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Outline of Presentation

- Basic Definitions

- Objectives

- Overbooking Models

- Simulation Results

- Conclusions
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Overbooking

- accepting reservations in excess

of capacity in order to minimize

empty seats on flights for which

demand existed

- offsets the effect of cancellations

and no-shows between now and

departure time

- trade off between the cost of

denied boarding vs. the cost of

spoilage
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Denied Boarding

- passenger who holds a confirmed

reservation (with a valid ticket)
but is unable to board the plane

because the flight was oversold

- also refers to the event of a

passenger being denied boarding

Spoilage

- empty seats on a flight which was

closed out on the day of

departure
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Cost of Denied Boarding

- cash or travel benefits (eg. free

tickets or travel vouchers)

- hotels, meals, transportation

costs (airport/hotel)

- goodwill

Cost of Spoilage

- revenue from the reserved seat

which went out empty
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Objective:

Maximize Net Revenue

Passenger Revenue

- Denied Boarding Cost

Alternative Objectives:

Minimize Probability of Denied
Boarding

Minimize Proportion of Denied

Boardings to Total Boardings
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Problem: Given no-show rates of

each fare class which are -

statistically different, how does

overbooking by fare class

compare with overbooking by

cabin capacity?
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Overbooking by Cabin Capacity

- finds overbooking level or
authorized capacity, AU, by
dividing actual capacity by a
function of the aggregate
show-up rates of all fare classes

- allocates the reservation spaces
(equal to AU) to the different fare
classes by an optimization
method for seat inventory control
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Integrated Overbooking/
Seat Inventory Control

- finds seat allocations by fare

class based on actual capacity

- overbooks the fare cass

allocations to find the fare class

overbooking limits and then AU
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- looked at several options of

overbooking by fare class

- compared these options with

cabin overbooking using

simulations

- used mean demand and standard

deviation, mean show-up rate
and fare of each fare class as
inputs to simulations
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1. Overbooking by Cabin Capacity

Example: Cap = 100 seats

NS

OV
AU

=15%

=18%
= 118 spaces

Use EMSR to find fare class limits

Y

35

s

F($)
BL
NP

12.

320

118
20

M

23

7
290
98

22

B
40

12
250

76
50

BL = Booking Limit

NP = Nested Protection Level

46
14
170
26

-MIN11111dWINNIIIIIIN'.
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2. EMSR Fare Class Overbooking

- incorporates OVi into allocations

by deflating relative revenues to
account for different show-up
rates

- calculates protection levels and
adjusts for show-up differences
at the same time

Example:

Y

Ovi

BL

.77

112

NP

M

.83

100
12 20

B

.90

80

53

.95

27

- - --- - , - '' -I,--, I I 11 1 0 '.1 No 1, 1 IN. - - I
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3. Modified EMSR Overbooking

- uses passenger show-up

distribution instead of demand

distribution in allocation process

- overbooks actual seat allocations

by a function of the weighted

average of the fare class show-up

rates

Example:

Y

BL

NP

121

M

101

20 23

B

2878

50
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4. Overbooking by
Partial Enumeration

optimizes expected net revenue

using non-linear programming

formulation

Objective Function:

Max E[R]= I FiXipi - DBC*E[DB]

st. Xipi ; CAP

where

R = net revenue
Fi = fare in each class i
Xi = number of seats in class i
pi = mean show-up rate of class i
DBC = cost per denied boarding
DB = denied boarding
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- not monotonically increasing in

each fare class --> may have

multiple optimal solutions

- incorporates costs of denied

boardings

- seat allocations are applicable to

a distinct fare class structure

instead of a nested structure

- distinct allocations are used as

nesting variables

- optimization requires an initial

solution
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Example:

Y M B
BL 116 85 65 20
NP 31 20 45-

I I$ w Mw -+ - -
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Simulation Scenario A:

Low Demand

Low Standard Deviation

Low Show-up Rate

Low Fare

Cabin EMSR Mod. Partial

EMSR Enum.

BL Y 118 112 121 116

M 98 100 101 85

B 76 80 78 65

Q 26 27 28 20

NP Y 20 12 20 31
M 22 20 23 20

B 50 53 50 45

DB 1.97 0.37 3.43 0.60

3.98 5.14SP 3.21 7.29



Revenue
12200

12100

12000

11900

11800

11700

11600

11500

11400

11300

11200

11100

11000
160

Low Fare
Low Show-up Rate

Low Demand (low std. dev.)

. a I --- ~ IL I
I I,1

300 320

- Cabin

EMSR

Mod EMSR

- Partial Enum.

I I , I

180 200 220 240 260 280
Denied Boarding Penalty ($)

($)

""'""'"" ..... .... .
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Simulation Scenario B:

Low Demand

Low Standard Deviation

High Show-up Rate

Low Fare

Cabin

BL Y

M

NP Y

M

DB

SP

112

92

70

20

20

22

50

0.57

EMSR

110

93

71

23

17

22

48

0.33

Mod.

EMSR

!17

96
73

24

21

21

49

2.71

5.53 5.47 3.73

Parti

Enum.

m mm mmmmm

113

80

59
14

33

21

45

0.40

8.69



Revenue (
12300

12200 -

12100-

12000

11900--

11800--

11700--

11600-

11500 -

11400
160

Low Fare
High Show-up Rate

Low Demand (low std. dev.)

a I I I I I ~

- Cabin

EMSR

Mod EMSR

- Partial Enum.

180 200 220 240 260 280 300 320
Denied Boarding Penalty ($)

$)
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Simulation Scenario C:
High Demand

Low Standard Deviation

Low Show-up Rate
Low Fare

Cabin EMSR Mod. Partial

EMSR Enum.

BL Y 118 115 122 118

M 90 96 94 83

B 62 71 65 59

Q 0 4 2 0

NP Y 28 19 28 35
M 28 25 29 24

B 62 67 63 59

DB 0.91 0.59 2.27 0.77

5.99 5.62SP 4.89 6.51



Low Fare
Low Show-up Rate

Revenue ( High Demand (low std. dev.)
13100

13000.

12900 -_ 
_ _ __ _ _ _

-0 Cabin
12800- 

EMSR

12700 - Mod EMSR

-A Partial Enum.
12600-

12500-

12400 -
160 180 200 220 240 260 280 300 320

Denied Boarding Penalty ($)
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Simulation Scenario D:

High Demand

Low Standard Deviation

High Show-up Rate

High Fare

Cabin

BL Y

M

B

Q

NP Y

M

B

DB

SP

112

77

29

0

35

48

29

0.10

EMSR

115

81

33

3

34

48

30

0.46

Mod.

EMSR

113

77

29

0

36

48

29

0.21

13.58 10.35 12.10

Partial

Enum.

m mmm m

116

66

21

0

50

45

21

0.24

- -MIllillomikilli 11191 M11,

17.77



High Fare
High Show-up Rate

Iligh Demand (low std. dev.)

40300 -

40200 -

40100 -

40000 -

39900

39800

39700

39600

39500 --

39400

39300

39200--
350

b~EES~S~m~,m

I I I I I I a a

450 550 650 750 850 950
Denied Boarding Penalty

105011501250

($)

Revenue ($)
40400 T

Cabin

EMSR

Mod EMSR

Partial Enum.

----
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Conclusions:

- Different methods have varying degrees
of sensitivity to changes in input values

- Each method performs differently in

each scenario

- Cabin overbooking gives reasonable
results for changes in mean demand and
show-up rates

- EMSR overbooking gives stable results
but allocates more seats to lower classes
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- Modified EMSR overbooking gives best
results for cases involving long-haul,
high demand flights with high show-up

rate for each fare class but results in
higher denied boardings

- Partial enumeration gives best results for

cases involving short-haul flights with
low demand (with low std. dev.) and
low show-up rates for each fare class
and protects more seats for higher
classes
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DEVELOPMENTS IN
ORIGIN-DESTINATION SEAT INVENTORY CONTROL

Elizabeth L. Williamson

Flight Transportation Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

Presented to
MIT-Industry Cooperative Research Program

May 25, 1989
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PROBLEM:

To determine the number of seats to allocate to
each rg ettion and fare dass itinerary
on each light of an airline's route schedule in
order to maximize total revenue.
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Components of O-D Seat Inventory Control

OPTIMIZATION METHOD

CONTROL METHOD
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O-D Approaches:

e Deterministic Network Optimization Method

" Probabilistic Network Optimization Method
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DISTINCT DETERMINISTIC

e deterministic network formulation used to find seat
allocation for each O-D/fare class over a network
of flights

Maximize

Subject to:

O-D
x Xi,O-D5 CAPj

for all O-D itineraries and i fare classes
on flight j, for all flight j.

