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Overbooking

- accepting reservations in excess
of capacity in order to minimize
empty seats on flights for which
demand existed

« offsets the effect of cancellations
and no-shows between now and

departure time

 trade off between the cost of
denied boarding vs. the cost of
spoilage



Denied Boarding

- passenger who holds a confirmed
reservation (with a valid ticket)
but is unable to board the plane
because the flight was oversold

« also refers to the event of a
passenger being denied boarding
Spoilage

- empty seats on a flight which was
closed out on the day of
departure



Cost of Denied Boarding

 cash or travel benefits (eg. free
tickets or travel vouchers)

 hotels, meals, transportation
costs (airport/hotel)

« goodwill

Cost of Spoilage

* revenue from the reserved seat
which went out empty



Objective:
Maximize Net Revenue

= Passenger Revenue
- Denied Boarding Cost

Alternative Objectives:

Minimize Probability of Denied
Boarding

Minimize Proportion of Denied
Boardings to Total Boardings



Problem: Given no-show rates of
each fare class which are
statistically different, how does
overbooking by fare class
compare with overbooking by
cabin capacity?



Overbooking by Cabin Capacity

» finds overbooking level or
authorized capacity, AU, by
dividing actual capacity by a
function of the aggregate
show-up rates of all fare classes

* allocates the reservation spaces
(equal to AU) to the different fare
classes by an optimization
method for seat inventory control



Integrated Overbooking/
Seat Inventory Control

 finds seat allocations by fare
class based on actual capacity

» overbooks the fare c'~ss
allocations to find the fare class
overbooking limits and then AU
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looked at several options of
overbooking by fare class

compared these options with
cabin overbooking using

simulations

used mean demand and standard
deviation, mean show-up rate
and fare of each fare class as
inputs to simulations
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1. Overbooking by Cabih Capacity

Example: Cap = 100 seats
NS =15%
OV =18%
AU =118 spaces

Use EMSR to find fare class limits

Y M B Q
X 35 23 40 46
S 12 7 12 14
F($) 320 290 250 170
BL 118 98 76 26
NP 20 22 50 -

BL = Booking Limit
NP = Nested Protection Level
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2. EMSR Fare Class Overbooking

« incorporates OVj into allocations

by deflating relative revenues to
account for different show-up
rates

» calculates protection levels and
adjusts for show-up differences
at the same time

Example:

Y M B Q
OV; g7 83 90 95
BL 112 100 80 27

NP 12 20 33 -
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3. Modified EMSR Overbooking

 uses passenger show-up
distribution instead of demand

distribution in allocation process

« overbooks actual seat allocations
by a function of the weighted
average of the fare class show-up
rates

Example:

<
=
I
o

BL 121 101 78 28
NP 20 23 S0 -
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4. Overbooking by
Partial Enumeration

« optimizes expected net revenue
using non-linear programming

formulation

Objective Function:
Max E[R] = > FiX;p; - DBC-E[DB]

st. D X;p; < CAP

where

R = net revenue

Fj =farein each classi

Xj = number of seats in class i

pi = mean show-up rate of class i
DBC = cost per denied boarding
DB = denied boarding
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not monotonically increasing in
each fare class --> may have
multiple optimal solutions

incorporates costs of denied
boardings

seat allocations are avplicable to
a distinct fare class structure
instead of a nested structure

distinct allocations are used as
" nesting variables

optimization requires an initial

solution



Example:

Y
BL 116
NP 31
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RS

20

=

65
45

20
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Simulation Scenario A:

NP

DB
SP

Low Demand
Low Standard Deviation
Low Show-up Rate
Low Fare
Cabin EMSR Mod.
EMSR
Y 118 112 121
M 98 100 101
B 76 80 78
Q 26 27 28
Y 20 12 20
M 22 20 23
B 50 53 50
1.97 0.37 3.43
3.98 5.14 3.21

31
20
45

0.60
7.29
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Simulation Scenario B:
Low Demand
Low Standard Deviation
High Show-up Rate
Low Fare

BL Y 112 110 147 113
M 92 93 96 80
B 70 71 73 59
Q 20 23 24 14
NP Y 20 17 21 33
M 22 22 21 21
B 50 48 49 45
DB 057 033 271 040

SP 5.53 5.47 3.73 8.69
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Simulation Scenario C:

NP

DB
SP

High Demand
Low Standard Deviation
Low Show-up Rate
Low Fare
Cabn  EMSR Mod.
EMSR
Y 118 115 122
M 90 96 94
B 62 71 65
Q 0 4 2
Y 28 19 28
M 28 25 29
B 62 67 63
0.91 0.59 2.27
5.99 5.62 4.89

35
24
59

0.77
6.51
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Simulation Scenario D:
High Demand
- Low Standard Deviation
High Show-up Rate
High Fare

BL Y 112 115 113 116
M 77 81 77 66
B 29 33 29 21
Q 0 3 0 0

NP Y 35 34 36 50
M 48 48 48 45
B 29 30 29 21

DB 0.10 0.46 0.21 0.24

SP 13.58 10.35 12.10 17.77
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Conclusions:

 Different methods have varying degrees
of sensitivity to changes in input values

 Each method performs differently in
each scenario

 (Cabin overbooking gives reasonable
results for changes in mean demand and
show-up rates

« EMSR overbooking gives stable results
but allocates more seats to lower classes
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« Modified EMSR overbooking gives best
results for cases involving long-haul,
high demand flights with high show-up
rate for each fare class but results in
higher denied boardings

« Partial enumeration gives best results for
cases involving short-haul flights with
low demand (with low std. dev.) and
low show-up rates for each fare class
and protects more seats for higher
classes
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DEVELOPMENTS IN
ORIGIN-DESTINATION SEAT INVENTORY CONTROL

Elizabeth L. Williamson

Flight Transportation Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

Presented to
MIT-Industry Cooperative Research Program

May 25, 1989
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PROBLEM:

To determine the number of seats to allocate to
each origin-destination and fare class itinerary
on each flight of an airline’s route schedule in
order to maximize total revenue.
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Components of O-D Seat Inventory Control

OPTIMIZATION METHOD

CONTROL METHOD
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O-D Approaches:

* Deterministic Network Optimization Method

* Probabilistic Network Optimization Method
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DISTINCT DETERMINISTIC

e deterministic network formulation used to find seat
allocation for each O-D/fare class over a network
of flights

Maximize ¥ ¥»fj 0.D-Xi,0-D
OD 1

Subject to:

> 2 Xi0-DS CAPJ'
-D 1

for all O-D itineraries and i fare classes
on flight j, for all flight ;.

Xi,0-DSHi,0-D

for all O-D itineraries and i fare classes.

* demand inputs reflect certainty, usually mean
forecast demand for each O-D/fare class

e distinct booking limits applied to each O-D/fare
class

* requires virtual classes for implementation
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NESTED DETERMINISTIC

¢ use solution from distinct deterministic network
formulation

* for control purposes, use distinct booking limits
nest on the basis of:

- Fare Classes
- Fares
- Shadow Prices

* booking limits by fare classes applied directly to
reservations system booking classes while
booking limits from other methods require
virtual inventory classes
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DISTINCT PROBABILISTIC

* probabilistic math programming formulation using
(0,1) variables to represent each fare
class/O-D/seat possibility in a network of
flights

CAPy

Maximize 3, ¥ ¥ EMR[;0.D|-X0-D,j
ODi1 j=1

Subject to:

CAPy

> X X X,0-DjSCAPg
O-D 1 J:l

for all O-D itineraries and i classes on
flight k, for all flights k

X{,0-Dj~ Oorl
for all O-D itineraries, i classes, and

j=1,2,...,CAPK

e forecast demand distributions used to generate
expected marginal revenue for each variable.

» distinct booking limits for each O-D/fare class are
produced

erequires virtual classes for implementation
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NESTED PROBABILISTIC

* use solution from distinct probabilistic network
formulation

* for control purposes, use distinct booking limits
nest on the basis of:

- Fare Classes
- Fares
- Deterministic Network Shadow Prices

* booking limits applied directly when nesting by fare
class, otherwise virtual classes needed for
implementation
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>
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FIGURE 1: SMALL HUB NETWORK
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TABLE 1; SIMULATION JINPUT DATA - 0-D CONTROL

CAPRCITY = 150

MEDIUM DEMAND = 150 ON EACH LEG

O-D ITINERARIES Y M E @
AE/BA MEAN DEMAND ? 7 8 13
8TD. ERROR 2 2 3 z

REVENUE 310 €290 $©5 69

AE/EA MEAN DEMAND 19 S 4 10
STD. ERROR 3 z 1 3

REVENUE $159 $140 $64 $49

AC/CA MEAN DEMAND 15 7 S 11
STD. ERROR 3 Z 2 2

REVENUE 2RO £209 s94 £59

AD/DA MEAN DEMAND b 3 8 20
€TD. ERROR 2 z 2 =

REVENUE $455 £391 €142 €122

Bz /EE MEAN DEMAND 4 = B 20
STL. ERRDR 2 4 &

REVENUE €319 €250 £109 L9

BC/CE MEAN DEMAND e 4 11 b
ETL. ERRDR 3 2 - = 2z

REVENUE $403 €314 £124 29

BD/DE MEAN DEMAND 7 S B 1le
: STD. ERROR 2 3 <t 4
REVENUE €575 £380 £159 £13%

Ce/EC MEAN DEMAND 10 3 = 19
€7D. ERROR 4 2 2 S

REVENUE 226 168 €84 €59

CD/DC MEAN DEMAND 13 B S 11
STD. ERRDR 3 3 1 2

REVENUE $477 ~e239 £139 $£119

DE/ED MEAN DEMAND 4 S S 24
E€TD. ERROR = 3 2 7

REVENUE €502 450 $154 134

LDOW DEMAND = 0.67 % MEDIUM

EIGH DEMAND = 1.33 ¥ MEDIUM
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SIMULATION OF O-D CONTROL METHODS
¢ Demands drawn from normal density for each
O-D/fare class
» Lowest classes book first
e Independent demands; no "sell-up"

eSingle point in time; no revisions of booking limits
gle p . : &
during reservations process

