Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer

Christine Taylor
May 5, 2004
Presentation Overview

- Motivation
- Single Objective Optimization
 - Problem Description
 - Mathematical Formulation
 - Design Variable Bounds
 - Verification
- Multi-Objective Optimization
 - Convergence
 - Sensitivity Analysis
- Vehicle Selection
 - Problem Formulation
 - Optimization
 - Sensitivity Analysis
- Future Work
Motivation

- Traditionally, orbit transfers are optimized with respect to a selected vehicle.

- Competing objectives of initial mass and time of flight are weighted by the preference of the customer.
 - High priority \rightarrow minimize time of flight
 - Low priority \rightarrow minimize initial mass

- Vehicle selection is as important as the trajectory.
 - The choice of vehicle drastically impacts both performance and cost.
 - Differing priorities would impact vehicle choice.

- Evaluate both the trajectory and vehicle selection for different preferences to show ‘optimal’ orbit transfer configurations.
Consider a co-planar orbit transfer from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) using a two-stage chemical rocket.

Minimize the initial mass of the system for a given payload mass.

Define three design variables:
- Transfer angle (ν): Angle between first and second burn
- Specific impulse of first engine (I_{sp_1})
- Specific impulse of second engine (I_{sp_2})

Parameters:
- Payload mass (m_p) = 1000 kg
- Structural factor (α) = 0.1 for both engines
- Initial radius (r_0) = 6628 km (250 km altitude)
- Final radius (r_f) = 42378 km (36000 km altitude)

Define two disciplinary models:
- Orbit transfer calculation: Assumes first burn is tangent to initial orbit
 - Input: the transfer angle, and the initial and final radii
 - Output: ΔV of each burn and time of flight
- Rocket equation: Assumes each burn is impulsive
 - Input: the ΔV of each burn, the specific impulse of each engine, the structural factor, and the payload mass
 - Output: the initial mass
Mathematical Problem Formulation

- Minimize $J(x) = m_i$

- Subject to the disciplinary model equations
 - Orbit transfer Equations
 - Rocket equation

- And subject to the variable bounds
 - $135 \text{ deg} \leq \nu \leq 180 \text{ deg}$
 - $300 \text{ sec} \leq I_{sp_1}, I_{sp_2} \leq 450 \text{ sec}$

Rocket Equation for Two stages

$$\frac{m_f}{m_i} = \Pi_{i=1}^2 \left(1 + \alpha_i\right) \exp \left(\frac{-\Delta V_i}{I_{sp_i} g_0}\right) - \alpha_i$$

Orbit Equations for One Tangent Burn

$$v_0 = \sqrt{\frac{\mu}{r_0}} \quad v_{TA} = \sqrt{\mu \left(\frac{2}{r_0} - \frac{1}{a_T}\right)}$$

$$v_f = \sqrt{\frac{\mu}{r_f}} \quad v_{TB} = \sqrt{\mu \left(\frac{2}{r_f} - \frac{1}{a_T}\right)}$$

$$e_T = \frac{r_0}{r_f - \frac{\mu}{v_f}} \quad \phi_T = \tan^{-1} \left(\frac{e_T \sin \nu}{1 + e_T \cos \nu}\right)$$

$$a_t = \frac{r_0}{1 - e_T}$$

$$\Delta V_A = \|v_{TA} - v_0\|$$

$$\Delta V_B = \sqrt{v_{TB}^2 + v_f^2 - v_{TB} v_f \cos \phi_T}$$

$$\Delta V_{Total} = \Delta V_A + \Delta V_B$$

$$\cos E = \frac{e_T + \cos \nu}{1 + e_T \cos \nu}$$

$$\sin E = \sqrt{1 - e_T^2} \frac{\sin \nu}{1 + e_T \cos \nu}$$

$$E = \tan^{-1} \left(\frac{\sin E}{\cos E}\right)$$

$$time = \sqrt{\left(\frac{\alpha f^2}{\mu}\right)} \left(2k\pi + E - e_T \sin E\right)$$
Transfer Angle Bounds

Initial Mass vs. Delta V for an Isp of 450 sec

Initial mass goes negative as ΔV becomes large

Time of flight vs. transfer angle

Time of flight goes to infinity as ν approaches 133 degrees
Model Verification

- Minimum initial mass solution is a Hohmann transfer
 - Transfer angle = 180 deg
 - Specific Impulse = 450 sec
 - Time of flight is half the transfer orbital period