Xi,0-D , 1i,O-D

for all O-D itineraries and i fare classes.

" demand inputs reflect certainty, usually mean
forecast demand for each O-D/fare class

e distinct booking limits applied to each O-D/fare
class

e requires virtual classes for implementation

I I fi,O-D -Xi,O-D
O-D i
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NESTED DETERMINISTIC

e use solution from distinct deterministic network
formulation

" for control purposes, use distinct booking limits
nest on the basis of:

- Fare Classes
- Fares
- Shadow Prices

- booking limits by fare classes applied directly to
reservations system booking classes while
booking limits from other methods require
virtual inventory classes
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DISTINCT PROBABILISTIC

- probabilistic math programming formulation using
(0,1) variables to represent each fare
class/O-D/seat possibility in a network of
flights

Maximize 2: 1O-D i

CAPk

j=1
EMR (ji,O-D)- Xi,0-D,j

Subject to:

IO-D

CAPk

j=1
Xi,0-D,j CAPk

for all O-D itineraries and i classes on
flight k, for all flights k

xi,0-D,j =0 or 1

for all O-D itineraries, i classes, and
j=1,2,...,CAPk

" forecast demand distributions used to generate

expected marginal revenue for each variable.

e distinct booking limits for each O-D/fare class are
produced

*requires virtual classes for implementation
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NESTED PROBABILISTIC

" use solution from distinct probabilistic network
formulation

" for control purposes, use distinct booking limits
nest on the basis of:

- Fare Classes
- Fares
- Deterministic Network Shadow Prices

e booking limits applied directly when nesting by fare
class, otherwise virtual classes needed for
implementation
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FIGURE 1:

B

A

E

C

SMALL HUB NETWORK
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TABLE 1; SIMULATION INPUT DATA - O-D CONTROL

CAPACITY = 150

MEDIUM DEMAND = 150 ON EACH LEG

0-D ITINERARIES Y M Q

AB/BA MEAN DEMAND 9 7 8 13
STD. ERROR 2 2 3 3
REVENUE $310 $290 $95 $69

AE/EA MEAN DEMAND 19 5 4 10
STD. ERROR 3 2 1 3
REVENUE $159 $140 $64 $49

AC/CA MEAN DEMAND 15 7 5 11
STD. ERROR 3 3 2 2
REVENUE $280 $209 $94 T59

AD/DA MEAN DEMAND 6 8 20
ETD. ERROR 2 2 2 5
REVENUE $455 $7391 $142 $122

BE/EB pfEAN DEMAND 4 5 8 20
STD. ERROR 2 2 4 6
REVENUE $319 $250 $109 $69

BC/WB MEAN DEMAND 8 4 11 15
ETD. ERROR 3 2 --- 3
REVENLE $403 $314 $124 $89

BD/DB MEAN DEMAND 7 5 8 18
STD. ERROR 2 3 3 4
REVENUE $575 $380 $159 $139

CE/EC MEAN DEMAND 10 3 5 19
STD. ERROR 42 2 5
REVENUE $226 $168 $84 $59

CD/DC MEAN DEMAND 13 8 5 11
STD. ERROR 3 3 1 2
REVENUE $477 -$239 $139 $119

DE/ED MEAN DEMAND 4 5 5 24
STD. ERROR 2 3 2 7
REVENUE $502 $450 $154 $134

LDW DEMAND = 0.67 * MEDIUM

*UBH DEMAND = 1.33 * MEDIUM
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SIMULATION OF O-D CONTROL METHODS

* Demands drawn from normal density for each
O-D/fare class

* Lowest classes book first

- Independent demands; no "sell-up"

-Single point in time; no revisions of booking limits
during reservations process

- 1,000 sample size (complete network)

OUTPUT: Expected total network revenue for each demand
scenario "Aid optimization/control method
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ORIGIN-DESTINATION CONTROL

- Combinations of optimization and control methods
provide a wide variety of approaches to O-D
seat inventory control.

" Important to understand how O-D optimization
results can be implemented into the inventory
control structure.

" Network formulations take into account the interaction
of passenger flows across connecting flights in
allocating seats.

* Poor matching of optimization and control methods
can lead to negative revenue impacts.

e Given "small numbers", problems of O-D control,
some form of aggregation and nesting become
essential to improving revenues.
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AIRLINE RESERVATIONS FORECASTING:

A PROGRESS REPORT

by

Anthony Lee

Flight Transportation Lab

and

Center for Transportation Studies

Massachusetts Institute of Technology

MIT - INDUSTRY COOPERATIVE RESEARCH PROGRAM

MAY 25, 1989

111 kll
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OUTLINE OF PRESENTATION

- BASIC DEFINITIONS

- GOAL AND MOTIVATION

- REVIEW OF MODELING FRAMEWORK

- COMPUTATIONAL RESULTS

- THE VALUE OF FORECASTING:

SIMULATION RESULTS

- CONCLUSIONS
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AIRLINE RESERVATIONS PROCESS

'REQUEST
WEFED /

(JAN\CELLATOrN

Bookings =

Nhor
CAKMLeb

Total Reservations

LOST

Total Cancellations

= number of reservations currently

remaining in the system

=Bcfd(t)

?WSEEVAlobi
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GOAL OF THIS PROJECT

-- DEVELOP ACCURATE FLIGHT-SPECIFIC,

CLASS-SPECIFIC FORECASTS OF FINAL

BOOKINGS AT SPECIFIC TIMES BEFORE

THE FLIGHT DEPARTS

-- EXAMPLE

TODAY, WE WANT TO FORECAST HOW MANY MORE

FULL FARE (Y CLASS) PASSENGERS WILL BOOK ON

FLIGHT 1234 DEPARTING ON JUNE 8.

= BY,1234,6/8(0) - BY,1234 ,6/8(14)
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MOTIVATION

MORE PRECISE FORECASTS OF BOOKINGS

LEAD TO

BETTER INPUTS FOR REVENUE MAX.

PROCEDURE

RESULTING IN

IMPROVED ALLOCATION OF SEATS AMONG FARE

CLASSES

AND FINALLY

INCREASED REVENUES!!
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HISTORICAL BOOKING MODEL

DATA:

IDEA:

USES BOOKINGS ON PREVIOUS

DEPARTURES OF THE SAME FLIGHT

NUMBER

CAPTURE TRENDS OVER TIME

MATHEMATICAL MODEL:

akt Bd-k(t) += ot +Bd(t) alt E'd-l + E'd
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EXAMPLE:

Bd(t) = b, *(time t bookings on

b2*(time t bookings on

date d-7) +

date d-14) +

b3*(time

b4*(time

+... + b 0

t bookings on date d-21) +

t bookings on date d-28)
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ADVANCE BOOKING MODELS (BOOKING CURVES)

DATA:

IDEA:

BOOKINGS ALREADY MADE ON A

PARTICULAR FLIGHT AND OTHER

FACTORS SUCH AS BOOKINGS IN LOWER

CLASSES, SEASONALITY INDICES, ETC.

CAPTURE RESERVATIONS BUILD UP

OVER TIME

MODEL 1: (Pure Booking Curve Model)

Bd(t) = B0 + f(tP) + Xb + 1

Bookings depend on time t before departure and other

variables.

MODEL 2: (Time Series of Advance Bookings)

Bd(t) = yo + I yBd(t+) + Xb + vt

Bookings depend on advance bookings in previous periods

and other variables.
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EXAMPLES:

- Pure Booking Curve Model

Bd(t)= a1*log(t) +

a2*(seasonal index) +

a3*(percentage sold

classes) +

in lower

-- + ao

Advance Bookings Model

= c,*(bookings at

c2*(bookings

C3*(bookings

c4*(bookings

at time t+7) +

at time t+14) +

at time t+21) +

c5*(seasonal index) +

c6*(percentage sold in lower

classes) + - + co

Bd(O) time t) +
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COMBINED MODEL:

WEIGHTED COMBINATION OF

HISTORICAL BOOKING MODEL AND

ADVANCE BOOKING MODEL.

