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Abstract

The Energy Box is an always-on background processor automating the temporal manage-
ment of one’s home or small business electrical energy usage. Cost savings are achieved
in a variety of environments, ranging from flat pricing of electricity to real-time demand-
sensitive pricing. Further cost savings derive from utilizing weather forecasts to manage
local rooftop wind turbines or solar photovoltaics and/or to anticipate price swings from
central utilities.

The main motivation of this research is to design, construct and test a prototype software
architecture for the Energy Box that can accommodate a wide variety of local energy
management environments and user preferences. Under some scenarios, appliances can
be optimally controlled one at a time, independent of each other. In other scenarios,
coordinated control of appliances, either simultaneous or time-sequenced, provide better
outcomes.

Stochastic dynamic programming is the primary optimization engine. The optimization
goal is to balance cost minimization with thermal comfort as specified by consumer pref-
erences.

The results demonstrate that the desired general energy management platform is feasible
as well as desirable for saving money on electricity while maintaining comfort preferences.
Scaling up to neighborhoods, towns and cities, a key contribution is improved understand-
ing of single-home electricity demand dynamics induced by automated decisions. Further
research will determine how such local automated decisions affect the broader smart grid
with regard to resilience, stability and pricing.
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Chapter 1

Introduction and Dissertation

Overview

1.1 Motivation

According to the National Academy of Engineering, electrification was the greatest en-

gineering achievement of the 20th century1. Considering how much of our daily lives de-

pend on electricity, few would disagree. Supplying electricity has its challenges, though.

In particular, electricity is almost immediately perishable, so the supply and demand of

electricity must be balanced on the electric grid at every moment of every day. Unlike

other energy sources like oil and gasoline, electricity cannot yet be stored cost-effectively

over a long time and at a large scale.

Throughout the 20th century, balancing electricity supply and demand typically was a

problem solved by supply-focused strategies. One of the reasons for this was simply that

measuring and communicating details of electricity demand was costly for the majority

of electricity customers. The original electromechnical meters required a meter reader to

walk up to each individual meter to write down and report back the amount of electric

1http://www.greatachievements.org/
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energy (measured in kilowatt-hours (kWh)) consumed by the residence or business on

the other side of the electromechanical meter. The expense of this process meant it

was cost-prohibitive to take these measurements more frequently than once a month, and

thus demand-focused strategies of balancing electricity supply and demand were originally

impractical.

Moving into the 21st century, the cost of modern digital electric meters (often called ‘smart

meters’) has dropped substantially, which has sparked an interest in developing a so-called

‘smart electric grid’ or ‘smart grid’. Current discussion regarding what should be included

in a ‘smart grid’ varies, though many would argue that integrating responsive electricity

demand into the wholesale and retail electricity markets is certainly one preferred element

of the smart grid. Pilot programs around the U.S., Canada and Europe have been and

are testing a multitude of ways to better integrate responsive demand into the retail elec-

tricity market, with some form of time-varying, demand-sensitive pricing of electricity a

leading candidate. Demand-sensitive pricing, also known as yield management or revenue

management, is well established in other service industries like airlines, movie theaters

and restaurants as a way to use the existing infrastructure as efficiently as possible.

For the pilot programs of time-varying pricing of electricity, the goals of a subset of these

pilots were collected and summarized by the Brattle group where the focus was mostly

on peak electricity demand management [Faruqui et al., 2007, Faruqui and Sergici, 2008].

Time-varying pricing policies, such as time-of-use rates (TOU) (similar to cell phone

plans’ peak and off-peak minutes), critical peak pricing (CPP), and hourly real-time

pricing (RTP) (also called spot pricing of electricity) were implemented to meet this

peak management goal. As Faruqui et al. [2007] and Faruqui and Sergici [2008] discuss,

‘enabling technology’ clearly increased residents’ peak load reductions by automating the

responses to these pricing policies. The exact implementation of the ‘enabling technology’

varied by pilot, but generally this included smart thermostats that ‘automatically raise

the temperature setting on the thermostat by two or four degrees’ Fahrenheit and ‘always-

on gateway systems’ that would automatically shed electric load whenever the price of

electricity surpassed a pre-set threshold [Faruqui et al., 2007].
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The focus of this dissertation is to expand upon the automated control options provided

by this ‘enabling technology’ to understand the dynamics induced by time-varying pricing

electricity tariffs during all hours of the day and week (not just the peak) and to consider

other applications of this automated responsive demand. Generally speaking, residents

are interested in the services provided by appliances and devices, not for the electrons

themselves [Black, 2005, Livengood and Larson, 2009], and there is often some flexibility

in the timing of when residents complete these services. One potential application of this

flexibility is the integration of local weather-dependent sources of electricity generation,

such as rooftop wind turbines or solar photovoltaic systems. A resident may benefit

from coordinating her or his electricity consumption with windy or sunny hours, and this

dissertation explores how much benefit could be realized when ‘demand follows supply’

[Schweppe et al., 1980, Chao et al., 1986, Chao and Wilson, 1987].

1.2 Research Objective and Question

The main motivation of this research was to design, construct and test a prototype soft-

ware architecture for the Energy Box that can accommodate a wide variety of local en-

ergy management environments and user preferences. When implemented in a home,

the Energy Box would be an always-on background processor automating the temporal

management of one’s home or small business electrical energy usage.

Once the prototype software architecture was developed, one of the specific research ques-

tions investigated for this dissertation was determining when coordinated control of ap-

pliances and devices within a single residence or business provides additional benefits to

the consumer relative to independent control of appliances and devices.

Stochastic dynamic programming is the primary optimization engine for local energy

management under uncertainty, and the optimization goal is to balance cost minimization

with thermal comfort as specified by consumer preferences. Cost savings are achieved in

a variety of environments, ranging from flat pricing of electricity to real-time, demand-

15



sensitive pricing. Further cost savings derive from managing electricity consumption in

response to weather forecasts that predict when electricity production from local rooftop

wind turbines or solar photovoltaics will be available.

Ultimately, it was found that under some scenarios, appliances can be optimally controlled

one at a time, independent of each other. In other scenarios, coordinated control of

appliances, either simultaneous or time-sequenced, provide better outcomes.

1.3 Research Approach and Methods

Whether due to some of the time-varying pricing tariffs tested or from forecasts of weather-

dependent sources of local electricity generation, the Energy Box model inevitably will

be making local energy management decisions under uncertainty. For this implementa-

tion of the Energy Box, the primary method used for decision making under uncertainty

is stochastic dynamic programming [Bellman, 1957, Bellman and Dreyfus, 1962, Con-

stantopoulos et al., 1991, Powell, 2007]. Details of the dynamic programming decision

method’s implementation in the Energy Box context are discussed in full detail in chap-

ter 3.

Once the independent and coordinated decision methods were established, a Monte Carlo

simulation collected measures of the two key outputs, cost and thermal comfort, to deter-

mine which decision making process best managed the competing objectives of minimiz-

ing cost and maximizing thermal comfort. Constraints were also included to manage how

much flexibility was permitted by the simulated resident for each type of service included

in the model (e.g. dishwashing must be completed by a certain hour). Though the focus

of this dissertation is on the two competing objectives of cost and thermal comfort, the

Energy Box simulation process could easily be expanded in future research to include

other competing objectives, such as minimizing emissions or maximizing usage of locally-

generated electricity (e.g. rooftop wind turbines or rooftop solar photovoltaics).

Models of the random variables were carefully managed to ensure that variations of simu-
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lated consumers faced the same uncertain conditions so that variations in the results arose

exclusively from changes in the decision making process or the controllable parameters

in the Energy Box model. The sensitivity of these results with respect to the decision

making process and with respect to a few other parameters modeled in the Energy Box

simulations were explored and will be discussed in chapters 4 and 5. The controllable

parameters modeled are introduced in detail in chapter 3.

1.4 Scope and Limitations

Electricity must be balanced at all time scales: years, days, hours, minutes and seconds.

Different strategies and markets are in place to accomplish the goal of balancing electricity

supply and demand at each time scale. The Energy Box and other ‘enabling technology’

could conceivably manage one’s home or small business electrical energy usage across all

time scales in response to whatever market and/or system design is implemented.

The focus of this dissertation is specifically on the dynamics of electrical energy usage at an

hourly time step. One reason for focusing on an hourly time step is that many utilities are

beginning to install ‘smart meters’ across their service territories, which typically measure

electricity usage at time steps of an hour or even as frequently as every five minutes.

Another of the leading reasons for the choice of an hourly time step in this Energy Box

model was that the affect of the algorithms’ hourly decisions would be easily visible to

residents, particularly if the algorithm performs poorly from the resident’s perspective.

Though beyond the scope of this dissertation, the goal of an in-home implementation

of the Energy Box would be to collect feedback from the occupants regarding perceived

thermal comfort or the timing of when appliances started, leading to an automatic update

of parameters for the algorithms with the goal of reaching a set of parameters where the

algorithms’ decisions are simply not noticed by the resident (i.e. the resident’s lifestyle is

no longer noticeably affected).

Due to computational complexity constraints, the Energy Box model implemented for this
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dissertation only coordinates decisions between a dishwasher, clothes washing machine,

air conditioner, and wind turbine. A commercially implemented Energy Box would cer-

tainly include energy management algorithms for many more appliances, storage devices

and distributed electricity generation sources. However, for exploring the benefits of co-

ordinated control within a single residence or business, this small set of appliances along

with the wind turbine provides a sufficiently rich set of results for this dissertation.

The Energy Box model for this dissertation assumes that the resident is a price taker in

the electricity market and that changes to a single resident’s load are so small that they

will not affect the price of electricity. Bidding and other interactions with the market are

beyond the scope of this dissertation, though these alternative approaches are certainly a

topic of interest for research in this area and will be discussed further in section 2.4.

The results demonstrate that for the scenarios tested in this dissertation, the desired

general energy management platform is feasible as well as desirable for saving money on

electricity while maintaining comfort preferences. Scaling up to neighborhoods, towns

and cities, a key contribution is improved understanding of single-home electricity de-

mand dynamics induced by automated decisions. Further research will determine how

such local automated decisions affect the broader smart grid with regard to resilience,

stability and pricing. Ultimately, a large-scale smart grid simulator that integrates the

actions across thousands or hundreds of thousands of Energy Boxes in response to various

market designs and system architectures would be necessary to fully analyze the aggre-

gate demand-side dynamics, however that is beyond the scope of this dissertation. The

focus of this dissertation is on developing the prototype Energy Box software architecture

and determining when coordinated control of appliances and devices within a single

residence or business provides additional benefits to the consumer relative to independent

control of appliances and devices.
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1.5 Dissertation Structure

The dissertation structure is laid out as follows. Chapter 2 provides an overview of relevant

literature, including a summary of the history of responsive demand in electricity markets.

Chapter 3 discusses the details of the Energy Box model, including the coordinated and

independent decision methods under uncertainty. The results pertaining to electricity

consumers are presented in chapter 4, followed by a discussion of the results pertaining to

electricity prosumers in chapter 5. Chapter 6 closes the dissertation with some concluding

observations and remarks.

1.6 Glossary of frequently used acronyms

CWM Clothes Washing Machine

DG Distributed Generation

DH Decision Horizon

DP Dynamic Programming

DW Dishwasher

EBA Event-based Appliance

FC Flexibility Constraint

FD Full Distribution

FP Fixed Prices

MV Median Value of the Distribution

PF Perfect Forecast

RI Run Immediately

RTP Real-time Pricing

ST Schedule for a Specific Starting Time

TCA Thermostatically-controlled Appliance

TOU Time-of-use
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Chapter 2

Literature Review

2.1 Balancing Electricity Supply and Demand

With modern life so dependent on electricity, entities such as Independent System Opera-

tors or regulated utilities exist to ensure that the balance of electricity supply and demand

is always maintained. These entities use both supply-focused and demand-focused strate-

gies in order to meet this balancing objective, as noted in Table 2.1.

Supply-focused strategies, like building new power plants, are well studied in the litera-

ture and are more commonly employed for balancing electricity on the electric grid than

demand-focused strategies. However, some demand-focused strategies have received much

attention in scientific literature. In particular, demand-focused strategies for peak man-

agement, such as demand response programs for commercial and industrial customers and

direct load control programs of residential appliances (typically hot water heaters and air

conditioners), have even segued from literary discussion to implementation [Neufeld, 1987,

Taylor and Schwarz, 1990, Cappers et al., 2010, Rahimi and Ipakchi, 2010, Le et al., 1983,

Lee and Wilkins, 1983, Lee and Breipohl, 1984, Rautenbach and Lane, 1996, Wei and

Chen, 1995]. Using interruptible demand to help ensure the grid’s frequency remains at

60 Hz in the United States (50 Hz in Europe) is also well studied in the literature, rang-
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ing from Frequency Adaptive Power Energy Reschedulers (FAPERs) to Grid Friendly1

AppliancesTM [Schweppe et al., 1980, Black and Ilic, 2002, Hammerstrom et al., 2007b,

Brokish, 2009].

Table 2.1: Representative Strategies for Balancing Electricity Supply and Demand

Peak Management Days, Hours and Minutes Seconds
Demand- • Direct load control • Time-varying • FAPERs

focused • Energy efficiency programs demand-sensitive • Grid Friendly
strategies • Demand Response pricing AppliancesTM

Supply- • Build new • Schedule power • Automatic
focused power plants plant operations generation

strategies control (AGC)

The focus of this dissertation, as highlighted in bold in Table 2.1, is on the demand-focused

strategy of time-varying, demand-sensitive pricing that new digital ‘smart’ electric meters

enable. Demand-sensitive pricing, also called yield management or revenue management,

is common in many service industries where the objective is to use the existing infras-

tructure as efficiently as possible. Airlines were among the first entities to implement

demand-sensitive pricing in the 1980s. As many travelers are aware, the price of a flight

differs by day and by the time of day. Oftentimes Monday morning and Friday evening

flights are more expensive than a Wednesday afternoon flight because of the higher de-

mand from business travelers at the beginning and end of each week. The price difference

encourages those travelers with flexibility to shift their travel plans to times of low demand

and away from times of high demand, enabling the airlines to use existing infrastructure

more efficiently, avoid the cost of building new infrastructure, and as a result, maximize

profits. This same concept is applied in many other service industries, including movie

theaters (prices for matinee movies are often lower), rental cars, hotels, sporting events

and restaurants [Kimes, 1989, Weatherford and Bodily, 1992, McGill and Van Ryzin,

1999, Desiraju and Shugan, 1999, Talluri and Van Ryzin, 2005]. Interest in applying

demand-sensitive pricing to electricity became a leading topic of discussion in the 1970s

1Grid Friendly ApplianceTM is a trademark of Pacific Northwest National
Laboratory and Battelle: see http://www.pnl.gov/news/release.aspx?id=856 and
http://availabletechnologies.pnnl.gov/technology.asp?id=61 for more details.
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and 1980s and will be discussed further in the next section [Vickrey, 1971, Schweppe et al.,

1980].

2.2 History of Methods to Induce Responsive Elec-

tricity Demand

The discussion of how to price electricity has a long history, dating back at least to the

1890s as presented by Neufeld [1987]. One of the early debates that continues today is

how to balance the costs imposed by electricity demand for both electric energy (measured

in kilowatt-hours (kWh)) and electric power (measured in kilowatts (kW)). Even then,

concerns over peak management arose amongst key stakeholders in the electricity industry,

with the discussion continuing throughout the 1900s [Houthakker, 1951, Steiner, 1957].

Neufeld [1987] and Crew et al. [1995] provide a survey of this history for those interested

in the historical details.

However, the functionality of the original electromechanical meters limited the options

available to electricity service providers in regards to pricing electricity. The constraint

was the cost and time of using a meter reader to walk up to each individual meter,

write down and report back the amount of electric energy (kWh) consumed. Given labor

costs and the amount of time required for the meter reader to complete this process,

it was cost-prohibitive to take these measurements more frequently than once a month.

The electricity service providers were thus limited to charging a monthly rate for electric

energy, even though the cost of supplying electric energy did, and still does, vary by the

hour of the day and day of the month.

In addition to the monthly rate for electric energy (kWh), a concept commonly referred to

as a demand charge was added by many electricity service providers to charge end users for

the maximum amount of electric power (kW) that they consumed over a month. Taylor

and Schwarz [1990] expand on the distinction between the two: “Traditional residential
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rate structures price electricity by units of energy consumption in cents per kilowatt-hour

(kWh). A demand charge places a price on the maximum level of power consumed in the

billing period. Power, measured in kilowatts (kW), is the rate of energy consumption at a

given point in time and is the quantity that determines generating capacity requirements.

The rationale for including a demand charge is to price capacity and energy separately

and thereby encourage efficient use of power so that construction of excess capacity may

be avoided” [Taylor and Schwarz, 1990]. Though originally included to ensure utilities

received fair compensation for their capital investments, the demand charge essentially

encouraged end users to minimize their peak electricity demand. Minimizing costs in

response to this demand charge via automated technology that coordinates appliances

within a home was the motivation for one of the initial business products of the company

Sequentric. Sequentric recently received a patent for their system implementation [Flohr,

2010].

Perhaps the most extreme implementation of a ‘demand charge’ is commonly referred to

as a ‘power limit’. The electricity distribution system designed by some utilities trips a

circuit breaker and causes a house to be blacked out if power consumption exceeds some

threshold for too long. According to Morganti et al. [2009a], in Italy this power limit

is 3 kW. Morganti goes on to discuss a few algorithms that will coordinate electricity

demand at the residence in order to ensure this threshold is not breached for too long,

thus preventing the undesirable local blackouts [Morganti et al., 2009a,b].

When electricity tariffs include demand charges, power limits and other strategies for

inducing responsive demand while circumventing the electromechnical meter’s limitations,

coordination within a home has been shown to be beneficial [Flohr, 2010, Morganti et al.,

2009a,b]. However, as metering and computing technology have improved in the last 30

years, the limitations of the electromechanical meter have begun to dissipate. With

this change, it is possible that time-varying, demand-sensitive pricing2 of electric energy,

defined to be prices of electric energy ($/kWh) that change every five minutes or an

2Spot pricing and real-time pricing are often used interchangeably with demand-sensitive pricing in
the electricity context.
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hour, will replace the current flat price of electric energy. Demand-sensitive pricing of

electric energy may in turn render demand charges, power limits, and other strategies

circumventing the electromechanical meter’s limitations obsolete. According to Peddie

[1992], with smart meters in place, “true spot pricing can be introduced; this would

flatten the load curve and reduce both thermal cycling of system components and the

expensive startup and shutdown of generating equipment.” If, or when, demand charges,

power limits and other strategies are phased out, will coordination within a home remain

beneficial under spot pricing of electricity? The answer to that question is the focus of

the rest of this dissertation.

As mentioned previously, spot pricing of electricity has been a leading topic of discussion

since the 1970s and 1980s [Vickrey, 1971, Schweppe et al., 1980] and was the focus of the

seminal book Spot Pricing by Schweppe in 1988 [Schweppe, 1988]. In order to implement

spot pricing for electricity consumption, markets that could communicate the 5-minute

or hourly price of supplying electricity had to be developed. The original process for this

was known as ‘restructuring’ (also called ‘deregulation’ [Bohn, 1982] or sometimes ‘rereg-

ulation’ [Borenstein and Bushnell, 2000]) and focused on wholesale electricity markets as

opposed to the retail electricity markets. Much of the relevant literature available for

those interested in the details of ‘restructuring’ can be found in Joskow [1997], Borenstein

and Bushnell [2000] and Huneault et al. [1999] and their references.

Glossing over many details, the main purpose of ‘restructuring’ was to implement whole-

sale electricity markets with time-varying prices of electricity. Generally speaking, only

industrial and large commercial customers participated in the wholesale markets. This was

because installing smart meters was cost-effective given the amount of electric power and

energy consumed by these large customers. Various other methods have also been pursued

to integrate large sources of electricity demand (typically industrial and large commercial

customers) into wholesale markets, sometimes via demand response programs or bilateral

agreements [Philpott and Pettersen, 2006]. Demand response, as shown in Table 2.1, is

typically used for peak management [Cappers et al., 2010, Rahimi and Ipakchi, 2010]. A

bilateral agreement, on the other hand, is a contract between one or more power plants
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and large consumers of electricity to coordinate a portion of the supply and demand of

electricity independent of the wholesale market [Carrión et al., 2007]. Essentially, the

large consumer tells the power plant(s) when they will need electricity, and the power

plant(s) will schedule their generation to coincide with that specific demand. In gen-

eral, coordinating electricity consumption of large commercial and industrial customers

provides the biggest “bang for the buck”, hence these customers are often the focus of

responsive demand programs like time-varying pricing.

