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Abstract

How much visual information can we hold in mind at once? A large body of research
has attempted to quantify the capacity of visual working memory by focusing on how
many individual objects or visual features can be actively maintained in memory.
This thesis presents a novel theoretical framework for understanding working memory
capacity, suggesting that our memory representations are complex and structured
even for simple visual displays, and formalizing such structured representations is
necessary to understand the architecture and capacity of visual working memory.

Chapter 1 reviews previous empirical research on visual working memory capacity,
and argues that an understanding of memory capacity requires moving beyond quan-
tifying how many items people can remember and instead focusing on the content
of our memory representations. Chapter 2 argues for structured memory representa-
tions by demonstrating that we encode a summary of all of the items on a display
in addition to information about particular items, and use both item and summary
information to complete working memory tasks. Chapter 3 describes a computational
model that formalizes the roles of perceptual organization and the encoding of sum-
mary statistics in visual working memory, and provides a way to quantify capacity
even in the presence of richer, more structured memory representations. This formal
framework predicts how well observers will be able to remember individual working
memory displays, rather than focusing on average performance across many displays.
Chapter 4 uses information theory to examine visual working memory through the
framework of compression, and demonstrates that introducing regularities between
items allows us to encode more colors in visual working memory. Thus, working
memory capacity needs to be understood by taking into account learned knowledge,
rather than simply focusing on the number of items to be remembered. Together,
this research suggests that visual working memory capacity is best characterized by
structured representations where prior knowledge influences how much can be stored
and displays are encoded at multiple levels of abstraction.

Thesis Supervisor: Aude Oliva
Title: Associate Professor of Cognitive Science
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Chapter 1

Structured representations in

visual working memory

1.1 A review of visual working memory capacityl

The working memory system is used to hold information actively in mind, and to

manipulate that information to perform a cognitive task (Baddeley, 1986; Baddeley,

2000). While there is a long history of research on verbal working memory and working

memory for spatial locations (e.g., Baddeley, 1986), the last 15 years has seen surge in

research on visual working memory, specifically for visual feature information (Luck

& Vogel, 1997).

The study of visual working memory has largely focused on the capacity of the

system, both because limited capacity is one of the main hallmarks of working mem-

ory, and because individual differences in measures of working memory capacity are

correlated with differences in fluid intelligence, reading comprehension, and academic

achievement (Alloway & Alloway, 2010; Daneman & Carpenter, 1980; Fukuda, Vo-

gel, Mayr & Awh, 2010; Kane, Bleckly, Conway & Engle, 2001). This relationship

suggests that working memory may be a core cognitive ability that underlies, and

'Parts of this chapter were published as Brady, T.F, Konkle, T., & Alvarez, G.A. (2011). A
review of visual memory capacity: Beyond individual items and towards structured representations.
Journal of Vision.



constrains, our ability to process information across cognitive domains. Thus, un-

derstanding the capacity of working memory could provide important insight into

cognitive function more generally.

In the broader working memory literature, a significant amount of research has

focused on characterizing memory limits based on how quickly information can be

refreshed (e.g., Baddeley, 1986) or the rate at which information decays (Broadbent,

1958; Baddeley & Scott, 1971). In contrast, research on the capacity of visual work-

ing memory has focused on the number of items that can be remembered (Luck &

Vogel, 1997; Cowan, 2001). However, several recent advances in models of visual

working memory have been driven by a focus on the content of working memory

representations rather than how many individual items can be stored.

Here we review research that focuses on working memory representations, includ-

ing their fidelity, structure, and effects of stored knowledge. While not an exhaustive

review of the literature, these examples highlight the fact that working memory rep-

resentations have a great deal of structure beyond the level of individual items. This

structure can be characterized as a hierarchy of properties, from individual features,

to individual objects, to across-object ensemble features (spatial context and featural

context). Together, the work reviewed here illustrates how a representation-based ap-

proach has led to important advances, not just in understanding the nature of stored

representations themselves, but also in characterizing working memory capacity and

shaping models of visual working memory.

1.1.1 The fidelity of visual working memory

Recent progress in modeling visual working memory has resulted from an emphasis

on estimating the fidelity of visual working memory representations. In general, the

capacity of any memory system should be characterized both in terms of the number

of items that can be stored, and in terms of the fidelity with which each individual

item can be stored. Consider the case of a USB-drive that can store exactly 1000

images: the number of images alone is not a complete estimate of this USB-drives

storage capacity. It is also important to consider the resolution with which those



images can be stored: if each image can be stored with a very low resolution, say 16 x

16 pixels, then the drive has a lower capacity than if it can store the same number of

images with a high resolution, say 1024 x 768 pixels. In general, the true capacity of a

memory system can be estimated by multiplying the maximum number of items that

can be stored by the fidelity with which each individual item can be stored (capacity

= quantity X fidelity). For a memory system such as your USB-drive, there is only

an information limit on memory storage, so the number of files that can be stored

is limited only by the size of those files. Whether visual working memory is best

characterized as an information limited system (Alvarez & Cavanagh, 2004; Wilken

& Ma, 2004), or whether it has a pre-determined and fixed item limit (Luck & Vogel,

1997; Zhang & Luck, 2008) is an active topic of debate in the field.

Luck and Vogels (1997) landmark study on the capacity of visual working memory

spurred the surge in research on visual working memory over the past 15 years. Luck

and Vogel (1997) used a change detection task to estimate working memory capacity

for features and conjunctions of features (Figure la; see also Pashler, 1988; Phillips,

1974; Vogel, Woodman & Luck, 2001). On each trial, observers saw an array of

colored squares and were asked to remember them. The squares then disappeared for

about one second, and then reappeared with either all of the items exactly the same as

before, or with a single square having changed color to a categorically different color

(e.g., yellow to red). Observers were asked to say whether the display was exactly

the same or whether one of the squares had changed (Figure la).

Luck and Vogel (1997) found that observers were able to accurately detect changes

most of the time when there were fewer than 3 or 4 items on the display, but that

performance declined steadily as the number of items increased beyond 4. Luck and

Vogel (1997) and Cowan (2001) have shown that this pattern of performance is well

explained by a model in which a fixed number of objects (3-4) were remembered.

Thus, these results are consistent with a "slot model" of visual working memory

capacity (see also Cowan, 2005; Rouder, Morey, Cowan, Zwilling, Morey & Pratte,

2008) in which working memory can store a fixed number of items.

Importantly, this standard change detection paradigm provides little informa-



a. Change Detection

(Luck & Vogel, 1997)

b. Change Detection with
Complex Objects

(Alvarez & Cavanagh, 2004)

c. Across-Category
Change Detection

(blank)

(Awh, Barton & Vogel, 2007)

d. Continuous Report

(Wilken & Ma, 2004)

Figure 1-1: Measures of visual working memory fidelity. (a) A change detection
task. Observers see the Study display, then after a blank must indicate whether the
Test display is identical to the Study display or whether a single item has changed
color. (b) Change detection with complex objects. In this display, the cube changes
to another cube (within-category change), requiring high-resolution representations
to detect. (c) Change detection with complex objects. In this display, the cube
changes to a Chinese character (across-category change), requiring only low-resolution
representations to detect. (d) A continuous color report task. Observers see the Study
display, and then at test are asked to report the exact color of a single item. This
gives a continuous measure of the fidelity of memory.



tion about how well each individual object was remembered. The change detection

paradigm indicates only that items were remembered with sufficient fidelity to dis-

tinguish an object's color from a categorically different color. How much information

do observers actually remember about each object?