01* (historical booking model)

62 * (advance

*

p*

akt

+ f(t,p3*)

booking model)

Bd-k(t) a i Ed-I +

+ Xb

where a * = 01 * , p = 02*$, and so forth.

IDEA:

MODEL:

Bd(t) =

*t Ed
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EXAMPLE:

Bd(t) = z, *(time t bookings on date

z2*(time

z3 (time

z4 (time

t bookings on date d-14) +

t bookings on date d-21) +

t bookings on date d-28) +

z5*log(t) +

z6*(seasonal index)

z7*(percentage sold in lower

classes) + --- + z0

d-7) +
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COMPUTATIONAL CONSIDERATIONS

DISTINGUISHING BETWEEN ESTIMATION

FORECASTING

ESTIMATION fits a curve to past and

current observations.

-- All observatiors are known values.

FORECASTING predicts future (unknown)

values given the past and current

observations.

-- Producing a forecast requires

estimation and intelligent

extrapolation.

AND
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CURRENT INDUSTRY PRACTICE IN FORECASTING

-- N-WEEK MOVING AVERAGE MODEL WITH

SOME ADJUSTMENTS FOR SEASONALITY

-- MATHEMATICAL STATEMENT:

Bd(O) = Bd(t) + (1/8) [Bd.k(O)-Bd.k(t)]

-- COMMENTS

1. ONE STEP ESTIMATION AND

FORECASTING.

2. DOES NOT TAKE BOOKING CURVE

EFFECT INTO ACCOUNT.

3. IT SEEMS THAT MORE RECENT

OBSERVATIONS SHOULD BE MORE

HEAVILY WEIGHTED.
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COMPARISON OF MOVING AVERAGE MODELS AND

REGRESSION MODELS

MOVING A VERA GE MODEL:

8 - WEEK AVERAGE OF BOOKINGS TO COME

REGRESSION MODELS:

HISTORICAL (TIME SERIES) MODEL

ADVANCE (BOOKING CURVE) MODEL

COMBINED MODEL

MEASURE OFACCURACY OF FORECASTS:

MEAN SQUARE ERROR OF FORECAST =

(1/N) X(FORECAST - ACTUAL) 2
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SUMMARY OF RESULTS

TABLE 1: LAS-MSP MARKET (Q CLASS)

- ESTIMATION DATA: 6 MONTHS

- FORECASTING DATA: 4 MONTHS

- REGRESSION MODEL:

Bd(t) = b, *(TIME) +

b2*(SEASONAL INDEX) +

b3*(BOOKINGS previous week) +

b4

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

Day 7 to 0

10.52

9.96

Day 14 to 0

15.14

17.39

Day21 to0 Day 28 to 0

20.01

17.53

23.04

16.34

12.40 29.00

MODEL

MA

REG

% IMPR. 5.23 -1 4.9
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TABLE 2: BOS-MSP MARKET (M CLASS)

- ESTIMATION DATA: 6 MONTHS

- FORECASTING DATA: 4 MONTHS

- REGRESSION MODEL:

Bd(t) = b1 *(35-TIME)2 +

b2*(SEASONAL INDEX) +

b3 *(BOOKINGS previous week) +

b4

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

Day 7 to 0

5.20

4.95

Day 14 to 0 Day 21 to 0

10.80

9.33

12.85

Day 28 to 0

14.61

9.87 10.80

23.19 26.08

MODEL

MA

REG

% IMPR. 4.81 13.61
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TABLE 3: MKE-MSP MARKET (B CLASS)

- ESTIMATION DATA: 6 MONTHS

- FORECASTING DATA: 4 MONTHS

REGRESSION MODEL:

Bd(t) = b1 *(35-TIME) 2 +

b2*(SEASONAL INDEX) +

b3*(BOOKINGS previous week) +

b4

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

Day 7 to 0

4.00

4.33

Day 14 to 0

4.25

3.61

Day 21 to 0

5.95

4.45

Day 28 toO

4.90

3.93

25.21 19.80

MODEL

MA

REG

% IMPR. -8.25 15.05
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TABLE 4: DEN-MSP MARKET (Y CLASS)

- ESTIMATION DATA: 6 MONTHS

- FORECASTING DATA: 4 MONTHS

- REGRESSION MODEL:

Bd(t) = b1 *(35-TIME) 2 +

b2*(SEASONAL INDEX) +

b3*(BOOKINGS previous week*

SEASONAL INDEX) + b4

COMPARISON OF MEAN SQUARE ERROR OF FORECAST

Day 7 to 0

7.68

6.40

Day 14 to 0 Day 21 to 0

9.48

7.08

Day 28 to 0

11.13

9.08

11.64

10.67

18.42 8.33

MODEL

MA

REG

% IMPR. 16.67 25.32
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THE VALUE OF FORECASTING

Main Idea: Determine the impact of the forecast

accuracy on the allocation of seats among the

fare classes and, importantly, on expected

revenues.

Question: How much in expected revenues do we

gain with improved forecasts?
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SIMULATION OF VALUE OF FORECASTING

- ACTUAL AIRLINE DATA (DEMANDS) WITH

SOME MINOR ADJUSTMENTS

- FOUR FARE CLASSES Y, B, M, AND Q WITH

REVENUES OF 100, 70, 50, AND 30.

- AIRCRAFT CAPACITIES OF 100, 200, & 300

- FOUR DEMAND SCENARIOS:

- LOW (30% OF CAPACITY)

- MEDIUM (60% OF CAPACITY)

- HIGH (90% OF CAPACITY)

- VERY HIGH (120% OF CAPACITY)

- SIMULATION OF 2000 FLIGHTS FOR EACH

SCENARIO
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SUMMARY OF THE SIMULATION

GOAL: TO TEST THE EFFECT ON EXPECTED

REVENUES OF A FORECAST MEAN AND

STANDARD DEVIATION WHICH DIFFER

FROM THE ACTUAL MEAN AND

STANDARD DEVIATION OF DEMAND

PROCEDURE:

STEP 1: USE THE FORECAST MEAN AND

STD DEV TO CALULATE THE EMSR

BOOKING LIMITS

FORECAST = FACTOR X ACTUAL

(WHERE FACTOR VARIES FROM 0.25 TO 5)

- CASE 1: VARY STD DEV ONLY

- CASE 2: VARY MEAN ONLY

- CASE 3: VARYMEANANDSTDDEV
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STEP 2:

STEP 3:

DEMAND IS RANDOMLY GENERATED

FROM A NORMAL DISTRIBUTION WITH

THE ACTUAL MEAN AND STD. DEV. OF

DEMAND

DEMAND IS REALIZED AT A SINGLE

POINT IN TIM'~. Q PASSENGERS BOOK

FIRST, THEN M CLASS, NEXT B CLASS,

AND FINALLY Y CLASS BOOKS LAST.

STEP 4: WE REPEAT STEPS 2 AND 3 FOR 2000

FLIGHTS.
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TABLE 1 - VALUE OF ACCURACY IN FORECASTING

FORECAST

ACCURACY

PERCENTAGE CHANGE IN AVERAGE

REVENUE FROM THE BASE CASE

CASE (PERFECT

OF BASE CASE

OF BASE CASE

OF BASE CASE

OF BASE CASE

OF BASE CASE

DEMAND LEVELS

LOW MEDIUM HIGH

-0.4% -2% -9%

-0.3%

0%

00/0

FORECAST)

0%

00/0

00/0

-0.5%

-5%

BA'

BASE

BASE

BASE

)F

F

F

F

CASE

CASE

CASE

CASE

50% C

75%O

90% C

95% C

BASE

105%

110%

125%

150%

200%

-1%

-0.3%

0%

0%

-0.5%

-2%

-9%

-24%

-3%

-1%

0%

0%

-0.5%

-3%

-10%

-18%
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CONCLUSIONS:

- ACCURATE FORECASTS ARE PARTICULARLY

IMPORTANT ON HIGH AND VERY HIGH

DEMAND FLIGHTS

- EXPECTED REVENUES ARE MORE SENSITIVE

TO DIFFERENCES BETWEEN THE FORECAST

AND ACTUAL MEAN THAN TO VARIATIONS

IN THE ACTUAL AND FORECAST STD DEV

- EACH 10% OF FORECAST ACCURACY CAN BE

WORTH 2% TO 4% IN EXPECTED REVENUES

- FORECASTS WHICH ARE WITHIN 10%OF THE

ACTUAL VALUE ARE "GOOD ENOUGH".
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A Flexible Computer Aid for Conceptual Design
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Computer Applications in Engineering Design

Motivation:

" Speeds calculation procedure.

