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ABSTRACT

M.S. Howe has developed a theory of wave propagation

in a random inhomogeneous medium. His theory is

applied here on the problem of wave propagation in an

isotropic ideal gas with inhomogeneities due to temper-

ature fluctuations alone. Equations for the coherent

and random waves are developed, an iterative routine

for their solution is described, with solutions evalu-

ated which represent inclusion of the tertiary colli-

collision term. Phase speed and attenuation of the

mean field are calculated and compared to the results

of others. Tertiary results yield an expression for

the random field, and it is shown that energy is not

conserved.
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Chapter 1

Introduction

The problem of wave propagation in a random inhomogeneous

medium is one that has been receiving ever-increasing attention

in the past two decades. Classical perturbative methods per-

formed on the total field, as used by Chernov and others,

prove inadequate in predicting observed behavior over long dis-

tances and where the spatial distribution of the inhomogene-

ities is expansive. These conventional perturbation solutions

contain secular terms and predict an indefinite growth of

fluctuations of the wave field with distance. Two formulations,

the "smoothing" method, and the method of Howe, appear to avoid

these problems by considering variations in the mean field sepa-

rately from the fluctuations about this mean.

We will employ the method of Howe to examine the case of

wave propagation in a turbulent isotropic gas, where turbulence

is due to small random fluctuations in temperature alone. If

we assure that the medium is in a state of quasi-equilibrium,

and that the length scales of disturbance are small compared

to those of the basic flow, then these fluctuations may be

considered to be independent of time. These are the conditions

assumed for the classic scattering problem treated by Chernov1 ,

Frisch2 , Howe3,4 and others. Fortunately, this model of

"frozen" turbulence is applicable in many cases.

The Born, or binary collision, approximation is very fre-



quently used in the formulation of the scattering problem. In

this paper we wish to keep an eye on the additional effects of

tertiary scattering and how they modify the Born approximation

results.

The approach to be used is parallel to that of (ref.3)

where Howe surveys the one-dimensional analog, that of wave

propagation along a stretched string of variable density. As

with any method, we seek satisfactory expressions for phase

speed and attenuation, in addition to expressions for the mean

and random fields.

First, we outline here the essence of Howe's formulation

and the "smoothing" method, and say a few words about statis-

tical models for the medium.

1.1 The "smoothing" method

The "smoothing" method, described by Frisch , and used

extensively by Karal and Keller 5 is a perturbative analysis

based on the assumption that the medium differs only slightly

from a homogeneous medium. The general formulation applies to

any type of linear differential or integral equation with

random coefficients. The results of Karal and Keller revealed

an attenuation of a plane wave due to inhomogeneities of the

medium, as well as an alteration in the phase velocity.

In general, wave propagation in a homogeneous medium

is governed by an equation

Lu = 0
0 (1. 1)



where L is a linear non-random operator. Letting a designate

a different medium characterized by the operator

L - ELl(a) - s 2 L2 (a) + 0(s 3), where c is a measure of the

departure of the medium from homogeneity, it can be seen that

a wave u(a) in this medium satisfies

u = u0 + cL 1Lu + 2 (L'L 1LL + L'L 2)uo + O(6') (1.2)

Now we deviate from the traditional perturbation routine by

taking the expectation of (1.2) and rearranging, to derive an

equation for the mean wave. If we let <> denote an expected

value, we find an equation for <u>, correct to order cs3

L<u>-E<L ><u>-2{f<L L~1L >-<L >L ~1<L > + <L2 >}<u> = 0 (1.3)

In many cases the Green's function operator L~ 1 may be

found explicitly. Karal and Keller used an explicitly defined

Green's function in their analysis of scalar waves.

The smoothing method was used by Wenzel and Keller 6 for

several special cases, in conjunction with the Born approxima-

tion. The advantage of the "smoothing" method (and also, as

we shall see, of Howe's method) over the small perturbation

analysis used by Chernov is that the dispersion relation for

the mean field can be derived relatively easily, yielding very

important information about phase speed and damping of the

coherent field. Also, the generality of the formulation allows

a great deal of flexibility in the equations involved.