Several new methods have been used to address this question (see Figure 1b, c,

d). First, the change detection task can be modified to vary the amount of infor-

mation that must be stored by varying the type of changes that can occur. For

example, changing from one shade of red to a different, similar shade of red requires

a high-resolution representation, whereas a change from red to blue can be detected

with a low-resolution representation. Using such changes that require high-resolution

representations has proved particularly fruitful for investigating memory capacity for

complex objects (Figure 1b, c). Second, estimates of memory precision can be ob-

tained by using a continuous report procedure in which observers are cued to report

the features of an item, and then adjust that item to match the remembered proper-

ties. Using this method, the fidelity of a simple feature dimension like color can be

investigated by having observers report the exact color of a single item (Figure 1d).

Fidelity of storage for complex objects

While early experiments using large changes in a change detection paradigm found

evidence for a slot model, in which memory is limited to storing a fixed number of

items, subsequent experiments with newer paradigms that focused on the precision of

memory representations have suggested an information-limited model. Specifically,

Alvarez and Cavanagh (2004) proposed that there is an information limit on working

memory, which would predict a trade off between the number of items stored and the

fidelity with which each item is stored. For example, suppose working memory could

store 8 bits of information. It would be possible to store a lot of information about

1 object (8 bits/object = 8 bits), or a small amount of information about 4 objects

(2 bits/object = 8 bits). To test this hypothesis, Alvarez and Cavanagh varied the

amount of information required to remember objects, from categorically different col-

ors (low information load), to perceptually similar 3D cubes (high information load).



The results showed that the number of objects that could be remembered with suffi-

cient fidelity to detect the changes depended systematically on the information load

per item: the more information that had to be remembered from an individual item,

the fewer the total number of items that could be stored with sufficient resolution,

consistent with the hypothesis that there is a limit to the total amount of information

stored.

This result was not due to an inability to discriminate the more complex shapes,

such as 3D cubes: observers could easily detect a change between cubes when only a

single cube was remembered, but they could not detect the same change when they

tried to remember 4 cubes. This result suggests that encoding additional items re-

duced the resolution with which each individual item could be remembered, consistent

with the idea that there is an information limit on memory. Using the same paradigm

but varying the difficulty of the memory test, Awh, Barton and Vogel (2007) found a

similar result: with only a single cube in memory, observers could easily detect small

changes in the cubes structure. However, with several cubes in memory, observers

were worse at detecting these small changes but maintained the ability to detect

larger changes (e.g., changing the cube to a completely different kind of stimulus, like

a Chinese character; Figure 1b, c). This suggests that when many cubes are stored,

less information is remembered about each cube, and this low-resolution representa-

tion is sufficient to make a coarse discrimination (3D cube vs. Chinese character),

but not a fine discrimination (3D cube vs. 3D cube). Taken together, these two

studies suggest that working memory does not store a fixed number of items with

fixed fidelity: the fidelity of items in working memory depends on a flexible resource

that is shared among items, such that a single item can be represented with high

fidelity, or several items with significantly lower fidelity (see Zosh & Feigenson, 2009

for a similar conclusion with infants).

Fidelity of simple feature dimensions

While the work of Alvarez and Cavanagh (2004) suggests a tradeoff between the

number of items stored and the resolution of storage, other research has demonstrated



this trade off directly by measuring the precision of working memory along continuous

feature dimensions (Wilken & Ma, 2004). For example, Wilken and Ma (2004) devised

a paradigm in which a set of colors appeared momentarily and then disappeared.

After a brief delay, the location of one color was cued, prompting the observer to

report the exact color of the cued item by adjusting a continuous color wheel (Figure

1d). Wilken and Ma (2004) found that the accuracy of color reports decreased as the

number of items remembered increased, suggesting that memory precision decreased

systematically as more items were stored in memory. This result would be predicted

by an information-limited system, because high precision responses contain more

information than low-precision responses. In other words, as more items are stored

and the precision of representations decreases, the amount of information stored per

item decreases.

Wilken and Mas (2004) investigations into the precision of working memory appear

to support an information-limited model. However, using the same continuous report

paradigm and finding similar data, Zhang and Luck (2008) have argued in favor of

a slot-model of working memory, in which memory stores a fixed number of items

with fixed fidelity. To support this hypothesis, they used a mathematical model to

partial errors in reported colors into two different classes: those resulting from noisy

memory representations, and those resulting from random guesses. Given a particular

distribution of errors, this modeling approach yields an estimate of the likelihood that

items were remembered, and the fidelity with which they were remembered. Zhang

and Luck (2008) found that the proportion of random guesses was low from 1 to 3

items, but that beyond 3 items the rate of random guessing increased. This result

is naturally accounted for by a slot model in which a maximum of 3 items can be

remembered.

However, Zhang and Luck (2008) also found that the fidelity of representations

decreased from 1 to 3 items (representations became less and less precise). A slot

model cannot easily account for this result without additional assumptions. To ac-

count for this pattern, Zhang and Luck proposed that working memory has 3 discrete

slots. When only one item is remembered, each memory slot stores a separate copy of



that one item, and these copies are then averaged together to yield a higher-resolution

representation. Critically, this averaging process improves the fidelity of the item rep-

resentation because each copy has error that is completely independent of the error

in other copies, so when they are averaged these sources of error cancel out. When

3 items are remembered, each item occupies a single slot, and without the benefits

of averaging multiple copies, each of the items is remembered with a lower resolution

(matching the resolution limit of a single slot).

This version of the slot model was consistent with the data, but only when the

number of slots was assumed to be 3. Thus, the decrease in memory precision with

increasing number of items stored can be accounted for by re-casting memory slots as

3 quantum units of resources that can be flexibly allocated to at most 3 different items

(a set of discrete fixed-resolution representations). This account depends critically on

the finding that memory fidelity plateaus and remains constant after 3 items, which

remains a point of active debate in the literature (e.g., Anderson, Vogel & Awh, 2011;

Bays, Catalao & Husain, 2009; Bays & Husain, 2008). In particular, Bays, Catalao

and Husain (2009) have proposed that the plateau in memory fidelity beyond 3 items

(Zhang & Luck, 2008) is an artifact of an increase in swap errors in which the observer

accidentally reports the wrong item from the display. However, the extent to which

such swaps can account for this plateau is still under active investigation (Anderson,

Vogel & Awh, 2011; Bays, Catalao & Husain, 2009).

Conclusion

To summarize, by focusing on the contents of visual working memory, and on the fi-

delity of representations in particular, there has been significant progress in models of

visual working memory and its capacity. At present, there is widespread agreement in

the visual working memory literature that visual working memory has an extremely

limited capacity and that it can represent 1 item with greater fidelity than 3-4 items.

This finding requires the conclusion that working memory is limited by a resource that

is shared among the representations of different items (i.e., is information-limited).

Some models claim that resource allocation is discrete and quantized into slots (An-



derson, Vogel & Awh, 2011; Awh, Barton & Vogel, 2007; Zhang & Luck, 2008), while

others claim that resource allocation is continuous (Bays & Husain, 2008; Huang,

2010; Wilken & Ma, 2004), but there is general agreement that working memory is a

flexibly-allocated resource of limited capacity.

Research on the fidelity of working memory places important constraints on both

continuous and discrete models. If working memory is slot-limited, then those slots

must be recast as a flexible resource, all of which can be allocated to a single item to

gain precision in its representation, or which can be divided separately among mul-

tiple items yielding relatively low-resolution representations of each item. If memory

capacity is information-limited, then it is necessary to explain why under some condi-

tions it appears that there is an upper bound on memory storage of 3-4 objects (e.g.