* Enhanced speed allows more iterations through the design path.

" Enable computer to manage complexity of design problem, freeing the engineer to
develop "creative" solutions.

History:

" Computer-Aided Design (CAD) systems for geometric design. Best suited to detailed
design.

" Sequential programs based on vehicle class. Single design path, implying limited
range of applicability.

* Multiple sequential programs linked by a common database. Recently, expert systems
have been applied to managing the interfaces between sub-programs. Still limited by
sub-program directionality.

WAK
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The Conceptual Design Task:

" Can be computationally intensive (particularly in aerospace engineering), thus prompt-
ing the use of computers.

" Demands flexibility, since the designer must develop solutions to unanticipated prob-
lems. It requires creativity and innovation.

" Is therefore unamenable to delineation, as in a sequential computer program. An
alternate approach is needed.

A Question
How can the flexibility afforded by CAD systems for detailed design be acheived in
computer tools for conceptual design?

One Answer
Advanced programming techniques, such as

" Object-Oriented Programming

" Constraint Propagation

MAK
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Object-Oriented Programming

" Based on descriptions of objects and their behavior.

" Objects are represented as instances of object classes, which serve as templates.

* Classes provide instance variables, which are state variables whose values are specific
to each instance.

" Behavior is represented by methods, which are procedures specialized to a given class.

NA"
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Object-Oriented Programming: An Example

Class: Automobile Instances:

Instance Variables:

Color

Number-of-Doors

Engine-Size

Amount-of-Fuel

Number-of-Passengers

Methods:

A ccelerate

Decelerate

A dd-Passenger

Remove-Passenger

car-1

color: red
number-of-doors: 4

engine-size: V8

wA
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Object-Oriented Programming: Inheritance

" Definition of one class may be based upon the definition of another.

" A class inherits the instance variables aId methods of its superclass.

" Inherited methods may be specialized to the new class.

A collection of specialized methods for representing the same behavior over a range of
classes serves to define a generic operation. Generic operations provide a general-purpose
interface for a given behavior which is context-sensitive: the particular response depends
upon the class of the object to which it is applied.

NA"
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Inheritance: An Example

Superclass: Moving-Object
Provides instance variables for position and velocity.
Defines Accelerate and Decelerate methods which change the object's velocity.

Class: Automobile
Provides instance variables for color, engine size, etc.
Defines a specialized Accelerate method which reduces the object's amount-of-fuel in-
stance variable.

Subclasses: Off-Road Vehicle, Race Car, Passenger Vehicle
Further specializations of the Automobile 'lass, which provide limits on engine size,
the number of passengers, etc.

Wr
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Inheritance: An Example

Consider class Cable Car, a second subclass of Moving Object:

* Cable cars carry no fuel.

e No need for a specialized Accelerate method.

Consider class Rocket, a third subclass of Moving Object:

* Rockets expend fuel when accelerating and decelerating.

* This class requires specialized methods for both the Accelerate operation and the
Decelerate operation.

Thus, the various Accelerate methods combine to form an Accelerate generic operation for
Moving Object and its subclasses, whose behavior varies according to the type of moving
object to which it is applied.

M"
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Applicability of Object-Oriented Programming

" Design components (e.g., wings, fuselages, landing gear) are objects.

" Design involves the manipulation of these objects: positioning, sizing, etc.

" Design variables are also objects, with properties such as:

- dimensionality

- units

- value

- upper and lower bounds

C.)
" Mathematical relationships among these variables may be thought of as operating on

their parameters, by manipulating parameter values in order to satisfy the relation-
ship.

MK
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Constraint Propagation

" Conventional computer programs are c- mprised of sequences of declarative instruc-
tions:

AR = b2 /S

" Mathematically, such a statement also implies a number of equivalent imperative forms:

b= /ARx S

S = b2 /AIR

" A computer program which enforces one form must be re-written if an imperative
form is needed.

MAK
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Constraint Propagation Systems:

* Automatically infer the corresponding imperative forms from the given declarative
input.

" Decide which form to apply, based on the available information.
Example: Given AR = b21S.
If S and b are known, then AR = b2 /S.
If AR and S are known, then b = VAR x S.
If AR and b are known, then S = b2 /AR.

" Blur the distinction between "code" and "data".
Mathematical relationships are both data to be manipulated and code to be executed.

ma
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Applicability of Constraint Propagation

. Conceptual design depends upon satisfaction of mathematical relationships which
model the problem.

" Due to the unpredictable nature of conceptual design, the required forms of these
relationships will vary from problem to problem.

" Constraint propagation affords the flexibility which allows a single program to be
applied to a variety of conceptual design problems.

Advantages of Constraint Propagation

" Allow focus on content rather than form.

" Greater accountability.

MAK
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The Function-Modeling Approach: Paper Airplane

" Direct application of constraint propagation.

" Problems described in terms of design variables and design functions between those design
variables.

" User provides input values.
Program applies constraint propagation to use the design functions to compute values
for as many of the remaining design variables as possible.

Shortcoming:
Unfortunately, this approach lacks sufficient organizational structure for the development
of an efficient large-scale library of design knowledge.

NAK



NLASSACH1JSET S
FLIGHT TRANSPORTATION LABORATORY INSTITUTE OF

TECHNOLOGY

The Component-Modeling Approach: Rubber Airplane

" A natural means for providing organizational structure in engineering design is the
association of design functions and design variables with the components which they
describe.

* The properties which describe components-dimensions, position, mass, performance
characteristics, etc.-are represented as attributes of the components.

" The relationships which govern these properties are treated as constraints of the com-
ponents.

" The design library may be built from component-classes, individual instances of which
are created and manipulated by the designer.

" Permits the use of inheritance.

" Helps avoid name conflicts.

"AK
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Design Component Class:

Attributes:

aspect-ratio

span
wing-area

sweep

taper-ratio

c root

C tip

m

L

D

root-chord

tip-chord

mass

lift

drag

Constraints:
2

AR = bl/3

S= (croot+ Ct)

A = c,,, / C

Definition

Calculation

Def inition

of Aspect Ratio

of Wing Area

of Taper Ratio

Wing

AR

b

S

A

A

Ctip

MAK
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Design Links

" Need to account for constraints which relate the attributes of two or more components

(e.g., attachment, relative sizing, and aerodynamic interference).

" Arbitrary assignment to one of the components is not modular. Introduce a new
structure, the design link, which is defined similarly to components, in terms of its
attributes and constraints.

" Constraints of design links may reference the attributes of components in addition
to the attributes of the link.

The relevant components are identified by specifying a set of linkages for the design link
class.

MAK
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Design Links: An Example

An Airfoil Interference design link class would require a pair of linkages, one for the forward
airfoil, and one for the rear airfoil.
Both linkages should be instances of the Airf& l class.

This Airfoil Interference design link might provide its own attribute for, say, the downwash
on the two airfoils.
However, the constraints of this design link must also access various positional, dimen-
sional, and aerodynamic attributes of the Airfoil instances themselves.

MAK
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Design Link Class: Airfoil Interference

Instances:

spancrear-airfoil
A. Airf oil-Interf erence 1

Linkages:

Forward-Airfoil -+ Canard

Rear-Airfoil -* Main-Wing 1

B. Airfoil-Interf erence 2

Linkages:

Forward-Airfoil --+ Main-Wing

Ispancrear-airfoil

/

Rear-Airfoil -- Vertical-Stabilizer 1

MAK
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Implementation Features

" Written in LISP.

" Components and links implemented as objects.

* Library comprised of component- and link-classes.

" Three-dimensional geometry display.

" Mouse-driven screen interface.

" Classes defined with text editor.

00

M"K
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Attribute ane
Cabin-Area
Cabin-Length
Cabin-Volune
Cg-X
Cg-Y
Cg-2
Drag
El ipticity
Fineness-Ratio
Height
Lift
Mass

Display Window

State

C
U
C
0
0
0

C
C
U
0
0

Uonponent: kuseiage

Value (Units)

3.575 n 2
40.00 ft
43.59 m 3
9.900 Ai
9.000 a
0.000 h

10.24
7.000 ft

50.00 H
1.745 e+03 kg

Connent

Below suggested low value.

