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Abstract 
 
In full waveform inversion of seismic body waves, the free surface is often ignored on 
grounds of computational efficiency. We investigate the effect of this simplification 
for highly irregular topography by means of a synthetic example. Our test model and 
data conform to a long-offset survey of the upper crust in terms of size and frequency. 
Random fractal variations are superimposed on a background model. We compute 
synthetic data for this model and different topographies, and we invert it neglecting 
the free surface. The resulting waveform models are relatively similar and, for the 
most part, show a high degree of correlation with the true model. The inversion of the 
irregular-topography data produces a few strong artifacts at shallow depths, but only a 
minor decrease in overall resolution. However, both waveform models fail to image 
below a strong shallow velocity contrast. The results suggest that in this part of the 
model the incapacity to properly reproduce the reverberations from that contrast 
without free surface derails both inversions. 
 
 
 
Introduction 
 
One of the major obstacles to applying waveform inversion is the computational 
expense of the forward solution. For most practical cases severe simplifications are 
employed in order to make the inversion feasible. Regional seismology studies often 
use the reflectivity method, which assumes laterally invariant, layered media (e.g. Xu 
and Wiens, 1997; Gu et al., 2005). Kaslilar (2007) and Campman and Riyanti (2007) 
use a superposition of small-scale heterogeneities on a laterally invariant embedding 
medium to invert scattered surface waves. In controlled source seismology the most 
popular forward solutions are finite difference frequency domain methods, mostly in a 
2D viscoacoustic, isotropic implementation (e.g. Pratt, 1999; Hicks and Pratt, 2001; 
Operto et al., 2004; Ravaut et al., 2004; Operto et al., 2006; Bleibinhaus et al., 2007; 
Gao et al., 2007). The free surface is often ignored not only because modeling 
irregular topography is computationally extremely expensive, but also because 
modeling of free surface multiples requires extremely accurate background velocity 
and attenuation information, and also accurate correction factors for the geometric 
spreading of multiples, if the modeling is in 2D (Hicks and Pratt, 2001). 
 
One consequence of such simplifications is that data preparation for waveform 
inversion is primarily about reducing and adapting the waveforms, such that the 
preprocessed wavefield complies with the forward scheme. However, the remaining 
fraction of the wavefield that cannot be modeled will inevitably blur the recovered 
structure. Due to the non-linearity of waveform inversion, the degradation is difficult 



to predict. Understanding the impact of the various simplifications in order to assess 
the uncertainty of waveform models is all the more important. 
 
This study investigates effects of neglecting the free surface in waveform inversion. 
Pratt (1999) obtained good results from the inversion of lab data acquired on the flat 
surface of a physical scale model in a water tank, although he used absorbing 
boundary conditions. Brenders and Pratt (2007) also used absorbing boundary 
conditions when they inverted synthetic crustal-scale refraction data generated with a 
free surface by a third party, and they were able to image the model, which was not 
disclosed to them, with great detail. Operto et al. (2004) and Bleibinhaus et al. (2007) 
report good results, although they neglected the free surface condition in the inversion 
of data acquired in mountainous regions with irregular topography. However, 
Bleibinhaus et al. also noted several artifacts in their waveform models, the source of 
which remained unclear. Aside from data quality issues like S/N or spatial aliasing, 
using an absorbing boundary instead of an irregular free surface condition could be 
responsible. Other possibilities include, but are not limited to, ignoring attenuation, 
3D variations, anisotropy, and P-S conversions. The indications that ignoring free 
surface effects may play the crucial role in limiting the success of waveform inversion 
in this case are: the highly irregular topography of this survey, the prevalence of a 
strong P coda (Figure 1), possibly the result of surface scattering, and spurious phases 
in the synthetic data from waves that appear to be propagating above ground. 
 
 

 
 
Figure 1: Bandpass-filtered time-reduced shot gather from the San-Andreas-Fault survey, 
elevation on top (V.E. 5). Note the strong coda. It may be caused by intrinsic scattering, but also 
by surface scattering, conversion and near-surface multiples. 
 
The comparison of sensitivity kernels computed with absorbing boundaries and with a 
free, irregular surface (Figure 2) underscores this concern. Although much of the 
small scale variations of the irregular-topography kernel would be suppressed during 
the inversion by regularization filters, the differences appear significant enough to 
cause strong artifacts. 
 