Alvarez & Cavanagh, 2004; Awh, Barton & Vogel, 2007; Luck & Vogel, 1997; Zhang

& Luck, 2008) and in other conditions it appears that memory is purely information-

limited, capable of storing more-and-more, increasingly noisy representations even

beyond 3-4 items (e..g, Bays & Husain, 2008; Bays, Catalao & Husain, 2009; Huang,

2010).

1.1.2 The representation of features vs. objects in visual

working memory

Any estimate of memory capacity must be expressed with some unit, and what counts

as the appropriate unit depends upon how information is represented. Since George

Miller's (1956) seminal paper claiming a limit of 7 +/- 2 chunks as the capacity of

working memory, a significant amount of work has attempted to determine the units

of storage in working memory. In the domain of verbal memory, for example, de-

bate has flourished about the extent to which working memory capacity is limited

by storing a fixed number of chunks vs. time-based decay (Baddeley, 1986; Cowan

2005; Cowan & AuBuchon, 2008). In visual working memory, this debate has focused

largely on the issue of whether separate visual features (color, orientation, size) are

stored in independent buffers, each with their own capacity limitations (e.g., Mag-



nussen, Greenlee & Thomas, 1996), or whether visual working memory operates over

integrated object representations (Luck & Vogel, 1997; Vogel, Woodman & Luck,

2001; see Figure 2b).

Luck and Vogel (1997) provided the first evidence that visual working memory

representations should be thought of as object-based. In their seminal paper (Luck

& Vogel, 1997), they found that observers performance on a change detection task

was identical whether they had to remember only one feature per object (orientation

or color), two features per object (both color and orientation), or even four features

per object (color, size, orientation and shape). If memory was limited in terms of the

number of features, then remembering more features per object should have a cost.

Because there was no cost for remembering more features, Luck and Vogel concluded

that objects are the units of visual working memory. In fact, Luck and Vogel (1997)

initially provided data demonstrating that observers could remember 3-4 objects even

when those objects each contained 2 colors. In other words, observers could only re-

member 3-4 colors when each color was on a separate object, but they could remember

6-8 colors when those colors were joined into bi-color objects. However, subsequent

findings have provided a number of reasons to temper this strong, object-based view

of working memory capacity. In particular, recent evidence has suggested that, while

there is some benefit to object-based storage, objects are not always encoded in their

entirety, and multiple features within an object are encoded with a cost.

Objects are not always encoded in their entirety

A significant body of work has demonstrated that observers do not always encode

objects in their entirety. When multiple features of an object appear on distinct object

parts, observers are significantly impaired at representing the entire object (Davis &

Holmes, 2005; Delvenne & Bruyer, 2004; Delvenne & Bruyer, 2006; Xu, 2002a). For

instance, if the color feature appears on one part of an object, and the orientation

feature on another part of the object, then observers perform worse when required

to remember both features than when trying to remember either feature alone (Xu,

2002a). In addition, observers sometimes encode some features of an object but not



others, for example remembering their color but not their shape (Bays, Wu & Husain,

2011; Fougnie & Alvarez, submitted), particularly when only a subset of features is

task-relevant (e.g., Droll, Hayhoe, Triesch, & Sullivan, 2005; Triesch, Ballard, Hayhoe

& Sullivan, 2003; Woodman & Vogel, 2008). Thus, working memory does not always

store integrated object representations.

Costs for encoding multiple features within an object

Furthermore, another body of work has demonstrated that encoding more than one

feature of the same object does not always come without cost. Luck and Vogel

(1997) provided evidence that observers could remember twice as many colors when

those colors were joined into bi-color objects. This result suggested that memory was

truly limited by the number of objects that could be stored, and not the number of

features. However, this result has not been replicated, and indeed there appears to

be a significant cost to remembering two colors on a single object (Olson & Jiang,

2002; Wheeler & Treisman, 2002; Xu, 2002b). In particular, Wheeler and Treismans

work (2002) suggests that memory is limited to storing a fixed number of colors (3-4)

independent of how those colors are organized into bi-color objects. This indicates

that working memory capacity is not limited only by the number of objects to-be-

remembered; instead, some limits are based on the number of values that can be

stored for a particular feature dimension (e.g., only 3-4 colors may be stored).

In addition to limits on the number of values that may be stored within a particular

feature dimension, data on the fidelity of representations suggests that even separate

visual features from the same object are not stored completely independently. In an

elegant design combining elements of the original work of Luck and Vogel (1997) with

the newer method of continuous report (Wilken & Ma, 2004), Fougnie, Asplund and

Marois (2010) examined observers representations of multi-feature objects (oriented

triangles of different colors; see Figure 2a). Their results showed that, while there

was no cost for remembering multiple features of the same object in a basic change-

detection paradigm (as in Luck and Vogel, 1997), this null result was obtained because

the paradigm was not sensitive to changes in the fidelity of the representation. In



contrast, the continuous report paradigm showed that, even within a single simple

object, remembering more features results in significant costs in the fidelity of each

feature representation. This provides strong evidence against any theory of visual

working memory capacity in which more information can be encoded about an object

without cost (e.g., Luck and Vogel, 1997), but at the same time provides evidence

against the idea of entirely separate memory capacities for each feature dimension.

Benefits of object-based storage beyond separate buffers

While observers cannot completely represent 3-4 objects independently of their in-

formation load, there is a benefit to encoding multiple features from the same object

compared to the same number of features on different objects (Fougnie, Asplund and

Marois, 2010; Olson & Jiang, 2002; Quinlan & Cohen, 2011). For example, Olson

and Jiang showed that it is easier to remember the color and orientation of 2 objects

(4 features total), than the color of 2 objects and the orientation of 2 separate objects

(still 4 features total). In addition, while Fougnie, Asplund and Marois (2010) showed

that there is a cost to remembering more features within an object, they found that

there is greater cost to remembering features from different objects. Thus, while

remembering multiple features within an object led to decreased fidelity for each fea-

ture, remembering multiple features on different objects led to both decreased fidelity

and a decreased probability of successfully storing any particular feature (Fougnie,

Asplund, & Marois, 2010).

Conclusion

So what is the basic unit of representation in visual working memory? While there

are significant benefits to encoding multiple features of the same object compared to

multiple features across different objects (e.g., Fougnie, Asplund and Marois, 2010;

Olson & Jiang, 2002), visual working memory representations do not seem to be

purely object-based. Memory for multi-part objects demonstrates that the relative

location of features within an object limits how well those features can be stored (Xu,

2002a), and even within a single simple object, remembering more features results
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Figure 1-2: Possible memory representations for a visual working memory display.
(a) A display of oriented and colored items to remember. (b) Potential memory
representations for the display in (a). The units of memory do not appear to be
integrated bound objects, or completely independent feature representations. Instead,
they might be characterized as hierarchical feature-bundles, which have both object-
level and feature-level properties.

in significant costs in the fidelity of each feature representation (Fougnie, Asplund

& Marois, 2010). These results suggest that what counts as the right unit in visual

working memory is not a fully integrated object representation, or independent feature

representations. In fact, no existing model captures all of the relevant data on the

storage of objects and features in working memory.

