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Abstract

Embedded systems are almost always built with parts implemented in both hard-
ware and software. Market forces encourage such systems to be developed with
different hardware-software decompositions to meet different points on the price-
performance-power curve. Current design methodologies make the exploration of
different hardware-software decompositions difficult because such exploration is both
expensive and introduces significant delays in time-to-market. This thesis addresses
this problem by introducing, Bluespec Codesign Language (BCL), a unified language
model based on guarded atomic actions for hardware-software codesign. The model
provides an easy way of specifying which parts of the design should be implemented
in hardware and which in software without obscuring important design decisions. In
addition to describing BCL’s operational semantics, we formalize the equivalence of
BCL programs and use this to mechanically verify design refinements. We describe
the partitioning of a BCL program via computational domains and the compilation
of different computational domains into hardware and software, respectively.
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2-4 One-element FIFO and Näıve Memory Modules . . . . . . . . . . . . 35

2-5 Operational semantics of a BCL Expressions. When no rule applies

the expression evaluates to NR . . . . . . . . . . . . . . . . . . . . . 38

2-6 Operational semantics of a BCL Actions. When no rule applies the

action evaluates to NR. Rule bodies which evaluate to NR produce no

state update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2-7 Helper Functions for Operational Semantics . . . . . . . . . . . . . . 40

2-8 When-Related Axioms on Actions . . . . . . . . . . . . . . . . . . . . 41

3-1 GCD Program in BCL . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3-2 Functionalization of Actions. Fixed-width text is concrete syntax of

the λ-calculus expression . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-3 Functionalization of BCL Expressions. Fixed-width text is concrete

syntax of the λ-calculus expression . . . . . . . . . . . . . . . . . . . 60

3-4 Conversion of Top-level BCL Design to top-level definitions. Fixed-width

text is concrete syntax of the λ-calculus expression. . . . . . . . . . . 61

3-5 Functionalized form of GCD program . . . . . . . . . . . . . . . . . . 63

11



4-1 Initial Example translation of λ-expressions to Circuits. White boxes

can be implemented solely with wires, gray boxes need gates, dotted

boxes correspond to λ abstractions. . . . . . . . . . . . . . . . . . . 68

4-2 Result of β-reduction on expression in Figure 4-1. Notice how the

fundamental circuit structures does not change . . . . . . . . . . . . . 69

4-3 Result of Distribution and Constant Propagation on expression in Fig-

ure 4-2. Sharing the white box structures (wire structures) do not

change the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-4 Example Single-Rule Program for Hardware Synthesis . . . . . . . . . 72

4-5 Simplified λ expressions of functionalization of Figure 4-4 . . . . . . . 72

4-6 Final functionalization of Program in Figure 4-4 . . . . . . . . . . . . 73

4-7 Example of implemented rule. State structure s0, s1, ns, and final

output s2 have been flattened into a single bit-vector. {} is Verilog

bit-vector concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4-8 Generation of δ Functions. Fixed-width text is concrete syntax of the

λ-calculus expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4-9 Generation of π Functions. Fixed-width text is concrete syntax of the

λ-calculus expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4-10 Generation of method functions. Notice that meth π g may be evalu-

ated without knowing the particular value p, though it shares the same

input argument x as meth δ g. Fixed-width text is concrete syntax of

the λ-calculus expression. . . . . . . . . . . . . . . . . . . . . . . . . 82

5-1 A BCL Scheduling Language . . . . . . . . . . . . . . . . . . . . . . . 88

5-2 Total guard lifting procedure for BCL Expressions resulting in the

guard being isolated from its guard. . . . . . . . . . . . . . . . . . . . 90

5-3 Total guard lifting procedure for restricted subset of BCL Action re-

sulting in the guard being isolated from its guard. . . . . . . . . . . . 91

12



5-4 Total guard lifting procedure for restricted subset of BCL Methods.

Methods are transformed into two separate methods; one for the body

and one for the guard. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5-5 The Table-Lookup Program . . . . . . . . . . . . . . . . . . . . . . . 103

5-6 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . 104

6-1 Original BCL Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6-2 Updated Module Grammar of BCL with Primitive Synchronizers . . . 110

6-3 Grammar of Domain Annotations. . . . . . . . . . . . . . . . . . . . . 112

6-4 Domain Inference Rules for Actions and Expression . . . . . . . . . . 113

6-5 Domain Inference Rules for Programs, Modules, Rules, and Methods 114

6-6 Pipeline Example with IFFT put in hardware . . . . . . . . . . . . . 118

7-1 Procedure to lift when clauses to the top of all expressions of BCL.

This is the same as the expression lifting procedure of the restricted

language in Figure 5-2. Method calls and bound variables are expected

to already be split between body and guard. . . . . . . . . . . . . . 124

7-2 Translation of Expressions to C++ expression and the C++ statement

to be evaluated for expression to be meaningful . . . . . . . . . . . . 126

7-3 Translation of Actions to C++ Statements . . . . . . . . . . . . . . . 128

7-4 Translation of Rules and Methods. The initial state is the current

object which is the “real” state in the context that we are calling.

Thus if we call a method or rule on a shadow state, we will execute do

its execution in that state. . . . . . . . . . . . . . . . . . . . . . . . . 131

7-5 Helper Functions used in Action compilation . . . . . . . . . . . . . . 131

7-6 Translation of Modules Definitions to C++ Class Definition . . . . . 132

7-7 Implementation for C++ Register class. This primitive is templated

to hold any type. A point to the parent is made to avoid unnecessary

duplication of large values. . . . . . . . . . . . . . . . . . . . . . . . 133

7-8 Simple Top-Level Runtime Driver . . . . . . . . . . . . . . . . . . . . 134

7-9 Shadow Minimized Translation of BCL’s Expressions . . . . . . . . . 136

13



7-10 Shadow Minimized Translation of BCL’s Actions . . . . . . . . . . . 137

7-11 Shadow minimized translation of Rules and Methods. . . . . . . . . . 138

7-12 HelperFunctions for Shadow minimized translation . . . . . . . . . . 139

7-13 Procedure to apply when-lifting to actions, referencing the procedure

in Figure 7-1. Method Expression calls and bound variables are ex-

pected to already be split between body and guard. . . . . . . . . . 142

8-1 Initial FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8-2 Refined FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8-3 A Rule-based Specification of the Initial Design . . . . . . . . . . . . 149

8-4 A Refinement of the Design in Figure 8-3 . . . . . . . . . . . . . . . . 150

8-5 Program of Figure 8-3 with an Observer . . . . . . . . . . . . . . . . 152

8-6 System of Figure 8-3 with an Observer . . . . . . . . . . . . . . . . . 154

8-7 An incorrect refinement of the system in Figure 8-6 . . . . . . . . . . 155

8-8 A correct refinement of the system in Figure 8-6 . . . . . . . . . . . . 157

8-9 A system with a nondeterministic observer . . . . . . . . . . . . . . . 158

8-10 Correct refinement of Figure 8-9 . . . . . . . . . . . . . . . . . . . . . 159

8-11 Second correct refinement of Figure 8-9 . . . . . . . . . . . . . . . . . 161

8-12 Tree visualization of the algorithmic steps to check the refinement of

the program in Figure 8-6 to the one in Figure 8-7 . . . . . . . . . . . 170

8-13 SMIPS processor refinement . . . . . . . . . . . . . . . . . . . . . . . 172

14



Chapter 1

Introduction

Market pressures are pushing embedded systems towards both higher performance

and greater energy efficiency. As a result, designers are relying more on special-

ized hardware, both programmable and non-programmable, which can offer orders

of magnitude improvements in performance and power over standard software im-

plementations. At the same time, designers cannot implement their designs entirely

in hardware, which leaves the remaining parts to be implemented in software for

reasons of flexibility and cost. Even fairly autonomous non-programmable hardware

blocks are frequently controlled by software device drivers. In this sense all embedded

designs involve hardware-software codesign.

In businesses where embedded designs are necessary, first-to-market entries enjoy

a substantially higher profit margin than subsequent ones. Thus designers are under

great pressure to prevent delays, especially those caused by final integration and

testing. For subsequent products, the novelty of new functionalities have a much

lower effect, and their value is driven by performance, power, and of course cost. Thus,

over the life-cycle of a product class, individual embedded designs frequently have to

make the transition from rapidly-designed but good-enough to time-consuming but

highly-efficient designs.

Given this shifting set of requirements, engineers would like to be able to start with

a design implemented mainly in software using already developed hardware blocks,

and gradually refine it to one with more hardware and better power/performance
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properties. Isolating such refinements from the rest of the system is important to

smooth the testing and integration processes. Unfortunately such flexibility is not

easily provided due to the radically different representation of hardware and software.

Embedded software is generally represented as low-level imperative code. In contrast,

hardware systems are described at the level of registers, gates, and wires operating as

a massively parallel finite state machine. The differences between these two idioms

are so great that the hardware and software parts of the design are done by entirely

separate teams.

The disjointedness of software and hardware teams strongly affects the standard

design process. Since time-to-market is of utmost importance, both parts of the

design must be specified and implemented in parallel. As a result, the hardware-

software decomposition and the associated interface are specified early. Even when

the hardware-software decomposition is fairly obvious, specifying the interface for in-

teraction without the design details of the parts is fraught with problems. During the

design process the teams may jointly revisit the early decisions to resolve specification

errors or deal with resource constraints. Nevertheless, in practice, the implemented

interface rarely matches the specification precisely. This is quite understandable as

the hardware-software interface must necessarily deal with both semantic models.

Frequently during the final stages of integration, the software component must be

modified drastically to conform to the actual hardware to make the release date.

This may involve dropping useful but non-essential functionalities (e.g., using low-

power modes or exploiting concurrency). As a result, designs rarely operate with the

best power or performance that they could actually achieve.

The problem of partitioning can be solved if we unify the description of both

software and hardware using a single language. An ideal solution would allow de-

signers to give a clear (sequential) description of the algorithm in a commonly-used

language, and specify the cost, performance and power requirements of the resulting

implementation. The tool would then take this description, automatically determine

which parts of the computation should be done in hardware, insert the appropriate

hardware-software communication channel, parallelize the hardware computation effi-
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ciently, parallelize the software sufficiently to exploit the parallelism in the hardware,

and integrate everything without changing the semantic meaning of the original pro-

gram. In the general case, each of these tasks is difficult and requires the designer’s

input, making the possibility of this type of design flow infeasible.

This thesis discusses a more modest language-based approach. Instead of trying to

solve the immense problem of finding the optimal solution from a single description,

our goal is to facilitate the task of exploration by allowing designers to easily exper-

iment with new algorithms and hardware-software partitionings without significant

rewriting. The designer’s task is to construct not one, but many different hardware-

software decompositions, evaluate each one, and select the best for his needs. This

approach lends itself to the idea of retargeting, since each design becomes a suite of

designs and thus is robust to changes needed for performance, functionality, or cost.

This approach also helps in keeping up with the constantly evolving semiconductor

technology.

1.1 Desirable Properties for a Hardware-Software

Codesign Language

Any hardware-software codesign solution must be able to interoperate with existing

software stacks at some level. As a result, a hardware-software codesign language need

not be useful for all types of software, and can focus only on the software that needs

to interact with hardware or with software that might be potentially implemented in

hardware. In such a context, the designer isolates the part of the design that could

potentially be put into hardware and defines a clean and stable interface with the rest

of the software. As we now only consider “possibly hardware” parts of the design,

i.e., parts that will be implemented in hardware or as software expressed naturally

in a hardware style, the semantic gap between the hardware and software is smaller

and it becomes reasonable to represent both in a single unified language.

With a single language, the semantics of communication between hardware and

17



software are unambiguous, even when the hardware-software partitioning is changed.

To be viable, a unified language must have the following properties:

1. Fine-grain parallelism: Hardware is inherently parallel, and any codesign lan-

guage must be flexible enough to express meaningful hardware structures. Low-

level software that drives the hardware does so via highly concurrent untimed

transactions, which must also be expressible in the language.

2. Easy specification of partitions: In complex designs it is important for the de-

signer to retain a measure of control in expressing his insights about the par-

titioning between hardware and software. Doing so within suitable algorithmic

parameters should not require any major changes in code structure. Further the

addition of a partition should not affect the semantics of the system; designers

should be able to reason about the correctness of a hardware-software design as

either a pure hardware or software system.

3. Generation of high-quality hardware: Digital hardware designs are usually ex-

pressed in RTL (Register-Transfer Level) languages like Verilog from which low-

level hardware implementations can be automatically generated using a number

of widely available commercial tools. (Even for FPGAs it is practically impossi-

ble to completely avoid RTL). The unified language must compile into efficient

RTL code.

4. Generation of efficient sequential code: Since the source code is likely to con-

tain fine-grained transactions to more clearly expose pipeline parallelism for ex-

ploitation in hardware, it is important that software implementations are able to

effectively sequence transactions for efficiency without introducing unnecessary

stalls when interacting with hardware or other external events.

5. Shared communication channels: Often the communication between a hardware

device and a processor is accomplished via a shared bus. The high-level concur-

rency model of the codesign language should permit sharing of such channels

without introducing deadlocks.
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Given such a language, it should be possible for designers to reason about system

changes in a straightforward manner. Not only should it be possible to easily modify a

hardware-software design by changing the partitioning, but it should also be possible

to reason about the correctness of this system as easily if it had been implemented

entirely in software or entirely in hardware.

1.2 Thesis Contributions

This thesis is about the semantic model embodied in the language and the challenges

that must be addressed in the implementation of such a language. It is not about the

surface syntax, types, or the meta-language features one may wish to include in a de-

sign language. The starting point of our design framework is guarded atomic actions

(GAAs) and Bluespec SystemVerilog (BSV), a language based on such a framework.

BSV is an industrial-strength language for hardware design [20]. Significant work

has been done towards a full implementation of BCL, the proposed language. BCL

programs are currently running on multiple mixed hardware-software platforms. How-

ever, even a preliminary evaluation of BCL’s effect requires an significant amount of

additional platform; application specific effort has been done, mostly by Myron King

and will appear in his PhD thesis.

This thesis makes the following contributions:

• We introduce Bluespec Codesign Language (BCL), a unified hardware-software

language and give its operational semantics. BCL is an extension of the seman-

tic model underlying BSV, adding sequential composition of actions, dynamic

loops, and localization of guards. Like BSV, the execution of a BCL program

must always be understood as a serialized execution of the individual rules.

However, as any serialization of rule executions is valid, the BCL programs are

naturally parallel; multiple rules can be executed concurrently without commit-

ting to a single ordering resolution. The additional capabilities of BCL make it

convenient to express low-level software programs in addition to hardware de-

signs. The operational semantics were developed jointly with Michael Pellauer.
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(Chapter 2)

• We introduce a notion of equivalence of a BCL program based on state observ-

ability. This, for the first time, provides a proper foundation for some well-

known properties of BSV, such as derived rules and the correctness of parallel

scheduling. (Chapters 2 and 5).

• We use this notion of observability to develop an equivalence checking tool

based on satisfiability-modulo-theories (SMT). This tool is particularly useful

as a debugging aid as it can automatically verify whether splitting a rule into

smaller rules has introduced new behaviors. This is a common step-wise refine-

ment design process used in the development of BCL programs. This tool was

developed jointly with Michael Katelman. (Chapters 2 and 8).

• We extend the notion of clock domains [30] to allow for multiple computational

domains both in hardware and software. We use this type-based mechanism to

express the precise partitioning of a BCL program. Domains allow the compiler

to figure out the precise communication across hardware-software boundaries.

Annotating a BCL program with domains also suggest how to directly imple-

ment the resulting communication (Chapter 6).

• Efficient implementations of a BCL program (and thus a BSV program) practi-

cally must restrict the choice inherent in the program, i.e., scheduling the rules.

We provide a representation of this scheduling process via rule composition.

This allows the designer to understand the scheduling restrictions programmat-

ically and even express it themselves. It also enables partial scheduling where

nondeterminism is left in the final implementation, an important property for

efficient hardware-software implementations. (Chapter 5).

• The construction of an initial BCL compiler that can partition a BCL design

into hardware and software. We introduce methods for compiling the software

partition to both Haskell and C++. The former is used in our verification effort

while the later is used for implementing embedded systems and makes use of
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nontrivial optimizations to remove the need for the non-strictness and dynamic

allocation associated with Haskell. The C++ compilation was developed jointly

with Myron King who is continuing the development of the BCL compiler for

his PhD thesis. (Chapters 3 and 7).

1.3 Thesis Organization

This thesis has many topics and the reader can read the chapters in multiple orders.

This section serves to prime the user as to the chapter contents and the relative data

dependencies between them.

The remainder of this chapter discusses the various works in different areas that

have bearing on the this work. It is included for context and does not greatly impact

knowledge transfer.

Chapter 2 introduces BCL and its operational semantics. It also introduces various

concepts needed to understand program refinement and implementation. This chapter

is necessary preliminaries for all subsequent chapters, though the later sections may

be skipped if one is not interested in verification (Chapter 8) or the semantic issues

of implementation (Chapter 5).

Chapter 3 discusses the translation of BCL to λ-calculus. This translation is an

important step in hardware generation (Chapter 4) and verification efforts (Chap-

ter 8). It also lends insight to software generation (Chapter 7) but is not strictly

necessary to understand software generation.

In Chapter 4 we discuss the generation of synchronous hardware from a BCL

program, and how BCL module interfaces relate to their FSM implementations. This

chapter sheds some light onto choices made by the historical approaches to scheduling

of hardware implementations which is discussed Chapter 5, but is not necessary to

understand the rest of the thesis.

In Chapter 5 we describe the task of scheduling programs, i.e., reducing choice in

an implementation with the goal of improving efficiency. We discuss this in terms of

rule composition and derived rules, which enables us to schedule the hardware and
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software portions a program independently. This chapter does not have any direct

bearing on the understanding of subsequent chapters.

In Chapter 6, we show the partitioning of a BCL program via computational

domains. It also discusses how communication channels can be abstracted and the

compilation task isolated to each individual substrate. This chapter is not necessary

for any subsequent chapters.

We discuss the implementation of BCL in C++ in Chapter 7. This involves

overcoming various restrictions due to the imperative nature of the backend language.

We also discuss various optimizations that reduce the memory and execution time

overhead.

In Chapter 8 we discuss a notion of state-based equivalence of programs and show

how this model allows us to consider many non-trivial refinements (e.g., pipelining)

as equivalence preserving. It also introduces an algorithm that decomposes the notion

of observability into a small number of SMT queries and a tool which embodies it.

Finally, in Chapter 9 we conclude with a summary of the thesis contributions, and

a discussion of future work.

1.4 Related Work

The task of dealing with hardware-software systems is well-established and appears

in multiple contexts with vastly different goals. However, collectively this literature

gives a good intuition about the state of the art. In the remainder of this chapter,

we will discuss previous work as it relates to the task of hardware-software codesign.

1.4.1 Software Models of Hardware Description Languages

Hardware implementation is an expensive and time consuming task, and it is im-

practical to design hardware directly in circuitry in the design process. Even with

programmable hardware blocks, such as PLAs [44] or Field Programmable Gate Ar-

rays (FPGAs) [21] it is still useful to execute models of hardware in software.

Fundamentally, digital hardware is represented at the transistor level and we can
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model the underlying physics of circuits in systems such as SPICE [63]. Practically

this level of detail is too great and designers moved to gate-level schematics which

model only the digital aspects of design. This abstraction greatly speeds up simulation

of circuits but is still immensely slow to construct and test. Languages at the Register-

Transfer Level (RTL), such as Verilog [90] and VHDL [12] allowed designers to go from

a graphical description to textual descriptions. This was a significant improvement

as it decoupled the description from its physical implementation, a necessary step in

moving towards higher-level representations.

As a matter of course, designers wanted to express not only their designs, but also

their test bench infrastructure in RTL. As such, certain C-like “behavioral” represen-

tations were allowed. As this became more prevalent, approaches were proposed for

expressing not only the test bench but parts of the design themselves in a behavioral

style [24, 28, 94]. However, it is hard to distinguish the parts of the description meant

to be interpreted behaviorally, from those which are meant to serve as static elabora-

tion. As a result such behavioral representations are used in highly stylized fashions.

SystemVerilog [3], the successor to Verilog formalized some of these distinctions by

introducing the concept of generate blocks to be used explicitly for static elaboration.

The hardware description language Lava [18], an embedded domain-specific lan-

guage in Haskell, made this distinction precise, by expressing all higher-level func-

tional operators as circuit connections. At some level, Lava can be viewed as a

meta-programming layer on top of the previous gate-level representation.

Cycle-accurate simulation of RTL models is not always necessary. Practically, it is

often of value to be able to significantly speed up simulation in exchange for small se-

mantic infidelities. Popular commercial products like Verilator [92] and Carbon [1] do

just this. However, the resulting performance is still often several orders of magnitude

slower than natural software implementations of the same algorithm.

1.4.2 C-based Behavioral Synthesis

Many consider hardware description languages like Verilog and VHDL to be too low-

level. One proposed solution to ease the burden of hardware design is to generate
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hardware from familiar software languages, e.g., C or Java. These Electronic System

Level (ESL) representations generally take the control-data flow graphs and through a

series of transformations, optimize the result and directly implement it as a circuit [46,

48, 57, 75, 91]. Systems like CatapultC [62], HandelC [23], Pico Platform [86], or

AutoPilot [13] have been effective at generating some forms of hardware from C

code. Assuming the appropriate state elements can be extracted, these can be quite

efficient in the context of static schedules. However, generating an efficient design in

the context of dynamic choice can be very hard, if not impossible [5].

1.4.3 Implementation Agnostic Parallel Models

There are several parallel computation models whose semantics are agnostic to im-

plementation in hardware or software. In principle, any of these can provide a basis

for hardware-software codesign. Threads and locks are used extensively in paral-

lel programming and also form the basis of SystemC [59] – a popular language for

modeling embedded systems. However, SystemC has the same problem as other C-

like language in generating good hardware, in that only highly restrictive idioms are

efficiently implementable.

Dynamic Dataflow models, both at macro-levels (Kahn [54]) and fine-grained lev-

els (Dennis [35], Arvind [10]), provide many attractive properties but abstract away

important resource-level issues that are required to express efficient hardware and

software. Nevertheless dataflow models where the rates at which each node works are

specified statically have been used successfully in signal processing applications [58].

However, such systems extend become inefficient in the context of conditional opera-

tions. The Liquid Metal Project [53] extends StreamIt [89], one such static dataflow

language aimed at parallel software, to make use of hardware. It leverages the type

system, an extension of the Java type system, to annotate which aspects can be

implemented in hardware and which in software.

In contrast to asynchronous or untimed dataflow models mentioned earlier, syn-

chronous dataflow offers a model of concurrency based on synchronous clocks. It is

the basis of for a number of programming languages, e.g., LUSTRE [25], Esterel [17],
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Rapide [60], Polysynchrony [87] SyncCharts [6], and SHIM [40]. All of these lan-

guages are used in mixed hardware-software designs. Though still synchronous like

RTL models, they represent a clear improvement over behavioral synthesis of RTL in

their semantics and implementation. Edwards [39, 74] and Berry [16] have presented

methods to generate hardware from such descriptions, but these efforts have yet to

yield the high-quality hardware, predictability, and descriptional clarity needed to

overtake the well understood RTL-based design.

1.4.4 Heterogeneous Simulation Frameworks

There are numerous systems that allow co-simulation of hardware and software mod-

ules. Such systems, which often suffer from both low simulation speeds and improp-

erly specified semantics. Additionally they are typically not used for direct hardware

or software synthesis.

Ptolemy [22] is a prime example of a heterogeneous modeling framework, which

concentrates more on providing an infrastructure for modeling and verification, and

less on the generation of efficient software; it does not address the synthesis of hard-

ware at all. Metropolis [14], while related, has a radically different computational

model and has been used quite effectively for hardware/software codesign, though

primarily for validation and verification rather than to synthesize efficient hardware.

SystemC [59], a C++ class library, is the most popular language to model het-

erogeneous systems. The libraries provide great flexibility in specifying modules,

but SystemC lacks clear compositional semantics, producing unpredictable behaviors

when connecting modules. Synthesis of high-quality hardware from SystemC remains

a challenge.

Matlab [2] and Simulink [69] generate production code for embedded processors as

well as VHDL from a single algorithmic description. Simulink employs a customizable

set of block libraries that allows the user to describe an algorithm by specifying the

component interactions. Simulink does allow the user to specify modules, though the

nature of the Matlab language is such that efficient synthesis of hardware would be

susceptible to the same pitfalls as C-based tools. A weakness of any library-based
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approach is the difficulty for users to specify new library modules.

1.4.5 Algorithmic Approaches to Design

One possible approach to embedded design is to automatically generate a design from

a high-level algorithm. This can be very successful in contexts where the domain is

well understood (e.g., SPIRAL [88]). However, it does not generally apply to less well-

understood and complex systems. Nurvitadhi et al. [68] have made some progress

on a more general design class, taking a synchronous datapath and automatically

pipelining it, automatically leveraging user-provided speculation mechanisms.

Another area of interest that can be solved algorithmically is the selection of an

appropriate cut between hardware and software. Viewed as an optimization problem,

designers can make a selection based on estimates of the cost-performance tradeoff.

In certain restricted cases, the choice of implementation of an algorithm is sufficiently

constrained that it becomes reasonable for an automated process [7, 27, 42] to be

used in selecting the appropriate partitioning. This is especially effective in digital

approximations where numeric errors from approximations must be analyzed.

All automated approaches try to avoid implementing and checking all cases by

leveraging high-level knowledge to approximate the relevant parts of the exploration

process. Such analysis should be used in a complementary manner to the hardware-

software codesign as discussed in this thesis.

1.4.6 Application-Specific Programmable Processors

Another approach to the hardware-software codesign problem is to limit hardware

efforts to the specialization of programmable processors [4, 49, 82, 93]. These sys-

tem are a very limited form of hardware-software codesign as they find kernels or

CISC instructions which can be accelerated by special-purpose hardware functional

units. These units are either user-generated or automatically derived from the kernel

implementation. The majority of attention in these approach is spent on processor

issues and the associated compilation stack. This approach is attractive as it gives
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some of the performance/power benefits of general hardware-software solutions while

still appearing to be “standard” software. However, it fundamentally is unable to get

the many orders of magnitude that more general-purpose hardware-software codesign

solutions are able to achieve.

1.4.7 Single Specification Hardware/Software Approaches

One of the earliest efforts to do total-system design of hardware and software was

SRI’s Hierarchical Development Methodology (HDM) [64, 76] in the 1970s, with its

SPECIfication and Assertion Language (SPECIAL). HDM is aimed at breaking the

task of verifying the abstract high-level properties on real production-level system

into small managable steps gradually refining from abstract machine to the real de-

sign. The expression of the state machines at each level is sufficiently abstract that

the change from software to hardware does not change the abstraction methodol-

ogy, requiring only the necessary limitations to be implementable in the appropriate

substrate. HDM and SPECIAL were used in the design of SRI’s Provably Secure Op-

erating System and its underlying capability-based hardware [64, 65]. This approach

is being revisited in a joint project of SRI and the University of Cambridge [66]. HDM

was later extended to EHDM [81] and has led to many of SRI’s subsequent formal

methods systems, e.g., PVS [70], SAL [15], and Yices [38].

1.4.8 Previous Work on Atomic Actions and Guards

.

BCL and BSV are most closely related to Chandy and Misra’s UNITY program-

ming language [26] whose execution model is virtually identical to ours, differing

only in a few intra-atomic action constructors. That said, there are many other lan-

guages that use guards or atomic actions to describe distributed software systems,

e.g., Djisktra’s Guarded Command Language [36], Hoare’s Communicating Sequential

Processes [50], and Lynch’s IO Automata [61].

Another set of languages in the context of hardware employ vastly different tech-
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niques than their software counterparts. Initially such descriptions were used for the

purpose of precise specification of hard-to-verify hardware models such as cache co-

herence processors, e.g., Dill’s Murphi [37] system and Arvind and Shen’s TRSs [11].

Such models focused on modeling the protocol, and not on actual synthesis.

