven adequate

for the solution of simultaneous non-linear equations in aerospace engineering conceptual

design. The success of the approaches described here for both detecting and solving such

systems provides good evidence for the general validity of the computational-loop heuristic

in this problem domain.

3.5 Optimization

Before concluding this chapter on constraint propagation in Rubber Airplane, brief men-

tion should also be made of some experiments performed at Lockheed-Georgia, aimed at

integrating optimization techniques with Rubber Airplane. Using the Fortran compiler

available on the Symbolics Lisp Machine, a Fortran-based numerical optimization program,

OPT [12], was made accessible from within the Rubber Airplane program. Specifically, the

optimization routines were used to augment the local propagation mechanisms presented

in Section 3.2. (At the time, the loop detection and solution algorithms had not yet been

implemented.)

The general problem of mathematical optimization may be described as follows. Con-

sider a set of k parameters, X1, X2,... ,X, represented by the vector iF. The goal of opti-

mization is to maximize the scalar function, f(E), subject to the constraints,

G (E) = 0

H (x) > 0

where d(i) is a vector of m functions of the k parameters, representing a set of m equality

constraints which the solution must satisfy. Similarly, H(i) is a vector of n functions of

these parameters, representing a set of n inequality constraints which the solution must sat-

isfy. The OPT program uses numerical, gradient-based techniques for solving optimization

problems of this form.

In integrating Rubber Airplane with OPT, local propagation was employed to compute

values for a subset of those attributes of a given design whose values had not been assigned
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by the user. At the user's request, the optimization program could then be called upon to

solve for the remaining attributes. Note that, typically, local propagation is not adequate for

solving all of the constraints associated with a design. In an optimization program, there are

normally multiple degrees of freedom in the constraint network; under such circumstances,

local propagation cannot be used to solve all of the constraints, because the system is

necessarily underconstrained. The optimization routines may be used both for the solution

of simultaneous equations within the constraint network (for which local propagation is

inadequate) and as a means for utilizing the inequality constraints and the maximization

function (i.e., f(s)) to solve systems which are underconstrained.

Within Rubber Airplane, the maximization function is specified by selecting a single

scalar attribute whose value is to be maximized or minimized. Because Rubber Airplane

permits the interactive definition of new attributes and constraints, if the user actually

wishes to optimize some function of multiple attributes, it is a simple matter to define a

problem-specific constraint representing this function, as well as a corresponding attribute

to serve as this constraint's output parameter. Note that minimization is simulated by

maximization of the attribute's opposite (i.e., to minimize z, maximize -z).

Once such an attribute has been selected, and any user-supplied attribute values have

been assigned, the OPT program may be called upon to apply those constraints not used

during local propagation to solve for any remaining attributes with a value-supplier of

:guess. The parameter vector X will represent the values of these attributes. The vector

of equality constraints, $(x), is constructed from those equality constraints which have not

been used during local propagation (i.e., those constraints for which the values of their

computed-parameters instance variables is the empty list). Because equality constraints are

expected to be of the form g;(x) = 0, whenever evaluation of one of these constraints is

required by the optimization program, the LISP function stored in the constraint's compiled-

normal-function instance variable is applied. Similarly, the vector of inequality constraints,

1(i), consists of all of the inequality constraints associated with the current design which

have at least one of their parameters represented in F. Inequality constraints are expected to

be of the form h;(i) ;> 0; like the compiled-normal-function instance variable associated with

equality constraints, inequality constraints are provided with a similar instance variable for

storing a compiled LISP function which evaluates the inequality constraint in the required

form. Once the analysis has been completed, the parameter values computed for i by

the optimization program therefore represent those values for the corresponding attributes

which result in an optimal value for the chosen maximization or minimization attribute, yet

still satisfy all of the relevant equality and inequality constraints.

Note that it was for their utility in bounding the optimization search space that in-

equality constraints were first added to Rubber Airplane. In the current implementation
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of Rubber Airplane, which does not support optimization, inequality constraints are used

only to monitor constraint propagation: the user is automatically notified of any violations

of a design's inequality constraints.

While time was not available for full-scale testing of these optimization features, these ef-

forts have nevertheless demonstrated the feasibility of incorporating numerical optimization

techniques into a symbolically-oriented design tool, such as Rubber Airplane. Considering

the potential advantages resulting from the ability to incorporate optimization into concep-

tual and preliminary design analyses, further research is recommended to more thoroughly

investigate the utility of such a hybrid approach.
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Chapter 4

Test Cases

4.1 Motivation

In the preceding chapters, the description of a general-purpose system for implementing

and solving problems in engineering conceptual design has been presented. To verify the

utility of this approach, however, its application to realistic design tasks is required. For this

reason, three sample problems have been implemented using the Rubber Airplane prototype

design tool. The three vehicle designs which have been examined are:

" a long-endurance, manned surveillance aircraft;

" a subsonic commercial transport aircraft; and

" a small-payload launch vehicle.

Note that the goal of this exercise was to demonstrate the ability of component-modeling

and constraint propagation to support the types of analyses required for such design prob-

lems. Time did not permit the development of complete analytical models for any of the

three test cases; effort was therefore focused upon the implementation of representative

analysis modules, as a proof-of-concept study. As such, the actual results of the underlying

design efforts are relatively unimportant; it is the process whereby these results were made

attainable that is of primary relevance.

In the sections which follow, the means by which the appropriate design-specific analyses

were implemented will be discussed. The advantages and disadvantages associated with the

use of constraint-based component-modeling in representing the required design knowledge

will also be presented. In this manner, the practicality of this approach in supporting

realistic conceptual design tasks may be evaluated.
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Figure 4.1: Screen image depicting the completed design for the surveillance aircraft test
case.

4.2 Long-Endurance, Manned Surveillance Aircraft

4.2.1 Specifications

The first test case calls for the design of a manned, radome-equipped surveillance aircraft.

The vehicle is intended to serve as a high-altitude observation platform and communications-

relay station, and is required to remain on station for periods of up to 24 hours, without

refueling. The dimensions and weight of the radome are fixed, and a crew of five is specified.

Furthermore, because the vehicle is intended for use in maritime surveillance, a cruising

range of 1000 nautical miles from base to loitering station (and back) must be supported.

139



Component Class Description

basic-fuselage Fuselage geometry for a transport-type aircraft.

basic-wing Airfoil geometry for a swept, tapered wing, for which different
cross-sections may be specified at the root and tip.

basic-vertical Airfoil geometry for a vertical stabilizer.

basic-horizontal Airfoil geometry for a horizontal stabilizer.

radome Geometry for an external, fuselage-mounted radome.

turboprop-pair Geometry for a pair of wing-mounted turboprop engines.

fuel-system Component representation of fuel and fuel tanks

forward-landing-gear A simple forward landing gear (tire only).

rear-landing-gear A pair of rear landing gear tires.

controls Component representation for aircraft controls.

systems Component representation for aircraft support systems.

air-conditioning Component representation for air-conditioning system.

avionics Component representation for aircraft control avionics.

radar-equipment Component representation for radome support systems.

crew Component representation of aircraft crew.

simple-payload Component representation for crew support systems.

Table 4.1: Instantiated component-classes for the surveillance aircraft test case.

4.2.2 Problem Representation

In implementing this test case, effort was focused on both mission performance and aero-

dynamics. Propulsion data was entered based on a paper study of the design requirements,

and structural analysis was ignored. A total of 16 components, 10 design states, and 39 links

were employed in representing the implemented analyses, with a total of 530 attributes and

377 constraints.1 A screen image displaying the geometry of the completed design appears

in Figure 4.1.

The component-classes used in representing the vehicle are listed in Table 4.1, along with

descriptions of their various functions. As is evident from this table, there are comi'onents

representing each of the major physical components (fuselage, wings, radome, etc.), as well

as a number of components for representing various subsystems (avionics, controls, etc.).

Note that these latter components do not have any geometry associated with them, since

they actually represent groupings of multiple components; they do, however, enable the

'Note that, throughout this chapter, statistics regarding attributes and constraints will combine all the
state-instances of a particular state-dependent attribute or constraint together, such that they count as but
a single attribute or constraint of the owning design entity.
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Component Class Superclasses Attributes Constraints
basic-fuselage 4 25 14

basic-wing 11 51 28

basic-vertical 11 46 26

basic-horizontal 11 51 28
radome 5 18 10

turboprop-pair 2 23 8
fuel-system 2 19 11

f orward-landing-gear 4 17 9
rear-landing-gear 4 18 9

controls 2 11 7
systems 2 17 10

air-conditioning 2 17 10
avionics 2 17 10

radar-equipment 2 17 10

crew 3 18 10
simple-payload 2 17 10

Total: 382 210

Table 4.2: Class statistics for the instantiated component-classes of
test case.

the surveillance aircraft

use of statistically-derived equations for the subsystem weights to be incorporated into the

design.

Various statistics associated with all of the component-classes instantiated for this design

are presented in Table 4.2. The number of attributes and constraints for each component-

class gives some indication of the level of detail associated with the corresponding com-

ponent. This table also lists the number of superclasses which are associated with each

of the instantiated component-classes; these numbers indicate the degree to which the use

of object-oriented programming techniques aided in the implementation of the component-

class. Classes with a large number of superclasses were able to take advantage of inheritance

and specialization to simplify component representation by means of decomposition: each

superclass implements a different aspect-e.g., position, dimensions, gross properties-of

the component. (Recall, however, that each instantiable component-class includes at least

one superclass, the base design-component class, which itself specifies 11 attributes and 4

constraints.) Table 4.3 presents some of the details of this decomposition of component-class

functionality, by listing and describing those component-classes which most often serve as

superclasses of the instantiated component-classes.

As indicated above, ten design states have been employed to represent the mission
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Component Class Subclasses Description

design-component 21 Base component-class.

basic-drag-mixin 13 Provides a general-purpose drag at-
tribute.

point-mass-component 12 Equates component reference and
center-of-gravity positions.

basic-lif t-mixin 9 Provides a general-purpose lift at-
tribute.

basic-aerodynamics-mixin 8 Combines basic-lif t-mixin and
basic-drag-mixin.

basic-section 7 Provides general airfoil cross-section
attributes.

NACA-section-pair 6 Provides attributes to rep-
resent NACA-airfoil cross sections at
both the root and tip of an airfoil.

airfoil-planform 6 Provides airfoil planform parameters.

induced-drag-mixin 6 Breaks down component drag into in-
duced drag and profile drag compo-
nents.

basic-airfoil 5 Combines NACA-section-pair and
airfoil-planf orm.

horizontal-planform-mixin 3 Represents a horizontally-oriented air-
foil planform.

vertical-planform-mixin 2 Represents a vertically-oriented airfoil
planform.

basic-horizontal-airfoil 2 Combines basic-airfoil and
horizontal-planorm-mixin.

basic-landing-gear 2 Provides general landing-gear at-
tributes.

Table 4.3: Most commonly occurring component-classes among the instantiated compo-

nent-classes of the surveillance aircraft test case.
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Design State Name Description

"Takeoff" End of takeoff run.
"Intermediate Climb" Intermediate flight condition during climb to cruising alti-

tude.
"Cruise Out" Beginning of cruise out to station.

"Loiter" Beginning of on-station loiter.

"Post-Loiter Climb" Start of post-loiter climb to return-trip cruising altitude.

"Cruise In" Beginning of cruise back to base.

"Begin Descent" Start of descent for landing after cruise back to base.

"Begin Circle" Start of loiter at base in preparation for landing.

"End Circle" Beginning of final approach for landing.

"Landing" Flight condition for vehicle landing.

Table 4.4: Instances of class design-state for the surveillance aircraft test case.

profile for this aircraft. A listing of these states appears in Table 4.4. In accordance with

the observations presented in Section 2.4.4 of Chapter 2, all the state-instances listed in

this table are instances of the base state-class, design-state.

The majority of the analyses associated with this design task are implemented via design

links. A listing of the relevant link-classes, with brief descriptions of their intended roles,

appears in Tables 4.5 and 4.6. The statistics for these classes are presented in Table 4.7; the

significance of the first three columns of numbers is the same as for the data presented in

Table 4.2 for the test case's component-classes. Note that, for the most part, the link-classes

which have been employed have relatively fewer superclasses than the component-classes

listed in Table 4.2; this is because the analyses implemented as design links vary widely

in nature. Because they rely heavily on class-specific attributes and constraints, they are

not amenable to the use of shared superclasses; those few link-classes which do appear as

shared superclasses are listed in Table 4.8. On the other hand, however, the final column

in Table 4.7 indicates that for a number of these link-classes multiple instances have been

employed. Such occurrences suggest that, in these cases, a second means for exploiting

object-oriented programming techniques is active, insofar as the corresponding analyses

were defined only once, but applied several times.

4.2.3 Design Analysis

The primary analyses implemented for this test case fall into four basic categories: geometry,

component weights, mission performance, and aerodynamics. The general characteristics

of each of these analyses are discussed below.
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Link Class Description

flight-conditions State-dependent description of the vehicle flight condi-
tions.

gross-properties Net weight, thrust, and aerodynamic forces on the ve-
hicle.

wing-attachment Sets the y- and z-coordinates of the wing based upon
corresponding fuselage dimensions and coordinates.

tail-attachment Attaches the horizontal and vertical stabilizers to the
rear of the fuselage.

turboprop-wing-attachment Attaches a symmetric pair of engines to the wings ac-
counting for airfoil geometry and propeller clearance.

cockpit-attachment Positions generic objects with respect to the cockpit
portion of the fuselage.

cabin-attachment Positions generic objects with respect to the cabin por-
tion of the fuselage.

takeoff-distance Computes the required takeoff distance for the vehicle.

landing-distance Computes the required landing distance for the vehicle.

fuselage-weight-model Computes the weight of the fuselage, based on dimen-
sions and net vehicle weight.

wing-weight-model Computes the weight of the wing, based on dimensions
and net vehicle weight.

fuel-tank-weight-model Computes the weight of the fuel tanks, based on total
fuel weight.

controls-weight-model Computes the weight of the aircraft control systems,
based on net vehicle weight.

systems-weight-model Computes the weight of the support systems, based on
net vehicle weight.

forward-gear-weight-model Computes the weight of the forward landing gear, based
on net vehicle weight.

rear-gear-weight-model Computes the weight of the rear landing gear, based
on net vehicle weight.

person-weight-model Computes the weight of a group of persons.

takeoff-fuel Computes the fuel required for idle and takeoff.

climb-fuel Computes the fuel required for a single climb segment.

propeller-cruise-fuel Computes the fuel required for a single cruise segment

propeller-loiter-fuel Computes the fuel required for a single loiter segment

propeller-circle-fuel Computes the fuel required for a single circling segment

glide-fuel Equates the vehicle weights for two design states.

total-fuel-weight Sums the fuel weights required for each flight segment.

Table 4.5: Instantiated link-classes for the surveillance aircraft test case.
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Link Class Description

two-airtoil-vortex-lattice Computes the lift and induced drag for a pair of airfoils.

wing-profile-drag Computes wing profile drag, based on wetted area.

vertical-profile-drag Computes vertical stabilizer profile drag, based on wet-
ted area.

horizontal-profile-drag Computes horizontal stabilizer profile drag, based on
wetted area.

fuselage-profile-drag Computes fuselage profile drag, based on wetted area.

radome-profile-drag Computes radome profile drag, based on wetted area.

forward-gear-profile-drag Computes profile drag for the forward landing gear,
based on wetted area.

rear-gear-profile-drag Computes profile drag for the rear landing gear, based
on wetted area.

Table 4.6: Instantiated link-classes for the surveillance aircraft test case (continued).

Component Geometry

Parameters describing component geometries, such as position and dimensions, are as-

sociated with the component-classes themselves. Constraints which relate the geometric

parameters of a single component, such as the definitions of aspect ratio and taper ratio

for an airfoil, are also associated with the corresponding component-classes. Only param-

eters which represent relative geometric properties, such as the positions of two objects

which are attached to one other, need be implemented using design links. Various exam-

ples of attachment link-classes appear in Table 4.5. As can be seen in Table 4.7, such

link-classes, because they are component-specific, rarely have multiple superclasses. The

one exception to this observation in Table 4.7 is the tail-attachment link-class, which is

listed as having three superclasses; class tail-attachment is actually a combination of two

separate attachment link-classes, one for attaching the horizontal stabilizer to the fuselage,

and another for attaching the vertical stabilizer. (The base link-class, design-link, is the

third superclass for class tail-attachment.) Note that, as indicated in Table 4.8, mul-

tiple instances of the cabin-attachment and cockpit-attachment link-classes have been

employed to position various non-geometric components (as represented by, for example,

the controls, avionics, and crew component-classes) at appropriate locations within the

vehicle's fuselage.

Recall that the base component-class, design-component, also provides attributes for

representing the coordinates of a component's center of gravity. Most of the component-

classes listed in Table 4.1 include constraints for computing the center-of-gravity location. A
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Link Class Superclasses Attributes Constraints Instances

flight-conditions 2 11 6 1
gross-properties 1 14 13 1

wing-attachment 1 1 2 1

tail-attachment 3 0 6 1
turboprop-wing-attachment 1 1 3 1

cockpit-attachment 1 0 3 3

cabin-attachment 1 0 3 3
takeoff-distance 1 14 10 1

landing-distance 1 12 6 1

fuselage-weight-model 1 0 1 1

wing-weight-model 1 1 2 1

fuel-tank-weight-model 1 0 1 1

controls-weight-model 1 0 1 1
systems-weight-model 1 0 1 1

forward-gear-weight-model 1 0 1 1

rear-gear-weight-model 1 0 1 1

person-weight-model 1 1 1 1

takeoff-fuel 2 2 2 1

climb-fuel 3 4 4 3
propeller-cruise-fuel 3 3 3 2
propeller-loiter-fuel 3 2 2 1
propeller-circle-fuel 3 2 2 1

glide-fuel 1 0 1 1

total-fuel-weight 1 3 3 1
two-airfoil-vortex-lattice 1 27 20 1

wing-profile-drag 3 5 6 1
vertical-profile-drag 3 5 6 1

horizontal-profile-drag 3 5 6 1

fuselage-profile-drag 3 6 7 1

radome-profile-drag 3 6 7 1

forward-gear-profile-drag 3 6 7 1
rear-gear-profile-drag 3 6 7 1

Total: . 148 167 39

Table 4.7: Class statistics for the instantiated
case.

link-classes of the surveillance aircraft test
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Table 4.8: Most commonly occurring link-classes
surveillance aircraft test case.

among the instantiated link-classes of the

number of component-classes incorporate the point-mass-component component-class as a

superclass; the constraints of this class serve to equate the coordinates of a component's ref-

erence position (as indicated by its position-x, position-y, and position-z attributes)

with those of its center of gravity (represented by the cg-x, cg-y, and cg-z attributes).

This superclass is useful for both the non-geometric component-classes (as listed above), as

well as for certain components which are represented as simple bodies of revolution (e.g.,

the landing gear and radome).

Component Weights

The weights of the various vehicle components are, for the most part, computed by means

of statistically-derived equations based on component dimensions and total vehicle weight.

An example link-class implementing such a model for the fuselage is presented in Figure 4.2.