One possibility is that the initial encoding process is object-based (or location-

based), but that the 'unit' of visual working memory is a hierarchically-structured

feature-bundle (Figure 2b): at the top level of an individual "unit" is an integrated

object representation, at the bottom level of an individual "unit" are low-level fea-

ture representations, with this hierarchy organized in a manner that parallels the

hierarchical organization of the visual system. Thus, a hierarchical feature-bundle

has the properties of independent feature stores at the lower level, and the properties

of integrated objects at a higher level. Because there is some independence between

lower-level features, it is possible to modulate the fidelity of features independently,

and even to forget features independently. On the other hand, encoding a new hi-

erarchical feature-bundle might come with an overhead cost that could explain the

object-based benefits on encoding. On this view, remembering any feature from a new

object would require instantiating a new hierarchical feature-bundle, which might be

more costly than simply encoding new features into an existing bundle.



This proposal for the structure of memory representations is consistent with the

full pattern of evidence described above, including the benefit for remembering mul-

tiple features from the same objects relative to different objects, and the cost for

remembering multiple features from the same object. Moreover, this hierarchical

working-memory theory is consistent with evidence showing a specific impairment in

object-based working memory when attention is withdrawn from items (e.g., binding

failures: Fougnie & Marois, 2009; Wheeler & Treisman, 2002; although this is an area

of active debate; see Allen, Baddeley & Hitch, 2006; Baddeley, Allen, & Hitch, 2011;

Gajewski & Brockmole, 2006; Johnson, Hollingworth & Luck, 2008; Stevanovski &

Jilicoeur, 2011).

Furthermore, there is some direct evidence for separate capacities for feature-based

and object-based working memory representations, with studies showing separable

priming effects and memory capacities (Hollingworth & Rasmussen, 2010; Wood,

2009; Wood, 2011a). For example, observers may be capable of storing information

about visual objects using both a scene-based feature memory (perhaps of a particular

view), and also a higher-level visual memory system that is capable of storing view-

invariant, 3D object information (Wood, 2011a; Wood, 2009).

It is important to note that our proposed hierarchical feature-bundle model is

not compatible with a straightforward item-based or chunk-based model of working

memory capacity. A key part of such proposals (e.g., Cowan, 2001; Cowan et al. 2004)

is that memory capacity is limited only by the number of chunks encoded, not taking

into account the information within the chunks. Consequently, these models are not

compatible with evidence showing that there are limits simultaneously at the level of

objects and the level of features (e.g., Fougnie et al. 2010). Even if a fixed number

of objects or chunks could be stored, this limit would not capture the structure and

content of the representations maintained in memory.

Thus far we have considered only the structure of individual items in working mem-

ory. Next we review research demonstrating that working memory representations

includes another level of organization that represents properties that are computed

across sets of items.



1.1.3 Interactions between items in visual working memory

In the previous two sections, we discussed the representation of individual items in

visual working memory. However, research focusing on contextual effects in memory

demonstrates that items are not stored in memory completely independent of one

another. In particular, several studies have shown that items are encoded along with

spatial context information (the spatial layout of items in the display), and with feat-

ural context information (the ensemble statistics of items the display). These results

suggest that visual working memory representations have a great deal of structure

beyond the individual item level. Therefore, even a complete model of how individ-

ual items are stored in working memory would not be sufficient to characterize the

capacity of visual working memory. Instead, the following findings regarding what

information is represented, and how representations at the group or ensemble level

affect representations at the individual item level, must be taken into account in any

complete model of working memory capacity.

Influences of spatial context

Visual working memory paradigms often require observers to remember not only the

featural properties of items (size, color, shape, identity), but also where those items

appeared in the display. In these cases, memory for the features of individual items

may be dependent on spatial working memory as well (for a review of spatial working

memory, see Awh & Jonides, 2001). The most prominent example of this spatial-

context dependence is the work of Jiang, Olson and Chun (2000), who demonstrated

that changing the spatial context of items in a display impairs change detection.

For example, when the task was to detect whether a particular item changed color,

performance was worse if the other items in the display did not reappear (Figure 3a),

or reappeared with their relative spatial locations changed. This interference suggests

that the items were not represented independently of their spatial context (see also

Vidal et al 2005; Olson & Marshuetz, 2005; and Hollingworth, 2006, for a description

of how such binding might work for real-world objects in scenes). This interaction



between spatial working memory and visual working memory may be particularly

strong when remembering complex shape, when binding shapes to colors, or when

binding colors to locations (Wood, 2011b), but relatively small when remembering

colors that do not need to be bound to locations (Wood, 2011b).

Influence of feature context, or "ensemble statistics"

In addition to spatial context effects on item memory, it is likely that there are

feature context effects as well. For instance, even in a display of squares with random

colors, some displays will tend to have more "warm colors" on average, whereas

others will have more "cool colors" on average, and others still will have no clear

across-item structure. This featural context, or "ensemble statistics" (Alvarez, 2011),

could influence memory for individual items (e.g., Brady & Alvarez, 2011; Chapter

2). For instance, say you remember that the colors were "warm" on average, but the

test display contains a green item (Figure 3b). In this case, it is more likely that the

green item is a new color, and it would be easier to detect this change than a change

of similar magnitude that remained within the range of colors present in the original

display.

Given that ensemble information would be useful for remembering individual

items, it is important to consider the possibility that these ensemble statistics will

influence item memory. Indeed, Brady and Alvarez (2011; Chapter 2) have provided

evidence suggesting that the representation of ensemble statistics influences the rep-

resentation of individual items. They found that observers are biased in reporting

the size of an individual item by the size of the other items in the same color set,

and by the size of all of the items on the particular display. They proposed that this

bias reflects the integration of information about the ensemble size of items in the

display with information about the size of a particular item. In fact, using an optimal

observer model, they showed that observers reports were in line with what would be

expected by combining information from both ensemble memory representations and

memory representations of individual items (Brady & Alvarez, 2011; Chapter 2).

These studies leave open the question of how ensemble representations interact
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(Jiang, Olson & Chun, 2000)

Figure 1-3: Interactions between items in working memory. (a) Effects of spatial
context. It is easier to detect a change to an item when the spatial context is the
same in the original display and the test display than when the spatial context is
altered, even if the item that may have changed is cued (with a black box). Displays
adapted from the stimuli of Jiang, Olson & Chun (2000). (b) Effects of feature context
on working memory. It is easer to detect a change to an item when the new color is
outside the range of colors present in the original display, even for a change of equal
magnitude.

a. Spatial Context



with representations of individual items in working memory. The representation of

ensemble statistics could take up space in memory that would otherwise be used

to represent more information about individual items (as argued, for example, by

Feigenson 2008 and Halberda, Sires and Feigenson, 2006), or such ensemble represen-

tations could be stored entirely independently of representations of individual items

and integrated either at the time of encoding, or at the time of retrieval. For example,

ensemble representations could make use of separate resource from individual item

representations, perhaps analogous to the separable representations of real-world ob-

jects and real-world scenes (e.g., Greene & Oliva, 2009). Compatible with this view,

ensemble representations themselves appear to be hierarchical (Haberman & Whitney,

2011), since observers compute both low-level summary statistics like mean orienta-

tion, and also object-level summary statistics like mean emotion of a face (Haberman

& Whitney, 2009).