* 1,000 sample size (complete network)

OUTPUT: Expected total network revenue for each demand
scenario «i.d optimization/control method



TSI eeER T
FPEICENT

51

o

410

A0

M
e

10

o
B

HIGH

CRFFEREY

10E

HE--5F

Ly

L.

k
]

4

=

o

e

-88-



o |

MEDIUM DEMAND

Yo TWFFEREENUE FRUM MO CONTERL

UV DRI —

T e I s R e LR

o H O~ FT M- MO~ P o NF-FT NR--P NP ~5P

Q01 DONTROL METHURS

-6~ -




i

Ll

i
.

1A

AT

G

LOW DEMAND

Z TWFERIHOE FREOM HO COHTRO.

e e s e et s o st et 2o e
' : » y I
e et et

I T

NPt " N[1-5F P

U0 CONTRIN. METHONS

1
NF—FT.

i
NP-F

s
i
H

NP~5P

-ov-'- N



P S TR
PERCENMT

% INFFER

11 ':| 4+ goessecariues san sutbereeusetone Srt4mun RSRee LSS ddods S48 418 8 4o SmsoRRSRAROTISE AnRaSeReend aren UUpT—

THOE FEUM HO LOHTEUL

1"’”::' o P = '.‘
. . . 1
ot . ot . R . . l
3'-.»' ..... : S !
ol . yg
el e T
e N "..‘ 0 .'..‘ W . ’
..»"‘. ,."‘..". .-'. . 5 . o ‘ :i
- o R
R R
.“'.. ."'. . s/ - i
| i
o < - //f’i,
AN
P B A N A I ey T Ry
. B et NN, SR AN RPN “ g
L I I T | ! | I |

o H~FT HI-F HO—5P [P HP—FT NP-F NP 5P

-



SHORET—HAUL DEMAND

T DFFURLHGE FROM KO CORTREDL

HIGH

-
[ Sl 1 B

)

|‘:|. 1 "“l e ertetansne ersss sastssern 4 5 o 0ne 5 0 20 oo v e e e remtnea 48 ks 4 42 Sersee oo 0 e vt o 4 in e s as wes amaw s b 4n

o

1

I 1 B

A B

I
£

g g o
008 - P
01,05 -

1,04

NG T

I
0,

i

MY -FTS

ki
HE

L

M- 5 F

-8 DUNTROL &

-Zt-



-43-

ORIGIN-DESTINATION CONTROL

» Combinations of optimization and control methods
provide a wide variety of approaches to O-D
seat inventory control.

¢ Important to understand how O-D optimization
results can be implemented into the inventory
control structure.

* Network formulations take into account the interaction
of passenger flows across connecting flights in
allocating seats.

* Poor matching of optimization and control methods
can lead to negative revenue impacts.

* Given "smell numbers" problems of O-D control,
some form of aggregation and nesting become
essential to improving revenues.
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AIRLINE RESERVATIONS FORECASTING:

A PROGRESS REPORT

by
Anthory Lee

Flight Transportation Lab
and

Center for Transportation Studies

Massachusetts Institute of Technology

MIT - INDUSTRY COOPERATIVE RESEARCH PROGRAM
MAY 25, 1989



-45-
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SIMULATION RESULTS

CONCLUSIONS



-46-

AIRLINE RESERVATIONS PROCESS

REQUEDT

ACEPTED / \DEN! ED
RESERVATION LOST
CMEU—E% %m

CANCELLATION  PASSENGER

Bookings = Total Reservations - Total Cancellations
= number of reservations currently

remaining in the system

- Byglt)
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GOAL OF THIS PROJECT

DEVELOP ACCURATE FLIGHT-SPECIFIC,

CLASS-SPECIFIC FORECASTS OF FINAL

BOOKINGS AT SPECIFIC TIMES BEFORE

THE FLIGHT DEPARTS

EXAMPLE

TODAY, WE WANT TO FORECAST HOW MANY MORE
FULL FARE (Y CLASS) PASSENGERS WILL BOOK ON

FLIGHT 1234 DEPARTING ON JUNE 8.

= BY,1234,6/8(0) - BY,1234,6/8(14)
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MOTIVATION

MORE PRECISE FORECASTS OF BOOKINGS

LEAD TO

BETTER INPUTS FOR REVENUE MAX.
PROCEDURE

RESULTING IN

IMPROVED ALLOCATION OF SEATS AMONG FARE
CLASSES

AND FINALLY

INCREASED REVENUES!!



HISTORICAL BOOKING MODEL

DATA: USES BOOKINGS ON PREVIOUS
DEPARTURES OF THE SAME FLIGHT
NUMBER

IDEA:  CAPTURE TRENDS OVER TIME

MATHEMATICAL MODEL:

By(t) = o+ 2 o, Bylt) + T a, £4.| + &4
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EXAMPLE:

By(t) = bq*(time t bookings on date d-7) +
bs*(time t bookings on date d-14) +
bs*(time t bookings on date d-21) +
b,*(time t bookings on date d-28)

+... + bo
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ADVANCE BOOKING MODELS (BOOKING CURVES)

DATA: BOOKINGS ALREADY MADE ON A
PARTICULAR FLIGHT AND OTHER
FACTORS SUCH AS BOOKINGS IN LOWER
CLASSES, SEASONALITY INDICES, ETC.

IDEA:  CAPTURE RESERVATIONS BUILD UP
OVER TIME

MODEL 1: (Pure Booking Curve Model)

By(t) = By +f(tp) + Xb +n,

Bookings depend on time 1 before departure and other

variables.

MODEL 2: (Time Series of Advance Bookings)

By(t) = 7o+ Z vBg(t+) + Xb + v,

Bookings depend on advance bookings in previous periods

and other variables.



-52-

EXAMPLES:

Pure Booking Curve Model

Bq(t) = a4*log(t) +

Bd(O) =

az*(seasonal index) +

ag*(percentage sold in lower

classes) + " + @y

Advance Bookings Model

c4*(bookings at time t) +
C»*(bookings at time t+7) +
c5*(bookings at time t+14) +
c4*(bookings at time t+21) +
cg*(seasonal index) +

Cg”(percentage sold in lower

classes) + ** + Cg
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COMBINED MODEL:

IDEA:  WEIGHTED COMBINATION OF
HISTORICAL BOOKING MODEL AND
ADVANCE BOOKING MODEL.

By(t) = 647 (historical booking model) +

6, ™ (advance booking model)

% % *
= Qg+ 2o « Bd-k(t) + 2 a £ €g-] F

B*O +(t,B7) + Xb + n*t + e*d

where 0" = 64* 0, B” = 8,*B, and so forth.



EXAMPLE:

E3(j(t) =

-54.-

z4*(time t bookings on date d-7) +
Zo*(time t bookings on date d-14) +
z4*(time t bookings on date d-21) +
z4*(time t bookings on date d-28) +
zg*log(t) +

zg*(seasonal index) +
z-*(percentage sold in lower

classes) + = + zg
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COMPUTATIONAL CONSIDERATIONS

DISTINGUISHING BETWEEN ESTIMATION AND
FORECASTING

ESTIMATION fits a curve to past and

current observations.

--  All observatior:s are known values.

FORECASTING predicts future (unknown)

values given the past and current

observations.

--  Producing a forecast requires
estimation and intelligent

extrapolation.
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CURRENT INDUSTRY PRACTICE IN FORECASTING

--  N-WEEK MOVING AVERAGE MODEL WITH
SOME ADJUSTMENTS FOR SEASONALITY

--  MATHEMATICAL STATEMENT:

By4(0) = B4(t) + (1/8) )y [Bg-k(0)-Bg.k(t)]

--  COMMENTS
1. ONE STEP ESTIMATION AND
FORECASTING.