Initial aspects of hardware synthesis from guarded atomic actions can be found

Staunstrup’s Synchronous Transactions [85], Sere’s Action Systems [73]. These sys-

tems used basic processor pipelines to demonstrate their practicality. Staunstrup was

able to demonstrate automatic synthesis; however, this synthesis was unable to reach

the level of concurrency required to make the system practical.

In contrast, Arvind and Shen’s TRS’s [11] focused on more complex and more ob-

viously parallel structures such as reorder buffers and cache-coherence protocols [83],

represented using bounded guarded atomic actions. Hoe and Arvind then showed

that such descriptions could be synthesized into highly concurrent and relatively ef-

ficient structures [52] by attempting to execute each individual rule in parallel each

cycle. These were later refined by Esposito [43] and Rosenband [78] to allow more

efficient results without compromising understandability.

This idea was commercialized and packaged into the hardware description lan-

guage Bluespec SystemVerilog [20] and surrounding tool chain and infrastructure [19].

Significant work has gone into making the hardware generation efficient; it has been

shown that compiled BSV is as efficient as hard-written RTL [9]. BSV has been used

in many contexts to develop large hardware systems such as processor designs [31],

video decoders [45], kernel accelerators [33], cache coherence engines [34], hardware-

based processor simulators [41, 72], and wireless basebands [67]. These have leveraged

Guarded Atomic Actions to reduce code size, increase modularity and design flexibil-

ity, and reduce design time. These projects have shown that Guarded Atomic Actions

are good abstraction for hardware designs.

The rest of this thesis discusses the Bluespec Codesign Language.
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Chapter 2

BCL: A Language of Guarded

Atomic Actions

This chapter introduces the semantics and fundamental properties of Bluespec Code-

sign Language (BCL). BCL can be considered as an extension of Bluespec SystemVer-

ilog (BSV) [20]. BSV is a statically-typed language with many useful language fea-

tures that are not meaningful after the early part of the compilation (i.e., after static

elaboration). To simplify our discussion of the semantics, we consider BCL [32], a lan-

guage roughly corresponding to BSV programs after type checking and instantiation

of modules.

In BCL, behavior is described using guarded atomic actions (GAAs) or rules [51].

Each rule specifies a state transition (its body) on the state of the system and a

predicate (a guard) that must be valid before this rule can be executed, i.e., the state

transformation can take place. One executes a program by randomly selecting a rule

whose predicate is valid and executing its body. Any possible sequencing of rules is

valid; the implementation is responsible for determining which rules are selected and

executed.

The grammar for BCL is given in Figure 2-1. Most of the grammar is standard;

we discuss only the novel parts of the language and explain the language via an

illustrative example in Section 2.1. A BCL program consists of a name, a set of a

modules, and a set of rules. Each BCL module consists of a set of (sub)modules and
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program ::= Program name [m] [Rule R: a] // A list of Modules and Rules

m ::= [Register r (v0)] // Reg with initial values
‖ Module name

[m] // Submodules
[ActMeth g = λx.a] //Action method
[ValMeth f = λx.e] //Value method

v ::= c // Constant Value
‖ t // Variable Reference

a ::= r := e // Register update
‖ if e then a // Conditional action
‖ a | a // Parallel composition
‖ a ; a // Sequential composition
‖ a when e // Guarded action
‖ (t = e in a) // Let action
‖ loop e a // Loop action
‖ localGuard a // Localized guard
‖ m.g(e) // Action method call g of m

e ::= r // Register Read
‖ c // Constant Value
‖ t // Variable Reference
‖ e op e // Primitive Operation
‖ e ? e : e // Conditional Expression
‖ e when e // Guarded Expression
‖ (t = e in e) // Let Expression
‖ m.f(e) // Value method call f of m

op ::= && | || | ... // Primitive operations

Figure 2-1: Grammar of BCL. For simplicity we will assume all module and method
names are unique.
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sets of action methods and value methods which are called by methods of the enclosing

module or rules in the top-level program. Register is a primitive module with special

syntax for calling its read and write methods. Though rules are allowed at all levels

of the module hierarchy in BCL, we restrict BCL such that all rules are at the top-

level to simplify our discussion of scheduling. This can be done programmatically

by repeatedly replacing a rule in a submodule with an action method containing the

body of the rule and a rule that calls just that action method.

We refer to the collection of all registers in a BCL program as its state. The

evaluation of a BCL rule produces a new value for the state and a boolean guard value

which specifies if the state change is permitted. Every rule in BCL is deterministic in

the sense that the guard value and state change computed when evaluating a rule are

a function of the current state. The execution of a BCL program can be described as

follows:

1. Choose a rule R to execute.

2. Evaluate the new state and guard value for rule R on the cur-

rent state.

3. If the guard is true, update the state with the new value.

4. Repeat Step 1.

Since this procedure involves a nondeterministic choice and the choice potentially af-

fects the observed behaviors, our BCL program is more like a specification as opposed

to an implementation. To obtain an effective implementation we selectively restrict

the model to limit nondeterminism and introduce a notion of fairness in rule selection.

As we discuss in Chapter 5, in the case of synchronous hardware we usually want to

execute as many rules as possible concurrently, whereas in software we construct long

chains of rules to maximize locality.
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int lpm(IPA ipa){

int p;

p = RAM [rootTableBase + ipa[31:16]];

if (isLeaf(p)){

return p;

}

p = RAM [p + ipa [15:8]];

if (isLeaf(p)){

return p;

}

p = RAM [p + ipa [7:0]];

return p; // must be a leaf

}

Figure 2-2: Sequential C code for longest prefix match example

2.1 Example: Longest Prefix Match

We use the example of the Longest Prefix Match module in a high-speed router to

illustrate the essential concepts in BCL. This module is for determining to which

physical output should a particular packet be routed based on its IPv4 destination

address. The Longest Prefix Match is based on a routing table that consists of a set of

IP address prefixes, each associated with an output port. Since more than one prefix

can match an incoming packet, we choose the output corresponding to the longest

matching prefix.

Since these routing tables are updated infrequently, it is possible for us to pre-

process the prefixes for efficient lookup and update the hardware memories when

necessary. The most natural way of expressing this prefix is with a flat table of size

232. However this is not feasible due to cost and power reasons. To reduce the cost,

we exploit the tree-like structure of the table to produce a multi-lookup table. Now to

do a lookup we start with a prefix of the IP and get either a result (a leaf) or a pointer

back into the table to which we add the next 8-bit part of the IP address to from a

new memory address to lookup. In C, this would look as the code in Figure 2-2.

This drastically cuts down on total memory size, but now requires that in the worst

case three sequential memory lookups, each of which may take k clock cycles. This

32



means in the worst case it may take 3k cycles to process a request that, given standard

hardware components is too slow to meet the required packet processing rate. A way

to overcome this is to overlap the computation of multiple packets because these

computations are independent of each other. To do so we use a pipelined memory

that is capable of handling a new request every cycle, though the latency of results

is still k cycles.

We use a circular pipeline organization, shown in Figure 2-3, to handle multiple

concurrent requests. We assume that the memory module (mem) may take an arbitrary

amount of time to produce a result and will internally buffer waiting responses. The

program has an input FIFO inQ to hold incoming requests, an internal FIFO fifo

to hold outstanding requests while a memory reference is in progress. Once a lookup

request is completed, the message leaves the program via the FIFO outQ.

The program has three rules enter, recirc, and exit. The enter rule enters

a new IP request into the pipeline from inQ. In parallel, it enqueues a new memory

request and places the IP residual into fifo. While there are no explicit guards, this

rule is guarded by the guards implicit in the methods it calls. Therefore, the guard of

the enter rule is simply the conjunction of the guards of the fifo.enq and mem.req

methods. These guards may represent, for example, that the fifo or mem is full and

cannot handle a new request.

The recirc rule handles the case when a response from memory results in a

pointer, requiring another request. It is guarded by the condition that the memory

response is not the final result. In parallel, the body of the rule accepts the result

from memory, makes the new memory request and in sequence dequeues the old IP

address residual and enqueues the new one. It is very important that this sequencing

occurs, and we not use parallel composition. For this rule to execute the guards

on both method calls must be valid simultaneously. This means the fifo must

both have space and not be empty. Note that this is not possible if we have a

one-element FIFO. A definition of such a FIFO is given in Figure 2-4. Consequently

fifo.deq | fifo.enq(x) will never cause a change in the state of one-element FIFO.

However, this issue goes away with sequential composition as the deq call will make
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MEM

enterenter

recircrecirc

exitexit

Program IPLookup

Module mem ...

Module fifo ...

Module inQ ...

Module outQ ...

Rule enter:

x = inQ.first() in
inQ.deq()

fifo.enq(x) |

mem.req(addr(x))

Rule recirc:

x = mem.res() in
y = fifo.first() in
(mem.resAccept() |

mem.req(addr(x)) |

(fifo.deq();
fifo.enq(f2(x,y)))

when !isLeaf(x)

Rule exit:

x = mem.res() in
y = fifo.first() in
(mem.resAccept() |

fifo.deq() |

outQ.enq(f1(x,y)))

when isLeaf(x)

Figure 2-3: Example: A Table-Lookup Program. Other modules implementations
are given in Figure 2-4
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Module fifo

Register vf0 (false)

Register f0 (0)

ActMeth enq(x) =

(vf0 := true | f0 := x) when !vf0

ActMeth deq() =

(vf0 := false) when vf0

ValMeth first() =

f0 when vf0

Module mem

Register r0 (0)

Register r1 (0)

...

Register rN (0)

Module memfifo ...

ActMeth req(x) =

if (x = 0) memfifo.enq(r0) |

if (x = 1) memfifo.enq(r1) |

...

if (x = n) memfifo.enq(rN)

ActMeth resAccept() =

memfifo.deq()

ValMeth res() =

memfifo.first()

Figure 2-4: One-element FIFO and Näıve Memory Modules
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the subsequent enq call valid to execute.

The exit rule deals with removing requests that are fulfilled by the most re-

cent memory response. In parallel it accepts the memory response, dequeues the

residual IP in fifo and enqueues the final result into the outQ. “x=mem.res()” and

“y=fifo.first()” represent pure bindings of values being returned by the methods

mem.res() and fifo.first(). The entire action is guarded by the condition that

we found a leaf, isLeaf(x). In addition to this guard are the guards embedded in

the method calls themselves. For instance fifo.deq is guarded by the condition that

there is an element in the queue.

Figure 2-4 includes an implementation of a one-element FIFO. Its interface has

two action methods, enq and deq, and one value method first. It has a register f0 to

hold a data value and a one-bit register vf0 to hold the valid bit for f0. The encoding

of all methods is self-explanatory, but it is worth pointing out that all methods have

guards represented by the when clauses. The guards for first and deq signify that

the FIFO is not empty while the guard for enq signifies that the FIFO is not full.

We have not shown an implementation of the actual memory module, only a näıve

implementation that operates as a flat memory space with the FIFO memfifo to hold

intermediate requests. All reasoning about the correctness remains the same for this

design. The guard of mem.req indicates when it can accept a new request. The

guards of value method mem.res and action method mem.resAccept would indicate

when mem has a result available.

2.2 Semantics of Rule Execution in BCL

Having given some intuition about BCL in the context of our example, we now present

the operational semantics of a rule execution using Structured Operational Seman-

tics (SOS) style evaluation rules. The state S of a BCL program is the set of values

in its registers. The evaluation of a rule results in a set of state updates U where

the empty set represents no updates. In case of an ill-formed rule it is possible that

multiple updates to the same register are specified. This causes a double update error
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which we represent with the special update value DUE.

Our semantics (described in Figures 2-5, 2-6, and 2-7) builds the effect of a rule

execution by composing the effects of its constituent actions and expressions. To do

this compositionally, the evaluation of an expression that is not ready due to a failing

guard must return a special not-ready result NR in lieu of its expected value. A

similar remark applies to the evaluation of actions.

Each action rule specifies a list of register updates given an environment 〈S, U,B〉

where S represents the values of all the registers before the rule execution; U is a set

of register-value pairs representing the state update; and B represents the locally-

bound variables in scope in the action or expression. Initially, before we execute a

rule, U and B are empty and S contains the value of all registers. The NR value

can be stored in a binding, but cannot be assigned to a register. To read a rule in

our semantics, the part over the bar represents the antecedent derivations, and the

part under the bar, the conclusion, and ⇒ represent evaluation of both actions and

expressions. Thus we read the reg-update rule in Figure 2-6 as “If e returns v, a

non-NR value in some context, then the action r := e returns an update of r to the

value v”.

The semantic machinery is incomplete in the sense that there are cases where no

rule may apply, for example, if one of the arguments to the op-rule is NR. Whenever

such a situation occurs in the evaluation of an expression, we assume the NR value

is returned. This keeps the semantics uncluttered without loss of precision. Similarly

when no rule applies for evaluation of actions, the NR value is returned. For rule

bodies, a NR value is interpreted as an empty U .

We now discuss some of the more interesting aspects of the BCL language in isolation.

2.2.1 Action Composition

The language provides two ways to compose actions together: parallel composition

and sequential composition.

When two actions A1|A2 are composed in parallel they both observe the same
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reg-read 〈S, U,B〉 ` r � (S++U)(r)

const 〈S, U,B〉 ` c⇒ c

variable 〈S, U,B〉 ` t⇒ B(t)

op

〈S, U,B〉 ` e1 ⇒ v1, v1 6= NR
〈S, U,B〉 ` e2 ⇒ v2, v2 6= NR

〈S, U,B〉 ` e1 op e2 ⇒ v1 op v2

tri-true
〈S, U,B〉 ` e1 ⇒ true, 〈S, U,B〉 ` e2 ⇒ v

〈S, U,B〉 ` e1 ? e2 : e3 ⇒ v

tri-false
〈S, U,B〉 ` e1 ⇒ false, 〈S, U,B〉 ` e3 ⇒ v

〈S, U,B〉 ` e1 ? e2 : e3 ⇒ v

e-when-true
〈S, U,B〉 ` e2 ⇒ true, 〈S, U,B〉 ` e1 ⇒ v

〈S, U,B〉 ` e1 when e2 ⇒ v

e-when-false
〈S, U,B〉 ` e2 ⇒ false

〈S, U,B〉 ` e1 when e2 ⇒ NR

e-let-sub
〈S, U,B〉 ` e1 ⇒ v1, 〈S, U,B[v1/t]〉 ` e2 ⇒ v2

〈S, U,B〉 ` t = e1 in e2 ⇒ v2

e-meth-call

〈S, U,B〉 ` e⇒ v, v 6= NR,
m.f = 〈λt.eb〉, 〈S, U,B[v/t]〉 ` eb ⇒ v′

〈S, U,B〉 ` m.f(e)⇒ v′

Figure 2-5: Operational semantics of a BCL Expressions. When no rule applies the
expression evaluates to NR
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reg-update
〈S, U,B〉 ` e⇒ v, v 6= NR

〈S, U,B〉 ` r := e⇒ {r 7→ v}

if-true
〈S, U,B〉 ` e⇒ true, 〈S, U,B〉 ` a⇒ U ′

〈S, U,B〉 ` if e then a⇒ U ′

if-false
〈S, U,B〉 ` e⇒ false

〈S, U,B〉 ` if e then a⇒ {}

a-when-true
〈S, U,B〉 ` e⇒ true, 〈S, U,B〉 ` a⇒ U ′

〈S, U,B〉 ` a when e⇒ U ′

par

〈S, U,B〉 ` a1 ⇒ U1, 〈S, U,B〉 ` a2 ⇒ U2,
U1 6= NR, U2 6= NR

〈S, U,B〉 ` a1 | a2 ⇒ U1 ] U2

seq-DUE
〈S, U,B〉 ` a1 ⇒ DUE,

〈S, U,B〉 ` a1 ; a2 ⇒ DUE

seq

〈S, U,B〉 ` a1 ⇒ U1, U1 6= NR, U1 6= DUE
〈S, U++U1, B〉 ` a2 ⇒ U2, U2 6= NR

〈S, U,B〉 ` a1 ; a2 ⇒ U1++U2

a-let-sub
〈S, U,B〉 ` e⇒ v, 〈S, U,B[v/t]〉 ` a⇒ U ′

〈S, U,B〉 ` t = e in a⇒ U ′

a-meth-call

〈S, U,B〉 ` e⇒ v, , v 6= NR,
m.g = 〈λt.a〉, 〈S, U,B[v/t]〉 ` a⇒ U ′

〈S, U,B〉 ` m.g(e)⇒ U ′

a-loop-false
〈S, U,B〉 ` e⇒ false

〈S, U,B〉 ` loop e a⇒ {}

a-loop-true
〈S, U,B〉 ` e⇒ true , 〈S, U,B〉 ` a ; loop e a⇒ U ′

〈S, U,B〉 ` loop e a⇒ U ′

a-localGuard-fail
〈S, U,B〉 ` a⇒ NR

〈S, U,B〉 ` localGuard a⇒ {}

a-localGuard-true
〈S, U,B〉 ` a⇒ U ′, U ′ 6= NR

〈S, U,B〉 ` localGuard a⇒ U ′

Figure 2-6: Operational semantics of a BCL Actions. When no rule applies the action
evaluates to NR. Rule bodies which evaluate to NR produce no state update.
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Merge Functions:
L1++(DUE) = DUE
L1++(L2[v/t]) = (L1++L2)[v/t]

L1++{} = L1

U1 ] U2 = DUE if U1 = DUE or U2 = DUE
= DUE if ∃r.{r 7→ v1} ∈ U1 ∧ {r 7→ v2} ∈ U2

otherwise U1 ∪ U2

{}(x) = ⊥
S[v/t](x) = v if t = x otherwise S(x)

Figure 2-7: Helper Functions for Operational Semantics

initial state and do not observe the effects of each other’s actions. This corresponds

closely to how two concurrent updates behave. Thus, the action r1 := r2 | r2 := r1

swaps the values in registers r1 and r2. Since all rules are determinate, there is never

any ambiguity due to the order in which subactions complete. Actions composed in

parallel should never update the same state; our operational semantics views a double

update as a dynamic error. Alternatively we could have treated the double update

as a guard failure. Thus, any rule that would cause a double update would result in

no state change.

Sequential composition is more in line with other languages with atomic actions.

Here, A1;A2 is the execution of A1 followed by A2. A2 observes the full effect of A1

but no other action can observe A1’s updates without also observing A2’s updates.

In BSV, only parallel composition is allowed because sequential composition severely

complicates the hardware compilation. BSV provides several workarounds in the form

of primitive state (e.g., RWires) with internal combinational paths between its meth-

ods to overcome this lack of sequential composition. In BCL we include both types

of action composition.

2.2.2 Conditional versus Guarded Actions

BCL has both conditional actions (ifs) as well as guarded actions (whens). These

are similar as they both restrict the evaluation of an action based on some condition.

The difference is their scope: conditional actions have only a local effect whereas
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A.1 (a1 when p) | a2 ≡ (a1 | a2) when p
A.2 a1 | (a2 when p) ≡ (a1 | a2) when p
A.3 (a1 when p) ; a2 ≡ (a1 ; a2) when p
A.4 if (e when p) then a ≡ (if e then a) when p
A.5 if e then (a when p) ≡ (if e then a) when (p ∨ ¬e)
A.6 (a when p) when q ≡ a when (p ∧ q)
A.7 r := (e when p) ≡ (r := e) when p
A.8 m.f(e when p) ≡ m.f(e) when p
A.9 m.g(e when p) ≡ m.g(e) when p
A.10 localGuard (a when p) ≡ if p then localGuard (a)

p has no internal guards
A.11 Rule n if p then a ≡ Rule n (a when p)

Figure 2-8: When-Related Axioms on Actions

guarded actions have an effect on the entire action in which it is used. If an if ’s

predicate evaluates to false, then that action doesn’t happen (produces no updates).

If a when’s predicate is false, the subaction (and as a result the whole atomic action)

is invalid. If we view a rule as a function from the original state to the new state,

then whens characterize the partial applicability of the function. One of the best

ways to understand the differences between whens and ifs is to examine the axioms

in Figure 2-8.

Axioms A.1 and A.2 collectively say that a guard on one action in a parallel

composition affects all the other actions. Axioms A.3 says similar things about guards

in a sequential composition. Axioms A.4 and A.5 state that guards in conditional

actions are reflected only when the condition is true, but guards in the predicate of a

condition are always evaluated. Axiom A.6 deals with merging when-clauses. A.7,

A.8 and A.9 state that arguments of methods are used strictly and thus the value of

the arguments must always be ready in a method call. Axiom A.10 tells us that we

can convert a when to an if in the context of a localGuard. Axiom A.11 states

that top-level whens in a rule can be treated as an if and vice versa.

In our operational semantics, we see the difference between if and when being

manifested in the production of special value NR. Consider the rule e-when-false.

When the guard fails, the entire expression results in NR. All rules explicitly forbid

the use of the NR value. As such if an expression or action ever needs to make use of
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NR it gets “stuck” and fails, evaluating to NR itself. When a rule body is evaluated

as NR, the rule produces no state update.

In BSV, the axioms of Figure 2-8 are used by the compiler to lift all whens to the

top of a rule. This results in the compilation of more efficient hardware. Unfortunately

with the sequential connective, this lifting cannot be done in general. We need an

axiom of the following sort:

a1 ; (a2 when p) ≡ (a1 ; a2) when p′

where (p′ is p after a1)

The problem with the above axiom is that in general there is no way to evaluate p′

statically. As a result BCL must deal with whens interspersed throughout the rules.

2.2.3 Looping Constructs

The loop action operates as a “while” loop in a standard imperative language. We

execute the loop body, repeated in sequence until the loop predicate returns false.

We can always safely unroll a loop action according to the rule:

loop e a = if e then (a ; loop e a)

The BSV compiler allows only those loops that can be unrolled at compile time.

Compilation fails if the unrolling procedure does not terminate. In BCL, loops are

unrolled dynamically.

Suppose the unrolling of loop e a produces the sequence of actions a1; a2; ...; an.

According to the semantics of sequential composition, this sequence of actions implies

that a guard failure in any action ai causes the entire action to fail. This is the precise

meaning of loop e a.

2.2.4 Local Guard

In practice, it is often useful to be able to bound the scope of guards to a fixed action,

especially in the expression of schedules as discussed in Chapter 5. In this semantics,

42



localGuard a operates exactly like a in the abscence of guard failure. If a would

fail, then localGuard a causes no state updates.

2.2.5 Method Calls

The semantics of method calls have a large impact on efficiency of programs and

on the impact of modularization. For instance, the semantically simplest solution

is for methods to have inlining semantics. This means that adding or removing a

module boundary has no impact on the behavior of the program. However, this

notably increases the cost of hardware implementation as a combinational path from

the calling rule’s logic to the method’s implementation and back before execution

can happen. It is extremely complicated to implement this semantic choice in the

context of a limited number of methods, where different rules must share the same

implementation.

As such, we may want to increase the strictness of guards to ease the implementa-

tion burden. This will necessarily make the addition/removal of a modular boundary

change the behavior; this is not an unreasonable decision as modules represent some

notion of resources, and changing resources should change the behavior. Our choice

of restrictions will have to balance the efficiency and implementation concerns against

the semantic cleanliness.

There are two restrictions we can make:

1. The guards of method arguments are applied strictly. To understand this,

consider the following action:

Action 1: m.g(e when False)

where m.g is λ x.if p then r := (x)

and the result of inlining the definition of m.g:

Action 2: if p then r := (x when False)

Under this restriction Action 1 is never valid. However, Action 2 is valid if p is

false. This restriction corresponds to a call-by-value execution. Such semantic
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changes due to language-level abstractions (e.g., functions) are very common in

software language (e.g., C, Java, and SML).

2. The argument of a method does not affect the guard. Under this semantic

interpretation guards can be evaluated regardless of which particular rule is

calling them drastically simplifying the implementation. This restriction is used

by the BSV compiler for just this reason. However, this causes unintuitive

restrictions. Consider the method:

ActMeth g = λ (p,x).if p then fifo1.enq(x) |
if !p then fifo2.enq(x))

This method is a switch which enqueues requests into the appropriate FIFO.

The enqueue method for each FIFO is guarded by the fact that there is space

to place the new item. Given this restriction that we cannot use any of the

input for the guard value, this method’s guard is the intersection of both the

guards of fifo1 and fifo2 which means that if either FIFO is full this method

cannot be called, even if we wish to enqueue into the other FIFO. This is likely

not what the designer is expecting.

We choose to keep the first restriction and not the second restriction in BCL, as the

second restriction’s unintuitiveness is highly exacerbated in the context of sequential

composition and loops. In contrast, most arguments are used unconditionally in

methods and as such the first restriction has small practical downside while still

giving notable implementation simplification.

2.2.6 Notation of Rule Execution

Let RP = {R1, R2, ..., RN} be the set of rules of Program P . We write s
R−−→ s′,

where R ∈ R, to denote that application of rule R transforms the state s to s′.

An execution σ of a program is a sequence of such rule applications and is written

as:

s0
Ri1→ s1

Ri2→ s2...
Rin→ sn

44



or simply as: s
σ
� s′.

A program is characterized by the set of its executions from a valid initial state.

2.3 A BCL Program as a State Transition System

So far we have described how a rule transforms the state of a BCL program. To give

complete operational semantics, we also need to specify how a rule is chosen at each

step of the execution. Since the choice is nondeterministic, the same BCL program

can have more than one outcome or behavior. In order to characterize the range of

permitted behaviors, we associate a state transition system with each program:

Definition 1 (State Transition System of Program P ). Each BCL program P is

modeled by a state transition system given by a triple of the form:

(S, S0,−→)

where S is the set of states associated with program P ; S0 ⊆ S is the set of states

corresponding to initial configurations of P ; and −→S ⊆ S × S is the transition

relation, defined such that (s, s′) ∈ −→S if and only if there exists some rule R in

P whose execution takes the state s to s′. In addition, we write � to denote the

reflexive transitive closure of −→. �

Notice that state transition systems are closed; there is no notion of an outside

world. We show later that the BCL provides enough flexibility to model any reason-

able context in which we would want to place an “open” BCL program. We discuss

these notions in the context of closed systems.

The question naturally arises as to what aspects of a closed BCL program is

observable. Abstractly, we can think of program P as a box with two buttons: “Start”

and “Display”. Pressing the “Start” button initializes the internal state and starts the

execution. Once started, we can press “Display” at which point the machine pauses

execution, and displays the current program state. Between subsequent presses of
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“Display” any non-zero number of rule applications can occur. This leads to the

following definition of observation:

Definition 2 (Observation of a Program P ). An observation of Program P modeled

by (S, S0,−→) is a sequence of states σ = s0, s1, s2, ..., sN such that so ∈ S0 and for

all 0 ≤ i < N , si � si+1. �

Note that we observe the effect of a rule execution only indirectly by observing the

current state. As such, we cannot tell when an executed rule produces no state update

(a degenerate execution) or how many rules have fired between two observations of

the state. This means that it is perfectly acceptable for us to “skip” states in the

one-rule-at-a-time understanding of an execution.

From a practical point of view sometimes it is not worth distinguishing between

some observations of a program. Consider the following program P1 with two registers

x and y initialized to 0:

Program P1

Register x (x0)
Register y (y0)

Rule incX: x := x + 1

Rule incY: y := y + 1

In this program there exists an execution corresponding to executing incX once which

takes the state from (x, y) = (0, 0) to (1, 0). Similarly there is an execution corre-

sponding to one execution of incY which takes the state from (0, 0) to (0, 1). Clearly

these executions are different. However, we can bring them both to (1, 1) by executing

the appropriate rule. Whether we select one or the other rule does not matter from

the point of view of observations.

In contrast, consider another program P2 with the same registers x and y when

x0 6= y0:
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Program P2

Register x (x0)
Register y (y0)

Rule copyX2Y: y := x

Rule copyY2X: x := y

The first execution of one of these rules causes a transition to either state (x0, x0)

or (y0, y0). Once such a transition has been made, the system can never leave that

state. An implementation produces either (x0, x0), or (y0, y0), but not both. We

characterize these different “behaviors” using the notion of joinability or confluence.