While these important questions remain for future research, the effects of ensem-

ble statistics on individual item memory suggest several intriguing conclusions. First,

it appears that visual working memory representations do not consist of independent,

individual items. Instead, working memory representations are more structured, and

include information at multiple levels of abstraction, from items, to the ensemble

statistics of sub-groups, to ensemble statistics across all items, both in spatial and

featural dimensions. Second, these levels of representation are not independent: en-

semble statistics appear to be integrated with individual item representations. Thus,

this structure must be taken into account in order to model and characterize the ca-

pacity of visual working memory. Limits on the number of features alone, the number

of objects alone, or the number of ensemble representations alone, are not sufficient

to explain the capacity of working memory.

Perceptual grouping and dependence between items

Other research has shown that items tend to be influenced by the other items in

visual working memory, although such work has not explicitly attempted to distin-

guish influences due to the storage of individual items and influences from ensemble



statistics. For example, Viswanathan, Perl, Bisscher, Kahana and Sekuler (2010;

using Gabor stimuli) and Lin and Luck (2008; using colored squares) showed im-

proved memory performance when items appear more similar to one another (see

also Johnson, Spencer, Luck, & Schner, 2009). In addition, Huang & Sekuler (2010)

have demonstrated that when reporting the remembered spatial frequency of a Gabor

patch, observers are biased to report it as more similar to a task-irrelevant stimulus

seen on the same trial. It was as if memory for the relevant item was "pulled toward"

the features of the irrelevant item.

Cases of explicit perceptual grouping make the non-independence between ob-

jects even more clear. For example, Woodman, Vecera and Luck (2003) have shown

that perceptual grouping helps determine which objects are likely to be encoded in

memory, and Xu and Chun (2007) have shown that such grouping facilitates visual

working memory, allowing more shapes to be remembered. In fact, even the original

use of the change detection paradigm varied the complexity of relatively structured

checkerboard-like stimuli as a proxy for manipulating perceptual grouping in working

memory (Phillips, 1974), and subsequent work using similar stimuli has demonstrated

that changes which affect the statistical structure of a complex checkerboard-like

stimulus are more easily detected (Victor & Conte, 2004). The extent to which such

improvements of performance are supported by low-level perceptual grouping treat-

ing multiple individual items as a single unit in memory versus the extent to which

such performance is supported by the representation of ensemble statistics of the dis-

play in addition to particular individual items is still an open question. Some work

making use of formal models has begun to attempt to distinguish these possibilities,

but the interaction between them is likely to be complex (Brady & Tenenbaum, 2010;

Chapter 3).

Perceptual Grouping vs. Chunking vs. Hierarchically Structured Memory

What is the relationship between perceptual grouping, chunking, and the hierarchi-

cally structured memory model we have described? Perceptual grouping and chunking

are both processes by which multiple elements are combined into a single higher-order



description. For example, a series of 10 evenly spaced dots could be grouped into a

single line, and the letters F, B, and I can be chunked into the familiar acronym

FBI (e.g., Cowan, 2001; Cowan et al. 2004). Critically, strong versions of perceptual

grouping and chunking models posit that the resulting groups or chunks are the units

of representation: if one part of the group or chunk is remembered, all components of

the group or chunk can be retrieved. Moreover, strong versions of perceptual group-

ing and chunking models assume that the only limits on memory capacity come from

the number of chunks or groups that can be encoded (Cowan, 2001).

Such models can account for some of the results reviewed here. For example, the

influence of perceptual grouping on memory capacity (e.g., Xu & Chun, 2007) can be

explained by positing a limit on the number of groups that can be remembered, rather

than the number of individual objects (e.g., Chapter 3). However, such models cannot

directly account for the presence of memory limits at multiple levels, like the limits on

both the number of objects stored and the number of features stored (Fougnie et al.

2010). Moreover, such models assume independence across chunks or groups and thus

cannot account for the role of ensemble features in memory for individual items (Brady

& Alvarez, 2011; Chapter 2). Any model of memory capacity must account for the fact

that groups or chunks themselves have sub-structure, that this sub-structure causes

limits on capacity, and that we simultaneously represent both information about

individual items and ensemble information across items. A hierarchically structured

memory model captures these aspects of the data by proposing that information is

maintained simultaneously at multiple, interacting levels of representation, and our

final memory capacity is a result of limits at all of these levels (e.g., Chapter 2;

Chapter 3).

Conclusion

Taken together, these results provide significant evidence that individual items are not

represented independent of other items on the same display, and that visual working

memory stores information beyond the level of individual items. Put another way,

every display has multiple levels of structure, from the level of feature representations



to individual items to the level of groups or ensembles, and these levels of structure

interact. It is important to note that these levels of structure exist, and vary across

trials, even if the display consists of randomly positioned objects that have randomly

selected feature values. The visual system efficiently extracts and encodes structure

from the spatial and featural information across the visual scene, even when, in the

long run over displays, there may not be any consistent regularities. This suggests

that any theory of visual working memory that specifies only the representation of

individual items or groups cannot be a complete model of visual working memory.

1.1.4 The effects of stored knowledge on visual working mem-

ory

Most visual working memory research requires observers to remember meaningless,

unrelated items, such as randomly selected colors or shapes. This is done to minimize

the role of stored knowledge, and to isolate working memory limitations from long-

term memory. However, in the real-world, working memory does not operate over

meaningless, unrelated items. Observers have stored knowledge about most items

in the real world, and this stored knowledge constrains what features and objects

we expect to see, and where we expect to see them. The role of such stored knowl-

edge in modulating visual working memory representations has been controversial.

In the broader working memory literature, there is clear evidence of the use of stored

knowledge to increase the number of items remembered in working memory (Erics-

son, Chase & Faloon, 1980; Cowan, Chen & Rouder, 2004). For example, the original

experiments on chunking were clear examples of using stored knowledge to recode

stimuli into a new format to increase capacity (Miller, 1956) and such results have

since been addressed in most models of working memory (e.g., Baddeley, 2000). How-

ever, in visual working memory, there has been less work towards understanding how

stored knowledge modulates memory representations and the number of items that

can be stored in memory.



Biases from stored knowledge

One uncontroversial effect of long-term memory on working memory is that there

are biases in working memory resulting from prototypes or previous experience. For

example, Huang and Sekuler (2010) have shown that when reporting the spatial

frequency of a gabor patch, observers are influenced by stimuli seen on previous

trials, tending to report a frequency that is pulled toward previously seen stimuli

(see Spencer & Hund, 2002 for an example from spatial memory). Such biases can

be understood as optimal behavior in the presence of noisy memory representations.

For example, Huttenlocher et al. (2000) found that observers memory for the size

of simple shapes is influenced by previous experience with those shapes; observers

reported sizes are again attracted to the sizes they have previously seen. Huttenlocher

et al. (2000) model this as graceful errors resulting from a Bayesian updating process

- if you are not quite sure what youve seen, it makes sense to incorporate what you

expected to see into your judgment of what you did see. In fact, such biases are even

observed with real-world stimuli, for example, memory for the size of a real-world

object is influenced by our prior expectations about its size (Hemmer & Steyvers,

2009; Konkle & Oliva, 2007). Thus, visual working memory representations do seem

to incorporate information from both episodic long-term memory and from stored

knowledge.