On the other hand, retail electricity rates for residents and small commercial customers

often remained regulated during ‘restructuring’ and were kept at a flat, monthly rate

because the expected benefits of time-varying pricing for these smaller customers did

not surpass the cost of replacing the old electromechanical meters with smart meters.

However, the utilities providing electricity service to these retail customers had to pay the

time-varying wholesale market rates. The regulated, flat price of electricity on the retail

market meant that the retail customers had no incentive to reduce consumption when

prices in the wholesale market were high, leaving the utilities with little choice but to buy

electricity at high wholesale market prices and to sell at the much lower retail price. This

mismatch where electricity service providers buy electricity at the time-varying wholesale

market rate and then sell that electricity to the retail customers at a flat rate helped

lead to the California electricity market failure and rolling brownouts in the summers of

2000 and 2001, which in turn effectively stopped restructuring in its tracks across the

United States [Joskow and Kahn, 2002, Borenstein, 2005, Borenstein et al., 2002, Hirst,

2001, Hirst and Kirby, 2001, Caves et al., 2000, Wilson, 2002, Spees and Lave, 2007, Chao

et al., 2006].

As the cost of digital smart meters continues to decrease, smaller customers in the retail

electricity market may soon face time-varying pricing of electricity as smart meters become

cost-effective for these smaller customers as well. This would help eliminate the mismatch

of the wholesale and retail markets that created the problems in California and other

places during the initial attempts at ‘restructuring’. How these smaller customers might

respond to time-varying pricing in the retail markets is a key focus of this dissertation.
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Section 2.3 provides an overview of some of the time-varying retail electricity tariffs in

existence and under consideration today.

2.3 Time-varying Retail Electricity Tariffs and ‘En-

abling Technology’

The most basic time-varying pricing of electricity is the time-of-use (TOU) tariff. The

TOU tariff charges different prices for peak and off-peak electricity consumption, similar

to how mobile phone plans have peak and off-peak minutes. The ratio between the peak

and off-peak price varies, and the hours defined as ‘peak’ hours also vary by each electricity

service provider, depending on the demand pattern in that region.

A variation of the time-of-use tariff is the critical-peak pricing (CPP) tariff. In the CPP

tariff, peak and off-peak prices are set as described for the TOU tariff. However, whenever

the electricity service provider believes that the next day’s electricity demand will cross

a critical threshold, an announcement is made by the electricity service provider that

the next day’s peak price will be an extremely high ‘critical peak’ price. As with TOU

tariffs, the ratio from critical peak to peak to off-peak prices varies by region. In addition,

oftentimes there is a limit on the number of times in a season that a ‘critical peak’ day

can be called.

Many other tariff structures, including peak-time rebates and inclining block rates, could

be implemented as well. For a broader overview of the range of possibilities, the interested

reader is directed to Mohsenian-Rad and Leon-Garcia [2010] and Faruqui and Sergici

[2008].

Last but not least for the discussion here, real-time pricing (RTP) of electricity (also

called spot pricing or demand-sensitive pricing) is an electricity tariff where the price of

electricity changes at a regular interval throughout the day (e.g. every five minutes or

one hour). Economic theory suggests that real-time pricing will let the electricity market
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operate most efficiently: “Retail real-time pricing (RTP) of electricity – retail pricing

that changes hourly to reflect the changing supply/demand balance – is very appealing to

economists because it ‘sends the right price signals’ ” [Borenstein, 2005, Borenstein et al.,

2002]. Integrating responsive demand via real-time pricing was recommended decades ago

by numerous researchers, from a 1971 RAND study [Vickrey, 1971] and the Homeostatic

Utility Control team [Schweppe et al., 1980] to the CALMU [Rosenfeld et al., 1986] and

early work from Chao [Chao et al., 1986, Chao and Wilson, 1987]. The common element

was to implement time-varying, demand-sensitive pricing so that ‘demand follows supply’,

allowing the electric grid to reach a state of homeostasis [Schweppe et al., 1980, Chao

et al., 1986, Chao and Wilson, 1987]. Though the electromechanical meters were unable

to support the real-time pricing electricity tariff at that time, the decreasing cost of digital

smart meters means that such a pricing tariff could potentially be introduced into retail

markets today.

With this push towards implementing time-varying pricing into retail electricity tariffs,

many pilot programs over the last few decades were developed to explore their oppor-

tunities and challenges. One of the earliest pilot programs presented in the literature

is Aigner [1985], which also discusses an early estimate of electricity demand elasticity.

Other electricity demand elasticity measurements are studied in Lijesen [2007], Kirschen

et al. [2000], Kirschen [2003] and Taylor et al. [2005]. A summary of many recent pilots

presented in Faruqui et al. [2007] and Faruqui and Sergici [2008] focused on the effec-

tiveness of time-varying pricing to induce load shifting and/or load shedding for peak

management purposes. Most studies assume residents will be price takers, though the

study by Hammerstrom et al. [2007a] implemented a bidding system, which is another

alternative that has been proposed by some researchers [Williams and Schweppe, 1986,

Hammerstrom et al., 2007a]. The main assumption surrounding time-varying pricing in

particular is that retail customers will curtail some of their electricity demand when prices

go up and increase their electricity demand when prices go down, thus flattening the ag-

gregate electricity demand curve [Braithwait, 2005, Martinez and Russell, 2004, Holland

and Mansur, 2006, Faruqui and George, 2005, Spees and Lave, 2007]. Evidence from the
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pilot programs presented in Faruqui et al. [2007] and Faruqui and Sergici [2008] suggests

initially that this will indeed occur. An extension to this result in Faruqui and George

[2005] and [Chassin, 2010] is that responses from retail customers to time-varying pricing

clearly improved when ‘enabling technology’ is included at homes.

The ‘enabling technology’ used by different pricing pilot programs unsurprisingly varies,

though the core ‘enabling technology’ is any device that automates a program participants’

response to whatever time-varying pricing tariff (s)he faces in the pilot program. For the

California Statewide Pricing Pilot, Faruqui et al. [2007] and Martinez and Russell [2004]

discuss that one part of the ‘enabling technology’ was smart thermostats that would

“automatically raise the temperature setting on the thermostat by two or four degrees

when the price becomes critical.” In the Pacific Northwest National Laboratory’s (PNNL)

Olympic Peninsula project, Hammerstrom et al. [2007a] and Chassin [2010] present their

inclusion of a smart thermostat that effectively used an automated bidding process to

determine the thermostat’s temperature setting.

The key element in both of these examples of ‘enabling technology’ is the word ‘auto-

mated’. The desire expressed by residential customers in PNNL’s Olympic Peninsula

pilot was to have the ability to set up the home’s energy management system and forget

it, or to “fire and forget” as stated by Chassin [2010]. The “forget” part of this statement

was perhaps most surprising from PNNL’s Olympic Peninsula project: 55% of the con-

sumers at the exit survey did not remember which pricing tariff they were on [Chassin,

2010]. This suggests that residents and small business owners feel that they have “better

things to do” than manually manage their electricity consumption. In other words, the

savings available are not large enough for people to take the time to actively manage their

electricity consumption. However, using ‘enabling technology’ to automatically respond

and react to real-time information in ways the consumer may never realize or notice was

acceptable as long as the consumer’s comfort and lifestyle were not adversely affected. A

key desire from these same consumers was to be able to maintain control of the home’s

energy management system via an intuitive process for modifying and changing their

preference settings whenever they wish [Mert et al., 2008]. The concept of using ‘en-
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abling technology’ for home energy management is certainly not new. Some early ideas

of home energy management systems were proposed decades ago [Schweppe et al., 1989],

with recent ideas involving the management of additional competing objectives like min-

imizing emissions while also balancing the traditional objectives of minimizing cost and

maximizing comfort [Ramchurn et al., 2011b].

This dissertation builds in particular upon work begun over two decades ago by Panos

Constantopoulos, Richard Larson and the late Fred Schweppe in Constantopoulos et al.

[1991], in which they identified a range of automated decision methods for controlling

electricity consumption in response to hourly time-varying pricing and uncertain weather

conditions. One of the best methods identified for making sequential decision making

under uncertainty was stochastic dynamic programming. The inventor of dynamic pro-

gramming was Dr. Richard Bellman, who brought it to reality in the 1950s [Bellman,

1957, Bellman and Dreyfus, 1962]. As an honor to its inventor, the recursive equations

used in the dynamic programming approach are often called the ‘Bellman Equations’.

Though Constantopoulos et. al. identified dynamic programming as the preferred auto-

mated decision making method, implementing it on the computers of the time was too

computationally expensive for any detailed testing. Because of this, Constantopoulos et.

al. were forced to use a ‘certainty equivalent controller’ that used the expected value

of the uncertainty distribution for the weather variables to approximate the uncertain

future conditions. Modern computers can now efficiently process a stochastic dynamic

programming model for a problem of this scale, so part of this dissertation will look at

how the performance of the ‘certainty equivalent controller’ and the stochastic dynamic

programming process using the full uncertainty distribution compare with one another.

In addition, Constantopoulos et. al. decomposed the automated decision making into

independent decision processes, focusing in particular on space conditioning (e.g. air con-

ditioning and heating). A leading reason for this decision was likely again caused by

the computational limitations at the time. With that constraint lifted, this dissertation

expands upon these independent decision methods to explore when coordinated decision

making for more than one appliance (e.g. an air conditioner and a dishwasher) provides
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additional benefits over the decomposed, independent decision making methods presented

in Constantopoulos et al. [1991].

2.4 Smart Grid Structure and Simulation

Interest in developing a so-called smart grid has risen dramatically in recent years, as

evidenced at least partially by the large investments provided via the American Recovery

and Reinvestment Act (ARRA) of 2009. The Smart Grid Information Clearinghouse

website3 provides an overview of the smart-grid related projects in existence around the

U.S., which includes the projects funded by ARRA and projects funded by other sources.

The scale and scope of each smart grid project varies with each project testing different

ideas of how the smart grid could be structured. The component of these smart grid

projects that is most related to the research from this dissertation is how to coordinate

electricity consumption across residential, commercial and industrial customers.

As discussed throughout this chapter, charging time-varying, demand-sensitive pricing

to retail electricity customers is certainly one structure being studied in some of the

smart grid projects. Depending on the project, the ‘enabling technology’ presented in

section 2.3 could be controlled locally by the customer with no external coordination

other than through the influence of the time-varying electricity tariffs. The same ‘enabling

technology’ could also be coordinated via a subscription or contract with an aggregator

that plays an intermediary role to ensure electricity supply and demand remain balanced

at all times [Medina et al., 2010, Brooks et al., 2010, Chao, 2010]. These aggregators could

provide a range of services to the grid from peak management to frequency regulation.

Many proposals for the aggregator’s role focus on coordinating the cycles across thermal

appliances (e.g. fridges, freezers, air conditioners and hot water heaters) or focus on

coordinating the charging of plug-in electric vehicles [Koch et al., 2009b,a, Alves et al.,

2008, Gomes et al., 2007, 2008, 2004, Jorge et al., 2000, Brooks et al., 2010]. Essentially,

3http://www.sgiclearinghouse.org/
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the aggregators could help manage a large number of clients to ensure that the aggregate

demand curve is desirable for the grid operators.

Microgrids that can automatically island themselves from the larger grid have also received

considerable attention in both the U.S. and Europe as another potential smart grid struc-

tural element. Hierarchical control structures are often proposed as the preferred method

for sending appropriate coordination signals to the retail customers’ ‘enabling technology’

[Peças Lopes et al., 2006, Lasseter et al., 2002, Marnay and Venkataramanan, 2006, Jiayi

et al., 2008, Hatziargyriou et al., 2002, Vandoorn et al., 2011]. Another option proposed

for coordinating distributed energy resources (DER) in a microgrid is to use decentralized

or distributed bidding in a microgrid market [Costa and Kariniotakis, 2007].

A decentralized control structure that has been proposed and researched for many years

uses appliances that automatically sense and react to frequency fluctuations on the grid.

Since the frequency on the grid must be maintained within tight technical bounds at

all times, the appliances’ reaction could be used to provide important second-by-second

balancing services to the electric grid. Similar ideas under different names such as the Fre-

quency Adaptive Power Energy Rescheduler (FAPER) and Grid Friendly AppliancesTM

abound, all providing some variant of an automated response from appliances to provide

this frequency regulation service to the grid [Schweppe et al., 1980, Hammerstrom et al.,

2007b, Kirby, 2003, 2007, Ilic et al., 2002, Black and Ilic, 2002, Brokish, 2009].

All of the aforementioned smart grid structures are not necessarily mutually exclusive,

and in some instances using a combination of two or more will be desirable. These and

other new structural ideas for the smart grid led researchers to call for the need to develop

large-scale smart grid simulators that test these options at scale before implementing the

proposed ideas in the physical system [Podmore and Robinson, 2010, Kok et al., 2008,

2005, Chassin et al., 2008, Burke and Auslander, 2008]. Agent-based simulations are

currently a leading choice for smart grid simulation environments being developed at

this time, though other smart grid simulation structures will undoubtedly develop over

time [Lamparter et al., 2010, Spees and Lave, 2007, Kok et al., 2005, Karnouskos and
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de Holanda, 2009, Ramchurn et al., 2011b,a, Vytelingum et al., 2010].

Whatever structure and accompanying ‘enabling technology’ is included in the smart grid,

scaling up the automated responses of the ‘enabling technology’ is critical for understand-

ing what will happen at scale for the smart grid. For instance, Faruqui et al. [2007] and

Faruqui and Sergici [2008] suggest that retail time-varying pricing will lead to significant

peak load reductions, and many of the pilot programs cited support this claim. How-

ever, as briefly mentioned earlier, the details of how a retail time-varying pricing tariff

is implemented play a key role in assessing the conclusion that retail electricity load will

be smoothed out by the real-time pricing tariff. For hourly real-time pricing of electric-

ity in particular, a leading factor is whether the hourly prices of electricity are set the

day ahead or only an hour or two in advance [Hirst and Kirby, 2001]. Schweppe et al.

[1980] calls for hourly prices to be set less than an hour in advance. However, consumer

preferences for having certainty in the hourly prices have influenced some programs to

use day-ahead hourly prices based on the expected costs of electricity [Spees and Lave,

2007, Energy, 2011]. The details in how real-time pricing is implemented may, though

may not, cause undesirable outcomes as more retail customers participate in real-time

pricing programs with automated ‘enabling technology’. In particular, chapter 4 from

this dissertation along with recently published work from an independently developed

model by Ramchurn et al. [2011a] show that the choice of ‘enabling technology’ along

with the implementation of a retail time-varying pricing tariff plays a significant role in

whether or not retail customers’ ‘enabling technology’ will actually reduce peak electricity

demand and flatten the aggregate electricity demand profile. The seemingly contradic-

tory results are likely explained by the ’enabling technology’ used by most of the pilot

programs cited by Faruqui et al. [2007] and Faruqui and Sergici [2008]. From what has

been published, the ‘enabling technology’ in those pilot programs used a threshold control

strategy that reduced electricity consumption whenever the price of electricity exceeded

some threshold. Thus, the conclusion that peak electricity consumption would decrease

was tautologically guaranteed given the specific ‘enabling technology’ used. The control

methods of the energy management system from this dissertation and Ramchurn et al.
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[2011a] don’t use threshold control, hence the outcome of a pilot program with a variation

in the ’enabling technology’ may or may not find the same conclusion that peak electricity

load is reduced.

Mohsenian-Rad et al. [2010] states that a retail real-time pricing tariff implemented at

individual homes may not satisfy the global objective of smoothing out the aggregate

electricity demand curve. Ramchurn et al. [2011a] goes further and states that “... [elec-

tricity] demand cannot be flattened by applying only a real-time pricing mechanism, while

completely ignoring the behaviour of the agents. This is because if the agents are signalled

a low price for the next 30-minute period, they will all switch on their devices, which then

results in a peak in demand at the next time period. When such a mechanism is rolled

out on a large scale, such reactive behaviours can cause significant peaks.” A key figure

in Ramchurn et al. [2011a] shows the results of this behavior for a simulation of “500

smart homes”. This figure illustrates that the demand curve resulting from responses

to the real-time pricing tariff is less smooth than it was under a flat electricity tariff.

In addition, the model by Ramchurn et al. [2011a] shows another behavior induced by

hourly real-time prices when the prices are set a day in advance: all automated, single-

event appliances with sufficient flexibility in their starting time congregated at the lowest

priced hour, creating the largest peak of all from these 500 customers at a traditionally

off-peak hour. Both of these are examples of problems that could emerge if automated

home energy management systems make consumption decisions based on real-time pricing

tariffs and appropriate feedback or learning mechanisms are not included in the tariff and

system design. Ramchurn et al. [2011a] continue on to present a Widrow-Huff learning

mechanism that smooths out the aggregate electricity demand under real-time pricing

rates. Measuring and incorporating the price elasticity of electricity demand into the pro-

cess that establishes real-time electricity prices could also provide a feedback mechanism

that would mitigate these issues. A bidding process such as the one proposed by Wang

et al. [2010] would explicitly include price elasticity of demand into electricity markets via

a Price Elasticity Matrix [Wang, 2009, Wang et al., 2010]. Other strategies to mitigate

these emergent issues certainly exist, adding further incentive to develop large-scale smart
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grid simulators to experiment with proposed electricity management programs and retail

electricity tariffs to truly see what consequences result as more demand-side resources are

integrated into the smart grid.

Whatever underlying structure ultimately is chosen for the smart grid, one of the leading

motivators of developing the smart grid and demand-sensitive pricing in particular is to

decrease the volatility of the cost of supplying electricity throughout the day. Charging

wholesale and retail prices of electricity that more closely resemble the actual time-varying

cost of supplying electricity should improve the utilization of the electricity infrastructure

[Vickrey, 1971, Schweppe et al., 1980, Peddie, 1992, Borenstein, 2005, Borenstein et al.,

2002]. Looking ahead, the smart grid and time-varying pricing likely will also prove ben-

eficial for integrating weather-dependent sources of electricity generation (like wind and

solar) onto the grid. Many states and countries have encouraged the use of these sources

of electricity generation via feed-in tariffs, bringing with them some operational challenges

as the supply from these sources is uncontrollable [Cory et al., 2009, Klein et al., 2007].

The smart grid simulators could test methods of integrating these distributed energy re-

sources (DER), ranging from distributed generation (DG) (e.g. rooftop wind turbines,

rooftop solar panels, micro-combined heat and power (µCHP)) to controllable demand

via ‘enabling technology’ to energy storage devices [Kok et al., 2008, Klein et al., 2007,

Pillai and Heussen, 2009, Ramchurn et al., 2011b]. Kok et al. [2005] in particular calls

for developing methods of distributed coordination over central coordination, particularly

as distributed generation becomes more prevalent, which again could be simulated and

tested via these large-scale smart grid simulators.

Ultimately, regional details likely will influence what system design is best for each ge-

ographic area [Chao et al., 2006]. These system designs should be simulated and tested

at large scale to better understand the dynamics that emerge on the smart grid under

each system design [Podmore and Robinson, 2010]. As part of the development of these

large smart grid simulators, knowledge of how electricity consumption from retail elec-

tricity consumers might change in response to time-varying pricing and other real-time

information (such as weather forecasts) is important if the results from these smart grid
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simulators are to be realistic and useful. Hence, the focus of this dissertation is to obtain

a better understanding of how individual consumers with ‘enabling technology’ might

respond to time-varying pricing.
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Chapter 3

The Energy Box Model

As discussed in section 2.4, many models are under development to better understand the

dynamics of the evolving smart grid for electricity. These models must simulate the grid

at varying scales of time and space. Building a model that could capture the dynamics

at all time steps and scales would be the ideal goal for a smart grid model, however the

magnitude of the computations often prevent such models from being practical. For now,

tradeoffs between computational complexity and the scope of the smart grid models are

simply inevitable. Nonetheless, understanding details of the smart grid’s dynamics in a

reduced set of the time and space dimensions is a necessary first step, and integrating these

smaller models with other models is critically important as modern life moves forward

into the era of smart grids.

The focus of this dissertation is on how a single residence’s hourly power profile might

change via enabling technology’s automated response to different pricing systems and

local weather-dependent sources of electricity, such as rooftop wind turbines and/or solar

panels. To test different concepts of ‘enabling technology’, the Energy Box simulation

process as illustrated in figure 3-1 was developed. The full details of what each piece of

the image represents will be presented throughout this chapter.