Definition 3 (A Behavior of Program P ). A behavior B, written as �B of program

P modeled by S = (S, S0,−→S) is a maximal subset of �S such that each pair of

executions in B are joinable. That is, ∀s0, s1, s2 ∈ S.(s0 �B s1) ∧ (s0 �B s2) =⇒

∃s3 ∈ S.(s1 �B s3) ∧ (s2 �B s3). BP is the set of behaviors of a program P . �

By this definition P1 has one behavior corresponding the following set of executions:

{(0, 0) −→ (0, 1) −→ (1, 1), (0, 0) −→ (1, 0) −→ (1, 1), ...}
and P2 has two behaviors corresponding to the following executions:

{(x0, y0) −→ (x0, x0), ...}

{(x0, y0) −→ (y0, y0), ...}

Definition 4 (Live Behavior). B is a live behavior if s0 �B s1 implies there exists

s2 6= s1 such that s1 �B s2. �

Definition 5 (Terminal State). A terminal state of transition relation � is a state

s such that s� s′ =⇒ s = s′. �

Definition 6 (Terminating Behavior). B is a terminating behavior if s0 �B s1

then there exists s2 such that s1 � s2 and s2 is a terminal state of �B. �

Lemma 1. A behavior is either live or terminating, but not both.

The behavior of program P1 is live while both the behaviors of program P2 are

terminating. A program with multiple behaviors may have some of the behaviors

which are live and some which are terminating.
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Definition 7 (Deterministic Program). P is deterministic if it has exactly one

behavior. Otherwise P is nondeterministic. �

According to this definition program P1 is deterministic while program P2 is non-

deterministic. Nondeterminism is not a sign that a program is incorrect or buggy. In

fact, nondeterminism is essential if one wants to represent higher-level requirements

of a program. For instance, consider the description of a speculative microprocessor.

The choice of whether to speculatively fetch a new instruction or resolve the execution

of an outstanding branch instruction is an integral part of the processor specification.

One would like to be able to express the idea that the correctness of description does

not rely on how many instructions execute on the wrong path as long as the processor

resumes executing instructions on the correct path in some finite number of steps.

However, because designers do not see the exhaustive set of executions of a BCL

program it is possible that a latent bug will not be found. For instance, in implemen-

tations of our speculative processor we may never speculatively fetch an instruction;

execution of this implementation gives us no guarantee that the speculation we spec-

ified in the BCL program was done correctly. We discuss a more complete guarantee

of correctness in Chapter 8.

2.4 Program Equivalence and Ordering

It is important to know if any two programs are equivalent. This concept is necessary

both in terms of doing refinements and implementation. In the context of nondeter-

minism, it is possible for a program P to be “smaller” than another program P ′ in

that it exhibits fewer transitions. We define these concepts using the natural partial

ordering induced by the relation �.

Definition 8 (Program Ordering). Consider Program P modeled by (S, S0,−→S)

and Program P ′ modeled by (S ′, S ′
0,−→S′). P is less than P ′, i.e., P v P ′, if and

only if (S = S ′) ∧ (S0 = S ′
0) ∧ (�S⊆�S′) �

Definition 9 (Program Equivalence). Program P and P ′ are equivalent when (P v P ′) ∧
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(P ′ v P ). �

It is common to want to restrict the executions allowed in a program. This may be a

refinement to remove undesirable behavior or to improve efficiency in implementation.

Definition 10 (Behavioral Restriction). Program P , modeled by S = (S, S0,−→S) is

a behavioral restriction of P ′, modeled by S ′ = (S, S0,−→′
S) if and only if: BP ⊆ BP ′ .

�

To understand this consider the following program P3 in relation to P2.

Program P3

Register x (x0)
Register y (y0)

Rule copyX2Y: y := x

In this program we have only one behavior which moves from (x0, y0) to (x0, x0). This

new program has only one of the behaviors of P2.

When implementing a program P , it is common for the desired final result P ′

to approximate the program in that some transitions may not be implemented, i.e.,

P ′ v P . This may remove some behaviors entirely, which is reasonable as we rarely

want all behaviors in practice. However, for an approximation to be complete, it

should not get stuck unexpectedly; that is we do not have unexpected terminal states.

Definition 11 (Complete Approximation of Program P ). Program P ′ is a complete

approximation P if and only if: P ′ v P , and for all states s, if s is a terminal state

of P ′ it is also a terminal state of P . �

To understand this definition concretely, consider the following complete approxima-

tion of P1, which does two rule executions at a time:
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Program P4

Register x (x0)
Register y (y0)

Rule incXY:

y := y + 1 |

x := x + 1

While P1 has many executions, allowing us to increment x and y each by one repeated

in any way, allowing us to reach any natural number value for x and y, this program

has only one of those executions:

{(0, 0) −→ (1, 1) −→ (2, 2) −→ (3, 3) −→ ...}
Essentially, if P ′ is a complete approximation of P that P ′ cannot stop (i.e., reach

a terminal state) before P does.

2.4.1 Derived Rules

Various interesting equivalence-preserving transformations of a BCL program involve

the modification of rules. The following definitions are motivated by these program

transformations. We use these definitions in our scheduling discussion in Chapter 5.

Definition 12 (Null Rule). A rule R is said to be a null rule if it never changes the

state of a program, i.e., ∀s ∈ S. (s R−→ s). �

Definition 13 (Restricted Rule). A rule R′ is a restriction of rule R if R′ can

change state only when R can, i.e., ∀s, s′ ∈ S. s 6= s′ ∧ (s
R′
→ s′) =⇒ (s

R→ s′). �

It is useful to know whether two rules are mutually exclusive, that is, there is no state

from which both rules produce nondegenerate executions.

Definition 14 (Mutually Exclusive Rules). Two rules R1 and R2 are mutually

exclusive when ∀s.(s R1→ s) ∨ (s
R2→ s). �

It is sometimes useful to partition a rule R into multiple rules that can directly mimic

a single execution of R.
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Definition 15 (Partitioned Rules). Rules R1 and R2 are said to be a partition of

rule R if they are mutually exclusive and ∀s ∈ S.(s R→ s′) =⇒ ((s
R1→ s′)∨ (s

R2→ s′)).

�

A compound rule of R1 and R2 is a rule R12 that behaves as if R1 is applied and then

R2 is applied. Choosing to execute R12 is akin to making the decision to execute R1

and then R2 as a single step.

Definition 16 (Compound Rule). Rule R12 is said to be a compound rule of rules

R1 and R2 if:

∀si, s′ ∈ S.((s
R12−−→ s′) ⇐⇒ ∃st.(s

R1−→ st
R2−→ s′)) �

Definition 17 (Derived Rule of P ). A rule R is said to be a derived rule of program

P if for every state s, if s
R−−→ s′, then the same transition can be made by a sequence

of rule executions in RP − {R} (i.e., s� s′). �

Intuitively, a derived rule of a program P is a rule that always can be emulated with

the rules already in P . Although they may change our model, they do not change

the executions that characterize our model.

Lemma 2. A null rule is a derived rule of program P

Lemma 3. A restriction of rule R ∈ RP is a derived rule of program P

Lemma 4. Each partitioned rule R1, R2 of rule R ∈ RP is a derived rule of program

P

Lemma 5. A sequenced rule of two rules R1, R2 ∈ RP is a derived rule of program

P

Theorem 1 (Equality of Programs under Derived Rules). Adding a derived rule Rd

to program P1 results in an equivalent program P2.

Corollary: Removing a rule Rd of Program P2 which is a derived rule of P1, the

program after removing Rd is an equivalent program.
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Chapter 3

A Rule-level Interpreter of BCL

The operational semantics in Chapter 2 specifies how a rule in a BCL program trans-

forms the state of the system described by that program. The semantics includes the

possibility that the guard of a rule may evaluate to false, and thus the application of

the rule may not change the state of the system. In this chapter, for each rule R we

describe a method to compute the function fR such that:

fR : State→ (Boolean, State)

where fR(s) produces either (True, s′) consistent with the operational semantics pre-

sented in Chapter 2, i.e., s � s′, or (False, “don’t care”) in case the operational

semantics dictates that rule R is not applicable in state s, i.e., s −→ s.

The set of fR functions of a program is useful in understanding both the hardware

and software compilation of BCL. It also serves as a starting point for the verification

of BCL programs. We use normal-order typed λ-calculus with let blocks to describe

these functions.

3.1 Functionalization of BCL: The GCD Example

Before we discuss the translation of rules into λ-expressions, let us consider the GCD

program shown in Figure 3-1.
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Program GCD

Rule start: gcd.req(0x17, 0x31)

Rule subtract: gcd.subtract()

Rule swap: gcd.swap()

Module gcd

Register x (0)

Register y (0)

ActMeth req = λ(a,b).
(x := a | y := b)

when (x == 0 && y == 0)

ValMeth resp = λ().
(x) when (x != 0 && y == 0)

ActMeth getResp() = λ().
(x := 0) when (x != 0 && y == 0)

ActMeth subtract = λ().
(x := x-y)

when (x >= y) && (y != 0)

ActMeth swap = λ().
(x := y | y := x)))

when (x < y)

Figure 3-1: GCD Program in BCL
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The program uses Euclid’s algorithm to compute GCD. It repeatedly applies meth-

ods subtract and swap to the values in registers x and y until the register y holds

the value 0 and register x holds the answer. The computation is started by invoking

the method req, which sets x and y to the initial values a and b respectively. A

computation can be started only when both x and y are zero. The resp method lets

us read the answer when we have finished computing it (i.e., when y is 0). The action

method getResp resets the GCD module for a new request once the answer has been

computed by setting x to 0.

The state of this program can be represented in Haskell-like syntax as the following

data structure:

data State = State{

x :: Bit 32,

y :: Bit 32

}

We can create a new state, where the register x holds the value 0x17 and register y

holds the value 0x31 by writing State{x=0x17,y=0x31}. To extract a field we use

the familiar dot notation, where s.x refers to the x field of s.

Often we wish to construct a new state where most of the field values are the same

as another state value. In these cases it is convenient to express the new state as an

update of the value. For instance, given a state value s with fields x and y, the new

state value s{x=v} has an x field with value v and the y field with s’s y field value,

s.y, i.e., State{x=v,y=s.y}.

Functions corresponding to the three rules in our GCD example may be repre-

sented as follows:

rule start = λs.((s.x = 0) ∧ (s.y = 0), State{x=0x17, y=0x31})
rule subtract = λs.((s.x ≥ s.y) ∧ (s.y 6= 0), s{x= s.x - s.y })
rule swap = λs.((s.x < s.y), State{x=s.y, y=s.x})

Each rule is represented by a function from the state of the system to a tuple con-

taining a boolean guard predicate and a new state. For example, the swap rule is
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valid to execute when the value of the register x is less than the value of the register

y in the state that it is passed in as an argument and the new state has the value of

x as the old value of y and the value of y is the old value of x.

We revisit this example again after explaining how these functions are generated

from the original BCL program. As we explain below, we choose a slightly more

complicated representation of the state to keep the translation scheme simple.

3.2 Translation of BCL to λ-Calculus

We define the construction of the λ expressions corresponding to our rules in a syntax-

directed and compositional way. The main challenge in this arises when we consider

the parallel composition of actions.

Consider the translation of actions x := y and y := x that turn into functions

f1 = λs.(True, s{x=s.y}) and f2 = λs.(True, s{y=s.x}) respectively. We can

model the sequential composition by composing the two functions as:

λs0.let (g1, s1) = f1 s0 in

let (g2, s2) = f2 s1 in

(g1 ∧ g2, s2)

In contrast, for parallel composition as we saw in the operational semantics, we have

to take the least upper bound of state changes dictated by f1 and f2. One way to

model this is by first attaching a boolean (bit value) to each register in our state

to indicate whether it has been modified or not, and then building the new state

based on which elements have been modified in each function. In case both functions

have modified the same state, we need to generate a double-update error. In this

regard our state becomes a bounded representation of the update list U value in our

operational semantics. It is worth noting that we cannot remove the boolean guard

value, as we must distinguish between NR and the empty update {}.

Thus we change the default representation of state so that registers are modeled,

not just as a value, but as a structure with a modified bit and a value. Thus the state

of our GCD example is now:
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data State = State{

x :: Reg (Bit 32)

y :: Reg (Bit 32)

}

data Reg n = Reg {

modified :: Bool

value :: n

}

With this change the three functions from the GCD now look like the following:

rule start=λs.(s.x.value = 0 ∧ s.y.value = 0,

State{x=Reg{modified=True, value=0x17},
y=Reg{modified=True, value=0x31}})

rule subtract=λs.(s.x.value ≥ s.y.value ∧ s.y.value 6= 0,

s{x=Reg{modified=True, value=s.x.value-s.y.value})
rule swap=λs.(s.x.value < s.y.value,

State{x=Reg{modified=True, value=s.y.value},
y=Reg{modified=True, value=s.x.value})

Now our translated rules also mark the bits of the registers that they modify. Notice

that because these bits are initially false, we update them to true only; all registers

that are not updated are unmentioned, e.g., the register y in rule subtract.

We could have added a wrapper function to add modified bits initialized as false

at the beginning of a rule and one to the modified bits from the final state. However,

this has minor benefit and would clutter the description; as such, we do not clutter

our description with this.

With the change of state representation the corresponding representations for

x := y and y := x respectively are:

f1 = λs.(True, s{x=Reg{modified=True, value=s.y}})
f2 = λs.(True, s{y=Reg{modified=True, value=s.x}})

Now we can implement the parallel composition by running the two actions on the

initial state to generate two different copies of the state, and merge the resulting

states together looking at the modified bits to determine which parts of the state
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to select. To keep the invariant that the modified bits correspond to whether we

modified the register or not, we need to first reset all the modified bits in our initial

state before running the two parallel actions, and then after merging the two resulting

states in parallel, merge back the original modified bits to the output state. To finish

the translation we need to reintroduce all the missing modified bits from the initial

state. The parallel swap action x := y | y := x is represented in our translation as:

λs.let ns = newState s in

let (g1, s1) = f1 ns in

let (g2, s2) = f2 ns in

let (g3, s12) = parMerge s1 s2

in ((g1 ∧ g2 ∧ g3), (seqMerge s s12))

where newState clears the modified bits, parMerge selects the appropriate parts of

the two states to keep for the parallel composition , and seqMerge sequentially copies

the new updates back on the old state reintroducing the correct modified bits. Notice

that parMerge returns a boolean guard, which represents that the parallel merge did

not cause a double-update error. In this translation we interpret such errors are guard

failures.

A full translation of BCL to the typed lambda calculus is given in Figures 3-2, 3-3,

and 3-4. The only complication in understanding this translation is distinguishing the

meta-syntax to construct the λ expressions (the italic font) from the concrete syntax

of the λ expressions being constructed (the fixed-width font). It’s also helpful

to understand the signature of the translation procedure for each major syntactic

category. We translate actions to functions taking the initial state and returning

a tuple of a valid predicate and a new state. Similarly we translate expressions to

functions taking the state and returning a tuple of a valid predicate and the translated

expression. Methods are translated into functions that take the argument and return

the appropriate translated action or expression; as these are functions themselves,

translated methods can be thought of as taking two arguments. The translation of

a program results in a definition for each method and rule in the system as well as

the three merging functions newState, parMerge, and seqMerge. Notice that each

of these functions calculate the value of the part of state corresponding to a register
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TA :: BCL-Action →
(Translated-State → (Bool, Translated-State))

TA J r := e0 K =
λs.(g, s{r = Reg{modified:True, value:e1}})
where (g, e1) = (TE J e0 K) s

TA J if (p0) a0 K =
λs.(g1 ∧ (¬p1 ∨ g2), if p1 then s′ else s)

where (g1, p1) = (TE J p0 K) s
(g2, s

′) = (TA J a0 K) s
TA J a0 when e0 K =
λs.(g1 ∧ g2 ∧ e1, s′)
where (g1, s

′) = (TA J a0 K) s
(g2, e1) = (TE J e0 K) s

TA J a1 | a2 K =
λs.let ns = newState s in

let (g, s’)=parMerge s1 s2 in (g1 ∧ g2 ∧ g, seqMerge s s’)

where (g1, s1) = (TA J a1 K) (ns)
(g2, s2) = (TA J a2 K) (ns)

TA J a1 ; a2 K =
λs.(g1 ∧ g2, s′′)
where (g1, s

′) = (TA J a1 K) (newState s)
(g2, s

′′) = (TA J a2 K) (newState s′)
TA J t = e0 in a0 K =
λs.let tg = g1 in (let tb = e2 in (g2, s′))
where (g1, e1) = (TE J e0 K) s

(g2, s
′) = (TA J a0[(tb when tg)/t] K) s

tg, tb are fresh names
TA J loop e0 a0 K =
loopUntil (TE J e0 K) (TA J a0 K)
where loopUntil = λfe.λfa.λs0.

let (g1, e1) = fe s0 in

let (g2, s1) = fa s0 in

let (g3, s2) = loopUntil fe fa s1 in

(g1 ∧ (¬ e1 ∨ (g2 ∧ g3)), if e1 then s2 else s0)

TA J localGuard a0 K =
λs.(True, if g then s′ else s)

where (g, s′) = (TA J a0 K) s
TA J m.g(e0) K =
λs.let (g, s’) = meth g e1 s in (g0 ∧ g, s’)

where (g0, e1) = (TE J e0 K) s

Figure 3-2: Functionalization of Actions. Fixed-width text is concrete syntax of the
λ-calculus expression
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TE :: BCL-Expr →
(Translated-State → (Bool, Translated-Expr))

TE J r K =λs. (True, s.r.value)

TE J c K =λs. (True, c)

TE J t K =λs. (True, t)

TE J e1 op e2 K =
λs.(g1 ∧ g2, fe1 op fe2)

where (g1, fe1) = (TE J e1 K) s
(g2, fe2) = (TE J e2 K) s

TE J eb ? et : ef K =
λs.(gb∧ (if feb then gt else gf), if feb then fet else fef)
where (gb, feb) = (TE J eb K) s

(gt, fet) = (TE J et K) s
(gf , fef ) = (TE J ef K) s

TE J e when eg K =
λs.(gg ∧ feg ∧ ge, fe)
where (ge, fe) = (TE J e K) s

(gg, feg) = (TE J eg K) s
TE J t = e1 in e2 K =
λs.(let tg = g1 in (let tb = fe1 in (g2, fe2)))
where (g1, fe1) = (TE J e1 K) s

(g2, fe2) = (TE J e2[(tb when tg)/t] K) s
tg, tb are fresh names

TE J m.f(e0) K =
λs.let (g,e) = meth f fe0 s in (g0 ∧ g, e)

where (g0, fe0) = (TE J e0 K) s

Figure 3-3: Functionalization of BCL Expressions. Fixed-width text is concrete
syntax of the λ-calculus expression
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TP :: BCL-Program → (λ-calculus declarations)
TP (Main ms rules) =

(map TM ms)
(map TR rules)
seqMerge = λs0.λs1.

(foreach Reg r.
(λs.x{r=if s1.r.modified then s1.r else s0.r})) (True, s0)

parMerge = λs0.λs1.
(foreach Reg r.
(λ(g, s).(g ∧ !(s0.r.modified ∧ s1.r.modified),

s{r=if s0.r.modified then s0.r else s1.r})) (True, s0)

newState =λs0.(foreach Reg r. (λs.s{r = s.r{modified = False}})) s0
TM :: BCL-Module → (λ-calculus declarations)
TM J Module mn ms ameths vmeths K =

map TM ms
map TVM vmeths
map TAM ameths

TR :: BCL-Rule → (λ-calculus declarations)
TR J Rule rn a K =

rule rn = λs0.TA J a K s0

TVM :: BCL-Value-Method → (λ-calculus declarations)
TVM J VMeth f λx. e K =

meth f = λx.(λs.(TE J e K) s)

TAM :: BCL-Action-Method → (λ-calculus declarations)
TAM J AMeth g λx. a K =

meth g = λx.(λs.(TA J a K s))

Figure 3-4: Conversion of Top-level BCL Design to top-level definitions. Fixed-width
text is concrete syntax of the λ-calculus expression.
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r using the corresponding parts of the input states. This means that each merge

computation is completely parallel. This is important when we discussion generating

hardware in Chapter 4.

3.3 The GCD Example Revisited

The full translation of the GCD example after some α-renaming and β-reductions

can be found in Figure 3-5. To understand this translation and its relation to the

definitions we had earlier, consider the swap rule (rule swap). First we do an η-

reduction to get meth swap (). After inlining the definition of meth swap and doing

a β-reduction we get the following expression:

λs0.let ns = newState s0

(g, s1) = parMerge(ns{x=Reg{modified=True, value=ns.y.value}})
ns{y=Reg{modified=True, value=ns.x.value}})

in (s.x.value < s.x.value ∧ g, seqMerge s0 s1)

Further inlining and constant propagation results in the following expression:

λs.(s.x.value < s.y.value,

State{x=Reg{modified=True, value=s.y.value},
y=Reg{modified=True, value=s.x.value})

which is the same as what we showed at the beginning of the previous section.
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seqMerge =

λs0.λs1.s0{x=if s1.x.modified then s1.x else s0.x,

y=if s1.y.modified then s1.y else s0.y}
parMerge =

λs0.λs1.(¬(s0.x.modified ∧ s1.x.modified) ∧
¬(s0.y.modified ∧ s1.y.modified),

s0{x=if s1.x.modified then s1.x else s0.x,

y=if s1.y.modified then s1.y else s0.y})
newState = λs0.s0{x=s0.x{modified=False}, y=s0.y{modified=False}}
meth resp = λe0.λs0.(s0.x.value 6= 0 ∧ s0.y.value=0, s0.x.value)

meth getResp = λe0.λs0.(s0.x.value 6= 0 ∧ s0.y.value=0,

s0{x=Reg{modified=True,value=0}})
meth req =

λ(a,b)λs0.let ns = newState s0

(g, s1) = parMerge(ns{x=Reg{modified=True,
value=a}})

ns{y=Reg{modified=True,
value=b}})

rule start = λs0.meth req (0x17, 0x31) s0

meth subtract =

λ().λs0.(s0.x.value ≥ s0.y.value ∧ s0.y.value 6= 0,

s0{x=Reg{modified=True,value=s0.x.value − s0.y.value}})
rule subtract = λs.meth subtract () s

meth swap =

λ(a,b).λs0.let ns = newState s0

(g, s1) = parMerge(ns{x=Reg{modified=True,
value=ns.y.value}})

ns{y=Reg{modified=True,
value=ns.x.value}})

in (s.x.value < s.x.value ∧ g, seqMerge s0 s1)

rule swap = λs.meth swap () s

Figure 3-5: Functionalized form of GCD program
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Chapter 4

Hardware Synthesis

There are many issues in generating a hardware implementation of a BCL program.

Most obvious of these issues is how exactly does one implements a rule. Atomicity

requires that we construct some notion of shadow state so that we can unwind a

computation if we reach a guard failure in the evaluation. These shadows can require

a substantial hardware cost if they are implemented via stateful constructs. How-

ever, if we can store them ephemerally in wires, they become cheap. In synchronous

hardware, we can guarantee that all shadows are implementable in wires if each rule

is totally executed in a single clock cycle. This is one of the primary optimizations

applied by previous schemes [43, 51, 52] to compile guarded atomic actions into syn-

chronous circuits.

It may not be possible to implement loops in a single cycle as they may require

an unbounded amount of work and therefore an unbounded amount of hardware to

implement in a single cycle. This is a major reason why dynamic loops are not directly

supported by Bluespec SystemVerilog; they must be statically removed by unrolling.

Practically, this approximation is not an issue as almost all reasonable loops in a

BCL rule have a statically known upper bound. As such we assume the following

transformation has already been applied for all discussions in this chapter.

The other significant challenge in hardware generation is how to deal with the

choice of executing multiple rules in a single cycle. This issue becomes more compli-

cated if we wish to exploit hardware’s inherent parallelism in executing multiple rules
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concurrently in a single cycle. As will become clearer in Chapter 5, in the context of

synchronous hardware we can reduce the construction of a hardware implementation

to the implementation of a single rule as an FSM that executes that rule once a cycle.

This drastically simplifies the discussion of hardware generation. The remainder of

this chapter deals with the synthesis of program with a single rule in synchronous

hardware.

4.1 Implementing a Single Rule

Given a program P with a single rule R, there is a straightforward way of imple-

menting the program as an FSM. Each cycle, the state of the system is read from

persistent memory (e.g., flip flops), the next state of the system is calculated, and

the resulting state is stored back into persistent memory.

We do this by constructing a direct implementation of fR, the functionalization of

rule R as defined in Chapter 3 as a circuit. To understand this transliteration, first

notice that because all non-function expressions have a bounded number of values,

it can be represented with a fixed-sized bit-vector. Each basic type (e.g., int or

boolean) has a natural representation as fixed-size bit-vectors; more complex types

can be represented as the concatenation of the bit-vector of its components. Thus

the tuple type (Bool, Bool) would be a 2-bit value with the first bit corresponding

to the first boolean, and the second bit to the second.

Each typed λ-expression in our translation of lambda term translates to a circuit

with a set of input and output wires. To keep from having to deal with functions

(and thus circuits) being arguments to other circuits, we restrict our translation to the

first-order λ-expression. Our functionalization never abstracts functions as variables

save in the case of methods. We assume these definitions are inlined. Our translation

is effectively identical to the translation between functional expressions and circuits

in Lava [84].

Intuitively each primitive function is represented using a gate-level circuit. For

instance a + operator adding to 32-bit integers would correspond to a 32-bit ripple-
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carry adder circuit. An if expression would translate to a multiplexer circuit of the

appropriate size with the boolean condition being the first input, the true clause the

second input, and the false clause as the third input. Constant values are just a set

of wires tied to power or ground to represent the correct value.

Field selection can be implemented using wires only; it takes as input a set of

wires corresponding to the structure data and outputs only the wires corresponding

the correct field. Similarly, value updates can be done with wires by constructing a

new bundle of wires where the new field value are used in lieu of the wires from the

old field value.

Thus the operation of incrementing a register x, i.e., x := x + 1, results in a

circuit that takes the state of the system, separates out the wires associated with the

value of x, sets that as input to an incrementer circuit, and creates a new bundle of

wires representing state where x’s value is the new incremented value and the wire

associated with x’s modified bit is replaced with a wire tied to true. In Verilog this

is the following RTL module:

module incXCircuit(inputState, outputState);

// modified bit of x is at bitlocation [hiX]

// value of x is at bitlocations [hiX-1:loX]

input [stateWidth-1:0] inputstate;

output [stateWidth-1:0] outputstate;

wire [xRegisterWidth-1:0] oldxvalue = inputstate[hiX]; //

wire [xRegisterWidth-1:0] oldxvalue = inputstate[hiX-1:loX];

wire [xRegisterWidth-1:0] newxvalue = oldxvalue + 1;

outputstate = {inputState[stateWidth-1:hiX+1],

true,newxvalue,

inputState[loX:0]};

endmodule

Lambda abstraction adds a new first input to the circuit and connects each in-

stance of the variable in the circuit to that input. Its dual operation, application,

connects the first input to the output of the operand function (which must be a

circuit with no inputs). Let bindings are just like redexs and correspond to wire
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λs.if s.x.value > 1 then (λs.(s{x=Reg{modified = True,

value = s.x.value + 1}}) s)

else (λs.(s{x=Reg{modified = True,

value = s.x.value − 1}}) s)

Upd
X

+

1

Extract X

Upd
X

-

1

Extract X

Extract X >

1

Figure 4-1: Initial Example translation of λ-expressions to Circuits. White boxes can
be implemented solely with wires, gray boxes need gates, dotted boxes correspond to
λ abstractions.

diagrams; the output of the bound variable is connected to every wire input use of

the expression. Notice that β-reduction does not change the circuit that we describe,

only removes a circuit boundary. By not doing β-reductions, it is easier to isolate

circuitry to the part of the BCL program associated with it; this makes carrying over

a notion of modularity from BCL to the FSM circuit.

Also, note that constant propagation on the λ-expression can be understood as

circuit-level simplification. To get a feel for this, consider the λ-expression in Figure 4-

1 and subsequent simplifications of the expression in Figure 4-2 and Figure 4-3.