RA> New value for Drag (in H): g

Command Menu

Display current design
Display control panel
Display all designs
Begin a new design
Restore a design

Display known units
Update geometry sketch

Display library

Rubber Airplane

Top view Oblique view

Side view Front view

MAK
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Constraint Propagation: Implementation

" Each attribute is assigned a value-supplier:

- a constraint

- the symbol, ":user"

- the symbol, ":guess"

" Initially, all value-suppliers are :guess.

" When the user provides a value for an attribute, its value-supplier becomes :user.

" Constraints for which exactly one parameter has a value-supplier of :guess are said
to be perfectly constrained.

" Perfectly constrained constraints are used to compute the single free parameter,
whose value-supplier becomes the constraint.

" This assignment may cause other constraints to become perfectly constrained, causing
this procedure to be invoked recursively.

MK
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Constraint Propagation: An Example

C-1: Definition of Aspect Ratio

Three parameters

C-2: Effect of finite span

Four parameters

AR

e -

L

C I

MAK
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Constraint Propagation: An Example

Initialization:

Planform Selected -
S, b, e chosen by user

Required Performance Known -
'input by userL

Airfoil cross-section has not

been selected.

AR and C' are initially unknown.

MAK
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Constraint Propagation: An Example

(a)

Constraint C-1 is
perfectly constrained.

(b)

Constraint C-1 has
been applied to
calculate AR.

(b)

MAK
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Constraint Propagation: An Example

(b)

Constraint C-2 is

perfectly constrained.

(c)

Constraint C-2 has
been inverted
and applied to

calculate C'.
(b) (c)

MAK
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Constraint Propagation: An Example

(b)(a) (c)

I4AK
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Constraint Inversion: Implementation

" Inversion rules based on:

- individual primitive operations

- recognized complex expressions

- combination

" Numerical simulation

Constraint Inversion: Numerical Implementation

* Constraints are defined declaratively:

" To compute y, apply the constraint as defined.

" To compute xk, where Xk E {x1 , x 2,. .}, solve

0 = (X1, X2, ...

for Xk holding all other variables constant.

I4AK
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Simultaneous Equations: Implementation

" Based on the "GTOW heuristic": computational loops.

* Modify first-order constraint propagation to note the ":guess attributes" of con-
straints with two or more such free parameters.

* After first-order constraint propagation is completed, check these attributes for the
existence of loops.

" Solve loops numerically.

Loop Detection: Implementation

" Given an attribute with constraints of two or more :guess attributes.

" Assume a value-supplier for this attribute.

" Apply first-order constraint propagation of assumed value-suppliers, beginning with
the original attribute, until:

- An unused constraint with zero free parameters is encountered.
The loop has been closed.

- No further first-order propagation is possible.
No loop exists.

MAK
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Simultaneous Equations: Revised Implementation

" Original implementation relied solely on Newton-Raphson iteration. Found to be
unstable for larger sets of simultaneous equations.

" Expand upon the "GTOW heuristic": use simple iteration for large loops.

" Requires selection of suitable iteration variable, as well as appropriate ordering of
' the loop constraints.

Iteration Loops: Implementation

" Detect loops as before.

* Search loops for appropriate iteration variable.

" For stability, order constraints according to original degrees of freedom.

MAK
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Iteration Loops: An Example

* Consider the following set of equations:

Wengine constant

Wwing = W jing(AR, b, A, Wry)
Wtaii = WtaiI(Wwing, Wary)

Wuselage =Wuselage(Iruselage, H/dry)

Wgear Wgear ry)

Wdry =Wengine + Wwing + Waii + Wuselage + Wgear
e Assume geometry is known.

Re-writing the equations with the known variables eliminated,

Wwing Wwing(Wdry)

Wtaii = Wtali(Wwing, Wry)
Wfuselage =Wruselage(Wdry)

Wgear =Wgear(Wdry)
Wdry =Wry(Wwing, Wtali, Wuselage, Wgear)

MAK
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Iteration Loops: An Example (Continued)

* Order constraints according to the number of unknowns prior to loop processing:

Wwing =Wwing(TVdry)

Wuselage =Wfuselage(Wdry)

W"gear IVgear(PVdry)

WrVaii = Wtail(Ww~ing, Wary)

Wdry Wdry(Vwing, Wtali, Wruselage, Wgear)

This ordering enhances stability, thus promoting convergence.

e Most frequently occurring unknown is Wry.
Select Wdry as the iteration variable. A value will be assumed for Wdry, and this
assumed value is propagated until a new value for Wdry can be computed.

* New values for Wdry are iteratively propagated until convergence is obtained.

MAK
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Initial Results: Test Cases

Current Test Case:

* Long-Endurance, Manned Surveillance Aircraft.
Focus to date on mission performance.
Current efforts directed towards aerodynamic analysis.

Planned Test Cases:

" General Aviation Aircraft

" Small-Payload Launch Vehicle

MAK
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Initial Results

Observation:

* Flexibility is enhanced by limiting the number of attributes associated with compo-
nents.

Implications:

" Component attributes are limited to geometry and gross properties.

" Secondary or derived properties relegated to design links.

* Special-purpose component properties are best treated as attributes of special-purpose
design links.

MAK
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Design Link Class: Loiter Mission

9 Flight Segments:
Loiter

Cruise Out

Idle &
Takeoff

Cruise In Descend &
Circle

Climb

Climb (2) Landing

Fuel calculations require C
L

L/D, SFC, etc.,

for each flight segment.

MAK
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Initial Results

Observation:

* Component constraints can only access gnometric and gross-property attributes.

Implications:

* Component constraints do not have sufficient information to compute gross proper-
ties.

* Component constraints are therefore primarily concerned with the calculation of
geometric properties.

* Design links must be used to compute gross properties.

M"K
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Initial Results

Observation:

* Ad hoc single-mission analysis link is non-modular.

Implications:

o Better means for handling time-dependence is required.

e One approach: component-like "states" to account for time-varying attributes.

MAK
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Design State Class: Atiosphere

Attribites:

altitude

pressure

density

gas -constant

temperature

T

Constraints;

p = p(h)

p = p(h)

T = T(h)

p= pRT

Density of Standard Atmosphere

Pressure of Standard Atmosphere

Temperature of Standard Atmosphere

State Equation
M"K
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Initial Results

Observation:

* Certain calculations are strongly coupled. The multiple-input, single-output paradigm
is inadequate for representing such calculations.

" Some computations are difficult-if not impossible-to invert.

Implications:

" Need support for uni-directional constraints.

" Need support for multiple-input, multiple-output constraints.

wA
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Initial Results: Conclusion

Better means for handling complex constraints is required:

" "State" objects to account for time-dependent phenomena.

" Uni-directional and multiple-output constraints.

Flexibility is best served by:

* General-Purpose Component Classes-
Component definitions tend to focus on geometry.
Components also provide readily accessible attributes for important gross properties.

" Application-specific Link Classes-
Design links are used for calculations sucil as performance analysis, weight determi-
nation, and relative locations.

MK
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Areas for Improvement:

" Integration with a symbolic mathematics package.

" Improved interface for defining component- and link-classes.

" Enhanced graphics capabilities.

Possibilities for Future Work:

" Rubber Airplane as a platform for enhanced systems.

" Expert system for managing optimization, guiding performance function selection.

" Tool for translating design specifications into a set of components and links which
serve as a baseline design.

M"K
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Automatic Speech Recognition in Air Traffic Control

Joakim Karlsson
Flight Transportation Laboratory

Massachusetts Institute of Technology

Automatic Speech Recognition (ASR) technology and its application to the Air

Traffic Control system are described. The advantages of applying ASR to Air Traffic

Control, as well as criteria for choosing a suitable ASR system are presented. Results from

previous research and directions for future work at the Flight Transportation Laboratory are

outlined.
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Introduction

M.I.T.'s Flight Transportation Laboratory (FTL) is renewing its research on the

application of Automatic Speech Recognition (ASR) technology to Air Traffic Control

(ATC). This report presents an overview of the available technology and its potential use

within the ATC system. ATC is a suitable candidate for the application of speech

input/output technology due to the well defined syntax and existing reliance on voice

communication. Other motivations for introducing ASR into the Air Traffic Control

environment are listed within the body of this report. Furthermore, past research efforts

are described, with emphasis on work already completed by the Flight Transportation

Laboratory. Finally, directions for future research are outlined.
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- Just what is Automatic
Recognition (ASR) anyway?

Speech

- ASR in Air Traffic Control.

- Some motivations for using ASR in
Air Trafic Control.