2. DOES NOT TAKE BOOKING CURVE
EFFECT INTO ACCOUNT.

3. IT SEEMS THAT MORE RECENT
OBSERVATIONS SHOULD BE MORE
HEAVILY WEIGHTED.
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COMPARISON OF MOVING AVERAGE MODELS AND
REGRESSION MODELS

MOVING AVERAGE MODEL:
8 - WEEK AVERAGE OF BOOKINGS TO COME

REGRESSION MODELS:

HISTORICAL (TIME SERIES) MODEL
ADVANCE (BOOKING CURVE) MODEL
COMBINED MODEL

MEASURE OF ACCURACY OF FORECASTS:

MEAN SQUARE ERROR OF FORECAST =

(1/N) X(FORECAST - ACTUAL)?
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SUMMARY OF RESULTS

TABLE 1: LAS-MSP MARKET (Q CLASS)

- ESTIMATION DATA: 6 MONTHS
- FORECASTING DATA: 4 MONTHS
- REGRESSION MODEL.:

b2*(SEASONAL INDEX) +

b3*(BOOKINGS previous week) +

by

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

MODEL Day7to0 Day14to0 Day21to0 Day28to0

MA 10.52 15.14 20.01 23.04

REG 9.96 17.39 17.53 16.34

% IMPR. 5.23 -14.9 12.40 29.00
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TABLE 2: BOS-MSP MARKET (M CLASS)

ESTIMATION DATA: 6 MONTHS
FORECASTING DATA: 4 MONTHS
REGRESSION MODEL.:

By(t)=  by*(35-TIME)? +
bo*(SEASONAL INDEX) +
b3*(BOOKINGS previous week) +

by

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

MODEL Day7to0 Dayi4to0 Day21to0 Day28to0

MA

REG

% IMPR.

5.20 10.80 12.85 14.61
4.95 9.33 0.87 10.80
4.81 13.61 23.19 26.08
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TABLE 3: MKE-MSP MARKET (B CLASS)

- ESTIMATION DATA: 6 MONTHS
- FORECASTING DATA: 4 MONTHS
- REGRESSION MODEL.:

Byt = by*(35-TIME)? +
b,*(SEASONAL INDEX) +

b,;*(BOOKINGS previous week) +

by

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

MODEL Day7to0 Day14to0 Day21to0 Day 28to0

MA 4.00 4.25 5.95 4.90

REG 4.33 3.61 4.45 3.93

% IMPR. -8.25 15.05 25.21 19.80
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TABLE 4: DEN-MSP MARKET (Y CLASS)

- ESTIMATION DATA: 6 MONTHS
- FORECASTING DATA: 4 MONTHS
- REGRESSION MODEL:

By(h = by*(35-TIME)? +
b,*(SEASONAL INDEX) +
b3*(BOOKINGS previous week*

SEASONAL INDEX) + by

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

MODEL Day7to0 Dayi14tio0 Day2ito0 Day28to0

MA 7.68 9.48 11.13 11.64

REG 6.40 7.08 9.08 10.67

% IMPR.  16.67 25.32 18.42 8.33
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THE VALUE OF FORECASTING

Main Idea: Determine the impact of the forecast
accuracy on the allocation of seats among the
fare classes and, importantly, on expected

revenues.

Question: How much in expected revenues (lo we

gain with improved forecasts?
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SIMULATION OF VALUE OF FORECASTING

ACTUAL AIRLINE DATA (DEMANDS) WITH
SOME MINOR ADJUSTMENTS

FOUR FARE CLASSESYY, B, M, AND Q WITH
REVENUES OF 100, 70, 50, AND 30.

AIRCRAFT CAPACITIES OF 100, 200, & 300

FOUR DEMAND SCENARIOS:
- LOW (30% OF CAPACITY)
- MEDIUM (60% OF CAPACITY)
- HIGH (90% OF CAPACITY)
VERY HIGH (120% OF CAPACITY)

SIMULATION OF 2000 FLIGHTS FOR EACH
SCENARIO
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SUMMARY OF THE SIMULATION

GOAL: TOTEST THE EFFECT ON EXPECTED
REVENUES OF A FORECAST MEAN AND
STANDARD DEVIATION WHICH DIFFER
FROM THE ACTUAL MEAN AND
STANDARD DEVIATION OF DEMAND

PROCEDURE:

STEP 1: USE THE FORECAST MEAN AND
STD DEV TO CALULATE THE EMSR
BOOKING LIMITS

FORECAST = FACTOR X ACTUAL
(WHERE FACTOR VARIES FROM 0.25 TO 5)

- CASE 1: VARY STD DEV ONLY
- CASE 2: VARY MEAN ONLY
- CASE 3: VARY MEAN AND STD DEV
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STEP 2: DEMAND IS RANDOMLY GENERATED
FROM A NORMAL DISTRIBUTION WITH
THE ACTUAL MEAN AND STD. DEV. OF
DEMAND

STEP 3: DEMAND IS REALIZED AT A SINGLE
POINT IN TIM=. Q PASSENGERS BOOK
FIRST, THEN M CLASS, NEXT B CLASS,
AND FINALLY Y CLASS BOOKS LAST.

STEP 4: WE REPEAT STEPS 2 AND 3 FOR 2000
FLIGHTS.
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TABLE 1 - VAL FA RACY IN FORECASTIN

FORECAST PERCENTAGE CHANGE IN AVERAGE
ACCURACY REVENUE FROM THE BASE CASE
DEMAND LEVELS
LOW MEDIUM  HIGH

50% OF BA™™ CASE -0.4% -2% -8%
75% OF BASE CASE -0.3% -1% -3%
90% OF BASE CASE 0% -0.3%  -1%
95% OF BASE CASE 0% 0% 0%
BASE CASE (PERFECT FORECAST) --- --- ---
105% OF BASE CASE 0% 0% 0%
110% OF BASE CASE 0% -0.5% -0.5%
125% OF BASE CASE 0% -2% -3%
150% OF BASE CASE -0.5% -9% -10%

200% OF BASE CASE -5% -24% -18%
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CONCLUSIONS:

- ACCURATE FORECASTS ARE PARTICULARLY
IMPORTANT ON HIGH AND VERY HIGH
DEMAND FLIGHTS

- EXPECTED REVENUES ARE MORE SENSITIVE
TO DIFFERENCES BETWEEN THE FORECAST
AND ACTUAL MEAN THAN TO V.".RIATIONS
IN THE ACTUAL AND FORECAST STD DEV

- EACH 10% OF FORECAST ACCURACY CAN BE
WORTH 2% TO 4% IN EXPECTED REVENUES

FORECASTS WHICH ARE WITHIN 10% OF THE
ACTUAL VALUE ARE "GOOD ENOUGH".
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Computer Applications in Engineering Design

Motivation:

e Speeds calculation procedure.
e Enhanced speed allows more iterations through the design path.

e Enable computer to manage complexity of design problem, freeing the engineer to
develop “creative” solutions.

History:
e Computer-Aided Design (CAD) systems for geometric design. Best suited to detailed
design.
e Sequential programs based on vehicle class. Single design path, implying limited

range of applicability.

e Multiple sequential programs linked by a common database. Recently, expert systems
have been applied to managing the interfaces between sub-programs. Still limited by
sub-program directionality.

-69-
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The Conceptual Design Task:

e Can be computationally intensive (particularly in aerospace engineering), thus prompt-
ing the use of computers.

e Demands flexibility, since the designer must develop solutions to unanticipated prob-
lems. It requires creativity and innovation.

e Is therefore unamenable to delineation, as in a sequential computer program. An
alternate approach is needed.

A Question
How can the flexibility afforded by CAD systems for detailed design be acheived in

computer tools for conceptual design?

One Answer
Advanced programming techniques, such as

e Object-Oriented Programming

e Constraint Propagation

-OL-
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Object-Oriented Programming
e Based on descriptions of objects and their behavior.
e Objects are represented as instances of object classes, which serve as templates.

e Classes provide instance variables, which are state variables whose values are specific

-l[-

to each instance.
e Behavior is represented by methods, which are procedures specialized to a given class.
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Object-Oriented Programming: An Example

Class: Automobile Instances:

Instance Variables: car-1

Color @

Number-of-Doors

color: red

Engine-Size number- Of - dOO.TS-' 4
Amount-of-Fuel engine-size: V8

Number-of-Passengers

Methods: 6:%}
Accelerate

Decelerate number-of-doors: 2

-ZL—

car-2

color: blue

Add-Passenger engine-size: V6

Remove-Passenger
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Object-Oriented Programming: Inheritance

¢ Definition of one class may be based upon the definition of another.
e A class inherits the instance variables a:ad methods of its superclass.

e Inherited methods may be specialized to the new class.

A collection of specialized methods for representing the same behavior over a range of
classes serves to define a generic operation. Generic operations provide a general-purpose
interface for a given behavior which is context-sensitive: the particular response depends
upon the class of the object to which it is applied.

_SL-
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Inheritance: An Example

Superclass: Mouving-Object
Provides instance variables for position and velocity.
Defines Accelerate and Decelerate methods which change the object’s velocity.

Class: Automobile
Provides instance variables for color, engine size, etc.
Defines a specialized Accelerate method which reduces the object’s amount-of-fuel in-
stance variable.

Subclasses: Off-Road Vehicle, Race Car, Passenger Vehicle
Further specializations of the Automobile class, which provide limits on engine size,
the number of passengers, etc.

_VL-
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Inheritance: An Example

Consider class Cable Car, a second subclass of Moving Object:
e Cable cars carry no fuel.

e No need for a specialized Accelerate method.

Consider class Kocket, a third subclass of Moving Object:
e Rockets expend fuel when accelerating and decelerating.

e This class requires specialized methods for both the Accelerate operation and the
Decelerate operation.