1.2 Howe's method

The general formulation of wave propagation in an inhom-

ogeneous medium proposed by Howe will be summarized briefly

here. Howe's method is applicable to any medium which differs

slightly from a homogeneous one described by

L$ = 0 (1.3)

where L is a linear operator. In the presence of inhomogene-

ities the governing equation becomes

L$ = G$ (1.4)

where G is a random linear operator, which for the sake of

simplicity, we will take to have zero mean.

The scheme here is to decompose the wave field into two

components, $ and $', such that

= $ + $' (1.5)

and to derive coupled equations for $ and $'. Howe shows that

the mean and random fields, 4 and $', can be solved for multiple

scattering of any order, at least theoretically, by evaluating

= L -1G L -'G - L1}" L ~'G (1.6)
n~=0

CO

$' = {L 1 G - L~G}L~GI (1.7)

The n=0 case represents the Born approximation. The higher

order terms represent additional scattering of the scattered



wave. Though in many cases the Born approximation is a valid

assumption, it neglects the effect of buffeting of coherent

field energy experienced because of feedback of the scattered

energy back into the mean field. Inclusion of these multiple

scattering effects appears to describe a situation more consis-

tent with reality.

In (ref.4) Howe shows that critical information may still

be discerned in some cases, which include certain types of

nonlinearity, where the Green's function operator L~ 1 is

difficult to find explicitly.

Howe's method, like the "smoothing" method gives disper-

sion information fairly readily, and is adaptable to many

different types of equations.

1.3 Some comments on statistical models for the medium

In the medium we are considering, fluctuations in the wave

speed will be described by E(i), a random process which is a

function of the position coordinates (x,y,z). We may charac-

terize this process by the correlation function

N1 2 = CO 1 )( 2 ) (1.8)

For a spatially homogeneous process the correlation function

depends only on the coordinate differences x=x 2-xl' y=y 2-y1 ,

z=z 2 -z1. For x=y=z=O the function N12 acheives its maximum

N 1=2 C and we may write

N(i) = 129R())(1.9)



The choice of the form of the correlation coefficient

R(x) is a difficult one to agree upon. As the distance between

the points is increased, it is necessary that R(R) decrease

and become small compared to unity at a distance X, called the

correlation distance, i.e. the statistical dependence between

fluctuations must disappear as the points move far apart,

relative to the correlation distance. Chernov mentions the

result, theoretically obtained by Obukhov, that in the case of

homogeneous isotropic turbulence mean-square temperature

fluctuations follow a law similar to the "two-thirds law."

However, more often than not, a form is chosen for R(x) from

empirical data. Chernov uses a form for the correlation

function

R(R) = e (1.10)

while Howe, in his calculations for the random string, uses a

Gaussian distribution. For the sake of exposition, in this

paper we will allow the correlation coefficient to take the

form in (1.9) whenever it becomes necessary to assume a par-

ticular functional dependence.



Chapter 2

2.1 Governing equation

Consider the problem of wave propagation in a turbulent

non-dissipative gas, where the turbulence is due to spatial

fluctuations in temperature alone. For a fluid which differs

only slightly from its equilibrium state, considering propaga-

tion of sound to be an adiabatic process, the governing equa-

tion is seen to be the one derived by Chernov -

I2p _ V2p - V(logp). Vp = 0 (2.1)
c2 at 2

where p = acoustic pressure

p = density

c2 = square of the wave speed

We also have the isotropic relation for an ideal gas

c2 = yRT = YP (2.2)
p

Deviation of the medium from homogeneity is assumed to be

small. In this case, small fluctuations in temperature

lead to corresponding small fluctuations in pressure and

density. As per Howe, we define the mean square wave speed

as an ensemble average

a2 = c2 = yRT = y(p/p) (2.3)

We may define ( a random function of position, which
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represents the variation in the wave speed as

a2{l + ((i)} =yp/ (2.4)

By virtue of its definition, E(i) = 0. Also note that

p = yp/{a2 (l + ()}.

If we expand the V(logp) - Vp term in powers of ((i) and

its gradient, and neglect terms of order E
2 V and higher it is

found that the equation simplifies to an inhomogeneous wave

equation*

- a2v 2p = a 2 W 2 p (2.5)

2.2 Equations for the mean and random fields

Now we follow precisely the method of Howe. Separate the

total wave field p(i,t) into two parts: p(X,t), the mean wave

profile, and p'(i,t), the fluctuations of the field about p.