- Previous work.

- Conclusions from Trikas' work.

- Work to be done at the Flight
Transportation Laboratory.

JK 19890105/1
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Automatic Speech Recognition

ASR systems consist of hardware and software that convert verbal input into

machine-useable form (i.e. "text"). These systems can be categorized by three basic

parameters: Speaker dependence/independence describes whether the system has to be

trained by the user before operational use (speaker dependent), or whether it can be used by

any user without specific training (speaker independent). Discrete/connected/continuous

speech recognition describes the extent to which naturally spoken speech can be

recognized. Single-utterance (isolated-speech) recognizers impose severe constraints on

the user's manner of speech, but are relatively easy to implement. Connected speech

recognizers allow the user to speak at a normal rate, but finite pauses must be inserted

between each word. A continuous speech system recognizes input spoken at a natural rate,

with no artificial pauses. Finally, the number of words that the system can recognize at any

time (active vocabulary size) is a critical application and performance parameter.
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Autmanem speech RecOEnenmL

Automatic Speech Recognition

(ASR) system, is a system that recognizes

verbal input and translates it into text.

There are three basic factors that categorize

an ASR system:

- Speaker dependence/independence.

- Discrete, connected, or
speech recognition.

continuous

- Vocabulary size.

JK 19890105/2
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ASR in Air Traffic Control

Today, the Air Traffic Control system relies on verbal communication between the

air traffic controllers and the pilots of the aircraft in the controlled airspace. Although a

computer system exists that processes radar and other information regarding the aircraft,

the information contained within the verbal communications is not retained. The

introduction of ASR technology would allow this information to be captured. The purpose

of this research effort is to demonstrate the feasibility of using ASR technology within the

ATC environment, and to address the problems involved, especially the relevant human

factors issues. Off-the-shelf ASR technology will be used in conjunction with FTL's real-

time ATC simulator running on the laboratory's TI-Explorer Lisp machines.
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ASR n Anw fT e Comnerol

We want the "computer" to capture the

information given by the controller

aircraft, so that it can be processed.

to

In

this particular project, we want to start by

using ASR to drive the Flight

Transportation Laboratory's real-time ATC

simulator.

JK 19890105/3
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Why use ASR in ATC?

There are several strong motivations for introducing speech input/output technology

into the Air Traffic Control system. Communications are already in the verbal form, and

the syntax used is clearly defined by the FAA, and has to some degree been designed to

reduce the possibility of communication errors. The use of voice as an input modality

allows for a high information throughput capacity, and allows the controllers to keep their

eyes and hands busy controlling traffic. Once the verbal information has been captured, it

can be transferred to the aircraft via Mode S, conformance monitoring can be improved,

and routine clearances can be pre-stored during less busy periods.
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why Use AIR Him ATCO

- ATC communication is verbal.

- ATC syntax is clearly defined.

- ATC training can be automated.

- High information throughput.

- ASR allows controller to use hands
and eyes where they belong.

- Captured information can
transmitted to aircraft via Mode

- Conflict alert can be improved.

- Clearances can be pre-stored.

be
S.

JK 19890105/4
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Previous research.

ASR technology can be used in many aviation and non-aviation applications, and as

a result, much research has been conducted on the use of speech input/output in general.

However, relatively little research has been dedicated towards the application of ASR to Air

Traffic Control. The research to be undertaken within the framework of this project will be

a continuation of the initial work presented in Thanassis Trikas' S.M. thesis, Automated

Speech Recognition in Air Traffic Control (FTL report R87-2).
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A lot of research. has been done on

ASR, but not much in conjunction with

- FTL: Thanassis Trikas S.M. work.

- Arthur Gerstenfeld (Worcester
Polytechnic Institute/UFA, Inc.):
Emphasis on ATC training.

- ITT Defense Communications
Division VRS 1280 demonstration.

JK 19890105/5

ATC:
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Trikas' conclusions.

Trikas' thesis demonstrated the feasibility of using ASR technology in conjunction

with an ATC simulator, utilizing a relatively small vocabulary. An initial error correction

strategy based on verbal correction commands alone proved to be unacceptable. Also,

problems related to speech articulation variations were encountered. In the process of

evaluating his experiment, Trikas implicitly set forth a set of criteria for selecting a suitable

ASR system.
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call~kn)M0

Trikas' S.M. thesis was essentially a

proof of concept of using ASR in ATC:

- ASR can be used with the ATC
simulator (with an active
vocabulary of only 64 words).

* Correction of recognition errors
using voice alone is not feasible.

- Problems with sensitivity
variations in articulation.

to

- Developed criteria for choosing
a suitable ASR system.

JK 19890105/6

'TirH&RI9
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Selecting the right ASR system.

The first step in renewing FTL's ASR research effort will be to select a suitable

hardware system. For this purpose, performance criteria specific to ATC applications of

speech input/output technology have been defined.
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SolocenMg qhe IFght A5R system.

Our particular application calls for the

following ASR requirements:

- Speaker independence not required.

- Continuous speech recognition.

- Vocabulary size 200-300 words.

- 95% baseline recognition accuracy.

- Well designed training procedure.

- Open architecture.

- Reduced sensitivity to variations.

- Short recognition delays (1-4 s).

JK 19890105/7
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Future work.

The future research to be conducted at FTL will be based on previous work
completed by Trikas. Hence, his system set-up must be reactivated. In order to improve
the simulation and the overall performance of the system, new hardware will be acquired.
The actual research will concentrate on the introduction of multi-modal input, improved
error correction and recognition accuracy, the evaluation of Mode S usage, and the
application of ASR to secondary functions.
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- Reassemble Trikas' system.

- Evaluate current ASR technology.

- Acquire a new ASR system.

- Introduce multi-modal input.

- Increase number of commands and
responses to improve simulation.

- Improve error checking/correction,
as well as recognition accuracy.

- Evaluate Mode usage.

- Use ASR for functions other than
ATC commands.

JK 19890105/8
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What is the Airline Schedule Transition Problem ?

Problem of finding the most efficient re-routings of aircraft in order to balance the number
and the types of aircraft at each station at the beginning of a new schedule.

This presentation is an overview of an attempt to solve this problem automatically for two
aircraft types.
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Important Terms

Aircraft Rotation:

Deficit Station:
The station which has more originating flights of certain aircraft type in the new
schedule than terminating flights of that aircraft type in the old schedule.

Flight Schedule:

Flight Segment:

Independent Rotation Pairs:

Intersection:
Two rotations by aircraft of different types are said to intersect at a station if the
respective aircraft can be pre-switched/post-switched.

Physical Balance:
The total number of originating flights at a station by all types equals the total
number of terminating flights at that station, but their types may be different (e.g.
two aircraft type A terminations and one each of aircraft types A and B originating
the next morning). However, across all stations served by the fleet, the total number
of each terminating aircraft type must match the total number of the corresponding
originating aircraft type.

Schedule Transition Period:
The period consisting of n days during which pre-switches and/or post-

switches are performed; generally n=2, consisting of the last day of the old schedule
and the first day of the new schedule.

Surplus/Deficit Imbalance Pair:

Surplus Station:
The station which has more terminating flights of certain aircraft type in the

old schedule than originating flights of that aircraft type in the new schedule.

Total Balance:
If there are no imbalances at all stations for the period being examined, then the
schedule is in total balance.

Turn:
The connection of a specific aircraft tail number from one flight to another.



Pre -switch/Post- switch
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What is the Pre-switch/Post-switch Algorithm ?

It involves pre-switches - exchanging aircraft types of certain flights on the last day of the current
schedule at some station - and post-switches - exchanging aircraft types of certain flights on the first
day of the new schedule at some station - to solve the airline schedule transition problem for two
aircraft types. It discriminates against transition flights - flights that operate only during the schedule
transition period to balance the number and/or the types of aircraft needed for the new schedule.

This algorithm can be extended to solve the airline schedule transition problem for more than two
aircraft types.



10/1/89 (Start date of new schedule)
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Time
10/1/89 (Start date of new schedule)
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Transition flights are only flown on 9/30/89 to balance the types of aircraft at LGA and SEA.

Transition flights are expensive to operate and do not generate much revenue.

'Ls there a better way to solve the AtrAne Schecduke Transition Probem ?
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10/1/89 (Start (late of new schedule)
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10/1/89 (Start date of new schedule)
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Some Points of Interest

- Performing one pre-switch (or post-switch) removes one imbalance from two distinct
stations which are the terminating (or originating) stations for the rotations Involved.