4.1.1 Implementing State Merging Functions

It is worthwhile to consider what hardware is generated by the state-merging functions

parMerge, and seqMerge. While these functions have many combinators internally,

being described as a sequence of composed functions, they generate parallel sets
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λs.if s.x.value > 1 then s{x=Reg{modified = True,

value = s.x.value + 1}}
else s{x=Reg{modified = True,

value = s.x.value - 1}}

Upd
X

+

1

Extract X

Upd
X

-

1

Extract X

Extract X >

1

Figure 4-2: Result of β-reduction on expression in Figure 4-1. Notice how the funda-
mental circuit structures does not change

λs.s{s=Reg{modified = True,

value = if s.x.value > 1 then s.x.value + 1

else s.x.value - 1}}

Upd
X

+

1
-

1

Extract X

>

1

Figure 4-3: Result of Distribution and Constant Propagation on expression in Fig-
ure 4-2. Sharing the white box structures (wire structures) do not change the
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of multiplexers to merge state on a per-register level only. Further the selection

line on these multiplexers are known statically, and as such will be removed either

by simple constant propagation in our translation or base-level circuit simplification

in the implementing RTL synthesis tool. To see an example of this, consider the

parMerge generated from the functionalization of action:

x := y | y := x

Assuming only the only state is x and y, this action translates to the following λ-

expression which after some beta-reduction to make the term more understandable

is:

λs.let ns = State{x=Reg{modified = False, value = s.x.value},
y=Reg{modified = False, value = s.y.value}} in

let (g1, s1) = (True, ns{x=Reg{modified = True,

value = ns.y.value) in

let (g2, s2) = (True, ns{y=Reg{modified = True,

value = ns.x.value) in

let (g3, s12) = (True ∧ !(s1.x.modified ∧ s2.x.modified)

∧ !(s1.y.modified ∧ s2.y.modified),

s1{x=if s1.x.modified then s1.x else s2.x,

y=if s1.y.modified then s1.y else s2.y}) in

(g1 ∧ g2 ∧ g3, (seqMerge s s12))

Here we statically know s1.x.modified and s2.y.modified are true and s1.y.modified

and s2.x.modified are false. As such the multiplexers implied by the if statements

can be statically removed and we are left with:

λs.let ns = State{x=Reg{modified = False, value = s.x.value},
y=Reg{modified = False, value = s.y.value}} in

let (g1, s1) = (True, ns{x=Reg{modified = True,

value = ns.y.value}) in

let (g2, s2) = (True, ns{y=Reg{modified = True,

value = ns.x.value}) in

let (g3, s12) = (True, s1{x = s1.x, y = s2.y}) in

(g1 ∧ g2 ∧ g3, (seqMerge s s12))

If we continue the simplification, we end up with:
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λs.let ns = State{x=Reg{modified = False, value = s.x.value},

y=Reg{modified = False, value = s.y.value}} in

(True,seqMerge s s{x=Reg{modified = True, value = ns.y.value},

y=Reg{modified = True, value = ns.x.value}})

At this point all the circuitry associated with parMerge has been removed. This is

also true of the instance seqMerge that we had left symbolic. In general we only

generate additional circuitry for merges when we have two writes of the same register

where the selection of which one dominates (is in the final result) is dynamically

dependent on the state of the rule.

4.1.2 Constructing the FSM

Given the circuit representation of the rule, we only need to connect this to persistent

state to finish our FSM. To do so, we construct a hardware register for each register in

our program. The input of our circuit representing the rule R consists of a modified

bit and a value for each BCL register. We connect the read output of the register to

the associated value input and tie the modified bit inputs to the constant false value.

As output of our combinational we have modified bits and the new values for each

register as well as a boolean guard bit. We connect the new values to the associated

next state input for each register and the result of and-ing the guard into and the

modified bit to the enable line of the register. This causes us to update only those

registers that changed.

To understand this more concretely consider the program in Figure 4-4. After

functionalization, some β-reduction, and some constant propagation we are left with

the definitions in Figure 4-5. By inlining the top-level definitions doing further sim-

plification we get the final λ expression in Figure 4-6. Translating this to a circuit

and adding the appropriate state we get Verilog module in Figure 4-7.
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Program P

Rule top:

v = r1 + 1 in
if (r1 < 3) (r1 := v | m.add(r1))

Register r1 (0)

Module m

Register r2 (0)

ActMeth add(x) =

r2 := r2 + x

Figure 4-4: Example Single-Rule Program for Hardware Synthesis

parMerge = λs0.λs1.
((!s0.r1.modified ∧ !s1.r1.modified) ∧

(!s0.r2.modified ∧ !s1.r2.modified),

State{r1 = if s1.r1.modified then s1.r1 else s0.r1,

r2 = if s1.r2.modified then s1.r2 else s0.r2})
seqMerge = λs0.λs1.

State{r1 = if s1.r1.modified then s1.r1 else s0.r1,

r2 = if s1.r2.modified then s1.r2 else s0.r2})
newState = λs.State{r1=s.r1{modified = False},

r2=s.r2{modified = False}}
meth add = λx.λs.(s{r2 = Reg{modified = True,

value = s.r2.value + x})
fR = λs0.let vb = s0.r1.value + 1

vg = true

ns = newState s0

(g,s1) = parMerge (ns{r1 = Reg{modified = True,

value = vb}})
(meth add ns.r1.value ns)

in (g,seqMerge s0 (if s0.r1.value<3 then s1 else s0))

Figure 4-5: Simplified λ expressions of functionalization of Figure 4-4
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fR = λs0.let vb=s0.r1.value + 1

ns=State{r1 = s0.r1{modified = False},
r2 = s0.r2{modified = False}}

(g,s1)=(ns{r1 = Reg{modified= True, value=vb},
r2 = Reg{modified = True,

value = ns.r2.value + ns.r2.value}
in (g,if s0.r1.value < 3 then s1 else s0)

Figure 4-6: Final functionalization of Program in Figure 4-4

4.2 Modularizing the Translation

Our initial translation is very simple. Given the correctness of the functionalization

given in Chapter 3, it is fairly easy to see why it is correct. However, there are

a few practical issues with this approach. First, the description of the compilation

is monolithic and is not a readily available way to partition the task. Second, no

system is truly closed; we must interact with the outside world. In the context

that some aspect of our BCL program interacts with hardware, we must have some

way of interfacing the two parts. These problems can be addressed if we can keep the

modular boundaries of the BCL program meaningful. These modules can be compiled

separately, and the characterization will give the outside world some understanding

of how to interact with the hardware implementation of the BCL module.

Although this change may appear potentially difficult, conceptually we can achieve

most of the desired changes by taking the flat circuit generation, but keeping the

modular hierarchy correctly preserved. The top-level modules become the object

compiled, and the top-level rule serves only to characterize how the outside world

may use the compiled FSMs. Parallelization of the compilation can be added once

we can characterize the possible use of a RTL implementation of a BCL module and

which usages are valid.

Before we get into the details about the precise meaning of modules, we discuss

some issues with our notion of keeping the module boundaries in the circuit. Intu-

itively we want the wire-level interface of the RTL module corresponding to a par-
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module program(CLK, RST N);

input CLK, RST N;

// bit 65 is r1.modified, bits 64:33 is r1.value

// bit 32 is r2.modified, bits 31:0 is r2.value

wire [65:0] s0, s1, ns, s2;

wire [31:0] r1 in r1 out, r1 in, r2 out, vb;

wire r1 en, r2 en, g, true, false;

assign true = 1; assign false = 0;

Register#(.width(32),.init(0))

r1(.CLK(CLK), .RST N(RST N),

.D(r1 in), .EN(r1 en),

.Q(r1 out));

Register#(.width(32),.init(0))

r2(.CLK(CLK), .RST N(RST N),

.D(r2 in), .EN(r2 en),

.Q(r2 out));

assign r1 en = g && s2[65];

assign r2 en = g && s2[32];

assign r1 in = s2[64:33];

assign r2 in = s2[31: 0];

assign s0 = {false,r1 out,false,r2 out};
assign ns = {false,s0[64:33],false,s0[31:0]};
assign s1 = {true,(ns[64:33] + 1),true,(ns[31:0] + ns[64:33])};
assign s2 = (s0[64:33] < 3) ? s1 : s0;

assign vb = s0[64:33] + 1;

assign g = true;

endmodule

Figure 4-7: Example of implemented rule. State structure s0, s1, ns, and final output
s2 have been flattened into a single bit-vector. {} is Verilog bit-vector concatenation.
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ticular BCL module to correspond to the BCL module’s methods. This means that

every RTL port (except the clock and reset signal ports needed to allow synchronous

hardware) should correspond to some aspect of an instance of a BCL method. As a

result, all wires in the circuit associated with the state internal to the module should

be internal to the module, the only exposure of the state is through the methods.

Given this, it is fairly easy to mark where the modular boundary would go for

any particular module. The interfaces of the circuits associated with the translation

of the meth f and meth g definitions form the interface save for those wires asso-

ciated with the state. Further, the part of the state bit-vector associated with the

module needs to be separated from the rest of the state and be internal to the mod-

ule. Conceptually this is just partitioning the circuit across a state boundary; for

instance, (s0[64:33] < 3) ? s1 : s0 can be turned into {(s0[64:33] < 3) ?

s1[65:33]: s0[65:33], (s0[64:33] < 3) ? s1[32:0]: s0[32:0]}. This ex-

plicitly reflects the data flow in the resulting circuit.

This intuitive module partitioning and interface scheme has one problem; multi-

plexing of state requires more inputs that this interface implies. To understand this,

consider the ns, s0, s1, and s2 in Figure 4-7. These wires represent the whole state of

program P , however only the state associated with r2 should go into the RTL module

implementation of BCL module m. We have isolated the state by splitting the wires

between r1 and r2, but we must deal with the if expression (i.e., the multiplexer in

the circuit) in the definition of s2. The issue is that the selector line (s0[64:33] <

3), does not relate to m directly and so must be calculated outside of RTL module

and passed in as an input. Unfortunately it is not clear how this input corresponds

to a method of m.

Taking a step back, we can see that the issue comes from our use of whole-state

multiplexing, generated from if and localGuard actions. We do not have this issue

with our action compositions, as parMerge and seqMerge operate on a per-register

level and can be easily split across module boundaries.

To resolve this problem we modify the functionalization so that all multiplexing

done by conditional state updates are done in the state-merging operators. We add
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an extra “valid” bit as input (the enable bit) to the translated λ term. This bit

signifies whether this action is used dynamically in the evaluation. We use this to

mark whether any particular state value (e.g., the appropriate subvector of the state

bit-vector of s0, s1, s2, or ns in our example) is actually used. Essentially we are

distributing the boolean predicate from the whole-state multiplexer to each module

that it affects.

Figure 4-8 and Figure 4-9 show the modified functionalization. The non-trivial

changes occur in the register assignment, conditional action, and local guard rule.

Notice that we have split the body (δ) and the guard (π) in the description. This

separation does not change the circuit or the result, but makes it more obvious that

the guard of an action is not affected by the enable bit.

With this characterization our intuitive boundary point works; the unassociated

input port is now clearly associated to the method add. The interface has ports

associated with each method class at the level of given by the functional definitions

in Figure 4-10, e.g., meth g. An input port when needed, an output port for value

methods, a π guard output port (or ready signal) for all methods and an enable bit

input for action methods.

As future work, we could exploit this notion of enable to value methods (and

guards) as well. The resulting additional hardware serves as an enable for the com-

binational circuit and could allow dynamic power optimizations to occur.

4.3 Understanding the FSM Modularization

With our new functionalization, modularizing a program becomes quite straightfor-

ward. However, we still do not have a view through which to understand exactly what

our RTL module interface means. The ports represent different instances of the BCL

methods of the module, but the real question is how do two method instances relate

to each other. If we could note all of these relations, we could completely characterize

the RTL implementation; the BCL module it implements explains what each instance

does, and the relation explains how they operate in regards to each other.
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δA :: BCL-Action → (Bool → Translated-State → Translated-State)
δA J r := e0 K = λp.λs.(s{r = Reg{modified:p, value:δE J e0 K s}})
δA J if (p0) a0 K = λp.λs.δA J a0 K (p ∧ δE J p0 K s) s

δA J a0 when e0 K = λp.λs.(δA J a0 K) p s

δA J a1 | a2 K =
λp.λs.let ns = newState s in

seqMerge s (parMerge (δA J a1 K p ns) (δA J a2 K p ns))

δA J a1 ; a2 K λp.λs.(δA J a2 K p (δA J a1 K p s))

δA J t = e0 in a0 K =
λp.λs.let tg = πE J e0 K s in let tb = δE J e0 K s in

δA J a0[tb when tg/t] K p s

tb and tg are a fresh names
δA J localGuard a0 K = λp.λs.δA J a0 K (p ∧ (πA J a0 K s)) s

δA J loop e0 a0 K = λp.λs.δA J loop e0 a0 K
(p ∧ δE J e0 K s) (δA J a0 K p s)

δA J m.g(e0) K = λp.λs.meth δ g (δE J e0 K s) p s

δE :: BCL-Expr → (Translated-State → Translated-Expr)
δE J r K =λs.(s.r.value)
δE J c K =λs.c
δE J t K =λs.t
δE J e1 op e2 K = λs.(δE J e1 K s ∧ δE J e2 K s)

δE J eb ? et : ef K = λs.(if δE J eb K s then δE J et K s else δE J ef K s)

δE J e when eg K = λs.(δE J e K s)

δE J t = e1 in e2 K =
λs.(let tg = πE J e1 K s in (let tb = δE J e1 K in

δE J e2[tb when tg/t] K s))

tb and tg are a fresh names
δE J m.f(e0) K = λs.meth δ f (δE J e0 K s) s

Figure 4-8: Generation of δ Functions. Fixed-width text is concrete syntax of the
λ-calculus expression.
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πA :: BCL-Action → (Translated-State → Bool)
πA J r := e0 K = λs.πE J e0 K s}})
πA J if (p0) a0 K = λs.(if δE J p0 K then πA J a0 K s else True)

πA J a0 when e0 K = λs.(πE J e0 K s ∧ δE J e0 K s ∧ πA J a0 K s)

πA J a1 | a2 K =
λs.let ns = newState s in πA J a1 K ns ∧ πA J a1 K ns

πA J a1 ; a2 K = λs.(πA J a1 K s ∧ πA J a2 K (δA J a1 K (s)))

πA J t = e0 in a0 K =
λs.let tg = πE J e0 K s in let tb = δE J e0 K in πA J a0[tb when tg/t] K s

tb and tg are fresh names
πA J localGuard a0 K = λs.True
πA J loop e0 a0 K =
λs.(πE J e0 K s) ∧
if (δE J e0 K s) then πA J a0 K s ∧ πA J loop e0 a0 K (δA J a0 Ks)

else True

πA J m.g(e0) K = λs.meth π g (δE J e0 K) s) s

πE :: BCL-Expr → (Translated-State → Bool)
πE J r K =λs. True

πE J c K =λs. True

πE J t K =λs. True

πE J e1 op e2 K = λs.(πE J e1 K s ∧ πE J e2 K s)

πE J eb ? et : ef K =
λs.(πE J eb K s ∧ (if δE J eb K s then πE J et K s else πE J ef K s))

πE J e when eg K = λs.(πE J eg K s) ∧ (δE J eg K s) ∧ (πE J e K s))

πE J t = e1 in e2 K =
λs.(let tg = πE J e1 K s in (let tb = δE J e1 K s in

πE J e2[tb when tg/t] K s))

tb and tg are fresh names
πE J m.f(e0) K = λs.meth π f (δE J e0 K s) s

Figure 4-9: Generation of π Functions. Fixed-width text is concrete syntax of the
λ-calculus expression
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To understand this, first consider how actions and expressions interact with the

execution context in our operational semantics given in Chapter 2. Each action and

expression takes an input notion of state. Actions also results in an output notion

of state. These have been split into the original state (S) and the new updates (U),

but they represent a concrete view of the state upon which the action occurs and the

subsequent state.

If we think about the input and output states for two actions a and b, there are

three possible data flow relationships possible: the output state of a may be used

directly or indirectly as the input of b (a < b), the output state of b may be used

directly or indirectly in the input state of a (b < a), or neither a nor b observe the

outputs state of the other (a | b).

These three relations represent everything we need to know about two method

instances in an RTL implementation. If a < b, then the effect of instance a effect is

visible to instance b. If b < a or a|b, then a effect is not visible. As it is impossible

for loops in this observability, < forms a partial ordering on the method instances of

an implementation. To better understand this, consider the following program:

Program P
Rule doOperation

m.wr(m.rd() + 1) ;
m.wr(m.rd() + 1)

Module m

Register r (0)

ActMeth wr(x) =

r := x

ValMeth rd() = r

This program sequentially reads and writes a single register many times. Our func-

tionalization results in the following module definition for m:
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module m(CLK, RST N, RDY rd0, rd0,

RDY wr0, EN wr0, wr0 IN,

RDY rd1, rd1,

RDY wr1, EN wr1, wr1 IN);

output RDY rd0, RDY wr0, RDY rd1, RDY wr1;

output [31:0] rd0, rd1;

input EN wr0, EN wr1;

input [31:0] wr0 IN, wr1 IN;

wire [31:0] r0, r1, r2;

Register#(.width(32),.init(0))

r2(.CLK(CLK), .RST N(RST N),

.D(r0), .EN(1),

.Q(r2));

assign RDY rd0 = true; assign RDY rd1 = true;

assign RDY wr0 = true; assign RDY wr1 = true;

assign rd0 = r0;

assign r1 = (EN wr0) ? wr0 IN : r0;

assign rd1 = r1;

assign r2 = (EN wr1) ? wr1 IN : r1;

endmodule

This module models multiple read-write “cycles” of a single register. Each of the

two BCL methods have two instances (which we have labeled by version 0 and 1

to disambiguate them). Both the rd0 and wr0 see the same initial state as do rd1

and wr1. This later pair of method instances does observe the changes from wr0

because of the sequential composition. If we enumerate these facts pairwise, we get the

following list of relations: {rd0 | wr0, rd0 | rd1, rd0 | wr1, wr0 < rd1, wr0

< wr1, rd1 | wr1}. We can denote this concisely by the partial ordering relation:

(rd0, wr0) < (rd1, wr1).

Given this annotation and the BCL module it implements, we know how the

methods operate when they are used in its context; In a cycle where we use wr0

(i.e., the enable bit of wr0 is true), rd1 observes its update meaning that the module

outputs the value just written through wr0’s interface. If wr1 is also enabled it
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happens last, and dominates wr0’s write; however, it does not affect the results of

rd0 or rd1.

If we change our perspective, this annotation becomes a requirement for safe use

of this module. The context that uses this module must use all methods in a way

that has the same < relation to which we have built the RTL module. Note that

practically, it is easy to deal with a method g that we do not use in our new context

rule; it is akin to adding an action that uses g but never dynamically calls it (e.g., if

false then m.g(x)).

In general each partial ordering of method instances results in a different RTL

module. However, in many cases two different orderings result in identical hardware.

For instance if two methods operate on completely different states, and if we construct

the module associated with calling them in either order, we end up with the same

RTL module. In light of this, it would be better to annotate each module, not with

one partial ordering, but all valid partial orderings that it represents. This can be

represented by enumerating all valid pairwise interpretations between two methods.

Any partial ordering where each pairwise relation is acceptable. There are 7 possible

subsets of possible interpretations ranging from any three interpretations ({<, |, >}).

Having the full set means that we can always call both methods in a cycle and have

it be valid; having only one means that we can only interpret it in one way.

This codification of relations is very similar to Rosenband and Arvind’s pairwise

rule relations [79]. The difference is that in their construction, it was possible for

an invalid parallel composition to occur due to a double-update error. To prohibit

this, the notion of conflicting methods (corresponding to the empty set relation) was

developed. We need not worry about such errors as we prohibit double update errors

as guard failures. Thus the empty pairwise relation a{}b is always the same as a{|}b.
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TVM :: BCL-Value-Method → (λ-calculus declarations)
TVM J VMeth f λx. e K =
meth f = λx.(λs.(πE J e K s,δE J e K s))

meth π f = λx.(λs.(let (g,s’) = meth f x s in g))

meth δ f = λx.(λs.(let (g,s’) = meth f x s in s’))

TAM :: BCL-Action-Method → (λ-calculus declarations)
TAM J AMeth g λx. a K =
meth g = λx.(λp.λs.(πA J a K s,δA J a K p s))

meth π g = λx.(λs.(let (g,s’) = meth g x s in g))

meth δ g = λx.(λp.λs.(let (g,s’) = meth g x p s in s’))

Figure 4-10: Generation of method functions. Notice that meth π g may be evaluated
without knowing the particular value p, though it shares the same input argument x
as meth δ g. Fixed-width text is concrete syntax of the λ-calculus expression.
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Chapter 5

Scheduling

We presented a nondeterministic procedure in Chapter 2 to describe the semantics of

BCL. An essential step to implement a BCL program is to construct a procedure that

will do this selection. We call this procedure the scheduler. At first blush, one may

assume that this is a bounded problem, where at each step we select exactly one rule.

However, as we see shortly, there is no reason to make this choice deterministically.

Depending on the current dynamic resources of our system, we may want to make a

different choice. Further, in implementations it would be often far more efficient to

execute multiple rules concurrently. However, it is unclear which executing multiple

rules concurrently is valid. One can evaluate an implementation with respect to

different metrics such as performance, resource allocation, power consumption, etc.

In this chapter, we focus only on the semantic aspects. In this context we can consider

an implementation of a program as a program itself.

Before we get to our formal definition of implementation, we revisit our two-button

black-box model introduced in Chapter 2. An implementation can be thought of as

just such a black box. However, the result of “Display” may not directly show the

internal state. Rather, it can display a function of the internal state that mimics the

program implemented. In this regard it externally looks just like a program, but can

have a completely different internal structure. An implementation is correct if all

observations of it can be understood as observations of the specification program.

As we have stated before, for efficiency we may want to have an implementation
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of a program execute multiple rules concurrently while still having them logically

happen in sequence. This results in us being unable to observe every state change

in the implementation as we would in the original program. Such implementations

correspond directly to our definition of a complete approximation; in the context of

implementations, such a program is called a direct implementation.

Definition 18 (Direct Implementation). P ′ is a direct implementation of P if it is a

complete approximation of P . �

5.1 A Reference Scheduler

We mentioned in Chapter 4 that all synchronous hardware implementations can be

represented as a BCL program with exactly one rule. A direct implementation of this

form would have a single derived rule. By definition we can understand the execution

of this implementation as a deterministic sequence of rules of program P .

It is possible that this derived rule may be degenerate in a state that is not a

terminating state of the original program. In this case, when we reach that state, we

will necessarily be stuck, as no other rules exist to take us out of this state. This

means that the direct implementation terminated prematurely. To prevent this we

would like to guarantee that our derived rule always makes progress when possible;

one easy way to do this is to consider each rule in sequence.

We could construct a new program PI with a single compound rule of each rule

described in sequence, but this may generate poor hardware as it allows very long

critical paths. Another approach would be to create a single rule that executes as the

first rule on the first execution, then the second rule on the second cycle, and so on,

before returning to the first rule after it has finished.

As the behavior of a rule is a function of the state, this necessarily involves chang-

ing the state of the program. We add a cnt register that reflects which one of the

original rules our single rule will emulate. Our new rule then checks the value of cnt,

executes the body of the corresponding rule, and increments cnt to point to the next

rule. To prevent guard failure from preventing cnt from incrementing, we must wrap
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each body in a localGuard. If each rule Ri has body ai, the new rule is:

Rule topRule:

(if (cnt == 0) then (localGuard(a0)) |
(if (cnt == i) then (localGuard(ai)) |
...

(if (cnt == max) then (localGuard(a–max˝)) |
(cnt := (cnt == max) ? 0 : cnt + 1)

This program is clearly not a direct implementation since we added cnt to the state.

However there is a natural way to understand each state in this new program as a

state in the original, namely eliding the extra register. In general, we would like PI

to be an implementation of P if we have a function allowing us to understand the

states and transitions of PI as states and transitions of program P . This leads to the

following more general definition of an implementation.

Definition 19 (Implementation of Program P ). An implementation I of program

P modeled by (S ′, S ′
0,−→P ′) is a pair (P ′, f) where P ′ is a program modeled by

(S ′, S ′
0,−→P ′) and f is a function of type S ′ −→ S. I is an implementation of P

when the following are true:

• Total Correspondence: S = {f(s)|s ∈ S ′}

• Initial Correspondence:S0 = {f(s)|s ∈ S ′
0}

• Faithfulness: s�P ′ s′ =⇒ f(s) �P f(s′)
�

Notice that the function f is total, meaning that at every point in the execution we

retain a notion of the computation performed. In fact we can project all aspects of P ′

via f to get a new program P ′′ v P . Practically, f may become quite complicated to

allow for various speculative execution approaches. A direct implementation is now

just a implementation where fx = x.

With a formal notion of an implementation we can define the observations of an

implementation thus:
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Definition 20 (Observation of Implementation I). An observation of implemen-

tation I = (P ′, f) of program P modeled by (S, S0,−→P ) where P ′ is modeled by

(S ′, S ′
0,−→P ′) is a sequences of states in S, σ = s0, s1, s2, ..., sN such that:

• s′0 −→P ′ s′1 −→p′ s
′
2 −→P ′ ... −→P ′ s′N and ∀i.si = f(s′i).

• ∀ 0 ≤ i < N. s′i 6= s′i+1. �

Lemma 6. if σ is an observation of implementation I of program P , σ is also an

observation of P .

5.2 Scheduling via Rule Composition

Given our definition of correctness, it is straightforward to verify whether any program

P ′ is a valid implementation of BCL program P . However, this approach is unwieldy

when one is exploring possible implementations; having to check not only the perfor-

mance of an implementation, but also its correctness is impractical. Instead, it would

be far better to constrain ourselves so that all possible implementations considered

are correct by construction. This would leave only the performance/cost tradeoff

about which to reason.

Before we deal with adding state to our implementation, let us consider imple-

mentations which have the same notion of state as our program. In this context, each

rule in an implementation of Program P when projected is a derived rule of P . It

must be the case that we can construct its behaviors by composing the rules of P into

larger rules. For instance, if wanted to always execute Rule R1 with body a1 followed

by R2 with body a2, we could generate a new rule:

Rule R1R2: (a1;a2)

Executing this rule has the same result as executing R1 then R2. Extending this idea,

we can create a set of rule compositions, functions taking rules as input and returning

a new rule, which will let us construct a large set of rules. If we prove that for each

composition the output rule can always be understood as a derived rule of the input
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rules, we are guaranteed that any rule we get from this starting from the rules of P

must be a derived rule of P .

In general, it is not practical to construct a set of compositions that generate

all possible derived rules; we would need compositions that do significant inter-rule

analysis. For instance consider the two rules:

Rule R3: (if p1 then r1 := 5) ; (if !p2 then r2 := 2)

Rule R4: (if !p1 then r1 := 3) ; (if p2 then r2 := 8)

A valid derived rule would be:

Rule R3R4: (r1 := (p1) ? 5 : 3) | (r2 := (p1) ? 2 : 8)

This rule behaves as R3 followed by R4. However, this is not simply sequentially

composing the bodies; it makes use of the fact that the updates in both rules are

mutually exclusive to merge the updates to each register and to parallelize the bodies.

A composition function that takes in R3 and R4 would need to do nontrivial analysis

to be able to get this level of optimization.

However, it is straightforward to generate a rule that emulates any particular

derived rule R. For each state in the system there is some sequence of rules that

behaves as R. We can compose their bodies in sequence and construct a rule that

examines the state of the program to select which of the 2N bodies to execute. While

capturing the dynamics we expect this rule will lead to poor implementation; in

hardware this would generate an exponential number of method instances and thus

exponentially large multiplexers. To generate efficient hardware (or software), either

a better strategy for generating the derived rule should be found, or else we should

apply semantics-preserving rule-to-rule transformations to simplify the bodies of the

newly composed rules.

In general, working with a different notion of state is complicated and cannot be

easily built up in an incremental manner; once the notion of implementation state

becomes decoupled from the program’s state there is so much choice that it is not

clear how one can incrementally build up a design. However, just augmenting state
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DR ::= R
‖ compose(DR,DR)
‖ par(DR,DR)
‖ restrict(DR,DR)
‖ repeat(DR)

Figure 5-1: A BCL Scheduling Language

for scheduling can be viewed as just a preprocessing step. We first add the new

state and rules that modify only this state, leaving the original state untouched. Our

relation function elides this extra state. As such these new rules do not change the

program state and appear as degenerate rule executions.