Using

p = p + p' (2.6)

in (2.5) and taking the ensemble average of this we obtain

- a 2v 2p = a2 gv2p'
at 2

(2.7)

the mean field equation. To obtain an equation for p', subtract

* Note that this result could just as well have resulted from
beginning with the classical wave equation for the acoustic
pressure, ptt - a2V2p = 0 and directly substituting
c2 = a2 (l + ).



12

(2.7) from the full equation (2.5):

Ip- a2v 2p' = a2 V 2p + a2{gV 2p- _v 2p'} (2.8)
Dt2

Equations (2.7) and 2.8) are exact, though coupled, equations

for the mean and random fields. Presumably E and p' are small

quantities, and we see from (2.7) that changes in the mean

field are expected to be second order in these quantities.

The random field is seen to be due to (a) interactions

between medium fluctuations E() and the mean field p(R,t),

and (b) interactions between fluctuations of the medium and

those components of p'(i,t) which are not correlated with (i).

The latter of these two effects is neglected in the Born

approximation.

Pickett7 formulated a similar problem where the Born

approximation was assumed, equivalent to neglecting these

multiple collision terms. Chernov , in performing his small

perturbation analysis, assumes the Born approximation. Wenzel

and Keller also use it implicitly. Here we will attempt to

formulate the scattering problem preserving these terms, to

estimate the order of their effect.
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Chapter 3

3.1 Analysis of the field equations

In the notation of Howe, we began with an equation for the

total field in the form

Lp = Gp (3.1)

where L is a linear differential operator and G is a random

operator with zero mean defined by

L -2 - a2V 2 and
Dt 2

G = a 2 (3.2a,b)

In assuming a representation of the wave field as

p = p + p' , we derived the equations for the mean and random

waves

Lp = Gp' (3

Lp' = Gp + {Gp' - Gp'} (3

For our problem the Green's function is well known as

that of the so-called "retarded potential" problem, and we

may solve (3.4) for p'(x,t) in terms of p(R,t) by iteration

using as a first approximation the Born result

pj = L~1 G p

.3)

.4)

(3.5)

to derive a second approximation

p= L~1Gp + L~'GL~'Gp - L~1GL~1G@ (3.6)

Formally, the total multiple scattering result is shown by
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Howe to be

p' =1 {L'G - L~'G} L -'p (3.7)
V1 O

to yield, by formal substitution into the mean equation, the

exact multiple scattering equation for the mean field

> = L ~1G {L ~1G - L ~'G}" L ~'Gp (3.8)
'=0

We wish to carry through the solution to include the n=l

4
terms in the iterative scheme. Howe argues that if p satis-

fies certain smoothness conditions associated with the opera-

tor G, and if G has a symmetric distribution (as is assumed

here) that the tertiary collision term in (3.8), corresponding

to n=1, automatically vanishes. Therefore, the equation for

p (x,t), valid up to third order in the random fluctutation is

p = L 'GL 'Gp (3.9)

while the corresponding equation for the random field is given

by (3.6)

3.1 Dependence of the random field on the mean field

If the mean wave (x,t) is assumed to be known, the iter-

ative outline for solution for p'(x,t) proposed is as follows:

1- a2V2 p{ = aV2 2p (3.10)
tt2

39pn -a a2v2 p' = a 2 v2*p + a2 fEV2p1, _ u2p' (3.11)
at 2 nn-n1



We will use this routine to calculate p'(iX,t) up through the

n=2 case.

To solve for p', use (3.10) and the Green's function

which satisfies

a - a2 2 g =(
at 2

1 6(t- I R/a )

g(i,t) =
47ra lxi

t>0

t<0

(3.12)

p{(it) is found by the convolution product

paiE,t) = a2 g(R-X,t-T)E()V 2p(X,T) d3R dT

where d3 is the notation we will use from now on to

(3.13)

denote

the volume integration, i.e. d 3K - dX dY dZ, and a single

integral is used to represent the integration over all space.