The weights of certain components-most notably the engines and the radome-have been

input as constants. These component-weight constraints, in combination with the mission-

performance constraints responsible for calculating net fuel weight, form the basis of the

primary iteration loop for this test-case design, the closing constraint of which is a collector

constraint for computing the vehicle's gross takeoff weight.
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Link Class Subclasses Description

design-link 32 Base link-class.
basic-profile-drag-mixin 13 General-purpose induced drag

model, based on wetted area
and skin-friction coefficient.

fuel-consumption-mixin 6 Provides a general-purpose
fuel-weight attribute.

transitional-fuel-consumption-mixin 4 Represents fuel weight as the
change in vehicle weight be-
tween two design states.

body-profile-drag 4 Specializes
basic-prof ile-drag-mixin
for non-lifting bodies.

airfoil-profile-drag 3 Specializes
basic-profile-drag-mixin
for airfoils.



(deflink fuselage-weight-model ((fuselage :class basic-fuselage)
(vehicle :class gross-properties))

()
(design-link)

(:category weights)
(:documentation "Empirical weight model for the fuselage of a

transport-type aircraft, based on fuselage dimensions, vehicle gross
weight, and vehicle load factor.")

(defconstraint (fuselage-weight-model "Fuselage Weight")
(weightefuselage "lbf")
((gross-weight~vehicle "") (load-factorevehicle "")

(total-lengthefuselage "ft") (heighttfuselage "ft")
(widthtfuselage "ft"))

"Empirical weight model for aircraft fuselage weight."
(let ((max-diameter (max heighttfuselage widthtfuselage)))
(* 0.8 (expt total-lengthtfuselage 1.5)

(expt max-diameter .25)
(expt (* load-factorevehicle gross-weighttvehicle) 0.15))))

Figure 4.2: LISP definition for a link-class which implements an empirical component-weight
model, fuselage-weight-model.

Figure 4.3: Mission profile for the surveillance aircraft test case.
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Mission Performance

As indicated in Table 4.4, ten design states have been employed to represent the various

flight segments which comprise the aircraft's mission profile, which is depicted graphically

in Figure 4.3. These states represent specific design points within the mission profile, as

described in Table 4.4. An instance of the flight-condition link-class provides state-

dependent attributes for the atmospheric properties, as well as the vehicle's net weight,

angle of attack, and flight speed.

Two aspects of mission performance analysis have been implemented: fuel consumption

and runway performance. Various range- and endurance-based equations are employed to

calculate the fuel requirements for the cruising, loitering, and circling flight segments. The

takeoff and landing analyses are based on runway type, maximum lift coefficient for the

vehicle, and-for the takeoff analysis-engine static thrust.

The fuel consumption equations require values for such parameters as engine specific

fuel consumption, net vehicle lift-to-drag ratio, and vehicle gross weight for each flight leg.

Noting from Figure 4.3 that there is a total of ten flight legs, ten independent values for

each of these parameters are required. Prior to the introduction of design states, this could

only be done by either:

e associating ten different attributes for each parameter with each relevant component-

and link-class (e.g., have ten different lift-to-drag attributes for each airfoil com-

ponent, so that ten different vehicle lift-to-drag ratios may be computed); or

e defining a design-link which incorporates all of the parameters required for the entire

mission profile.

In the first case, each of the attributes added to the component-class must have a different

name. Furthermore, if one wished to use a similar component description for a design

problem whose mission profile required a different number of flight legs, implementation of

a completely new component-class would be necessary. Clearly, such an approach does not

lend itself to modular code development: the resulting component-classes are not reusable.

The second approach is somewhat more satisfactory, insofar as it does not lead to design-

specific component-classes. Instead, it requires a design-specific link-class, which imple-

ments a particular mission profile. In addition, it will be the case that various component-

specific attributes-for example, engine specific fuel consumption-must be implemented

as link-class attributes, rather than component-class attributes, since in this case it is the

link-class which is responsible for creating the parameters required for each flight leg. Fur-

thermore, it will often be the case that such all-encompassing mission-profile link-classes

must explicitly incorporate multiple versions of the same analyses. In this test case, for

instance, the same set of calculations must be performed for the "loiter" flight leg as for
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the "circle" flight leg; fuel calculations for the three climb phases, and for the two cruise

conditions will also be similar.

The means for avoiding such design-specific component- and link-classes is through the

use of design states; indeed, it was during the development of the mission profile analyses

for this test case that the need for design states and state-dependent attributes and con-

straints was first recognized. By defining the various flight-leg parameters (e.g., specific

fuel consumption, flight speed, vehicle lift-to-drag ratio) as state-dependent attributes, an

infinite variety of mission profiles may be supported. Furthermore, a separate link may

be used for each flight leg; multiple instances of the same link-class may be employed for

similar flight legs (e.g., three instances of the climb-fuel link-class may be applied for

analyzing the three climb phases of the mission profile. Thus, the various fuel calculations

are implemented by providing each of the leg-specific link-classes with one linkage for the

design-state which begins the flight leg, and another linkage for the design-state which

completes the flight leg; an example of such a link-class-implementing the Breguet range

equation-appears in Figure 4.4. The fuel requirements are then totalled by means of a

collector constraint defined by the total-fuel-weight link-class.

Aerodynamics

In view of the current practice of performing more complicated analyses earlier in the

engineering design cycle, it was decided that some attempt at integrating more rigorous

analytical methods into a Rubber Airplane test case should be made. Whereas very simple

relationships have been employed for estimating vehicle weight and performance, a more de-

manding technique for computing airfoil aerodynamics has been implemented. Specifically,

the vortex-lattice method [22,27] is used for computing airfoil lift and induced drag.2

The vortex-lattice method is based upon distributing discrete horseshoe vortices over

the surface of one or more airfoils. These airfoils are subdivided into quadrilateral panels;

the spanwise vorticity of each panel is represented by a discrete vortex along its quarter-

chord line. Trailing vorticity is accounted for by extending both ends of each vortex as

semi-infinite vortex filaments parallel to the free stream velocity. The result is a system

of horseshoe vortices, one for each panel. The strengths of these vortices may then be

computed by imposing flow tangency at the midpoint of the three-quarter chord of each

panel. Once the vortex strengths have been computed, aerodynamic forces are calculated

by use of the Kutta-Joukowski theorem, which relates force to the cross-product of the

local velocity vector and the circulation vector. The force is computed at the midpoint of

the quarter chord of each panel; note that local velocity will be a combination of the free

2Note that airfoil profile drag-as is the case for the profile drag of all exposed components-is computed
by means of empirical expressions based on Reynolds number, skin-friction coefficient, and wetted area.
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(deflink cruise-fuel ((engines :class basic-thrust-mixin)

(vehicle :class gross-properties)

(flight-conditions :class flight-conditions)

(before :class design-state)

(after :class design-state))

((fuel-weight

:documentation "Fuel expended during cruise."

:low-value 50 :order-of-magnitude 1000 :high-value 20000

:dimensions "f" :units "lbf")
(range

:documentation "Range covered during cruise."

:low-value 100 :order-of-magnitude 1000 :high-value 10000

:dimensions "1" :units "NM")

(endurance :documentation "Time spent during cruise."

:low-value 0.5 :order-of-magnitude 5 :high-value 24

:dimensions gt" :units "hr"))
(design-link)

(:category mission-profile)
(:documentation "Computes fuel consumed during cruise using the

Breguet range equation."))

(defconstraint (cruise-fuel "Cruise Range") (range "m")

((speedeflight-conditionstbefore "in s-i")
(sfceenginesebefore "s-i")

(lift-to-dragevehicletbefore "")

(vehicle-weightevehicle@before "N")
(vehicle-weightevehicleeafter "N"))

"The Breguet range equation."
(* (/ speedeflight-conditionsebefore sfceengines@before)

lift-to-dragtvehicletbefore
(log vehicle-weightevehicleebefore vehicle-weightevehicleafter)))

(defconstraint (cruise-fuel "Endurance") (endurance "s")

((range "im") (speedeflight-conditionstbefore "Im s-1"))

"Computes endurance from range and flight speed."

(/ range speedeflight-conditionstbefore))

(defconstraint (cruise-fuel "Fuel Weight") (fuel-weight "N")

((vehicle-weightevehicleebefore "N")

(vehicle-weightevehicletafter "N"))

"Computes fuel weight as the change in vehicle weight."

(- vehicle-weightevehicleebefore vehicle-weighttvehicletafter))

Figure 4.4: LISP definition for a link-class which implements the Breguet range equation
to compute cruise fuel consumption, cruise-fuel.
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stream velocity vector and the downwash induced by the horseshoe vortices of all the other

panels. The forces on all panels are summed to determine the net aerodynamic forces. The

component of force normal to the free stream represents lift; the tangential component yields

the induced drag. The panel forces may also be used to compute aerodynamic moments.

The thin-airfoil assumption is applied when using the vortex-lattice method: the airfoils

are assumed to have zero thickness, but camber is accounted for when imposing the tangency

condition. Thus, the mean-line distributions for the airfoils are used to compute the required

normal vectors, but tangency is actually enforced on the planes defined by the leading and

trailing edges of the airfoils.

The actual execution of the vortex-lattice method can thus be divided into the following

sequence of operations:

1. For each airfoil, subdivide it into panels. For each panel, compute the position of the

endpoints of the horseshoe vortex (i.e., at the two ends of the panel's quarter-chord

line), and the normal vector at the midpoint of the panel's three-quarter chord.

2. Given the set of airfoils whose aerodynamic forces are to be computed in tandem, for

each panel of those airfoils, compute the downwash contributions due to the horseshoe

vortices of all panels, at both

" the midpoint of the panel's three-quarter chord, and

" the midpoint of the panel's quarter chord.

The first set of downwash velocities is needed to solve for the vortex strengths based

on flow tangency. The second set is used to solve for the aerodynamics forces, once the

vortex strengths are known. At this stage, unit strength is assumed for all vortices

when performing these computations; because induced velocity is linear in vortex

strength, it is possible to set up a system of linear equations for solving for the actual

vortex strengths, based on these unit-strength downwash results. Note also that, if

compressibility effects are to be considered, the flight Mach number is required to

accurately compute the downwash velocities.

3. Using the first set of induced velocities, construct a square matrix, whose dimensions

are determined by the total number of panels. Each element, w;,, of this matrix

represents the normal component of the downwash on panel i due to the horseshoe

vortex associated with panel j, as measured at the midpoint of the three-quarter chord

of panel i. Thus, w, may be defined as follows:

w;,1 = n~,.w,
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where n;,., is the normal at the three-quarter chord of panel i, and ti'j is the down-

wash induced at this point due to the horseshoe vortex on panel j. 3

4. Given an angle of attack and a free-stream speed, this matrix is used to set up a system

of linear equations representing the satisfaction of the flow-tangency conditions at the

panel three-quarter chords. By factoring the matrix and solving the system based on

the free-stream normal components, the required vortex strengths may be computed.

5. Based on free-stream density and the vortex strengths, flow forces on each panel are

computed using the Kutta-Joukowski theorem,

F = pU x r'

where p is fluid density, r is the panel's circulation vector (whose magnitude is equal

to the strength of the horseshoe vortex associated with the panel), and U is the local

velocity vector for the panel. This velocity vector is computed by summing the free-

stream velocity vector with the downwash velocities induced by the vortices of all

other panels, as measured at the midpoint of the panel's quarter-chord.

6. Panel forces are summed to determine the net lift and induced drag for each airfoil.

Moments may also be computed, using the panel quarter-chord midpoints as the

assumed center of pressure for each panel.

Note that, by assuming unit free-stream speed and density, and by correcting for airfoil

reference area and chord, the vortex-lattice method may be used to directly compute lift,

induced drag, and moment coefficients, rather than actual aerodynamic forces and moments.

In implementing the vortex-lattice method for Rubber Airplane, it was this alternate ap-

proach which was taken.

Furthermore, note that Step 1 of this algorithm is dependent only on airfoil geometry.

Furthermore, Steps 2 and 3 depend only on free stream Mach number and selection of the

airfoils which are to be simultaneously solved. It is only upon reaching Step 4 that the

free stream conditions are required. In fact, the inversion of the downwash matrix can take

place prior to Step 4, since this operation is also independent of free stream conditions. This

means that substantial computational efficiency may be gained by maintaining a record of

previous computations. In cases where only the free stream conditions are modified, the

algorithm may proceed directly to Step 4, and even bypass the computationally-expensive

matrix inversion step, assuming that the results of previous calculations have been stored.

3 Note that the downwash vector may be computed by means of the Biot-Savart law, which may be suitably
modified-by means of the linear Prandtl-Glauert transformation-for the effects of subsonic compressibility.
See, for example, Reference [22].
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Even in the situation where one airfoil has been relocated with respect to the others, some

small savings in computational effort is possible.

The Rubber Airplane implementation of the vortex-lattice method has therefore taken

advantage of the re-usability of these computations. Various data structures for representing

the panels of a single airfoil, and for storing the downwash values for a collection of airfoils,

have been implemented. To illustrate the interface between Rubber Airplane and the LISP

code which implements the vortex-lattice method, a design link which performs the method

on a single airfoil is presented in Figures 4.5-4.7.

Figure 4.5 presents the definition of a link-class airfoil-vortex-lattice, which defines

attributes for the various aerodynamic coefficients to be computed for the airfoil. The

values for the spanwise and chordwise attributes are used when subdividing the airfoil

into panels. By representing these parameters as attributes of the link-class, they come

under the direct control of the user. Thus, in the early stages of a design, a relatively

small number of panels can be used, in order to reduce computation time while attempting

to size the airfoil. Later, the number of panels may be increased in order to improve the

accuracy of the results. Additionally, the Mach-threshold attribute is provided to give the

user control over when corrections for subsonic compressibility should be employed.

The actual constraint which performs the vortex-lattice analysis appears in Figure 4.6.

This constraint has multiple output parameters, since the vortex-lattice method enables

the simultaneous computation of three different aerodynamic coefficients. 4 Because it is

a multiple-output constraint, it is also necessarily a :one-way constraint. It may at first

appear that using an uninvertible constraint for computing airfoil aerodynamic forces is

somewhat restrictive. It is the case, however, inverse airfoil design is still a matter of active

research in aerodynamics. Furthermore, since most of the vortex-lattice results (induced

drag, moments, pressure distribution, etc.) are rarely specified or imposed by other con-

straints, it is not necessary to invert the vortex-lattice calculation in practice, even if it were

possible.

The input parameters for this constraint are the paneling parameters, the Mach number

threshold, the flight conditions (specifically, angle of attack and Mach number), and a set

of parameters which describe the airfoil's geometry: chord length, position of the leading

edge, camber distribution, and incidence angle for both the root and tip cross-sections.

In addition, various reference parameters, such as wing area and magnitude and position

of the mean aerodynamic chord, are required. Based on these values, the first step is to

convert the paneling parameters to integers: internally, the values of all scalar attributes

are stored as single-precision floating-point numbers. The Common Lisp floor function

'Actually, the method may used to calculate other aerodynamic coefficients, such as lift-curve slope, as
well. For brevity, discussion of the means by which these other coefficients may be computed has been
omitted.
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(deflink airfoil-vortex-lattice

((airfoil :class basic-horizontal-airfoil)

(flight-conditions :class flight-conditions))

((spanwise :documentation
"Number of spanwise intervals for dividing the airfoil."

:low-value 1 :order-of-magnitude 5 :high-value 10

:dimensions "")
(chordwise :documentation

"Number of chordwise intervals for dividing the airfoil."

:low-value 1 :order-of-magnitude 3 :high-value 6

:dimensions "")
(panels :documentation

"Total number of panels for the Vortex-Lattice analysis."

:low-value 1 :order-of-magnitude 15 :high-value 60

:dimensions "")

("Mach-threshold" :documentation
"Maximum Mach number for ignoring compressibility."

:low-value 0 :order-of-magnitude 0.5 :high-value 0.7

:dimensions "")

("CL" :documentation "Lift coefficient for the airfoil."

:state-dependent? t
:low-value 0.01 :order-of-magnitude 0.5 :high-value 1.0

:dimensions "")

("CDi" :documentation "Drag coefficient for the airfoil."

:state-dependent? t

:low-value 0.001 :order-of-magnitude 0.01

:high-value 0.2 :dimensions "")

("CM" :documentation "Moment coefficient for the airfoil."

:state-dependent? t

:low-value -1.0 :order-of-magnitude -0.001

:high-value 1.0 :dimensions "")
("L-over-Di" :documentation "Lift to Drag ratio."

:state-dependent? t

:low-value 1 :order-of-magnitude 10

:high-value 100 :dimensions ""))

(design-link)

(:category aerodynamics vortex-lattice)

(:documentation "Computes lift, drag, and moment coefficients

for an airfoil, using the Vortex-Lattice method."))

Figure 4.5: LISP definition for a link-class which implements the vortex-lattice method for
computing the aerodynamic coefficients of a single airfoil, airfoil-vortex-lattice.
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(defconstraint (airfoil-vortex-lattice "Vortex Lattice" :one-way)
((cl "") (cdi "") (c-m "") (1-over-di "'))
((spanwise "") (chordwise "") (mach-threshold "")

(alphaeflight-conditions "rad")
(macheflight-conditions "")

(root-mean-lineairfoil "")

(root-mean-line-scalingtairfoil "")

(root-chordtairfoil "Im") (root-incidencefairfoil "Im

(tip-mean-lineairfoil "")
(tip-mean-line-scalingoairfoil "")

(tip-chordtairfoil "Im") (tip-incidence~airfoil "Im")

(mac-xCairfoil "Im" x-ref) (mac-yeairfoil "im" y-ref)

(mac-zeairfoil "iM" z-ref)

(maceairfoil "im" c-ref) (wing-areaeairfoil "m2" S-r
(root-x-leairfoil "Im") (tip-x.leCairfoil "Im")

(root-yleairfoil "Im") (tip-ylefairfoil "im")

(root-z-le~airfoil "im") (tip-z-leairfoil "Im

"Computes the lift, drag, and moment coefficient using the
Vortex-Lattice method."

(declare (special *mach-threshhold*))
(setq spanwise (floor spanwise) chordwise (floor chordwise))
(let* ((mach (if (> macheflight-conditions mach-threshhold)

machtflight-conditions
f00))

(airfoil (vl::make-airfoil root-xletairfoil root-y-le~air

(problem (vl::make-problem

ef)

"4))

foil
root-z-letairfoil root-chordeairfoil
root-incidence~airfoil
root-mean-line@airfoil
root-mean-line-scalingeairfoil
tip-x-le~airfoil tip-yleairfoil
tip-z-leairfoil tip-chordeairfoil
tip-incidenceeairfoil
tip-mean-linetairfoil
tip-mean-line-scalingeairfoil
x-ref y-ref z-ref c-ref S-ref
spanwise chordwise mach t))
airfoil)))

(vl::vl-solve problem alpha-eff)
(multiple-value-bind (cl cdi cm 1-over-di)

(vl::aero-coeffs airfoil alphatflight-conditions)
(values cl cdi cm 1-over-di))))

Figure 4.6: LISP definition for the constraint which implements the vortex-lattice method
for link-class airfoil-vortex-lattice.
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is used for this purpose. Next, the free stream Mach number is compared to the value of

the Mach-threshold attribute to determine the effective Mach number for the analysis. If

the Mach number is below the threshold, the effective Mach number is zero; otherwise, the

actual Mach number value is used.