Conceptually, scheduling can be reduced to the following steps:

1. Add state to the program and rules which may read the entire state of the new

program but are allowed to modify only the added state.

2. Construct new derived rules via a set of verified rule compositions. When we

have sufficient rules, remove rules undesired in the final implementation

3. Use semantics-preserving transformations to change the rules to be more effi-

cient to implement without changing the program meaning.

Practically, most desirable implementations correspond closely to simple compo-

sitions. As such the final simplification step is generally not necessary.

5.2.1 Rule Composition Operators

We can define all possible derived rules with four “basic” rule compositions (compose,

par, restrict, and repeat) producing the composed derived rule grammar shown in

Figure 5-1. These compositions form the basis of a user-defined scheduling language,

which can be used to define the desired implementation.

For clarity, we assume that all parameter rules to a composition are in the form

a when p: they have had all guards lifted to the top by following the axioms presented

in Figure 2-8. If a rule does not have loop or sequential composition, i.e., the subset

of BCL corresponding to BSV, this lifting is always total, allowing us to lift the guard
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to the top. A procedure to do the total lifting of this subset is given in Figure 5-2,

Figure 5-3, and Figure 5-4. Lifting is not truly necessary; but doing so makes the

compositions easier to understand.

5.2.2 Sequencing Rules: compose

To sequence two rule executions R1 and R2 together atomically with R1 observing

R2, we introduce the compose operator.

compose(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (a1 when p1);(a2 when p2)

Note that the composed rule can be enabled only when both R1 and R2 can fire in

sequence.

5.2.3 Merging Mutually Exclusive Rules: par

To deal with choice, we introduce the parallel composition operator — which uses the

parallel action composition. If the rules are not mutually exclusive, the new rule may

exhibit new behaviors. For instance if R1 was r1 := r2 and R2 was r2 := r1, then

the above action would swap the values, a behavior not expressible via sequential

executions of R1 and R2.

We prevent this situation from occurring by forcing the new rule to be enabled

only when exactly one of the rules is ready. The operator is:

par(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (if p1 then a1)|(if p2 then a2)

when (p1 6= p2)

This rule can be made simpler if we interpret a DUE error as NR; this is exactly the

choice we made in the functionalization presented in Chapter 3. With this interpre-

tation we can guarantee the composition is correct by augmenting the actions a1 and

a2 such that they always result in a DUE. For instance, we could introduce a new

register r and have both update it as follows:
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LWe :: BCL-Expr → BCL-Expr
LWeJrK = (r when true)
LWeJcK = (c when true)
LWeJtK = (t when true)

LWeJe1 op e2K = (e′1 op e
′
2) when (e1g ∧ e2g)

where (e′1 when e′1g) = LWeJe1K
(e′2 when e′2g) = LWeJe2K

LWeJe1K ? e2 : e3) = (e′1 ? e′2 : e′3) when (e1g ∧ (e′1 ? e2g : e3g))
where (e′1 when e1g) = LWeJe1K

(e′2 when e2g) = LWeJe2K
(e′3 when e3g) = LWeJe3K

LWeJe1 when e2K = e′1 when (e′2 ∧ e1g ∧ e2gK
where (e′1 when e1g) = LWeJe1K

(e′2 when e2g) = LWeJe2K
LWeJt = e1 in e2K = ((t′ = e′1) ; e′2)) when

((t′ = e′1) ; (tg = e1g) ; e2gK
where (e′1 when e1g) = LWeJe1K

e3 = e2[(t
′ when tg)/t]

(e′2 when e2g) = LWaJe3K
LWeJm.f(e)K = m.fb(e

′) when eg ∧m.fg(e′)
where (e′ when eg) = LWeJeK

Figure 5-2: Total guard lifting procedure for BCL Expressions resulting in the guard
being isolated from its guard.
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LWa :: BCL-Action → BCL-Action
LWaJt = e1 in e2K = ((t′ = e′1) ; e′2)) when ((t′ = e′1) ; (tg = e1g) ; e2gK

where (e′1 when e1g) = LWeJe1K
(e′2 when e2g) = LWaJe2[(t′ when tg)/t]K

LWeJm.f(e)K = m.f(e′) when eg
where (e′ when eg) = LWeJeK

LWaJr := eK = (r := e′) when eg
where (e′ when eg) = LWeJeK

LWaJa when eK = a′ when (ag ∧ e′ ∧ eg)
where (a′ when ag) = LWaJaK

(e′ when eg) = LWeJeK
LWaJif e then aK = (if e′ then a′) when (eg ∧ (ag ∨ ¬e′))

where (a′ when ag) = LWaJaK
(e′ when eg) = LWeJeK

LWaJa1 | a2K = (a′1 | a′2) when (a1g ∧ a2g)
where (a′1 when a1g) = LWaJa1K

(a′2 when a2g) = LWaJa2K
LWaJt = e in aK = ((t′ = e′) in a′) when ((t′ = e′) in (tg = eg) in ag)

where (e′ when eg) = LWeJe)
(a′ when ag) = LWaJa[(t′ when tg)/t]K

LWaJm.g(e)K = (m.gb(e
′) when eg ∧m.gg(e′)

where (e′ when eg) = LWeJeK

Figure 5-3: Total guard lifting procedure for restricted subset of BCL Action resulting
in the guard being isolated from its guard.

LWVM :: BCL-Value-Method → (BCL-Value-Method,BCL-Value-Method)
LWaJVMethfλx.eK = (VMeth fbλx.e

′, VMeth fgλx.eg)
where (e′ when eg) = LWeJeK

LWAM :: BCL-Value-Method → (BCL-Action-Method,BCL-Value-Method)
LWaJVMethfλx.aK = (VMeth fbλx.a

′, VMeth fgλx.eg)
where (a′ when eg) = LWaJaK

Figure 5-4: Total guard lifting procedure for restricted subset of BCL Methods. Meth-
ods are transformed into two separate methods; one for the body and one for the
guard.
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par(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (localGuard(a1 when p1 | r := dummyvalue) |
localGuard(a2 when p2 | r := dummyvalue))

This allows us to avoid explicitly having to extract the guards. In the context of BSV

either implementation is valid.

5.2.4 Choosing from Rules: restrict

Sometimes we wish to restrict a rule so that it is not valid to fire in certain circum-

stances. For instance, we want to make a rule mutually exclusive with another rule

so we can compose them in parallel safely. Restricting a rule to be nondegenerate

always results in a derived rule. We can express this as a derived rule where the

boolean is extracted from the guard. As new rules may have any guard it is sufficient

to just extract the top-level guard; this preserves our “rules as inputs” property. In

general, restricting rules are used only in the context of par composition. As such we

rarely need to consider the added rules when applying this composition to generate

our final implementation.

restrict(Rule R2 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 a2 when (¬p1 ∧ p2)

5.2.5 Repeating Execution: repeat

The previous three compositions gives us enough expressivity to represent any possible

bounded deterministic schedulers for a BCL program. However, it is possible for an

unboundedly long rule to execute. In principle we could just add a “never terminates”

composition, but practically, it is more helpful to introduce a looping combinator that

represents “try until failure”, a strategy in execution that is very natural in software

implementations. For terminating loops this could be more safely done using a loop

rerolling transformation onto the fully composed rule, but having this directly is

convenient.
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repeat(Rule R1 a1 when p1) =

Rule repeatR1

r := true;

loop r (r := false ; localGuard(a2 when p1; r := true))

5.2.6 Expressing Other Rule Compositions

With these compositions, we can generate a slew of new rule compositions by com-

posing them. These new operators are useful in two ways. First, they can be a useful

shorthand when doing compositions. For example, in the context of hardware imple-

mentation, it is common practice to execute rule R2 unless rule R1 could be done, in

which case we only do R1. Thus we can generate the following operator from restrict

and par:

pri(R1, R2) = par(R1, restrict(R1, R2))

Second, they can serve as a place rule-level optimizations; any optimization we

apply within these compositions can be immediately shared when used. Consider a

rule composition seq. This composition take rules R1 and R2 and tries to execute

R1 and then (whether it was executed or not) attempts to execute R2. This could

be expressed with our three compositions as:

seq(R1, R2) = let R1R2 = compose(R1,R2)

R1nR2 = restrict(R1R2,R1)

nR1R2 = restrict(R1,R2)

in par(par(R1R2, R1nR2), nR1R2)

This breaks out each non-degenerate case and unions them. However, we could also

express this as:

seq(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (localGuard(a1 when p1);localGuard(a2 when p2))

This representation has much more sharing and results in less circuitry if implemented

in hardware or less code if implemented in software.
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5.3 Scheduling in the Context of Synchronous Hard-

ware

Consider the resulting FSM from the implementation of a BCL program P in syn-

chronous hardware. As our grammar is complete enough to express arbitrary bounded

expressions, we can always understand the execution of the FSM over a cycle as the

application of a single rule that reads the state of the system, and calculates the new

state and produces the new state. This corresponds to the dual transformation as

the implementation discussed in Chapter 4.

As such, all synchronous FSM implementations can be understood as a single rule.

This gives us an opportunity to better understand various scheduling algorithms.

Previously, such algorithms were described via their circuits, which immediately in-

troduced questions of the correctness of concurrency and the multiplexing of logic. In

this section we reexamine these algorithms via rule compositions with an eye towards

simplifying this arguments. Although we can describe these algorithms with the four

compositions given previously, when appropriate we introduce other safe composi-

tions which encapsulate the rule-level transformations that would need to be done to

get the appropriate FSM.

All previous algorithms have the same restrictions we made regarding loops — that

they must be unrolled completely for implementation. They also had no ability to deal

with the sequential connective in the input, though they can support some limited

form of sequencing between rules. Also they do not add state for scheduling purposes.

As such the schedulers they generate are unfair with respect to rule selection, and

the designer may need to coerce the scheduling algorithm to make a different choice

for correctness, not just performance.

5.3.1 Exploiting Parallel Composition

Hoe was the first to describe [51] how to implement a rule-based system (an abstract

transition system) in synchronous hardware. To keep hardware costs understandable
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are most one circuit for any particular method was ever created. As only parallel

composition is allowed, multiple instances of the same method called in the same

rule can be programmatically transformed and shared. For this discussion we assume

that all rules and methods are already in this form. If two rules use the same method

(e.g., enqueue into the same FIFO), they have a structural hazard and can not fire

in the same cycle. This restriction does not apply to zero-argument read methods

or methods with the same input expression as both can read the same value without

additional circuitry.

At a high-level Hoe’s scheduling algorithm merges rules using the following merge

operation:

parCompose(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (localGuard(a1 when p1) |

localGuard(a2 when p2))

This is repeated until we have a single rule that represents the operation of a single

clock cycle. Note that as boolean intersection and parallel composition are commu-

tative, the order of this does not change the meaning of the final rule. Note also that

each rule appears exactly once, meaning rule logic is never duplicated. To deal with

structural hazards from both rules using the same method call, one rules one rule is

replaced with a restricted version of itself (using the restrict composition) making

the two rules mutually exclusive. This allows intra-rule level optimizations to merge

any calls to the same method. While this does duplicate the guard of one of the rules

into the other, as they are composed in parallel both rules observe the same state and

as such the two instances of the expression can be shared.

This resolves structural hazards but may still introduce an error due to the com-

position. Consider a program with the following rules:
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Program P1

Rule R1:

x := f(x,y)

Rule R2:

y := f(x,y)

Register x (0)

Register y (0)

These two rules read both x and y, an operation that we can share between the

two, and do not have any necessary structural hazards. However, the result of the

parallel composition is not a derived rule. It produces the transition (x0, y0) −→

(f(x0, y0), f(x0, y0)). This is not what we get from executing one rule and then the

other, i.e., (x0, y0) −→ (f(x0, f(x0, y0)), f(x0, y0)) or (x0, y0) −→ (f(x0, y0), f(f(x0, y0), y0)).

Our intuition for this parallel composition was to execute two rules in parallel. As

such it should be the case, that we can understand the execution of the new composed

rule as executing the rules in either order. Thus, if Rule R1 has body a1 and Rule

R2 has body a2, then the composition is only valid if the pair are conflict-free, that

is:

TA J a1 ; a2 K = TA J a2 ; a1 K = TA J a1 | a2 K

We denote this property as R1 <> R2. Hoe’s scheduler did not directly analyze

conflict-free analysis and instead does the following approximation based on the set

of read and written states of an Rule A (RA) and (WB) respectively:

A <> B ⇐⇒ WA ∩WB 6= ∅ ∧

WA ∩RB 6= ∅ ∧

WB ∩RA 6= ∅

To resolve this the algorithm first restricts all rules so that they are all pairwise

conflict-free. The choice of which rules to restrict and in what order changes the

resulting behavior, but there is no way a priori to evaluate which is better. Thus the
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algorithm makes an arbitrary choice. Once all the rules are conflict-free, they can be

composed in parallel. As the composition is commutative, the order of this does not

matter.

5.3.2 Extending for Sequentiality

Hoe’s initial parallel scheduler gets a significant amount of cycle-level parallelism,

given our one instance of a rule per cycle and no combinational data passing between

rules in a cycle restriction. However, we still fail to get parallelism when two rules

are not conflict free but can be executed in parallel in a way that is understandable.

Consider the rules:

Program P2

Rule R1: x := f(x,y)

Rule R2: y := f2(y)

Register x (0)

Register y (0)

Here, R1 and R2 are not conflict-free, but the parallel composition is correct.

However, when both rules execute, we can understand them only as one sequence.

We say that Rule R1 with body a1 is “sequenceable-before” Rule R2 with body a2

(denoted R1 < R2) when:

TA J a1 ; a2 K = TA J a1 | a2 K

As before this is approximated using read and write sets as:

A < B ⇐⇒ WA ∩WB 6= ∅ ∧ WA ∩RB 6= ∅

As only one ordering make sense, the relative order of rules becomes important.

Depending on which rules are valid to fire in a cycle, a different relative order will be

seen. We must assure that whatever parallel composition we end with can always be

understood as a total ordering of the composite rules. There exists not total ordering
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of rules that is optimal in that it allows a maximum number of rules to execute in

every case. Consider the following program:

Program P3

Rule R1: x := y

Rule R2: y := z

Rule R3: z := x

Register x (0)

Register y (0)

Register z (0)

Each pair of rules can be executed in parallel as a particular sequence. However

there is no total ordering of rules of which each two-rule order can be understood;

moveX < moveY, moveY < moveZ, and moveZ < moveX.

It was also noticed that the multiplexing logic to deal with multiple rules writing

to the same register is a single cycle is the same as the multiplexing logic in the

context that only one rule may write a rule in a single cycle except for the control

signal. Thus we can loosen our structural restriction to allow multiple ordered write

method instances for registers. To resolve this, we need to fundamentally be aware

of the order of rule execution in a cycle.

This idea was formed into a more efficient scheduling algorithm [52], which ex-

ploits these two improvements. The fundamental algorithm remains the same. First

we restrict the rules so that they may be composed in parallel safely, and we compose

them in parallel. The only difference is that we must now consider each of the expo-

nential subsets of rules that may be valid in a cycle to determine if we have to restrict

any particular rule. Doing so efficiently requires sharing decisions across multiple

similar subsets of rules. The process is fairly involved and does not fundamentally

add anything to this discussion. As such we do not discuss it further.
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5.3.3 Improving Compilation Speed

This sequencing scheduler removed many of the unnecessary rule conflicts that re-

duced performance. However, it had a few major faults. First, it was extremely

slow as it requires hyper-exponential time to build a final design. Second, the com-

plexity of correctly multiplexing the correct value to each state element may cause

huge additional logic costs if the decisions do not directly align. Lastly, because the

understanding of what happened in a single state was so compiled, designers had sig-

nificant issues understanding what was the problem if an unexpected scheduler was

generated.

As a solution to this problem, Esposito [43] suggested a greedy scheduling model

that established a total temporal ordering of rules. This reduces the exponential

considerations to O(n2). To do this, a directed graph was constructed where each

node represents a rule. An edge exists between R1 and R2 if parCompose(R1,R2)

cannot be understood as trying R2 then trying R1. That is, the edge exists, if this is

a required order when both rules happen in parallel. To generate a total order, we go

through the nodes in some ascending priority and restrict “less important” rules in

case they appear in a cycle in the graph. The resulting graph can now be linearized

into our total order, and we have a known order in which to execute and can compose

them as before.

5.3.4 Introducing Sequential Composition

Esposito’s schedule produces high-quality FSMs with high concurrency quickly. How-

ever, it is fundamentally limited to composing rules in parallel. As such there can be

no data passing between rules. One way to allow this is to introduce new primitives

where the interpretation of parallel composition passes data. For instance, a register

where the execution of write is visible to a read in parallel. If we forget the stored

value at the end of each cycle, this corresponds to a hardware wire. This gives us

the ability to emulate sequential composition without changing from the previous

schedule. This approach is exactly what the current version of the BSV compiler
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does.

However, this is deeply unsatisfying for many reasons. Most obviously, we no

longer have a clear execution model as various parts of a rule may affect other parts of

a rule; it is even possible to construct an infinite loop, e.g., wire.write(wire.read()

+1). To prevent this we can require that a rule cannot call two methods with such

a path. This is still not enough as cycles may appear through a cycle of many rules,

like so:

Program P4

Rule R1: x := y

Rule R2: y := z

Rule R3: z := x

Wire x (0)

Wire y (0)

Wire z (0)

A much greater problem is that the semantic meaning of a rule is now tied to the

primitive state implementation and not to the method itself. A much better approach

is to actually expose some limited form of sequential composition, but how does

one concisely express this? Rosenband introduced one possibility with Performance

Guarantees [80]. Performance guarantees form a sketch of the desired total ordering

that the user gives to the compiler, expressing his desired concurrent execution.

Consider a program implementing the five-stage DLX processor in [71] with a rule

corresponding to each of the five pipeline stages, Fetch, Decode, Execute, Memory,

and Writeback. To allow these to be untimed, we implement each pipeline register as

a single element FIFO; each rule dequeues from the source register and enqueues into

the next. The expected implementation would allow each rule to happen in sequence,

This corresponds to trying Writeback then Memory then Execute, Decode and finally

Fetch. As each FIFO has only one space, this necessarily requires us to pass data,

specifically the “full” bit, combinationally. This is represented by the guarantee:

Writeback < Memory < Execute < Decode < Fetch
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The < guarantee is an associative operator accepting two sets of rules. It denotes

that all rules on the left happen in a cycle, and then their updates are visible to all

rules to the right. In our rule composition parlance, this can be represented by the

following composition.

perfGurantee(Rule R1 a1 when p1, Rule R2 a2 when p2) =

Rule R1R2 (localGuard(a1 when p1) ;
localGuard(a2 when p2))

Rosenband implemented these schedules by way of Ephemeral History Registers

(EHRs) [77], which are registers with an arbitrary number of read and write ports

in sequence. Effectively it is a normal register with an arbitrarily long chain of

multiplexers.

To implement a guarantee, one merely has to number each method instances,

to establish the order of methods each rule calls must have to implement. This

is recursively repeated until we reach the primitive registers whereupon we drop in

the appropriately large EHR and replace the numbered calls with references to the

appropriate EHR methods.

5.4 Expressing User-defined Schedules via Rule Com-

positions

Using the rule composition primitives introduced in this chapter, the user can repre-

sent desirable derived rules. This allows the user to guide the final implementation

directly and explore the tradeoff in schedules between high-level performance proper-

ties (e.g., pipeline throughput) and low-level physical properties (e.g., clock frequency,

area, locality) without changing the rules themselves. This scheduling may be very

tedious and so it is likely that this choice should be automated for each computational

substrate (e.g., synchronous hardware or software). The key advantage is that this

description explains precisely how scheduling affects the programs execution, which

is of paramount importance to the designer.

101



We now discuss such an exploration for implementing the circular IP lookup ex-

ample from Chapter 2. For convenience, we include the code again in Figure 5-5. For

this discussion, we assume we are implementing the design in synchronous hardware

and as such we want a single rule implementation.

One of the most important efficiency issues in the circular pipeline is whether we

are able to enter a packet into the system in the same clock cycle when another one

is leaving the system. That is, can the recirc rule and the enter method execute

concurrently. If these actions do not take place in the same cycle, then the system

is supposed to contain a dead cycle. Is this a serious issue? Suppose our concrete

lookup algorithm takes at most 3 lookups for each request. The dead cycle in this

case would increase the total number of cycles needed to serve the incoming requests

by at least 33%! The user can avoid such a dead cycle by giving an appropriate

schedule. However, as we show later, exploiting this level of concurrency may increase

the critical combinational path delay. A designer may want to consider the total

performance when selecting a schedule.

One important implementation detail is that it is infeasible for a memory of this

size to do a single cycle lookup at the frequency we want. As a result our imple-

mentation of memory will need to take multiple cycles and for concurrency we want

the one-element FIFO to be replaced with a multi-element one; in our experiment we

chose a size of six to match the expected latency at the desired clock frequency.

Note also that since all three rules interact with fifo and mem, scheduling these

systems will imply the specific method instances of these modules. Some of these may

lead to undesirable hardware. For instance, the recirc and enter cannot execute

together without two memory ports. This necessarily doubles the size of the memory,

but removed only one cycle of latency from the processing time of a packet (we

can overlap the entering of a new packet with a recirculation). However, exit and

enter use disjoint methods and do not require additional methods instances in the

implementation if implemented concurrently.
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MEM

enterenter

recircrecirc

exitexit

Program IPLookup

Module mem ...

Module fifo ...

Module inQ ...

Module outQ ...

Rule enter:

x = inQ.first() in
inQ.deq()

fifo.enq(x) |

mem.req(addr(x))

Rule recirc:

x = mem.res() in
y = fifo.first() in
(mem.resAccept() |

mem.req(addr(x)) |

(fifo.deq();
fifo.enq(f2(x,y)))

when !isLeaf(x)

Rule exit:

x = mem.res() in
y = fifo.first() in
(mem.resAccept() |

fifo.deq() |

outQ.enq(f1(x,y)))

when isLeaf(x)

Figure 5-5: The Table-Lookup Program
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Schedule 1 Schedule 2 Schedule 3
Clock Period (ns) 2.0 2.0 2.0

Area (µm2) 36,320 42,940 43,206
Max Latency (CCs) 15 18 15

Benchmark Perf. (CCs) 28,843 18,927 18,927

Worst-Case Latency refers to the maximum number of clock cycles that an operation
can take to complete the pipeline. Although Schedules 2 and 3 have the same
performance on our benchmark, the worst-case latencies of Schedule 2 is worse.

Figure 5-6: Implementation Results

5.4.1 The Three Schedules

We consider three schedules: Schedule 1 where enter and exit do not execute con-

currently, Schedules 2 and 3 where they do, but with different priorities.

Schedule 1: pri(recirc, pri(exit,enter))

Schedule 2: pri(recirc,seq(exit, enter))

Schedule 3: pri(seq(exit,enter), recirc)

Schedule 1 executes only one rule per clock cycle, with recirc being the highest

priority, followed by exit, then enter. Schedule 2 can execute exit and enter in the

same cycle. It will choose to execute recirc over either or both of these. Schedule 3

also allows exit and enter to execute in the same cycle. However, in this schedule

both of these rules take priority over recirc.

5.4.2 Performance Results

We evaluated each of these schedules using Bluespec Compiler version 2006.11 and

synthesized using Synopsys Design Compiler version Y-2006.06 with TSMC 180 nm

libraries. To deal with the variations between Bluespec and BCL, we manually per-

formed the necessary program transformations. The performance and synthesis re-

sults are shown in Figure 5-6. To keep both area and timing comparable, we show

results within 100 ps of the minimal clock period.

We can see that all schedules are able to meet a 2 ns timing requirement, but

schedules 2 and 3 result in significantly larger area than Schedule 1.
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Schedule 1 takes 28,803 cycles to complete our synthetic benchmark. In contrast,

both schedules 2 and 3 only take 18,927 cycles, an improvement of nearly 35%. This

matches our intuition of the cycle-level effect of allowing exit and enter to execute

concurrently.

The same analysis shows that in the worst case an operation under schedule 2

can take 3 more cycles to complete than an operation in schedule 3. This is because

when recirc has priority it prevents a sixth instruction from entering the memory

until something has left, whereas in schedule 3, we will enter new requests until fifo

is full (i.e. we will have 6 in-process requests). Thus, though our benchmark did not

exercise this feature, the design generated from Schedule 2 has better performance in

this regard.

A designer considering these three schedules would thus choose either Schedule 1

or 2, depending what mixture of area and performance is more valued.

105



106



Chapter 6

Computational Domains

A key aspect of designing in BCL is how one can split a unified BCL design into

multiple partitions, some of which are implemented in hardware and some in soft-

ware. There are numerous requirements that must hold for any sort of partitioning

framework. Specifically:

1. Partitioning computation between multiple substrates, e.g., hardware or soft-

ware, is a first-order concern in many designs. There should be no ambiguity as

to how a design is to be implemented. An important aspect of this implementa-

tion is how communication channels are constructed. Since such channels must

be implemented in multiple substrates, it may seem natural to abstract the de-

tails of the construction into the language and have the compilation procedure

insert communication channels as necessary. However, this would drastically

reduce the ability of the designer to reason about the communication itself and

hamper attempts to improve efficiency. A proper partitioning scheme must al-

low enough of the communication structure to be exposed within the language

that the designer can reason about it.

2. Partitioning must not impede the modularity of the code. For instance, it would

be highly undesirable if the hardware and software parts of a design needed to be

segregated into separate disjoint modules. This would mean that we could not

use library modules that have both hardware and software components without
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first partitioning them into their individual single-substrate components. Any

restriction to our modularity due to our partitioning scheme can cause even a

small change in one part of the design to have non-trivial affects on the rest

of the design. As a result partitioning should be orthogonal to our notion of

modularity.

3. Once partitioned, we should be able to reason about the implementation of

single partition without concerns for the other partitions in the system. This

isolation does not preclude whole-system reasoning, but rather asserts that low-

level optimizations from one partition should not unduly restrict other portions

of the design.

4. Partitioning should be not be limited to a single hardware and software parti-

tion. Our partitioning notion should allow multiple software partitions to be

implemented on separate cores as well as multiple hardware partitions operating

at different clocks. Similarly, it should be natural to extend the partitioning task

to allow partitions implemented on new substrates like special-purpose DSPs

and GPUs.

To represent this partitioning, we introduce the notion of computational domains

within our design. Each computational domain corresponds to a computational sub-

strate. For instance, a simple embedded system may consist of a single software

domain and a single hardware domain, while a more complex system may have mul-

tiple hardware domains operating at different clock frequencies and multiple software

domains operating on different processor cores.

To understand this more concretely, consider the BCL pipeline in Figure 6-1.

This systems represents a simplified packet-based audio decoder pipeline targeted at

an embedded mobile platform. We receive packets of data from inQ. We then apply a

preprocessing phase splitting the data into frequency spectra and additional decoding

information. The frequency data is passed to the ifft block, which applies an Inverse

Fast Fourier Transform to convert the data to the time domain and integrated it with

the rest of the data using a post-processing computation.
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s

IFFT

getDatagetData

inQ outQ

sideChannelQ

sendDatasendData

Program P1

Rule getData:

x = inQ.first() in
(nx,ny) = preprocess(x) in
(inQ.deq() |
ifft.input(nx); |
sideChannelQ.enq(ny))

Rule sendData:

x = ifft.output() in
y = sideChannelQ.first(); in
nxy = postprocess(x,y) in

(ifft.getOutput() |
outData.enq(nxy) |
sideChannelQ.deq())

Module inQ ...

Module outQ ...

Module sideChannelQ ...

Module ifft ...