Stored knowledge effects on memory capacity

While these biases in visual working memory representations are systematic and im-

portant, they do not address the question of whether long-term knowledge can be used

to store more items in visual working memory. This question has received consider-

able scrutiny, and in general it has been difficult to find strong evidence of benefits of

stored knowledge on working memory capacity. For example, Pashler (1988) found

little evidence for familiarity modulating change detection performance. However,

other methods have shown promise for the use of long-term knowledge to modulate

visual working memory representations. For example, Olsson and Poom (2005) used



stimuli that were difficult to categorize or link to previous long-term representations,

and found a significantly reduced memory capacity, and observers seem to perform

better at working memory tasks with upright faces (Curby & Gauthier, 2007; Scolari,

Vogel & Awh, 2008), familiar objects (see Experiment 2, Alvarez & Cavanagh, 2004),

and objects of expertise (Curby et al 2009) than other stimulus classes. In addi-

tion, childrens capacity for simple colored shapes seems to grow significantly over the

course of childhood (Cowan et al., 2005), possibly indicative of their growing visual

knowledge base. Further, infants are able to use learned conceptual information to

remember more items in a working memory task (Feigenson & Halberda, 2008).

However, several attempts to modulate working memory capacity directly using

learning to create new long-term memories showed little effect of learning on working

memory. For example, a series of studies has investigated the effects of associative

learning on visual working memory capacity (Olson & Jiang, 2004; Olson, Jiang &

Moore, 2005), and did not find clear evidence for the use of such learned information

to increase working memory storage. For example, one study found evidence that

learning did not increase the amount of information remembered, but that it improved

memory performance by redirecting attention to the items that were subsequently

tested (Olson, Jiang & Moore, 2005). Similarly, studies directly training observers on

novel stimuli have found almost no effect of long-term familiarity on change detection

performance (e.g., Chen, Eng & Jiang, 2006).

In contrast to this earlier work, Brady, Konkle and Alvarez (2009; Chapter 4)

have recently shown clear effects of learned knowledge on working memory. In their

paradigm, observers were shown standard working memory stimuli in which they

had to remember the color of multiple objects (Figure 4a). However, unbeknownst

to the observers, some colors often appeared near each other in the display (e.g.,

red tended to appear next to blue). Observers were able to implicitly learn these

regularities, and were also able to use this knowledge to encode the learned items

more efficiently in working memory, representing nearly twice as many colors ( 5-6)

as a group who was shown the same displays without any regularities (Figure 4b).

This suggests that statistical learning enabled observers to form compressed, efficient



b. Number of colors remembered over time

7 - Color pairs repeat over time
Color pairs are random

E

3

2 4 6 8(Brady, Konkle & Alvarez, 2009) Experiment Block

Figure 1-4: Effects of learned knowledge on visual working memory. (a) Example
memory display modeled after Brady, Konkle, & Alvarez (2009; Chapter 4). The
task was to remember all 8 colors. Memory was probed with a cued-recall test: a
single location was cued, and the observer indicated which color appeared at the cued
location. (b) Number of colors remembered over time in Brady, Konkle & Alvarez
(2009; Chapter 4). One group of observers saw certain color pairs more often than
others (e.g., yellow and green might occur next to each other 80% of the time),
whereas the other group saw completely random color pairs. For the group that saw
repeated color pairs, the number of color remembered increased across blocks, nearly
doubling the number remembered by the random group by the end of the session.

representations of familiar color pairs. Furthermore, using an information-theoretic

model, Brady, Konkle and Alvarez (2009; Chapter 4) found that observers' memory

for colors was compatible with a model in which observers have a fixed capacity in

terms of information (bits), providing a possible avenue for formalizing this kind of

learning and compression.

It is possible that Brady et al. (2009; Chapter 4) found evidence for the use of

stored knowledge in working memory coding because their paradigm teaches associ-

ations between items, rather than attempting to make the item's themselves more

familiar. For instance, seeing the same set of colors for hundreds of trials might not

improve the encoding of colors or shapes, because the visual coding model used to

encode colors and shapes has been built over a lifetime of visual experience that can-

not not be overcome in the time-course of a single experimental session. However,

a. Example display



arbitrary pairings of arbitrary features are unlikely to compete with previously ex-

isting associations, and might therefore lead to faster updating of the coding model

used to encode information into working memory. Another important aspect of the

Brady et al. (2009; Chapter 4) study is that the items that co-occurred were always

perceptually grouped. It is possible that compression only occurs when the correlated

items are perceptually grouped (although learning clearly functions without explicit

perceptual grouping, e.g., Orbn, Fiser, Aslin & Lengyel, 2008).

Conclusion

Observers have stored knowledge about most items in the real world, and this stored

knowledge constrains what features and objects we expect to see, and where we

expect to see them. There is significant evidence that the representation of items

in working memory is dependent on this stored knowledge. Thus, items for which

we have expertise, like faces, are represented with more fidelity (Curby & Gauthier,

2007; Scolari, Vogel & Awh, 2008), and more individual colors can be represented after

statistical regularities between those colors are learned (Brady et al. 2009; Chapter 4).

In addition, the representation of individual items are biased by past experience (e.g.,

Huang and Sekuler, 2010; Huttenlocher et al. 2000). Taken together, these results

suggest that the representation of even simple items in working memory depends

upon our past experience with those items and our stored visual knowledge.

1.1.5 Visual working memory review conclusion

A great deal of research on visual working memory has focused on how to characterize

the capacity of the system. We have argued that in order to characterize working

memory capacity, it is important to take into account both the number of individual

items remembered, and the fidelity with which each individual item is remembered.

Moreover, it is necessary to specify what the units of working memory storage are,

how multiple units in memory interact, and how stored knowledge affects the rep-

resentation of information in memory. In general we believe theories and models



of working memory must be expanded to include memory representations that go

beyond the representation of individual items and include hierarchically-structured

representations, both at the individual item level (hierarchical feature-bundles), and

across individual items. There is considerable evidence that working memory rep-

resentations are not based on independent items, that working memory also stores

ensembles that summarize the spatial and featural information across the display, and

further, that there are interactions between working memory and stored knowledge

even in simple displays.

Moving beyond individual items towards structured representations certainly com-

plicates any attempt to estimate working memory capacity. The answer to how many

items can you hold in visual working memory depends on what kind of items you are

trying to remember, how precisely they must be remembered, how they are presented

on the display, and your history with those items. Even representations of simple

items have structure at multiple levels. Thus, models that wish to accurately account

for the full breadth of data and memory phenomena must make use of structured

representations, especially as we move beyond colored dot objects probed by their

locations towards items with more featural dimensions or towards real-world objects

in scenes.

1.2 Thesis outline

Visual working memory has often been treated as a system with simple, discrete

objects as the unit of storage (e.g., Luck & Vogel, 1997; Cowan, 2005). While many

useful models have been built in this framework, and these models have the benefit

of being simple and formal (e.g., Cowan, 2001; Luck & Vogel, 1997; Zhang & Luck,

2008), such models ultimately depend on the idea that observers' remember discrete

items in working memory and that counting how much such items can be remembered

is a sufficient measure of capacity.

The claim of this thesis is that such models of visual working memory capacity

seriously underestimate the complexity of our memory representations, and thus mis-



characterize the nature of our representations even for simple stimuli. In particular,

in this thesis I propose that working memory representations are based on exist-

ing knowledge and depend critically on both perceptual organization and summary

statistics, and thus these factors must be taken into account to accurately character-

ize our memory representations. I thus aim to investigate working memory capacity

from a constructive memory perspective (in the spirit of Bartlett, 1932), rather than

quantifying how many independent items can be stored.