The next step in the analysis is to divide the airfoil into panels. This is the role of the

vl: :make-airfoil 5 function, which takes as inputs the paneling parameters and the various

airfoil geometry parameters, and creates a data structure which stores the coordinates of

the corresponding panels, their horseshoe vortices, and the normal vectors at the midpoints

of the panels' three-quarter-chord lines. It is therefore responsible for performing Step 1 in

the vortex-lattice algorithm enumerated above. Note, however, that if the function is called

with a set of arguments identical to an earlier set of arguments, no new data structure is

constructed; the previous result is returned.

The next operation performed by this constraint is a call to the vi: :make-problem

function. This function takes as its arguments one or more "airfoil" data structures, as

created by the vi: :make-airfoil function. In this case, only one airfoil is being solved

for, so only one argument is passed to the vl: :make-problem function. This function is

responsible for calculating the downwash vectors, as described in Step 2 above, and for

constructing the matrix of normal components, as in Step 3, as well as factoring it. As

with vi: :make-airf oil, the vl: :make-problem function keeps a record of its previous

arguments. Whenever a set of arguments is repeated, the previously-constructed data

structures are returned; no new computations are necessary.

Next the vi: :vi-solve function is called to solve for the vortex strengths; its argu-

ments are the vehicle angle of attack and the "problem" data structure returned by the

previous call to vi: :make-problem. Note that the resulting values for the vortex strengths

are stored in the "airfoil" data structures which are associated with the "problem" data

structure. This makes it possible to solve for the aerodynamic forces on individual airfoils,

without the need to refer to the intermediate "problem" data structure. Indeed, this is the

role of the subsequent call to the vi:: aero-coef f s function, which returns multiple values

representing these aerodynamic coefficients. These multiple values are themselves returned

by the Rubber Airplane constraint. Figure 4.7 lists some of the auxiliary constraints as-

sociated with the airfoil-vortex-lattice link-class, including those which relate these

aerodynamic coefficients to the actual forces on the airfoil.

Above, mention has been made of attributes whose values represent the camber of an

airfoil cross-section. In implementing the vortex-lattice method, an efficient means of rep-

sNote that the code which implements the vortex-lattice method has been developed as an independent
program, in its own LISP package (see Reference [35]). The name for this package is "v1". Thus, when called
from Rubber Airplane constraints, which are defined in a package of their own, functions in the vortex-lattice
package must be preceded by the "v1: :" prefix.
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(defconstraint (airfoil-vortex-lattice "Number of Panels") (panels "")

((spanvise "") (chordwise ""))

"Computes the total number of panels for the Vortex-Lattice analysis."

(* spanwise chordwise))

(defconstraint (airfoil-vortex-lattice "Airfoil Lift") (liftlairfoil "N")

((c_1 "")
(densityeflight-conditions "kg m-3" rho)

(speedeflight-conditions "Im s-i" V)

(wing-area~airfoil "m2" S))

"Computes the lift on the airfoil, based on lift coefficient."

(* c_1 1/2 rho V V S))

(defconstraint (airfoil-vortex-lattice "Airfoil Induced Drag")

(drag-induced@airfoil "N")

((c-di "")
(densityeflight-conditions "kg m-3" rho)

(speedeflight-conditions "im s-i" V)

(wing-area~airfoil "m2" S))

"Computes the lift on the airfoil, based on lift coefficient."

(* c-di 1/2 rho V V S))

(defconstraint (airfoil-vortex-lattice "Airfoil Aerodynamic Moment")

(moment-mactairfoil "N")

((cmi "")

(densityeflight-conditions "kg m-3" rho)
(speedeflight-conditions "I s-i" V)

(wing-areaeairfoil "m2" S)

(mean-aerodynamic-chordeairfoil "Im" c)
"Computes the lift on the airfoil, based on lift coefficient."

(* c-m 1/2 rho V V S c))

Figure 4.7: LISP definition for the constraints which support various auxiliary calculations
for the airfoil-vortex-lattice link-class.
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resenting cross-section mean-line distribution was required. For this reason, a LISP-based

database of standard NACA thickness and camber distribution has been developed for

use in Rubber Airplane, based on the distributions listed in Reference [1]. Indeed, as indi-

cated in Table 4.3, the basic-airfoil component class, which serves as a superclass for the

basic-wing, basic-horizontal, and basic-vertical component-classes employed in this

test-case design, includes as one of its own superclasses the NACA-section-pair component-

class. This component-class defines discrete attributes for representing the thickness and

mean-line distributions for both the root and tip cross-sections of an airfoil. These dis-

crete attributes point to data structures which store the coordinates of the corresponding

distributions, which are used by both the vortex-lattice functions and Rubber Airplane's ge-

ometry display routines.6 In addition, NACA-section-pair also provides a scalar attribute

for scaling the magnitude of the mean-line distribution, as required for the "a" series of

mean-line distributions (see Reference [1]). Of course, only the mean-line distribution is

relevant to the aerodynamic computations discussed here, which are based on thin-airfoil

theory. Airfoil profile drag is based on thickness, though, and the wing-profile-drag,

horizontal-profile-drag, and vertical-profile-drag link-classes mentioned in Ta-

ble 4.6 all rely on properties of the data structures representing NACA thickness distribu-

tions to estimate airfoil profile drag.

Finally, note from Table 4.6 that it is actually the two-airfoil-vortex-lattice link-

class which is used to compute airfoil aerodynamics for this test case. In this way, the

aerodynamic forces on both the wing and the horizontal stabilizer may be computed si-

multaneously. The advantage to this approach is that it automatically accounts for the

aerodynamic interference of the two lifting surfaces. 7

This two-airfoil-vortex-lattice link-class is not fundamentally different from the

airfoil-vortex-lattice link-class presented above: the only major difference is that a

second set of paneling and geometry parameters are required so that two "airfoil" data struc-

tures may be constructed. These two data structures are then together passed as arguments

to the vl: :make-problem function, the result of which is passed on to vl: :vi-solve. Fi-

nally, two calls to vl: :aero-coeffs are required, one for each airfoil, and a larger set of

results must be returned as multiple-values by the constraint, for the correspondingly larger

set of output parameters.

6Note that cubic spline functions are also provided for performing interpolations on these coordinate
distributions.

?Of course, the interference effects of the other components, such as the fuselage and the radome, are
still neglected.
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4.2.4 Observations

As indicated above, it was during the development of this first test case that the need for

design states was first recognized. Similarly, support for unidirectional, multiple-output con-

straints resulted from the requirement for such constraints while implementing the vortex-

lattice method, discussed above.

Furthermore, over the course of implementing this test case, what appears to be a

general feature of the component-modeling approach has been discovered. Specifically, it

has been observed that modularity is improved by minimizing the number of attributes

which are associated with component-classes. In practice, this means limiting component-

class attributes to those needed to describe its geometry (e.g., position and dimensions) and

gross properties (e.g., lift, drag, and weight). The former set of parameters is needed to

define the component's geometry, so that it may be displayed. The gross-property attributes

provide link-classes with a uniform interface to the component-classes, but require that any

auxiliary parameters be supplied by the link-class, rather than the component-class. It is

this transfer of such auxiliary parameters (e.g., aerodynamic coefficients, angle of attack,

sideslip, structural load factor) to the link-classes which makes the component-classes more

general-purpose and, therefore, more modular. Indeed, component-classes generally do not

specify the means for computing their gross-property attributes, but rely on link-classes for

these calculations, as well.

By relying on link-classes to provide auxiliary parameters and compute component gross

properties, it becomes very easy for the specific design analyses employed to be altered,

simply by replacing one or more link-classes. For example, a design project might initially

include a design link which computes airfoil aerodynamics based on an assumed value for the

airfoil lift-curve slope. Later, when improved accuracy is desired, this link might be replaced

by an instance of the airfoil-vortex-lattice link-class, introduced above. There is no

need to replace the component which represents the airfoil; only the design links need be

changed. Thus, while design components are rather general-purpose, link-classes are used

to implement very specific analyses. Because there is a standard interface between link-

and component-classes (i.e., component gross properties), however, exchanging one design

link for another which performs a similar type of analysis is a straightforward operation.

4.3 Subsonic Commercial Transport

4.3.1 Specifications

The second test case concerns the design of a subsonic commercial transport for a regional

airline. The design calls for a vehicle capable of carrying 50 passengers (at a weight alloca-

tion of 300 lbs. per passenger) over a maximum range of 500 nautical miles; minimum-length
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Figure 4.8: Screen image depicting the completed design for the subsonic transport test

case.

runway performance is also desired. Furthermore, due to engine maintenance issues, the

power plant for this vehicle must be the Avco Lycoming 502D turbofan engine. 8

In meeting these design requirements, then, the primary focus is on selecting the ap-

propriate number of engines for balancing cruise drag and returning acceptable takeoff and

landing performance. The preliminary results of this study-based on only token efforts

at design optimization-called for an aircraft which employs four of these engines, yield-

ing an estimated gross takeoff weight of 43,000 lbs., and takeoff and landing distances of

approximately 4200 and 4500 feet, respectively.

"The Avco Lycoming 502D provides a static thrust of 27,500 Newtons, and a cruise thrust of 6000
Newtons at an altitude of 33,000 ft. and a flight Mach number of 0.8.

Top view Oblique view



4.3.2 Problem Representation

The motivation in selecting this design task as the second test case was to demonstrate

the reusability of the class definitions developed for the first test case. As such, very few

new component- and link-classes were needed to implement this second test case. Indeed,

because both the vehicle geometry and mission profile are simpler, this design employed

only 15 components, 5 design states and 38 links, as compared to 16 components, 10 design

states, and 39 links for the first test case. A screen image displaying the final geometry of

the design's components is presented in Figure 4.8. Note that this second test-case design

employs a total of 514 attributes and 360 constraints.

The component-classes used in representing this test-case design are listed in Table 4.9.

As indicated above, this set of classes is practically a subset of the component-classes

used for the first test case. The only new component-classes employed in this design are

the turbojet-pair and passenger classes. Note that two instances of the turbojet-pair

component-class are used to represent the design's four engines; this class plays a role similar

to that of the turboprop-pair component-class employed by the first test-case design.

Statistics for these component-classes are presented in Table 4.10. The most commonly-

occurring component-classes are listed in Table 4.11; the only noteworthy change here from

the component-classes listed in Table 4.3 is the addition of the person-mixin component-

class, which serves as a superclass for both the crew and passenger classes employed in

this second design.

Table 4.12 lists the design states instantiated for this design. As was the case with the

previous design, all design states used here are instances of the base design-state class.

Because the analyses required to implement this test case are essentially identical to

those required for the first test case, there is very little difference in the sets of design links

employed by the two designs. The link-classes used for this second design are listed in

Tables 4.13 and 4.14. Notable changes include the replacement of class turboprop-wing-

attachment by the turbojet-wing-attachment link-class, and the addition of two in-

stances of the simple-thrust-model link-class, which is used to compute the propulsive

properties of a set of engines, based on the properties of a single engine. The only "compat-

ibility" issue encountered while modeling this second test case concerned the representation

of engine specific fuel consumption (SFC). For the turboprop analyses of the first test case,

an SFC which scaled with engine power was expected; the constraints required for analyzing

the turbojet engines required by the current design task were dependent upon the more con-

ventional form of specific fuel consumption, in which engine thrust is directly related to fuel

weight flow rate. As the conversion between these two parameters is quite straightforward,

this discrepancy was easily resolved.
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Component Class Description

basic-fuselage Fuselage geometry for a transport-type aircraft.

basic-wing Airfoil geometry for a swept, tapered wing, for which different
cross-sections may be specified at the root and tip.

basic-vertical Airfoil geometry for a vertical stabilizer.

basic-horizontal Airfoil geometry for a horizontal stabilizer.

turbojet-pair Geometry for a pair of wing-mounted turbojet engines.

fuel-system Component representation of fuel and fuel tanks

forward-landing-gear A simple forward landing gear (tire only).

rear-landing-gear A pair of rear landing gear tires.

controls Component representation for aircraft controls.

systems Component representation for aircraft support systems.

air-conditioning Component representation for air-conditioning system.

avionics Component representation for aircraft control avionics.

crew Component representation of aircraft crew.

passengers Component representation of aircraft passengers.

Table 4.9: Instantiated component-classes for the subsonic transport test case.

Component Class Superclasses Attributes Constraints Instances

basic-fuselage 4 25 14 1
basic-wing 11 51 28 1

basic-vertical 11 46 26 1
basic-horizontal 11 51 28 1

turbojet-pair 2 26 10 2
fuel-system 2 19 11 1

forward-landing-gear 4 17 9 1

rear-landing-gear 4 18 9 1

controls 2 11 7 1

systems 2 17 10 1
air-conditioning 2 17 10 1

avionics 2 17 10 1
crew 3 18 10 1

passengers 3 18 10 1

[ Total: 1 377 202 15

Table 4.10: Class statistics for the instantiated
test case.

component-classes of the subsonic transport
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Component Class Subclasses _JDescription

design-component 19 Base component-class.

basic-drag-mixin 12 Provides a general-purpose drag at-
tribute.

point-mass-component 10 Equates component reference and
center-of-gravity positions.

basic-lift-mixin 8 Provides a general-purpose lift at-
tribute.

basic-aerodynamics-mixin 7 Combines basic-lift-mixin and
basic-drag-mixin.

basic-section 7 Provides general airfoil cross-section
attributes.

NACA-section-pair 6 Provides attributes to rep-
resent NACA-airfoil cross sections at
both the root and tip of an airfoil.

airfoil-planform 6 Provides airfoil planform parameters.

induced-drag-mixin 6 Breaks down component drag into in-
duced drag and profile drag compo-
nents.

basic-airfoil 5 Combines NACA-section-pair and
airfoil-planform.

horizontal-planform-mixin 3 Represents a horizontally-oriented air-

foil planform.

vertical-planform-mixin 2 Represents a vertically-oriented airfoil
planform.

basic-horizontal-airfoil 2 Combines basic-airfoil and

horizontal-planform-mixin.

basic-landing-gear 2 Provides general landing-gear at-
tributes.

person-mixin 2 Provides general attributes for repre-
senting a collection of persons.

Table 4.11: Most commonly occurring component-classes among the instantiated compo-
nent-classes of the subsonic transport test case.
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Design State Name Description

"Takeoff" End of takeoff run.

"Intermediate Climb" Intermediate flight condition during climb to cruising alti-
tude.

"Cruise" Beginning of cruise flight segment.

"Begin Descent" Start of descent for landing.

"Landing" Flight condition for vehicle landing.

Table 4.12: Instances of class design-state for the subsonic transport test case.

Top view Oblique view

Side view Front view

RA>

Rubber Airplane

Figure 4.9: Screen image depicting the fuselage cross-section design for the subsonic trans-

port test case.
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Link Class Description

flight-conditions State-dependent description of the flight conditions.

gross-properties Net weight, thrust, and aerodynamic forces on the ve-
hicle.

wing-attachment Sets the y- and z-coordinates of the wing based upon
corresponding fuselage dimensions and coordinates.

tail-attachment Attaches the horizontal and vertical stabilizers to the
rear of the fuselage.

turbojet-wing-attachment Attaches a symmetric pair of engines to the wings, ac-
counting for airfoil geometry and inlet clearance.

cockpit-attachment Positions generic objects with respect to the cockpit
portion of the fuselage.

cabin-attachment Positions generic objects with respect to the cabin por-
tion of the fuselage.

takeoff-distance Computes the required takeoff distance for the vehicle.

landing-distance Computes the required landing distance for the vehicle.

fuselage-weight-model Computes the weight of the fuselage, based on dimen-
sions and net vehicle weight.

wing-weight-model Computes the weight of the wing, based on dimensions
and net vehicle weight.

empennage-weight-model Computes the weight of the horizontal and vertical sta-
bilizers, based on dimensions and net vehicle weight.

fuel-tank-weight-model Computes the weight of the fuel tanks, based on total
fuel weight.

controls-weight-model Computes the weight of the aircraft control systems,
based on net vehicle weight.

systems-weight-model Computes the weight of the support systems, based on
net vehicle weight.

forward-gear-weight-model Computes the weight of the forward landing gear, based
on net vehicle weight.

rear-gear-weight-model Computes the weight of the rear landing gear, based
on net vehicle weight.

person-weight-model Computes the weight of a group of persons.

simple-takeoff-fuel Equates takeoff vehicle weight to vehicle gross weight.

turbojet-cruise-fuel Computes the fuel required for a single cruise segment

glide-fuel Equates the vehicle weights for two design states.

total-fuel-weight Sums the fuel weights required for each flight segment.

simple-thrust-model Computes the properties of a set of engines based on
those of a single engine.

Table 4.13: Instantiated link-classes for the subsonic transport test case.
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Link Class Description

two-airfoil-vortex-lattice Computes the lift and induced drag for a pair of airfoils.

wing-profile-drag Computes wing profile drag, based on wetted area.

vertical-profile-drag Computes vertical stabilizer profile drag, based on wet-
ted area.

horizontal-profile-drag Computes horizontal stabilizer profile drag, based on
wetted area.

fuselage-profile-drag Computes fuselage profile drag, based on wetted area.

forward-gear-profile-drag Computes profile drag for the forward landing gear,
based on wetted area.

rear-gear-profile-drag Computes profile drag for the rear landing gear, based
on wetted area.

Table 4.14: Instantiated link-classes for the subsonic transport test case (continued).
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Link Class Superclasses Attributes Constraints Instances]

flight-conditions 2 11 6 1
gross-properties 1 14 13 1
wing-attachment 1 1 2 1
tail-attachment 3 0 6 1

turbojet-wing-attachment 1 2 3 2
cockpit-attachment 1 0 3 3
cabin-attachment 1 0 3 2
takeoff-distance 1 14 10 1
landing-distance 1 12 6 1

fuselage-weight-model 1 0 1 1

wing-weight-model 1 1 2 1

empennage-weight-model 1 4 5 1

fuel-tank-weight-model 1 0 1 1

controls-weight-model 1 0 1 1

systems-weight-model 1 0 1 1

forward-gear-weight-model 1 0 1 1

rear-gear-weight-model 1 0 1 1

person-weight-model 1 1 1 2

simple-takeoff-fuel 1 0 1 1
turbojet-cruise-fuel 3 3 3 1

glide-fuel 1 0 1 3
total-fuel-weight 1 3 3 1
simple-thrust-model 1 4 4 2

two-airfoil-vortex-lattice 1 27 20 1

wing-profile-drag 3 5 6 1

vertical-profile-drag 3 5 6 1

horizontal-profile-drag 3 5 6 1

fuselage-profile-drag 3 6 7 1

forward-gear-profile-drag 3 6 7 1

rear-gear-profile-drag 3 6 7 1

Total: 137 158 38

Table 4.15: Class statistics for the instantiated
case.

link-classes of the subsonic transport test
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Table 4.16: Most commonly occurring
the subsonic transport test case.

link-classes among the instantiated link-classes of

Component Class Description

fuselage-section Geometry for the cross-section, including positioning of the
cabin floor.

chair Geometry of a cabin-section chair.

cargo-box Geometry of a box for stowing luggage and other cargo.