Thus, the various Accelerate methods combine to form an Accelerate generic operation for
Mouving Object and its subclasses, whose behavior varies according to the type of moving
object to which it is applied.

-SL-
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Applicability of Object-Oriented Programming

e Design components (e.g., wings, fuselages, landing gear) are objects.

e Design involves the manipulation of these objects: positioning, sizing, etc.
e Design variables are also objects, with properties such as:

— dimensionality
— units
— value

— upper and lower bounds

-9[—

e Mathematical relationships among these variables may be thought of as operating on
their parameters, by manipulating parameter values in order to satisfy the relation-

ship.
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Constraint Propagation

e Conventional computer programs are ccmprised of sequences of declarative instruc-

tions:
AR = b2/S

e Mathematically, such a statement also imp]ieé a number of equivalent imperative forms:

b=vVAR x S
S:zbz/AR

e A computer program which enforces one form must be re-written if an imperative

form is needed.

MAK
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Constraint Propagation Systems:
e Automatically infer the corresponding ‘mperative forms from the given declarative

input.
e Decide which form to apply, based on the available information.

Ezample: Given AR = b*/S.

If S and b are known, then AR = b?/S.

If AR and S are known, then b = /AR x S.
If AR and b are known, then S = b?/AR.

e Blur the distinction between “code” and “data”.
Mathematical relationships are both data to be manipulated and code to be executed.

-8[-
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A pplicability of Constraint Propagation

e Conceptual design depends upon satisfaction of mathematical relationships which
model the problem.

e Due to the unpredictable nature of conceptual design, the required forms of these
relationships will vary from problem to problem.

e Constraint propagation affords the flexibility which allows a single program to be
applied to a variety of conceptual design problems.

-6[-

Advantages of Constraint Propagation

e Allow focus on content rather than form.

e Greater accountability.

MAK



MASSACHUSETTS

FLIGHT TRANSPORTATION LABORATORY INSTITUTE OF

TECHNOLOGY

The Function-Modeling Approach: Paper Airplane

e Direct application of constraint propagation.

¢ Problems described in terms of design variables and design functions between those design
variables.

e User provides input values.
Program applies constraint propagation to use the design functions to compute values
for as many of the remaining design variables as possible.

Shortcoming:
Unfortunately, this approach lacks sufficient organizational structure for the development

of an efficient large-scale library of design knowledge.

—08-
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The Component-Modeling Approach: Rubber Airplane

e A natural means for providing organizational structure in engineering design is the
association of design functions and design variables with the components which they

describe.

e The properties which describe components—dimensions, position, mass, performance
characteristics, etc.—are represented as attributes of the components.

e The relationships which govern these properties are treated as constraints of the com-
ponents.

e The design library may be built from component-classes, individual instances of which
are created and manipulated by the designer.

e Permits the use of inheritance.

e Helps avoid name conflicts.

MAK
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Design Component Class: Wing

Attributes:
AR  aspect-ratio ¢_, root-chord ?
b span Co tip-chord S
S wing-area m mass b
A sweep L 1lift
A taper-ratio D drag
Y
Constraints: 'T::lp
AR :bz/S Definition of Aspect Ratio

S:%(croot+ ¢,,) Calculation of Wing Area

A=c

o/ Croot Definition of Taper Ratio
P roo

MAK
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Design Links

¢ Need to account for constraints which relate the attributes of two or more components
(e.g., attachment, relative sizing, and aerodynamic interference).

e Arbitrary assignment to one of the components is not modular. Introduce a new
structure, the design link, which is defined similarly to components, in terms of its
attributes and constraints.

e Constraints of design links may reference the attributes of components in addition
to the attributes of the link.

The relevant components are identified by specifying a set of linkages for the design link
class. :

- 88_
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Design Links: An Example

An Airfoil Interference design link class would require a pair of linkages, one for the forward
airfoil, and one for the rear airfoil.
Both linkages should be instances of the Airf::! class.

This Airfoil Interference design link might provide its own attribute for, say, the downwash
on the two airfoils.

However, the constraints of this design link must also access various positional, dimen- °

sional, and aerodynamic attributes of the Airfo:l instances themselves.

—78—
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Design Link Class: Airfoil Interference

span@rear-airfoil

Instances:
A. Airfoil-Interference 1
Linkages:

Forward-Airfoil — Canard 1 /
Rear-Airfoil — Main-Wing 1

B. Airfoil-Interference 2 /

Linkages:
Forward-Arfoil — Main-Wing 2

]{span@rear—airfoil

Rear-Awrfoil — Vertical-Stabilizer 1
MAK
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Implementation Features

Written in LISP.

Components and links implemented as objects.

Library comprised of component- and link-classes.

Three-dimensional geometry display.
Mouse-driven screen interface.

Classes defined with text editor.

-98-
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Attribute Name

Cabin-Area
Cabin-Length
Cabin-volune
Cg-%

Cg-¥

Cg-2

Drag
Ellipticity
Fineness-Rat 1o
Height

Lift

Hass

JDisplay Window

Component: Fuselage

State Value (Units) Comnment
c 3.575 n2
u 48.006 ft
Cc 43.59 n3
6 9.008 n
] 0.000 n
o 0.000 n
g Below suggested low value.
Cc 10.24
u 7.608 ft
] 50.00 N
G 1.745 e+03 kg

Command Menu

Display current design
Display control panel
Display all designs
Begin a neuv design
Restore a design
Display knoun units
Update geometry sketch
Display library

RA> Neu value for Drag (in N): B

Rubber Airplane
Top view Oblique view
Side view Front view

0 8 & o [ X 1

08,249,688 12:02:54PH NAK

L: Change Value, A: Ghange Units, A: Menu of operations

USER: Keyboard BELLEROPHON

MAK
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Constraint Propagation: Implementation

e Each attribute is assigned a value-supplier:

— a constraint
— the symbol, “:user”

— the symbol, “:guess”

Initially, all value-suppliers are :guess.

When the user provides a value for an attribute, its value-supplier becomes :user.

Constraints for which exactly one parameter has a value-supplier of :guess are said
to be perfectly constrained.

[
-38-

Perfectly constrained constraints are used to compute the single free parameter,
whose value-supplier becomes the constraint.

This assignment may cause other constraints to become perfectly constrained, causing
this procedure to be invoked recursively.
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Constraint Propagation: An Example

C-1: Definition of Aspect Ratio

‘: | C-1:
AR = bg/S Three parameters
AR -
C-2:
e —| Vok C-2: Effect of finite span
' Lo
' G = C Four parameters
L Lo
o | Yy

MAK
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Constraint Propagation: An Example

U —
x N C-1: Initialization:
AR =b/S Planform Selected —
AR S, b, e chosen by user
C-2: Required Performance Known —
U o C' input by user
" Lo
q,U — q, - ql
o'C 1 +m Airfoil cross-section has not
e been selected.

AR and CL'00 are initially unknown.

MAK
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Constraint Propagation: An Example
19} — U —
‘Z'U | C-1: ‘ZU ] C-1: (a)
AR =1b/S —| AR =b/S Constraint C-1 is
AR AR perfectly constrained.
C-2: = C-2:
P P (b)
U C' = Lo - O = Loo Constraint C-1 has
C — 1 L Cl C’ — 1 1L C' .
L 14 e L 14 e been applied to
IG — o A D A D
G meAR q" meAR | calculate AR.
(a) (b)

MAK
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Constraint Propagation: An Example

§'—= . — .
(b) o C-1: s | C-iL
Constraint C-2 is —| AR =bY/S —| AR =b/S
perfectly constrained. AR AR
(©) = C-2 = C-2 8
. P — Vok el o
Constraint C-2 has U Q= — = v _|C = L
been inverted G—" 14 q,oo G— * 1— Cxl.‘
and applied to q’c meAR q’c"__«; meAR
calculate C]’["m. ” ”
‘b) (c)

MAK
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Constraint Propagation: An Example

'Zj: : C-1: S:JI : C-1: ‘Z': : C-1
AR =bY/S —| AR =b/S —| AR =b/S
AR AR AR™'S
C-2: = C-2: — C-2:
ez:- Q' = CL;a 63-2 Q' = C},ﬁ ez—:i q' Ci:
C‘G':" L 1+_CL_ C;'G = 1+&_ Cé,"': " -G
(/1‘00 meAR q’m meAR q; R meAR

MAK
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Constraint Inversion: Implementation

e Inversion rules based on:

— individual primitive operations
— recognized complex expressions

— combination
e Numerical simulation

Constraint Inversion: Numerical Implementation

e Constraints are defined declaratively:

e To compute y, apply the constraint as defined.

e To compute z;, where z; € {z;,z,,...}, solve

0=f(:c1,:c2,...) -y

for z; holding all other variables constant.

MAK
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Simultaneous Equations: Implementation

¢ Based on the “GTOW heuristic”: computational loops.

e Modify first-order constraint propagation to note the “:guess attributes” of con-
straints with two or more such free parameters.

e After first-order constraint propagation is completed, check these attributes for the
existence of loops.

e Solve loops numerically.

Loop Detection: Implementation

e Given an attribute with constraints of two or more :guess attributes.
e Assume a value-supplier for this attribute.

e Apply first-order constraint propagation of assumed value-suppliers, beginning with
the original attribute, until:

— An unused constraint with zero free parameters is encountered.
The loop has been closed.