In figure 3-1, the cycle at the center of the image is the main driver of the Energy Box
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simulation process, with the top box entitled ‘Energy Box Decision’ representing the heart

of the model - the decision-making process. Given the inherent uncertainty of the external

influences (with weather in particular being extremely uncertain), dynamic programming

(DP) is implemented in the Energy Box simulation process as the main method for making

sequential decisions under uncertainty. Numerous other algorithms could also be used,

and one of the Energy Box research goals is to develop a platform that can test any

algorithm via this simulation process.

Figure 3-1: Generic view of the Energy Box Simulation Process

Dynamic programming is also chosen as the primary decision method used in this disserta-

tion to address the research question of determining when coordinated decision making

provides additional benefit over independent decision making. Two other decision meth-

ods are included to better illustrate the results of coordinated versus independent decision

making. These methods are the ‘Run Immediately’ and ‘Schedule for a Specific Starting
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Time’ decision methods. All three of these decision methods will be explained further in

sections 3.3 and 3.4.

The Energy Box simulation process is a simple representation of a complex process. Al-

though the Energy Box model is designed to look at a single electricity consumer, the

model’s structure supports simulating many variations of that particular consumer under

the same external conditions (i.e. weather and electricity prices). The Energy Box simu-

lation process iterates as many times as is necessary to collect the sequence of decisions

the Energy Box decision methods make under each consumer variant. The key elements

of each simulated consumer are

• which appliances does the consumer have,

• what flexibility does the consumer allow for each appliance,

• what is the consumer’s typical occupancy pattern, and

• what decision method will be used by each appliance.

Once the Energy Box decisions have been made, those decisions are implemented in the

simulation and the simulation then steps forward one time step, ∆t. The time step ∆t

in the lower box of figure 3-1 is a parameter in the simulation that can technically take

on any integer multiple of minutes. For simplicity, ∆t was set to be one hour for the

Energy Box implementation discussed throughout this dissertation. Once the Energy

Box simulation process has updated all necessary values to simulate the passing of ∆t

minutes, the Energy Box Decision process uses these updated values to begin the cycle

all over again. How often this cycle is repeated depends on a parameter establishing the

total length of the simulation. For the rest of the discussion in this dissertation, this total

length parameter was set to 50 simulated days.

The Energy Box simulation process is implemented in both Excel and Matlab, with Excel

providing an interface for managing a wide range of parameters that Matlab ultimately

reads for use in the simulation. The main elements of the Energy Box simulation process

will be discussed in this chapter. Chapter 4 will present and discuss results pertaining to
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consumption-only consumers. Chapter 5 expands the Energy Box results to consumers

that are called prosumers, i.e. consumers that also produce electricity, followed by some

concluding remarks in Chapter 6.

3.1 Dynamic Programming Overview

Deciding when to use and store electricity requires a sequential decision-making process

that balances the end-user’s comfort, cost and lifestyle preferences in the face of uncertain

conditions, such as the price of electricity, weather conditions, and electricity available

from weather-dependent generation sources. As mentioned, the approach of choice for

this dissertation for sequential decision-making under uncertainty is stochastic dynamic

programming. With this decision-integrating algorithmic approach, the Energy Box uses

the forecasted information of weather, price, and occupancy patterns to determine the

best control signals given the available information at that time. The frequency with

which these algorithms run and send new control signals depends on the frequency of

updated information to the current and forecasted weather, grid and home or building

conditions. Prior art of the applicability of the stochastic dynamic programming concept

for electricity management is best represented in publications by Constantopoulos et al.

[1991] and Black [2005]. Similarly, Black and Larson have discussed some of the very

general concepts described here in previous work as well [Black and Larson, 2007, Larson,

2008a,b].

In dynamic programming there are five main concepts: decisions, states, stages, stage-

to-stage state transition rules and rules for following an optimal policy [Bellman,

1957, Bellman and Dreyfus, 1962]. In the Energy Box context, decisions are the control

options available to a resident. These decisions determine how much electricity will be

used, how much will be stored in local storage devices, and how much will be sold back to

the grid, when applicable. States refer to the current conditions at the home and on the

grid – including the current price of electricity – as well as current weather conditions.
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Each stage is seen as a decision-making point in time. The time duration between

successive stages will vary by location depending on the frequency of information updates

available for the states of the system. Stage-to-stage state transition rules are used in

the dynamic programming model to calculate the probability of a state variable attaining a

certain value at the next stage based on the state of the system at the current stage and the

immediate decision(s) implemented at the current stage. These rules are mathematical,

probabilistic depictions of weather conditions, electricity price, other conditions on the

electric grid, and conditions at the home that evolve over time. The weather and grid-

level demand random variables use Markov chains for obtaining these stage-to-stage state

transitions and will be discussed more in section 3.3.3. The rule for following an

optimal policy guides the dynamic programming algorithm’s decision-making process

by balancing the homeowner’s comfort, lifestyle and cost preferences both now and in

the future via the sequence of use, store and sell control decisions given the current

and forecasted states of the system. The dynamic program is solved via the principle

of optimality by working backwards from the terminal stage of the process to generate

decision rules for each preceding stage, culminating with the best decision given the

available information at the current moment in time. Given the homeowner’s comfort,

lifestyle and cost preferences, the control decisions returned by the stochastic dynamic

program reflect what the homeowner would have done if the homeowner had the time and

‘lifestyle bandwidth’ to consider all of the use, store and sell options when presented with

the same information.

This dynamic programming framework is implemented for event-based appliances (EBA)

and thermostatically-controlled appliances (TCA) for this version of the Energy Box (ap-

pliance categories are explained further in section 3.3). Though storage devices are not

included in this version of the Energy Box, modeling storage decisions could be struc-

tured in the same way as thermostatically-controlled appliances with a few adjustments.

The variable names for the decision methods follow the structure used by Powell in his

book Approximate Dynamic Programming: Solving the curses of dimensionality [Powell,

2007].
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3.2 Categorizing Appliances and Devices

For reasons discussed in section 3.3.3, the time between stages (∆t) for this Energy Box

model is one hour, hence the categorization of appliances is framed by the hourly dynamics

of electricity-consuming appliances and devices. Other time dynamics, such as interrupt-

ing appliances for a few seconds or minutes at a time (like Grid Friendly AppliancesTM

[Hammerstrom et al., 2007b]) are not in the scope of this model, though clearly they

are also of interest. Ultimately, a commercial Energy Box might make decisions across

at least these three times steps - seconds, minutes, and hours - with different goals to

achieve at each time step. For the hourly time step dynamics, the home’s appliances and

devices are divided into 5 categories:

• Event-based appliances,

• Thermostatically-controlled appliances,

• Storage devices,

• Discretionary uses of electricity, and

• Distributed generation sources.

3.2.1 Event-based Appliances (EBAs)

The definition of an event-based appliance (EBA) for the Energy Box model is an appliance

or electricity-consuming device that typically operates on the order of once or twice a day

(if at all) with a cycle time of many minutes to many hours. The main control option

for the Energy Box to control an event-based appliance is deciding when to begin the

appliance’s cycle, assuming that the appliance is ready to run its cycle. For this version

of the Energy Box, the assumption is made that once a cycle is begun, it will continue

running until the full cycle is completed. Though interruptions on the order of seconds or a

few minutes may be technically feasible and may be of interest to the grid [Hammerstrom
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et al., 2007b], that option is not modeled in this version of the Energy Box, though such

an option could be included in future versions.

Given this definition, the following appliances and electricity-consuming devices are placed

in the event-based appliance category:

Event-based Appliances

• Dishwasher

• Clothes washing machine

• Clothes dryer

• A freezer’s defrost cycle

• A programmable thermal carafe coffee maker

• Pool pumps

From this list, only the dishwasher (DW) and clothes washing machine (CWM) are mod-

eled in full detail in this version of the Energy Box, though any of the event-based ap-

pliances could easily be modeled and included in the Energy Box. The reason for the

decision to limit the model to only include the dishwasher and clothes washing machine is

that two event-based appliances provide sufficient variety to study the research questions

of interest for this dissertation.

3.2.2 Thermostatically-controlled Appliances

As its name suggests, a thermostatically-controlled appliance is any appliance that has a

thermostat. Though the thermostat does not directly control the appliance, the thermo-

stat’s set point indirectly controls how often the appliance cycles on and off.

Appliances falling into this category are
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Thermostatically-controlled appliances

• Air conditioner

• Electric space heater

• Electric hot water heater

• Refrigerator

• Freezer

From this list, only the air conditioner (AC) is modeled for this version of the Energy

Box, although the structure used could easily be extended to all of the other appliances

in this category. Among other reasons, one purpose of modeling air conditioning is that

there is a tradeoff between the comfort that the air conditioner provides to the residents

and the cost used to obtain that comfort. Ideally, a home would always be comfortable

for no cost, though only a few locations around the world fall into this category. For

the majority of the world, the outdoor temperature will either be too cold or too warm

for a significant portion of the year, thus requiring heating and/or air conditioning to

maintain desired levels of comfort. Managing the humidity level in the home is also a key

factor affecting thermal comfort. Though only temperature is modeled and controlled in

this version of the Energy Box, a commercial Energy Box would need to measure and

control the humidity along with the temperature when managing the thermal comfort of

the home’s occupants.

For this version of the Energy Box, the thermal comfort preferences of the home’s occu-

pants are kept constant throughout the day, though the Energy Box model is designed to

allow the thermal comfort preferences to vary across the four typical states of the home:

(1) at home and awake, (2) at home and asleep, (3) away from home, and (4) away on

vacation. Keeping the thermal preferences constant throughout the entire simulated day

does not qualitatively affect the key results of interest for this dissertation.

The home’s thermal characteristics are modeled via a simple first-order exponential model,

as was used by Constantopoulos et al. [1991]. This model is introduced in detail in section

3.4.
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3.2.3 Energy storage devices

A wide range of energy storage devices exist that could ultimately be included in the

Energy Box model. The curious reader is referred to Dell and Rand [2001], Ibrahim et al.

[2008], Hasnain [1998a] and Hasnain [1998b] for an overview of the possibilities of con-

verting electricity into another form of energy via various storage systems. Ibrahim et al.

[2008] in particular discusses many of the tradeoffs inherent in energy storage systems. As

Brooks et al. [2010], Graves et al. [1999], McDowall [2001] and many others demonstrate,

there are clearly benefits to using energy storage systems as part of the electric system.

If time-varying pricing is included, clearly the best strategy for independently operating

storage systems is to follow the stock market advice of buy low and sell high, that is to

buy electricity for storage when the price is low and to sell it back (when possible) when

the price is high. Some storage devices, such as laptop or mobile phone batteries, will

not be able to sell electricity back to the grid. Nonetheless, these storage devices could

adjust their charging pattern in response to time-varying pricing while ensuring that the

end-user always has enough power to use the device at all times. The Energy Box could

even explicitly schedule when these batteries should recharge, making them similar to

event-based appliances in such a situation.

These and other strategies are being developed by researchers and companies for energy

storage systems and certainly could be incorporated in future versions of the Energy

Box model. However, for the Energy Box implementation in this dissertation, using

only event-based appliances and thermostatically-controlled appliances was sufficient for

addressing the research questions of interest. One other reason for not including energy

storage devices in this version of the Energy Box is that modeling them requires careful

consideration of the performance tradeoffs as discussed in Ibrahim et al. [2008]. For plug-

in electric vehicles in particular, short-term operational decisions can affect the long-term

life expectancy of the vehicle’s battery, which is of critical importance to model and

control correctly as a resident would want to ensure that her or his vehicle will be able

to fulfill its primary purpose of mobility. Nonetheless, future Energy Box models will
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undoubtedly integrate energy storage decisions into the simulation process, especially as

plug-in electric vehicles become more common.

3.2.4 Discretionary uses of electricity

Most any other use of electricity at a residence falls into a category called discretionary

uses of electricity. Appliances and devices in this category often directly affect residents

in ways that require more intelligent automation and feedback mechanisms than what is

included in the Energy Box model at this time. Included in this category are

Discretionary uses of electricity

• Lighting

• Entertainment devices (e.g. televisions, sound systems)

• Computers

• Kitchen and cooking appliances

As will be discussed in Chapter 5, under the scenarios when coordinated control provides

additional benefits over independent control, knowledge of the timing of these discre-

tionary loads on a given day could prove useful. For this initial Energy Box model, this

result will be demonstrated via the dishwasher, clothes washing machine and air condi-

tioner, thus discretionary uses of electricity will not be modeled in this version of the

Energy Box model.

3.2.5 Distributed generation

Last but not least are local sources of electricity generation, commonly called distributed

generation or DG. A few examples are listed here:
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Distributed generation

• Roof-mounted wind turbine

• Roof-mounted solar photovoltaics (PV)

• Solar thermal (particularly for hot water)

• Micro combined heat and power (microCHP or µCHP)

Some of these, namely the wind turbine, solar PV and solar thermal, are weather-

dependent and uncontrollable, at least from a grid operations point of view.

Of the possible options in the distributed generation category, this dissertation will focus

only on the weather-dependent wind turbine, as the uncontrollable and uncertain char-

acteristics of the wind turbine helps provide a context for Chapter 5 to illustrate the

scenarios of when coordinated control provides benefits over independent control.

Integrating controllable µCHP is certainly a topic of interest as well, particularly in colder

climates. The curious reader is referred to Molderink et al. [2009], Kok et al. [2008], Pillai

and Heussen [2009] and Tapia-Ahumada [2011] for related work on this topic.

3.3 Decision Methods for Event-based Appliances (EBA)

Using the categories defined in section 3.2, the decision algorithms used by this initial

version of the Energy Box are defined in detail throughout the rest of this chapter.

For all of the decision methods, the mathematical representation of the main dynamic

programming concepts will be used for consistency between the methods. Once again,

the main dynamic programming concepts are: decisions, states, stages, stage-to-stage

state transition rules and rules for following an optimal policy [Bellman, 1957,

Bellman and Dreyfus, 1962].

Starting with event-based appliances, four states (SEBAt ) are used by the Energy Box

model for this type of appliance:
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SEBAt =



Not Ready to Run (NR2R)

Idle and Ready to Run (R2R)

Scheduled to Run

Running

These four states are certainly not an exhaustive listing of the possible states of an event-

based appliance (another state would be how much time is remaining on the appliance’s

cycle), however they will suffice for the purposes of this dissertation.

As modeled in this version, the Energy Box has no decisions to make when SEBAt =

Not Ready to Run (NR2R), Scheduled to Run, or Running. When SEBAt = NR2R,

it remains in NR2R until the Energy Box simulation triggers the transition from SEBAt

= Not Ready to Run (NR2R) to SEBAt+1 = Idle and Ready to Run (R2R), simulating

the loading of the appliance. If the event-based appliance is scheduled to start its load

some time in the future, it will be in the state Scheduled to Run and will simply wait

until the scheduled starting time arrives. Once SEBAt reaches the Running state, the

event-based appliance will remain in that state until its cycle is complete, at which point

the event-based appliance’s state transitions back to NR2R.

Where the Energy Box is called into action is when SEBAt = Ready to Run (R2R). When

in the R2R state, the Energy Box calls the decision method that the current consumer is

using to determine when the event-based appliance should transition into the Running

state. The decision methods modeled for event-based appliances are:

• Run Immediately (RI),

• Schedule for a Specific Starting Time (ST), and

• Dynamic Programming (DP)

Each of these decision methods could be used by a consumer variant in the ‘Energy Box

Decision’ box in figure 3-2 and will be described in detail in the following sections.
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3.3.1 Event-based Appliance: Run Immediately (RI)

As the name suggests, if the event-based appliance’s decision method is ‘Run Immedi-

ately’, then as soon as the event-based appliance enters the R2R state, it immediately

transitions to the Running state. In other words, there is no decision to be made. The

appliance simply starts as soon as it is loaded. This decision method is included for baselin-

ing purposes and simulates what the resident would do with no economic incentives nor

information for changing the timing of her or his event-based electrical loads.

Figure 3-2: Illustration of the Energy Box Simulation Process for an Event-based Appli-
ance (e.g. a Dishwasher) and a Rooftop Wind Turbine
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3.3.2 Event-based Appliance: Schedule for a Specific Starting

Time (ST)

Also for baselining purposes, the ‘Schedule for a Specific Starting Time’ decision method

was developed to simulate when an event-based appliance’s starting time could be set

for a future moment in time. The output of the ‘Schedule for a Specific Starting Time’

algorithm is the future stage in which the event-based appliance will start its cycle. This

decision is not changed at any point in this particular Energy Box implementation.

This decision method is also used to mimic the electricity consumption at a home that

is known in advance, thus allowing the usage of controllable appliances to be scheduled

based on this known consumption. For example, an estimate of electricity consumption

from discretionary uses could be simulated via the ‘Schedule for a Specific Starting Time’

algorithm if the daily patterns from a resident are known with sufficient certainty.

3.3.3 Event-based Appliance: Dynamic Programming (DP)

While the ‘Run Immediately’ and ‘Schedule for a Specific Starting Time’ decision meth-

ods are necessary for baselining purposes, the primary decision method in the Energy

Box for event-based appliances is the dynamic programming algorithm. For event-based

appliances, the dynamic programming algorithm essentially asks the question ‘is now the

best time to start the event-based appliance?’ If so, the event-based appliance will start

its cycle, and if not, it will wait. The stochastic dynamic programming framing for de-

termining control decisions builds upon the work by Constantopoulos et al. [1991] that

two decades ago considered an automated real-time response by space conditioning ap-

pliances with respect to spot pricing for electricity [Constantopoulos et al., 1991]. This

structure provided the foundation for the dynamic programming model used by the En-

ergy Box for thermostatically-controlled appliances, and straightforward extensions allow

dynamic programming to be used for event-based appliances and storage devices, when

applicable.
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For the case when the event-based appliance’s decision method is ‘Dynamic Programming’,

the decision options (xEBAt ) at each stage for this Energy Box model are

xEBA.DPt (R2R) =

Start the event-based appliance

Wait

Additional Energy Box variables and parameters influence which of these options is the

best decision at the current stage. These variables and parameters will be introduced in

the next subsection, followed by how they are incorporated into the event-based appli-

ance’s dynamic programming decision method processing.

Weather, Pricing and Other Energy Box Parameters Affecting the Dynamic

Programming Decision

In order to examine how a single residence’s hourly power profile might change in re-

sponse to different pricing systems and local weather-dependent sources of electricity, the

dynamics of these random variables must be simulated. These external variables (from

the perspective of the home) are equivalent to ‘Exogenous Information’ in Powell [2007],

where W denotes these types of variables. The same notation will be used here.

Forecasts of the price and weather variables are used by the decision methods in the

‘Energy Box Decision’ box in figure 3-2, and then the simulated ‘actual’ values of these

variables are used in the ∆t update step. Since weather dynamics and pricing systems

depend on local and seasonal conditions, the data necessary for modeling these random

variables were collected to simulate the conditions during a Boston summer. The choice of

modeling summer weather for this implementation of the Energy Box model was to ensure

that the use of an air conditioner was needed for a sufficient number of the simulated days.

Different regions and seasons could easily be modeled instead of or along with a Boston

summer, however a single region and season was adequate to demonstrate the results

discussed in chapters 4 and 5.
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Whenever a rooftop wind turbine is included in the Energy Box simulation process (such

as the scenario illustrated in figure 3-2), a model of hourly wind speeds is necessary in

order to calculate how much electricity will be generated by the wind turbine. Sahin and

Sen [2001] and Brokish and Kirtley [2009] demonstrate that a first-order Markov chain is

sufficient for simulating hourly wind speeds (Wwind.speed
t or Ww.s.

t ). A function can then

convert the wind speed into an estimate of the electricity that would be generated by the

rooftop wind turbine.

The wind speed Markov model uses 25 years of historical weather data from the National

Oceanic and Atmospheric Administrations National Climatic Data Center (NCDC)1. To

create the Markov chain transition matrices Pwind.speed
t,t+1 , the summer months’ wind data

was separated by hour and discretized to integral wind speeds ranging from 0 meters

per second to 30 meters per second (though the maximum wind speed in the data was

significantly less than 30 meters per second). Transitions from one wind speed to the next

were then counted, separated by the hour of the day, and normalized to create all of the

pi,j values in

Pwind.speed
t,t+1 =



p0,0 p0,1 p0,2 p0,3 · · · p0,30

p1,0 p1,1 p1,2 p1,3 · · · p1,30

p2,0 p2,1 p2,2 p2,3 · · · p2,30

p3,0 p3,1 p3,2 p3,3 · · · p3,30

· · · · · · · ·

p30,0 p30,1 p30,2 p30,3 · · · p30,30


for each hour t. Normalizing across each row i ensures that 0 ≤ pi,j ≤ 1 and that

n∑
j=1

pi,j = 1 ∀i.