 
 
Figure 2: Monochromatic (4 Hz) kernel for one source-receiver pair computed in the smooth 
waveform inversion starting model of Bleibinhaus et al. (2007) with the frequency-domain code 
of Pratt (1999) using absorbing boundaries (top), and with the visco-elastic time-domain code of 
Robertsson (1996) and irregular topography (bottom). The time-domain kernel was computed 
for a time window of 1.5 s after the first arrival. The windowing explains the zero sensitivity of 
this kernel at greater depth/distance, and its complexity is the result of scattering and conversion 
at the irregular free surface. 
 
 
Test model 
 
We created a synthetic test model by superposing fractal wave speed variations of +/- 
0.8 km/s onto a relatively smooth background model, which varies from 1.6 to 6.4 
km/s (Figure 3). The background model reflects the complex structure across the San 
Andreas Fault in Central California. A geologically realistic vp/vs model was created 
by filtering the velocity model and adding long wavelength random variations. 
Quality factors for pressure waves were constructed in a similar way. Densities were 
derived from the velocity model using Gardner’s (1974) formula, and adding 3% 
random variations. The resulting model exhibits a fair amount of heterogeneity on all 
scale lengths. It is representative for very complex geological situations. In particular, 
it features a shallow, strong, first-order discontinuity in one part of the model. 
Two models were derived from the parameter distributions displayed in Figure 3 by 
(a) adding a flat free surface at 750 m elevation, and (b) by adding irregular 
topography ranging from 200m to 1100 m elevation, taken from the San-Andreas-
Fault-survey receiver elevation values (Figure 1). 
 
 



 
 
Figure 3: Synthetic model. Fractal p-wave speed perturbations, p-wave speed, Vp/Vs ratio, Qp 
(from top to bottom). The background velocity model is similar to the structure found across the 
San Andreas Fault in Central California with granite to the SW of the fault (high velocities at km 
10-27) and sediments to the NE (low velocities at km 26-50). Shear wave speed is relatively low in 
the shallow sediments, and relatively high in the granite. (For convenience, we will use these 
geologic terms throughout the paper). The quality factor for p-waves ranges from 10 at the 
surface to 600, Qs is half that value. The model size is 37.5 km * 7.5 km with a grid spacing of 15 
m. (The lower portion of the model is not shown.) 
 
 
Forward modeling 
 
The synthetic data was produced with the visco-elastic finite-difference time-domain 
code of Robertsson et al. (1994; 1996; 1997). The free surface is simulated with the 
image method. Benchmark tests (Robertsson, 1996) suggest that topography must be 
sampled with at least 15 grid points per minimum wavelength. We use a 5 Hz Ricker 



wavelet as source, which generates frequencies of up to 15Hz, implying that ~ 7 m 
grid spacing is required. After some testing, we decided on 5 m grid spacing at and 
near the surface. Wavelets computed for 2.5 m grid spacing are well in phase with the 
5 m solution, although they differ by 10% RMS amplitude. In contrast, the wavelets 
for the 10 m solution are out of phase resulting in 50% RMS amplitude error. In 
general the solution converges for decreasing grid spacing, and the choice of 5 m is 
based on the trade-off between accuracy and computation time. At greater depth the 
grid spacing is increased to 15 m to save computation time. 
 
 

  
Figure 4: Amplitude spectrum of the 5 Hz Ricker source wavelet. Note that for computational 
reasons this wavelet is of considerably lower frequency than the real source (3-60 Hz). This is 
necessary in order to avoid excessive computation times by having to decrease the grid spacing, 
but also sufficient because we intend to use frequencies from 3 to 15 Hz in the inversion. 
 
 
76 synthetic shot sections were computed at 500 m spacing for a 37.5 km long 
stationary receiver array at 50 m spacing for the flat-surface and the irregular-
topography test models. The computation time for one survey amounts to one day on 
a 25-node cluster. Figure 5 shows an exemplary shot section. The irregular-
topography data shows a significant amount of scattering and static shifts. Note that 
the irregular-topography data and the real data (Figure 1) cannot be compared directly 
due to the missing high frequencies in the synthetic source wavelet (Figure 4). 
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Figure 5: Trace-normalized reduced shot sections at km 26, vertical component, computed for a 
flat surface (top) and irregular topography (bottom). Dotted line is first arrival picks. 
Traveltimes between the two shots differ by up to 0.2 s. In addition, some secondary phases 
virtually disappeared in the irregular-topography data, or are significantly scattered. 
 