Table 4.17: Instantiated component-classes for the fuselage cross-section design of the sub-
sonic transport test case.
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Link Class Subclasses Description

design-link 30 Base link-class.
basic-prof ile-drag-mixin 8 General-purpose induced drag

model, based on wetted area
and skin-friction coefficient.

body-profile-drag 3 Specializes
basic-profile-drag-mixin
for non-lifting bodies.

airfoil-profile-drag 3 Specializes
basic-profile-drag-mixin
for airfoils.

fuel-consumption-mixin 2 Provides a general-purpose
fuel-weight attribute.



Component Class Superclasses Attributes Constraints Instances

fuselage-section 1 23 8 1
chair 1 24 8 4

cargo-box 1 14 4 1

Total: 133 44 6

Table 4.18: Class statistics for the instantiated component-classes of the fuselage
cross-section design for the subsonic transport test case.

Class statistics for the link-classes instantiated for the second test case appear in Ta-

ble 4.15. Once more, sharing of link-classes through inheritance is not common; those link-

classes which are most often inherited by the design's instantiated link-classes are listed in

Table 4.16.

4.3.3 Design Analysis

As is evident from the tables of component- and link-classes presented in the preceding

section, the design analyses utilized in this second test case are almost identical to those

utilized for the first design problem. Cruise drag and runway performance were driving

factors in selecting the number of engines. Maintaining level flight in cruise was the criterion

by which wing size was determined. Lifting-surface aerodynamics were computed using the

vortex-lattice method, as described above. Vehicle weight was determined by means of an

automatically-constructed iteration loop, with aircraft gross weight as the loop variable.

One new approach was introduced for sizing the fuselage, however. Specifically, a set

of component-classes was defined which enabled the design of the cabin interior, based

on a representative cross-section. Component-classes representing the passenger seats, the

fuselage cross-section, and a cargo box were defined; link-classes for positioning these com-

ponents relative to one another were also provided. This Rubber Airplane design employs

6 components, no states, and 6 links, with a total of 143 attributes and 93 constraints. The

final design for the cabin cross-section appears in Figure 4.9.

A listing of the specific component-classes created for this design task is given in Ta-

ble 4.17; class statistics for these component-classes appear in Table 4.18. Listings of link-

class descriptions and their statistics appear in Tables 4.19 and 4.20, respectively. Note that

three instances of the identical-neighboring-chairs link-class have been employed to

position the chairs with respect to one another; this link-class defines a chair-separation

attribute whose value may be set to zero to indicate adjacent chairs, or made non-zero to

represent the aisle width.

In employing these component- and link-classes to compute the cross-section dimensions,
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Link Class Description

identical-neighboring-chairs Constrains the spacing between a pair of chairs, and
equates their dimensions.

row-of-chairs Defines a row of chairs, based on the leftmost and
rightmost chairs in the row.

row-attachment Attaches a row of chairs to the floor of a fuselage
cross-section.

cargo-box-attachment Attaches a cargo box below the floor of a fuselage
cross-section.

Table 4.19: Instantiated link-classes for the fuselage cross-section design of the subsonic
transport test case.

Link Class Superclasses Attributes Constraints Instances

identical-neighboring-chairs 3 1 12 3
row-of-chairs 1 7 6 1

row-attachment 1 0 4 1
cargo-box-attachment 1 0 3 1

Total: 10 49 6

Table 4.20: Class statistics for the instantiated link-classes of the fuselage
design for the subsonic transport test case.

cross-section

the chair and aisle dimensions were first input as fixed values, based on recommended

minimum dimensions as listed in Reference [38]. In attempting to derive acceptable values

for both fuselage length and cross-section dimensions, a total of four chairs per row was

selected. From here, floor position, fuselage height, and fuselage width were simultaneously

adjusted, and the results were observed in the geometry display portion of the Rubber

Airplane interface (see Appendix C), until an acceptable geometry was found. Ultimately,

both fuselage height and width were set at ten feet, leaving room for a 1 ft. x 5 ft. cargo

box beneath the cabin floor. Based on chair dimensions and required legroom, the required

length for the fuselage cabin-in this case, 41 ft.-was computed based on the minimum

number of rows required to seat the desired number of passengers.

4.3.4 Observations

As indicated above, this test case was intended to demonstrate the ability of the component-

modeling approach to support code reusability. In this regard, the exercise was successful,

insofar as only a minimum of effort was required to modify the class library in order to
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support the representation of this second design task.

Of somewhat greater interest, then, is the use here of an auxiliary Rubber Airplane

design to support the sizing of the fuselage in the primary design. In this case, the auxiliary

design is used to perform the purely geometrical task of laying out the internal seating

arrangement for the fuselage cabin section. A simple set of component- and link-classes has

been provided (there is no need for the use of design states in this auxiliary design); note,

however, that the actual task of selecting the cross-section dimensions depended upon the

user observing the effect on the geometry display of variations in the corresponding dimen-

sional parameters. While it is certainly possible to define a set of constraints for computing

the minimum fuselage height and width which will accommodate the desired seating ar-

rangement, it is much simpler for the designer to modify the component attributes by hand,

and establish a satisfactory fit via visual inspection. This observation helps demonstrates

the utility of the attribute-driven geometry display: not only does it provide immediate,

graphic feedback on the consequences of various design decisions, but it also supports the

(albeit indirect) implementation of certain design tasks which are difficult to codify.

Recall that a primary objective of this exercise was the determination of the number of

engines to be employed for the vehicle design. Similarly, the auxiliary design was introduced

to evaluate various internal layouts, based upon several factors, including the number of

seats per row. These two parameters-number of engines and number of seats per row-

represent configuration decisions; specifically, they represent the number of two types of

components which are to be incorporated into the design. In Rubber Airplane, however,

component incorporation is implemented via component-class instantiation, which can only

be performed by the user. It is therefore impossible to represent these parameters as design

variables-i.e., as component- or link-class attributes-since there is no mechanism for

instantiating classes based on attribute values. This observation presents a fundamental

shortcoming of the component-modeling approach adopted for Rubber Airplane: while the

program provides support for (partially) automating the sizing process, all configuration

decisions must be made externally, by the user.

4.4 Small-Payload Launch Vehicle

4.4.1 Specifications

In order to investigate the application of Rubber Airplane to alternative problem domains,

the third test case concerned the design of a small-payload launch vehicle. Specifically, a

multi-stage craft capable of launching a payload of 1000 lbs. to low-earth orbit (LEO) was

designed. The simplified analyses employed to carry out this design task yielded a two-stage

rocket with an overall length of 30 feet, and a launch weight of 35,900 lbs.
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Figure 4.10: Screen image depicting
vehicle test case.

the completed design for the small-payload launch

4.4.2 Problem Representation

As might be expected, an entirely new set of component- and link-classes was required to

implement the analysis for this design problem, which focused on component mass estima-

tion and vehicle performance. A total of 10 components, 3 design states, and 14 links were

used to model the spacecraft and its flight profile, with a total of 272 attributes and 194

constraints. A screen image depicting the geometry of the completed design is presented in

Figure 4.10.

The component-classes used for this design are listed in Table 4.21. In this case,

component-classes are used to represent the various physical components of the vehicle

(payload, stage, nozzle, etc.); unlike the aircraft design problems, there was no need for the

modeling of non-geometric subsystems (e.g., avionics, air conditioning). This may, however,

be an artifact of the crudeness of this representation: were additional detail to be added,
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Component Class Description

rocket-stage Geometry of the casing for a single rocket stage.

rocket-propellant Geometry for a pill-shaped mass of rocket fuel.

nozzle Geometry of a rocket nozzle.

connector Geometry for the connector between two rocket stages.

rocket-fins Airfoil geometry for a set of four stabilizing fins.

rocket-payload Component representation of a cylindrically-shaped payload.

payload-shroud Geometry of the protective shroud surrounding the payload.

Table 4.21: Instantiated component-classes for the small-payload launch vehicle test case.

Component Class Superclasses Attributes Constraints Instances

rocket-stage 2 17 10 2
rocket-propellant 3 24 13 2

nozzle 2 24 13 2
connector 2 26 14 1

rocket-fins 11 52 29 1
rocket-payload 2 16 10 1
payload-shroud 2 25 11 1

Total: 249 136 10

Table 4.22: Class statistics for
launch vehicle test case.

the instantiated component-classes of the small-payload

subsystem component-classes might again be needed. On the other hand, if the level of

detail for the aircraft designs were improved, it might be possible to remove the subsystem

component-classes from their representations.

Note also that all of the instantiated component-classes in this design are new; none

have been carried over from the previous test cases. It was possible, however, to employ

some of the same superclasses as were used in the other two designs. Specifically, the various

airfoil superclasses for representing planform and cross-section were utilized in constructing

the rocket-fins component-class. Additionally, the point-mass-component superclass

was employed as a superclass for the rocket-propellant component-classes, since the

coordinates chosen for its reference position happened to match those of its center of gravity.

(To simplify the definition of the various attachment link-classes, the reference positions for

most of the remaining component-classes were located at the center of their base cross-

sections.) The class statistics for all of the component-classes instantiated for this test case

are presented in Table 4.22. Those component-classes which appear most frequently as
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Component Class Subclasses Description

design-component 9 Base component-class.

density-mixin 7 Relates component mass to density
and volume.

basic-drag-mixin 4 Provides a general-purpose drag at-
tribute.

basic-lift-mixin 3 Provides a general-purpose lift at-
tribute.

basic-section 3 Provides general airfoil cross-section
attributes.

basic-aerodynamics-mixin 2 Combines basic-lift-mixin and
basic-drag-mixin.

NACA-section-pair 2 Provides attributes to rep-
resent NACA-airfoil cross sections at
both the root and tip of an airfoil.

airfoil-planform 2 Provides airfoil planform parameters.

induced-drag-mixin 2 Breaks down component drag into in-
duced drag and profile drag compo-
nents.

Table 4.23: Most commonly occurring component-classes among the instantiated compo-
nent-classes of the small-payload launch vehicle test case.
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Design State Name Description

"Launch" Launch of the vehicle.
"First Stage Jettison" Exhaustion of first-stage propellant, and jet-

tison of remaining first-stage mass.

"Second Stage Jettison" Exhaustion of second-stage propellant, and
jettison of remaining second-stage mass.

Table 4.24: Instances of class design-state for the small-payload launch vehicle test case.

Link Class Description

stage-attachment Attaches two rocket stages via a connector.

propellant-attachment Attaches propellant to the interior of a rocket stage.

nozzle-attachment Attaches a nozzle to the end of a rocket stage.

fin-attachment Attaches a set of fins to the end of a rocket stage.

payload-attachment Attaches a payload the forward end of a rocket stage.

payload-shroud-attachment Attaches a payload shroud to the forward end of a
rocket stage.

rocket-gross-properties Provides net mass and weight attribute for the vehicle.

launch-mass Equates the sum of all component masses to vehicle
initial mass.

stage-mass Sums the masses of all components associated with a
single stage.

stage-jettison Updates vehicle mass after stage propellant exhaustion.

Table 4.25: Instantiated link-classes for the small-payload launch vehicle test case.

superclasses of the instantiated component-classes are listed in Table 4.23.

Three instances of the design-state state-class were employed in representing the flight

profile for the launch vehicle. A brief description of each is given in Table 4.24. Note that,

for simplicity, the propellant-exhaustion and stage-jettison events for each of the two flight

segments have been combined into a single design state.

Table 4.25 lists the link-classes which were instantiated for this design. These link-classes

fall into two basic categories, those dealing with component positioning and attachment,

and those concerned with performance analysis. In contrast to those associated with the

previous two test cases (see Tables 4.5, 4.6, 4.13, and 4.14), link-classes for computing

individual component weights are notably absent. As explained below, for this test case,

components were responsible for computing their own weights. Statistics for the instantiated

link-classes appear in Table 4.26. Note that no table of commonly-occurring link-classes
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Link Class Superclasses Attributes Constraints Instances

stage-attachment 1 0 8 1
propellant-attachment 1 0 5 2

nozzle-attachment 1 0 3 2
fin-attachment 1 0 4 1

payload-attachment 1 0 3 1
payload-shroud-attachment 1 0 4 1

rocket-gross-properties 1 8 4 1

launch-mass 1 1 2 1

stage-mass 1 4 4 2

stage-jettison 1 3 4 2

Total: 23 58 14

Table 4.26: Class statistics for the instantiated link-classes of the small-payload launch
vehicle test case.

has been provided; the only link-class which appeared as a shared superclass in this design

was the base link-class, design-link.

4.4.3 Design Analysis

The implemented analyses for this test case fall into three categories: geometry, component

and stage weights, and mission performance. The general characteristics of these analyses

are presented below.

Component Geometry

As was the case for the aircraft design problems, it is also the case here that parameters

describing component geometry (i.e., position, center of gravity, dimensions, surface area,

and volume) are implemented as component-class attributes. Parameters and constraints

representing relative geometric properties, such as the positions of two attached objects, are

implemented via design links. Six of the ten link-classes defined for this test case implement

the attachment of component groups.

Also, note that, as with the fuselage cross-section design implemented for the second test

case, certain of the components included in this design were sized by visual inspection, rather

than constraint computation. Specifically, the fit of the payload shroud around the payload,

and of the interstage connector around the second stage nozzle, were accomplished by means

of the geometry display portion of the Rubber Airplane user-interface (see Appendix C),

rather than through specification of governing constraints.
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(def component density-mixin
((volume :documentation "Volume occupied by the component."

:low-value 1e-6 :order-of-magnitude 1
:high-value 10000 :dimensions "13" :units "m3")

(density :documentation "Mass density of the component."
:low-value 0.001 :order-of-magnitude 1
:high-value 1000
:dimensions "In 1-3" :units "g cm-3"))

()
:abstract-component
(:required-attributes (mass "Im"))

(:category structures mixins)
(:documentation "Relates component mass to density and volume."))

(defconstraint (density-mixin "Definition of Density") (density "kg m-3")
((mass "Im") (volume "13"))

"Computes density as the ratio of mass to volume."
(/ mass volume))

Figure 4.11: LISP definition for an abstract component-class which bases component mass
on volume and density, density-mixin.

Component Weights

For the aircraft test cases, component weights were computed primarily via empirically-

derived equations based on vehicle gross weight. Because component weights were based

on net vehicle weight, it was necessary to implement these equations using design links.

For this design task, however, component weights were calculated based on vehicle

dimensions and material properties. To simplify this task, a standard density-mixin

component-class was defined, which provides attributes for component density and volume,

as well as a constraint which relates the values of these two attributes to the component's

mass. The definition of this component-class is presented in Figure 4.11. Note that classes

which incorporate density-mixin as a superclass are responsible for supplying a constraint

which computes a value for the volume attribute of density-mixin. As an example of such

a constraint, consider the following constraint defined for the rocket-stage component

class, based on its length, radius, and thickness parameters:

(defconstraint (rocket-stage "Casing Volume") (volume "m3")

((length "im") (radius "im") (thickness "im"))

"Computes volume of the stage, using the thin-shell approximation."

(* 2 pi radius length thickness))

(Recall that the rocket-stage component-class represents the casing for a rocket stage.)
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Thus, the abstract density-mixin class provides only part of the mechanism needed to

compute component weights. Inheriting subclasses are responsible for implementing the

volume calculation.

In addition to component weights, however, it is also necessary to compute the net

vehicle weight, as well as the weights of the various stages. Vehicle gross weight is computed

by means of a collection constraint defined by the rocket-gross-properties link-class, in

much the same way that the the gross-properties link-class was employed in the aircraft

test cases. Stage weights, however, require an additional set of collector constraints, with

collection predicates which take advantage of the :owner-inferior-of collection predicate.

For this test case, the stage-mass link-class implements such a collector constraint, defined

as follows:

(defsum (stage-mass "Net Stage Mass") mass-stage

(:and (:owner-class design-component)

(:owner-inferior-of stage)

(:named "Mass"))

"Collects all mass attributes associated with linkage STAGE."))

Note that "mass-stage" is the name of the attribute of link-class stage-mass whose value

represents the net mass of all of the components associated with the stage; "stage" is the

name for the linkage which represents the stage itself, whose linkage predicate requires that

it be an instance of the rocket-stage component-class. This means that all the compo-

nents to be associated with a given stage must be attached to the appropriate rocket-stage

instance. Indirect attachment is also supported: a component which is attached to a sec-

ond component is also considered to be an inferior of the second component's superior.

Component instances are also considered to be inferior to themselves; thus the mass of the

rocket-stage instance which acts as the design link's stage linkage will also be incorpo-

rated into the above summation constraint.

Finally, note also that the stage-mass link-class also defines a collector constraint which

sums the propellant mass associated with a stage. For the solid rocket design employed

here, this is just the mass of the single instance of the rocket-propellant component-

class associated with the stage. If a liquid-fuel strategy were employed, however, each stage

would probably require two instances of this component-class, since fuel and oxidizer would

likely be stored separately.

Mission Performance

The mission performance analysis is based on the classical rocket equation, and has been

implemented by means of the rocket-gross-properties and stage-jettison link-classes.
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Note that the mass and weight attributes of the rocket-gross-properties have been

defined as state-dependent attributes. The stage-jettison link-class uses the stage mass

computed by the stage-mass link-class to compute the change in vehicle mass between

two design states, due to the jettisoning of a stage. The stage-jettison link-class also

implements the rocket equation to compute the change in vehicle velocity due to propellant

burn. The net change in vehicle velocity from launch to jettison of the final stage determines

the final orbital speed which may be obtained.

4.4.4 Observations

As indicated at the start of this section, this test case was undertaken to demonstrate the

use of the component-modeling approach on a non-aircraft example. Perhaps the most

challenging aspect of this particular design task was the implementation of staging; the

ability of the program to incorporate this design feature gives some indication of the general

applicability of the approach to engineering conceptual design.

In representing multiple staging, it was necessary-as discussed above-to compute

stage weights. For the sake of generality, use of collector constraints for this purpose was

desired. It was for this reason that the :owner-inferior-of collection predicate was added

to Rubber Airplane, and use of this predicate keyword has enabled the specification of such

collector constraints. Unfortunately, it is necessary that the user be aware of the presence

of such constraints in a design, so that the necessary superior/inferior relationships among

the component instances are established. Cavalier usage of link-classes which define such

constraints is likely to yield erroneous results. A solution which avoids this complication

would be preferred, but no viable alternative has yet been found.

4.5 Class Library

In implementing the three test cases, a fairly sizeable library of component- and link-classes

was developed. This library was composed of the following elements:

* 47 component-class definitions,

* 64 link-class definitions,

* 265 attribute specifications,

* 296 constraint specifications, and

* 18 component-class geometry specifications.