- There is a cost associated with each pre-switch (and post-switch) which is determined
from the operating costs of the aircraft types Involved and the load factor data for the
affected flights.

. Randomly performing pre-switches (and/or post-switches) will not always get you the
best results. Intersections are necessary in order to perform a pre-switch/post-switch.

- In general, the fewer the number of pre-switches/post-switches needed, the better.

Can we automatLica[g fmin the best set of pre-swctches/post-switches ?



BLUE rotations YELLOW rotations

Each edge has capacity one.

The number associated with some edges is the cost of pre-switches.

The edges without numbers have a cost of zero.

s is a supply node and t is a demand node.

Solving a min-cost flow problem from s to t solves the schedule transition problem.

GREEN rotations RED rotations



Pre-switch/Post-switch Algorithm

Step 0: Physically balance all stations by cancelling/adding flight segments at stations with surpluses/deficits

(stage 1 of schedule transition problem) of some aircraft types.

Step 1: Find all stations with a surplus of aircraft type A and a deficit of aircraft type B (surplus A/deficit B

stations). Color terminating rotations by type A at these stations GREEN. Color originating rotations

by type B at these stations BLUE.

Step 2: Find all stations with a surplus of aircraft type B and a deficit of aircraft type A (surplus B/deficit A

stations). Color terminating rotations by type B at these stations RED. Color originating rotations by

type A at these stations YELLOW.

Step 3: Look for intersections on the last day of the old schedule between flight segments of GREEN

rotation(s) and RED rotation(s) or for intersections on the first day of the new schedule between flight

segments of BLUE rotation(s) and YELLOW rotation(s). The identified intersections are candidates for

pre-switch or post-switch, respectively.

Step 4: By selectively pre-switching and/or post-switching aircraft at the intersections identified, eliminate

aircraft imbalances at the lowest possible overall cost.
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Time starting current report : 4/24/1989 at 16:21:49

MISSING FLIGHT SEGMENTS IN ROTATION

FLOW BALANCE FOR: 890930 TO 891001

L10

890930 891001
STATION TERM ORIG TOT-T TOT-O
ATL 2 2 2 2
BDL 1 1 1 1
BOS 2 2 2 2
DFW 1 1 1 1
EWR 2 2 2 2
FLL 1 3 1 3
JFK 1 1 1 1
LAX 2 2 2 2
LGA 1 1 1 1
MCO 2 1 2 1
ORD 2 2 2 2
PBI 1 1 1 1
SEA 1 1 1 1
SFO 1 0 1 0

767

890930 891001
STATION TERM ORIG TOT-T TOT-O
FLL 2 0 2 0
MCO 0 1 0 1
SFO 0 1 0 1
TPA 1 1 1 1

757

890930 891001
STATION TERM ORIG TOT-T TOT-O

PHYSICAL IMBALANCE CHECK
STATION TOT TERM TOT ORIG

No entries below this line.
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Time starting current report : 4/24/1989 at 16:29: 9

Pre-switch Post-switch FOR: 880930 TO 881001

a/c 1 : L10 a/c 2 : 767

FLL has surplus a/c 2 and deficit a/c 1.
Rotation 2 will be colored RED. Stations visited:
FLL visited after 2740
LGA visited between 2355 and 2455
ATL visited between 2042 and 2155
MCO visited between 1820 and 1925
ATL visited between 1637 and 1707
SFO visited before 1231
Rotation 7 will be colored RED. Stations visited:
FLL visited after 2826
BOS visited between 2420 and 2520
ATL visited between 2103 and 2205
BDA visited between 1555 and 1755
BOS visited between 1325 and 1355
MCO visited before 1056
Rotation 12 will be colored YELLOW. Stations vis
FLL visited before 934
ATL visited between 1109 and 1139
MIA visited between 1315 and 1415
ATL visited between 1558 and 1650
PBI visited between 1820 re i1920
ATL visited between 2100 and 2155
MCO visited between 2312 and 2412
EWR visited after 2625
Rotation 13 will be colored YELLOW. Stations vis
FLL visited before 946
MCO visited between 1031 and 1101
DFW visited between 1330 and 1528
SFO visited between 1855 and 2220
DFW visited between 2518 and 2619
MCO visited after 2830
Rotation 14 will be colored YELLOW. Stations vis
FLL visited before 1142
ATL visited between 1320 and 1350
MCO visited between 1503 and 1605
ATL visited between 1722 and 1752
BDA visited between 2012 and 2050
BOS visited between 2257 and 2344
BDL visited after 2425

ited :

ited :

ited :

MCO has surplus a/c 1 and deficit a/c 2.
Rotation 4 will be colored GREEN. Stations visited:
MCO visited after 2950
ATL visited between 2718 and 2835
EWR visited between 2405 and 2510
ATL visited between 2141 and 2213
MCO visited between 1954 and 2024
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BOS visited between 1635 and 1705
PBI visited before 1400
Rotation 7 will be colored BLUE. Stations visited:
MCO visited before 1056
BOS visited between 1325 and 1355
BDA visited between 1555 and 1755
ATL visited between 2103 and 2205
BOS visited between 2420 and 2520
FLL visited after 2826
Rotation 13 will be colored GREEN. Stations visited:
MCO visited after 2830
DFW visited between 2518 and 2619
SFO visited between 1855 and 2220
DFW visited between 1330 and 1528
MCO visited between 1031 and 1101
FLL visited before 946

SFO has surplus a/c 1 and deficit a/c 2.
Rotation 2 will be colored BLUE. Stations visited:
SFO visited before 1231
ATL visited between 1637 and 1707
MCO visited between 1820 and 1925
ATL visited between 2042 and 2155
LGA visited between 2355 and 2455
FLL visited after 2740
Rotation 23 will be colored GREEN. Stations visited:
SFO visited after 2833
DFW visited between 2357 and 2459
FLL visited between 2005 and 2110
ATL visited before 1826

Pre-switch rotation 4 between 2141 and 2213
with rotation 2 between 2042 and 2155 at station ATL.

Pre-switch rotation 4 between 2141 and 2213
with rotation 7 between 2103 and 2205 at station ATL.

Pre-switch rotation 13 between 1031 and 1101
with rotation 7 between 0 and 1056 at station MCO.

Pre-switch rotation 23 between 0 and 1826
with rotation 2 between 1637 and 1707 at station ATL.

Post-switch rotation 7 between 2103 and 2205
with rotation 12 between 2100 and 2155 at station ATL.

Post-switch rotation 7 between 0 and 1056
with rotation 13 between 1031 and 1101 at station MCO.

Post-switch rotation 2 between 1637 and 1707
with rotation 12 between 1558 and 1650 at station ATL.

Post-switch rotation 2 between 2042 and 2155
with rotation 12 between 2100 and 2155 at station ATL.

The result from Automatic Pre-switch/Post-switch algorithm:
Pre-switch rotations 13 and 7 at 1031 and 0
Pre-switch rotations 23 and 2 at 0 and 1637

No entries below this line.
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Other Related Topics

*Multiple aircraft type schedule transition problem

- t-e4O~iw~ R pz~~c

-Integrating intermediate pre-switches/post-switches

-Totally balancing holiday period and daily flight schedules using Pre-

switch/Post-switch Algorithm

The Eid

Q
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COMPARISON OF YIELD MANAGEMENT STRATEGIES:
SIMULATION RESULTS

Dr. Peter P. Belobaba

Flight Transportation Laboratory
Massachusetts Institute of Techrology

Cambridge, MA 02139

Presentation to MIT/FTL
Cooperative Research Program Annual Meeting

May 25, 1989
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OUTLINE

1. Terminology and Definitions

2. Booking Class Structures

3. Optimization Methods

4. Simulation Results

5. Conclusions
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1. TERMINOLOGY AND DEFINITIONS

A. INVENTORY STRUCTURES

BOOKING CLASS (also FARE CLASS): Each fare basis
code is associated with a booking class; booking class
availability is displayed on a computer reservations
system (CRS) screen.

BOOKING LIMIT (AUTHORIZED LIMIT): The
maximum number of bookings that may be accepted in a
booking class.

B. CONTROL MECHANISMS

BY BOOKING CLASS (FLIGHT LEG): Limits are
applied only to booking classes at the flight leg level.