— No further first-order propagation is possible.
No loop exists.

MAK
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Simultaneous Equations: Revised Implementation

e Original implementation relied solely on Newton-Raphson iteration. Found to be
unstable for larger sets of simmultaneous equations.

e Expand upon the “GTOW heuristic”: use simple iteration for large loops.

e Requires selection of suitable iteration variable, as well as appropriate ordering of
" the loop constraints.

Iteration Loops: Implementation

e Detect loops as before.
e Search loops for appropriate iteration variable.

o For stability, order constraints according to original degrees of freedom.

MAK
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Iteration Loops: An Example

¢ Consider the following set of equations:

I/Ven gine
Wwin g
Whail
quselage
‘/Vgear
Wary

= constant

¢ Assume geometry is known.
Re-writing the equations with the known variables eliminated,

Waing(AR, b, A, Wy,,)

I/Vtail(‘/Vwinp dery)

quselage(lfuselage> Wdry)

I/Vgear( "Vdry )

I/Vengine + vaing -+ Wtail + quselage + Wgear

- Wwing(Wdry)

- Wtail(Wwing> I/Vdry)

- quselage(Wdry)

- Wgear(Wdry)

= Wdry(VVwinga Wtail; quselage7 Wgear)

MAK
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Iteration Loops: An Example (Continued)

* Order constraints according to the number of unknowns prior to loop processing:

Wwing = I/Vwing( I/Vdry)

I/Vfuselage = I/Vfuselag,e ( I/Vdry )

I/Vgear - I/Vg;e ar ( VVd ry )

VVl,ail - thail(I/Vwing; ‘/Vdry)

Wdry - I/Vdry(w/wing7 Wtaih quselage7 Wgear)

This ordering enhances stability, thus promoting convergence.

e Most frequently occurring unknown is Wy,,.
Select Wy,, as the iteration variable. A value will be assumed for Wary, and this
assumed value is propagated until a new value for Wary can be computed.

o New values for Wy, are iteratively propagated until convergence is obtained.

MAK
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Initial Results: Test Cases

Current Test Case:

e Long-Endurance, Manned Surveillance Aircraft.

Focus to date on mission performance.
Current efforts directed towards aerodynamic analysis.

Planned Test Cases:

e General Aviation Aircraft

e Small-Payload Launch Vehicle

-66_
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Initial Results

Observation:
e Flexibility is enhanced by limiting the number of attributes associated with compo-

nents.

Implications:
e Component attributes are limited to geometry and gross properties.

-001L-

e Secondary or derived properties relegated to design links.
e Special-purpose component properties are best treated as attributes of special-purpose

design links.
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Design Link Class: Loiter Mission

9 I'light Segments:
Loiter
Cruise In Descend &
Cruise Out Circle
Climb
Idle & o
Takeoff Climb (2) Landing

Fuel calculations require C; , L/D, SFC, etc.,
for each flight segment.

-1ot-
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Initial Results

Observation:
e Component constraints can only access grometric and gross-property attributes.

Implications:
e Component constraints do not have sufficient information to compute gross proper-

ties.
e Component constraints are therefore primarily concerned with the calculation of

geometric properties.
e Design links must be used to compute gross properties.

-2olL-
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Initial Results

Observation:
e Ad hoc single-mission analysis link is non-modular.

Implications:
e Better means for handling time-dependence is required

e One approach: component-like “states” to account for time-varying attributes.

-€0lL-
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Design State Class: Atmosphere

Attributes;
h altitude
P pressure
density h
R gas-constant §
1 temperature v

Constraints:

p =p(h) Density of Standard Atmosphere

p = p(h) Pressure of Standard Atmosphere
T=T(h) Temperature of Standard Atmosphere
p = pRT State Equation
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Initial Results

Observation:
e Certain calculations are strongly coupled. The multiple-input, single-output paradigm

is inadequate for representing such calculations.

e Some computations are difficult—if not impossible—to invert.

-S01-

Implications:
e Need support for uni-directional constraints.

e Need support for multiple-input, multiple-output constraints.
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Initial Results: Conclusion

Better means for handling complex constraints is required:

o “State” objects to account for time-dependent phenomena.

¢ Uni-directional and multiple-output constraints.

Flexibility is best served by:

e General-Purpose Component Classes—

Component definitions tend to focus on geometry.
Components also provide readily accessible attributes for important gross properties.

e Application-specific Link Classes—
Design links are used for calculations sucu as performance analysis, weight determi-

nation, and relative locations.

MAK
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Areas for Improvement:
e Integration with a symbolic mathematics package.

e Improved interface for defining component- and link-classes.

e Enhanced graphics capabilities.

Possibilities for Future Work:

e Rubber Airplane as a platform for enhanced systems.
e Expert system for managing optimization, guiding performance function selection.

e Tool for translating design specifications into a set of components and links which

serve as a baseline design.

-[01-



-108-

Automatic Speech Recognition in Air Traffic Control

Joakim Karlsson
Flight Transportation Laboratory
Massachusetts Institute of Technology

Automatic Speech Recognition (ASR) technology and its application to the Air
Traffic Control system are described. The advantages of applying ASR to Air Traffic
Control, as well as criteria for choosing a suitable ASR system are presented. Results from
previous research and directions for future work at the Flight Transportation Laboratory are
outlined.
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Introduction

M.LT.'s Flight Transportation Laboratory (FTL) is renewing its research on the
application of Automatic Speech Recognition (ASR) technology to Air Traffic Control
(ATC). This report presents an overview of the available technology and its potential use
within the ATC system. ATC is a suitable candidate for the application of speech
input/output technology due to the well defined syntax and existing reliance on voice
communication. Other motivations for introducing ASR into the Air Traffic Control
environment are listed within the body of this report. Furthermore, past research efforts
are described, with emphasis on work already completed by the Flight Transportation
Laboratory. Finally, directions for future research are outlined.



ASR In ATC
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Just what is Automatic Speech
Recognition (ASR) anyway?

ASR in Air Traffic Control.

Some motivations for using ASR in
Air Trafic Control.

Previous work.

Conclusions from Trikas' work.

Work to be done at the Flight
Transportation Laboratory.

JK 19890105/1
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Automatic Speech Recognition

ASR systems consist of hardware and software that convert verbal input into
machine-useable form (i.e. "text"). These systems can be categorized by three basic
parameters: Speaker dependence/independence describes whether the system has to be
trained by the user before operational use (speaker dependent), or whether it can be used by
any user without specific training (speaker independent). Discrete/connected/continuous
speech recognition describes the extent to which naturally spoken speech can be
recognized. Single-utterance (isolated-speech) recognizers impose severe constraints on
the user's manner of speech, but are relatively easy to implement. Connected speech
recognizers allow the user to speak at a normal rate, but finite pauses must be inserted
between each word. A continuous speech system recognizes input spoken at a natural rate,
with no artificial pauses. Finally, the number of words that the system can recognize at any
time (active vocabulary size) is a critical application and performance parameter.
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Automatic Speech Recognition.

An Automatic Speech Recognition
(ASR) system, is a system that recognizes
verbal input and translates it into text.
There are three basic factors that categorize
an ASR system:

« Speaker dependence/independence.

 Discrete, connected, or continuous
speech recognition.

 Vocabulary size.

ASR In ATC JK 19890105/2
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ASR in Air Traffic Control

Today, the Air Traffic Control system relies on verbal communication between the
air traffic controllers and the pilots of the aircraft in the controlled airspace. Although a
computer system exists that processes radar and other information regarding the aircraft,
the information contained within the verbal communications is not retained. The
introduction of ASR technology would allow this information to be captured. The purpose
of this research effort is to demonstrate the feasibility of using ASR technology within the
ATC environment, and to address the problems involved, especially the relevant human
factors issues. Off-the-shelf ASR technology will be used in conjunction with FTL's real-
time ATC simulator running on the laboratory's TI-Explorer Lisp machines.
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ASR im Alr Trafffic Contraol.

We want the "computer" to capture the
information given by the controller to
aircraft, so that it can be processed. In
this particular project, we want to start by
using ASR to drive the Flight
Transportation Laboratory's real-time ATC

simulator.

ASE In ATC JK 19890105/3
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Why use ASR in ATC?

There are several strong motivations for introducing speech input/output technology
into the Air Traffic Control system. Communications are already in the verbal form, and
the syntax used is clearly defined by the FAA, and has to some degree been designed to
reduce the possibility of communication errors. The use of voice as an input modality
allows for a high information throughput capacity, and allows the controllers to keep their
eyes and hands busy controlling traffic. Once the verbal information has been captured, it
can be transferred to the aircraft via Mode S, conformance monitoring can be improved,
and routine clearances can be pre-stored during less busy periods.



ASR In ATC
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Why use ASR im ATC?

ATC communication is verbal.
ATC syntax is clearly defined.
ATC training can be automated.
High information throughput.

ASR allows controller to use hands
and eyes where they belong.

Captured information can be
transmitted to aircraft via Mode S.

Conflict alert can be improved.

Clearances can be pre-stored.

JK 19890105/4
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Previous research.