Once the 24 hourly Markov transition matrices were set, a sequence of simulated wind

1http://cdo.ncdc.noaa.gov/cdo/info.html and http://www.ncdc.noaa.gov/oa/nndc/freeaccess.html
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speeds could then be created via an initial condition for wwind.speed0 and the relation-

ship

Wwind.speed
t =

(
t−1∏
i=0

Pwind.speed
i,i+1

)
∗ wwind.speed0 , t > 0

for the range of hours included in that particular simulation. Further details of the weather

models used for the Energy Box simulation process are included in Appendix B.

For each wind speed, the amount of electricity generated by the rooftop wind turbine is

defined via the function

Wwind.power
t = kmax.wind.power ∗ fwind.speed.to.wind.power

(
Wwind.speed
t

)
,

where kmax.wind.power is a parameter reflecting the maximum power output the rooftop

wind turbine can generate and where fwind.speed.to.wind.power
(
Wwind.speed
t

)
converts the wind

speed into a percentage of the maximum power output. An example of such a function is

shown in figure 3-3.

Whenever the indoor thermal comfort is included in the Energy Box simulation process

(such as in the scenario described in section 3.4), a model of the outdoor temperature

is needed in order to simulate the thermal characteristics of the home with sufficient

accuracy. An hourly Markov chain was used to simulate the outdoor temperature just as

it was used to simulate wind speed. The source of the temperature data was again from

the NCDC and encompassed the same 25 year span. The outdoor temperatures were

discretized to a set ranging from 50oF to 110oF, which captured all but a few hours out of

the entire 25 years of data (the few hours that dipped slightly below 50oF were counted

as 50oF in the model). Fixing the lower and upper temperature bounds in the model

was necessary to keep the computational complexity of the outdoor temperature model

in check, and clearly these bounds would need to change to whatever is appropriate for

other seasons and regions.
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Figure 3-3: Illustration of the relationship (fwind.speed.to.wind.power) between wind speed and
the percentage of the maximum electricity generated by the rooftop wind turbine at each
wind speed

Along with the weather external variables of wind speed and temperature, another exter-

nal variable modeled for the Energy Box simulation process is electricity prices. Section

2.3 discussed the wide variety of elements that could be included in a retail electricity

tariff. For this dissertation, only prices for electric energy ($/kWh) were modeled. In

particular, three of the common retail tariffs were modeled:

• the traditional flat rate tariff,

• the ‘notched’ time-of-use (TOU) tariff, and

• the hourly real-time pricing (RTP) tariff.

Figure 3-4 shows the flat tariff, time-of-use tariff, and the variability inherent in the

hourly real-time pricing tariff via an example of an inexpensive day, an average day and

an expensive day of the real-time pricing tariff in the Energy Box simulation.

Of the three, the most difficult tariff to establish is most certainly the hourly real-time

pricing (RTP) tariff. In practice, a real-time tariff is influenced by many factors, including

but not limited to the grid-level demand for electricity, unit commitment, the generation

mix in the region, transmission costs, congestion, reliability charges, and the cost of
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Figure 3-4: Illustration of the variability of the real-time pricing (RTP) tariff, for an
example of an expensive day, average day, and inexpensive day from the Energy Box
simulation

primary sources of energy. For this dissertation, the model for a retail real-time pricing

rate was developed based on the dynamics of an hourly real-time wholesale electricity

market in New England.

First, a 7-day 24-hour hourly Markov chain was created for modeling grid-level electricity

demand, with the expansion to a 7-day model necessary as demand for electricity varies

by the day of the week as well as the hour of the day. With the decision to focus

on the Boston region, grid-level electricity demand information was collected from the

Independent System Operator of New England (ISO-NE), which is the entity that oversees

the operation of electricity markets in the New England area. From the ISO-NE website2,

hourly grid-level electricity demand information from 1993 to 2002 was collected and used

to create this Markov model.

Since the exact values of electricity demand vary widely, discretizing these values is not as

2http://www.iso-ne.com/
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straightforward as the process for modeling temperature and wind speeds. For each hour

of each summer day, the grid-level electricity demand data was separated into seven ‘bins’,

as described in detail in Appendix C. The end result was a Markov model that captured

transitions from one bin to another throughout the week. For each set of data across the

hours and days of the week, a representative value of grid-level electricity demand was

then calculated to be used in the Energy Box’s pricing model. Just like the models for the

weather dynamics, this model of grid-level electricity demand dynamics is a simplification

of reality but is nonetheless sufficient for helping illustrate the key results of this version

of the Energy Box.

With the model of grid-level electricity demand in place, the next step for creating the

hourly real-time pricing model for the Energy Box simulation was to return to the ISO-

NE website3 and collect a year’s worth of hourly prices of electricity from the ISO-NE

wholesale market for the year 2002 (which was the most recent year of data available

on their website at the time of collection). In the ISO-NE wholesale market, some large

demand users from the commercial and industrial sectors participate in the market and

thus are free to adjust their electricity demand in response to these wholesale prices. For

this reason, it was deemed acceptable for the Energy Box purposes to use this data to

create the hourly real-time pricing tariff for the model by mapping grid-level demand

(in MW) to price (in $/MW), as seen in Table C.5 in the Appendix. This table was

created by stepping through the 2002 data and mapping multiples of 100 MW of grid-

level electricity demand to multiples of $0.50/MW. For the purposes of this dissertation,

this was sufficient to capture the general dynamics of hourly demand-sensitive pricing

from a functioning electricity market. However, should the market share of home energy

management systems such as the Energy Box increase to a significant collection of houses,

a new model of the dynamics of the electricity market likely will need to be developed

to capture the new dynamics induced by these automated home energy management

systems.

The pricing model for the Energy Box simulation could then create a sequence of hourly

3http://www.iso-ne.com/
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real-time prices by first simulating a sample sequence of grid-level demand (W grid.level.demand

or W g.d.) via the bin structure in the 7-day 24-hour Markov chain described previously.

Then, using the representative value of grid-level electricity demand for each bin, the En-

ergy Box simulation process locates the row in Table C.5 with the closest demand value

greater than or equal to the representative grid-level demand value and sets the price for

that hour to be the corresponding $/MW.

With prices in place for each hour of the simulation, a notional Utility.Revenue value

was calculated from the hourly grid-level demand and real-time prices as follows:

Utility.Revenue =
∑
t

(
wgrid.level.demandt ∗ wRTP.pricet

)

where t goes from 1 to the number of simulated hours in the simulation.

In order to keep the flat tariff and time-of-use (TOU) tariff consistent with the hourly real-

time pricing (RTP) tariff, the following equations were used along with the now known

Utility.Revenue value to set the prices for those models:

Utility.Revenue = wflat.price ∗
∑
t

(
wgrid.level.demandt

)
(3.1)

Utility.Revenue =

[
wpeak.price ∗

∑
j∈peak hours

wg.dj

]
+

[
woff.peak.price ∗

∑
k∈off-peak hours

wg.dk

]
(3.2)

The set of peak hours and off-peak hours is a parameter in the model’s inputs, though

for consistency the hours from 12:00 PM to 8:00 PM were fixed as the set of peak hours

for this Energy Box model. In addition, the peak rate was defined as a scalar multiple of

the off-peak rate,
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wpeak.price = kTOU.peak.to.off−peak ∗ woff.peak.price

where kTOU.peak.to.off−peak was set up as a parameter in the model. A range of values for

kTOU.peak.to.off−peak was tested for this Energy Box simulation. Of note, for this Energy

Box simulation, the affect of one home on the hourly electricity prices is assumed to be

negligible. When thousands of Energy Boxes (or more) are connected, this assumption

may no longer hold, though that is beyond the scope of this dissertation.

For each of the random variables introduced here, there is a parameter that establishes

how their future uncertainty creates the simulated forecasts that will be used by the

Energy Box decision methods. The three forecast structures used for this Energy Box

simulation are

• perfect forecasts (PF),

• full distribution (FD), and

• median value of the distribution (MV).

The ‘perfect forecast’ (PF) is exactly as its name suggests and provides a bound of what

the best decision would be if it was known a priori what would happen in the future.

Of course, forecasts are not perfect, the reality of which is simulated by the other two

forecast methods. Starting from the current values of the random variables, the Energy

Box simulation steps through the Markov chain to calculate the distribution of possible

states at any future stage. These distributions are what is used for the ‘full distribution’

(FD) forecasts. At each stage, the median value of the random variable’s forecast is

calculated and used in the ‘median value of the distribution’ (MV) forecast method. Using

only the median value is the same as using the ‘certainty equivalent control’ method from

Constantopoulos et al. [1991] discussed in section 2.3. Instead of using the full distribution,

the expected value (in this case the median value) of the uncertainty distribution is used

as though it were known with certainty. This ‘certainty equivalent control’ mimics what

may occur if the forecasted information is collected from some weather forecast websites

as the information available may only be the expected values of future weather conditions.
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Using these three forecast methods, it is possible to compare how well the Energy Box

decision methods perform in response to varying degrees of uncertainty introduced by

these random variables.

Last but not least to be introduced in this section are a few parameters affecting the

simulated consumer’s electricity pricing tariff, as listed below:

• the number of stages of known, fixed prices (FP ) and

• the policy for selling electricity back to the grid.

The ‘fixed prices’ (FP ) parameter only affects the real-time pricing (RTP) tariff. The

flat rate and time-of-use rates are assumed to be known and fixed for all hours of the

simulation. For the real-time pricing tariff, the FP parameter establishes how many

stages of prices are known at the time of the decision being made for the current stage.

For all later stages, the real-time price is modeled as a random variable that is a function

of the grid-level electricity demand (W g.d.
t ) and wind speed (Ww.s.

t ) random variables. For

the results in this dissertation, the hourly real-time electricity prices are set either an hour

ahead or a day ahead (i.e. FP = 1 or FP = 24, respectively).

The next parameter affecting the consumer’s electricity pricing tariff involves the policy

for selling electricity back to the grid in cases where a consumer has storage devices or

sources of distributed generation. To provide a reasonable range of variation for this

dissertation, the function

W price.sell
t = kbuy.to.sell.scaling.factor ·W price.buy

t (3.3)

was used. The variable W price.buy
t could reflect any of the flat, time-of-use, or hourly

real-time pricing tariffs of electricity, and the scaling factor kbuy.to.sell.scaling.factor is usually

constrained so that 0 ≤ kbuy.to.sell.scaling.factor ≤ 1. Of note is that kbuy.to.sell.scaling.factor = 1

is the same as having the traditional electromechanical meter run backwards whenever the

local electricity generation exceeds the consumption at the home. This turns out to be a

unique case and is examined in chapter 5. As discussed in Cory et al. [2009] and Klein et al.
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[2007], some feed-in tariffs were implemented in the past where kbuy.to.sell.scaling.factor > 1,

though this structure seems to be falling out of favor. Cory et al. [2009] and Klein

et al. [2007] also discuss other feed-in tariff structures that would change some details of

the chapter 5 results, however the overall results would remain the same and thus only

the feed-in tariff structure from equation 3.3 is used for this version of the Energy Box

simulation process.

Making the Dynamic Programming Decision for an Event-based Appliance

With all models for the Energy Box simulation process in place, all parameters can now

be incorporated into the dynamic programming structure for an event-based appliance.

As Powell illustrates quite clearly in his textbook Approximate Dynamic Programming,

there are numerous ways to frame a dynamic programming problem, and the reader

interested in learning more details about the wide range of dynamic programming problem

formulations is encouraged to read at least the first three chapters of Powell’s textbook

[Powell, 2007]. The characteristics of the Energy Box decisions as framed allow for a finite

horizon dynamic programming method to be used. To proceed, the key elements to be

defined in the context of this problem are

• the terminal stage,

• the contribution function(s) for each stage, and

• the overall objective function.

In the context of an event-based appliance, the terminal stage of the dynamic program-

ming decision method is either the stage by which the consumer specifies the event-

based appliance must complete its cycle or the final stage of the decision horizon (DH),

whichever comes first. The decision horizon parameter (DH) is included to establish a

final stage for the forecasts that are created via the Markov chains introduced in section

3.3.3 since the Markov chains could technically provide forecasts over an infinite time hori-

zon, clearly an unrealistic option. The other parameter that could set the terminal stage

is called the flexibility constraint (FC), which is the stage by which the consumer wants
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the event-based appliance to be completed. For this implementation of the Energy Box

model, the decision horizon (DH) is fixed at 24 hours, though the sensitivity of the DH

parameter was tested and ultimately did not yield any unexpected results. For shorter

decision horizons, the chance to take advantage of opportunities beyond the decision hori-

zon were missed. For longer decision horizons, the additional forecasted information of

the weather and grid-level electricity demand random variables did not noticeably alter

the decisions made when the decision horizon was set at 24 hours. Since this implemen-

tation of the Energy Box ensures that an event-based appliance will complete its load

within a day, the consumer’s flexibility constraint (FC) will always determine the ter-

minal stage for the event-based appliance’s dynamic programming decision method (i.e.

FC ≤ DH). The sensitivity of this modeling choice could certainly be revisited in future

implementations.

At the terminal stage of the event-based appliance’s dynamic programming process, the

Energy Box is forced to choose Start to meet the resident’s deadline if the appliance has

not yet started its cycle. For all stages prior to the terminal stage, the Energy Box will

continue to calculate whether it is best to Start the event-based appliance or Wait. The

details of this calculation will be expanded upon mathematically in the following para-

graphs. To make these calculations, the dynamic programming model needs a defined

rule for following an optimal policy. Following Powell’s convention, one or more

contribution functions and an objective function will be used to jointly define the

rule for following an optimal policy. In general, the contribution functions are

defined in the context of each dynamic programming model. The minimization or maxi-

mization of one or more of these contribution functions is what ultimately becomes the

objective function. For event-based appliances, the contribution function is the ex-

pected cost of running the event-based appliance at a given stage t, represented by Ccost
t .

The event-based appliance’s objective function is thus to minimize the contribution

function Ccost
t between the current moment in time and the terminal stage FC.

One last assumption for this section is that the event-based appliance’s cycle is

short enough to start and finish in the time between stages. As a reminder,
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the time between stages is currently set at one hour. This assumption is included

to clarify the discussion about the dynamic programming process. In the Energy Box

simulation, the coding supports event-based appliance cycle times that last longer than

the time between stages, and with a straightforward extension, the dynamic programming

process described here operates successfully in those cases as well.

Everything is now set for the mathematical representation of the dynamic programming

decision method for an event-based appliance:

min
(xEBA

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBAt , xEBAt ,Wt+1

)]
. (3.4)

Solving this equation for the event-based appliance depends on some of the parameters

discussed earlier:

• Uncertainty parameter: PF (perfect forecasts), MV (median value), FD (full distri-

bution)

• Electricity pricing tariff: Flat, TOU (time-of-use), RTP (real-time pricing)

– If RTP, then set the FP parameter to fix the hourly prices either one hour

ahead or one day ahead (i.e. FP = 1 or FP = 24)

• Wind turbine: Yes or no

– If yes, then set kbuy.to.sell.scaling.factor ∈ [0, 1]

The influence of these parameters on the event-based appliance dynamic programming

algorithm is demonstrated in Appendix D by stepping through the details of how Equation

3.4 is solved via a backward dynamic programming algorithm for two of the combinations

of parameters. The reason it is a ‘backward’ algorithm is that the process begins at the

terminal stage of the dynamic programming formulation and traverses from the terminal

stage back to the current moment in time, again as illustrated in Appendix D. Ultimately,

the dynamic programming algorithm determines the best decision for the current moment

in time, which is then implemented in the Energy Box simulation process.
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One note: though it may seem counterintuitive initially, there is no typo in Equation 3.4

regarding the time indices of states (SEBAt ), decisions (xEBAt ), and exogenous information

(Wt+1). The discrepancy is that decisions xEBAt made at stage t while in state SEBAt are

affected by information such as weather forecasts that are not known precisely until stage

t+1. This distinction is subtle but important, and it will arise frequently in the backward

dynamic programming algorithm in Appendix D.

3.4 Decision Methods for Thermostatically-controlled

Appliances

Unlike event-based appliances, the exact amount of electricity consumed by thermostatically-

controlled appliances often depends on external states, such as the outdoor temperature.

As such, the exact electricity consumption is impossible to know in advance and cannot

be scheduled in the same way as event-based appliances. Thus, the only algorithms im-

plemented for thermostatically-controlled appliances are the Run Immediately (RI) and

Dynamic Programming (DP) algorithms. These two algorithms will be introduced in the

context of an air conditioner (AC).

3.4.1 Thermostatically-controlled Appliance: Run Immediately

(RI)

The thermostatically-controlled appliance’s Run Immediately (RI) algorithm is again used

for baselining purposes, just like the event-based appliance’s Run Immediately algorithm.

In the case of Run Immediately, a fixed value is maintained as the thermostat’s set point

for the entire simulation. However, this does not mean that the indoor temperature,

STCA.indoor.temperaturet , is constant for the entire simulation. In many hours of the simula-

tion, the outdoor temperature is lower than the Run Immediately thermostat set point,

causing the indoor temperature to drop below the set point since a heater is not im-
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plemented in this version of the Energy Box. Clearly this would be a problem if the

temperature was too cold, though the decision to limit the weather to the summertime

in Boston means that foregoing a heater in the Energy Box model is not be a problem at

this time.

3.4.2 Thermostatically-controlled Appliance: Dynamic Program-

ming (DP)

For the thermostatically-controlled appliance’s dynamic programming decision method,

the mathematical representation is

min
(xTCA

t )
DH−1

t=0

DH∑
t=0

E
[
ĈCost
t+1

(
STCAt , xTCAt ,Wt+1

)
+ ĈComfort

t+1

(
STCAt , xTCAt ,Wt+1

)]
(3.5)

Though the details of the thermostatically-controlled appliance’s dynamic programming

algorithm are discussed here in the context of an air conditioner (AC) and thermal com-

fort inside the home, the same structure could be used by all thermostatically-controlled

appliances. The state for the air conditioner’s dynamic programming algorithm is the

set of all possible temperatures inside the home (STCA.indoor.temperaturet or STCA.i.t.t ) and

is illustrated by the bulb thermometer in figures 3-5 and 3-6. Technically the range of

indoor temperatures could include all possible outdoor temperatures (illustrated by the

circular thermometer in figures 3-5 and 3-6), so the set of possible indoor temperatures in

the model are the integral values on the Fahrenheit scale in the same range as the outdoor

temperature of 50oF to 110oF.

The decision values for the air conditioner’s thermostat, xTCA.AC.thermostatt (illustrated

by the square thermostat in figures 3-5 and 3-6), include all acceptable set points for the

thermostat, discretized to integral values on the Fahrenheit scale. The range of acceptable

set points is established as an input parameter for each consumer simulated and will be

64



discussed further at the end of this section.

Figure 3-5: Illustration of the Energy Box Simulation Process for a Thermostatically-
controlled Appliance (e.g. Space Conditioning)

The stage-to-stage state transition rule for the home’s indoor temperature is influ-

enced by a number of factors, as illustrated in figure 3-6 and listed here:

• the current temperature inside the home (STCA.indoor.temperaturet or STCA.i.t.t ),

• the thermostat’s set point (xTCA.AC.thermostatt or xTCA.AC.t ),

• the outdoor temperature (W outdoor.temperature
t+1 or W o.t.

t+1),

• the thermal time constant of the building (ε), and

• the efficiency of the air conditioning unit when cooling the air in the home, which

is captured as part of the function fAC.cooling.output
(
STCA.i.t.t , xTCA.ACt ,W o.t.

t+1

)
.
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Each of these is included as part of the image from figure 3-6, which illustrates the

dynamic programming process. As a reminder, in the finite horizon dynamic programming

process implemented for the Energy Box, the first calculation is the terminal stage. All

contributions of comfort and cost (illustrated by the smiling face and $$$, respectively)

beyond this terminal stage are modeled to be zero. The dynamic programming process

commences at the terminal stage and steps backwards in time as illustrated via the −∆t

box in figure 3-6. As mentioned previously in this chapter, the time step for the dynamic

programming process is a parameter that is set to one hour for the discussion in this

dissertation. After stepping backwards through the dynamic programing process, the

best decision at the current moment in time is determined and implemented via the

Energy Box simulation. Once all decisions from all controllable appliances have been

set, the Energy Box simulation process illustrated in figure 3-5 steps forward in time

one time step ∆t (again one hour), and the decisions are recalculated given any updated

information from the new weather and price forecasts.