BY ON-FLIGHT ITINERARY(SEGMENT): Within each
booking class, additional limits are placed on local vs.
through passengers.

BY TOTAL ITINERARY (O-D): Limits are applied to
each specific passenger O-D and booking class.
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2. BOOKING CLASS STRUCTURES

DISTINCT (PARTITIONED) CLASSES or "BUCKETS":
Each booking class has its own allocation of seats;
allocations sum to capacity of shared cabin.

EXAMPLE: 100 seats, 5 classes
Y15 B20 M25 Q30 V10

Y B M Qa V

NESTED CLASSES: Maximum
each booking class; each higher
booking limit.

limits are applied to
class has a higher

EXAMPLE: Y100 B85 M65 Q40 V10

15 seats are protected for exclusive use of Y-class
bookings, but Y-class can book up to 100.
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PARTIALLY NESTED (HYBRID) CLASSES: Any
combination of distinct and nested booking classes.

EXAMPLE: Y100 B85 M25 Q30 V10

Y and B are parent
nested within B.

classes; M,QV are distinct and

Y

B
M Q V
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3. OPTIMIZATION METHODS

DISTINCT BOOKING CLASSES:

1. DETERMINISTIC ALLOCATION - Allocate seats to
each booking class based on
(starting at highest class).

mean forecast demands

EXAMPLE: 5 Fare Classes, 195 Seats

CLASS
1 2

28
9.8
$289

3 4 5

43
15.1
$236

54
18.9
$205

49
17.2
$141

46
16.1
$127

Deterministic
Allocation 28 43 54 49 21

2. PROBABILISTIC OPTIMIZATION - Allocate seats
based on probabilistic distribution of forecasted
demands, such that expected marginal revenue
from last seats allocated is equal across all classes.

CLASS
1 2 3 4 5

Probabilistic
Allocation 31 45 53 37 29

Demand
Std. Error
Fare
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NESTED BOOKING CLASSES:

1. DETERMINISTIC PROTECTION - Protect seats for
each booking class based on mean forecast demands,
from highest class down.

CLASS
1 2 3 4 5

Deterministic
Protection 28 43 54 49 21

2. ADAPTED PROBABILISTIC - Protect seats for
each booking class by applying probabilistic optimal
allocations from distinct class problem.

CLASS
1 2 3 4 5

Adapted
Probabilistic 31 45 53 37 29

3. EMSR ALGORITHM (Belobaba 1987) - Find
optimal protection limits between each pair of classes
and nest the results based on expected marginal
seat revenues.

CLASS
1 2 3 4 5

EMSR Nested
Protection 19 31 64 34 47
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4. OPTIMAL SOLUTION (Wolmer 1988) - Calculate
optimal nested booking limits by considering joint
probability distribution of all classes at the same
time.

CLASS
1 2 3 4 5

Optimal Nested
Protection 19 36 65 43 32
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4. SIMULATION OF FLIGHT LEG CONTROL'

INPUTS:
* 5 booking classes on single flight leg

* Probabilistic demand distributions for
each class, summing to a mean total
demand of 220 (see Table 1)

* Constant, hierarchical class revenues

* Varying capacities, from 100 to 300
(Demand factors from 0.73 to 2.20).

* 3 demand scenarios:
(1) Distributed class demands
(2) High high-fare demand
(3) High low-fare demand

SIMULATION:
* Demands drawn from normal density for

each class

* Lowest class books first; highest last

* Independent class demands; no "sell-up"

* Single point in time; no revisions of
booking limits during reservations
process.

* 10,000 flight sample for each scenario

OUTPUTS:
* Expected flight leg revenues for each

demand scenario, capacity and set of
booking limits.
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TABLE 1: SIMULATION INPUT DATA - FLIGHT LEG CONTROL

SCENARIO 1: DISTRIB7TED FARE CLASS DEMANDS

CLASS
DEMAND

FARE FORECAST

$289
$236
$205
$141
$127

TOTAL

STD
ERROR

9.8
15.1
18.9
17.2
16.1

220

SCENARIO 2: HIGH HIGH-FARE DEMAND

CLASS
DEMAND

FARE FORECAST

$289
$236
$205
$141
$127

TOTAL

STD
ERROR

12.3
19.6
22.4
14.7

8.1

220

SCENARIO 3: HIGH LOW-FARE DEMAND

DEMAND
FARE FORECAST

$289
$236
$205
$141
$127

TOTAL

7
10.5
15.4
19.6
24.5

220

AIRCRAFT CAPACITIES

CAPACITY I 300 260 230 195 160 130 100

DEMAND FACTOR I
(Demand/Capacity)l 0.73 0.85 0.96 1.13 1.38 1.69 2.20

CLASS
STD

ERROR

------------------- -----------

-------------------

------------- -------
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SIMULATION RESULTS - FLIGHT LEG CONTROL

DISTINCT BOOKING CLASSES

FIGURE 1 shows percentage difference in revenues
for deterministic and probabilistic solutions over no
control for all 3 demand scenarios:

" At demand factors above 1.13, both solutions
show major revenue gains over no control.

e At lower demand factors, use of distinct booking
classes actually causes revenue shortfall
compared to no control, regardless of
solution method.

" In all cases, probabilistic solution outperforms
deterministic solution, more so at lower
demand factors.

FIGURE 2 shows this comparison of probabilistic over
deterministic distinct class solutions for all 3 demand
scenarios:

" Probabilistic is 13% higher in expected revenues at
demand factor 0.73%.

" Difference decreases rapidly then increases
again, especially for unequal fare class
distributions of demand (Scenarios 2 and 3).
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DISTINCT FARE CLASSES
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SIMULATION RESULTS - FLIGHT LEG CONTROL

NESTED BOOKING CLASSES

FIGURE 3 shows revenue difference over no control for
deterministic, adapted probabilistic, and EMSR solutions
under all 3 demand scenarios:

e Positive revenue impact of all methods is evident
at demand factors above 0.96.

" Adapted probabilistic method has negative
revenue impacts at demand factors below 1.0,
although it outperformed deterministic
solution at high demand factors in 2 scenarios

e EMSR solution showed highest revenues in all
cases.

FIGURE 4 shows comparison of EMSR over
deterministic solution for the 3 demand scenarios:

e EMSR revenues are 0.5 to 1 percent higher at
demand factors around 1.0.

" EMSR advantage increases to 2-3 percent at
higher demand factors, except Scenario 3
(high low-fare demand).

FIGURE 5 shows revenue difference of optimal nested
solution over EMSR algorithm:

e Optimal solution results in expected revenues
marginally greater than EMSR method, but
difference is less than 0.5 percent all cases.
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NESTED FARE CLASSES
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NESTED OPTIMAL OVER EMSR ALGORITHM
3 SCENARIOS
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FLIGHT LEG SIMULATION RESULTS - SUMMARY

FIGURES 6, 7 and 8 compare expected revenues across
all the flight leg options tested for selected demand
factors( 0.96, 1.13 and 1.38, respectively):

e At demand factor 0.96, distinct methods show
substantial negative impact compared to no
control. EMSR and optimal nested solution
show small positive impacts.

e At demand factor 1.13, all nested methods have
positive revenue impacts. Distinct methods
show small positive impact for Scenario 3.

" At demand factor 1.38, all methods show positive
revenue impact of 9-18 percent over no
control. Relative rankings are consistent
across scenarios.

FIGURE 9 illustrates positive revenue impact of nested
fare classes/EMSR solution over distinct fare
classes/probabilistic solution. Nested EMSR revenues
are generally at least 2 percent higher, peaking at 6
percent higher for demand factor 0.96.
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5. CONCLUSIONS

FLIGHT LEG CONTROL

* Important to match optimization method to
booking class structure.

" Nested booking classes result in higher expected
revenues than distinct classes.

" Probabilistic solutions outperform deterministic
solutions

e Potential for negative revenue impacts occurs at
low demand factors, especially with distinct
classes.

" EMSR underperforms optimal nested solution by
less than 0.5%, a small margin given:

- uncertainty of input demand data

- substantially greater processing time
required to find optimal solution



-167-

References

Belobaba, Peter P., "Air Travel Demand and Airline Seat
Inventory Management", MIT Doctoral Dissertation,
May 1987.

Wollmer, Richard, "A Seat Management Model for a
Single Leg Route When Lower Fare Classes Book First"
Presentation to ORSA/TIMS Joint National Meeting,
Denver, CO, October 25, 1988