Now if we make the substitution in (3.12) ij = R - X,

T = t - T and perform the time integration, the result is

00

,j _ 1 E(iR-i)V 2 (-it-K|/a) ds (3.14)

-00

It appears that fluctuations in the wave field depend

strongly on gradients of the mean field. In fact, as will be

shown later, in the long wavelength limit, Howe's method

predicts that p' is proportional to V2 p.



The next correction to the random field $ = p - p

satisfies

-2 - aV2 2$ = a2{1V 2p{ _gVp 1I (3.15)

We calculate the righthand side of this equation by returning

to the Green's function expression and recalling that

a2v 2 g(2T,t) = 1 32 6 (t-f I/a) - 6(R)6(t) (3.16)

47ra 2|i| I t 2

yielding

a2{WV2pi _V 2pt} = a2 {E(i)E(i) - E(R)(}V2 ](iR,t) (3.17)

+1_ - ~(i) ( /a) d77

4iI 3t2

Now if E(() is a stationary random function, i.e. if

R(R-SO) = ((i)( )/ 2 depends only on the distance x-Ro|,

then we can write the differential equation for $j in terms of

the correlation function N(R) = (2R(i), noting that R(5)=l

and C2=constant.Then use the same Green's function as before

to compute $ and therefore p . Following the same procedure

as was done with pi, the result is



17

p j(1,t) = p j(,t) + 1 ~ gT2 (x~i) V2 (- ,t-|l|/a) d3 7
2 ~4TrC |fl (3.19)

'n I I 01+1 D 1 d n+ 1 ((-sE~1-R1~3-)277(~i3t a )dd3-
167r2 -'n 3t 2

Second order corrections to p' are now seen to depend on the

variance of the fluctuations 2_2, in conjunction with the

Laplacian of the mean pressure field.

3.2 Integro-differential equation for the mean field

We have that, to second order in the fluctuations of

the medium, the exact equation for p(x,t) is of the form

Lp = GL ~1 Gj (3.20)

The solution Pj = L-'GF may be used to construct an equation

for T (x,t):

S - a2(1 )V 2 = 1
Dt 2

4 7r _

R v2 (R-3T, t-|~7| /a) d3 3
|3| 3t 2

(3.21)

We take the Fourier transform of (3.21), rearrange and

divide by P(k,w) to get

k2 a2 (-C) -_ 2 =2,2k2  1 R(TI)exp{-i(-)+i|7/a} d3W

(3.22)

where k = |iC . This is the dispersion relation, which may be
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evaluated as soon as a form is assumed for R(i). If we assume

the correlation coefficient R(i_) = exp(-|ix/jX), the integra-

tion may be performed exactly by switching to a spherical

coordinate system which has its polar axis aligned with the

k-vector. We then integrate over all space in the spherical

system. This gives, finally

k 2a2(l~3), X km22i X(k-k )-i + (k-k )+i3.)
-E)W -k2  + +~~) jlj 0 + (3.23)

2 1+X2(k+k )2 1+X2 (k-k 0)2

where k0 = w/a .

In the next chapter we will consider limiting forms of

this dispersion relation.



Chapter 4

Limiting forms of the dispersion relation

It will prove to be enlightening to consider the forms

that the dispersion relation takes in the case where the wave-

length is very long compared to the correlation length (the

low frequency case) or where the wavelength is very short com-

pared to the correlation length ( the high frequency case).

Since any solution to the basic mean field equation (3.21)

may be written as a superposition of plane wave solutions

satisfying the dispersion equation (3.23), it is instructive

to look closely at what happens to a plane wave traveling

through the medium in these limiting cases. Comparison

of the long- and short-wavelength limit results may also

yield some clues as to what happens for intermediate fre-

quency ranges.