Figure 6-1: Original BCL Pipeline
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m ::= [Register r v0] // Regs with initial values
‖ Module name

[m] // Submodules
[ActMeth g = λx.a] //Action method
[ValMeth f = λx.e] //Value method

‖ PrimSync name t // Primitive Synchronizer with domain type t

Figure 6-2: Updated Module Grammar of BCL with Primitive Synchronizers

Given the relatively large computational cost of the IFFT, the designer may wish

to implement the ifft block in hardware. However, as the remainder of the pipeline

has relatively low computing requirements, it may not we worth the hardware area

cost to implement the remainder of the design in hardware, saving this additional

space for a faster IFFT or just reducing the area requirements.

Having decided on this partitioning of the design, we have a good sense of roughly

where each particular computation must take place. The ifft module is entirely in

hardware, the preprocess and postprocess functions should be entirely in software.

What is not clear is where exactly the hand-off from hardware to software and vice

versa must take place.

In principle, any possible partitioning of the part of the program that is unclear

is valid. However, some partitionings are easier than others. We insist that all rules

must be fully implemented in a single partition. This avoids having to coordinate a

single atomic action across two or more different physical substrates.

As each rule occurs fully in a single partition, all communication must be done

implicitly in modules that have methods in two or more different partitions. We call

such modules synchronizers. Synchronizers internally must do all the complex cross-

domain interactions and as a result will be nontrivial to write efficiently. However,

because they fit cleanly in our module abstraction, we can effectively reuse synchroniz-

ers as a library across multiple implementations. Synchronizers can have any interface

so long as it has methods in different domains. Practically, almost all synchronizers

are variations of a FIFO interface – which exposes the inherent decoupling between

partitions naturally. However, in some cases synchronizers with different interfaces,

e.g.,a memory array, are used.
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This partitioning approach prohibits some partitionings of a BCL program. Con-

sider the case where the ifft module in the previous example is completely in hard-

ware. As such, its methods are also implemented in hardware. This means that both

rules given must also be implemented in hardware. As these are the only rules in the

system, the entire system must be purely hardware. This is clearly not what we want.

In this chapter, we discuss not only how this notion of partition is represented in BCL,

but also how designers can modify the program to have this and other partitionings.

6.1 Representing Partitioning in BCL: Computa-

tional Domains

We represent each partition in the implementation of a BCL program as a compu-

tational domain. Abstractly a domain can be viewed as another type abstraction

representing the partition that an object will be implemented in. Each rule, method,

expression, and action has an associated domain. All objects implemented in hard-

ware are typed with the domain “HW” and all objects implemented in software are

labeled “SW”. Modules do not have a single domain type; instead their domain type

is a conglomeration of the types of its methods. Notice that this representation gives

no guarantees about the domains of the internal rules and submodules in a module

given its domain; it is possible that all methods may be in the “SW” domain but

some internal operation is hardware.

Synchronizers may require extra-lingual capabilities, like interactions with a hard-

ware bus, requiring new primitives to encapsulate the idea. As the original BCL

grammar does not allow any primitive save registers, we must modify out grammar

to allow new synchronizer modules. This is shown in Figure 6-2. To ensure safe usage,

each primitive synchronizer is annotated with its domain type.

To allow the partitioning of a design to be easily changed, we must be able to

move BCL objects, e.g., rules and modules, from one domain to another easily. The

natural way for this to happen is for the description of an object to be agnostic to
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τ ::= pi // Primitive domain (e.g.,HW1, SW1)
‖ () // No domain (the program domain type)
‖ t // Domain variable
‖ Module mm // Module domain representation containing

// method name to domain map

mm ::= {} Empty Map
‖ mm[n 7→ τ ] Map with association of name n to domain type τ

Figure 6-3: Grammar of Domain Annotations.

the partition it is implemented in as much as possible. For instance, a register should

be implementable in any domain; we only really care that our notions of reading and

writing occur in the same domain.

This is not possible if the description of each module or rule has a concrete domain

associated with it. This does not appear directly in the instantiated BCL, but in the

definitions of the module definitions. An obvious solution is to leverage the notion of

parametric polymorphism to allow module definitions to be moved from domain to

domain. This polymorphism holds true for constants and other generic expressions.

We can construct the value 1 or the + operator in any domain. However, we do

not want polymorphism to appear on all objects. Consider the implications of a

polymorphic method? Do we implement it in hardware, software, or both? Does

it depend on how we call it? We insist that all such polymorphism is restricted to

the module definition; after module instantiation, the domains of all internal objects

must be fixed.

We can enforce domain safety using the standard typing mechanisms. The gram-

mar of domain annotations is listed in Figure 6-3. We present domain inference rules

for BCL are presented in Figures 6-4 and 6-5. As this description is on the instantiated

grammar, we do not explicitly need to deal with polymorphism; all polymorphism

exists only in pre-elaborated language.
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reg-update
Σ ` e : τ,Σ ` r : (Modulemr),mr(write) = τ

Σ ` r := e : τ

if-action
Σ ` e : τ,Σ ` a : τ

Σ ` if e then a : τ

when
Σ ` a : τ,Σ ` e : τ

Σ ` a when e : τ

par
Σ ` a1 : τ,Σ ` a2 : τ

Σ ` a1 | a2 : τ

seq
Σ ` a1 : τ,Σ ` a2 : τ

Σ ` a1 ; a2 : τ

let
Σ ` e : τ,Σ ∪ {e : τ} ` e : τ

Σ ` t = e in e : τ

meth-call
Σ ` e : τ,Σ ` m : Modulem,m(h) = τ

Σ ` m.h(e) : τ

loop
Σ ` e : τ,Σ ` a : τ

Σ ` loop e a : τ

loopGuard
Σ ` a : τ

Σ ` loopGuard a : τ

reg-read
Σ ` r : Modulem,m(read) : τ

Σ ` r : τ

const ` c : τ

variable Σ ∪ x : τ ` x : τ

op
Σ ` e1 : τ,Σ ` e2 : τ

Σ ` e1 op e2 : τ

if-expr
Σ ` e1 : τ,Σ ` e2 : τ,Σ ` e3 : τ

Σ ` (e1 ? e2 : e3) : τ

Figure 6-4: Domain Inference Rules for Actions and Expression
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module-reg ` (Register r v) : Module ({}[read 7→ τ, write 7→ τ ])
module-primsync ` (PrimSync n τ) : τ

module

∀(ValMethf λx.e) ∈ vm.Σ ` (ValMethf λx.e) : τf ,
∀(ActMethg λx.a) ∈ am.Σ ` (ValMethf λx.e) : τg,

∀m ∈ subs.Σ ` m : τmn,
mm = {}(map(λ(ValMethf λx.e).[f 7→ τf ])vm)

(map(λ(ActMethg λx.a).[g 7→ τg])am),

Σ ` (Module subs am vm) : Modulemm

rule
Σ ` a : τ

Σ ` (RuleR a) : τ

value-method
Σ[x : τ ] ` e : τ

Σ ` (ValMeth f λx.e) : τ

action-method
Σ[x : τ ] ` a : τ

Σ ` (ActMeth f λx.a) : τ

program

∀m ∈ mods.Σ ` m : τm,
∀r ∈ rules.Σ ` r : τr,

Σ ` (Mainmods rs) : ()

Figure 6-5: Domain Inference Rules for Programs, Modules, Rules, and Methods
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6.2 Partitioning with Computational Domains

To partition a BCL program we must introduce synchronizers to separate the design.

In the simplest case, this is merely replacing a module with a synchronizer that has

the same semantic properties. For instance consider the program:

Program P2

Rule swRule:

(r1 := f1(r1) |
fifo.enq(f3(r)))

Rule hwRule:

x = fifo.first() in
(fifo.deq() |
r2 := f2(r2))

Module fifo ...

Register r1 (0)

Register r2 (0)

Assuming a standard one-element FIFO implementation with registers, this system

has only one domain. To partition it so that hwRule is implemented in hardware and

swRule is implemented in software, we merely have to replace the fifo module with

a primitive FIFO synchronizer giving us the new program:

Program P3

Rule swRule:

(r1 := f1(r1) |
fifo.enq(f3(r)))

Rule hwRule:

x = fifo.first() in
(fifo.deq() | r2 := f2(r2))

PrimSync fifo ({}[enq 7→ SW]

[deq 7→ HW]

[first 7→ HW])

Register r1 (0) // in SW

Register r2 (0) // in HW
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Assuming the primitive synchronizer acts as a FIFO and can hold the same maximum

number of elements as the original fifo module this is P2 has the exact same one-

rule-at-a-time execution semantics as P3; the partitioning only comes into play in the

implementation, not in the program semantics.

Practically a synchronizer does not precisely match an obvious register-based

equivalents due to important efficiency concerns. For instance, consider an efficient

software-to-hardware FIFO synchronizer implemented on a shared bus. To do the

communication, the software part of the communication must grab the bus and mar-

shal the data onto the bus, while the hardware part must constantly check for writes

that it unmarshals and adds to an internal FIFO. To make sure software does not

send data when hardware does not have space, hardware must communicate back to

the software over the bus how much space it has available. This is generally done

with a token-counting scheme. We do not want to have to wait for the round-trip

communication to send or receive a message. Rather it should be able to leave that

information at the synchronizer rendezvous to be sent later; this also allows us to

improve interpartition communication drastically by sending multiple messages in

bursts. The net result of this decision is that the “full” and “empty” guard signals

do not propagate atomically with enq and deq methods, clearly differentiating the

synchronizer from the näıve hardware FIFO. This synchronizer is actually equivalent

to a module with three FIFOs in sequences with two separate rules which dequeuing

data from one FIFO and enqueuing it into the next one; the delays in signal propaga-

tion are represented by the choice of rule execution. For the replacement of fifo by

the synchronizer to be correct, it must also be the case that replacing it with three

FIFOs should preserve our high-level correctness guarantee.

6.2.1 Modifying the Program for Partitioning

Sometimes, it is not reasonable to merely replace some state with synchronizers. For

instance in our audio pipeline (Program P1) we could replace some of the internal

state of the ifft module with synchronizers. However, ifft is a well understood

computational core; it’s likely that we want to use a library module and not have to
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modify it so that communication would not have a significant impact on performance.

Instead it makes sense to modify the program to add new state elements to the

program to serve as our partitioning point. As before, this change possibly changes

the structure of the program and thus we must be sure that the new program is

correct.

In the case of our audio pipeline we can exploit the fact that the ifft operates in a

latency insensitive manner to introduce new state; we can split the rules sending and

taking data from the ifft module into two: one responsible for doing the data transfer

to the ifft and the other to do the rest of the original rule’s work. The resulting new

program (P4) from splitting the rules is described in Figure 6-6. These rules interact

with one of the two logical FIFOs that we have added to hold the messages between

the two partitions. These FIFOs are implemented as a single module – a bidirectional

synchronizer with methods corresponding to each of the methods from both FIFOs.

Internally, they both marshal data on the same bus; the unified representation lets

us share circuitry and logic between the channels, both of which require bidirectional

communication to pass token information.

One could imagine that for each for each possible set of communication channels

over a single shared medium, we would want a new primitive synchronizer to properly

allow for sharing. Practically, this single bidirectional channel will work for all systems

with latency insensitive communication; we can model larger ones by explicitly repre-

senting what would have been the internal multiplexing logic as a BCL shim around

this primitive, allowing us to ask about the correctness of the new synchronizers as a

BCL refinement problem as we discuss in more detail in Chapter 8.

6.3 Isolating Domains for Implementation

This domain-based partitioning allows the user to represent how the computation

should be partitioned without affecting the modular decomposition of the program

itself. This is extremely important for partition exploration. However, it requires the

interactions of partitions to be handled by the compiler. This can in principle be
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Program P4

Rule getDataSW:

x = inQ.first() in
(nx,ny) = preprocess(x) in

(inQ.deq() |
hwswSync.swenq(nx) |
sideChannelQ.enq(ny))

Rule getDataHW:

ifft.input(hwswSync.hwfirst()) |
hwswSync.hwdeq()

Rule sendDataSW:

x = hwswSync.swfirst() in
y = sideChannelQ.first(); in
nxy = postprocess(x,y) in

(hwswSync.swdeq() |
outQ.enq(nxy) |
sideChannelQ.deq())

Rule sendDataHW:

hwswSync.hwenq(ifft.output()) |
ifft.getOutput()

Module inQ ...

Module outQ ...

Module sideChannelQ ...

Module ifft ...

PrimSync hwswSync ({}[hwenq 7→ HW]

[hwdeq 7→ HW]

[hwfirst 7→ HW]

[swenq 7→ HW]

[swdeq 7→ HW]

[swfirst 7→ HW])

Figure 6-6: Pipeline Example with IFFT put in hardware
.
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extremely complicated as the compiler may need to reason about every partition at

once to correctly orchestrate the computation without violating the execution seman-

tics. However, our domain abstraction requires all such issues be handled completely

by the synchronizers. As such, each domain can be isolated into its own subprogram,

which can be compiled without worrying about the rest of the design.

Intuitively, we can extract one domain from a program. This is just a matter of

removing all methods and rules from the program that are not typed with that partic-

ular domain. To deal with primitive synchronizers that are monolithic and cannot be

obviously reduced, we replace them with a primitive representing the part of the syn-

chronizer in that domain. This programmatic description corresponds nicely to the

actual synchronizer implementation as the synchronizer must have a subcomponent

in the appropriate computational substrate.

To better understand how this works, consider the bus-based synchronizer from

our audio pipeline example. The synchronizer primitive consists of a software com-

ponent and a hardware component, each of which has an interface corresponding to

the methods of the synchronizer in each domain.

In addition to the user-exposed methods, each component has an additional inter-

face to communicate between them. For the hardware component this is a physical

bus interface on which the entire hardware partition sits. Software has an interface to

the processor’s bus interface as a memory-mapped region in the address space. The

software component is able to deal with the hardware-software communication via a

series of loads and stores. Hardware can notify software of the need to do work by

raising an interrupt. Depending on the desire to exploit bursts and improve latency,

this interface may become very complicated.
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6.4 A Design Methodology in the Presence of Do-

mains

One of the main goals of partitioning is to allow the designer to be able to partition a

design in many different ways. However, as we have discussed in general partitioning

a design presents a correctness requirement as we cannot just replace some module

with a synchronizer without changing the rules. Thus when designing a BCL program

where the partition is not necessarily clear, the designer needs to be “overpartition”

the design, i.e., construct many more partitions than would be desired in the final

implementation. By assigning the same domain to many communicating domains, we

can construct a partitioning with a realistic partitioning granularity. To make this

possible we need only to assign the appropriate synchronizers (or normal modules if

the domains are the same). Overpartitioning imposes an additional burden on the

designer over what is needed had they been designing for one particular partitioning.

It is, however, work that fundamentally must be done to explore various partitioning

possibilities.

There are multiple ways for a designer to do go about doing this. One effective

approach is to limit the interactions between parts of the program that may be im-

plemented in different domains in a latency insensitive fashion or other style which

allows us to drastically change the components.

Some of this may be simplified by automatic transformations. An effective exam-

ple would take a rule, split it in two and add a FIFO module to pass the relevant

data, modifying the guards of all rules in the system that are not conflict-free to fail to

prevent unexpected behavior. Our hand translation of the audio pipeline did exactly

this. The major concern with such approaches is the efficiency of the resulting pro-

gram. Significant exploration into partitioning must be done before such automation

becomes practically desirable.
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Chapter 7

Software Generation

While the purpose of this thesis involves primarily the language-level aspects of the so-

lution, significant implementation was necessary to motivate the changes and choices

in the language. In this chapter we discuss the compilation process and the obvious

optimizations one might wish to do.

With the exceptions of loops and sequential composition, the translation of BCL

to an RTL-level hardware description via BSV is relatively straightforward. Since

BSV does not support loops or sequential composition, there is currently no sup-

port for the compilation of these constructs when they occur in hardware partitions.

However, since multiple theses have discussed strategies for their implementation in

hardware [55, 78], we consider this a “solved” problem. This chapter presents a com-

pilation strategy for a software implementation in C++ for the full BCL language.

7.1 Rule Canonicalization

The translation of a single rule to a straight-line C++ program is, in most regards,

very similar to the functionalization of BCL given in Chapter 3.

The first major difference is due to state construction. For each action, we must

construct a new state value. However, as this construction is expensive requiring the

copying of the entire state, we would like to simplify modify state values in place if

possible, i.e., the input state is only used once. Then we would need to copy only when
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explicit duplication is necessary. This sort of optimization is done implicitly within

most functional compilers; as such this detail is not reflected in our functionalization.

However, it must appear in our translation to C++.

The other substantial difference in the compilation strategy presented here involves

the linearization of parallel composition (a result of the fact that the generated C++

is single threaded). Unlike the normal-order λ-calculus, C++ is strict in binding

and function arguments. If we implemented the functionalization directly, we would

always execute the entire rule body, even in the event of an early guard failure.

A more efficient translation would abort immediately upon encountering a failing

guard, avoiding the unnecessary work of completing the action. Doing this presents

a complication, since bound expressions in BCL have inlining semantics with regards

to guard failure; that is, the failures from bound expressions happen only when the

associated variable is used. The following expression:

x = (() when False)

in 0

always evaluates to 0 and never encounters the guard failure. Since C++ evaluates

variables strictly, we must make sure that we do not fail prematurely (or in this case:

ever). Similar concerns arise for ⊥ but can be dismissed, since expressions cannot

represent infinite computation.

Instead of the näıve translation’s approach of keeping guards as pure data, we

transform our program so that no bound expression, either from let bindings of value

methods definitions, contains a when clause. This change not only prevents unnec-

essary computation in translated rule bodies, but reduces the code to deal with the

guard predicates. Intuitively, we “push” all internal whens to the top-level by lifting

whens using the axioms in Figure 2-8. Then we transform these bound top-level

guards by splitting the binding into a body part and a guard part and moving the

whens into the call sites. This can be done mechanically with the following procedure:

1. Replace all value method invocations m.f(e) with m.fBody(e) when m.fGuard(e).

Similarly replace any let-bound variable instances x whose value is a when ex-
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pression, with the expression of two fresh variables xb when xg.

2. Lift all whens in expression to the top-level using the procedure in Figure 7-1.

After this, all guards exist only in top-level expressions (i.e., those which are

not directly in subexpressions, only actions and method bindings).

3. Replace all value method definitions m.f = λ x. e when g with the two method

definitions:

• m.fBody = λ x.e

• m.fGuard = λ x.g

4. Similarly convert all let bindings of variable x to define the two fresh variables.

This defines the variables we used but not defined in Step 1,.

x = eb when eg in e ⇒
xb = eb in xg = eg in e

7.2 Syntax-Directed Compilation

Each BCL module definition is compiled into a C++ class, and each of the module’s

rules and methods are compiled into a separate class method. To handle guard

failures and atomicity issues arising from concurrent rule execution, we take a lazy

transactional memory approach and create shadow copies of the object state, which

are committed only after an action has completed without guard failures and no data

conflicts are detected that would violate the sequential consistency of the execution.

We present a syntax-directed compilation of BCL. For the sake of brevity we take

a few notational liberties in describing translation rules. Generated C++ code is

represented by the conjunction of three different idioms: literal C++ code (given

in the fixed-width font), syntactic objects that evaluate to yield C++ code (given

in the document font), and environment variables used by the compiler procedures
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LWeJrK = (r when true)

LWeJcK = (c when true)

LWeJtK = (t when true)

LWeJe1 op e2K = (e′1 op e
′
2) when (e1g ∧ e2g)

where (e′1 when e′1g) = LWeJe1K
(e′2 when e′2g) = LWeJe2K

LWeJe1K ? e2 : e3) = (e′1 ? e′2 : e′3) when
(e1g ∧ (e′1 ? e2g : e3g))

where (e′1 when e1g) = LWeJe1K
(e′2 when e2g) = LWeJe2K
(e′3 when e3g) = LWeJe3K

LWeJe1 when e2K = e′1 when (e′2 ∧ e1g ∧ e2g)
where (e′1 when e1g) = LWeJe1K

(e′2 when e2g) = LWeJe2K

LWeJt = e1 in e2K = ((t′ = e′1) ; e′2)) when
((t′ = e′1) ; (tg = e1g) ; e2gK

where (e′1 when e1g) = LWeJe1K
e3 = e2[(t

′ when tg)/t]
(e′2 when e2g) = LWaJe3K

LWeJm.f(e)K = m.f(e′) when eg
where (e′ when eg) = LWeJeK

Figure 7-1: Procedure to lift when clauses to the top of all expressions of BCL. This
is the same as the expression lifting procedure of the restricted language in Figure 5-2.
Method calls and bound variables are expected to already be split between body and
guard.
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(represented as symbols). The names of compiler procedures that generate code

fragments are given in boldface.

7.2.1 Compiling Expressions

The translation of a BCL expression produces a C++ expression and one or more

statements that must be executed before the expression. These statements are re-

sponsible for executing parts of the expression that do not have corresponding rep-

resentations in C++ expressions such as let bindings. The procedure to translate

expressions (TE) is shown in Figure 7-2. The when transformations we performed

during rule canonicalization have modified the structure in such a way that a direct

translation to the call-by-value semantics of C++ is equivalent to the original call-by-

name semantics of BCL. Thus, upon the evaluation of a failed guard, the execution

can immediately throw away all speculative work. Since execution occurs in specula-

tive state, we can accomplish this by simply throwing an exception (which is caught

by the lexically outermost action enclosing the expression) and fail to commit the

speculative state.

7.2.2 Compiling Actions

A rule is composed of actions, which may be guarded. Earlier we explained the

meaning of a guarded action by saying that a rule is not eligible to fire (execute) unless

its guard evaluates to true. However, due to conditional and sequential composition

of actions, in general it is impossible to know if the guards of all the constituent

actions of a rule are true before we execute the rule. To circumvent this limitation,

we execute a rule in three phases: In the first phase we create a shadow of all the

state elements using the copy constructor. We then execute all constituent actions,

updating the shadow state. Sometimes we need more shadows to support the internal

actions, e.g., for parallel composition we operate each of the two composed actions in a

separate shadow which we later compose. Finally, if no guard failures are encountered

we commit the shadows, that is, atomically update the original state variables with
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TE :: Env × J e K → ( CStmt, CExpr )

TE ρ J r K = (;, ρ[r].read())

TE ρ J c K = (;, c)

TE ρ J t K = (;, t)

TE ρ J e1 op e2 K = (s1;s2, ce1 op ce2)
where (s1, ce1) = TE ρ J e1 K

(s2, ce2) = TE ρ J e2 K

TE ρ J ep ? et : ef K = (sp; st; sf, cep ? cet : cef)
where (sp, cep) = TE ρ J ep K

(st, cet) = TE ρ J et K
(sf, cef) = TE ρ J ef K

TE ρ J e when ew K = (sw; mthrow; se, ce)
where (se, ce) = TE ρ J e K

(sw, cw) = TE ρ J ew K
mthrow = if(!cw){throw GuardFail;}

TE ρ J t = et in eb K = (st; t = ct; sb, cb)
where (st, ct) = TE ρ J et K

(sb, cb) = TE ρ J e K

TE ρ J m.f(e) K = (se, ρ[m].f(ce))
where (se, ce) = TE ρ J e K

Figure 7-2: Translation of Expressions to C++ expression and the C++ statement
to be evaluated for expression to be meaningful
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values of the shadowed state variables. On the other hand if the evaluation encounters

a failed guard, it aborts the computation and the original state is not updated.

For perspicuity, the rules present an inefficient but simple translation where shad-

ows of the entire environment are created whenever a shadow may be needed. Fig-

ure 7-3 gives the procedure for translating BCL actions (TA).

State Assignment (r := e): This causes a side-effect in the relevant part of the

state of the object that can be extracted from ρ. If e evaluates to bottom, the control

would have already been transferred automatically up the call stack via the throw in

e.

Parallel Composition (a1 | a2): Both a1 and a2 observe the same initial state,

though they update the state separately. Consider the parallel action r1 := r2|r2 := r1,

which swaps the values of r1 and r2. Such semantics are naturally implemented in

hardware as swaps can be done with no intermediate state (the values are read in

the beginning of a clock cycle and updated at the end of it). However, in software if

we update r1 before executing the second action, the second action will read the new

value for r1 instead of the old one. To avoid this problem, the compiler creates shadow

states for each parallel action, which are subsequently merged after both actions have

executed without guard failures. In a legal program, the updates of parallel actions

must be to disjoint state elements. Violation of this condition can be detected only

dynamically, in which case an error is thrown.

The compiler uses several procedures to generate code to be used in implementing

parallel composition. The makeShadow procedure takes as its argument an envi-

ronment (ρ) and returns a tuple consisting of a new environment (say ρ1), and C++

statements (say cs1). cs1 is executed to declare and initialize the state elements ref-

erenced to in ρ1. The new environments are then used in the translation of each of

the actions. The procedure unifyParShadows is used to unify ρ1 and ρ2, implicitly

checking for consistency. Along with ρ3, which contains the names of the unified

state elements, it returns a C++ statement (pm) that actually implements the uni-

fication. Lastly, the commitShadow procedure generates code (ms) to commit the
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TA :: Env × J a K → CStmt

TA ρ J r := e K = se; ρ[r].write(ce);
where (se, ce) = TE ρ J e K

TA ρ J if e then a K = se; if(ce){TA ρ J a K}
where (se, ce) = TE ρ J e K

TA ρ J a1 | a2 K = cs1; cs2; (TA ρ1 Ja1K); (TA ρ2 Ja2K); pm; ms;
where (cs1, ρ1) = makeShadow ρ

(cs2, ρ2) = makeShadow ρ
(pm, ρ3) = unifyParShadows ρ1 ρ2

ms = commitShadow ρ ρ3

TA ρ J a1;a2 K = cs; (TA ρ1 Ja1K); (TA ρ1 Ja2K); ms;
where (cs, ρ1) = makeShadow ρ

ms = commitShadow ρρ1

TA ρ J a when e K = se;if(!ce){throw GuardFail;};ca
where (se, ce) = TE ρ J e K

ca = TA ρ J a K

TA ρ J t = e in a K = se; t = ce; (TA ρ J a K)
where (se, ce) = TE ρ J e K

TA ρ J m.g(e) K = se; (ρ[m].g(ce));
where (se, ce) = TE ρ J e K

TA ρ J loop e a K = cs; while(true){se;
if(!ce) break; ca;} ms;

where (cs,ρ1) = makeShadow ρ
(se, ce) = TE ρ J e K

ms = commitShadow ρ ρ1
ca = TA ρ1 JaK

TA ρ J localGuard a K = try{do{ cs;
ca; ms;}while(false);}catch {}

where (cs,ρ1) = makeShadow ρ
ms = commitShadow ρ ρ1
ca = TA ρ1 JaK;

Figure 7-3: Translation of Actions to C++ Statements
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speculative state held in ρ3 back into the original state ρ.

In order to understand unifyParShadows, consider the parallel merge of two

primitive Registers found in Figure 7-7. The reader should be able to extrapolate

the implementation of other primitive modules that we may wish to have, i.e., a

VectorReg. The parMerge for this module would most likely allow updates to disjoint

locations in parallel branches of execution, but throw an error if the same location

were written. unifyParShadows generates code that recursively invokes parMerge

pointwise on the two environments, whereas commitShadow ρ ρ1 simply performs

pointwise updates of objects in ρ from dirty objects in ρ1 by invoking seqMerge.

Sequential composition (a1; a2): This composition translates very closely to the

C++ model. We take our notion of state of the system and apply a1 effects and

then a2 effects. As the sequential rule in Figure 7-3 shows, after creating the shadow

ρ1, we pass it to the translation of both a1 and a2. If no failures occur during that

computation, the code block ms commits the resulting state. Notice that this trans-

lation requires a new shadow for every sequential composition. However, a1; a2; a3

can all be executed using only one shadow. We address this obvious inefficiency in

Section 7.4

Guarded Action (a when e): Actions are called only when they are to be used.

As such when we run into a failing when guard in an action we know that the entire

action must fail. We do this by evaluating e and throwing a guardFail exception if

ce evaluates to false. This will immediately jump us out of the rule body skipping

the final shadow commit. If the guard is true, we move on to executing the code for

a.

Atomic Loop (loop e a): Loops translate directly into a C++ while loop. Much

as with the sequential composition, a shadow must be made before the loop to deal

with failures midway through the execution.