Returning to the focus of air conditioning in this section, the relationship between the

thermal model of the home, the outdoor temperature and the temperature inside the

home at the next time step, STCA.indoor.temperaturet+1 , is found via the equation

STCA.i.t.t+1 = ε·STCA.i.t.t +(1− ε)·
(
W o.t.
t+1 − fAC.cooling.output

(
STCA.i.t.t , xTCA.ACt ,W o.t.

t+1

))
, (3.6)

which is essentially the same exponential decay building thermal model4 used by Con-

stantopoulos et al. [1991].

Intuitively, one might assume that the temperature in the home at stage t+1 would reach

4This is clearly a simplified building thermal model, as it treats the entire home as a single zone
with a single thermal parameter. Other more elaborate building thermal models could be used, though
this first-order approximation is sufficient for this dissertation. A future version of the Energy Box under
development by MIT Ph.D. candidate Woei Ling Leow will include a more detailed learning thermal model
for buildings with zonal controls (i.e. multiple thermostats), so there will be a significant advancement
in this element of the next Energy Box model.
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the thermostat set point established at stage t, i.e. STCA.i.t.t+1 = xTCA.AC.thermostatt . However,

this is not always the case, as the amount of cooling needed (fAC.cooling.output) to reach

the thermostat set point from one stage to the next may exceed the maximum amount

of cooling available from the air conditioning unit (kmax.AC). Or, as was introduced in

section 3.4.1, the indoor temperature may already be below the thermostat set point and

the outdoor temperature may be low enough that the indoor temperature will remain

below the thermostat set point between stage t and t + 1. In these cases, STCA.i.t.t+1 6=

xTCA.ACt , and the reachable indoor temperature STCA.i.t.t+1 will need to be calculated either

using the maximum cooling output from the air conditioner or with the cooling output set

to 0 for wAC.cooling.output in equation 3.6, depending on which situation has occurred.

In other words, after some algebraic manipulation,

STCA.i.t.t+1 =



ε · STCA.i.t.t + (1− ε) ·
(
wo.t.t+1 − kmax.AC

)
, wo.t.t+1 −

xTCA.AC
t −ε·STCA.i.t.

t

(1−ε) > kmax.AC ,

ε · STCA.i.t.t + (1− ε) · wo.t.t+1, wo.t.t+1 −
xTCA.AC
t −ε·STCA.i.t.

t

(1−ε) < 0

xTCA.ACt o.w.

(3.7)

Last but not least to discuss for the air conditioner’s dynamic programming algorithm

are the contribution functions and objective function used to define the rule for

following an optimal policy.

As shown in equation 3.5, there are two contribution functions for the air conditioner’s

dynamic programming algorithm: CCost
t and CComfort

t . The purpose of these contribution

functions is to calculate a numerical value of cost and thermal comfort that matches

the preferences of the home’s occupants. These values are then balanced via a tuning

parameter in the objective function. Essentially, the objective function’s purpose is to

balance the minimization of cost with the maximization of comfort (or equivalently the
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minimization of discomfort).

Figure 3-6: Illustrating Dynamic Programming’s Bellman Equations in the Energy Box
context for Space Conditioning

The calculation of CCost
t is straightforward. The calculation of CComfort

t , on the other

hand, is what ultimately balances the tradeoff between cost and comfort in this particular

implementation. Structurally, the comfort contribution function is as follows:

CComfort
t

(
STCA.i.t.t

)
=

kwarm ·
(
max

[(
STCA.i.t.t − kmax.comfortable

)
, 0
])mwarm

+

kcool ·
(
min

[
0,
(
kmin.comfortable − STCA.i.t.t

)])mcool

For the comfort function, it is necessary to use STCA.i.t.t instead of xTCA.ACt since it is pos-
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sible that the indoor temperature will not be the same as the desired thermostat set point,

as shown by equation 3.7. The parameters kwarm, mwarm, kcool, mcool, kmax.comfortable, and

kmin.comfortable would be set by the resident(s) and could vary by the occupancy state

introduced in section 3.2.2. For clarity in the results discussion, most of the above pa-

rameters are fixed to specific values. In particular, kcool = 0 and mwarm = 2 for all

of the Energy Box simulation runs discussed in chapter 4 and 5. Of note is that with

kcool = 0, this means that mcool and kmin.comfortable are unused in this scenario. This

leaves kwarm and kmax.comfortable as the two parameters for this contribution function that

can be adjusted. Figures 3-7 and 3-8 illustrate the adjustments available for kwarm and

kmax.comfortable.

In the example case illustrated by figure 3-7, kmax.comfortable is 72oF . In other words, 72oF

is the warmest indoor temperature that is still comfortable for this particular resident.

Continuing with this example, figure 3-7 shows that 73oF and 74oF are tolerable but less

than comfortable, and any indoor temperature ≥75oF is considered uncomfortable.

Recalling the distinction made earlier between the indoor temperature and the thermostat

set point, figure 3-7 also illustrates the limitations imposed on the thermostat set point

xTCA.AC.thermostatt . In the Energy Box model, the warmest set point allowable on the ther-

mostat is a parameter kmax.tolerable, which is equivalent to the warmest temperature that

is not in the resident’s range of uncomfortable temperatures. For the example illustrated

in figure 3-7,

xTCA.AC.thermostatt ≤ kmax.tolerable = 74oF.

Although the thermostat can never be set in the resident’s uncomfortable range, it is

possible that the outdoor temperature is so hot that the air conditioner is physically unable

to keep the house cool enough given the resident’s preferences. Nonetheless, knowing these

preferences it is possible that the Energy Box could pre-cool the home to minimize the

amount of time the indoor temperature reaches the uncomfortable range. The point
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is simply that the Energy Box never actively sets the thermostat to an uncomfortable

temperature set point, however it may be inevitable, given the weather outside, that an

uncomfortable temperature is reached. An equivalent lower limit would be included for

xTCA.AC.thermostatt if electric heating was also included in the simulation.

Figure 3-7: Illustrating one example of comfort preferences where kmax.comfortable = 72oF
and kmax.tolerable = 74oF

The balance between tolerable indoor temperatures and cost savings is managed via kwarm,

which is essentially a dial as illustrated by figure 3-8. Maximum comfort incurs the high-

est cost ($$$) whereas the minimum cost ($) provides only tolerable comfort. Different

settings on the dial shift the resident’s preference between comfort and cost, ultimately

affecting the sequence of thermostat set points implemented by the air conditioner’s dy-

namic programming decision method. Examples of how this performs will be presented

in chapter 4.

Figure 3-8: Illustrating kwarm as a dial that determines the tradeoff preference between
comfort and cost

One closing note for this section is that the kwarm, kmax.comfortable and kmax.tolerable parame-

ters could be time-varying. For the results discussion in this dissertation, these parameters

were kept as time-invariant for each simulated consumer because allowing these parame-

ters to vary with time did not qualitatively affect the main results for this dissertation’s

objectives.
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3.5 Coordinated Decision Methods

One of the key research questions of this dissertation is determining when coordinated

decision algorithms provide additional benefits when compared to the independent de-

cision algorithms, and this section describes the varieties of coordination tested in this

dissertation. Figure 3-9 illustrates the coordinated decision options implemented for two

controllable appliances. Figure 3-11 then highlights how coordination differs slightly in

the case when an uncontrollable local source of electricity generation like a wind turbine

is added to the Energy Box simulation.

Figure 3-9: High-level Illustration of the Independent and Coordinated Decision Methods

To begin with, figure 3-5 from section 3.4 is the baseline illustration of the Energy Box

simulation process for independent decision methods. Though the focus of that figure

is the air conditioner, any other appliance could be the focus instead. For the air condi-

tioner’s independent decision method illustrated in figure 3-5, notice that the dishwasher

decision is not included as part of the ‘Energy Box Decision’ inputs.

By comparison, figure 3-10 shows that for sequential decision methods, the decision made

for the dishwasher is now included as part of the air conditioner’s ‘Energy Box Decision’

inputs. There are two variations of sequential decision methods as shown in figure 3-9,

and those are react and plan around. In some cases, the dishwasher’s starting time is

unknown until the moment its cycle is started. That new knowledge is sent to the air
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conditioner’s decision method and the Energy Box may then react to the new information

that the dishwasher will be consuming electricity over the next hour or two. On the other

hand, if the dishwasher is scheduled for a particular future time and that information is

sent to the air conditioner’s decision method, then the Energy Box can plan around the

dishwasher’s upcoming electricity consumption.

Figure 3-10: The Energy Box Simulation Process for Sequential Decisions

The most complex of the coordinated decision methods for two controllable appliances

is the joint decision method. Though figure 3-11 shows a thermostatically-controlled

appliance (the air conditioner) and an event-based appliance (the dishwasher), this joint

process can also be implemented for two thermostatically-controlled appliances or for two

event-based appliances.

To illustrate, consider a joint dynamic programming algorithm for two event-based appli-

ances. The processing is essentially the same as the independent dynamic programming
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algorithms except for the key difference that the states are an ordered pair and that a

joint decision occurs when both event-based appliances are in the Ready to Run (R2R)

state. In the state combination of (R2R, R2R), there are ultimately four combinations of

decisions at each stage: (Start, Start), (Start, Wait), (Wait, Start) and (Wait, Wait).

From there, the decision combination with the best expected value at stage 0 is what is

implemented in the simulation. If only one event-based appliance starts its cycle, then

the Energy Box reverts back to the independent dynamic programming algorithm for the

other event-based appliance in the next stage. If both event-based appliances start their

cycle, then they will both return to their idle Not Ready to Run (NR2R) states in the

next stage. Last but not least, if neither event-based appliance starts its cycle, then the

Energy Box runs the joint dynamic programming algorithm again at the next stage.

Figure 3-11: The Energy Box Simulation Process for a Joint Decision with a Wind Fore-
cast
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The joint dynamic programming algorithm for a thermostatically-controlled appliance

and event-based appliance is again essentially processed in the same way as the inde-

pendent dynamic programming algorithm. Anytime the event-based appliance is in its

Ready to Run (R2R) state, the joint thermostatically-controlled appliance and event-

based appliance dynamic programming algorithm will be called using an ordered pair of

states and decisions for the thermostatically-controlled appliance and event-based appli-

ance in the dynamic programming processing. As soon as the joint dynamic programming

algorithm returns a decision to Start the event-based appliance, the thermostatically-

controlled appliance reverts back to its independent dynamic programming algorithm.

The thermostatically-controlled appliance then continues running its own dynamic pro-

gramming algorithm until the next time the event-based appliance is loaded in the simu-

lation.

Once again, the sequential and joint variations of coordinated decision methods apply

only for two (or more) controllable appliances. Each of these coordinated decision options

can also have an uncontrollable weather-dependent local source of electricity generation

added to the simulation. Figure 3-11 illustrates this for the joint air conditioner and

dishwasher scenario by adding a wind turbine to the simulation. When adding the wind

turbine, there are two new cases to consider in that the Energy Box can make the decisions

without or with a wind forecast. Adding a wind turbine without a wind forecast simply

means the Energy Box has no knowledge of when electricity will be supplied by the

wind turbine. On the other hand, adding a wind turbine with a wind forecast means

the Energy Box can coordinate electricity consumption to coincide with windier hours

if it is beneficial to do so. Determining when the Energy Box should incorporate these

variations of coordination into the decision methods will be discussed throughout the next

two chapters.
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Chapter 4

Energy Box Results for

Consumers

Although discussion abounds about smart grid technologies, few of these technologies

are installed in residences today. Notable examples of these technologies are distributed

generation (DG) and/or storage systems, such as plug-in electric vehicles that are able to

discharge electricity to the grid. Residents using these technologies are prosumers, both

producers and consumers of electricity, and are the focus of Chapter 5. This chapter

focuses on results specific to the vast majority of electricity customers, those who do not

utilize distributed generation nor storage systems and thus are not able to sell electricity

to the grid. In other words, this chapter focuses on electricity consumers.

4.1 Benefits of Coordination to Electricity Consumers

Electricity consumers face two main external factors that drive decisions of how and when

to use electricity: the electricity tariff and system constraints. As discussed in section

2.3, a variety of retail electricity tariffs exist. Along with a tariff for electric energy

($/kWh), some consumers may experience a ‘demand charge’ or ‘power limit’, each of
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which was discussed in section 2.3. Flohr [2010] and Morganti et al. [2009b] show how

coordination within a home is beneficial when facing ‘demand charges’ or ‘power limits’,

respectively, even when the price per kWh for electric energy is constant. With these

results already well established in the literature, demand charges and power limits were

not included in this research implementation of the Energy Box model, though certainly a

commercial version of the Energy Box would need to accommodate all types of electricity

tariff elements and system constraints.

In some locations, a consumer’s electricity tariff only involves a cost of electric energy

($/kWh), with no additional demand charge and no power limit. If this cost of electric

energy is an hourly real-time pricing tariff where prices are fixed less than an hour in

advance (FP = 1 from the terminology in chapter 3), will benefits arise from coordinated

control relative to independent control within a home?

Figure 4-1: Comparison of the cost and comfort outputs for fixed thermostat set points
and a range of settings on the comfort versus cost dial described in section 3.4.2

To test this, consider first the independent control of the air conditioner and the dish-

washer when facing hourly real-time pricing. Figure 4-1 presents the results from the

air conditioner’s dynamic programming algorithm for a range of settings on the comfort

versus cost dial described in section 3.4.2 and illustrated in figure 3-8. This provides the
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baseline of comfort versus cost tradeoffs when the air conditioner is controlled indepen-

dently of the dishwasher.

All coordinated decision methods for two controllable appliances from section 3.5 were

then tested with the same set of simulated consumers and the same range of settings on

the comfort versus cost dial, again with hourly real-time pricing. As illustrated in figure 4-

2, it was found that the comfort and cost results from the coordinated control simulations

were always exactly the same as the comfort and cost results from the independent control

simulations.

Figure 4-2: Illustration of equivalent cost and comfort outputs from Independent, Sequen-
tial and Joint decision methods for Consumers

From these simulations, it was observed that for appliances and storage devices providing

independent services, there are no benefits to coordinated control over indepen-

dent control for consumers facing time-varying pricing of electric energy if

there are no accompanying demand charges, power limits or inclining block

rates as part of the electricity pricing tariff. Proposition 1 and its accompanying

proof at the end of this chapter in section 4.3 presents the full mathematical arguments

needed to validate this observation for those interested. The rest of this section discusses

the same result with a minimal amount of mathematical detail.
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Consider the dynamic programming mathematical formulation for an event-based appli-

ance, presented originally as equation 3.4 from section 3.3.3 and copied here for conve-

nience:

min
(xEBA

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBAt , xEBAt ,Wt+1

)]
.

.

The dynamic programming mathematical formulation for coordinated decision making

between two event-based appliances would be

min
(xEBA1

t )
FC

t=0
,(xEBA2

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t , SEBA2
t , xEBA2

t ,Wt+1

)]
. (4.1)

.

If the contribution function

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t , SEBA2
t , xEBA2

t ,Wt+1

)]
can be mathematically separated into

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t ,Wt+1

)]
+ E

[
ĈCost
t+1

(
SEBA2
t , xEBA2

t ,Wt+1

)]
,

then there are no benefits of coordinated decision making relative to independent decision

making as is illustrated in the proof of Proposition 1 in section 4.3.

On the other hand, if Ccost cannot be mathematically separated, then there could be

some benefits from coordinated decision making relative to independent decision making.

For instance, if the electricity tariff includes a demand charge (i.e. a price for electric

power alongside the time-varying price for electric energy) or if the system imposes a

power limit, then Ccost is indeed mathematically inseparable, hence the realization of
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coordination benefits via Flohr [2010] and Morganti et al. [2009a].

Similarly, Mohsenian-Rad and Leon-Garcia [2010] show that if the electricity tariff charges

a piecewise linear or non-linear rate for electric energy ($/kWh) in each (hourly) time

step (often called ‘inclining block rates’), then coordinated decision making could provide

benefits over independent decision making, again because Ccost is not mathematically

separable.

A related observation also holds for the Ccomfort contribution function that is in the

thermostatically-controlled appliance’s dynamic programming mathematical formulation

(equation 3.5) from section 3.4.2. Thermal comfort can be obtained via HVAC systems

(Heating, Ventilation and Air Conditioning), dehumidifiers and/or thermal storage sys-

tems controlling the indoor temperature and/or humidity level. If more than one of these

appliances are controllable, then Ccomfort may not be mathematically separable, in which

case coordinated decision making between the HVAC system, dehumidifier and thermal

storage system may (though may not) produce benefits over independent decision mak-

ing.

Nonetheless, the key result observed in this particular scenario is that for appliances

and storage devices providing independent services, if the electricity tariff is hourly real-

time pricing for electric energy with no demand charges, power limits or inclining block

rates, then there is no benefit to coordinated decision making over independent decision

making.

4.2 Potential System Problems with Locally-focused

‘Enabling Technology’

As discussed in section 2.3, time-varying pricing of electricity in electricity markets has

long been proposed as a method that would let the electric grid reach a state of home-

ostasis, automatically adjusting to variations of supply and demand and thus maintaining
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a balanced equilibrium [Schweppe et al., 1980, Chao et al., 1986, Chao and Wilson, 1987,

Borenstein et al., 2002, Borenstein, 2005]. For a system with large, centralized power

plants, time-varying pricing is in theory supposed to smooth out the aggregate demand

curve to let these large power plants operate most efficiently, thus bringing down costs

for everyone.

Numerous pilot programs (collected and summarized by the Brattle group [Faruqui et al.,

2007, Faruqui and Sergici, 2008]) produced encouraging results that peak electricity de-

mand would indeed decrease in response to time-varying pricing tariffs. Faruqui et al.

[2007] and Faruqui and Sergici [2008] discuss further that ‘enabling technology’ clearly in-

creased residents’ peak load reductions by automating the responses to these time-varying

pricing policies. The exact implementation of the ‘enabling technology’ varied by pilot,

but generally included (a) smart thermostats that ‘automatically raise the temperature

setting on the thermostat by two or four degrees’ Fahrenheit and (b) ‘always-on gate-

way systems’ that would automatically shed electric load whenever the price of electricity

surpassed a pre-set threshold [Faruqui et al., 2007].

Adhering to this dissertation’s notation, the threshold-controlled smart thermostat’s de-

cisions are simply

xTCA.AC =

k
max.comfortable + 2 wprice.buy > kthreshold.price

kmax.comfortable wprice.buy ≤ kthreshold.price
(4.2)

Considering that the only control option designed into this particular ‘enabling technol-

ogy’ implementation is the reduction of electricity demand during high-priced hours via

this threshold control structure, it was essentially guaranteed that the peak load reduc-

tion would increase with the inclusion of more elements of ‘enabling technology’. This

threshold control process was recreated in the Energy Box simulation and yielded the

same observed results as the pilot programs from Faruqui et al. [2007] and Faruqui and

Sergici [2008].
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However, what if the objective of the ‘enabling technology’ was explicitly designed to

minimize the cost paid by the consumer while maintaining a sufficient level of thermal

comfort? This is precisely the objective of the Energy Box’s dynamic programming deci-

sion method. Ultimately, the open research question is: Will the aggregate peak electricity

demand on the grid be lowered when automated home energy management systems con-

trol the thermostat in response to hourly real-time pricing? Though it is impossible to

reach a conclusion to this particular question given the scale and scope of the current

Energy Box model, drilling down briefly into the detailed output provides an interesting

observation.

Figure 4-3: Illustration of the correlation between outdoor temperature and electricity
consumption (kWh) for air conditioning when the thermostat is fixed at the consumer’s
preferred set point

To provide a point of reference, first consider the electricity consumption from the air

conditioner when the thermostat is fixed to a specific set point. Figure 4-3 shows how the

electricity consumption for air conditioning on an example day nicely matches the shape

of the outdoor temperature in order to maintain this particular resident’s comfortable

set point. Figure 4-4 then shows how changing the set point for the entire day to be

the resident’s tolerable set point decreases the electricity consumption but maintains the
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same shape.

For the final scenario, consider the Energy Box’s dynamic programming algorithm for the

air conditioner where the thermostat set point can take on the range of values

xTCA.AC ∈
[
kmax.comfortable − 2, kmax.comfortable + 2

]
at each hour with an objective function of minimizing cost while maximizing comfort via

the tradeoffs described in section 3.4.2.