4.1 The long-wavelength limit

We retain the assumption of small fluctuations. Mathe-

matically the condition is that Xk<<2ff, Ak<<2,k 2 -k2 = 0(2)0 0

Expand the right side of (3.23) up to powers of (Xk)4 and

(k 0)4 to get

k 2a 2 (lE2) _W2 = Xkm2 A [Xk+4X3kk2
0 -2 (4.1)

+i(2X 2kk -2X3k2k )I + O( )

Since k 2 -k2 = O(E2) and all terms on the right side are of0



that order or smaller, we may obtain an approximation for

w(k) or k(w) valid up to order ( 2) 2 by a one-step itera-

tion, setting k0 =k on the righthand side:

W = ak{ l - 2 (1+X2k2+4X4 - ia(X 3k 4-X 4k 5)E2 (4.2)2 0

1 2 2W2 x4W4 ..- 3 W4 x4Ws

k= 1 + (1+ +4 + i ( - ) (4.3)
a 2 a2 a4 a4 a5

A mean plane wave solution of the form

= Aei(kox-Wt)

will exist in the medium only if w = w(k0 ) as defined above.

If we write this as

o = i{k x -tRe(w)} tIm(o)p 0 = A 0e 0 e (4. 4)

we see that the negative imaginary part of w represents

the degree of attenuation of the plane wave. The character-

istic time in which the wave decays to e ~' times its initial

value is

T= 2 (4.5)
a 2 3 k 4 (1-Ak)o o

The parameter most frequently used in this connection is the

attenuation coefficient a = Im(k). In this limit

a = 2 X 3k4 (1-Xk0 ) (4.6)

The characteristic length, i.e. the length over which a wave



of initial frequency w0 decays to e ~1 times its initial

amplitude is

z~ = -- :. (1 h-1 (4.7)
a4  a

The phase speed of the plane mean wave, c*, is

c* = Re( = a2{ _ (1 + X2k + 4 ;k )} (4.9)

Note that the phase speed of the coherent wave is less than the

speed in the averaged medium, and that it decreases with

increasing frequency.

Now we will calculate the development of the random

field, as modeled by Howe, in the long wavelength limit.

The variables of integration in (3.14) are rescaled by

setting - = T/X . Relative to the new variables the corre-

lation length is unity.

p'(xt) = 2 _Xa,t-A|E|/a) d3 - (4.10)

The operators A- and , when acting on (x,t), have

small results in this limit, so it is justified to expand

v26 , as it appears in the integrand, in a Taylor series

expansion about (x,t) and keep only the first order terms in

these operators. The result is:



P'(x,t) =x v 2 d3J _

9 x
a Ev 0

X V2p 0

00 -00

S(R-Ai)

-00

The mean square amplitude of p' (x, t) is a measure of the

amount of energy stored in the random field and this

order ko,

bV2 *v 2p -2Xb v2p*v2 Tplx p0 0

a -2 +

bo = R{A) (15- )}Id 3I d 35
00 (u 1 d711d1

Sacr d 3Fd 3

R{T -) d 3Id 33

1~ ~

(4.14c)=

of our statististics demand that b, vanish; b0 and

~(i-X~)j~I
(4.11)

d 3J

p I

is, to

where

(4.12)

0(E2)

b 
-=

(4. 13a)

(4. 13b)

=

The nature



b2 do not depend on the wavelength. If the form (4.4) is

employed explicitly, the resulting mean-square amplitudes are:

p P = 2 -2at(2(X 3k3 _X 4k4 ) (4.15)
0 0 e

2 x 4k 4b E2t2 (X 3k 3-X 4 4)
p* = A2E -k obo e -2at k k (4.16)0 16r

One would hope that these expressions would imply

a conservation of energy, i.e. that p p* + p'pl* = constant.

This is most certainly not the case. Only for small times

can the energy discrepancy be ignored. If t<<2f/w , then at

least, p p* + p'p'* - A2 = O(X4k 2 )
0 0 0

It appears that real problems occur in Howe's method in

the limits of large distances and times with regard to

conservation of energy of the total wave field. Either this

is a result of a defect in the theory, or the multiple

scattering effects that were neglected contribute signifi-

cantly to the physics, and must be included.

4.2 The short-wavelength limit

In a similar manner we can use (3.22) to derive the dis-

persion relation in the limit k<<2, k0 <<2r, retaining the

assumption of small fluctuations.

k2a 2 (1_ 2)_W 2 = W2(E + iXk) (4.17)

The equation is solved up to order (E2) 2 to get



52 2AXkW = ak(l - -) - ia 4 (4.13)

24

or k = ?- (1 + + i (4.14)a 8 4a2

Briefly, we summarize here the values for the attenuation

coefficient, characteristic time and length scales, and

phase speed, correct to O(E22)

a = 4 (4.15)

T =/E2 (4.16)
a k 2

0

-1 (4.17)
Ak2

c* = a(1 - ) (4.18)

As might be expected, in the short-wavelength limit

there is much more attenuation than in the provious case.