 
Data preparation 
 
The purpose of data preparation for waveform inversion is to exclude parts of the data 
that cannot be reproduced by the physics of the forward modeling, and to mitigate the 
impact of those parts of the data that are too complex to be predicted during the first 
iterations of the inversion. For this study, the data was windowed around the first 
break, and the near offsets were excluded (Figure 6). The remaining energy 
corresponds mostly to P-waves. 
 
 

 



 
Figure 6: Preprocessed shot gather of Figure 5. Traces were muted 1.5 s after the first arrivals 
with a 200 ms taper, and the near offsets (2.5 km) were excluded from the inversion. Remaining 
shear waves in the offset range 2.5 – 5 km were removed by an offset dependent mute window. 
Dotted line is first arrival picks. 
 
 
Starting model 
 
Waveform inversion requires a relatively accurate starting model, depending on the 
wavelength of the data (Pratt et al., 1996). The source wavelet used in this study 
provides significant energy below 1 Hz (Figure 4). However, we want to mimic 
realistic conditions for controlled source refraction seismology, which means that we 
cannot use frequencies below 3 Hz (Bleibinhaus et al., 2007). Real applications and 
synthetic studies with realistic data frequencies have shown that starting models 
derived from traveltime tomography are both, required and sufficient, to meet the 
accuracy demands of waveform inversion (e.g. Pratt, 1999; Sirgue and Pratt, 2004). 
We performed a damped least-squares inversion, using the eikonal solver of Hole 
(1992) to compute travel-times and the flexible inversion grid parameterization of 
Bleibinhaus and Gebrande (2006). Since the data is noise-free, first-arrivals could be 
picked automatically. For simplicity, we used the flat-surface dataset. The results of 
the traveltime inversion are displayed in Figure 7 and Figure 8. As a final step, the 
velocity values in areas without ray coverage were replaced by extrapolation. 
 
 

 
 
Figure 7: P-wave speed model from traveltime tomography (top) and corresponding diagonal 
elements of the resolution matrix. Small crosses are inversion nodes. The amplitude of the 
resolution values denotes the linear independence of a model parameter. Starting from a regular 
grid with variable axis spacing in z-direction, inversion nodes were iteratively removed from the 
grid, until all resolution values are greater than 0.2, a commonly accepted threshold (e.g. Kissling 
et al., 2001; Lippitsch et al., 2003). The grid note density of the final model gives an impression of 
the resolution. Penetration is deep on the right hand side of the model, and it is shallow on the left 
hand side, where the strong velocity contrast in the uppermost 1-2 km reflects much of the 



energy. Below this contrast, the vertical velocity gradient is close to zero, if not negative, thus 
practically preventing deeper penetration. 
 
 

 
 
Figure 8: Traveltime residual versus lateral model heterogeneity. The starting model is 1D in the 
upper part, and it has a constant lateral gradient in the lower part. The curve is roughly linear in 
the first 4 iterations, and then flattens out indicating disproportionately large model changes for 
insignificant improvements. The inversion was stopped at the fifth iteration. The final traveltime 
residual is 0.01 s. 
 
 
Waveform Inversion 
 
Our waveform inversion strategy is almost identical to the one described by 
Bleibinhaus et al. (2007). We use a multi-scale approach to mitigate the non-
linearities inherent to waveform inversion (Bunks et al., 1995; Pratt et al., 1996). We 
inverted 7 groups of increasingly higher frequency components of the data 
sequentially (Table 1) in order to reconstruct the model from coarse to fine 
wavelengths. 
 