Figure 4-4: Illustration of the correlation between outdoor temperature and electricity
consumption (kWh) for air conditioning when the thermostat is fixed at both the con-
sumer’s preferred and tolerably comfortable set points

As shown in figure 4-1, there are cost savings that can be obtained by trading away

some thermal comfort. But how are these savings obtained? Figure 4-5 shows a typical

day using the air conditioner’s dynamic programming algorithm under hourly real-time

pricing rates with prices known both a day ahead (FP = 24) and less than an hour ahead

(FP = 1), and clearly (a) the peak electricity demand from this individual home has

increased instead of decreased, and (b) the air conditioner’s electricity consumption is no

longer smooth. Instead, it oscillates wildly as the dynamic programming algorithm takes
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advantage of even the slightest variations in electricity prices. What is happening is that

the automated ‘enabling technology’ with the competing objectives of minimizing cost

while maximizing comfort is capturing any and every penny of savings available due to

the hourly real-time pricing tariff’s price differences. The sensitivity of this oscillatory

behavior to the hourly time step will need to be tested in future research, however it is

expected that this ‘enabling technology’-induced oscillatory behavior will hold for most

sub-hourly, hourly and multiple hour time steps.

As mentioned earlier, the traditional objective of time-varying electricity pricing tariffs is

to smooth out the aggregate load curve as traditional centralized electricity generation is

most efficient when operated at a constant output. Clearly if the behavior from figure 4-5

coincides across a large number of residential customers, then the hourly real-time pricing

tariff will have in fact made the aggregate demand curve less smooth than it was before

hourly real-time pricing was introduced.

Figure 4-5: Electricity consumption (kWh) from the air conditioner for the fixed, com-
fortable thermostat set point and for two instances of the dynamic programming output
under hourly real-time pricing tariffs

In an independently developed model, Ramchurn et al. [2011a] found exactly this same

result with their model of 500 customers. In addition to the oscillations induced during
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the day, the model by Ramchurn et al. [2011a] shows another behavior induced by hourly

real-time prices set a day in advance: all event-based appliances with sufficient flexibility

in their starting time congregated at the lowest priced hour, creating the largest peak of

all from these 500 customers at a traditionally off-peak hour. With ‘enabling technol-

ogy’ automating responses, this is what could happen if appropriate feedback or learning

mechanisms (like the one proposed later in the paper by Ramchurn et al. [2011a]) are not

included in the tariff and system design.

Implementation of the real-time pricing (RTP) tariff is clearly important as well. Schweppe

et al. [1980] and others call for the real-time pricing tariff to have hourly prices set less

than an hour in advance, and the behavior induced by this system may indeed lead to a

state of homeostasis. However, the desire for certainty in prices has caused some programs

to adopt a day-ahead hourly real-time pricing tariff (i.e. RTP with FP = 24 instead of

RTP with FP = 1) [Spees and Lave, 2007, Energy, 2011]. This tariff structure deviates

significantly from the real-time pricing economic theory [Schweppe et al., 1980, Borenstein

et al., 2002, Borenstein, 2005] as these hourly prices are fixed a day in advance based on

expected costs and consumption. There is no apparent feedback mechanism to update the

prices should residents change their behavior significantly from what was expected. As

such, something like the behavior seen in figure 4-5 may (though may not) pose a problem

to the grid when automated home energy management systems like the Energy Box scale

up to a large number of consumers. In that case, hourly real-time pricing with prices fixed

a day in advance could induce an aggregate load curve that is less smooth than when it

started, which is exactly the opposite of the goal of time-varying pricing.

This is most certainly not saying that time-varying electricity pricing tariffs should be

discarded. It’s certainly possible that the oscillatory behavior induced locally will not

coincide with each other across many homes, and thus from the grid’s perspective, no

instabilities or inefficiencies would emerge. In addition, other system designs could be

implemented that better integrate time-varying pricing into retail electricity markets.

For instance, time-varying pricing might work well with an appropriate bidding structure,

feedback mechanism and/or learning mechanism, though the cost of implementing and
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monitoring such a system certainly needs to be considered [Hammerstrom et al., 2007a,

Kok et al., 2008, Wang, 2009]. Similarly, aggregators could help coordinate electricity

consumption across a large number of clients, managing the behavior of the thermostat

and other controllable appliances to meet comfort objectives while ensuring a desirable

aggregate demand curve for the grid, whatever that shape may be [Medina et al., 2010,

Brooks et al., 2010, Chao, 2010].

Again, numerous system designs could smartly integrate responsive demand into grid

operations either via time-varying pricing or other real-time signals. Ultimately, regional

details likely will influence what system design is best for that region [Chao et al., 2006],

and as discussed in section 2.4, these system designs should be simulated and tested at

large scale to better understand the ‘smart grid’ dynamics that emerge under each system

design [Podmore and Robinson, 2010].

4.3 Mathematical Details for Proving When Coor-

dination Provides No Additional Benefits for a

Consumer

Proposition 1. For appliances and storage devices providing independent services, if the

electricity tariff is hourly real-time pricing for electric energy with no demand charges,

power limits or inclining block rates, then there is no benefit to coordinated decision making

over independent decision making.

Proof. The following proof will use two event-based appliances, named EBA1 and EBA2

for differentiation, to illustrate the arguments. With proper modifications, the result holds

for an event-based appliance and thermostatically-controlled appliance, two thermostatically-

controlled appliances or any other combination of controllable appliances that provide

independent services. A well-defined terminal stage (FC) is also assumed for this proof,

though the result will still hold even without this assumption.
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The objective of this proof is to show that the result of the coordinated decision process is

equivalent to the sum of the results from the two independent decision processes. Using the

mathematical formulations from section 4.1, the mathematical equivalent of this objective

is

min
(xEBA1

t )
FC

t=0
,(xEBA2

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t , SEBA2
t , xEBA2

t ,Wt+1

)]
=

min
(xEBA1

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t ,Wt+1

)]
+

min
(xEBA2

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA2
t , xEBA2

t ,Wt+1

)]
.

Base Case: As discussed in section 3.3.3, the only possible state for an event-based

appliance (EBA) at the terminal stage (FC) is Not Ready to Run (NR2R) since the

Energy Box simulation process guarantees that the event-based appliance will complete

its cycle by a consumer-specified flexibility constraint (FC). The value of being in the

state NR2R at the terminal stage FC is defined to be 0:

V EBA1
FC (NR2R1) = 0

V EBA2
FC (NR2R2) = 0

VFC (NR2R1, NR2R2) = 0.

From the terminal stage definitions above, it follows that

VFC (NR2R1, NR2R2) = V EBA1
FC (NR2R1) + V EBA2

FC (NR2R2) = 0,

which means that in the base case at the terminal stage, the coordinated decision process
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of the two event-based appliances is separable into their independent decision processes.

Iterative Case: Assume that the coordinated decision process of two event-based appli-

ances is separable into their independent decision processes at stage i+ 1, i.e.

Vi+1

(
SEBA1
i+1 , SEBA2

i+1

)
= V EBA1

i+1

(
SEBA1
i+1

)
+ V EBA2

i+1

(
SEBA2
i+1

)

for all state combinations
(
SEBA1
i+1 , SEBA2

i+1

)
.

At stage i, there are numerous state combinations of
(
SEBA1
i , SEBA2

i

)
. However, for any

state combination in which either SEBA1
i or SEBA2

i is in the state Not Ready to Run

(NR2R) or Running, then as discussed in section 3.3.3, there is no decision to make for

that particular event-based appliance. For these state combinations, the coordinated deci-

sion making process is equivalent to the independent decision process for the event-based

appliance that is in the Idle and Ready to Run (R2R) state, meaning that the coordi-

nated decision process of two event-based appliances is separable into their independent

decision processes at stage i for all of these state combinations.

This leaves only the case where both event-based appliances are in the Idle and Ready

to Run (R2R) state, i.e. whenever
(
SEBA1
i , SEBA2

i

)
= (R2R1, R2R2). In this case, both

event-based appliances have the choice of deciding whether to Start or to Wait. For

space constraints in the equations that follow, St = Start and Wa = Wait. In order

to show that the coordinated decision process is separable into the independent decision

processes, consider first the value of being in state (R2R1, R2R2):

Vi
(
SEBA1
i = R2R1, S

EBA2
i = R2R2

)
= (4.3)

87



= min



E
[
ĈCost
i+1 (R2R1, St1, R2R2, St2,Wi+1)

]
+ Vi+1 (NR2R1, NR2R2)

E
[
ĈCost
i+1 (R2R1, St1, R2R2,Wa2,Wi+1)

]
+ Vi+1 (NR2R1, R2R2)

E
[
ĈCost
i+1 (R2R1,Wa1, R2R2, St2,Wi+1)

]
+ Vi+1 (R2R1, NR2R2)

E
[
ĈCost
i+1 (R2R1,Wa1, R2R2,Wa2,Wi+1)

]
+ Vi+1 (R2R1, R2R2) .

With the assumption that

Vi+1

(
SEBA1
i+1 , SEBA2

i+1

)
= V EBA1

i+1

(
SEBA1
i+1

)
+ V EBA2

i+1

(
SEBA2
i+1

)
for all state combinations

(
SEBA1
i+1 , SEBA2

i+1

)
, equation 4.3 becomes

Vi
(
SEBA1
i = R2R1, S

EBA2
i = R2R2

)
= (4.4)

= min



E
[
ĈCost
i+1 (R2R1, St1, R2R2, St2)

]
+ V EBA1

i+1 (NR2R1) + V EBA2
i+1 (NR2R2)

E
[
ĈCost
i+1 (R2R1, St1, R2R2,Wa2)

]
+ V EBA1

i+1 (NR2R1) + V EBA2
i+1 (R2R2)

E
[
ĈCost
i+1 (R2R1,Wa1, R2R2, St2)

]
+ V EBA1

i+1 (R2R1) + V EBA2
i+1 (NR2R2)

E
[
ĈCost
i+1 (R2R1,Wa1, R2R2,Wa2)

]
+ V EBA1

i+1 (R2R1) + V EBA2
i+1 (R2R2) ,

with the dependence on Wi+1 dropped from Ĉcost
i+1 for space reasons.

Consider the first element of the minimization portion of equation 4.4 as an example.

Under a real-time pricing (RTP) tariff with prices fixed one hour in advance (FP = 1),

it follows that

E
[
ĈCost
i+1 (R2R1, St1, R2R2, St2)

]
= (4.5)
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=
∑

grid.demand

[
P
[
W g.d.
i+1 = wg.d.i+1

]
· wRTP.price.buyi+1

(
wg.d.i+1

)
·
(
wdemand.EBA1 + wdemand.EBA2

)]
.

Because the summation and discrete probability mass function are all linear functions

with respect to stage i, equation 4.5 is separable, and thus

E
[
ĈCost
i+1 (R2R1, St1, R2R2, St2)

]
= E

[
ĈCost
i+1 (R2R1, St1)

]
+E

[
ĈCost
i+1 (R2R2, St2)

]
(4.6)

The same arguments hold for the other three elements of the minimization, and with this

observation, equation 4.4 becomes

Vi
(
SEBA1
i = R2R1, S

EBA2
i = R2R2

)
= (4.7)

= min



E
[
ĈCost
i+1 (R2R1, St1)

]
+ E

[
ĈCost
i+1 (R2R2, St2)

]
+ V EBA1

i+1 (NR2R1) +

V EBA2
i+1 (NR2R2)

E
[
ĈCost
i+1 (R2R1, St1)

]
+ E

[
ĈCost
i+1 (R2R2,Wa2)

]
+ V EBA1

i+1 (NR2R1) +

V EBA2
i+1 (R2R2)

E
[
ĈCost
i+1 (R2R1,Wa1)

]
+ E

[
ĈCost
i+1 (R2R2, St2)

]
+ V EBA1

i+1 (R2R1) +

V EBA2
i+1 (NR2R2)

E
[
ĈCost
i+1 (R2R1,Wa1)

]
+ E

[
ĈCost
i+1 (R2R2,Wa2)

]
+ V EBA1

i+1 (R2R1) +

V EBA2
i+1 (R2R2)

A quick aside will prove a result that will finish the separation of equation 4.7 to prove
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the original proposition.

Lemma 2.

min [c1 + c3, c1 + c4, c2 + c3, c2 + c4] = min [c1, c2] +min [c3, c4] (4.8)

Proof.

min [c1 + c3, c1 + c4, c2 + c3, c2 + c4] = min [min [c1 + c3, c1 + c4, c2 + c3, c2 + c4]]

= min [min [c1 + c3, c1 + c4] ,min [c2 + c3, c2 + c4]]

= min [c1 +min [c3, c4] , c2 +min [c3, c4]]

= min [c1, c2] +min [c3, c4]

Replacing the variables in the Lemma as follows

c1 = E
[
ĈCost
i+1 (R2R1, St1)

]
+ Vi+1 (NR2R1)

c2 = E
[
ĈCost
i+1 (R2R1,Wa1)

]
+ Vi+1 (R2R1)

c3 = E
[
ĈCost
i+1 (R2R2, St2)

]
+ Vi+1 (NR2R2)

c4 = E
[
ĈCost
i+1 (R2R2,Wa2)

]
+ Vi+1 (R2R2)

provides the final step necessary to complete the proof:

Vi
(
SEBA1
i = R2R1, S

EBA2
i = R2R2

)
= (4.9)
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= min



E
[
ĈCost
i+1 (R2R1, St1)

]
+ E
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ĈCost
i+1 (R2R2, St2)
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+ V EBA1
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V EBA2
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E
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E
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i+1 (R2R1,Wa1)
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[
ĈCost
i+1 (R2R2, St2)
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+ V EBA1

i+1 (R2R1) +

V EBA2
i+1 (NR2R2)

E
[
ĈCost
i+1 (R2R1,Wa1)

]
+ E

[
ĈCost
i+1 (R2R2,Wa2)

]
+ V EBA1

i+1 (R2R1) +

V EBA2
i+1 (R2R2)
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E
[
ĈCost
i+1 (R2R1, St1)
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+ V EBA1

i+1 (NR2R1)

E
[
ĈCost
i+1 (R2R1,Wa1)

]
+ V EBA1

i+1 (R2R1)

+min

E
[
ĈCost
i+1 (R2R2, St2)

]
+ V EBA2

i+1 (NR2R2)

E
[
ĈCost
i+1 (R2R2,Wa2)

]
+ V EBA2

i+1 (R2R2)

= Vi
(
SEBA1
i = R2R1

)
+ Vi

(
SEBA2
i = R2R2

)
.

By showing that Vi
(
SEBA1
i , SEBA2

i

)
and Vi

(
SEBA1
i

)
+ Vi

(
SEBA2
i

)
are equivalent for the

base case (terminal stage FC) and for the iterative case, this means that

min
(xEBA1

t )
FC

t=0
,(xEBA2

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t , SEBA2
t , xEBA2

t ,Wt+1

)]
=

min
(xEBA1

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA1
t , xEBA1

t ,Wt+1

)]
+
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min
(xEBA2

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBA2
t , xEBA2

t ,Wt+1

)]
.

Therefore, it has been proven that there is no benefit to coordinated decision making over

independent decision making for appliances and storage devices providing independent

services when the electricity tariff is hourly real-time pricing for electric energy with no

demand charges, power limits or inclining block rates.
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Chapter 5

Energy Box Results for Prosumers

In the future, a majority of electricity customers may no longer be just consumers but

instead would be prosumers of electricity, i.e. customers who both produce and con-

sume electricity. Even though residential sources of electricity generation, energy storage

systems and plug-in electric vehicles are not common in today’s residential settings, the

clear interest in integrating these elements into the smart grid led to their inclusion in

the Energy Box simulation. This chapter examines whether coordinated decision making

between distributed generation (particularly uncontrollable, weather-dependent genera-

tion sources) and electricity consumption provides additional benefits over independent

decision making. The results discussed in this chapter focus on benefits of coordinating

electricity consumption with forecasted electricity generation from a rooftop wind tur-

bine, though the general results certainly would extend to other uncontrollable, weather-

dependent sources of electricity generation (like solar photovoltaics).
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5.1 Coordinating the Air Conditioner and the Rooftop

Wind Turbine

Fgure 5-1 presents some of the results obtained when integrating the air conditioner’s

dynamic programming algorithm with and without wind forecasts under varying values

of kbuy.to.sell.scaling.factor. Throughout this chapter, the electricity pricing tariff is hourly

real-time pricing with prices fixed a day in advance (FP = 24) so that the primary driver

of uncertainty comes only from the wind forecast. Similar results were obtained for hourly

real-time pricing with prices fixed an hour in advance (FP = 1).

The first comfort versus savings tradeoff curve in figure 5-1 provides a reference case

when no rooftop wind turbine is included in the simulation. This curve is equivalent to

the comfort versus cost tradeoff curve in figure 4-1 from chapter 4 except for the shift in

focus from cost to savings.

Returning to figure 5-1, the next two comfort versus savings tradeoff curves (moving from

left to right) are when W price.sell = 0 and are the results without and with the wind

forecast. In this scenario, any unused electricity generated by the rooftop wind turbine is

effectively ‘lost’. Nonetheless, adding a rooftop wind turbine even without a wind forecast

dominates the case with no wind turbine as the savings essentially double. Having a

reasonable forecast of expected wind speeds further improves the realized savings. The

relative savings observed across the three forecast structures - perfect forecasts (PF), full

distribution (FD), and median value of the distribution (MV) - originally presented in

section 3.3.3 were quite similar, so only the results from the simulations using perfect

forecasts (PF) are presented throughout this chapter.

Proceeding to the next two comfort versus savings tradeoff curves (again moving from

left to right in figure 5-1), the results for without and with the PF wind forecast when

W price.sell = 0.5 ·W price.buy are shown. Additional realized savings from having the fore-

casted wind speeds relative to not having the forecasted wind speeds is noticeably smaller

for W price.sell = 0.5 ·W price.buy than when W price.sell = 0. Overall, benefits of coordinating
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Figure 5-1: Coordinated response of the air conditioner with a rooftop wind turbine:
includes results from three relationships between W price.sell and W price.buy

air conditioning consumption with forecasted generation from the wind turbine decreases

as kbuy.to.sell.scaling.factor increases from 0 to 1.

The final comfort versus savings tradeoff curve is actually two equivalent curves and

captures what happens in the linear price case of W price.sell = W price.buy, i.e. when

kbuy.to.sell.scaling.factor = 1. In this case, there is no benefit to having a forecast of the wind

speed. The thermostat set point decisions made by the air conditioner’s dynamic program-

ming algorithm when W price.sell = W price.buy are exactly the same as the decisions made

by the air conditioner’s dynamic programming algorithm when no rooftop wind turbine

is included in the simulation. In other words, the air conditioner’s dynamic programming

algorithm would decide to do exactly what it did without a wind turbine included in

the decision process. Thus, there is no benefit to coordinating electricity usage with

forecasted weather-dependent distributed generation when W price.sell = W price.buy.

The proof discussed in section 5.3 illustrates the theory behind the simulation results from

figure 5-1. These results hold for all of the appliances and decision structures discussed

in chapter 3, and many simulation runs numerically support these results as well.
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Recent related research from Pedrasa et al. [2010] with an independently developed model

found similar numerical results using Particle Swarm Optimization, suggesting that these

results hold for other optimization methods, as one would expect. One note is that the

structure of a feed-in tariff for distributed generation may differ from the W price.sell =

kbuy.to.sell.scaling.factor · W price.buy structure used here, and the exact results given those

feed-in tariffs would depend on the relationship between W price.sell and W price.buy.

Similarly, these results would need to be revisited if other contribution functions beyond

Ccost and Ccomfort (defined in sections 3.3.3 and 3.4.2) were included in the objective

function. For instance, a competing contribution function with a goal of maximizing the

electricity used from the local wind turbine would potentially benefit from coordinated

control of appliances at the home. This Energy Box model did not include a contribution

function for maximizing the electricity used from the local wind turbine, though this would

be a straightforward addition if desired in a future Energy Box implementation.

5.2 Coordinating the Controllable Appliances with

the Rooftop Wind Turbine

Adding a dishwasher to the mix, consider only the case where W price.sell = 0. The comfort

and savings results from coordination between the dishwasher, air conditioner and wind

forecasts for various values of kwarm are shown in figure 5-2.

The comfort versus savings tradeoff curve with red square markers captures the results

from independent decision making without wind forecasts (note: this is the same curve

from figure 5-1 with red square markers).

The comfort versus savings tradeoff curve with green triangle markers captures the results

for independent decision making with wind forecasts (note: this is the same curve from

figure 5-1 with green triangle markers).