Protected Loop (loopGuard e a): The difference between the protected loop and

the atomic loop is in the termination semantics. Since the protected loop doesn’t
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throw away the entire rule body on a failure, we must make a shadow of the state

for each iteration. These shadows are merged back in after the iteration successfully

completes.

7.2.3 Compiling Rules and Methods

Figure 7-4 gives the translation of rules and methods, differentiating between action

and value methods. The important thing to note is that rules catch guard failures,

whereas methods do not. This is consistent with our implementation of the BCL

semantics that specify rules as top-level objects that cannot be invoked within the

language. Methods, on the other hand, must be called from inside a rule or another

method.

7.2.4 Compiling Modules

The C++ class corresponding to a BCL module has five methods in addition to a

method for each rule and method in BCL: a default constructor (used to initiate a

module instance and instantiate its submodules recursively), a copy constructor (used

to generate shadows, also recursive), ParMerge the parallel merging operator we’ve

discussed, SeqMerge to merge a shadow into the shadow (including the original state)

from which it was generated, and execSchedule (which tries to run each rule in the

module in order). These methods are indirectly used during the compilation of actions

through calls of the helper functions given in Figure 7-5. All of these methods are

recursively definable by the corresponding methods of their submodules. Figure 7-6

gives their generic description and Figure 7-7 gives the full definition of the register

primitive.

7.3 The Runtime: Constructing main()

After compilation of each module definition, we can instantiate our system to its

initial state and enumerate the individual rules from each module instance. Now
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genRule J (Rule nm a) K =
void nm(){

try{
TA *this J a K
} catch{//guard failure };

genAMeth ρ J (AMeth nm v a) K =
void nm(t v){

TA *this J a K
}

genVMeth ρ J (VMeth nm v e) K =
let (se,ce) = TE *this J e K
in void nm(t v){

se;
return ce;
}

Figure 7-4: Translation of Rules and Methods. The initial state is the current object
which is the “real” state in the context that we are calling. Thus if we call a method
or rule on a shadow state, we will execute do its execution in that state.

Env :: BCLExpr → CExpr

makeShadow :: Env → ([CStmt],Env)
makeShadow ρ = (copy stmts, new mapping)

where sh J e 7→n K = (new t = n.copy(),[e7→t])
(copy stmts, new mapping) = unzip (map sh ρ)

commitShadow :: Env × Env → [CStmt]
commitShadow ρ1 ρ2 =

map (λ(J e 7→n K). e.SeqMerge(ρ2[n])) ρ1

unifyParShadows :: Env × Env → ([CStmt],Env)
unifyParShadows ρ1 ρ2 = (merge stmts, new mapping)

where sh [n7→n] = (new t = n.ParMerge(ρ2[e]), [e 7→t])
(merge stmts, new mapping) = unzip (map sh ρ1)

Figure 7-5: Helper Functions used in Action compilation
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TM :: J m K → CClassDef

TM J (ModuleDef name args insts rules ameths vmeths) K =
class name {

public:

map (λJ (Inst mn n ) K. mn* n;) insts

name(){
map(λJ (Inst mn n v) K. n=new mn(v);) insts

}

name* copy(){
name rv = new name;
map (λJ (Inst mn n ) K. rv.n = n.copy();) insts
return rv;

}

∼name(){map (λJ (Inst n ) K.delete n;) insts}

void ParMerge(name shadow){
map (λJ (Inst mn n ) K. n.ParMerge(shadow.n)) insts

}

void SeqMerge(name shadow){
map (λJ (Inst mn n ) K. n.ModuleMerge(shadow.n)) insts

}

map genRule rules
map genAMeth ameths
map genVMeth vmeths
void execSchedule(){

map (λJ (Rule n a) K.n();) rules
map (λJ (Inst mn n ) K.n.execSchedule();) insts} }

Figure 7-6: Translation of Modules Definitions to C++ Class Definition
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template<typename T> class Reg{

public:
bool modified;

T value;

Reg<T> *parent;

inline T& read(){

return (modified) ? value : parent->read();

}

inline void write(const T& new val){

modified = true;

value = new val;

}

Reg<T>(T def): //constructor

modified(true),

value(def),

parent(NULL)

{ }

Reg<T>(class Reg<T>& ref): //copy constructor

modified(false), // copied shadows are not

modified

parent(&ref)

{ }

∼Reg<T>() {//destructor

value.∼T();
}

inline void ModuleMerge(class Reg<T>& a){

modified |= a.modified;

if (a.modified){value = a.value; }

}

inline void ParMerge(class Reg<T>& a){

if(a.modified){

if(modified){throw ParMergeFail;}

value = a.value;

modified = true;

}

}

inline void execSchedule(){}

};

Figure 7-7: Implementation for C++ Register class. This primitive is templated to
hold any type. A point to the parent is made to avoid unnecessary duplication of
large values.
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TP :: J mds K × ModInst → CProgram
TP J ms K (md mn v) = map TM ms;

int main(void){
se;

mn topState = new mn(ce);
while(true){

topState.execSchedule();

}
}

Figure 7-8: Simple Top-Level Runtime Driver

all that is left is the driving runtime loop. We present in the simplest scheduler in

Figure 7-8, which tries each rule in sequence repeatedly. This matches exactly a fair

interpretation of the execution semantics. With the addition of this driver we now

have a complete C++ implementation.
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7.4 Software Optimizations

Having implemented a näıve translation, the runtime speed of a BCL translated to

software is roughly on par with the speed of the BCL program translated to RTL via

Bluespec and run through an efficient RTL simulator. This is orders of magnitude off

from hand-written RTL. Some of this can be addressed with standard optimizations

such as inlining and loop unrolling. In this section we discuss a set of nonstandard

optimizations that drastically improve the performance of software implementation.

7.4.1 Shadow Minimization

A large portion of the memory and computational overhead for our initial translation

stems from copying and initialization associated with shadows. However, much of

this can be removed by static analysis of the computation structure. We use two

minimization techniques to reduce the shadow generation.

Context-Aware Shadow Generation

Once we have a shadow for a particular state in a rule, we need not construct a new

shadow to prevent premature writes; we can reuse the current shadow. This can save

significant overhead, especially when dealing with sequences of sequential actions.

We devise a new translation scheme that makes use of two state maps represented as

a set of shadow maps, an “initial” state, which represents the place where updates

are finally committed and the “active” state (which represents the current shadow

copy). These form our new ρ “state” representation in our translation of expressions,

actions, rules, and methods presented in Figures 7-9, 7-10, and 7-11; the translation of

module definitions remains the same as before. The translation remains fairly direct,

with the notable additional concern that we must guarantee that new shadow states

are always in scope for their eventual merges. The helper functions in Figure 7-12

reflect this.
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TE :: Env × J e K → ( CStmt, CExpr, Env )

TE ρ J r K = (merges, ρ’[r].read(), ρ’)
where (merges, ρ’) = getReadState(r, ρ)

TE ρ J c K = (;, c, ρ)

TE ρ J t K = (;, t, ρ)

TE ρ J e1 op e2 K = (s1;s2;, ce1 op ce2, ρ”)
where (s1, ce1, ρ’ ) = TE ρ J e1 K

(s2, ce2, ρ”) = TE ρ’ J e2 K

TE ρ J ep ? et : ef K = (sp;st;sf;, cep ? cet : cef, ρ”’)
where (ms, ρ0) = guaranteeReadState ρ

(ReadState et) ∪ (ReadState ef)
where (sp, cep, ρ’ ) = TE ρ J ep K

(st, cet, ρ”) = TE ρ’ J et K
(sf, cef, ρ”’) = TE ρ” J ef K

TE ρ J e when ew K = (sw; se; mthrow;, ce, ρ”)
where (sw, cw, ρ’) = TE ρ J ew K

(se, ce, ρ”) = TE ρ’ J e K
mthrow = if(!cw){throw GuardFail;}

TE ρ J t = et in eb K = (st; t = ct; sb, cb, ρ”)
where (st, ct, ρ’) = TE ρ J et K

(sb, cb, ρ”) = TE ρ’ J eb K

TE ρ J m.f(e) K = (merges;se;, ρ’[m].f(ce), ρ’)
where (merges, ρ’) = getReadState(m, ρ)

(se, ce, ρ”) = TE ρ’ J e K

Figure 7-9: Shadow Minimized Translation of BCL’s Expressions
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TA :: Env × J a K → (CStmt, Env)

TA ρ J r := e K = (se; gen; s.write(ce);,ρ”)
where (se, ce, ρ’) = TE ρ J e K

(gen, ρ”, s) = getActiveState ρ’ r

TA ρ J if e then a K = (se;gens;if(ce){ca};,ρ”’)
where (se, ce, ρ’) = TE ρ J e K

(gens,ρ”) = guaranteeShadowState
ρ’ (WriteState a)

(ca, ρ”’) = TA ρ” J a K

TA ρ J a1 | a2 K = (ca1;ca2;merges;, ρ’)
where ρ1 = newStateMap ρ

ρ2 = newStateMap ρ
(ca1, ρ1’) = TA ρ1 J a1 K
(ca2, ρ2’) = TA ρ2 J a2 K

(merges,ρ’) = unifyParMerges ρ1’ ρ2’

TA ρ J a1 ; a2 K = (cs; ca1; ca2,ρ”)
where (ca1, ρ’) = TA ρ J a1 K

(ca2, ρ”) = TA ρ’ J a2 K

TA ρ J a when e K = (se;if(!ce){throw GuardFail};ca;, ρ”)
where (se, ce, ρ’) = TE ρ J e K

(ca, ρ”) = TA ρ’ J a K

TA ρ J t = e in a K = (se;t = ce; ca, ρ”)
where (se, ce, ρ’) = TE ρ J e K

(ca, ρ”) = TA ρ’ J a K

TA ρ J m.g(e) K = (se; gen; s.g(ce);,ρ”)
where (se, ce, ρ’) = TE ρ J e K

(gen, ρ”, s) = getActiveState ρ’ m

TA ρ J loop e a K= (cs; while(true){
se;if(!ce) break; ca;})

where (cs,ρ’) = guaranteeShadowState
ρ (WriteState a)

(se, ce) = TE ρ’ J e K
(ca,ρ”)= TA ρ’ J a K

TA ρ J loopGuard e a K = cs;try{while(true){ca;ms;}} catch{};
where (cs, ρ’) = guaranteeShadowState

ρ (WriteState a)
ρ” = newStateMap ρ’
ms = commitShadow ρ’ ρ”

Figure 7-10: Shadow Minimized Translation of BCL’s Actions
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genRule J (Rule nm a) K =
let (se,ρ) = TA initState J a K
in void nm(){

try{
se;

commitState initState ρ;
}catch{//guard failure}
}

genAMeth ρ J (AMeth nm v a) K =
let (se,ρ) = TA initState J a K
in void nm(t v){

se;

commitState initState ρ;
}

genVMeth ρ J (VMeth nm v e) K =
let (se,ce,ρ) = TE initState J r K
in void nm(t v){

se;
return ce;
}

Figure 7-11: Shadow minimized translation of Rules and Methods.
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data Env = Env{ validActiveState :: Bool,
activeState :: CExpr,
initState :: CExpr}

guaranteeReadState ρ = (;, ρ)
getReadState m ρ = if (validActiveMap ρ) then activeState ρ

else initState ρ
guaranteeShadowState m ρ =

if (validActiveMap ρ) then (;, activeState ρ)
else (Mod v = new Mod(initState ρ);),

ρ{validActiveMap = True, activeState = v}
newStateMap ρ =

if !(validActiveMap ρ) then ρ{validActiveMap = False,

initState = activeState ρ}
else ρ

unifyParMerges ρ1 ρ2 =
if (validActiveMap ρ1) then if (validActiveMap ρ2)

then (ρ1.parMerge(ρ2), ρ1)
else (;, ρ1)

else (;, ρ2)
getActiveState m ρ = let (ms, ρ’) = guaranteeShadowState m ρ

in (ms, ρ’, ρ’[m])

Figure 7-12: HelperFunctions for Shadow minimized translation
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Increasing the Granularity of Shadowing

Having removed completely unnecessary shadows with the previous optimization,

much of the remaining overhead from shadowing comes from the fact that each shadow

is a complete duplication of the entire state. This is far more than necessary, as most

actions occur on a local part of the state. As such, it makes sense to construct shadow

states not of the whole system but only the state that are possibly updated.

This translates to extending our notion of state to a set of shadow variables, each

associated with the point in the module hierarchy that they represent. We keep the

invariant that the longest matching path represents the most up-to-date data. Thus

if we have a shadow s of module m and shadow s’ of module m.m’, the full shadow

state of module m is the merged state s{m’=s’}.

We can modify our new translation to make use of this, affecting only the helper

functions. For the most part, this is a mundane translation. It requires only that,

when we get a shadow variable, that we must merge all partial shadows of that

state together. The only complexity comes from dealing with parallel actions. When

generating a new notion of state, our scheme merges the active state with the initial

state. Later, if we need a copy of a module whose most recent state is held only

partially in the speculative state, we must not merge the states together — but

rather make a new shadow copy. As this is simple but tedious, we omit the new

helper functions.

7.4.2 Action Sequentialization

Frequently in BCL’s code originally aimed at hardware generation, there are many

parallel compositions. These pose a major cost to the software runtime due to the

need for shadowing. Conversely, sequential compositions can reuse the same shadow

data, and thus be much more efficient for software implementations.

Thus, we can reduce shadow overhead by automatically transforming parallel com-

positions into sequential ones when they are provably equivalent. We can conser-

vatively approximate when this is safe by observing which modules are read (via
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expression methods) and written (via action methods) as follows:

The action a1|a2 can be rewritten to a1;a2 when:

WriteState(a1) ∩ ReadState(a2)= ∅ ∧

WriteState(a1) ∩ WriteState(a2)= ∅

Appropriate inlining of method definitions and lifting of let bindings out of actions

allows us to isolate most parallel actions to the scope of the updates to a single

sequential action.

7.4.3 When Lifting

As part of our translation, we first had to lift out all whens from expressions. This

allowed us to efficiently implement whens via execution of control flow instructions

instead of as data-level values. A side benefit of this change is that guards bubble

up to the top of expressions. Thus, if the expression would eventually fail, we will

fail before the evaluation of the expression result is done. A logical extension of

this is to extend the lifting process to actions as well. Then we should be able

to check for the validity of a rule before we execute any actions. Like expression

lifting, this requires separating action methods into body and guard methods. This

transformation may not be easy, e.g., moving a guard buried in the second action of

a sequential composition requires we “lift” the expression to emulate the changes due

to the action that it had once observed. This only gets more complicated when we

consider loops; in general there is no way to transform a guard in (or after) a loop into

one before the loop execution. As such, we cannot necessarily lift all when guards to

the top of a rule. Instead we leave guards in loop bodies and sequentialized actions.

The procedure to do this is exactly the same as the one described in Section 7.1, save

that the operations on methods applies to action methods as well. The additional

procedure for lifting of actions is given in Figure 7-13.
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LWaJr := eK = (r := e′) when eg
where (e′ when eg) = LWeJeK

LWaJa when eK = a′ when (ag ∧ e′ ∧ eg)
where (a′ when ag) = LWaJaK

(e′ when eg) = LWeJeK

LWaJif e then aK = (if e′ then a′) when
(eg ∧ (ag ∨ ¬e′))

where (a′ when ag) = LWaJaK
(e′ when eg) = LWeJeK

LWaJa1 | a2K = (a′1 | a′2) when (a1g ∧ a2g)
where (a′1 when a1g) = LWaJa1K

(a′2 when a2g) = LWaJa2K

LWaJa1 ; a2K = (a′1 ; LWaJa2K when a1g
where (a′1 when a1g) = LWaJa1K

LWaJt = e in aK = ((t′ = e′) in a′) when
((t′ = e′) in (tg = eg) in ag)

where (e′ when eg) = LWeJe)
a2 = a[(t′ when tg)/t]
(a′ when ag) = LWaJa2K

LWaJm.g(e)K = (m.gb(e
′) when eg ∧m.gg(e′)

where (e′ when eg) = LWeJeK

LWaJ loop e aK = loop LWeJeK LWaJaK
LWaJ localGuard aK = localGuardLWaJaK

Figure 7-13: Procedure to apply when-lifting to actions, referencing the procedure
in Figure 7-1. Method Expression calls and bound variables are expected to already
be split between body and guard.
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7.4.4 Scheduling and Runtime Improvements

There is much space for providing further optimizations. Most obviously, by doing

static analysis we can improve locality, and intra-rule parallelism by doing partial

scheduling as discusses in Chapter 5. The simplest forms of these techniques would

fuse logical rule pipelines into efficient sequential code. Another scheduling improve-

ment that would be highly useful is to dynamically cache guard evaluations to improve

selection of the next rule. Initial implementations of these techniques have been tried

but a more in depth analysis is left as future work.
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Chapter 8

Refinements and Correctness

An important aspect of the design process is the task of modifying a hardware-software

design for better performance, area, or power. To be truly good for design exploration,

BCL should allow us not only make refinements easily, but also to convince the

designer that such refinements are correct formally. Generally, it is extremely difficult

for a designer to give a full formal correctness specification for a system. Specifying

correctness requires a level of knowledge of the overall system and familiarity with

formal verification methods that few designers possess. As a consequence, common

practice is to settle for partial verification via testing. This works, but as test suites

tend to be built in conjunction with the design itself, designers rarely gain sufficient

confidence in their refinements’ correctness until near the end of the design cycle.

An alternative is to restrict the types of refinements to ones whose local correctness

guarantees that the overall behavior will remain unaffected, and designs usually rely

on the notion of equivalence supported by the design language semantics for proving

or testing local equivalence.

The most common use of such techniques are in hardware design where the cost

of mistakes are high enough to justify the cost. Most hardware description languages

hardware description languages describe synthesizable systems at the level of gates

and wires. This limits their language-level notion of equivalence to FSM (finite state

machine) equivalence. Tools usually require the designer to specify the mapping of

state elements (e.g., flip-flops), and thus reduce the problem of FSM equivalence
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to combinational equivalence, which can be performed efficiently. FSM-equivalence-

preserving refinements have proven to be quite useful because tools are available

to prove the local correctness automatically and there is no negative impact on the

overall verification strategy. However, FSM refinement is too restrictive and disallows

many desirable changes. For instance, adding a buffer to cut a critical path in a

pipeline is prohibited. Thus these tools are limited to verification in the later stages

of design when the timing has been decided.

In contrast, BCL’s nondeterministic one-rule-at-a-time model offers a much dif-

ferent level of abstraction. For instance, the adding of a pipeline stage can be imple-

mented in a natural way by splitting the rule corresponding to the appropriate stage

into multiple rules, and introducing state to hold the intermediate results. As designs

at this level are meant to be correct for all possible traces of execution, we can reason

about whether refinements preserve all possible behaviors of the system.

In this chapter we discuss the sorts of refinements we wish to capture, how we

can have the designer express the relationship between specification program and

implementation program concisely.

8.1 Understanding Design Refinements

To understand the refinements we are considering it is helpful to consider the final

implementation of the BCL program as its changes will be motivated by efficiency or

performance concerns of the final result. For simplicity we will discuss our motivations

of a single domain hardware design, i.e., a synchronous FSM.

Consider the FSM shown in Figure 8-1. The FSM consists of two registers r1

and r2, both initially zero, and some combinational logic implementing functions f1

and f2. The critical path in this system goes from r1 to r2 via f1 and f2. In order

to improve performance, a designer may want to break this path by adding a buffer

(say, a one element FIFO) on the critical path as shown in Figure 8-2. Though we

have not shown the circuitry to do so, we will assume that r2 does not change and

the output z is not defined when the FIFO is empty.
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f1 f2

r1 r2

x zy

i ≥ 0


yi = f1(xi, r1i);

r10 = 0; r1i+1 = yi;
zi = f2(yi, r2i);

r20 = 0; r2i+1 = zi;

Figure 8-1: Initial FSM

In this refined FSM, the operation that was done in one cycle is now done in two;

f1 is evaluated in the first cycle, and f2 in the second. The computation is fully

pipelined so that each stage is always productive (except the first cycle of the second

stage, when the FIFO buffer is empty) and we have the same cycle-level computation

rate. However we have the benefit of increased system throughput, as the clock period

in the refined system can be much shorter. The refined FSM no longer matches

the input-output behavior of the initial FSM meaning that they are no longer FSM

equivalent. However, a little analysis shows that the sequence of values assumed by r2

and z are the same in both systems. In other words, the refined system produces the

same answer as the original system but one cycle later. Therefore, in many situations

such a refinement may be considered correct; our notion of equivalence should let us

consider practical BCL programs that compile into these FSMs equivalent.

We can represent the original FSM design as a single-rule BCL program as shown

in Figure 8-3. While it is reasonable to deal with streams of inputs in FSMs, it makes

more sense in rule-based designs to think of input and output in terms of queues

that we have added. For simplicity we can assume that inQ is never empty and outQ
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f1 f2

r1 r2

x zy y’

i ≥ 0



yi = f1(xi, r1i); z0 = ⊥;
r10 = 0; r1i+1 = yi;
yp0 = ⊥; ypi+1 = ypi;
zi+1 = f2(yi+1, r2i+1);
r20 = 0; r21 = r20;
r2i+2 = zi+1;

Figure 8-2: Refined FSM

is never full. If we assume that a rule executes in one clock cycle then the rule in

Figure 8-3 specifies that every cycle r1 and r2 should be updated, one value should

be dequeued from inQ, and one value should be enqueued in the outQ.

The refined FSM in Figure 8-2 may be described by splitting our single rule into

two rules: produce and consume, which communicate via the FIFO q as shown in

Figure 8-4. This refined system has choice and thus corresponds to many possible

FSMs. The particular FSM we are considering can be obtained by constructing the

derived rule that attempts to execute consume if possible, and then attempts to

executes produce. In this sense we are checking a more general question than the

FSM equivalence. Thus, we must account for each of the following possible initial

sequences of the system:
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produce/consume

f1 f2

r1 r2

x zy

inQ outQ

Program P1

Rule produce consume:

x = inQ.first() in
y = f1(r1,x) in
z = f2(y,r2) in

(inQ.deq() |
r1 := y |
r2 := z |
outQ.enq(z))

Register r1 (0)

Register r2 (0)

Module inQ ...

Module outQ ...

Figure 8-3: A Rule-based Specification of the Initial Design
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produce consume

f1 f2

r1 r2

x zy y’

inQ

Program P1a

Rule produce:

x = inQ.first() in
y = f1(r1,x) in

(inQ.deq() |
q.enq(y) |
r1 := y)

Rule consume:

y = q.first() in
z = f2(y,r2) in

(q.deq() |
outQ.enq(z) |
r2 := z)

Register r1 (0)

Register r2 (0)

Module q ...

Module inQ ...

Module outQ ...

Figure 8-4: A Refinement of the Design in Figure 8-3
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Behavior 1 Behavior 2 Behavior 3
produce produce produce

consume produce produce

produce consume consume

consume consume produce

... ... consume

... ... ...
In the first execution, the program repeatedly enters a token into the FIFO and

then immediately takes it out. This emulates the execution of the rule in the unrefined

system (Figure 8-3) and leaves the FIFO q empty after each consume rule execution.

The execution also does the same set of updates to registers r1 and r2 as the original

system. The second execution repeatedly queues up two tokens before removing them.

Note that, this schedule is valid only if q has space for two tokens. The third schedule,

corresponds to the refined FSM (Figure 8-2); save for the initial state, there is always

at least one token in q.

8.1.1 Observability

In what sense are the modules in Figure 8-3 and Figure 8-4 equivalent? Notice that

given any sequence of inputs x0, x1, x2, x3, ... both programs produce the same se-

quence of outputs z1, z2, z3, .... However, the relative order of the production and con-

sumption of these values are different. Assuming all FIFOs are of size 1, both systems

can observe the following sequences: x0, z1, x1, z2, x2, z3... and x0, x1, z1, z2, x2, x3, z3, ....

However, the sequence x0, x1, x2, z1, z2, z3, ... can only be observed for the refined sys-

tem, as the refined system has more buffering. In spite of this, we want a notion of

equivalence that permits this refinement.

Our notion of equality applies only to full BCL programs. To express equality

between systems that interact with the outside world, we need to construct a “generic”

context that represents all possible interactions with the outside world. This can be

done naturally by adding infinite source and sink queues to drive interactions and

store results. It is easy to see why, this closed system models all possible interactions

of inQ and outQ with the outside world. Practically we can always find a finite size
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produce/consume/observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

register r1 = 0, r2 = 0

fifo inQ, outQ, obsQ;

rule produce consume observe when (!inQ.empty()

&& !outQ.full() && !obsQ.full()):

let x = inQ.first(); inQ.deq();

let y = f1(x,r1); let z = f2(y,r2);

let a = f3(r1,r2);

r1 := y; r2 := z;

outQ.enq(z); obsQ.enq(a);

Figure 8-5: Program of Figure 8-3 with an Observer

approximation of these infinite state elements that will serve to guarantee the “never

empty” and “never full” properties that we want for any particular result.

Under a weaker notion of equality, which relies on the transitive closure of rule

applications instead of trace equivalence, the previously discussed refinement is cor-

rect. At the same time this weaker notion of equality can lead to errors if the module

is used incorrectly (for instance if the input to the module changes depending on the

number of values outstanding). We rely on the user to express desired distinctions

programmatically. For instance if the user believes the relative order of inputs and

outputs are necessary, he can add an additional FIFO to which we enqueue witnesses

of both input and output events. We believe this is a good tradeoff between greater
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flexibility of refinements and user-responsibility in expressing correctness [8].

As another example of describing a context, consider refinements of a processor.

To show the correctness of a refinement, it is sufficient to show that the refined proces-

sor generates the same sequence of instruction addresses of committed instructions as

the original. As such we can add a single observation FIFO to the context to observe

all relevant differences and consider all possible initial instruction and data memory

configurations to verify correctness.

8.1.2 An Example of an Incorrect Refinement

While refinements are often easy to implement, it is not uncommon for a designer

to make subtle mistakes that we would like to catch. Consider the original one-rule

produce-consume example augmented with observation logic as shown in Figure 8-

6. In addition to doing the original computation, this system computes a function

of the state of r1 and r2, and at each iteration inserts the result into a new FIFO

queue(obsQ). A designer may want to do the same rule splitting refinement he had

done with the first design, leading to the system in Figure 8-7.

While refinements are often easy to implement, it is not uncommon for a designer

to make subtle mistakes. Consider the original one-rule produce-consume example

augmented with observation logic as shown in Figure 8-6. In addition to doing the

original computation, this system computes a function of the state of r1 and r2, and

at each iteration inserts the result into a new FIFO queue(obsQ). A designer may

want to do the same rule splitting exercise he had done with the first design, leading

to the system in Figure 8-7.

This refinement is clearly wrong; we can observe r1 and r2 out-of-sync via the

new observer circuit. Thus, the sequence produce observe consume has no corre-

spondence in the original system. For our tool to be useful to a designer, it must be

able to correctly determine that this refinement is incorrect (or rather that it failed

to find a matching behavior in the original system). A correct refinement is shown in

Figure 8-8, where extra queues have been introduced to keep relevant values in sync.

The correct solution would be obvious to an experienced hardware designer because
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produce/consume/observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

Program P2

Rule produce consume observe:

x = inQ.first() in
y = f1(r1,x) in
z = f2(y,r2) in
a = f3(r1,r2) in

(inQ.deq() |
r1 := y |
r2 := z |
outQ.enq(z) |
obsQ.enq(a))

Register r1 (0)

Register r2 (0)

Module inQ ...

Module outQ ...

Module obsQ ...

Figure 8-6: System of Figure 8-3 with an Observer
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consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

Program P2a

Rule produce:

x = inQ.first() in
y = f1(r1,x) in

(inQ.deq() |
q.enq(y) |
r1 := y)

Rule consume:

y = q.first() in
z = f2(y,r2) in

(q.deq() |
outQ.enq(z) |
r2 := z)

Rule observe:

a = f3(r1,r2) in
obsQ.enq(a)

Register r1 (0)

Register r2 (0)

Module q ...

Module inQ ...

Module outQ ...

Module obsQ ...

Figure 8-7: An incorrect refinement of the system in Figure 8-6
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all paths in a pipeline have the same number of stages.