ASR technology can be used in many aviation and non-aviation applications, and as
a result, much research has been conducted on the use of speech input/output in general.
However, relatively little research has been dedicated towards the application of ASR to Air
Traffic Control. The research to be undertaken within the framework of this project will be
a continuation of the initial work presented in Thanassis Trikas' S.M. thesis, Automated
Speech Recognition in Air Traffic Control (FTL report R87-2).
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Previous research,

A lot of research has been done on

ASR,

ATC:

ASR In ATC

but not much in conjunction with

FTL: Thanassis Trikas S.M. work.
Arthur Gerstenfeld (Worcester
Polytechnic Institute/UFA, Inc.):
Emphasis on ATC training.

ITT Defense Communications
Division VRS 1280 demonstration.

JK 19890105/5
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Trikas' conclusions.

Trikas' thesis demonstrated the feasibility of using ASR technology in conjunction
with an ATC simulator, utilizing a relatively small vocabulary. An initial error correction
strategy based on verbal correction commands alone proved to be unacceptable. Also,
problems related to speech articulation variations were encountered. In the process of
evaluating his experiment, Trikas implicitly set forth a set of criteria for selecting a suitable
ASR system.
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Trikas’ conclusions.

Trikas' S.M. thesis was essentially a

proof of concept of using ASR in ATC:

ASE In ATC

ASR can be used with the ATC
simulator (with an active
vocabulary of only 64 words).

Correction of recognition errors
using voice alone is not feasible.

Problems with sensitivity to
variations in articulation.

Developed criteria for choosing
a suitable ASR system.

JK 19890105/6



Selecting the right ASR system.

The first step in renewing FTL's ASR research effort will be to select a suitable
hardware system. For this purpose, performance criteria specific to ATC applications of
speech input/output technology have been defined.
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Selectinmg the right ASR systemn.

Our particular application calls for the

following ASR requirements:

ASR In ATC

Speaker independence pot required.
Continuous speech recognition.
Vocabulary size 200-300 words.
95% baseline recognition accuracy.
Well designed training procedure.
Open architecture.

Reduced sensitivity to variations.
Short recognition delays (1-4 s).

JK 19890105/7
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Future work.

The future research to be conducted at FTL will be based on previous work
completed by Trikas. Hence, his system set-up must be reactivated. In order to improve
the simulation and the overall performance of the system, new hardware will be acquired.
The actual research will concentrate on the introduction of multi-modal input, improved
error correction and recognition accuracy, the evaluation of Mode S usage, and the
application of ASR to secondary functions.



ASR n ATC
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Future worlk,

Reassemble Trikas' system.
Evaluate current ASR technology.
Ac'quire a new ASR system.
Introduce multi-modal input.

Increase number of commands and
responses to improve simulation.

Improve error checking/correction,
as well as recognition accuracy.

Evaluate Mode S usage.

Use ASR for functions other than
ATC commands.

JK 19890105/8
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Thi§ preSentation i§ Je$$ {han JO mingte’ longl

What is the Airline Schedule Transition Problem ?

Problem of finding the most efficient re-routings of aircraft in order to balance the number
and the types of aircraft at each station at the beginning of a new schedule.

This presentation is an overview of an attempt to solve this problem automatically for two
aircraft types.

-921-



Sample Rotation Chart

Date: 9/30/89 Friday

L2l

EDT
e 0600 0800 1000 - 1200 1400 1600 1800 2000 2200
' ! 101! ! 496 ! 666 ! ! 63 1 !
767 ' LGAC—JDCA | ORDI AT [ IDFW : LGA
X 0700 0§00 0900 | 0945 1030 1330 1415 , 1530 1700 X 2130 |
! ' a3 ! odg ! Q98 ! ! ' !
767 ' LGAI . — IDFWL___ JATL [ — IBOS | [i_]LGA: '
X 0700 | , 0930 1015 | 1315 iquu 1645 1815 1915 :
' ! 5§6' ! ! f 555 1 ! !
757 ' SEAI IATL! [ ISEA |
X 0415 , , 1315 | 1430 X , . 1800 |
t ! 5§79 ' 1 5§77 ' ! ! t‘;?‘ {
757 ; ISEA [ —XAXC . IOFW | JISEA
X , 0545 \ 0730 0815 | . 1515 1615 | | } 2015
! ' 104 ! 121" 121 ! 122! ' 12 ! !
157 BOS | . IDFWI JIAH SY | IDFWL IBOS |
0630 770930 1015 1115 1200 1300 1415 7 1530 1615 ° ' '
Date: 10/1/89 Saturday
EDT
< 0600 0800 1000 1200 1400 1600 1800 2000 2200
: 1 191 1 ' 174 ] | 1 <5 1 !
757 ' LGA : IMIA | . JORD SP LGA
X 0700 1400 1045 X , 1345 144 1600 1700 | 2130 ,
| ' 133 : 9dg 998 ! ! ! !
757 . LGAI i — IDFWL_ JATL —BOS | GA, X
X 0700 | L 0930 1015 | 1315 1400 1645 1815 1915 :
: : ' 482 ! 1 ' 1 511 1 !
767 , SEA [ . ; FW SFO ,
X . 0545 X , 1300 1300 J J 1815 |
! ' ' ! ! 599 ! 1 l‘ZR !
767 ; ! SEALCT 1 AX [ : : —ATL | ILIGA
: ! 0715 0900 1000 . X . 1845 1943 214
! 1 J

121 ! ! 122! ' 12 ' !
757  BPSL_ . g — —HAH Co sy | —_IDFW IBOS,
10630 ! 70930 1015 1115 1200 1300 1415 | 1530 1615 T ! !
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Important Terms

Aircraft Rotation:

Deficit Station:
The station which has more originating flights of certain aircraft type in the new
schedule than terminating flights of that aircraft type in the old schedule.

Flight Schedule:
Flight Segment:
Independent Rotation Pairs:

Intersection:
Two rotations by aircraft of different types are said to intersect at a station if the
respective aircraft can be pre-switched/ post-switched.

Physical Balance:

The total number of originating flights at a station by all types equals the total
number of terminating flights at that station, but their types may be different (e.g.
two aircraft type A terminations and one each of aircraft types A and B originating
the next morning). However, across all stations served by the fleet, the total number
of each terminating aircraft type must match the total number of the corresponding
originating aircraft type.

Schedule Transition Period:

The period consisting of n days during which pre-switches and/or post-
switches are performed; generally n=2, consisting of the last day of the old schedule
and the first day of the new schedule.

Surplus/Deficit Imbalance Pair:

Surplus Station:
The station which has more terminating flights of certain aircraft type in the
old schedule than originating flights of that aircraft type in the new schedule.

Total Balance:
If there are no imbalances at all stations for the period being examined, then the
schedule is in total balance.

Turn:
The connection of a specific aircraft tail number from one flight to another.



Pre-switch/Post-switch

200 2.
Rotation 101 BOSL IDEN | JLAX
400
Rotation 102 DFWI IDEN | ISEA
L
~n
O
1
200 400
Rotation 101* BOS [ IDEN L SEA
400 202
Rotation 102* DFW | IDENI ILAX




What is the Pre-switch/Post-switch Algorithm ?

It involves pre-switches - exchanging aircraft types of certain flights on the last day of the current
schedule at some station - and post-switches - exchanging aircraft types of certain flights on the first
day of the new schedule at some station - to solve the airline schedule transition problem for two
aircraft types. It discriminates against transition flights - flights that operate only during the schedule
transition period to balance the number and/or the types of aircraft needed for the new schedule.

This algorithm can be extended to solve the airline schedule transition problem for more than two
aircraft types.

-0€L-



Time

gy —- 9/30/89
767 LGAE]DSKFEM_DRDI IATLI ILGA
767 LGA|—_GREE&%)FM JATLI ILGA

757 SEAI RED IDFWM LAXCISEA
757 SEA I"REDTIZ,AXF'—-—] ATLL ISEA

10/1/89 (Start date of new schedule)

LGA FBLUE“_M)FM IDCALC_ILGA
2
LGA%S [ ISTL [ 1.GA
LLQW 1
i SEA I__XEFOI JATL [ _ISEA
YELLOW 2
EAE | IDFW ISEA

757

757

767

167
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Time

«g r— 9/30/89 10/1/89 (Start date of new schedule) «‘

RED 1 BLUE 1

757 SEAI IDFWIL JLAXL ISEA .GAL IDFWL IDCAL_ILGA 757
r_BJ_J'JE 2

757 SEA LAXL I ATLI SEA GA BOS | 1STL [ ILGA 757

e
A
Transition flights

[ |
!

REEN 1 ! LLQW 1

767 LGAEIDSAI JORDI JATLI LGAI N EA EFOI JATLI ISEA 767
GREEN 2 ' YELLOW 2

767 LGAI IDFWL IATLI ILGA L - 1 SEAL IDFWIL ISEA 767

=cEl-

Transition flights are only flown on 9/30/89 to balance the types of aircraft at LGA and SEA.