The tails extending out to the right with circle markers are the results from coordinated
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Figure 5-2: Coordinated response of the dishwasher and air conditioner with a rooftop
wind turbine: an overview of many values of the parameter kwarm controlling the comfort
versus cost tradeoff

decisions between the dishwasher and air conditioner with the wind forecast for a subset

of values of the cost versus comfort tradeoff parameter kwarm.

The variation of coordination benefits is easier to see in figure 5-3. As is labeled in the

figure, the method of coordination has a clear affect on the amount of additional benefits

realized from coordinated decision making, with a ranking of most additional benefits to

least additional benefits being:

1. Joint dishwasher & air conditioner dynamic programming algorithm

2. The air conditioner’s dynamic programming algorithm plans around known elec-

tricity consumption for dishwashing

3. The air conditioner’s dynamic programming reacts to previously unknown electric-

ity consumption for dishwashing

Just as benefits diminished as ksell.to.buy.scaling.factor increases from 0 to 1 in figure 5-1, the

magnitude of the benefit from coordinated decision making decreases in the same way for
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the dishwasher and air conditioner as ksell.to.buy.scaling.factor increases from 0 to 1.

The results illustrated for two controllable appliances and a wind turbine in figure 5-3

also hold for three controllable appliances and a wind turbine, and thus it is reasonable to

assume that the same qualitative results hold for any number of controllable appliances,

though there will likely be diminishing returns for each additional appliance added into

the coordinated decision methods. Computation requirements and the complexity of the

joint decision method in particular increases exponentially as more appliances are added.

A sensitivity analysis in future research will identify the right balance of implementing

coordinated decision methods given the expected additional benefits in terms of comfort

and cost.

Figure 5-3: Coordinated response of the dishwasher and air conditioner with a rooftop
wind turbine: details from one value of the parameter kwarm controlling the comfort versus
cost tradeoff
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5.3 Mathematical Details for Proving When Coor-

dination Provides No Additional Benefits for a

Prosumer

Proposition 3. There is no benefit to coordinating electricity usage with forecasted

weather-dependent distributed generation (DG) when W price.sell = W price.buy.

Proof. This proposition holds for all types of appliances and is illustrated here for a

thermostatically-controlled appliance. Consider the mathematical representation of the

dynamic programming algorithm for a thermostatically-controlled appliance:

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
ĈCost
t+1

(
STCAt , xTCAt ,Wt+1

)}
.

Including a wind turbine’s locally generated electricity into this algorithm is equivalent to

calculating the value of the ĈCost
t+1

(
STCAt , xTCAt ,Wt+1

)
contribution function at each stage

t in the following way:

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·max

[
W net.demand
t , 0

]
+W price.sell

t ·max
[
W net.generation
t , 0

]}

where

W net.demand
t = −W net.generation

t

and

W net.demand
t = W demand.TCA

t

(
STCAt , xTCAt

)
−W generation.DG.wind

t

(
Wwind.speed
t

)
.
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Using W net.demand
t = −W net.generation

t , we obtain the next two steps:

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·max

[
W net.demand
t , 0

]
+W price.sell

t ·max
[
−W net.demand

t , 0
]}

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·max

[
W net.demand
t , 0

]
+W price.sell

t ·min
[
W net.demand
t , 0

]}
.

Since W price.buy
t = W price.sell

t is assumed in this case, we then have

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·max

[
W net.demand
t , 0

]
+W price.buy

t ·min
[
W net.demand
t , 0

]}

which is the same as

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·

(
W net.demand
t + 0

)}
.

Substituting in for W net.demand
t (and leaving out the dependencies due to space constraints)

yields

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·

(
W demand.TCA
t −W generation.DG.wind

t

)}
,

which expands to

min
(xTCA

t )
DH

t=0

DH∑
t=0

E
{
W price.buy
t ·W demand.TCA

t −W price.buy
t ·W generation.DG.wind

t

}
.
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Since W price.buy
t ·W generation.DG.wind

t does not depend on xTCAt , the right-hand term can be

pulled out of the minimization process:

min
(xTCA

t )
DH

t=0

[
DH∑
t=0

E
{
W price.buy
t ·W demand.TCA

t

}]
−

DH∑
t=0

E
{
W price.buy
t ·W generation.DG.wind

t

}
.

Hence, in the end we have the thermostatically-controlled appliance’s dynamic program-

ming process separated from the expected revenue from the local wind turbine, which

means that there is no benefit to coordinating electricity usage with forecasted weather-

dependent distributed generation (DG) when W price.sell = W price.buy.
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Chapter 6

Energy Box Conclusions and Future

Work

6.1 Summary of Key Results

As discussed in chapter 1, the main motivation of the Energy Box research was to design,

construct and test a prototype software architecture that can accommodate a wide variety

of local energy management environments and user preferences. Hopefully it will serve

as a platform for continued research into local energy management algorithms. A few

extension ideas are discussed in section 6.2.

One of the specific research questions studied in depth for this dissertation was determin-

ing when coordinated control of appliances and devices at a single residence or business

provides additional benefits to the consumer relative to independent control of appli-

ances and devices. This focus evolved during examination of the dissertation results. A

summarization of these results are illustrated in figure 6-1.

It is well established in the literature that there are benefits to coordination between

appliances at a single home when the electricity pricing tariff includes a demand charge

(i.e. a price for power ($/kW)) or involves inclining block rates (i.e. where the price
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Figure 6-1: Summary of Energy Box Results

for electric energy ($/kWh) increases as the total amount of electric energy consumed

increases). Similarly, the literature establishes a clear benefit to coordinating between

appliances at a single home whenever the electricity system includes technical constraints

such as power limits (i.e. a limit on electric power consumption that, if exceeded for too

long, causes the house to be blacked out).

With these results well established, this dissertation focused on scenarios where only the

price for electric energy ($/kWh) is included in the electricity pricing tariff. It is assumed

that the price for electric energy could be time-varying. Under this type of electricity

pricing tariff, whenever residents are only consumers of electricity (i.e. the resident does

not have local sources of electricity generation nor storage devices that could sell electricity

back to the grid), then there are no additional benefits from coordinating decisions across

appliances and devices within a home, as was discussed in Chapter 4. In other words,

for electric consumers under certain time-varying pricing scenarios, appliances can be

optimally controlled one at a time, independent of each other. To be clear, the optimal

decisions will most likely shift electricity consumption in response to the time-varying

prices, such as shifting schedulable loads to the cheapest-priced hour of the day. However,

104



the optimal decision made for one appliance in no way affects the optimal decision for

another appliance.

On the other hand, coordinating decisions between appliances at a home could provide

additional benefits relative to independent control of appliances and devices if a resident

both consumes and produces electricity. These benefits are realized, as discussed in Chap-

ter 5, when the price for selling electric energy is not equivalent to the price for buying

electric energy. However, when the selling price and the buying price for electricity are

equal, the benefits of coordination evaporate.

Returning to the case when the price for selling electric energy is not equivalent to the price

for buying electric energy, then the results from Chapter 5 again demonstrate that coor-

dination arguably provides additional benefits over independent decision making. Sum-

marizing the results illustrated in figure 5-3 from Chapter 5 for the case of a dishwasher,

an air conditioner and a rooftop wind turbine, the ranking of most to least improvement

realized from coordination over independent decision methods is

1. the joint dynamic programming decision method of the air conditioner’s thermostat

and the dishwasher with a wind forecast,

2. the air conditioner’s dynamic programming decision method with a wind forecast

plans around known dishwasher starting times

3. the air conditioner’s dynamic programming decision method with a wind forecast

reacts to dishwasher starting times, and

4. the air conditioner’s dynamic programming decision method makes its decisions

using a wind forecast but with no knowledge of when the dishwasher runs

6.2 Further Energy Box-related Research

Stemming from this initial Energy Box research, three broad categories for further research

have been identified. The first is expanding the capabilities of the single-home Energy
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Box model. Some of the potential areas for expansion are listed here.

• Implement and compare other decision making methods under uncertainty with the

results from dynamic programming.

• Implement and integrate decision making methods for all appliances, storage devices

and sources of distributed electricity generation.

• Develop joint decision making algorithms for three or more appliances at a time.

• Use non-intrusive load monitoring and/or other similar methods to detect when un-

controllable loads start up so that, when beneficial, the Energy Box can update its

decisions for controllable appliances to react to the knowledge that an uncontrol-

lable load will now be consuming electricity [Leeb et al., 1995, Norford and Leeb,

1996].

• Collect and identify patterns in daily consumption to allow the Energy Box to plan

around expected consumption using this historical information [Abreu et al., 2010].

• Integrate real-time occupancy and location data (e.g. via GPS information from

mobile phones) into the algorithms so that the Energy Box can adapt to the inherent

variability in most people’s daily activities [Gupta et al., 2009].

The second research direction would be to integrate the dynamics of thousands (or more)

of Energy Boxes into smart grid simulations to determine the best way to coordinate

electricity demand across homes and businesses. The uncertain aggregate dynamics of

automated responses from many individual residents’ ‘enabling technology’ in response to

time-varying pricing tariffs and/or other new control structures for the smart grid leads

Podmore and Robinson [2010] and others to call for the need to develop large-scale smart

grid simulators to test these options at scale before rolling them out to the physical system

[Podmore and Robinson, 2010, Kok et al., 2008, 2005, Chassin et al., 2008, Burke and

Auslander, 2008]. With these simulators, researchers will be able to estimate the aggregate

effect of large penetrations of Energy Boxes and other home energy management systems

on the smart grid and the accompanying market structures.
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Still other research questions remain to be addressed.

Will hourly time-varying pricing tariffs elicit the desired shape of aggregate electricity

demand when prices are fixed a day in advance? Results from Ramchurn et al. [2011a]

suggest that there is significant potential for unintended consequences under such a tar-

iff.

What if the hourly time-varying prices were fixed less than an hour in advance? This

could alleviate some of the problems stemming from fixing hourly prices of electricity

a day in advance, but will residents and businesses be willing to deal with such price

uncertainty from one hour to the next?

Alternatively, could strategies that are not based on time-varying pricing be developed

for coordinating electricity demand across homes and businesses? For example, what

if a sufficiently large number of residents were willing to participate in a program that

coordinated the running of dishwashers overnight? Upon loading the dishwasher, the

resident could hit a ‘run overnight’ button that would select a starting time at random

during the overnight hours. The distribution from which this starting time is chosen could

be shaped each night by the program coordinator to induce whatever shape is desired in

aggregate from all of the dishwashers. For participating in this program, each resident

could receive a rebate for each time (s)he uses the ‘run overnight’ feature.

A properly designed smart grid simulator would be able to test and compare the aggregate

effect of ‘enabling technologies’ like the Energy Box when responding to time-varying elec-

tricity pricing tariffs and/or other electricity service structures like the ones listed above

and in section 2.4. The estimated benefits of these smart grid designs would also need to

be compared with the expected costs of implementing that system when determining the

best approaches for coordinating electricity demand across many homes.

Whether testing methods for coordinating electricity demand within a home or across

many homes, models and simulators are paramount to a better understanding of what

might happen throughout the ongoing smart grid evolution.
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However, what is arguably the most important research direction will involve implement-

ing and testing these automated decision making methods in homes of volunteers to

determine if the automated responses made by the Energy Box or other ‘enabling tech-

nologies’ meet the residents’ expectations of comfort and cost while allowing the residents

to maintain (or improve) their lifestyle. The best ideas from a technical and grid manage-

ment perspective may never realize their full potential at scale if residents and businesses

feel that the energy management service provided is undesirable. For this reason along

with the others discussed above, further research is necessary to continue investigating

the technical, management and social challenges of the smart grid evolution.
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Appendix A

Energy Box Computer Code

The Energy Box model developed for this dissertation is implemented in Matlab and

Excel, with the data processing in Matlab and data visualization in Excel. For anyone

interested in the code and data sets, please contact the author at dlivengo ’at’ alum ’dot’

mit ’dot’ edu.

Included in the files is a copy of the sequence of random numbers used in the model to

generate the 50 example days used in creating the figures from chapters 4 and 5. An

example of that data is presented here in Table A.1. The Markov matrices used for

modeling the weather and demand random variables are also included in Appendices B

and C.
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Table A.1: Energy Box simulated Random Numbers

Grid-level Outdoor Wind
Simulated Demand Temperature Speed

Grid-level Price Simulated Sim. Random Random Random
Simulated Demand of Electric Outdoor Wind Number Number Number

Day Simulated Simulated Energy Temp. Speed Sample Sample Sample
Number Hour Value ($/kWh) (oF ) (m/s) Sequence Sequence Sequence

1 6:00 13891 26.00 75 4 0.640558837 0.814723686 0.92274457
1 7:00 16099 34.00 76 4 0.658774142 0.905791937 0.800372092
1 8:00 17715 41.50 75 3 0.675330331 0.126986816 0.285946856
1 9:00 18593 44.50 76 3 0.744557714 0.913375856 0.543663233
1 10:00 19697 49.00 77 6 0.842177573 0.632359246 0.984776237
1 11:00 20571 54.00 78 7 0.516657168 0.097540405 0.715678067
1 12:00 21018 56.00 79 8 0.151868701 0.278498219 0.838969597
1 13:00 21172 56.00 82 8 0.380664274 0.546881519 0.433260561
1 14:00 21199 56.00 86 8 0.821019401 0.957506835 0.470624716
1 15:00 21256 56.00 90 8 0.171364379 0.964888535 0.560713411
1 16:00 21290 56.00 90 7 0.329975281 0.157613082 0.269091544
1 17:00 21783 58.00 92 8 0.966471987 0.970592782 0.749018468
1 18:00 21295 56.00 94 8 0.806292597 0.957166948 0.503887773
1 19:00 20703 54.00 94 8 0.22218793 0.485375649 0.646809666
1 20:00 21289 56.00 94 7 0.999773123 0.800280469 0.307745582
1 21:00 20089 52.00 87 5 0.063738697 0.141886339 0.138724636
1 22:00 18147 43.00 84 5 0.425483118 0.421761283 0.475572934
1 23:00 16138 34.00 83 4 0.404338152 0.915735525 0.362459281
1 0:00 14655 29.00 82 5 0.400292884 0.79220733 0.788113428
1 1:00 13766 26.00 82 6 0.111922644 0.959492426 0.780295821
1 2:00 13255 25.00 81 6 0.424310773 0.655740699 0.668512214
1 3:00 12988 24.00 77 4 0.613545883 0.035711679 0.13350386
1 4:00 13329 25.00 77 2 0.988061286 0.849129306 0.021555887
1 5:00 13996 26.00 78 2 0.219900779 0.933993248 0.559840706
2 6:00 15622 32.00 78 2 0.354081078 0.678735155 0.300819018
2 7:00 17545 41.50 78 4 0.266241879 0.757740131 0.939409714
2 8:00 18907 44.50 78 6 0.291498034 0.743132468 0.980903636
2 9:00 19858 49.00 77 5 0.188389542 0.39222702 0.286620389
2 10:00 19470 47.00 78 6 0.022859624 0.65547789 0.800820287
2 11:00 20063 52.00 79 7 0.449404182 0.171186688 0.896111351
2 12:00 20396 52.00 82 7 0.243640193 0.706046088 0.597526577
2 13:00 20723 54.00 82 8 0.868726545 0.031832846 0.884016736
2 14:00 20766 54.00 84 9 0.528610767 0.276922985 0.943731541
2 15:00 20675 54.00 80 9 0.914135168 0.046171391 0.549158087
2 16:00 22165 59.00 78 10 0.973930177 0.097131781 0.728386825
2 17:00 21842 58.00 80 9 0.585425959 0.823457828 0.576758298
2 18:00 19635 49.00 81 5 0.118975383 0.694828623 0.025857471
... ... ... ... ... ... ... ... ...
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Appendix B

Weather Modeling Details

A few examples of the wind speed Markov chain matrices introduced in section 3.3.3

are introduced here. In particular, the transition matrix from midnight to 1:00 AM

(Pwind.speed
0h,1h ) and the transition matrix from 1:00 AM to 2:00 AM (Pwind.speed

1h,2h ) are shown

in Tables B.1 and B.2, respectively. The other 22 hourly Markov chain matrices are

available as part of the Energy Box computer code as discussed in Appendix A. The

outdoor temperature Markov chain matrices are also included in the Energy Box computer

code, which are too large to present here.

For both wind speeds and outdoor temperatures, the weather forecast is generated in the

following process, illustrated here using wind speeds. Say for instance that the current

time is 6:00 AM. The simulated wind speed for the hour from 5:00 AM to 6:00 AM is

used as the initial condition wwind.speed0 , where the 0 in this case represents the current

moment in time, as opposed to 0h, which represents the midnight hour.

The forecasted distribution of wind speeds for all future hours in the model are then

calculated as follows:

Wwind.speed
1 = Pwind.speed

6h,7h ∗ wwind.speed0
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Wwind.speed
2 = Pwind.speed

7h,8h ∗Wwind.speed
1

= Pwind.speed
7h,8h ∗ Pwind.speed

6h,7h ∗ wwind.speed0

=

(
7h∏
i=6h

Pwind.speed
i,i+1

)
∗ wwind.speed0

For any future hour t, Wwind.speed
t is calculated via

Wwind.speed
t =

(
t−1∏
i=6h

Pwind.speed
i,i+1

)
∗ wwind.speed0

Continuing with this example, when the Energy Box simulation process steps forward

in time one time step (an hour in this case), the simulated ‘actual’ wind speed for the

6:00 AM to 7:00 AM hour is chosen via Wwind.speed
1 from above and the random number

generated for that hour from the extended version of Table A.1. After the Energy Box

simulation process steps forward in time one hour to 7:00 AM, the same process from

before is used with wwind.speed0 now reflecting the simulated wind speed for the 6:00 AM

to 7:00 AM hour:

Wwind.speed
1 = Pwind.speed

7h,8h ∗ wwind.speed0
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Wwind.speed
2 = Pwind.speed

8h,9h ∗Wwind.speed
1

= Pwind.speed
8h,9h ∗ Pwind.speed

7h,8h ∗ wwind.speed0

=

(
8h∏
i=7h

Pwind.speed
i,i+1

)
∗ wwind.speed0

Wwind.speed
t =

(
t−1∏
i=7h

Pwind.speed
i,i+1

)
∗ wwind.speed0

This process is repeated throughout the Energy Box simulation process for each hour of

each simulated day to determine the wind speed forecasts used by the decision meth-

ods.

Again, the same process is used for modeling outdoor temperatures and their forecasts,

with all necessary Markov chain matrices included in the Energy Box computer code upon

request.
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Table B.1: Example Wind Speed Markov Chain Matrix: Midnight to 1AM

0:00 to 1:00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s ...

0 m/s 0.17 0.00 0.50 0.25 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
1 m/s 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
2 m/s 0.06 0.04 0.31 0.45 0.10 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
3 m/s 0.03 0.00 0.27 0.49 0.13 0.05 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
4 m/s 0.01 0.00 0.06 0.27 0.38 0.22 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
5 m/s 0.01 0.00 0.01 0.10 0.30 0.39 0.16 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
6 m/s 0.00 0.00 0.02 0.04 0.09 0.35 0.36 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 ...
7 m/s 0.00 0.00 0.00 0.01 0.03 0.18 0.39 0.27 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 ...
8 m/s 0.00 0.00 0.00 0.04 0.04 0.04 0.21 0.31 0.29 0.06 0.02 0.00 0.00 0.00 0.00 0.00 ...
9 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.18 0.32 0.23 0.14 0.00 0.00 0.00 0.00 0.00 ...
10 m/s 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.20 0.40 0.00 0.20 0.00 0.00 0.00 0.00 0.00 ...
11 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.00 ...
12 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 ...
13 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00 ...
14 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 ...
15 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Table B.2: Example Wind Speed Markov Chain Matrix: 1AM to 2AM

1:00 to 2:00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s m/s ...