Table 4.27 summarizes the contents of each of the three test-case designs, compiling the

results presented in previous sections of this chapter. Note that, in a number of cases,
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Test Case Components Links States Attributes J Constraints

Surveillance Aircraft 16 39 10 530 377
Commercial Transport 15 38 5 514 360

Cabin Interior 6 6 0 143 93
Launch Vehicle 10 14 3 272 194

Table 4.27: Summary of the contents of the test-case designs.

the total number of attributes or constraints employed by a given design exceeds the total

number of attribute or constraint specifications provided by the class library. This result is

due to

e inheritance of individual attribute and constraint specifications by multiple instan-

tiable subclasses (e.g., inheritance of the same set of basic airfoil parameters by wing,

horizontal stabilizer, and vertical stabilizer component-classes for the two aircraft

designs), and

" multiple instantiation of individual component- and link-classes (e.g., multiple stage

instances in the launch vehicle design).

and thus serves to demonstrate the ability of the component-modeling approach to simplify

design task representation by obviating the repetitive specification of redundant design

knowledge.
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Chapter 5

Conclusions

5.1 Discussion of Results

5.1.1 Summary

In the preceding chapters of this dissertation, the description and specification of a general-

purpose approach for performing computer-aided conceptual design has been presented. The

basis of this approach is component-modeling, which organizes design knowledge according

to the physical objects which comprise an engineered artifact. Component descriptions

are based on attributes-the parameters describing the properties of a component-and

constraints-the mathematical relationships which govern these parameters. Conceptual

design, by its very nature, is unpredictable. Neither the solution, nor the appropriate

solution path, may be known in advance. Furthermore, conceptual design tasks often seek

to take advantage of the latest advances in the state of the art. For these reason, extreme

flexibility is demanded: it is necessary that the designer be able to enter new component

descriptions, based on current task needs. To simplify component definition, the use of

object-oriented programming techniques, which support the definition of new component-

types based upon the combination and modification of existent types, is specified.

It is very often the case in engineering design that the properties of one component are

dependent upon those of one or more other components. Such interactions among groups of

components are represented via design links, which may define constraints on the attributes

of a selected group of components. For the purpose of facilitating the definition of general-

purpose multi-component constraints, the association of collector constraints with design

links is also specified. Rather than relating specific attributes from a pre-specified set of

components, as is the case with normal design-link constraints, the parameters of a collector

constraint are chosen based on satisfaction of an appropriate collection predicate; i.e., the

attributes to be related by a collector constraint are identified via pattern-matching.

Finally, because component properties may be time-dependent, some means for imple-
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menting variation in attribute values is needed. The use of design states has been introduced,

along with the ability to declare any attribute or constraint as being state-dependent. Any

number of design states may be included in a design; for each design state, a corresponding

independent instance of each state-dependent attribute or constraint is created. Design

states thus allow the incorporation of step-wise time dependencies into the representation

of a design problem.

To add flexibility to the actual mathematical analyses which model a design, the use

of constraint propagation is adopted. Constraint propagation allows a single declarative

statement of a mathematical constraint to be used to infer multiple imperative relationships

among the constraint's parameters. Thus, an inverted form of the constraint may be applied

if the current status of its parameters makes such use desirable. The ability of constraint

propagation to automatically modify mathematical relationships in order to accommodate

an evolving problem description is of great benefit in conceptual design where, as mentioned

above, the appropriate solution path is not necessarily known in advance.

In order to demonstrate the practicality and utility of this approach, a testbed im-

plementation has been developed. The resulting program, Rubber Airplane, supports the

object-oriented description of components, links, and states, as class definitions. Attributes

and constraints may be associated with these classes, and link-classes may define collector

constraints. Inheritance of classes, and specialization of inherited attributes and constraints,

is also supported. Rubber Airplane also allows for the specification of component geometry,

based on attribute-values, and the program interface provides for the graphical display of

component geometries.

In using the program, it is first necessary to define any required component-, link-, or

state-classes. To actually model a design task, various instances of these classes are created;

corresponding instances of the attribute and constraint specifications associated with a class

are also created. The instantiated attributes may then be manipulated as necessary to solve

the design problem: constraint propagation is used to ensure satisfaction of the relationships

which govern attribute values, as specified by the constraints . Note as well that multiple

instances of a single class be may constructed, as needed.

To actually investigate the utility of the approach, application of the prototype design

tool to a number of test-case design problems was required. Three tasks from the domain of

aerospace vehicle design were chosen and implemented using Rubber Airplane. The appro-

priate component- and link-classes were defined, and instances of these classes were used to

model the design problems. Design analysis was focused on mission performance, and, in

the case of the aircraft designs, vehicle aerodynamics. The types of analyses implemented

ranged from handbook formulas for estimating component weights to a complete imple-

mentation of the vortex-lattice method for computing lifting-surface aerodynamic forces.
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In this way, the ability of the constraint-based component-modeling approach to accommo-

date varying levels of analytical sophistication has been shown.

Perhaps the key feature of the approach advocated here is its ability to treat arbitrary

design knowledge-in the form of the mathematical relationships which govern a design

task-as data to be manipulated by the computer, rather than as code to be executed.

The use of constraint propagation frees the user from concern over the computational path

used to solve a design problem. Object-oriented programming techniques provide a ready

means for organizing design knowledge, and for incrementally developing appropriate design

representations; the use of inheritance allows for the specification of a modular database of

component- and link-based design knowledge. The system described here, then, is perhaps

better described as an environment which supports and simplifies the design process, rather

than as a computer program which "performs" engineering conceptual design.

5.1.2 Representational Boundaries

Perhaps the most important issue to be considered in evaluating this approach is its ability

to represent the design knowledge required to model design tasks in engineering conceptual

design. The test cases which have been implemented using Rubber Airplane have been

taken from the realm of aerospace engineering, where parametric design, driven by the

mathematics which model the underlying physics, plays a key role. In contrast, other

engineering design tasks, such as architectural layout, electronic circuit board design, and

certain problems in mechanical design, are more dependent on geometry. While the inclusion

of geometry display features enhances the utility of the Rubber Airplane program (see

Chapter 4), because the geometry display is parameter-driven, it is not as convenient for

this second sort of design task as, say, the graphically-oriented interface of conventional

CAD systems. This is not to say that purely geometric design using the current approach

is necessarily unwieldy; the cross-section design developed for the second aircraft test case

demonstrates the use of Rubber Airplane for just such a task. The approach is, however,

better suited to parametric design in which geometry plays only a secondary role.

In the domain of parametric design, then, constraint-based component-modeling has

been shown to be a viable, general-purpose means for representing and manipulating design

information. Because Rubber Airplane constraints are written using standard LISP func-

tions, a wide variety of analytical methods may be implemented. There are no technical

obstacles to calling arbitrarily complex programs (e.g., the vortex-lattice program described

in Chapter 4) from Rubber Airplane; the invocation of programs on remote host comput-

ers is also feasible. While there are no inherent limitations on depth of analysis, though,

consideration of program performance may impact the choice of physical models to employ

in completing a conceptual design task. First of all, the use of computationally-intensive
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methods will degrade program responsiveness. Of perhaps greater significance, though, is

the general principle that, as analysis becomes more detailed, inversion of the computational

method becomes more difficult, or even impossible. The use of non-invertible constraints

reduces flexibility, and may be over-restrictive in the context of conceptual design.

Finally, note that it is probably not coincidental that the component-modeling approach

closely resembles the manner in which engineering knowledge, particularly in aerospace engi-

neering, is taught. While this knowledge is organized primarily around analytical fields (e.g.,

structures, aerodynamics, propulsion), within the various disciplines subject matter is often

presented based on structural-i.e., component-types. Examples of domain-dependent,

component-specific subject matter include:

" the drag profile of a blunt body, such as an aircraft fuselage or landing gear;

" deflection and bending moment due to beam loading, which may be used to predict

airfoil structural requirements; and

" the thrust characteristics of various gas-turbine engines.

Computer programs based on component-modeling might therefore serve well as peda-

gogical tools. Furthermore, recall that design-link definitions require declaration of the

component-types to which they may be applied, through their linkage specifications. Such

specifications therefore provide explicit documentation of the interrelationships within a

group of components, information which has the potential for significant educational value.

5.1.3 Shortcomings of the Current Implementation

Of course, there are some deficiencies in the Rubber Airplane implementation of constraint-

based component-modeling. Perhaps the least robust aspect of the current program is

its use of exclusively numerical techniques for implementing constraint propagation. These

methods work quite well for inverting individual constraints, but the use of numerical meth-

ods for solving computational loops is less than satisfactory, due their strong dependence

on initial conditions.

As mentioned in Chapter 3, the simultaneous Newton-Raphson and iteration-loop meth-

ods are best suited to solving computational loops based on incremental changes in the

values of the loop parameters. Once the initial sizing of a design has been accomplished,

this limitation on these methods is acceptable: minor variations in parameter values do not

adversely impact the convergence of these numerical methods. During the beginning stages

of the design process, however, when many new component- and link-instances are being

added, and parameter values are subject to large fluctuations, these methods are prone to

instability. For this reason, at this stage in the design, it may be necessary to modify the
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computational path, in order to avoid formation of computational loops, until values close

to the desired results are obtained. The original path may then be restored, causing the

formation of a computational loop at a time when the current values of its parameter are

more conducive to numerical convergence.

For example, in the subsonic transport test case presented in Chapter 4, it was necessary

during the early stages to enter various fixed values for the aircraft's gross weight, based

upon which the number of passengers is computed, without the need for computational

loops. Once the result was near the desired number of passengers, the fixed value for gross

weight could be removed; fixing the number of passengers to the desired value would then

result in the formation of a computational loop for computing the gross weight. By delaying

loop construction, the likelihood of convergence was improved-at the expense, though, of

effectively performing the initial iterations through the loop by hand.

A second problem resulting from the use of numerical methods concerns the possible

presence of redundant constraints. While constructing a new design model, for example,

it is quite possible that multiple instances of a given constraint might inadvertently be

created. Similarly, it is possible that the definitions of a pair of link-classes are incompatible,

such that they both define the same relationship among a group of parameters. If both

of these classes are instantiated by the same design, redundant constraints will again be

present. Unfortunately, because all constraints are treated as black boxes, there is no

means for detecting such circumstances, since the internal calculations performed by the

constraints cannot be examined. The difficulty arises from the possibility that the program

will attempt to perform loop propagation on a set of redundant constraints: given, for

example, two instances of the constraint y = f(x), it is a simple matter for the loop

detection algorithm to decide that a computational loop may be constructed from the pair

of constraints. The corresponding set of simultaneous equations is singular, however, and

the loop-solving algorithm will fail.

One simple means for avoiding this particular case is to check the set of parameters

associated with each newly instantiated constraint. If it matches that of an existing con-

straint, then it is suspect, and the user may be called upon to determine the validity of the

new constraint. It may also be the case, however, that a set of constraints is redundant

only in combination. Consider, for instance, the following system of equations:

a = b+c

d = a+e

d = b+c+e

This system of equations is also singular. No unique pair of equations in this set is redun-

dant; the system is only singular when the three equations are combined. If these equations
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represent, say, constraints contributed by three different design links, then detection of the

redundancy cannot take place until actual loop propagation is attempted, and subsequently

fails.

Note from the description of the loop-detection algorithm in Chapter 3 that no means

is provided for storing the contents of computational loops, such that they might be reused.

Recall that, when the value of an attribute whose value-supplier is :user is changed, the

attribute's value-supplier is first set to :guess, and then back to :user, so that the appro-

priate retractions occur. If the attribute is a member of a loop, the contents of the loop (i.e.,

its attributes and constraints) must be re-computed. While the loop detection algorithm

performs well, it is nevertheless inefficient to repeat the search in such cases.

Another deficiency of the current implementation is the lack of an interface for trac-

ing through the constraint propagation network. While the current interface includes the

display of attribute value-suppliers, it provides no means for displaying, for example, the

sequence of constraint applications which relate a pair of attributes. Neither are there any

provisions for displaying computational loops. Determining dependencies among Rubber

Airplane attributes is therefore a much more tedious task than it need be.

Performance of the program-in terms of calculation speed and general responsiveness-

was acceptable. For the test cases examined here, there is no obvious delay between setting

the value-supplier of an attribute to :user and seeing the resulting calculations displayed

on the screen, except when fixing the attribute enables propagation of one or more vortex-

lattice constraints. (Recall that the vortex-lattice constraint, because it computes aero-

dynamic forces which are state-dependent, is itself state-dependent. There will thus be

multiple state-instances of this constraint.) In such cases, though, some delay is to be ex-

pected. The only other performance problem associated with the current program involves

geometry delays. Because no special graphics hardware is present in the Lisp Machine used

for this research, update of the geometry display portion of the user interface is, at present,

unacceptably slow.

A potential problem with the approach described here involves the modeling of time-

dependent phenomena for artifacts which have mixed modes of operation. Currently, state-

instances of state-dependent attributes and constraints are constructed for every design

state present in a design. Consider, though, the design of a system which employs two

or more different kinds of design states. For example, an aerospace plane would require

state-dependent flight conditions to model its operation in the atmosphere, as well as state-

dependent orbital characteristics to model the space segments of its mission profile. Creating

state-instances of the flight condition attributes and constraints for the extra-atmospheric

design states is wasteful and unnecessary, as would be the construction of flight-segment

state-instances for the orbital parameters. A possible solution to this problem would be the

187



addition of some sort of predicates for determining when state-instantiation is appropriate.

Alternatively, it might be more straightforward to divide such design tasks between two or

more Rubber Airplane designs, as was done for the internal and external vehicle designs

of the second aircraft test case (see Chapter 4). If this latter approach were adopted,

however, some means for directly linking the common parameters of the two designs would

be desirable, in order to automate the transfer of results between the two individual designs.

A final difficulty involves the definition of design-entity classes. Currently, class defini-

tions are entered via a text editor, and entered into the program by loading the appropriate

LISP code. This approach requires that the user ensure the compatibility of inherited

classes, and know how to find the names of attributes and classes which are to be refer-

enced in linkage or collection specifications. Thus, while the component-modeling approach

has been motivated by a desire to help manage the complexity of conceptual design tasks,

the current implementation ultimately serves to replace the bookkeeping associated with

the design itself by a need for the user to be familiar with the details of the class library;

one form of complexity management has been replaced by another. Two possible means for

addressing this issue are:

e Providing a more "intelligent" interface for defining component- and link-classes. If

the program were to support searches of the class library, and automatically inform

users of the consequences of incorporating one class as a superclass of another class

(i.e., through inheritance), much of the overhead involved in defining new classes could

be eliminated.

* Adding the ability to define collections of components and links which may be instan-

tiated as a whole. Such a collection might be referred to as a "package" or "assembly"

and would include specification of how the included entities should be associated with

the linkages of the assembly's design links. For example, an aircraf t-aerodynamics

assembly might consist of appropriate wing, horizontal stabilizer, and vertical sta-

bilizer component-instances, as well as an instance of the vortex-lattice link-class,

for computing their aerodynamics. A related canard-aerodynamics assembly might

replace the horizontal stabilizer component-instance with an appropriate forward-

mounted airfoil.

In the first case, class definition is simplified, since the program itself aids in determin-

ing the dependency relationships among classes. In the second case, class instantiation is

simplified, since multiple components, along with the appropriate link instances, could be

created simultaneously. Additionally, the compatibility of the design entities of an assembly

could be verified by the program in advance, further reducing the workload of the program

user. There is the possibility of overlap among assemblies, though: two assemblies could
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include specification of the same component. For example, an aircraft-stability assem-

bly might also require wing and tail surface components, and would therefore conflict with

the aforementioned aircraf t-aerodynamics assembly. In such cases, some means for sup-

porting the incremental instantiation of assemblies, which avoids duplicate instantiations,

would be desired.

5.2 Comparison to Related Work

The described system shares many features in common with the various design tools dis-

cussed in Chapter 1. Like GRADE [8], Rubber Airplane supports component-based geom-

etry display. Like Paper Airplane [11] and MARKSYMA [30], Rubber Airplane employs

constraint propagation to add flexibility to parametric design. The results of the parametric

design are then linked to the geometry display, as is the case with MATHPAK [31].

In addition, however, the component-modeling approach implemented by Rubber Air-

plane calls for the use of object-oriented programming techniques in organizing the design

knowledge required for this parametric design. In this respect, Rubber Airplane resembles

the Concept Modeler [32], the successor to MATHPAK, which provides the user with a lim-

ited set of object-types from which to construct a design representation. Various constraints

are associated with these object-types; once an object-type is instantiated, its constraints

are subject to constraint propagation, as in Rubber Airplane. Specific constraints associated

with the attachment of pairs of objects are also provided in the Concept Modeler, though

the notion of a general "design link" data structure is not present. Furthermore, while the

Concept Modeler supports the interactive addition of new constraints to a design represen-

tation, it does not allow the user to define new object-types. Its use is therefore restricted

to those design problems which utilize only the component-types which are provided by the

program.

Two object-oriented design systems which do support the definition of new component-

types are the commercial systems discussed in Chapter 1, ICAD Inc.'s ICAD program [29]

and Wisdom System's Concept Modeller [24]. Again, though, unlike Rubber Airplane, no

explicit data structures for managing component interactions are provided. Instead, com-

ponent interactions are modeled based on specification of a part/sub-part hierarchy among

components, similar to the superior/inferior component designations supported by Rubber

Airplane. Objects higher up in the part/sub-part tree may access any of the parameters

associated with their sub-parts, and it is in this manner that component dependencies are

implemented. Thus, the sub-parts of a given component must be specified simultaneously

with the component definition. Rubber Airplane's use of pattern-directed linkage specifi-

cation allows component interactions to be described in a more general fashion, yielding
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greater code modularity.

As indicated in Chapter 1, ICAD and the Concept Modeller utilize rule-based backward-

chaining to perform demand-driven computations, thereby gaining computational efficiency.

Constraint propagation, as employed by Rubber Airplane, uses forward-chaining, such that

constraint calculations are performed whenever possible, rather than whenever necessary.

In order to succeed, however, backward-chaining effectively requires the specification in

advance of a complete computational path for each of the parameters; efficiency is thus

gained at the expense of flexibility.

Finally, it should be pointed out that none of the above systems provides any special

features for handling time-dependent phenomena. Indeed, of all the systems discussed

in Chapter 1, only the THINGLAB program [5] includes any provisions for time-varying

parameters. Recall that THINGLAB combines constraint propagation with an object-

oriented programming environment for developing computer-based simulations. As reported

in Reference [23], recent extensions to THINGLAB have included the addition of a special

variable representing time, which cannot itself be constrained, but may be referenced by

the constraints on other parameters. This is, of course, a completely different approach

from that taken here, which supports only step-wise time-dependency of attributes and

constraints.

5.3 Suggestions for Further Research

5.3.1 Program Enhancements

As indicated in Section 5.1.3, the prototype implementation of the concepts presented here,

Rubber Airplane, suffers from a number of performance deficiencies. In the sections below,

means for addressing some of these issues are presented. Additional features which would

enhance the use of the program as a design tool are also discussed.

Symbolic Algebra

In Section 5.1.3, certain difficulties deriving from the current program's use of numerical

techniques for solving computational loops are discussed. For this reason, supplementing the

current approach with analytical techniques for constraint inversion and the transformation

of systems of equations is suggested. Note that symbolic techniques are the only means by

which constraint redundancies, as discussed in Section 5.1.3, may be detected in advance.