 
Frequencies [Hz] Grid 

spacing [m] 
Grid nodes Wavelength 

filter [km] 
Cost function 
reduction [%] 

3.2, 3.6, 4.0 50 781x181 1.250 24.6 / 22.1 
4.4, 4.8, 5.2 50 781x181 1.000 27.2 / 33.5 
5.6, 6.0, 6.4 50 781x181 0.800 39.6 / 48.8 
6.8, 7.2, 7.6 50 781x181 0.700 37.8 / 42.8 
8.0, 8.8, 9.6 25 1525x361 0.500 40.8 / 37.2 
10.4, 11.2, 12.0 25 1525x361 0.400 41.0 / 37.7 
12.8, 13.6, 14.4 25 1525x361 0.250 32.6 / 35.4 
 
Table 1: Waveform inversion parameters. The wavelength filter refers to the horizontal 
component of a 2D high-cut regularization filter with an aspect ratio of x:z = 4:1, which is 
applied to the gradient.  The two values for the relative cost function reduction correspond to the 
inversion of flat-surface data and irregular-topography data respectively after 5 iterations. Note 
that the cost function measures the individual frequency group, not the overall misfit. 
 



Each group was inverted for five iterations, and the resulting model was used as 
starting model for the inversion of the next group. The total computation time for the 
complete visco-acoustic frequency-domain waveform inversion amounts to one day 
on a single node, and it comprises more than 100 forward simulations. Note that for 
the visco-elastic time-domain code of Robertsson (1996) and irregular topography, the 
same inversion would require over three months on a 25-node cluster. 
We used a common source signature for all shots, which we inverted simultaneously 
during the first iteration of each group. We performed tests varying the number of 
source inversion iterations, and the total number of iterations per group. Repeating the 
source inversion, or not, did not have much effect. A total of five iterations gave the 
best results in terms of recovering structure and avoiding artifacts. In another test we 
simultaneously inverted two frequencies out of the range 4-7 Hz along with each of 
the last three groups. This strategy is thought to stabilize the results, and it has been 
used by, e.g., Brenders and Pratt (2007). However, we found that the convergence was 
compromised, and the results were inferior. 
Some of these differences may stem from a more fundamental difference. Instead of 
inverting true amplitude data, we inverted the phase of the complex frequency domain 
signal only. This essentially corresponds to trace normalization and spectral 
whitening. Note that the amplitude ratio of different arrivals within each trace is 
preserved in the phase of signal, assuming that the arrivals have a similar bandwidth. 
This amplitude normalization discards some of the geometrical spreading information 
of the data, but it also prevents those amplitude variations from degrading the results, 
that are not part of the forward model (e.g. when they are caused by intrinsic 
attenuation, or by topography), or that are simply too complex to be reconstructed 
during the first stages of waveform inversion. This approach was also taken for the 
inversion of the San-Andreas-Fault data (Bleibinhaus et al., 2007), and Shin and Min 
(2006) have demonstrated for the Rytov approximation that amplitudes are not crucial 
for waveform inversion. 
We have done some preliminary tests using true amplitudes, and found that the 
reconstructions were not as good. However, more elaborate amplitude scaling may 
alter this result. We did not pursue this matter at this point, since we are mainly 
interested in comparing inversions of flat-surface and irregular-topography data. 
For both inversions, subsurface parameters are simply extended in the air, and sources 
and receivers are embedded in the model at their true locations. In order to avoid 
wave propagation above ground, Q is gradually decreased from 1000 at 200 m below 
the receivers to 2 at 100 m above the receivers. Figure 9 displays the resulting 
waveform inversion models, along with the starting model and the true model. 
 
 



 
 
Figure 9: Starting model for waveform inversion derived by traveltime tomography, waveform 
inversion results for flat-surface data, for irregular topography data, and the true model (from 
top to bottom). White area is low subsurface coverage. Many structures, even at small scales are 
recovered from both datasets (hollow arrow). The top granite is better resolved than in the 
starting model, but the sharp contrast was not fully recovered, the velocities near the top of the 
granite are overestimated (white arrows), and its internal structure is not resolved. In addition, 
the waveform model from the irregular-topography data contains some shallow, localized, strong 
artifacts, particularly between km 39-45. 
 
 
The inversion results derived from either dataset are relatively similar. They resolve 
detailed sediment structures (km 25-45), but hardly improve the image of the granite 
(km 10-25). Note that the resolution of the model from irregular-topography data is 
only slightly inferior. However, it exhibits some significant small scale artifacts near 
the surface. This assessment is confirmed by a more detailed comparison (Figure 10). 
 