Transition flights are expensive to operate and do not generate much revenue.

s there a better way to solve the Airline Schedule Transition Problem ?
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767

757

Time

ﬁ 9/30/89
GRFEBL_L_1
767 LGALC_IDCA RDI TL[ ILGA

GREEN 2

LGAI DFW] 11 GA
RED 1

SEA OF AXL__ISEA

SEA [ Ii AX ATLI ISEA

757

10/1/89 (Start date of new schedule)

RLLE. |
LGAL_ IDFW —_IDCALILGA
I_BL‘JE 2
LGA OSt ISTL { ILGA
: I_XFLL()W 1
SEA SFO [ JATL | ISEA
Yo,
SE FW ISEA

7157

157

767

767
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Time

— 9/30/89 10/1/89 (Start date of new schedule)
BLIIFE 1
757 SEALC W AXC 1 ATLLC____GA LGAI IDOFWM IDCAL_ILGA
E 2
767 LGA DFW] JATLI LGA LGA BOS [ ISTL [ LGA
RED 1 QW 1
757 SEA IDFW ILLAX[__ISEA l SEA CY_EI%I JATL [ ISEA
' YELLOW 2
767 LGAL_IDCAL JORDI AT REA' SEA'( IDOFWM ISEA

757

757

767

167
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10/1/89 (Start date of new schedule)

Time
757 SEA L JLAXI | ATLC.ILGA lLGA[ IDFWI IDCAL_ILGA 757
757 SEAL IDFIV IATL I ILGA l LGAL IBOS [ ISTL [ ILGA 757
767 LGAI 1 DFWI ILAXI ISEA SEA L_ISFO L JATL | ISEA 767
767 LGALCIDCALI JORDI IATL ISEA SEAI IDFW ISEA 767
| L
w
o
1



Time

— 9/30/89 10/1/89  (Start date of new schedule)

GREE RLIUFE 1

767 LGADDCAFEN"*DRDI IATL TL.GA LGAL IDFWLC IDCALCILGA

s

757 SEA [ 1.AXLC IATLLC —_1.GA LGA BOS [C ISTL C __ILGA
RED 1 LLOW 1

757 SEA [ IDOFWI ILAX[__ISEA . SEA ﬁl’siml JATLI ISEA

YELLOW 2
767 LGAL_ IOFWI ] ATLI BEA SEA'| IOFWL ISEA

757

757

767

767
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Some Points of Interest

Performing one pre-switch (or post-switch) removes one imbalance from two distinct
stations which are the terminating (or originating) stations for the rotations involved.

There is a cost associated with each pre-switch (and post-switch) which is determined
from the operating costs of the aircraft types involved and the load factor data for the

affected flights.
Randomly perfofmlng pre-switches (and/or post-switches) will not always get you the
Intersections are necessary in order to perform a pre-switch/post-switch.

best results.
In general, the fewer the number of pre-switches/post-switches needed, the better.

Can we automatically find the best set of pre-switches/post-switches ?

=LEL-



GREEN rotations RED rotations BLUE rotations YELLOW rotations

\%{

o@éra C

/4
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Each edge has capacity one.

The number associated with some edges is the cost of pre-switches.
The edges without numbers have a cost of zero.

s is a supply node and t is a demand node.

Solving a min-cost flow problem from s to t solves the schedule transition problem.

&



Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Pre-switch/Post-switch Algorithm

Physically balance all stations by cancelling/adding flight segments at stations with surpluses/deficits
(stage 1 of schedule transition problem) of some aircraft types.

Find all stations with a surplus of aircraft type A and a deficit of aircraft type B (surplus A/deficit B
stations). Color terminating rotations by type A at these stations GREEN. Color originating rotations

by type B at these stations BLUE.

Find all stations with a surplus of aircraft type B and a deficit of aircraft type A (surplus B/deficit A

-6€L-

stations). Color terminating rotations by type B at these stations RED. Color originating rotations by
type A at these stations YELLOW.

Look for intersections on the last day of the old schedule between flight segments of GREEN
rotation(s) and RED rotation(s) or for intersections on the first day of the new schedule between flight
segments of BLUE rotation(s) and YELLOW rotation(s). The identified intersections are candidates for
pre-switch or post-switch, respectively.

By selectively pre-switching and/or post-switching aircraft at the intersections identified, eliminate
aircraft imbalances at the lowest possible overall cost.
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Time starting current report : 4/24/1989 at 16:21:49
MISSING FLIGHT SEGMENTS IN ROTATION

FLOW BALANCE FOR: 890930 TO 891001

L10
890930 831001
STATION TERM ORIG TOT-T TOT-O
ATL 2 2 2 2
BDL 1 1 1 1
BOS 2 2 2 2
DFW 1 1 1 1
EWR 2 2 2 2
FLL 1 3 1 3
JFK 1 1 1 1
LAX 2 2 2 2
LGA 1 1 1 1
MCO 2 1 2 1
ORD 2 2 2 2
PBI 1 1 1 1
SEA 1 1 1 1
SFO 1 0 1 0
767
890930 891001
STATION TERM ORIG TOT-T TOT-O
FLL 2 0 2 0
MCO 0 1 0 1
SFO 0 1 0 1
TPA 1 1 1 1
757
890930 891001
STATION TERM ORIG TOT-T TOT-O

PHYSICAL IMBALANCE CHECK
STATION TOT TERM TOT ORIG

No entries below this line.
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Time starting current report : 4/24/1989 at 16:29: 9

Pre-switch Post-switch FOR: 880930 TO 881001
alc1:L10 a/c2:767

FLL has surplus a/c 2 and deficit a/c 1.

Rotation 2 will be colored RED. Stations visited :
FLL visited after 2740

LGA visited between 2355 and 2455

ATL visited between 2042 and 2155

MCO visited between 1820 and 1925

ATL visited between 1637 and 1707

SFO visited before 1231

Rotation 7 will be colored RED. Stations visited :
FLL visited after 2826

BOS visited between 2420 and 2520

ATL visited between 2103 and 2205

BDA visited between 1555 and 1755

BOS visited between 1325 and 1355

MCO visited before 1056

Rotation 12 will be colored YELLOW. Stations visited :
FLL visited before 934

ATL visited between 1109 and 1139
MIA visited between 1315 and 1415
ATL visited between 1558 and 1650
PBI visited between 1820 «.:d 4920
ATL visited between 2100 and 2155
MCO visited between 2312 and 2412
EWR visited after 2625

Rotation 13 will be colored YELLOW. Stations visited :
FLL visited before 946

MCO visited between 1031 and 1101
DFW visited between 1330 and 1528
SFO visited between 1855 and 2220
DFW visited between 2518 and 2619
MCO visited after 2830

Rotation 14 will be colored YELLOW. Stations visited :
FLL visited before 1142

ATL visited between 1320 and 1350
MCO visited between 1503 and 1605
ATL visited between 1722 and 1752
BDA visited between 2012 and 2050
BOS visited between 2257 and 2344
BDL visited after 2425

MCO has surplus a/c 1 and deficit a/c 2.

Rotation 4 will be colored GREEN. Stations visited :
MCO visited after 2950

ATL visited between 2718 and 2835

EWR visited between 2405 and 2510

ATL visited between 2141 and 2213

MCO visited between 1954 and 2024
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BOS visited between 1635 and 1705
PBI! visited before 1400
Rotation 7 will be colored BLUE. Stations visited :
MCO visited before 1056
BOS visited between 1325 and 1355
BDA visited between 1555 and 1755
ATL visited between 2103 and 2205
BOS visited between 2420 and 2520
FLL visited after 2826
Rotation 13 will be colored GREEN. Stations visited :
MCO visited after 2830
DFW visited between 2518 and 2619
SFO visited between 1855 and 2220
DFW visited between 1330 and 1528
MCO visited between 1031 and 1101
FLL visited before 946

SFO has surplus a/c 1 and deficit a/c 2.

Rotation 2 will be colored BLUE. Stations visited :
SFO visited before 1231

ATL visited between 1637 and 1707

MCO visited between 1820 and 1925

ATL visited between 2042 and 2155

LGA visited between 2355 and 2455

FLL visited after 2740

Rotation 23 will be colored GREEN. Stations visited :
SFO visited after 2833

DFW visited between 2357 and 2459

FLL visited between 2005 and 2110

ATL visited before 1826

Pre-switch rotation 4 between 2141 and 2213

with rotation 2 between 2042 and 2155 at station ATL.
Pre-switch rotation 4 between 2141 and 2213

with rotation 7 between 2103 and 2205 at station ATL.
Pre-switch rotation 13 between 1031 and 1101

with rotation 7 between 0 and 1056 at station MCO.
Pre-switch rotation 23 between 0 and 1826

with rotation 2 between 1637 and 1707 at station ATL.
Post-switch rotation 7 between 2103 and 2205

with rotation 12 between 2100 and 2155 at station ATL.
Post-switch rotation 7 between 0 and 1056

with rotation 13 between 1031 and 1101 at station MCO.
Post-switch rotation 2 between 1637 and 1707

with rotation 12 between 1558 and 1650 at station ATL.
Post-switch rotation 2 between 2042 and 2155

with rotation 12 between 2100 and 2155 at station ATL.