The thesis begins with a demonstration that observers represent working memory

displays hierarchically - encoding a summary of the display in addition to item-level

information (Chapter 2); that they form such hierarchical representations even in

standard working memory displays (Chapter 3); and that formal models of work-

ing memory can be constructed that allow us to quantify memory capacity in terms

of such structured representations (Chapter 3). In addition, I demonstrate that ob-

servers take advantage of prior knowledge when representing a display, encoding items

more efficiently if they have learned that items are related to each other (Chapter

4), and show that this learning can be formalized using information theory (Chapter

4). Ultimately, the thesis provides empirical evidence that observers use structured

knowledge to represent displays in working memory, and provides a set of computa-

tional models to formalize these structured memory representations.
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Chapter 2

Hierarchical encoding in visual

working memory: ensemble

statistics bias memory for

individual items'

Influential models of visual working memory treat each item to be stored as an inde-

pendent unit and assume there are no interactions between items. However, real-world

displays have structure, providing higher-order constraints on the items to be remem-

bered. Even displays with simple colored circles contain statistics, like the mean circle

size, that can be computed by observers to provide an overall summary of the dis-

play. In this chapter we examine the influence of such an ensemble statistic on visual

working memory. We find evidence that the remembered size of each individual item

is biased toward the mean size of the set of items in the same color, and the mean size

of all items in the display. This suggests that visual working memory is constructive,

encoding the display at multiple levels of abstraction and integrating across these

levels rather than maintaining a veridical representation of each item independently.

'Parts of this chapter were published as Brady, T.F, & Alvarez, G.A. (2011). Hierarchical encod-
ing in visual working memory: ensemble statistics bias memory for individual items. Psychological
Science.



2.1 Introduction

Observers can quickly and accurately compute ensemble statistics about a display,

like the mean size of the items (Ariely, 2001; Chong & Treisman, 2003), the mean

facial expression (Haberman & Whitney, 2007), the mean orientation (Parkes, Lund,

Angelucci, Solomon, & Morgan, 2001), the mean location (Alvarez & Oliva, 2008),

and even higher-level spatial layout statistics (Alvarez & Oliva, 2009). However, little

work has explored why observers compute these statistics, and in particular, whether

the encoding of these higher-order statistics might play a role in how we represent

the individual items from such displays in memory.

Nearly all studies of visual working memory use displays consisting of simple

stimuli in which the items are chosen randomly. These displays are, as best as possible,

prevented from having any overarching structure or gist. Thus, influential models of

visual working memory tend to treat each item as an independent unit and assume

that items do not influence one another's representation (Alvarez & Cavanagh, 2004;

Bays, Catalao & Husain, 2009; Luck & Vogel, 1997; Rouder et al. 2009; Wilken &

Ma, 2004; Zhang & Luck, 2008; although see Lin & Luck, 2009 and Johnson, Spencer,

Luck and Schner, 2009).

We propose that, contrary to the assumptions of previous models of visual working

memory, ensemble statistics allow observers to encode such working memory displays

more efficiently: paralleling how people encode real scenes (Lampinen, Copeland,

Neuschatz, 2001; Oliva, 2005), observers might encode the 'gist' of simple working

memory displays (ensemble statistics like mean size) in addition to information about

specific items (their individual information). Such hierarchical encoding would allow

observers to represent information about every item in the display simultaneously,

significantly improving the fidelity of their memory representations compared to en-

coding only 3-4 individual items.

To test this hypothesis, we use the ensemble statistic of mean size and the grouping

principle of common color, which are known to be automatically and effortlessly

computed and could act as a form of higher-order structure in our displays (Chong &



Treisman, 2005). Our results demonstrate a form of hierarchical encoding in visual

working memory: the remembered size of individual items is biased towards the

mean size of items of the same color and the mean size of all items in the display.

This suggests that, contrary to existing models of visual working memory, items are

not recalled as independent units, but instead their reported size is constructed by

combining information about the specific dot with information about the set of dots

at multiple levels of abstraction.

2.2 Experiment 1: Ensemble statistics bias size

memory

We examined whether the ensemble statistics of a display would bias memory for

individual items in a task where observers attempted to remember the size of multiple

colored circles. We hypothesized that on displays with both small red dots and large

blue dots, observers would tend to report the size of a particular dot as larger when

it was blue than when it was red. This kind of size bias would suggest that observers

had taken into account the size of the set of items.

2.2.1 Method

Observers

21 observers were recruited and run using Amazon Mechanical Turk. All were from

the U.S., gave informed consent, and were paid 40 cents for approximately 3 minutes

of their time.

Procedure

Observers were each presented with the same 30 displays consisting of three red, three

blue and three green circles of varying size (see Figure 2-1) and told to remember

the size of all of the red and blue circles, but to ignore the green circles. The green

distractor items were present in the display because we believed they would encourage



Figure 2-1: An example pair of matched displays from Experiment 1. Observers had
to remember the size of the red and blue dots and ignore the green dots. After each
trial they were tested on the size of a single dot using a recall procedure. The left
display and right display make up a matched pair in which the same items are present,
but the tested item (second from the left on the bottom) swaps color with another
item (bottom left item). Note that the size of the dots is not to scale in order to more
clearly show the display properties.

observers to encode the items by color, rather than selecting all of the items into

memory at once (Huang, Treisman, Pashler, 2007; Halberda, Sires, Feigenson, 2006).

The order of the 30 displays was randomized across observers. Each display appeared

for 1.5 seconds, followed by a 1 second blank, after which a single randomly-sized circle

reappeared in black at the location that a red or blue dot had occupied. Observers

had to slide the mouse up or down to resize this new black circle to the size of the

red or blue dot they had previously seen, and then click to lock in their answer and

start the next trial.

Stimuli

The 9 circles appeared in a 600x400 pixel window delineated by a gray box, with

each circle at a random location within an invisible 6 x 4 grid, with +/- 10 pixel

jitter added to their locations to prevent co-linearities. Observers' monitor size and

resolution was not controlled. However, all observers attested to the fact that the

entire display was visible on their monitor. Moreover, the critical comparisons are

within-subject, and individual differences in absolute size of the display are factored

out by focusing on within-subject comparisons between conditions.



Circle sizes were drawn from a separate normal distribution for each color, each

with a mean diameter chosen uniformly on each trial from the interval [15px, 95px]

and with standard deviation equal to 1/8th their mean. Thus, on a given trial, the

three red dots could be sampled from around 35 pixels, the blue dots from 80 pixels

and the green dots from 20 pixels. However, which color set was largest and smallest

was chosen randomly on each trial; thus, on the next trial it could be the green dots

that were largest and the blue dots smallest.

To allow a direct test of the hypothesized bias toward the mean of the same-

colored items, the displays were generated in matched pairs. First, 15 displays were

generated as described; then another 15 were created by swapping the color of the

to-be-tested item with a dot of the other non-distractor color (either red or blue).

These 30 displays were then randomly interleaved, with the constraint that paired

displays could not appear one after the other. This resulted in 15 pairs of displays,

each matched in the size of all of the circles present, with a difference only in the

color of the circle that would later be tested. By comparing reported size when the

tested item was one color with the reported size when it was another color, we were

able to directly test the hypothesis that observers memory for size is biased toward

the mean size of all items in the test items color set.

2.2.2 Results

Overall accuracy

We first assessed whether observers were able to accurately perform the size memory

task by comparing their performance to an empirical measure of chance (empirical

chance: 30.5px, SEM: 0.78px, obtained by randomly pairing a given observers' re-

sponses with the correct answer from different trials). Observers performance was

significantly better than this measure of chance, with an error of 16.4px on average

(SEM: 1.7px; difference from chance, p< 10--).
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Figure 2-2: (A) Schematic illustration of calculating bias from a pair of matched
displays. In this example, the blue dots were larger than the red dots on average. We
then measured whether observers reported different sizes for the tested dot when it was
red versus when it was blue (the dot was in fact the same size in both presentations).
Which color was larger was counterbalanced across trials in the actual experiment,
but bias was always calculated by dividing the size reported for the larger color by
size reported for the smaller color. (B) The bias from Experiments 1 (color-relevant),
2A (color-irrelevant) and 2B (color-irrelevant). Error bars represent +/- 1 SEM.