As indicated in Chapter 1, though, such techniques can be computationally expensive, and

are not always applicable to the general types of constraints currently supported by Rubber

Airplane. Given adequate initial conditions, a well-posed problem should always succumb

to numerical solution; symbolic methods are not as rigorous. For this reason, research into
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hybrid systems, which utilize numerical methods in cases where analytical techniques are

inefficient or inapplicable, might yield the best results.

Linked Designs

As discussed in Section 5.1.3, the ability to set up links between two different Rubber

Airplane designs, such that attribute values may be transferred from one design to another,

would be of use in cases where design tasks may be decomposed into multiple, separate

designs. Such a feature could have been exploited in the second test-case design, which

employed an auxiliary design for determining the internal arrangement of the fuselage cabin

(see Chapter 4). The ability to establish inter-design connections would also enable the

representation of vehicles such as the aerospace plane, which employ multiple modes of

operation over their mission profiles. Design states associated with each particular mode of

operation (e.g., for the aerospace plane, atmospheric operation and orbital operation) could

be assigned to a corresponding Rubber Airplane design, and dependency links could be

used to propagate the results of the various individual designs. In effect, multiple designs

would be able to share certain component and link instances-or at least some of their

attributes-while other design entities would be unique to a particular linked design.

Layered Constraints

As the solution to a design is developed, it is often desirable to improve the level of accuracy

with which parameter values are calculated, by replacing some of the analysis routines

with more rigorous versions of the same computations. In the current implementation, this

process can be performed by replacing a class-instance that implements one level of analysis

with an instance of a different class, which implements a more detailed form of the same

analysis. If some sort of annotation of such related classes were supported, though, this

process could be automated: at the user's request, a class-instance could be replaced by

an instance of the class which implements a more rigorous model of the same phenomenon.

If such a feature were available, it would not be necessary for the user to search the class

library for the appropriate replacement class and, in the case of link-classes, reestablish the

appropriate linkages.

Along similar lines, some means of supplying default values for attributes might be ad-

vantageous. Currently, it is possible to specify an initial value for an attribute by means

of the :value argument to the defattribute macro, but it is always the case that when

an attribute is instantiated, its value-supplier is set to :guess. Recall that the values of

attributes whose value-suppliers are :guess are not propagated; recall also that only at-

tributes whose value-suppliers are :guess may be computed via constraint propagation. It

might perhaps be useful to add another possible value-supplier, :default, such that the val-
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ues of attributes whose value-suppliers are :default may be propagated, but these values

may also be overridden by constraint calculations. Retraction of default-based computa-

tions may be problematic, but it can simplify the initial construction phases of a new design

model. Consider, for example, a hypothetical gear-deployed? discrete attribute, associ-

ated with a landing-gear component-class, intended for use in aircraft design problems.

Such an attribute would likely be designated as state-dependent, implying that multiple

state-instances of the attribute should be created for the designs which incorporate this

component-class. Under most flight conditions, the value of this gear-deployed? attribute

should be "false"; only during takeoff and landing must the gear be deployed. This attribute

is thus a prime candidate for specification of a default value, which in this case would be

"false".

Improved Geometry Representation

Perhaps the most complicated aspect of defining component geometries (see Appendix B)

in the current implementation is the computation of relative object positions when multi-

ple geometric objects are combined to represent the geometry of a single component. As

mentioned in Chapter 1, the two commercial systems discussed there (ICAD Inc.'s ICAD

program and Wisdom System's Concept Modeller) support the symbolic description of rel-

ative object positioning. For example, one object part may be defined as being "above",
"below", or "in front of" another part, without the need to explicitly specify the mathemat-

ical relationship between the positions of the two objects. The addition of such capabilities

to Rubber Airplane would greatly simplify the task of component geometry specification.

To date, the types of geometric objects available in Rubber Airplane for describing com-

ponent geometries have proven adequate. These geometry-types are by no means exhaus-

tive, however. Some interesting research by Pentland [28] has suggested the use of so-called

"superquadrics" as a general-purpose object-type for modeling geometry: superquadrics

are solid bodies-the three-dimensional analog to two-dimensional superellipses [13]-which

may be arbitrarily deformed, twisted, and bent to depict a wide variety of shapes, including

most of those which have already been implemented for Rubber Airplane. The represen-

tational flexibility of superquadrics with respect to geometry seems particularly well-suited

to the representational flexibility of the component-modeling approach advocated here; in-

vestigation of the possible combination of these two approaches seems likely to yield useful

results.

Finally, recall that component geometry is based on attribute values. As attribute

values are modified, the geometry is updated to reflect the new values. As indicated in

Chapter 4, certain aspects of many design tasks are most easily accomplished by visual

examination of design geometry, in order to determine the "fit" of two or more components.
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In performing such tasks, trial-and-error manipulation of attribute values is required in

order to size the relevant components. One approach for simplifying these tasks would be

to make the association between attribute values and geometry display bi-directional rather

than uni-directional, such that modification of the geometry would cause corresponding

changes in attribute values, as well as the reverse. The resulting system would therefore

need to incorporate conventional CAD techniques for manipulating component geometry.

This is no easy task, but the resulting system could prove to be extremely powerful, insofar

as it would be required to integrate both parametric and geometric design.

Class Definition and Instantiation

Currently, Rubber Airplane requires that the user keep track of the dependencies among the

various design-classes himself, and that he be able to choose classes for instantiation with

little assistance from the program. The use of an improved interface for defining design-

entity classes, and for browsing through the class library, was recommended in Section 5.1.3.

Such an interface could automatically display inheritance dependencies, as well as perform

searches through the class library based on the names and documentation associated with

classes and their attributes and constraints, in order to find those classes which implement

some desired feature.

In order to simplify the incorporation of design links and the components they relate,

the addition of pre-defined "packages" or "assemblies" of Rubber Airplane components and

links has been suggested. The difficulty associated with design links lies in recognizing when

all of the required components are present. Furthermore, for the naive user, lack of knowl-

edge of the available link-classes can lead to the absence of required analyses from a design

model. An additional means for simplifying link instantiation, then, is to monitor all class

instantiations, and compare the set of instantiated classes with the linkage specifications of

all defined link-classes. When the current contents of a design are sufficient to instantiate

a given link-class, the user may then be given the opportunity to add the corresponding

instance, based on this suggestion from the program. Such computer-generated assistance

could be particularly beneficial to novice users; one potential disadvantage to such an ap-

proach, though, is the overhead associated with monitoring the linkage specifications of all

the defined link-classes.

5.3.2 Rubber Airplane as a Platform for Other Systems

The approach to computed-aided conceptual design outlined in this document also lends

itself to the development of layered systems for engineering problem-solving. For instance, a

top-level program might act as an interface between the user and a program such as Rubber

Airplane, guiding the user through a design task, automatically incorporating component-

193



and link-classes into a design based on responses from the user. In cases where the top-

level program cannot accommodate a user's requests, though, he may directly access the

components and links which comprise the design, taking advantage of the flexibility of the

underlying design representation.

One example of such an application might be an expert system for developing baseline

designs from high-level design specifications entered by the user. Once the baseline design

has been created, the user is free to adjust its parameters as necessary, relying on con-

straint propagation to ensure satisfaction of the governing equations. This baseline design

might be further modified through the addition of new representational elements, based on

design-entity classes. In this way, constraint-based component-modeling can be employed

to accommodate the performance limitations of the expert system.

An alternative approach would be to improve the performance of a general-purpose sys-

tem such as Rubber Airplane through the use of embedded systems. Serrano, in his doctoral

dissertation on the Concept Modeler [32], advocates the use of a "Conceptualizer" module

which utilizes domain-specific knowledge for a particular class of design problems to guide

both problem representation (i.e., class instantiation) and constraint propagation. To some

extent, Rubber Airplane already incorporates some domain-based knowledge, through its

use of the "computational loop" heuristic for detecting systems of equations. Serrano sug-

gests even greater use of domain-dependent knowledge-including, for instance, parameter-

specific heuristics-to improve program performance and provide computer-based decision

support during design development and evaluation.

5.3.3 Exploratory Design

In this dissertation, component-modeling and constraint propagation have been proposed

as means for implementing flexible computer aids for engineering conceptual design. In

investigating this premise, a prototype design tool has been developed, which has then been

used to implement a number of test case designs. Note, though, that the issue of concern

in this exercise was the ability of these techniques to support representative analyses from

the chosen problem domain of aerospace engineering.

The objective here, then, has been knowledge representation, and the prototype system

has demonstrated the successful application of this approach to modeling tasks in aerospace

conceptual design. An important aspect to consider, though, is the application of these

results to the conceptual design process. Conceptual design is an exploratory process;

knowledge representation is not. While the goal of this research has been the description of a

system for supporting exploratory design, the primary concern of the present work has been

concept definition and demonstration. Explicit testing of the prototype implementation

purely as a tool for performing conceptual design has not been performed. For this reason,
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the use of Rubber Airplane and related systems for additional exercises in conceptual design

is recommended. Only through repeated testing of novel approaches such as those advocated

here can their applicability to the unique demands of engineering conceptual design be fully

demonstrated.
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Appendix A

Dimensions and Units

A.1 Syntax

In Rubber Airplane expressions representing dimensions and units are input and displayed

as LISP strings. Non-dimensionality is denoted by the empty string, "". The syntax for

dimension- and unit-strings involving but a single dimension or unit is:

"<symbol>< whitespace *>< exponent>"

where "<symbol>" is a symbol representing the appropriate dimension or unit (see Ta-

bles A.1- A.6), "<whitespace*>" indicates the optional presence of one or more whitespace

characters (spaces or tabs), and "<exponent>" is a non-zero integer denoting the exponent

for the dimension or unit designated by "<symbol>". Note that indication of sign is re-

quired only for negative exponents (though it may be specified for positive exponents, as

well), and that if the exponent is unity, it may be omitted altogether. Thus, valid single-

dimension dimensions expressions include "1 +1"' (corresponding to dimensions of length),

"1 +3" (corresponding to length cubed, or volume), and "t -1" (corresponding to inverse

time, or frequency). Note that, by omitting all optional elements, these example dimension-

strings may be re-written more succinctly as "1", "13", and 't-is, respectively. Similarly,

the example unit-strings "it", "m3", and "s-I", refer to units of feet, cubic meters, and

inverse seconds, respectively.

If we define the syntactical elements of single-unit and single-dimension expressions as

the composite syntactical element, <single-expr>, i.e.,

<single-expr> = <symbol><whitespace *><exponent>

then the syntax for defining composite expressions, involving two or more dimensions or

units, may be concisely described as:

"<single-expr><whitespace><single-expr>... <whitespace><single-expr>"

196



where "<whitespace>" indicates the required presence of one or more whitespace charac-

ters. Thus, a composite dimension- or unit-expression is simply a LISP string containing a

sequence of single dimension- or unit-expressions, delimited by (required) whitespace char-

acters. Valid composite dimension expressions include "I +1 1 +1 t -2" (corresponding

to dimensions of force), "in +1 1 +1 t -2 1 -2" (corresponding to force per unit area,

or pressure), and "f +1 1 -2" (which uses the derived dimension for force, "f" (see Sec-

tion A.2), to again represent force per unit area). Omitting optional whitespace and expo-

nents, these expressions may be abbreviated as "Im 1 t-2", "Im 1 t-2 1-2", and "f 1-2",

respectively. Examples of valid composite unit expressions are "kg i s-2" and "lb ft-2",

corresponding to kilogram-meters per second-squared and pounds per square foot, respec-

tively.

Finally, note that multiple occurrences of the same unit or dimensions within a com-

posite expression, such as the two appearances of the symbol for length, "1", in the second

composite-dimensions example, "Im 1 t-2 1-2", is permitted. When computing conversion

factors, or comparing the dimensionality of two unit- or dimension-strings, all expressions

are converted into a canonical internal form, which explicitly combines such multiple oc-

currences.

A.2 Defined Dimensions

Dimensions currently defined for use in the Rubber Airplane program appear in Table A.1.

Note that, for the convenience of the user, a number of so-called derived dimensions

are provided, such as force ("f"), power ("P"), and voltage ("V"). Such dimensions may

be completely expressed in terms of the irreducible canonical dimensions, such as mass

("m"), length ("1"), time ("t"), and electrical charge ("q"). Derivations for all derived

dimensions are included in Table A.1.

A.3 Defined Units

A listing of the units available with Rubber Airplane is presented in Tables A.2- A.6. For

the sake of brevity, the various conversion relationships among the units are not included.

However, those units which are employed as internal units within the program are marked

by a dagger (t). Rubber Airplane data structures store the actual values of scalar attributes

in these internal units, converting to other units as required by constraints or when requested

for attribute display purposes.
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Dimension IName Derivation

"a" amount of substance
"A" angle
"c" capacitance q2 t2m-1l-2
"C" currency
"i" current qt-1
iq"l electric charge

"E" energy t- 2m1 2

"f " force t- 2m1
"L" inductance q~ 2m12

"1" length
"I" luminous intensity
"M" magnetic flux q~ 1t~m1 2

"B" magnetic inductance q-It-Im
"I" mass

"P" power t-3M1 2

"p" pressure t~ 2m1~1

"R" resistance q- 2 t-1m12

"T" temperature
"t"l time
"V" voltage q- t- 2m12

Table A.1: Listing of defined dimensions, showing derivation of composite dimensions.
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Type Unit Name
Time "cen" centuries

"dy" days
"dec" decades
"in" fortnights
"hr" hours
"us" microseconds

"m11" millennia
"iMs" milliseconds

"min" minutes
"lnsi nanoseconds
"pse" picoseconds
"si secondst

"wk" weeks
"yr" years

Length "Ang" angstroms
"AU" astronomical units
"cm" centimeters
"Re" earth radii

"fath" fathoms
"it" feet

"fim" femtometers
"f " fermis
"fr" furlongs
"in" inches

"km" kilometers
"ly" light years
"Mm" megameters

"Mpar" megaparsecs
"m" meterst

lum"S micrometers

"imi" miles

"mm" millimeters
"mil" mils
"um" nanometers
"NM" nautical miles
"par" parsecs
"pm" picometers
"SM" statute miles
"yd" yards

Table A.2: Listing of defined units for time and length. Dagger (t) denotes Rubber Airplane

internal units.
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Type Unit Name

Area "acre" acres
Volume "cc" cubic-centimeters

"gal" gallons
"1" liters
"ul" microliters
"m1" milliliters
"pt" pints
"qt" quarts

Velocity "fps" feet-per-second

"kt" knots
"c" light-speeds

"mph" miles-per-hour
Acceleration "g's" g's

Mass "AMU" atomic mass units
"Me" earth-masses
"me" electron-masses
"g" grams

"kg" kilogramst
"MT" metric tons
"ug" micrograms
"mg" milligrams
"ng" nanograms
"pg" picograms

"lbm" pounds-mass
"si" slugs
"Ms" solar-masses

Force "dyne" dynes
"kI" kilonewtons
"N" newtons

"lbf " pounds-force
Weight "kton" kilotons

"Mton" megatons
"oz" ounces
"ib" pounds
"ton" U.S. tons

Table A.3: Listing of defined units for area, volume, motion,
denotes Rubber Airplane internal units.

mass, and force. Dagger (t)
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Type Unit Name

Pressure "atm" atmospheres
"bar" bars
"kbar" kilobars
"kPa" kilopascals
"ksi" kilopounds-per-square-inch

"Mbar" megabars
"MPa" megapascals
"ubar" microbars
"mbar" millibars

"Pa" pascals
"psf" pounds-per-square-foot
"$psi" pounds-per-square-inch

Energy "Btu" British thermal units
"cal" calories
"ev"l electron volts
"erg" ergs

"" joules
"keV"n kilo-electron volts
"kcal" kilocalories
"kJ" kilojoules

"kTNT" kilotons of TNT
"kwh" kilowatt-hours
"I'MeV" mega-electron volts

"MTNT" megatons of TNT
"mJ" millijoules

"TNT" tons of TNT
Power "GW" gigawatts

"hp" horsepower
"kW" kilowatts
"MW" megawatts
"mW" millawatts
"W" watts

Table A.4: Listing of defined units for pressure, energy, and power. Dagger (t) denotes
Rubber Airplane internal units.
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Type Unit Name

Angular Measurement "deg" degrees
"rad" radianst
1rev" revolutions

Angular Velocity "rpm" revolutions-per-minute
Frequency "GHz" gigahertz

"Hz" hertz
"kHz" kilohertz
"MHz" megahertz

Temperature "deg-C" degrees-Centigrade
"deg-F" degrees-Fahrenheit

"IX,' degrees-Kelvint

"R"I degrees-Rankine
Viscosity "cp" centipoise

"up" micropoise
"mp" millipoise

"'poise"' poise
Currency "ct" cents

"1$"_ dollarst

Amount of Substance "gm-mol" gram-moles
"kg-mol" kilogram-moles

"mol" molest
"ib-mol" pound-moles

Luminous Intensity "cd" candelast

Table A.5: Listing of defined units for angles, frequency, temperature, etc. Dagger (t)
denotes Rubber Airplane internal units.
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Table A.6: Listing of defined units for electromagnetic quantities.
Rubber Airplane internal units.

Dagger (t) denotes

203

Type Unit Name

Electrical Charge "C" coulombst
"e" electron-charges

"mc" millicoulombs

Electrical Current "A" amperes
"kA" kiloamperes
"uA" microamperes
"mA" milliamperes

Voltage "kV" kilovolts
"MV" megavolts
"my" millivolts
"V"f volts

Resistance "kohm" kilohms
"Mohm" megohms
"ohm" ohms

Conductance "mho" mhos
Capacitance "F" farads

"uF" microfarads
"mF" millifarads
"nF" nanofarads
"pF" picofarads

Inductance "H" henrys
"uH" microhenrys
"mH" millihenrys

Magnetic Flux "Wb" webers
Magnetic Inductance "G" gauss

"kG" kilogauss
"uG" microgauss
"mG" milligauss
"T" teslas



Appendix B

Component Geometry

B.1 Overview

As mentioned in Chapter 2, Rubber Airplane also provides a means for describing and

displaying the three-dimensional geometry of design components. Component geometries

are defined using the def geometry macro, which associates a set of geometric objects with a

specific component-class. The properties of these geometric objects-position, orientation,

and dimensions-may be specified as constants, or related to the corresponding component-

class's attributes. Geometry specifications are inherited, and, in cases where more than one

of a component-class's superclasses have a geometry specification, the class precedence list

(see Chapter 2) is used to determine which specification to apply.

A large number of three-dimensional object-types are provided, which may be combined

as needed in constructing component geometries. These object-types include:

o boxes with arbitrary length, width, and height;

o cones with arbitrary cross-section and inclination;

o cylinders with arbitrary cross-section, inclination, and taper;

a cylinders with a different cross-section for each face;

o bodies of revolution with arbitrary cross-section;

o partial bodies of revolution with arbitrary cross-section and included angle;

o tori with arbitrary radius and cross-section; and

o partial tori with arbitrary radius, cross-section, and included angle.

In addition, so-called "symmetric cylinders" are also provided. Whereas normal cylinders

are defined as the (possibly tapered) projection of a cross-section along the length of an
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arbitrary vector, symmetric cylinders apply the projection along a reflected vector, as well.

Symmetric cylinders are particularly useful in representing aircraft wing geometry.