The result from Automatic Pre-switch/Post-switch algorithm :
Pre-switch rotations 13and 7at103tand O
Pre-switch rotations 23 and 2at 0and 1637

No entries below this line.
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Other Related Topics

+Multiple aircraft type schedule transition problem
-Simple Rpproach
-Qreedy Rppraach
-RU-at-ance Rpproach
-8et-cavering Rpproach

«Integrating intermediate pre-switches/post-switches

«Totally balancing holiday period and daily flight schedules using Pre-
switch/Post-switch Algorithm

The End

<
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COMPARISON OF YIELD MANAGEMENT STRATEGIES:
SIMULATION RESULTS

Dr. Peter P. Belobaba

Flight Transportation Laboratory
Massachusetts Institute of Techrology
Cambridge, MA 02139

Presentation to MIT/FTL
Cooperative Research Program Annual Meeting

May 25, 1989
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1. TERMINOLOGY AND DEFINITIONS

A. INVENTORY STRUCTURES

BOOKING CLASS (also FARE CLASS): Each fare basis
code is associated with a booking class; booking class
availability is displayed on a computer reservations
system (CRS) screen.

BOOKING LIMIT (AUTHORIZED LIMIT): The
maximum number of bookings that may be accepted in a
booking class.

B. CONTROL MECHANISMS

BY BOOKING CLASS (FLIGHT LEG): Limits are
applied only to booking classes at the flight leg level.

BY ON-FLIGHT ITINERARY(SEGMENT): Within each
booking class, additional limits are placed on local vs.
through passengers.

BY TOTAL ITINERARY (O-D): Limits are applied to
each specific passenger O-D and booking class.
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2. BOOKING CLASS STRUCTURES

DISTINCT (PARTITIONED) CLASSES or "BUCKETS":
Each booking class has its own allocation of seats;
allocations sum to capacity of shared cabin.

EXAMPLE: 100 seats, 5 classes
Y15 B20 M25 Q30 V10

Y B M Q \Y

NESTED CLASSES: Maximum limits are applied to
each booking class; each higher class has a higher
booking limit.

EXAMPLE: Y100 B8 Mé65 Q40 V10

15 seats are protected for exclusive use of Y-class
bookings, but Y-class can book up to 100.
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PARTIALLY NESTED (HYBRID) CLASSES: Any
combination of distinct and nested booking classes.

EXAMPLE: Y100 B85 M25 Q30 V10

Y and B are parent classes; M,Q,V are distinct and
nested within B.




-149-
3. OPTIMIZATION METHODS
DISTINCT BOOKING CLASSES:
1. DETERMINISTIC ALLOCATION - Allocate seats to
each booking class based on mean forecast demands

(starting at highest class).

EXAMPLE: 5 Fare Classes, 195 Seats

CLASS

1 2 3 4 5
Demand 28 43 54 49 46
Std. Error 9.8 15.1 189 17.2 16.1
Fare $289 $236 $205 $141 $127
Deterministic
Allocation 28 43 54 49 21

2. PROBABILISTIC OPTIMIZATION - Allocate seats
based on probabilistic distribution of forecasted
demands, such that expected marginal revenue

from last seats allocated is equal across all classes.

CLASS
1 2 3 4 5

Probabilistic
Allocation 31 45 53 37 29
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NESTED BOOKING CLASSES:

1. DETERMINISTIC PROTECTION - Protect seats for
each booking class based on mean forecast demands,
from highest class down.

CLASS

1 2 3 4 5
Deterministic
Protection 28 43 54 49 21

2. ADAPTED PROBABILISTIC - Protect seats for
each booking class by applying probabilistic optimal
allocations from distinct class problem.

CLASS

1 2 3 4 5
Adapted
Probabilistic 31 45 53 37 29

3. EMSR ALGORITHM (Belobaba 1987) - Find
optimal protection limits between each pair of classes
and nest the results based on expected marginal

seat revenues.

CLASS
1 2 3 4 5

EMSR Nested
Protection 19 31 64 34 47
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4. OPTIMAL SOLUTION (Wollmer 1988) - Calculate
optimal nested booking limits by considering joint
probability distribution of all classes at the same
time.

CLASS
1 2 3 4 5

Optimal Nested
Protection 19 36 65 43 32
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4. SIMULATION OF FLIGHT LEG CONTROL'

INPUTS:
* 5 booking classes on single flight leg

¢ Probabilistic demand distributions for

each class, summing to a mean total
demand of 220 (see Table 1)

¢ Constant, hierarchical class revenues

* Varying capacities, from 100 to 300
(Demand factors from 0.73 to 2.20).

¢ 3 demand scenarios:
(1) Distributed class demands
(2) High high-fare demand
(3) High low-fare demand

SIMULATION:
¢ Demands drawn from normal density for
each class

* Lowest class books first; highest last

* Independent class demands; no "sell-up"

* Single point in time; no revisions of
booking limits during reservations

process.

* 10,000 flight sample for each scenario

OUTPUTS:
* Expected flight leg revenues for each
demand scenario, capacity and set of
booking limits.
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TABLE 1: SIMULATION INPUT DATA - FLIGHT LEG CONTROL

SCENARIO 1: DISTRIBUTED FARE CLASS DEMANDS

DEMAND STD
CLASS FARE FORECAST ERROR
1 $289 28 9.8
2 $236 43 15.1
3 $205 54 18.9
4 $141 49 17.2
5 $127 46 16.1
TOTAL 220
SCENARIO 2: HIGH HIGH-FARE DEMAND
DEMAND STD
CLASS FARE FORECAST ERROR
1 $289 35 12.3
2 $236 56 19.6
) $205 64 22.4
4 $141 42 14.7
5 $127 23 8.1
TOTAL 220
SCENARIO 3: HIGH LOW-FARE DEMAND
DEMAND STD
CLASS FARE FORECAST ERROR
1 $289 20 7
2 $236 30 10.5
3 $205 44 15.4
4 $141 56 19.6
5 $127 70 24.5
TOTAL 220
AIRCRAFT CAPACITIES
CAPACITY | 300 260 230 195 160 130 100
DEMAND FACTOR !
(Demand/Capacity) | 0.73 0.85 0.96 1.13 1.38 1.69 2.20
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SIMULATION RESULTS - FLIGHT LEG CONTROL

DISTINCT BOOKING CLASSES

FIGURE 1 shows percentage difference in revenues
for deterministic and probabilistic solutions over no
control for all 3 demand scenarios:

¢ At demand factors above 1.13, both solutions
show major revenue gains over no control.

e At lower demand factors, use of distinct booking
classes actually causes revenue shortfall
compared to no control, regardless of
solution method.

* In all cases, probabilistic solution outperforms
deterministic solution, more so at lower
demand factors.

FIGURE 2 shows this comparison of probabilistic over
deterministic distinct class solutions for all 3 demand
scenarios:

* Probabilistic is 13% higher in expected revenues at
demand factor 0.73%.

¢ Difference decreases rapidly then increases
again, especially for unequal fare class
distributions of demand (Scenarios 2 and 3).
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DISTINCT FARE CLASSES
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FIGURE 2
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SIMULATION RESULTS - FLIGHT LEG CONTROL

NESTED BOOKING CLASSES

FIGURE 3 shows revenue difference over no control for
deterministic, adapted probabilistic, and EMSR solutions
under all 3 demand scenarios:

* Positive revenue impact of all methods is evident
at demand factors above 0.96.

* Adapted probabilistic method has negative
revenue impacts at demand factors below 1.0,
although it outperformed deterministic
solution at high demand factors in 2 scenarios

* EMSR solution showed highest revenues in all
cases.

FIGURE 4 shows compaiison of EM3R over
deterministic solution for the 3 demand scenarios:

* EMSR revenues are 0.5 to 1 percent higher at
demand factors around 1.0.

* EMSR advantage increases to 2-3 percent at
higher demand factors, except Scenario 3
(high low-fare demand).

FIGURE 5 shows revenue difference of optimal nested
solution over EMSR algorithm:

* Optimal solution results in expected revenues
marginally greater than EMSR method, but
difference is less than 0.5 percent all cases.
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NESTED F4RE CLASSEZS
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o

NESTED OPTIMAL OVER EMSR ALGORITHM

3 SCENARIOS
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FIGURE 5
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FLIGHT LEG SIMULATION RESULTS - SUMMARY

FIGURES 6, 7 and 8 compare expected revenues across
all the flight leg options tested for selected demand
factors(0.96, 1.13 and 1.38, respectively):

e At demand factor 0.96, distinct methods show
substantial negative impact compared to no
control. EMSR and optimal nested solution
show small positive impacts.

e At demand factor 1.13, all nested methods have
positive revenue impacts. Distinct methods
show small positive impact for Scenario 3.

* At demand factor 1.38, all methods show positive
revenue impact of 9-18 percent over no
control. Relative rankings are consistent
across scenarios.

FIGURE 9 illustrates positive revenue impact of nested
fare classes/EMSR solution over distinct fare
classes/probabilistic solution. Nested EMSR revenues
are generally at least 2 percent higher, peaking at 6
percent higher for demand factor 0.96.
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5. CONCLUSIONS

FLIGHT LEG CONTROL

o Important to match optimization method to
booking class structure.

* Nested booking classes result in higher expected
revenues than distinct classes.

e Probabilistic solutions outperform deterministic
solutions

* Potential for negative revenue impacts occurs at
low demand factors, especially with distinct
classes.

e EMSR underperforms optimal nested solution by
less than 0.5%, a small margin given:

- uncertainty of input demand data

- substantially greater processing time
required to find optimal solution
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