- Using a SQP method, from any initial guess, model is verified

- Initial mass = 2721.2 kg

- Time of flight = 19086 sec (5.3 hours)
Multi-Objective Optimization

- The two objective to be minimized are initial mass and time of flight
- Scale each objective to be non-dimensional and approximately the same order of magnitude
 - Scale factor for mass is the payload mass (1000 kg)
 - Scale factor for time of flight is period of initial orbit (5370 sec)
 \[
 J_1 = \frac{m_i}{m_p}
 \]
 \[
 J_2 = \frac{\text{time}}{P_0}
 \]
- Use weighted sum approach
 \[
 J = \lambda J_1 + (1-\lambda)J_2
 \]

Initial mass vs. Time of flight

Minimum time solution*

Equal weights

Minimum initial mass solution

Utopia point

* Indicates that the solution is independent of engine selection

Minimum time of flight solution:
- \(\nu = 135 \) deg
- Time of flight = 8078.5 sec (2.2 hrs)
- Initial mass = 6598 kg
Comparison of SQP and SA Convergence

Convergence time for SQP = 0.32 sec
SQP parameters: objective function tolerance = 10^{-7}

Convergence time for SA = 33.48 sec
SA parameters: exponential cooling schedule,
\(dT = 0.75\), neq = 50, nfrozen = 40

\(\nu = 3.14\) deg
Isp\(_{1}\) = 450 sec
Isp\(_{2}\) = 450 sec
\(m_i = 2721\) kg

\(\nu = 3.14\) deg
Isp\(_{1}\) = 449.1 sec
Isp\(_{2}\) = 449.7 sec
\(m_i = 2725\) kg
Sensitivity Analysis

- **Sensitivity to design variables**
 - Minimum initial mass is most sensitive to specific impulse of first engine:

 \[
 \nabla J(x^+) = \begin{bmatrix}
 -3.3310^{-8} \text{kg/ rad} \\
 -1.4610^{-3} \text{kg/ sec} \\
 -8.3810^{-4} \text{kg/ sec}
 \end{bmatrix}
 \]

 \[
 \nabla J(x^+) = \begin{bmatrix}
 -3.810^{-11} \\
 -2.4110^{-4} \\
 -1.3810^{-4}
 \end{bmatrix}
 \]

 - Minimum time of flight is only sensitive to transfer angle

 \[
 \nabla J(x^+) = \begin{bmatrix}
 1.519 \text{kg/ rad} \\
 0 \text{kg/ sec} \\
 0 \text{kg/ sec}
 \end{bmatrix}
 \]

 \[
 \nabla J(x^+) = \begin{bmatrix}
 5.4210^{-4} \\
 0 \\
 0
 \end{bmatrix}
 \]

- **Sensitivity to Scale Factors**

As the scale factor for initial mass increases, the magnitude of J_1 decreases.

![Initial mass vs. Time of flight](image)

- **Minimum time of flight**
- **Equal weights**
- **Utopia point**
- **Minimum initial mass solution**
Vehicle Selection

- Define three design variables
 - Transfer angle (ν)
 - Engine for first and second burns
- Select one of three different engines for each burn
 - Engine A: $\alpha = 0.08$, Isp = 300 sec
 - Engine B: $\alpha = 0.10$, Isp = 400 sec
 - Engine C: $\alpha = 0.12$, Isp = 450 sec
- Use SA, determine Pareto front
 - Engine C is chosen for both engines and for each set of weights, except $\lambda = 0$

* Indicates that the solution is independent of engine selection
Sensitivity to Engine Change

Pareto front

Minimum time solution
First stage uses Engine A
Second stage uses Engine B

First stage uses Engine B
Second stage uses Engine B

First stage uses Engine C
Second stage uses Engine C

Choice of Engines vs. Varying Structure Ratio for Minimum Initial Mass

Switch point from Engine C to Engine B

Initial mass (kg) vs. Time of flight (sec)

Engine C: $\alpha = 0.148$, $I_{sp} = 425$ sec
Conclusions and Future Work

- Global Optimality?
 - Single objective optimization
 - Multi objective optimization
 - Discrete engine selection
- Expand the model to include different types of engines
 - Allow for low thrust, high impulse engines
 - Modify model to include constant thrust trajectories
- Analyze more complicated problems
 - Allow for out of plane maneuvers
 - Examine different origin/destination pairs
- Examine the relationship between scaling factors and the Pareto front