Note that the phase speed, while still less than the phase

speed in the homogeneous medium, is independent of

frequency to order (22

4.3 Intermediate expectations

In both the long- and short-wavelength limits, Im(w),

which represents the damping rate of the mean field, is



negative, representing a positive attenuation of the mean

wave, to generate random waves at the expense of the mean wave

energy. It is expected that in the intermediate range between

long and short wavelength limits that we will have a continuous

transition, with damping of the mean wave for all values of the

wavelength. Howe presents an argument that, at least in the

one-dimensional analog of this problem (the stretched string),

this is true. We would expect that a parallel proof can be

constructed in this three-dimensional case.

It is not a difficult task to show, algebraically from

(3.26), that the phase speed of the coherent wave will always

be less than the wave speed in the homogeneous medium.

If the form of the statistics involved makes the disper-

sion integral in (3.21) difficult to evaluate, it is possible

to derive a dispersion relation valid for the range Xk<l, a

range broader than that required to assume the long wavelength

limit. The integrand in (4.10) can be expanded as in section

4.1, keeping sufficiently higher order terms in - and

a t'



Chapter 5

Conclusions

The dispersion results for mean wave propagation speed

and attenuation in the limiting cases can be compared directly

with results obtained by other authors. Wenzel and Keller6

treated a parallel problem using the "smoothing" method,

and calculated both of these coefficients. Chernov was able

to calculate the attenuation coefficient, using the method of

small perturbations. Pickett 7 found these parameters via

Howe's method in connection with wave propagation in the ocian.

His assumptions differ from those here in that he assumes a

constant isothermal bulk viscosity for his medium, equivalent

to assuming variations in density, but not in pressure. In all

of these cases, however, the same exponential correlation

function is assumed.

The attenuation coefficients derived in Chapter 4 are

identical in both limits to results of Wenzel-Keller and

Pickett, and differ only, again in both limits, by a factor

of two from the Chernov results. It appears that the theories

are consistent vis-a-vis predictions of damping of the

coherent wave field.

We have only Wenzel-Keller's and Pickett's results with

which to compare our propagation.speed. In the short wave-

length limit, Pickett and Wenzel/Keller agree on a value

c* = a(1 - %E) and from (4.18) we have c* = a(1 -(5/8)(2).



This is a more than satisfactory agreement. In the long

wavelength limit, our results compare with those of Wenzel

and Keller just as satisfactorily, though Pickett predicts a

wave speed much less than is calculated here or by Wenzel and

Keller. Regardless, all agree that the wave speed is at all

times less than that in the homogeneous medium.

With regard to the form of the random field, there are

no references I can turn to which offer any help in the way of

verifying or contradicting the predictions here. Small pertur-

bation methods yield fluctuations in the total field which

grow with time. Neither Pickett or Wenzel/Keller attempt

to calculate, to any order, the characteristics of the random

field. In section 4.1 we saw that, to the order employed

here, Howe's method is less than adequate in predicting

behavior comparable to observed phenomena when it comes to the

random wave field. Though the law of conservation of energy

is built into the basic equations from which equations for

p and p' are derived, it is apparent that it has been lost

in the shuffle. If the theory is not at fault ( and here I

can make no such judgement) then the conclusion to draw is

that the "higher order" terms that are neglected in the Born

approximation have a cumulative effect which is very signi-

ficant.

More work needs to be done (empirically and/or theoret-

ically) in the way of describing more adequately relevant

statistical properties of the medium itself. It is apparent



that the total field cannot be determined merely by speci-

fying a correlation function, but it seems necessary to more

clearly define the minimum amount of information required to

determine uniquely the coherent field and the mean-square

random field.

In more recent papers (see ref.10) Howe has been trying

to develop a more wide-reaching kinetic theory of wave propa-

gation in inhomogeneous media. Perhaps the results of this

work will provide a means to better determine the exact limi-

tations of the theory presented here.
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