As can be seen from the above description of object-types, many rely on description

of one or more associated cross-sections in order to complete their specifications. For this

reason, Rubber Airplane also provides mean for defining various types of two-dimensional

curves to be associated with three-dimensional objects. Supported curve-types include:

" rectangles and ellipses;

* semi-rectangles and semi-ellipses;

" regular polygons;

* airfoil cross-sections based on NACA profiles; and

" generalized open and closed curves based on sets of scaled coordinates for the corner

points.

Note that open curves are required for the definition of bodies of revolution. All other

object-types which are based on cross-sections-cones, cylinders, and tori-employ closed

curves. Like the properties of the three-dimensional objects with which they are associated,

properties of cross-sectional curves (e.g., dimensions and scaling) may also be related to the

attributes of the component-classes for whose geometry they are employed.

Once a geometry specification has been associated with a component-class, instantiation

of the component-class also results in the creation of appropriate structures for displaying

the component's geometry as a wireframe drawing via the Rubber Airplane user interface

(see Appendix C). If the geometry is dependent upon the values of any of the component's

attributes, the display is automatically updated whenever the values of these attributes are

changed. Example geometry displays appear in Figures insert figure references here.

B.2 Definition of Component Geometries

As indicated above, geometry specifications are associated with component-classes by means

of the def geometry macro. The syntax for such specifications is as follows:

(defgeometry component-class

(object-name object-type

(property-keyword value-expression)

(property-keyword value-expression)

(object-name object-type
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(property-keyword value-expression)

(property-keyword value-expression)

The first argument to defgeometry, the component-class argument, should be a symbol

naming the component-class with which the geometry specification is to be associated. This

argument is followed by one or more lists of object specifications, each of which describes

one of the three-dimensional objects which will be combined to represent the component's

geometry.

The first element of each object specification, the object-name argument, should be a

symbol representing the name of the three-dimensional object. Each of the objects com-

prising a component's geometry must have a unique object-name.' Next, the object-type

argument must be specified. The value of this argument should be a symbol which identifies

the type of geometric object which is to be employed. The object-types-also referred to

as geometry-classes-which are currently supported are:

cone elliptical-cone
cylinder two-curve-cylinder

symmetric-cylinder two-curve-symmetric-cylinder

body-of-revolution partial-body-of-revolution

torus partial-torus
box

As indicated above, "symmetric cylinders" project their cross-sections in two symmetric

directions. "Two-curve" cylinders have a different cross-section at each end, with the cross-

section varying linearly between the two curves along the axis of projection. The adjective

"partial" is used here to refer to bodies of revolution and tori which do not revolve their

cross-sections through a complete revolution about the axis of rotation, but only through

some specified included angle. Finally, note that "elliptical cones" refer here to cones which

vary the tapering of their cross-sections elliptically along the axis of projection, rather than

linearly.

The remainder of each geometry object specification consists of pairings of property-

keyword and value-expression arguments. The property-keyword arguments name the var-

ious properties associated with the geometry-class indicated by the specification's object-

type argument, and the corresponding value-expression arguments are used to relate these

properties to the attributes of the component-class whose geometry is being defined. The

iCurrently, these object-name arguments serve no purpose other than code annotation. Eventually, they

could be used to allow one object-specification to reference another. For instance, one object could be a

reflection of another about some arbitrary plane of symmetry. The ability of a component-class's geometry

objects to reference one another could also be used to simplify the positioning of adjacent objects.

206



Property Description

:position-x X-coordinate of the object's position.
:position-y Y-coordinate of the object's position.

:position-z Z-coordinate of the object's position.

:rotation-z Rotation of the object's coordinate axes about the x-axis.

:rotation-y Rotation of the object's coordinate axes about the y-axis.

:rotation-x Rotation of the object's coordinate axes about the z-axis.

Table B.1: Properties common to all classes of geometric bodies.

properties associated with each of the supported object-types are listed in Tables B.1-B.4.

Table B.1 lists the properties which are common to all geometry-classes. Table B.2 identi-

fies those properties which are common to two sets of related geometry-classes: cones and

cylinders, and tori and bodies of revolution. Tables B.3 and B.4 list the properties which

are specific to the individual geometry-classes; in particular, Table B.4 lists those properties

which are specific to "two-curve" cylinders.

For each property listed in the specification, a corresponding value-expression must be

supplied. Three forms of value-expression arguments are supported. Each value-expression

argument may assume one of three types of values:

e a constant,

" a symbol, or

" a LISP lambda-expression.

If a value-expression argument is expressed as a constant, then the corresponding property

of the geometry-class is assigned the fixed value of this constant. If a symbol is provided,

this symbol should name one of the attributes associated with the component-class whose

geometry is being defined; the value of the corresponding property is equated with the value

of the attribute.

In the LISP programming language, lambda-expressions provide a means for defining

unnamed functions. The format of a lambda-expression is as follows:

(lambda (argl arg2 ... )

body)

where argl, arg2, ... are symbols naming the arguments to the function, and body is a

sequence of LISP expressions which perform some series of computations based on the

values of those arguments. In the context of defgeometry value-expression arguments,
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Object Type [Properties [Description

:normal-x X-component of the vector normal to the curve which
forms the cross-section of the cone or cylinder.

:normal-y Y-component of the vector normal to the curve which
forms the cross-section of the cone or cylinder.

:normal-z Z-component of the vector normal to the curve which
forms the cross-section of the cone or cylinder.

:base-x X-component of the vector which points in the direction
of the base of the curve which forms the cross-section of
the cone or cylinder.

:base-y Y-component of the vector which points in the direction
of the base of the curve which forms the cross-section of
the cone or cylinder.

:base-z Z-component of the vector which points in the direction
of the base of the curve which forms the cross-section of
the cone or cylinder.

:project-x Distance along the x-axis by which the curve is to be
projected.

:project-y Distance along the y-axis by which the curve is to be
projected.

:project-z Distance along the z-axis by which the curve is to be
projected.

:root-twist Rotation of the cross-section at the base of the cone or
cylinder.

:tip-twist

:revolve-x

Rotation of the cross-section at the end of the
cylinder.

X-component of the vector representing the
tion for the body of revolution.

cone or i

axis of rota-

: revolve-y Y-component of the vector representing the axis of rota-
tion for the body of revolution.

:revolve-z Z-component of the vector representing the axis of rota-
tion for the body of revolution.

:start-x X-component of the vector indicating the direction in
which the the first cross-section of the body of revolution
should be drawn.

:start-y Y-component of the vector indicating the direction in

which the the first cross-section of the body of revolution
should be drawn.

:start-z Z-component of the vector indicating the direction in
which the the first cross-section of the body of revolution

I _ should be drawn.

Table B.2: Properties shared by particular classes of geometric bodies.
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Object Name Properties Description

box :x-dimension Length of the box parallel to the
x-axis (prior to rotation).

:y-dimension Length of the box parallel to the
y-axis (prior to rotation).

:z-dimension Length of the box parallel to the
z-axis (prior to rotation).

cone, :curve A closed curve for the cross-
elliptical-cone section of the cone.

cylinder, :curve A closed curve for the cross-
symmetric-cylinder section of the cylinder.

:taper Fractional taper to be applied to
the cross-section along the axis
of projection.

body-of-revolution :curve An open curve for the cross-
section of the body of revolu-
tion.

partial-body-of-revolution :curve An open curve for the cross-
section of the body of revolu-
tion.

:included-angle Included angle of rotation from
the starting cross-section to the
final cross-section.

torus :curve A closed curve for the cross-
section of the torus.

:radius Radius from the axis of rotation
about which the cross-section is
to be revolved.

partial-torus :curve A closed curve for the cross-
section of the torus.

:radius Radius from the axis of rotation
about which the cross-section is
to be revolved.

:included-angle Included angle of rotation from
the starting cross-section to the
final cross-section.

Table B.3: Additional properties for specific geometry classes.
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Property Description

:curve-i A closed curve for the cross-section of the base of the cylinder.

:normal-xi X-component of the vector normal to the curve which forms the
cross-section of the base of the cylinder.

:normal-yi Y-component of the vector normal to the curve which forms the
cross-section of the base of the cylinder.

:normal-zi Z-component of the vector normal to the curve which forms the cross-
section of the base of the cylinder.

:base-xi X-component of the vector which points in the direction of the base
of the curve which forms the cross-section of the base of the cylinder.

:base-yi Y-component of the vector which points in the direction of the base
of the curve which forms the cross-section of the base of the cylinder.

:base-zi Z-component of the vector which points in the direction of the base
of the curve which forms the cross-section of the base of the cylinder.

:twistI Rotation of the cross-section of the base of the cylinder.

curve-2 A closed curve for the cross-section of the end of the cylinder.

:normal-x2 X-component of the vector normal to the curve which forms the
cross-section of the end of the cylinder.

:normal-y2 Y-component of the vector normal to the curve which forms the
cross-section of the end of the cylinder.

:normal-z2 Z-component of the vector normal to the curve which forms the cross-
section of the end of the cylinder.

:base-x2 X-component of the vector which points in the direction of the base
of the curve which forms the cross-section of the end of the cylinder.

:base-y2 Y-component of the vector which points in the direction of the base
of the curve which forms the cross-section of the end of the cylinder.

:base-z2 Z-component of the vector which points in the direction of the base
of the curve which forms the cross-section of the end of the cylinder.

:twist2 Rotation of the cross-section of the end of the cylinder.

Table B.4: Additional properties for the two-curve-cylinder and two-curve-symmetric-
cylinder geometry classes.
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lambda-expressions are employed to relate the values of geometry object properties to the

result of some arbitrary computation, to be performed based on the values of some subset

of the attributes defined for the component-class with which the def geometry specification

is associated. The attributes to be related are indicating by naming them in the argument

list (i.e., the argI, arg2, ... elements) of the lambda-expression; the body of the expression

is then applied to compute a value for the geometry object's property whenever the values

of any of the corresponding attributes change.

B.3 Curve Specification

As indicated in Section B.1, a number of geometry-classes depend upon specification of

a cross-section. Cross-sections are represented as properties of the appropriate geometry-

classes, as indicated in Tables B.3 and B.4. The format for specifying cross-sectional prop-

erties is slightly different from that of other geometry-object properties:

(object-property-keyword curve-type

(curve-property-keyword value-expression)

(curve-property-keyword value-expression)

As with normal property-specifications, the first element of the specification, the object-

property-keyword, is a keyword naming the appropriate property of the geometry-class being

specified. For cones, single-curve cylinders, bodies of revolution, and tori, the appropriate

keyword for defining the cross-section is : curve. For two-curve cylinders, two cross-sections

must be specified; thus, two keywords are required, :curve-i and :curve-2.2

The second element of the cross-section specification, the curve-type argument, should

be a symbol naming the curve-type to be used for the cross-section. Two sets of curve-

types are provided, one for representing closed curves and another for open curves. The

curve-types which are currently supported for defining closed curves are:

airfoil-profile rectangle ellipse
regular-polygon square pentagon

hexagon octagon circle

closed-curve

The airfoil-profile curve-type is based upon a database of NACA airfoil thickness and

mean-line distributions, developed in conjunction with the vortex-lattice aerodynamic anal-

ysis routines discussed in Chapter 4. The curve-types which are provided for defining open

curves are:
2Note that the projection of the cylinder extends from the :curve-I cross-section to the :curve-2 cross-

section. Note also that it is required that the two curves which serve as the cross section of the two-curve
cylinder must have the same number of corner points. Examples of valid pairings are: an ellipse and a circle,
two airfoil profiles, and a square and a rectangle.
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Curve Name Properties Description

airfoil-profile :thickness Thickness distribution struc-
ture.

:mean-line Mean-line distribution struc-
ture.

:mean-line-scaling Scaling of the mean-line, nor-
mal to the chord.

:chord Chord of the airfoil.

rectangle, ellipse :width Width of the rectangle or el-
lipse.

:height Height of the rectangle or el-
lipse.

regular-polygon :number-of-sides Number of sides for the regular
polygon.

:radius Enclosing radius of the regular
polygon.

square, pentagon, hexagon, :radius Enclosing radius of the poly-
octagon, circle gon or circle.

closed-curve :points A list of sublists of the form
(z-coord y-coord), represent-
ing a sequential specification
of the corner points of a gen-
eralized closed curve.

:scaling-x Scaling factor to be applied to
the x-coordinates appearing in
the :points list.

:scaling-y Scaling factor to be applied to
the y-coordinates appearing in
the :points list.

Table B.5: Defined properties for closed curves.

semi-rectangle semi-ellipse semi-circle closed-curve

Note that the closed-curve and open-curve curve-types allow arbitrary curves, based

upon scaled lists of corner points, to be defined. Recall also that, as indicated above, open

curves are required for specifying cross-sections of bodies of revolution. All other geometry-

classes which require cross-sections employ closed curves.

The remaining elements of the cross-section specification, the curve-property-keyword

and value-expression pairings, allow the properties of the selected curve-type to be related

to the values of the attributes of the component-class whose geometry is being defined. A

listing of the properties associated with the various closed-curve curve-types is presented in

Table B.5. Properties associated with the open-curve curve-types appear in Table B.6. The
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Curve Name Properties Description

semi-rectangle, :width Width of the semi-rectangle or semi-
semi-ellipse ellipse (i.e., the half-width of the cor-

responding full rectangle or ellipse).

:height Height of the semi-rectangle or semi-
ellipse.

semi-circle :radius Radius of the semi-circle.
open-curve :points A list of sublists of the form (z-

coord y-coord), representing a sequen-
tial specification of the corner points
of a generalized open curve.

:scaling-x Scaling factor to be applied to the x-
coordinates appearing in the :points
list.

:scaling-y Scaling factor to be applied to the y-
coordinates appearing in the :points
list.

Table B.6: Defined properties for open curves.

value-expression arguments of the cross-section description are specified in the same manner

as for object descriptions, using constants, attribute names, and lambda-expressions.

B.4 Examples

The first example component-class geometry definition, presented in Figure B.1, employs a

body of revolution to represent the geometry of a fuselage-mounted radome. The definition

of the component-class is included in Figure B.1, so that the attribute references in the

def geometry specification may be identified. A semi-ellipse is chosen as the cross-section

for the body of revolution, whose dimensions are obtained from the height and diameter

attributes of the fuselage component-class. The z-axis serves as the axis of revolution, and

the first cross-section is drawn parallel to the x-axis. The geometry of an actual instance of

this radome component-class is depicted in Figure B.2. (For further details on the Rubber

Airplane window-based interface, see Appendix C).

A somewhat more complicated example appears in Figures B.3 and B.4. In Figure B.3,

the definition of a fuselage component-class is presented. As indicated in the def geometry

specification presented in Figure B.4, three geometry-classes are combined in order to repre-

sent the geometry of this component-class. A cylinder is used to represent the cabin portion

of the fuselage. The nose is represented by an elliptically-tapered cone. The tail section is

represented by a conventional cone, which has been tilted upwards so that its upper surface

is coplanar with the top of the cylinder used for the cabin section.
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(defcomponent radome

((radius :documentation "Horizontal radius of the radome."

:low-value 0.5 :order-of-magnitude 5 :high-value 10

:value 3 :dimensions "1" :units "Im")
(diameter :documentation "Horizontal diameter of the radome."

:low-value 1 :order-of-magnitude 10 :high-value 20
:value 6 :dimensions "1" :units "Im")

(height :documentation "Vertical dimension of the radome."

:low-value 0.1 :order-of-magnitude 1 :high-value 5

:dimensions "1" :units "im"))

(design-component)
(:category structures surveillance)
(:documentation

"Attributes represent a radome with elliptical cross-section."))

(defconstraint (radome radome-diameter) (diameter "im") ((radius "I"))

"Constrains the radome's diameter to be twice its radius."
(* 2 radius))

(defgeometry

(ellipsoid

radome

body-of-revolution

(:curve semi-ellipse

(:width diameter)
(:height height))

(:revolve-x 0) (:revolve-y 0) (:revolve-z 1)

(:start-x 1) (:start-y 0) (:start-z 0)

(:position-x position-x)

(:position-y position-y)

(:position-z position-z)

(:rotation-x 0) (:rotation-y 0) (:rotation-z 0)))

Figure B.1: LISP definition for the radome component-class, including geometry specifica-
tion.
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Attribute Name

CG-X
CG-Y
CG-z
Diameter
Height
Mass
Moment-X
Moment-Y
Moment-Z
Position-X
Position-Y
Position-Z

,]Display Window
RA> Hew value for
I

Status

U

Component: Radome

Value (Units)

0.000 m
0.000 "
0.000 M

23.00 ft
3.000 ft

|3.500,e+03 lbH
10.00 kg M
10.00 kg M
10.00 kg n
0.000 M
0.000 M
0.000 m

Conent

Mass@Radome (in lbn): 3500

Command Menu

Display current design
Display control panel

Add design state
Select focus state
Display all designs
Begin a new design
Restore a design

Display defined units
Update geometry sketch
Restore visibilities

Display library

Rubber Airplane

Top view Oblique view

Side view Front view

Figure B.2: Screen image depicting an instance of the radome comoponent-class.
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Note that elliptical cross-sections have been chosen for each of the three geometry ob-

jects, the dimensions of which are derived from the height and width attributes of the

fuselage component-class. The normal to each of these cross-sections is the x-axis; the

base of each cross-section is in the direction of the z-axis. Each of the three geometry objects

is projected along the x-axis according to the corresponding cabin-length, nose-length,

and tail-cone-length attributes. A lambda-expression has been employed to tilt the cone

representing the tail section in the z-direction, by a distance of half the height attribute.

Note also the use of lambda-expressions to determine the positions of the various geometry

objects, and to change the sign of the nose-droop attribute for the :project-z property

of the elliptical cone which represents the nose of the fuselage. A screen image displaying

an instance of the fuselage component-class is presented in Figure B.5.
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(defcomponent fuselage

((cabin-length
:documentation "Length of the cabin portion of the fuselage."

:low-value 2 :order-of-magnitude 10 :high-value 50

:dimensions "1" :units "Im")

(nose-length

:documentation "Length of the nose portion of the fuselage."

:low-value 0.5 :order-of-magnitude 5 :high-value 10 :value 3

:dimensions "1" :units "Im")

(nose-droop
:documentation
"Vertical droop of the nose leading edge from the centerline."

:low-value 0.5 :order-of-magnitude i :high-value 5 :value 0.75

:dimensions "1" :units "Im")

(tail-cone-length
:documentation "Length of the tail portion of the fuselage."

:low-value 0.5 :order-of-magnitude 5 :high-value 10 :value 3

:dimensions "1" :units "Im")

(total-length
:documentation "Total length of the aircraft fuselage."

:low-value 4 :order-of-magnitude 20 :high-value 70 :value 16

:dimensions "1" :units "im")

(width
:documentation "Width of the aircraft fuselage."

:low-value 1 :order-of-magnitude 5 :high-value 15 :value 2

:dimensions "1" :units "Im")

(height
:documentation "Height of the aircraft fuselage."

:low-value 1 :order-of-magnitude 5 :high-value 15 :value 2

:dimensions "1" :units "Im"))

(design-component)
(:category structures fuselage)

(:documentation "Attributes and constraints represent a simple

cylindrical aircraft fuselage."))