 
 
Figure 10: V(z) functions at ~ 7 km spacing (from left to right: km 18, 25, 33, 39). Dashed line is 
starting model, black line is true model low-pass filtered to the expected resolution, and blue and 
red lines are waveform models derived from flat-surface data and from irregular-topography 
data respectively. Apart from the shallow artifacts at km 39, the two models are quite similar and 
match the true model very well. However, the log at km 18 (in the granite) shows no resolution 
below 1 km depth. The log at the edge of the granite (km 25) shows that the starting model was 
improved at all depths, but the amplitude of the perturbations below 1 km depth is not matched. 
Even larger misfits in other parts of the granite are displayed in Figure 11. 
 
 
The largest mismatch between the waveform models and the true model is observed at 
km 22, where the granite is very shallow. It is the result of reverberations, multiples 
and channeled waves in the sedimentary layer above the granite, which have not been 
modeled because the free surface was ignored. They appear as residuals in the 
objective function, and they are projected as artifacts onto the model. However, it was 
also impossible to exclude these phases from the inversion without excluding the bulk 
of the data, because at low frequencies those phases are barely separated from the first 
arrival. Of course, when the free-surface boundary condition is taken into account 
during the inversion, which can be done without additional computational expense for 
the flat-surface data, those mismatches are largely reduced (Figure 11). Remaining 
misfits at greater depth are probably the result of shallow penetration, and of very 
erroneous background velocities, and are not caused by errors in the forward 
modeling. Figure 12 shows the complete model derived by taking the free-surface 
boundary condition into account. It recovers some of the granites internal structure, 
and also exhibits the highest resolution in the sediments. Note that in order to match 
the relative amplitude of the various seismic phases generated by the strong velocity 
contrast and the free surface, the true Q model was supplied during the inversion. The 
importance of an accurate attenuation model in modeling multiples for waveform 
inversion was pointed out by Hicks and Pratt (2001). 
 
 



 
 
Figure 11: V(z) functions at km 20 (left) and km 22 (right). Dashed line is starting model, black 
line is true model filtered to the expected resolution, and blue and yellow lines are waveform 
models derived from flat-surface data using an absorbing-boundary condition, and a free-surface 
condition respectively. When the free surface is included, the top of the granite is matched very 
well, as is some of its internal structure. However, the misfit below 2 km depth remains large. 
 
 

 
 
Figure 12: Waveform inversion of the flat-surface data taking the free-surface boundary 
condition into account, true model, and waveform inversions of irregular-topography data 
computed with the Q-model of Figure 3, and with higher Q-values (from top to bottom). The 
free-surface waveform model shows significantly less artifacts, a much better fit of the top 
granite, and it also reproduces some of the internal structure of the granite. The two irregular-



topography models are relatively similar. However, the resolution from higher-Q data is 
somewhat inferior. 
 
 
Conclusions 
 
The comparison of the waveform models from flat-topography data derived with and 
without taking the free-surface boundary condition into account (Figure 12, Figure 9) 
shows that the importance of this condition depends on the velocity structure. In the 
region of the model, where a thin low-velocity layer on top of a high velocity body 
produces strong reverberations, multiples, and channeled waves, ignoring the free-
surface leads to a degraded recovery of the main velocity contrast, and to a total loss 
of resolution below. In the other region of the model, which shows no large first-order 
discontinuities, ignoring this condition leads to degraded resolution, but the resulting 
models are still dominated by real structures that could not be recovered by traveltime 
inversion. This is true irrespective of the topography. However, the scattering from 
irregular topography additionally introduces significant small scale artifacts near the 
surface when ignored in the inversion, and it also further decreases the resolution. It is 
nevertheless remarkable that ignoring free surface scattering does not necessarily lead 
to a breakdown of waveform inversion. In order to make sure that this conclusion is 
not biased by an extreme attenuation structure that unduly suppresses surface 
scattering, we computed and inverted another data set based on Q-values that are the 
double of those displayed in Figure 3. The comparison (Figure 12) exhibits a further 
slight decrease in resolution, but confirms that there is no breakdown. 
The irregular topography used to synthesize some of the data was taken from a real 
survey, and the variations are strong and rough at all scales. However, it is not the 
most extreme topography, and we intend to synthesize and invert further surveys with 
even larger elevation variations. Further tests will also address the importance of a 
correct attenuation model, a point of crucial importance for the inversion of real data. 
Eventually, the goal will be to find a computationally inexpensive method to mimic 
irregular surface in order to increase the resolution of waveform inversion. 
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