0 m/s 0.27 0.00 0.55 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
1 m/s 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
2 m/s 0.09 0.03 0.47 0.31 0.04 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
3 m/s 0.03 0.00 0.19 0.40 0.28 0.08 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 ...
4 m/s 0.01 0.00 0.05 0.28 0.44 0.14 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
5 m/s 0.00 0.00 0.01 0.10 0.29 0.37 0.17 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...
6 m/s 0.00 0.00 0.00 0.01 0.10 0.34 0.37 0.12 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 ...
7 m/s 0.00 0.00 0.00 0.03 0.04 0.18 0.35 0.32 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00 ...
8 m/s 0.00 0.00 0.00 0.02 0.02 0.07 0.14 0.39 0.27 0.05 0.05 0.00 0.00 0.00 0.00 0.00 ...
9 m/s 0.00 0.00 0.08 0.00 0.08 0.17 0.08 0.17 0.33 0.08 0.00 0.00 0.00 0.00 0.00 0.00 ...
10 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.50 0.00 0.17 0.17 0.00 0.00 0.00 0.00 ...
11 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 ...
12 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 ...
13 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 ...
14 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 ...
15 m/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
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Appendix C

Time-Varying Pricing Model

Details

As mentioned in section 3.3.3, modeling the electricity demand required some approxi-

mations as the exact values of electricity demand varied widely each hour of each day. As

a reminder, grid-level electricity demand information was collected from the Independent

System Operator of New England (ISO-NE), which is the entity that oversees the opera-

tion of electricity markets in the New England area. From the ISO-NE website1, hourly

grid-level electricity demand information from 1993 to 2002 was collected and used to

create this Markov model.

For each hour of each summer day, the grid-level electricity demand data was separated

into seven ‘bins’ as defined here. First, the minimum, median (or expected value (EV))

and maximum values were found for each hour of each day of the week. For each hour of

each day, the ‘bins’ were defined using the minimum, EV and maximum values for that

hour as follows:

∆l =
2 ∗ (EV −minimum)

7

1http://www.iso-ne.com/
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∆h =
2 ∗ (maximum− EV )

7

Bins =



[
minimum,EV − 5∆l

2

)
[
EV − 5∆l

2
, EV − 3∆l

2

)
[
EV − 3∆l

2
, EV − ∆l

2

)
[
EV − ∆l

2
, EV + ∆h

2

)
[
EV + ∆h

2
, EV + 3∆h

2

)
[
EV + 3∆l

2
, EV + 5∆h

2

)
[
EV + 5∆l

2
,maximum

]
The corresponding representative values used for each bin (and used as the bin labels

from here onward) are

Representative values (and bin labels) =



EV − 3∆l

EV − 2∆l

EV −∆l

EV

EV + ∆h

EV + 2∆h

EV + 3∆h

From the ten years of grid-level demand data collected from ISO-NE, the resulting dis-

tribution of data in each bin is shown in Table C.1. The balance of data in each bin was

deemed sufficient, with a slight emphasis on the median bin.

The representative values for each hour of each day were then calculated, with two exam-
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Table C.1: Demand Bin Distribution for ISO-NE Demand data from 1993-2002

Percentage of data points in each bin for each year of data
Year EV - 3∆l EV - 2∆l EV - ∆l EV EV + ∆h EV + 2∆h EV + 3∆h

1993 12% 10% 18% 24% 15% 9% 12%
1994 19% 9% 13% 22% 12% 12% 14%
1995 14% 13% 13% 22% 10% 13% 15%
1996 13% 10% 14% 24% 11% 12% 15%
1997 12% 11% 16% 23% 15% 10% 12%
1998 12% 14% 15% 19% 12% 11% 18%
1999 22% 9% 10% 20% 12% 11% 15%
2000 15% 11% 14% 25% 15% 8% 12%
2001 16% 16% 10% 21% 17% 8% 13%
2002 17% 12% 12% 23% 11% 8% 18%

Cumulative
1993-2002 15% 12% 14% 22% 13% 10% 14%

ples shown in Tables C.2 and C.3 for Sunday and Monday. As can be seen, the grid-level

demand on Monday is significantly higher than the grid-level demand on Sunday, which

is consistent across all weekdays versus weekend days. The representative values for the

other five days are included in the Energy Box computer code upon request.

Once the bins were set, the Markov transition matrices were calculated by counting the

transitions from one bin to another from one hour to the next from the ISO-NE data.

Ultimately, 168 (7 · 24) Markov matrices were created to reflect each hour’s transition

to the next across the entire week. Two examples of these Markov chain matrices are

illustrated in Table C.4, with the other 166 included in the Energy Box computer code

upon request.

Last but not least, with the model of grid-level electricity demand in place, the final step

for creating the hourly real-time pricing model for the Energy Box was to return to ISO-

NE’s website2 and collect a year’s worth of hourly prices of electricity from the ISO-NE

wholesale market for the year 2002 (which was the most recent year of data available on

their website at the time of collection). This data was then used to create the hourly

real-time pricing tariff for the model by mapping grid-level demand (in MW) to price

(in $/MW), as seen in Table C.5. This table was created by stepping through the 2002

2http://www.iso-ne.com/
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Table C.2: Representative Demand Values for Each Hour on Sundays

Sunday
EV - 3∆l EV - 2∆l EV - ∆l EV EV + ∆h EV + 2∆h EV + 3∆h

0:00 - 0:59 10264 10687 11111 11534 12551 13568 14585
1:00 - 1:59 9651 10036 10422 10807 11793 12779 13765
2:00 - 2:59 9310 9676 10041 10407 11340 12274 13207
3:00 - 3:59 9136 9479 9823 10166 11059 11952 12845
4:00 - 4:59 9096 9427 9757 10088 10954 11820 12686
5:00 - 5:59 9048 9405 9762 10119 10992 11866 12739
6:00 - 6:59 9378 9714 10050 10386 11231 12077 12922
7:00 - 7:59 10237 10560 10883 11206 12049 12891 13734
8:00 - 8:59 11432 11767 12101 12436 13335 14233 15132
9:00 - 9:59 12428 12815 13203 13590 14609 15629 16648
10:00 - 10:59 13040 13521 14002 14483 15665 16848 18030
11:00 - 11:59 13476 14043 14610 15177 16489 17802 19114
12:00 - 12:59 13501 14184 14866 15549 16977 18404 19832
13:00 - 13:59 13316 14102 14888 15674 17167 18661 20154
14:00 - 14:59 13153 14014 14875 15736 17257 18778 20299
15:00 - 15:59 13126 14057 14988 15919 17427 18936 20444
16:00 - 16:59 13334 14295 15257 16218 17693 19168 20643
17:00 - 17:59 13579 14532 15485 16438 17871 19303 20736
18:00 - 18:59 13675 14572 15469 16366 17728 19089 20451
19:00 - 19:59 13619 14462 15306 16149 17508 18867 20226
20:00 - 20:59 13946 14782 15617 16453 17854 19255 20656
21:00 - 21:59 13832 14630 15429 16227 17433 18639 19845
22:00 - 22:59 12500 13301 14103 14904 16003 17102 18201
23:00 - 23:59 11140 11934 12728 13522 14531 15540 16549

data and mapping multiples of 100 MW of grid-level electricity demand to multiples of

$0.50/MW. For the purposes of this dissertation, this was sufficient to capture the general

dynamics of hourly demand-sensitive pricing from a functioning electricity market.

The pricing model for the Energy Box simulation could then create the sequence of hourly

real-time prices by first simulating a sample sequence of grid-level demand (W grid.level.demand)

via the random number sequence from Table A.1 and the bin structure in the 7-day, 24-

hour Markov chain described here. Then, using the representative value of grid-level

electricity demand for each bin illustrated for Sunday and Monday in Tables C.2 and C.3,

the Energy Box model looked up the row in Table C.5 with the closest demand value

greater than or equal to the representative grid-level demand value and set the price for

that hour to be the corresponding $/MW.
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Table C.3: Representative Demand Values for Each Hour on Mondays

Monday
EV - 3∆l EV - 2∆l EV - ∆l EV EV + ∆h EV + 2∆h EV + 3∆h

0:00 - 0:59 10200 10933 11666 12399 13369 14338 15308
1:00 - 1:59 9722 10410 11097 11785 12701 13617 14533
2:00 - 2:59 9523 10170 10818 11465 12331 13196 14062
3:00 - 3:59 9472 10099 10725 11352 12161 12971 13780
4:00 - 4:59 9695 10318 10940 11563 12317 13071 13825
5:00 - 5:59 10461 11048 11634 12221 12964 13706 14449
6:00 - 6:59 12460 12937 13414 13891 14613 15334 16056
7:00 - 7:59 14385 14956 15528 16099 16765 17432 18098
8:00 - 8:59 15308 16110 16913 17715 18335 18955 19575
9:00 - 9:59 15794 16727 17660 18593 19269 19944 20620
10:00 - 10:59 16233 17388 18542 19697 20330 20964 21597
11:00 - 11:59 16480 17844 19207 20571 21152 21733 22314
12:00 - 12:59 16533 18028 19523 21018 21611 22204 22797
13:00 - 13:59 16607 18129 19650 21172 21867 22563 23258
14:00 - 14:59 16546 18097 19648 21199 21936 22672 23409
15:00 - 15:59 16483 18074 19665 21256 21978 22701 23423
16:00 - 16:59 16501 18097 19694 21290 21998 22705 23413
17:00 - 17:59 16325 17916 19507 21098 21783 22468 23153
18:00 - 18:59 15925 17499 19074 20648 21295 21943 22590
19:00 - 19:59 15584 17082 18581 20079 20703 21326 21950
20:00 - 20:59 15862 17263 18663 20064 20676 21289 21901
21:00 - 21:59 15414 16800 18186 19572 20089 20606 21123
22:00 - 22:59 13668 15015 16362 17709 18147 18584 19022
23:00 - 23:59 11977 13241 14504 15768 16138 16508 16878
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Table C.4: Example Hourly Demand Markov Matrices: Monday from Midnight to 1AM
and Monday at 11PM to Tuesday at Midnight

Monday
0:00 to 1:00 EV - 3∆l EV - 2∆l EV - ∆l EV EV + ∆h EV + 2∆h EV + 3∆h

EV - 3∆l 0.9485 0.0515 0.0000 0.0000 0.0000 0.0000 0.0000
EV - 2∆l 0.0459 0.9083 0.0459 0.0000 0.0000 0.0000 0.0000
EV - ∆l 0.0000 0.0547 0.8750 0.0703 0.0000 0.0000 0.0000
EV 0.0000 0.0000 0.0254 0.9391 0.0355 0.0000 0.0000
EV + ∆h 0.0000 0.0000 0.0000 0.0738 0.8934 0.0328 0.0000
EV + 2∆h 0.0000 0.0000 0.0000 0.0000 0.0842 0.8526 0.0632
EV + 3∆h 0.0000 0.0000 0.0000 0.0000 0.0000 0.0244 0.9756

... ... ... ... ... ... ... ...

Monday to Tuesday
23:00 to 0:00 EV - 3∆l EV - 2∆l EV - ∆l EV EV + ∆h EV + 2∆h EV + 3∆h

EV - 3∆l 0.8777 0.1079 0.0144 0.0000 0.0000 0.0000 0.0000
EV - 2∆l 0.0755 0.7642 0.1604 0.0000 0.0000 0.0000 0.0000
EV - ∆l 0.0000 0.1066 0.7869 0.1066 0.0000 0.0000 0.0000
EV 0.0049 0.0000 0.0680 0.8447 0.0825 0.0000 0.0000
EV + ∆h 0.0000 0.0000 0.0000 0.0957 0.8696 0.0348 0.0000
EV + 2∆h 0.0000 0.0000 0.0000 0.0000 0.0707 0.8889 0.0404
EV + 3∆h 0.0000 0.0000 0.0000 0.0000 0.0000 0.0325 0.9675

... ... ... ... ... ... ... ...
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Table C.5: Energy Box simulated Electricity Pricing

Capacity Available Simulated Cost Capacity Available Simulated Cost
for Electricity of Electricity for Electricity of Electricity

Generation (in MW) (in $/MW) Generation (in MW) (in $/MW)

9,000 0 22,500 59
10,000 10 22,700 60
10,500 15 22,900 61
11,500 20 23,000 63
12,000 22 23,100 66
12,500 23 23,200 70
13,000 24 23,300 75
13,500 25 23,400 80
14,000 26 23,500 85
14,500 27 23,600 90
15,000 29 23,700 95
15,500 31 23,800 100
16,000 32 23,900 105
16,500 34 24,000 110
17,000 36 24,100 120
17,500 38.5 24,200 130
18,000 41.5 24,300 140
18,500 43 24,400 150
19,000 44.5 24,500 200
19,500 47 24,600 300
20,000 49 24,700 400
20,500 52 24,800 600
21,000 54 24,900 800
21,500 56 25,000 1,000
22,000 58
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Appendix D

Dynamic Programming Process

Details

Originally introduced in Chapter 3, this Appendix provides a detailed overview of the

dynamic programming decision method that is implemented in the Energy Box model.

Though the discussion in this Appendix focuses on the dynamic programming algorithm

for an event-based appliance, the process would be essentially equivalent for thermostatically-

controlled appliances and storage devices.

As a reminder, the mathematical representation of the dynamic programming decision

method for an event-based appliance is

min
(xEBA

t )
FC

t=0

FC∑
t=0

E
[
ĈCost
t+1

(
SEBAt , xEBAt ,Wt+1

)]
. (D.1)

As discussed in Chapter 3, equation D.1 is solved via a backward dynamic programming

algorithm. The reason it is a ‘backward’ algorithm is that the process begins at the termi-

nal stage of the dynamic programming formulation and traverses from the terminal stage

back to the current moment in time. Ultimately, the dynamic programming algorithm

determines the best decision for the current moment in time, which is then implemented
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in the Energy Box simulation process.

Solving equation D.1 for the event-based appliance depends on some of the parameters

discussed in Chapter 3:

• Uncertainty parameter: PF (perfect forecasts), MV (median value), FD (full distri-

bution)

• Electricity pricing tariff: Flat, TOU (time-of-use), RTP (real-time pricing)

– If RTP, then set the FP parameter to fix the hourly prices either one hour

ahead or one day ahead (i.e. FP = 1 or FP = 24)

• Wind turbine: Yes or no

– If yes, then set kbuy.to.sell.scaling.factor ∈ [0, 1]

For the first illustration of the event-based appliance dynamic programming algorithm,

consider the following scenario:

• Uncertainty parameter: FD (full distribution)

• Electricity pricing tariff: RTP (real-time pricing), FP = 1 (i.e. prices fixed one

hour ahead)

• Wind turbine: No

At the terminal stage of the consumer’s flexibility constraint (FC), the only possible state

is Not Ready to Run (NR2R) because the event-based appliance must be completed by

this stage. In this case, CCost
FC

(
SEBAFC , xEBAFC

)
= 0 because there is no electricity used.

Hence,

VFC (NR2R) = 0.

Of note is that the Not Ready to Run (NR2R) state is also used in this process to reflect

when the event-based appliance has completed its cycle and has not yet been loaded again
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by the Energy Box simulation.

The variable Vt
(
SEBAt

)
for all stages t stores the value of being in state SEBAt at stage

t, which allows the backward dynamic programming algorithm to use the principle of

optimality to capture the optimal path from state SEBAt at stage t in a single value that

will be used in the backward dynamic programming algorithm’s recursive process. The

role that Vt
(
SEBAt

)
plays will become clearer during the next steps of the event-based

appliance’s backward dynamic programming process.

Continuing backward to stage FC − 1, if SEBAFC−1 = NR2R, no action occurs because the

event-based appliance’s cycle has already been completed. In this case,

VFC−1 (NR2R) = 0 + VFC (NR2R) = 0.

On the other hand, if SEBAFC−1 = Idle and Ready to Run (R2R), the decision xEBAFC−1 must

be to Start in order for the event-based appliance to complete its cycle by the consumer’s

deadline. In this case, the calculation of E
[
ĈCost
FC

(
SEBAFC−1, x

EBA
FC−1,WFC

)]
will be influenced

by the set of possible prices at this stage, which is a function of grid-level demand:

E
[
ĈCost
FC (R2R, Start,WFC)

]
=∑

grid.demand

(
P
[
W g.d.
FC = wg.d.FC

]
· wRTP.price.buyFC

(
wg.d.FC

)
· wdemand.EBA

)
.

The variable wdemand.EBA is the number of kWh consumed by the event-based appliance

during its cycle, which again is assumed will complete in the time between stages. For

this case,

VFC−1 (R2R) = E
[
ĈCost
FC (R2R, Start,WFC)

]
+ VFC (NR2R)

= E
[
ĈCost
FC (R2R, Start,WFC)

]
.
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For stages 1 to FC − 2, if the state is NR2R, once again there is no action because the

event-based appliance’s cycle has already been completed. Using stage 1 as an example,

we have

V1 (NR2R) = 0 + V2 (NR2R) = 0.

However, if the state is R2R (again using stage 1 as an example), then the decision

options are either to Start the event-based appliance or Wait. The decision providing

the minimum value for V1 (R2R) is now one of the following options:

V1 (R2R) = min

E
[
ĈCost

2 (R2R, Start,W2)
]

+ V2 (NR2R)

E
[
ĈCost

2 (R2R,Wait,W2)
]

+ V2 (R2R)

The calculation of E
[
ĈCost

2 (R2R, Start,W2)
]

follows the same process as that described

for stage FC − 1. On the other hand, E
[
ĈCost

2 (R2R,Wait,W2)
]

= 0 because no elec-

tricity is consumed by the event-based appliance between stages 1 and 2 if x
EBA(R2R)
1 =

Wait.

The backwards dynamic programming process has now reached the current moment in

time, stage 0. In this stage, the state of the event-based appliance is guaranteed to be

Idle and Ready to Run (R2R), and once again the decision options are either to Start

the event-based appliance or Wait.

V0 (R2R) = min

E
[
ĈCost

1 (R2R, Start,W1)
]

+ V1 (NR2R)

E
[
ĈCost

1 (R2R,Wait,W1)
]

+ V1 (R2R)

For stage 0 and prices fixed an hour in advance (FP = 1), the price of electricity is now

fixed to a specific value, which simplifies the calculation of E
[
ĈCost

1 (R2R, Start,W1)
]
,

yielding a final decision of
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V0 (R2R) = min

w
RTP.price.buy
0 · wdemand.EBA + V1 (NR2R)

0 + V1 (R2R)

This is ultimately the decision that matters in the Energy Box simulation. If the decision

at stage 0 is to Wait, then the event-based appliance remains in the R2R state until the

next stage, at which point the backwards dynamic programming process repeats itself at

the start of the next hour with the updated states of the weather and grid-level demand

information. If the decision is to Start the event-based appliance at stage 0, then the

event-based appliance will transition to NR2R and there is no longer any decision to

make until the simulation simulates the next loading of the appliance.

Continuing for a moment with simulations that do not include a wind turbine at the

residence, a few of the scenarios yield obvious decisions, regardless of some of the other

parameters’ settings. For instance, with a flat rate pricing tariff and no wind turbine, the

event-based appliance will simply start as soon as it is loaded. Under time-of-use rates

and with no wind turbine, any of the off-peak hours would be considered the ‘best’ hour

to run the appliance, so the first available off-peak stage will be the stage at which the

event-based appliance begins its cycle. Similarly, if the hourly RTP rate has fixed prices a

day in advance (i.e. FP = 24 and again no wind turbine), then the event-based appliance

will wait to run at the stage with the lowest price.

The situation becomes more interesting when local generation from a wind turbine is

included. With a wind turbine on the roof, even a pricing policy of a flat rate for electric

energy means this decision is not trivial.

To demonstrate the details of one of these cases, consider the following scenario:

• Uncertainty parameter: MV (median value)

• Electricity pricing tariff: Flat

• Wind turbine: Yes
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– kbuy.to.sell.scaling.factor left as a parameter initially

Just as in the previous case, VFC (NR2R) = 0 for the terminal stage.

The difference begins at stage FC-1. Once again, if SEBAFC−1 = Idle and Ready to Run

(R2R), the decision xEBAFC−1 must be to Start the event-based appliance in order for it to

complete its cycle by the consumer’s deadline. However, the new scenario causes a change

in the calculation of E
[
ĈCost
FC

(
SEBAFC−1, x

EBA
FC−1,WFC

)]
. With a wind turbine on the roof, a

flat rate electricity tariff and MV forecasts, we now have

E
[
ĈCost
FC (R2R, Start,WFC)

]
=

wflat.price.buyFC ·max
(
wnet.demandFC , 0

)
+ wflat.price.sellFC ·max

(
wnet.generationFC , 0

)
where

wnet.demandFC = −wnet.generationFC ,

and

wnet.demandFC = wdemand.EBA − wgeneration.DG.windFC

(
wwind.speedFC

)
.

At this point, the policy for selling electricity back to the grid comes into play as

wflat.price.sellFC = kbuy.to.sell.scaling.factor ∗ wflat.price.buyFC .

The backwards dynamic programming algorithm’s processing is adjusted to incorporate

this new structure when calculating E
[
ĈCost
t+1

(
SEBAt , xEBAt ,Wt+1

)]
at all stages. The

effect that kbuy.to.sell.scaling.factor has on the decision algorithms is illustrated in full detail

in chapter 5.
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