(defconstraint (fuselage length) (total-length "im")

((cabin-length "im") (nose-length "im") (tail-cone-length "im"))

"Calculates the total length of the fuselage based on the length of the

cabin, nose, and tail-cone sections."

(+ cabin-length nose-length tail-cone-length))

Figure B.3: LISP definition for the fuselage component-class.
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(defgeometry fuselage

(cabin cylinder

(:curve ellipse (:width width) (:height height))

(:normal-x 1) (:normal-y 0) (:normal-z 0)

(:base-x 0) (:base-y 0) (:base-z 1)

(:taper 1)

(:project-x cabin-length) (:project-y 0) (:project-z 0)

(:root-twist 0) (:tip-twist 0)

(:position-x (lambda (position-x cabin-length)

(- position-x (/ cabin-length 2))))

(:position-y position-y) (:position-z position-z)

(:rotation-x 0) (:rotation-y 0) (:rotation-z 0))

(tail-cone cone

(:curve ellipse (:width width) (:height height))

(:normal-x 1) (:normal-y 0) (:normal-z 0)

(:base-x 0) (:base-y 0) (:base-z 1)

(:project-x (lambda (tail-cone-length) (- tail-cone-length)))

(:project-y 0) (:project-z (lambda (height) (/ height 2)))

(:root-twist 0) (:tip-twist 0)

(:position-x (lambda (position-x cabin-length)

(- position-x (/ cabin-length 2))))

(:position-y position-y) (:position-z position-z)

(:rotation-x 0) (:rotation-y 0) (:rotation-z 0))

(nose elliptical-cone

(:curve ellipse (:width width) (:height height))

(:normal-x 1) (:normal-y 0) (:normal-z 0)

(:base-x 0) (:base-y 0) (:base-z 1)
(:project-x nose-length) (:project-y 0) (:project-z 0)

(:root-twist 0) (:tip-twist 0)

(:position-x (lambda (position-x cabin-length)

(+ position-x (/ cabin-length 2))))

(:position-y position-y) (:position-z position-z)

(:rotation-x 0) (:rotation-y 0) (:rotation-z 0)))

Figure B.4: LISP specification of the geometry for the fuselage component-class.
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Attribute Name

Cabin-Length
CG-X
CG-Y
CG-Z
Height
Mass
Moment-X
Moment-Y
Moment-Z
Nose-Droop
Nose-Length
Position-X
Position-Y

Display Window

Status Value (Units)

35.00
0.000
0.000
0.000
7.000
1.000

10.00
10.00
10.00

500.0
12.00
0.000
0.000

Comment

ft
M
M
m
ft
kg
kg m
kg m
kg m

e-03 ft
ft
m
m

RA> New value for Nose-DroopeFuselage (in ft): .5

Command Menu

Display current design
Display control panel

Add design state
Select focus state
Display all designs
Begin a new design
Restore a design

Display defined units
Update geometry sketch
Restore visibilities

Display library

Rubber Airplane

DisplayXattributes
'nange vIii firy

Restore visibility

Top view Oblique viewU o+0::

Side view Front view

E T F l comM 

Figure B.5: Screen image depicting an instance of the fuselage comp one nt- class.
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Appendix C

User Interface

C.1 Overview

As indicated in previous chapters, definitions of design-entity classes are specified using a

text editor, such as the Lisp Machine Zmacs editor. Once these classes have been defined,

however, the Rubber Airplane window-based interface may be employed to create and

modify instances of these classes when modeling a design problem. While a complete

description of this interface is not appropriate here, this appendix is intended to provide a

brief account of its general features.

The Rubber Airplane interface consists of five basic elements:

" a command menu, for initiating various top-level tasks;

" a scroll window, for displaying textual information;

" an interaction window, for providing messages to the user, and for obtaining input

from the user based on program prompts;

" a three-dimensional geometry display, for graphically depicting the components of a

design; and

" the standard Lisp Machine "who line" window, for documenting the available mouse-

based commands, based on the current position of the mouse.

The location of these various elements in the standard Rubber Airplane screen configuration

is shown in Figure C.1. In the sections which follow, the role of each of these interface

elements is discussed.

C.2 The Who Line

The "who line" is a basic part of the interface of all window-based applications on the

Lisp Machine [33]. It provides a standard means for providing on-screen documentation
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Units Defined tCo ..and M

Dimensions Display current desigr
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Rubber 4krplans,

Top view Oblique view

Side nw ront View

e~~~~ JX_ aoeua

Figure C.1: Standard Rubber Airplane screen configuration.

for mouse-based commands. The first line of the who line describes the actions which will

result from clicking each of the three buttons on the mouse, based on the current location

of the mouse. The second line allows the display of a additional documentation, as needed

(see, for example, Section C.6, below). As the mouse is moved over different elements of

the interface, the who-line documentation is updated as necessary to reflect the available

mouse-based commands corresponding to its changing position.

C.3 Command Menu

The command-menu window, in the upper right-hand corner of the screen image in Fig-

ure C.1, allows the user immediate access to a number of top-level operations. Menu items

are selected by pointing at them with the mouse, and clicking one of the three mouse-

buttons. Whenever the mouse is over one of the menu-items, corresponding documentation

is displayed in the who line.

Display current design. Selecting this first item in the command menu brings up

a listing-in the scroll window (see Section C.4)-of all of the component-, state-, and

link-instances associated with the current design. 1

'As indicated in Chapter 2, Rubber Airplane always maintains one of its active designs as the "current
design", so that design-specific operations, such as geometry display and focus-state selection, need not
require explicit specification of a design.
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Display control panel. Selecting this item causes the scroll window to display the

settings of various control switches for the current design. For each design, four such switches

are available:

Automatic Geometry Updating: This switch controls whether or not the geometry display

(see Section C.6) should automatically be updated whenever the values of the relevant

component attributes change. The default setting for this switch is "on".

Verbose Geometry Updating: If this switch is activated, a message is displayed in the in-

teraction window (see Section C.5) whenever a component's geometry is updated.

Initially, this switch is turned off.

Interactive Loop Detection: This switch controls whether or not interaction loop detection

(and solution), as discussed in Chapter 3, should take place. The default setting for

this switch is "on".

Verbose Loop Detection: If this switch is activated, a message is displayed in the interaction

window whenever a computational loop has been detected. The message lists the

attributes and constraints which form the loop. Initially, this switch is turned off.

From the control panel display, the settings of these control switches may be toggled.

Add design state. By selecting this menu item, the user may add a new design-state

instance to the current design. The user is prompted for a name for the new design state,

as well as its position in the ordered list of all the design states associated with the current

design.

Select focus state. This menu item allows the user to select any one of the current

design's design states as the focus state (see Chapter 2). Selecting this menu item with

the left mouse-button makes the design state which follows the current focus state in the

design's order list of states the new focus state. Clicking the middle mouse-button chooses

the state which precedes the current focus state as the new focus state. If the right mouse-

button is pressed, a menu of all of the design's design states is presented, from which the

desired focus state may be selected.

Display all designs. When this menu item is chosen, a listing of all of the designs

known to Rubber Airplane is displayed in the scroll window. This listing is mouse-sensitive,

and selection of a design from this listing will make it the current design. From this listing,

the user may also request that the contents and/or status of a design be copied into a

file, from which this information may be restored for use in subsequent Rubber Airplane

sessions.

Begin a new design. Selecting this item prompts the user for the name of a new

Rubber Airplane design, which is then made the current design.
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Restore a design. When this item is selected, the user is prompted for the name

of a file, from which a design may be loaded. The restored design then becomes Rubber

Airplane's current design.

Display defined units. Selecting this item causes a listing of all defined dimensions

and units to be displayed in the scroll window. (Note that this is the selected menu item

in Figure C.1.)

Update geometry sketch. If the Automatic Geometry Updating switch (see above)

has been disabled, selecting this menu item causes the geometry display for all of the current

design's components to be updated.

Restore visibilities. As indicated below, the display of each component's geometry

may be disabled by the user. Selecting this menu item re-enables the geometry display for

all components of the current design.

Display library. Selecting this item brings up a listing of the top-level category in

the Rubber Airplane library of design-entity classes. From this listing, the various sub-

categories may be displayed. For each category, the classes which have been defined for it

are also displayed; selecting a class's name with the mouse allows the class to be instantiated.

New design-entity instances are added to the current design.

C.4 Scroll Window

The scroll window enables the display of mouse-sensitive textual data in a scrolling field. If

an item of text is mouse-sensitive, moving the mouse over it will cause it to be highlighted:

a rectangular box will be drawn around it. In addition, appropriate documentation will

be displayed in the who line, describing the corresponding results of clicking each of the

mouse-buttons while over the highlighted text.

Various panels of information are available for display in the scroll window. As indicated

in the preceding section, a listing of all active designs may be displayed, as may be the

design entities of a single design. Similarly, a listing of defined dimensions and units may

be displayed. In addition, component-, state-, and link-instances, as well as their individual

attributes and constraints, may also be displayed.

Note that, in addition to the standard window configuration, as depicted in Figure C.1,

the scroll window may be enlarged by removing the geometry display. This alternative

configuration appears in Figure C.2.

In general, each of the three mouse-buttons has its own unique binding for each mouse-

sensitive item within the scroll window. Here, the term "binding" is used to refer to the

action which results from clicking a mouse-button. Thus, when a given item is highlighted,

each mouse-button yields a different result when pressed. There is, however, a set of con-
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Design: Wallflower
Design: Wallflower
Focus: TakeOff

Components (16) Attributes Constraints

Air-Conditioning 17 (12) 7 (0)
Avionics 17 (12) 7 (0)
Controls 11 (5) 4 (0)
Crew 18 (12) 7 (0)
Engines 50 (27) 2 (0)
torward-Landing-Ged 35 (15) 3 (0)
Fuel-System m 19 (7) 8 (0)
Fuselage 52 (22) 17 (0)
Horizontal 96 (53) 40 (0)
Payload 17 (12) 7 (0)
Radar-Equipment 17 (12) 7 (0)
Radome 45 (20) 13 (0)
Rear-Landing-Gear 36 (15) 3 (0)
Systems 17 (5) 7 (0)
Vertical 91 (27) 38 (0)
Wing 96 (63) 40 (0)

States (10) Attributes Constraints

TakeOff 65 (51) 44 (0)
Intermediate Climb 65 (51) 44 (0)
Cruise Out 65 (26) 44 (0)
Loiter 65 (25) 44 (0)
Post-Loiter Climb 65 (52) 44 (0)
Cruise In 65 (51) 44 (0)
Begin Descent 65 (59) 44 (0)
Begin Circle 65 (25) 44 (0)
End Circle 65 (53) 44 (0)
Landing 65 (53) 44 (0)

Links (33) Attributes Constraints

Aero: Wing&Horizontal 217 (152) 65 (8)
Attachment: Controls 9 (8) 3 (0)
Attachment: High Wing 5 (0) 2 (0)
Attachment: Tail 14 (0) 6 (0)
Attachment: Turboprops 14 (4) 3 (0)
Drag: Forward Gear 86 (37) 34 (0)
Drag: Fuselage 77 (37) 34 (0)
Drag: Horizontal (prof... 76 (37) 33 (0)
Drag: Radome 77 (37) 34 (0)
Drag: Rear Gear 86 (37) 34 (0)
Drag: Vertical (profile) 76 (37) 33 (0)

& Display Window
RH> Forward-Landing-Gear, an instance of class FORWARD-LANDING-GERR
I

Rubber Airplane
L: Display Object, M: Print Docuientation, H: Menu of operations

09/22/89 10:03:29AM MAK USER: Keyboard HIPPOCRENE FILE serving BP

Figure C.2: Alternative interface configuration, employing an enlarged scroll window.
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Attribute Name

Aspect-ratio
Attach-X
Attach-Y
Attach-Z
CG-X
CG-Y
CG-Z
Dihedral
Drag@Takeoff
Drag-InducedSTakeOff
Drag-ProfilesTakeOff
L-over-D@TakeOff
LifteTakeOff
MAC
MAC-nidspan
MAC-x
MAC-y
MAC-2
Mass
max-camber
max-t-over-c
Moment-X
Moment-Y
Moment-Z
Position-H
Position-HlSuperior
Position-Y
Position-YSuperior
Position-Z
Position-Z@Superior
Rate-of-Twist
Root-Chord
Root-Incidence
Root-Mean-Line
Root-Mean-Line-Scaling
Root-Thickness-Distrib...
Span
Sweep-LE
Sweep-MC
Sweep-QC
Sweep-TE
Taper-ratio
Tip-Chord
Tip-Incidence

Display Window

Status

U
C
C
C
U
6
0
U
G
G
C
B
B
C
C
C
C
C
C
C
C
G
8
8
U
U
C
U
C
U
U
C
U
U
U
U
U
C
C
U
C
U
C
C

RR> (* 3.281 45)
147.64499
RA> New value for SpansWing (in ft):
The object is 147.64499, ok7 Yes.

Component: Wing

Value (Units)

12.50
1.058 m
0.000 m
1.065 m

127.0 mm
0.000 m
0.000 m
2.000 deg

50.00 N
50.00 H
1.304 e+03 H

10.00
50.00 H
3.310 m
9.797 m
1.142 m
0.000 m
1.409 m
2.836 e+03 kg

33.09 e-03
179.6 e-03
10.00 kg m
10.00 kg m
10.00 kg m
1.060 m
0.000 m
0.000 m
0.000 m
1.067 m
0.000 m
0.000 deg m-1
3.757 m
6.000 deg

HACA a=1.0
600.0 e-03

HACA 64 3-018
|135.0 f

5.649 deg
4.350 deg
5.000 deg
3.045 deg

750.0 e-03
2.818 m
6.000 deg

Comment

Above suggested high value.

(* 3.281 45)

IRubber Airplane
L: Change Value, M: Change Units, R: Menu of operations

09/22/89 10:10:44AM MAK USER: Keyboard HIPPOCRENE FILE serving BP

Figure C.3: Use of the scroll window and the left
scalar attribute.

mouse-button to change the value of a

ventional types of actions which most scroll-window mouse-sensitive items support. For

example, clicking the right mouse-button almost always presents the user with a menu of

all possible actions which may be performed on the object or property associated with the

selected item. The middle mouse-button is primarily used for displaying the documentation

associated with objects. This use of the middle mouse-button is illustrated in Figure C.2:

in displaying a design, the middle mouse-button has been pressed in order to display the

documentation for the design's Forward-Landing-Gear component in the interaction win-

dow.

In the case of items which present the name of an object, the left mouse-button allows

the user to display additional information about the indicated object. For example, clicking

on the name of a component when displaying a design will cause the component display
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Figure C.4: Use of the scroll window and the left mouse-button to change the value of a

discrete attribute.

226

lesign
Janel
tte
ate
igns
;ign
.gn
Jnits
ketch
.ties
-y

U

ftr=_ Ucnri ME(Wo -_ U C>c X
PmmMwit

IM
la

ig
UN

G|q



to be replaced by a listing of the component's attributes. (Note, for example, the who-line

documentation for the left mouse-button in Figure C.2.) In the context of properties of

objects, the left mouse-button is typically employed to allow the user to change the value

of that property. For example, clicking on the value of an attribute prompts the user for a

new value. Figure C.3 illustrates the use of the right mouse-button to change the value of

a scalar attribute; the user is prompted for a new value for the attribute in the interaction

window. Figure C.4 illustrates its use in changing the value of a discrete attribute; in this

case, the user is presented with a menu of possible values, from which a new value for the

attribute may be selected.

As mentioned above, constraints may also be displayed via the scroll window. One

noteworthy feature of such constraint displays is the ability of the user to assign so-called

"trial values" to the attributes associated with the displayed constraint. The constraint itself

may then be solved using these trial values, but the results are not propagated through the

constraint network. Trial values thus allow constraints to be tested in isolation, for varying

values of their parameters. An example constraint display is presented in Figure C.5, where

the trial value of the constraint's Span attribute has been modified.

C.5 Interaction Window

As indicated in the preceding sections, the interaction window acts as a means for displaying

short messages, and for prompting the user for input. In Figure C.2, the interaction window

has been used to display the documentation string for a component-instance. In Figure C.3,

the interaction window has been used to read in a new value for a scalar attribute.

In addition, the interaction window also incorporates a standard Lisp read-eval-print

loop, enabling it to serve as a Lisp Listener window, as well: Lisp expressions typed into

the interaction window are automatically evaluated, and the results are displayed. Use

of the interaction window as a Lisp Listener is also illustrated in Figure C.3, where the

expression (* 3.281 45) has been evaluated prior to setting the scalar attribute's value.

Indeed, this expression has then been re-used in entering the new value for the attribute. 2

C.6 Geometry Display

As discussed in Appendix B, Rubber Airplane provides macros for describing the geometry

of design components in terms of their attributes. The geometry display portion of the

Rubber Airplane interface is used to present these component geometries to the user. Four

2 Note that not all prompts in the interaction window will accept LISP expressions as input; the scalar-
value prompt is a special case. When not prompting for input, however, the interaction window always

behaves as a normal Lisp Listener.
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Figure C.5: Use of the scroll window to display a constraint.
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Side view Front view
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JRubber Airplane
L: Select this component, M: Expand the drawing, R: Center the window on this position
Top view: miouse is at X =9.5000 m, Y=-0.9500 m, over object Fuselage.
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Figure C.6: Alternative interface configuration, employing an enlarged geometry display.

different views of a design's three-dimensional geometry may be displayed simultaneously,

showing three orthogonal views (front, side, and top), and one oblique view. These visual

images provide the designer with additional means for judging the merits of a given design

solution. Note that a screen configuration which enlarges the geometry display by hiding

the scroll window is available; this alternative configuration is depicted in Figure C.6.

This geometry display also supports additional interface features, beyond simple image

display. For example, icons are provided below each of the four view-specific windows, for

panning and zooming the displays, as well as for changing the orientation of the oblique

view. A set of icons at the bottom of the geometry display allows the views to be zoomed

simultaneously, and allows one or more views to be hidden, so that the remaining view(s)

may be enlarged. Furthermore, as the mouse is moved over the various displays, its position
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is tracked in the who line. When the mouse is over an orthogonal view, the coordinates

corresponding to its current location are indicated; when the mouse is over the oblique view,

the current rotation angles are displayed. In addition, when the mouse is over a specific

component, the component's geometry is highlighted by drawing a rectangular box around

it, and the name of the component appears in the who line. For example, in Figure C.6, the

mouse has been positioned over the design's Fuselage component, in the top-view display.

A rectangular box has been drawn around the component, and both the component's name

and the x- and y-coordinates of the mouse's position appear in the who line.

Clicking the mouse while it is over the geometry display also has various effects. Clicking

the middle mouse-button switches the screen configuration between the standard configu-

ration (see Figure C.1) and the configuration in which the geometry display is enlarged (see

Figure C.6). Clicking the right mouse-button causes the view to pan such that the view

becomes centered on the mouse's current position. If the mouse is over a component, click-

ing the left mouse-button presents a menu of operations which may be performed on the

component. (Note that this menu may be seen in Figure B.5 on page 219 of Appendix B.)

This menu allows the user to change the visibility of the component within the geometry

display-to suppress or restore its appearance-and to cause the component's attributes to

be displayed in the scroll window.
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