8.1.3 Refinements in the Context of Choice

The examples that we have considered so far have started with a single rule programs.

Such systems be definition have no choice. Much of the value of rule-based systems

comes from the ability to specify systems that can have multiple distinct executions.

An example of a useful nondeterministic specification is that of a speculative processor

whose correctness does not depend upon the number of instructions that are executed

on the incorrect path. What does it mean to do a refinement in such a system?

Consider the example in Figure 8-9, which is a variation of our producer-consumer

example with an observer (Figure 8-6). Unlike the lockstep version that records the

state of the registers each iteration, in this system we are allowed to not only miss some

updates of r1 and r2, but are permitted to repeatedly make the same observations.

An implementation, i.e., a particular execution, of this rule-based specification would

pick some deterministic sequence of observations from the allowed set. By giving such

a specification, the designer is saying, in effect, that any execution of observations is

acceptable. In that sense, the observations made in the system in Figure 8-6 are an

acceptable implementation of this nondeterministic system. By the same reasoning

we could argue that the refinement shown in Figure 8-8 is a correct refinement of

Figure 8-9. But suppose we did not want to rule out any behaviors prematurely in

our refinements, then a correct refinement will have to preserve all possible behaviors.

This can be done by specifying a projection function by which state in two different

systems can be related. The partial function relationship is both natural for designers

to come up with and easy to specify. Having manually defined this function, the

designer could conceivably pass it to a tool that would either tell them that the

refinement was correct, or give them an execution from one system that can not be

simulated by the other.

We show a correct refinement of the nondeterministic system in Figure 8-10, where

we introduce an extra register, r1p, to keep a relevant copy of r1 in sync with r2 with

which to make legal observations. It is nontrivial to show that all behaviors in new
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consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

Program P2b
Rule produce:

x = inQ.first() in
y = f1(r1,x) in

(inQ.deq() |
q.enq(y) |
r1Q.enq(r1) |
r1 := y)

Rule consume:

y = q.first() in
z = f2(y,r2) in

(q.deq() |
outQ.enq(z) |
r2Q.enq(r2) |
r2 := z)

Rule observe:

a = f3(r1Q.first(),r2Q.first()) in
(r1Q.deq() |
r2Q.deq() |
obsQ.enq(a))

Register r1 (0)

Register r2 (0)

Module q ...

Module inQ ...

Module outQ ...

Module obsQ ...

Module r1Q ...

Module r2Q ...

Figure 8-8: A correct refinement of the system in Figure 8-6
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observe

produce/consume

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

Program P3
Rule produce consume:

x = inQ.first() in
y = f1(r1,x) in
z = f2(y,r2) in

(inQ.deq() |
r1 := y |
r2 := z |
outQ.enq(z))

Rule observe:

a = f3(r1,r2) in
(obsQ.enq(a))

Register r1 (0)

Register r2 (0)

Module inQ ...

Module outQ ...

Module obsQ ...

Figure 8-9: A system with a nondeterministic observer
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consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3

r1p

y’

Program P3a
Rule produce:

x = inQ.first() in
y = f1(r1,x) in

(inQ.deq() |
q.enq(y) |
r1 := y)

Rule consume:

y = q.first() in
z = f2(y,r2) in

(q.deq() |
outQ.enq(z) |
r1p := y |
r2 := z)

Rule observe:

a = f3(r1p,r2) in
(obsQ.enq(a))

Register r1 (0)

Register r2 (0)

Register r1p (0)

Module q ...

Module inQ ...

Module outQ ...

Module obsQ ...

Figure 8-10: Correct refinement of Figure 8-9

system can model can be modeled by the original nondeterministic specification and

vice versa. As we show later, our tool can automatically perform such verification.

Figure 8-11 shows an alternative refinement. Instead of adding logic to let us

emulate safe observations when we were in an unsafe state, we simply restrict when
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the observer rule can operate to times when the FIFO is empty. Because we are

always free to consume until we reach this state, we effectively can emulate any of

the original traces by emptying the pipeline before observation.

Though these two refinements are the same and successfully accomplish the crit-

ical path splitting we wanted, they have very different properties. Since the second

refinement requires us to empty the pipeline before observing, when we select a final

scheduling strategy, we must balance between the desire to keep the pipeline fully

fed (i.e., always having a token in the FIFO) and being able to observe (i.e., having

no tokens in the FIFO). This leads to problems. For instance, the Bluespec compiler

would choose to keep the design fully parallel leading tt observations never taking

place (with the exception of the initial state). In contrast the first refinement can

easily allow all rules to fire in parallel. While our notion of equivalence can help

designers verify the correctness of their refinements, designers will still need to do

this level of analysis is still necessary to do good refinements.

8.2 Establishing Correctness of Implementation

Correctness of a refinement is slightly more complicated than the notion of implemen-

tation as discussed in Chapter 5. While both must deal with different notions of state,

our definition of implementation relies on a total function between the implementation

and the specification. This makes it very easy to understand the execution of a rule

in the implementation in terms of specification as it is always meaningful. However,

a total function is often relatively difficult to construct. For instance, consider the

refinement from the program in Figure 8-3 to the one Figure 8-4. To deal with the

differences in relative updating of r1 and r2 the function relating the must “flush”

partially completed functions, effectively folding in the operation of consume. This

is too complicated to expect a average user to define. Instead we use an “obvious”

partial relation and exploit the rule executions to fill in rules. In our concrete example

we can relate states when q is empty. To generate a total function, we apply rules of

the implementation program until there is a relation. This is the same as saying we
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consumeproduce

observe

f1 f2

r1 r2

x zy

inQ outQ

obsQ

f3
empty

y’

Program P3b
Rule produce:

x = inQ.first() in
y = f1(r1,x) in

(inQ.deq() |
q.enq(y) |
r1 := y)

Rule consume:

y = q.first() in
z = f2(y,r2) in

(q.deq() |
outQ.enq(z) |
r2 := z)

Rule observe:

(a = f3(r1,r2) in
(obsQ.enq(a))) when (q.empty())

Register r1 (0)

Register r2 (0)

Register r1p (0)

Module q ...

Module inQ ...

Module outQ ...

Module obsQ ...

Figure 8-11: Second correct refinement of Figure 8-9

consider finite executions between states the do have correspondences from our partial

relation. Notice that this technique in general allows one state of the implementa-

tion to correspond to multiple states in the specification due to nondeterminism; our

system needs to check every correspondence.
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Recharacterizing our notion of implementation in terms of partial functions leads

to our notion of partially correct refinement.

Definition 21 (Partially Correct Refinement). Let P be a program modeled by

the transition system S = (S, S0,−→S), P ′ be a program modeled by the transition

system T = (T, T0,−→T ), and p : T ⇀ S a partial function relating states having the

property that T0 ⊆ Dom(p). P ′ is a partially correct refinement of P exactly when

the following conditions hold:

1. Correspondence of Initial State: {p(t)|t ∈ T0} = S0.

2. Soundness: For all t1, t2 ∈ Dom(p) such that t1 �T t2, also p(t1) �S p(t2).

3. Limited Divergence: For all t0 ∈ T0 and t1 ∈ T such that t0 �T t1, there

exists t2 ∈ Dom(p) such that t1 �T t2. �

The first clause states the initial states correspond to each other. The second clause

states that every possible execution in the implementation whose starting and ending

states have corresponding states in the specification must have a corresponding exe-

cution in the specification. The third clause states that from any reachable state in

the implementation we can always get back to a state that corresponds to a state in

the specification; thus we can never be in a state that has “no meaning” in relation

to the specification.

Notice, that this definition guarantee that the implementation only guarantees

that the implementation can always be understood in terms of the implementation.

Total correctness additionally requires that all executions in the specification have a

correspondence in the implementation.

Definition 22 (Totally Correct Refinement). A totally correct refinement is a

partially correct refinement that, in addition, satisfies:

4. Completeness: For all s1, s2 ∈ S and t1 ∈ Dom(p) such that s1 �S s2 and

p(t1) = s1, there exists an t2 ∈ Dom(p) such that t1 �T t2 with p(t2) = s2. �
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Of the conditions for total correctness, correspondence of initial state the completeness

are easy to verify in cases where we refine a program from a larger rules to more fine-

grained rules. As such This leaves us only concerned with soundness and limited

divergence.

8.3 Checking Simulation Using SMT Solvers

We can understand the execution of rule R as the application of a pure function fR

of type S −→ S to the current state. When the guard of R fails, it causes no state

change (i.e., fR(s) = s). We can compose these functions to generate a function fσ

corresponding to a sequence of rules σ. To prove the correctness of refinements, we

pose queries about fσ to an SMT solver.

SMT solvers are conceptually Boolean Satisfiability (SAT) solvers extended to

allow predicates relating to non-boolean domains (characterized by the particular

theories it implements). SMT solvers do not directly reason about computation, but

rather permit assertions about the input and output relation of functions. They

provide concrete counter-examples when the assertion is false. For example, suppose

we wish to verify that some concrete function f behaves as the identity function.

We can formulate a universal quantification representing the property: ∀x, y.(x =

f(y)) ∧ (x = y). An SMT solver can be used to solve this query, provided the

domains of x and y are finite, and f is expressed in terms of boolean variables. If the

SMT solver can find a counter-example, then the property is false. If not, then we

are assured that f must be the identity. The speed of SMT solvers on large domains

is due to their ability to exploit symmetries in the search space [29].

When we reason about rule execution it is often useful to discard all executions

where a rule produces no state update (a degenerate execution); it is clearly equivalent

to the same execution with that rule removed. As such, when posing questions to the

solver it is useful to add clauses that state that sequential states of an execution are

different. To represent this assertion for the rule R, we define the predicate function

f̂R(s2, s1) that asserts that the guard of rule R evaluates to true in s1 and that s2 is
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the updated state:

f̂R(s2, s1) = (s2 = fR(s1)) ∧ (s2 6= s1)

As with the functions, we can construct a larger predicate f̂σ(s2, s1) that is true when

a non-degenerate execution of σ takes us from s1 to s2.

Now we explain how the propositions in Definition 21 can be checked via a small

set of easily answerable SMT queries.

8.3.1 Checking Correctness

For this discussion let us assume we have a specification program P and a refinement

P ′ and their respective transition systems S = (S, S0,−→S ,�S) and T = (T, T0,−→T

,�T ) are related by the projection function p : T ⇀ S.

Now let us consider the soundness proposition from Definition 21: ∀t1, t2 ∈

Dom(p).(t1 �T t2) =⇒ (p(t1) �S p(t2)).

A näıve approach to verifying this property entails explicitly enumerating all pairs

(t1, t2) in the relation �T and checking the corresponding pair (p(t1), p(t2)) in the

relation �S . As the set of states in both systems are finite, both of these relations are

similarly finite (bounded by |T |2 and |S|2, respectively) and thus we can mechanically

check the implication.

We can substantially reduce this work by noticing two facts. First, because of

transitivity, if we have already checked the correctness of t1
σ1
�T t2 and t2

σ2
�T t3,

then there is no need to check the correctness of execution σ = σ1σ2. Second, if we

have already found an execution σ such that t
σ
�T t′ then we can ignore all other

executions σ′ 6= σ that have the same starting and ending states as they must also be

correct. This essentially reduces the task from checking the entire transitive closure

to checking only a covering of it. Unfortunately, the size of this covering is still very

large.

The insight on which our algorithm is built is that proving this property for a small

set of finite rule sequences is tantamount to proving the property for any execution.

We explain this idea using the program in Figure 8-4.
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• Let’s begin by considering all rule sequences of length one: produce and consume.

• The sequence consume is never valid for execution starting in a relatable state

so we need not consider it further.

• The sequence produce is valid to execute but does not take us to a relat-

able state, so we construct more sequences by extending it with each rule in

the implementation. These new sequences are produce produce and produce

consume.

• The sequence produce consume always takes a relatable state to another relat-

able state. We check that all concrete executions of produce consume have a

corresponding execution in the specification. We do this check over a finite set

of sequences in S (in this case: produce consume), the selection of which we

explain later. Since all executions of produce consume end in a relatable state,

we need not extend it.

• produce produce never takes us from relatable state to relatable state, so

again extend the sequence to get new sequences produce produce produce

and produce produce consume.

• produce produce produce is degenerate if q is of length 2 (q has to have some

known finite length).

• Suppose we could prove that the sequence produce produce consume always

behaves like produce consume produce. Then any execution prefixed by produce

produce consume is equal to an execution prefixed by produce consume produce.

Notice that we need not consider any sequences prefixed by produce consume

produce because itself has the prefix produce consume. Therefore we need not

consider further sequences prefixed by produce produce consume.

• Because we have no new extension to consider, we have proved the correctness

of this refinement.
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Each of these steps involved an invocation of the SMT solver on queries that are

much simpler than the general query presented previously, though the solver still

must conceptually traverse the entire state space. The queries themselves are simple

because they are always presented using rule sequences of concrete length, which are

much smaller than the sequences in �T . The only problem with this procedure is that

in the worst case this algorithm will run for the maximum number of states in S. If

we give up before the correctly terminating condition, this only means we have failed

to establish the correctness of the refinement. We think it is unlikely that the type

of refinements we consider in this paper will enter this case. In fact most refinements

can be shown to be correct with very small number of considered sequences.

8.3.2 The Algorithm

The algorithm constructs three sets, each of whose elements corresponds to a set of

finite executions of T . For each iteration, Rσ represents the set of finite sequences

for which we have explicitly found a corresponding member, and U represents the set

of finite executions we have yet to verify (each element of U conceptually represents

all finite sequences starting with some concrete sequence of rule executions σ). NU

is the new value of U being constructed for the next iteration of the execution.

The Verification Algorithm:

1. Initially: Rσ := ∅, U := {Ri|Ri ∈ RT }, NU := ∅

2. if U = ∅, we have verified all finite executions. Exit with Success.

3. Check if we have reached our iteration limit. If so, give up, citing the current

U set as the cause of the uncertainty.

4. For each σ ∈ U :

(a) Check if the execution of σ from a relatable state is ever non-degenerate:

∃t1 ∈ T, t2 ∈ Dom(p).(t1
σ
�T t2)

If no execution exists we can stop considering σ immediately.
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(b) Check if σ should be added to Rσ. That is, if some execution of σ should

have a correspondence in S:

∃t, t′ ∈ Dom(p).(t
σ
�T t′)

If so Rσ := Rσ ∪ {σ}.

(c) Check if all finite executions of σ that should have a correspondence in S

have such a correspondence:

∀t, t′ ∈ Dom(p).(t
σ
�T t′) =⇒ ∃σ′.(p(t)

σ′

�S p(t
′))

If this fails due to some concrete execution of σ, exit with Failure providing

the counter example as justification.

(d) For every execution where σ does not put us in a relatable state, we must

show that extensions of the form σσ′ have an execution taking us to the

same state σ1σ2σ
′, where σ1 is a member of Rσ and |σ1σ2| ≤ |σ|. Thus,

the correctness of σσ′ is reduced to the correctness of the shorter sequence

σ2σ
′.

∀t ∈ Dom(p), t′ 6∈ Dom(p).(t
σ
�T t′) =⇒

∃σ1 ∈ Rσ, σ2.

(|σ1σ2| ≤ |σ|) ∧ (σ1(t) ∈ Dom(p)) ∧ (σ2(σ1(t)) = t′).

If this succeeds, we need not consider executions for which σ is a prefix. If

not, extend the prefix σ by each of the rules in RT . NU := NU∪{σ.Ri|Ri ∈

RT }.

5. U := NU , NU := ∅, Go to Step 2. �

8.3.3 Formulating the SMT Queries

The four conditions in the inner-most loop of the algorithm can be formulated as

the following SMT queries using the f̂σ predicate and the computational version of

projection function p, p̂ : T −→ S and rel : T −→ {0, 1} where p and p̂ are the same

if p is defined and rel(t) returns true exactly when p(t) is defined.

1. Existence of valid execution of σ starting from a relatable state:
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∃t1, t2 ∈ T.f̂σ(t2, t1) ∧ rel(t1)

2. Verifying that each execution of σ in the implementation starting and ending in

a relatable state has a corresponding execution in the specification:

∀t1, t2 ∈ T.

(rel(t1) ∧ rel(t2) ∧ f̂σ(t2, t1)) =⇒∨
σ′∈EC(σ)(f̂σ′(p̂(t2), p̂(t1)))

where EC is the “expected correspondences” function that takes a sequences

of rules σ in T and returns a finite set of sequences in S to which σ is likely

to correspond. This function can be easily generated by the tool or the user,

since the refinements are rule splitting, it is easy to predict the candidates

in the specification that could possibly mimic σ. For instance, consider the

refinement of the program in Figure 8-3 to the one in Figure 8-4. Each occur-

rence of produce in the implementation should correspond to an occurrence of

produce consume in the specification. Thus, the sequence produce produce

consume produce, if it has a correspondence at all, could only correspond to

the sequence produce consume produce consume produce consume.

3. Checking that every valid execution of σ in the implementation has an equivalent

sequence that is correct by concatenation of smaller sequences :

∀t1, t2, tm ∈ T.

rel(t1) ∧ f̂σ(t2, t1) =⇒ rel(tm) ∧∨
σ1∈Rσ(

∨
σ2∈EA(σ,σ1)(f̂σ1(tm, t1) ∧ f̂σ2(t2, tm)))

Our algorithm requires us to find, given σ and σ1 in T , a σ2 such that the

execution of σ is the same as the execution of σ1σ2, and |σ1σ2| ≤ |σ|. We

assume the existence of a “expected alternatives” function EA that enumerates

all possible σ2 given σ and σ1.
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8.3.4 Step-By-Step Demonstration

For the sake of clarity, we provide an additional example of the algorithm’s execution.

Figure 8-12 gives the trace of reasoning through which our algorithm progresses in

order to verify the refinement of the program in Figure 8-6 to the one in Figure 8-7.

Each node represents an element in the algorithm’s set U , and the path from the

root to any node in the graph corresponds to the concrete value σ for that node. At

each node, we verify the correctness of all corresponding finite executions of σ: nodes

displayed as ⊥ are vacuously true by Step 4a, while other leaf nodes are either true by

Step 4d or incorrect by Step 4c. The program is ultimately rejected as the refinement

being checked is incorrect :

• We begin by considering all rule sequences of length one executed in a relatable

state: produce, consume, and observe. The rule observe always ends in a

relatable state, and corresponds directly to the observe rule in the specification

program. consume is never valid to execute, so the only sequence that we extend

is produce since it never ends in a relatable state.

• We now extend produce, giving us three new sequences to consider: produce

produce, produce consume, and produce observe. produce consume always

ends in a relatable state and corresponds to the execution of produce consume

in the specification. Neither produce produce, nor produce observe ever end

in a relatable state, and since we are unable to prove their equivalence to an

execution we have already verified, we extend both.

• In the third iteration, we consider the sequence produce observe consume,

which always ends in a relatable state. This exposes an error in the refinement

since there is no possible sequence of rule in the specification that produces this

final state (in this case, the implementation enqueues a value to obsQ that the

specification is unable to replicate).
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Figure 8-12: Tree visualization of the algorithmic steps to check the refinement of the
program in Figure 8-6 to the one in Figure 8-7

8.4 The Debugging Tool and Evaluation

This algorithm was embodied in an initial tool based on the BCL frontend. The

algorithm in Section 8.3 works more efficiently when rule sizes are small, therefore

the first phase of the tool is to reduce the size of actions by action sequentialization,

conditional merging, and “when lifting” [32]. Next, the tool generates the function fR

for each rule R. We use typed λ-calculus with let blocks to represent these functions

and apply many small transformations to simplify them. As we have discussed, this

algorithm makes many queries to an SMT solver; we use the STP SMT solver [47] for

this purpose. By static analysis (e.g., rule commutativity and sequence degeneracy)

of the programs, we remove unneeded sequences from consideration in the sets EA

and EC. This has substantial impact on the size of SMT queries.

To demonstrate our tool, we consider a refinement of a Simplified MIPS (SMIPS)

processor, whose ISA contains a representative subset of 35 instructions from the

MIPS ISA. While the ISA semantics are specified one instruction at a time, our pro-

gram is pipelined with five stages in the style of the DLX processor [71], and resembles

soft-cores used in many FPGA designs. The execution of the final implementation is

split into the following five separate stages (see Figure 8-13(b)):

1. Fetch requests the next instruction from the instruction memory (imem) based

on the pc register which it then updates speculatively to the next consecutive

pc.
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2. Decode takes the data from the instruction memory and the fetch stage, decodes

the instruction, and passes it along to the execute stage. It also reads the

appropriate locations in the register file rf, stalling to avoid data hazards (stall

logic is not shown).

3. Execute gets decoded instructions from the execute queue, performs ALU op-

erations and translates addresses for memory operations. To handle branch

operations, it kills mispredicted instructions and sets the pc.

4. Memory performs reads and writes to the data memory, passing the data to the

writeback state. (A further refinement might introduce a more realistic split-

phase memory, which would move some of this functionality into the writeback

stage).

5. Writeback gets instructions in the form of register destination and value pairs,

performing the update on the register file.

The implementation program contains one rule per stage, and stages communi-

cate via FIFO connections. If we were to executes the rules for each stage in reverse

order (starting from writeback and finishing with fetch), the result is a fully pipelined

system. If each FIFO is implemented as a single register with a valid bit, this is indis-

tinguishable from the standard processor complete with pipeline stalls. If instead we

execute the rules in pipeline order, we end up with a system where the instructions

fly through the processor one-at-a-time. For code simplicity, our final implementation

actually decomposes the execute stage into three mutually exclusive cases, implement-

ing each with a separate rule(exec, exec branch, and exec branch mispredict).

Since the rule guards are mutually exclusive, this does not modify the pipeline struc-

ture, nor does it change the analysis.

Our implementation is relatively complicated and we would like to know if it

matches the ISA. One way to achieve this is to start with a single-rule description

of the behavior (transliterated directly from the documentation, which we consider

to be correct), and incrementally refine the program towards the final five-stage im-

plementation. After each refinement, our tool can be used to verify correctness with
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Figure 8-13: SMIPS processor refinement

regards to the previous iteration. For the sake of brevity, we examine only the final

refinement, which takes a four-stage processor (Figure 8-13(a)) and splits the fetch-

decode stage. Though the transformation is straightforward, the tool must be able

to correctly resolve the effect of speculative execution from branch prediction.

The tool is able to establish the correctness of this refinement step in under

7 minutes. To do so it needed to check 21 executions in the refined program of

maximum length 3. In general for pipeline partitionings, the length is the max-

imum number of steps between states unrelated by our state relationship plus 1.

In most pipelines this is the pipeline depth plus 1. In our example, we correspon-

dences in the four-stage program for the 5 corresponding rules, fetch decode for

fetch decode, and exec branch mispredict for the mispeculating sequences fetch

exec branch mispredict and fetch fetch exec branch mispredict.

The performance of this tool can be improved in three orthogonal dimensions.

First, we currently only leverage the theory of bit vectors. By adding additional
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theories of FIFOs, arrays, and uninterpreted functions [56] we can dramatically reduce

the complexity of our SMT queries. Secondly, our interface with the SMT solver is

inefficient, requiring file-level IO. More than half of the compute time comes from

marshaling and unmarshaling the query representation. This clearly can be eliminated

by directly integrating an SMT solver into the tool. Finally, our algorithm allows us

to reason about each element of U in parallel. Exploiting all three forms have the

possibility of making this tool fast enough to be viable for fast refinements.
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Chapter 9

Conclusion

This thesis introduces BCL, a unified language for hardware-software codesign and

addresses many important aspects of the design process needed for effective imple-

mentation.

To allow designers to explore what hardware-software partitioning is needed, BCL

allows designers to maintain a more agnostic view on whether a computation should be

placed in hardware or software and to annotate the decision directly via domains. The

domain abstraction allows designers to isolate messy synchronization logic into easily-

reused synchronizer modules, while still allowing important channel-multiplexing logic

to be visible at the program level and thus available to be optimized and verified by

the common user, not the synchronizer writer. It also factors the compilation task to

a per-domain level which greatly simplifies compilation.

BCL is higher level than the standard low-level descriptions of hardware (RTL)

and software (C code), factoring out many of the decisions in execution, and opting for

a highly nondeterministic execution model. This allows us to handle many refinement

problems as local rule refinements which both make the correctness understandable

to the average user, and makes mechanical verification cheap enough to be move from

post-facto step to a part of the design loop itself.

While nondeterminism makes BCL easier to understand and verify, it can be

difficult to implement efficiently. As such it is restricted in implementations. To un-

derstand how this affects the correctness of the program we introduce a compositional
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view of the scheduling task that encompasses both previous algorithms and permits

multi-substrate algorithms.

Given a scheduled BCL program, we describe how to compile BCL rules into

synchronous hardware efficiently. This view of implementation is conceptually simpler

than the previous views given in the compilation of BSV, the predecessor hardware

description language, without compromising on efficiency or expressivity. This makes

BCL hardware designs as efficient as RTL equivalents. Similarly we describe how

BCL rules can be compiled into high-quality C++.

The net result of this, is that BCL users can effectively tune their programs for

hardware and software without losing precision in their meaning or having to resort

to extra-lingual approaches or indirectly nudge their BCL design to get the correct

result. In this sense, BCL is a perfect base on which to build further hardware-software

designs frameworks; it expresses the computation and partitioning desired concisely

and precisely making it easy to reason about correctness while keeping code/hardware

generation efficient.

While this work deals with the fundamental aspects of the codesign problem, there

are no evaluations in this thesis. This is not to say that no implementation work has

been done. In fact, a major part of the effort has been devoted to implementing a

full compiler. In fact complete BCL programs can now be compiled, partitioned, im-

plemented in hardware and software and run on multiple FPGA platforms. However,

substantial work is needed to make any even a slightly meaningful evaluation of the

codesign problem. This is because to make a design truly efficient takes great deal

of tuning and specialization. To properly do this in BCL we need efficient hardware-

software synchronizers and other basic primitives, a good example application, quality

schedules for various partitionings, and nontrivial analysis of the system as a whole.

Much, but not all of this work has been done. When complete it will appear in Myron

King’s PhD thesis.

Beyond this work, there is significant room for improvement in the presentation of

BCL to the user. This is necessary to make BCL a viable representation for industrial

design.
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The most obvious improvement to be made to BSV is the introduction of a type

system, both for values and actions and for domains. Type systems are well under-

stood and the type view of domains from Chapter 6 is so simple that little theoretical

work would need to be done to properly give BCL a type system. A natural choice

may be to simply copy BSV’s type system which extends Haskell’s type system with

whole number “numeric types” to allow the expression of size, and important aspect

for hardware design.

Another practical improvement for the user would be to effectively automate the

scheduling task. Forcing the designer to select a schedule without assistance for each

of the many design that they are exploring is impractical. In the context of single-

cycle synchronous hardware, automatic algorithms have proven to be sufficient for

automating the task. Though the task is still fundamentally the designer’s responsi-

bility, in almost all cases little to no user-given information need be conveyed to the

algorithm to get it to give the desired implementation. Extensions to allow this for

software as well as multi-cycle hardware would complete the picture and allow rapid

implementation.

Perhaps the most important work needed to make BCL practical is a rich library of

synchronizers and design components to enable the construction of designs for various

platforms. Though this is already happening in the context of evaluation, even more

work is necessary to fit into all the desired contexts and to be sufficiently specializable

to achieve all desired behaviors. This task is not just a matter of wrapping current

hardware-software communication into module. A proper synchronizer design will

need to provide enough control to mimic virtual channels, fairness and prioritization,

and bursting. Taking the related example of hardware clock synchronizer are an

indication finding the best representation for this will take significant work.

A further extension that may be of interest is to extend the notion of partitions

beyond synchronous hardware and software executed on a general-purpose processor.

In principle a domain can be implemented in any computational substrate, e.g., asyn-

chronous hardware or GPUs. There may be significant value if BCL’s model may be

efficiently implemented in such a context.
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These extensions – both the planned work for efficiency and the speculative work

on the user-level representation – are needed to fully enable our proposed extreme

design exploration approach to embedded implementations. If these extensions can

be realized in a single language and compilation infrastructure, then the old unwieldy

multi-language methodologies of hardware-software codesign may cease to be used.
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