Bias from same-colored dots

To address our main hypothesis, we examined whether observers tended to be biased

toward the size of the same-colored dots. To do so, we divided the matched pairs

based on which of the pair contained smaller same-colored dots on average and which

contained larger same-colored dots on average. We then calculated the ratio between

the size observers reported in these two cases. If observers were not biased, the ratio

between the size observers reported on matched displays with larger versus smaller

dots should be 1.0; they should be equally likely to report a larger or smaller size,

since the tested item is the same size in each case. However, if observers are biased

toward the mean size of the same colored dots, this ratio should be greater than 1.0

(see Figure 2-2).

Observers reported a size on average 1.11 times greater (SEM: +/-0.03) on the

half of the displays with larger same-colored dots. This ratio was significantly greater

than 1.0 (t(20)=4.17; p=0.0004). In addition, the direction of the effect was highly

consistent across observers, with 19 of the 21 observers having a ratio above 1.0.

Size

ReportE
Size



The maximum possible bias was 1.6, since the same-colored dots were on average 1.6

times larger in these displays than their matched counterparts. Thus the observers

reported a size 18% of the way between the correct size and the mean size of the same

colored dots. This effect was a result of memory and not a perceptual bias, since in

a version of the experiment with a pre-cue indicating which item would be tested,

observers (N=22) reported the size accurately (error 6.4px, SEM 0.5px) and with no

bias toward the mean size of the same-colored circles (bias: 1.00, S.EM. 0.01).

Model: Optimal Integration Across Different Levels of Abstraction

One interpretation of the data is that observers represent the display at multiple levels

of abstraction and integrate across these levels when retrieving the size of the tested

dot or when initially encoding its size. To more directly test this idea, we formalized

how observers might represent a display hierarchically using a probabilistic model (for

similar models, see Huttenlocher et al. 2000; Hemmer & Steyvers, 2009). The model

had three levels of abstraction, representing particular dots; all dots of a given color;

and all dots on the entire display. In the model, observers encode a noisy sample of the

size of each individual dot, and the size of each dot is itself considered a noisy sample

from the expected size of the dots of that color, which is itself considered a sample

of the expected size of the dots on a given display. Then we ask what observers'

ought to report as their best guess about the size of the tested dot (assuming normal

distributions at each level).

The intuition this model represents is fairly straightforward: if the red dots on

a particular display are all quite large, but you encode a fairly small size for one of

the red dots, it is more likely to have been a large dot you accidentally encoded as

too small than a small dot you accidentally encoded as too large. Thus, in general

the model suggests that the optimal way to minimize errors in your responses is

to be biased slightly (either when encoding the dots or when retrieving their size)

toward the mean of both the set of dots of the same color and the overall mean of the

display. Model predictions, along with an alternative representation of the behavioral

data from Experiment 1 are represented in Figure 2-3 (for model implementation see
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Figure 2-3: (A) Data from Exp. 1, averaged across observers so that each display is
a single point. Matched pairs are represented as blue x's for the display in which the
same-color dots were larger and red circles for the display in which the same-color
dots were smaller. (B) Predictions on the same data from a model that integrates
information from multiple levels of abstraction (with SD=25 pixels). Note that in
both the observers' data and the model predictions the slope of the line is less than
x=y, indicating a bias toward making all dots less extreme in size then they really
were, and also note that the blue x's are above the red circles on average, indicating
a bias toward the size of the same-color dots.

Chapter Appendix).

The model has a single free parameter, which indicates how noisy the encoding

of a given dot is (the standard deviation of the normal distribution from which the

encoded size is sampled) and thus how biased toward the means observers' ought

be. We set this to 25px in the current experiment by examining the histogram of

observers' responses across all of the displays rather than maximizing the fit to the

data. While not strictly independent of the data being fit, this method of choosing

the parameter is not based on the measures we use to assess the model.

In general the model provides a strong fit to the data on two different metrics:

(1) the model predicts the difference between the correct answer and reported answer

for each display, ignoring the paired structure of the displays (r=0.89, p<0.0001);

(2) the model predicts the difference in reported size between particular matched

displays (r=0.82, p<0.001). Thus, the model predicts a large amount of the variance

even when comparing the matched displays, in which the tested dot is actually the



same size for both displays. Any model of working memory which treat items as

independent cannot predict a systematic differences on these trials (for example, most

slot and resource models, including the mathematical model presented by Zhang &

Luck, 2008).

2.2.3 Discussion

We find that observers are biased by the ensemble statistics of the display when

representing items in visual working memory. On displays with several different color

circles, observers are biased in reporting the size of a given circle by the size of the

other circles of that color. This effect is not accounted for by perceptual biases or

location noise/swapping, is not a result of observers sometimes guessing based on

the mean size of the set of colors (see Chapter Appendix), and is compatible with a

simple Bayesian model in which observers integrate information at multiple levels of

abstraction to form a final hypothesis about the size of the tested item.

2.3 Experiment 2: Attention to colors is required

In Experiment 1, the color of the items was a task-relevant attribute. In fact, because

observers have difficulty attending to more than a single color at a time (Huang,

Treisman, Pashler, 2007), observers likely had to separately encode the sizes of the

red and blue dots in Experiment 1, perhaps increasing the saliency of the groupings

by color. This may be a crucial part of why observers use the mean size of the colors

in guiding their memory retrieval. Thus, in Experiment 2A and 2B we removed the

green dots from the displays and asked observers to simply remember the sizes of

all of the dots. This allowed us to address how automatic the biases we observed

in Experiment 1 are; e.g., the extent to which they depend on attentional selection

and strategy. In addition, Experiments 2A and 2B provide a control experiment that

rules out potential low-level factors that could influence Experiment 1.



2.3.1 Method

25 new observers completed Experiment 2A and a different 20 observers completed

Experiment 2B.

The methods and particular 30 displays used were exactly the same as Experi-

ment 1 except that the green dots used as distractor items were not present on the

display. The methods of Experiment 2A were otherwise identical to Experiment 1.

In Experiment 2B, the dots were shown for only 350ms rather than 1.5 seconds in

order to decrease observers performance to the same level as Experiment 1.

2.3.2 Results

Experiment 2A: Overall accuracy

Observers performance in Experiment 2A was very good, with an error of 10.2px on

average (SEM: 0.60px). This was significantly less than our empirical measure of

chance, (p< 10-19; empirical chance: 29px, SEM: 0.28) and significantly less than the

error of subjects in Experiment 1 (t(44)=3.73, p<0.001).

Experiment 2A: No bias from same-colored dots

Observers in Experiment 2A displayed no bias as a function of color (M=0.99, SEM:

0.01; not significantly different than 1.0; t(24)=-0.86, p=0.3 9 ). This is compatible

with the idea that observers do not display a bias when color is not task-relevant.

However, observers in this task had significantly lower error rates than the ob-

servers in Experiment 1. Thus, it is possible that observers did not display a bias

because they were able to encode all of the dots accurately as individuals. To ini-

tially examine this, we selected only the 50% lowest accuracy observers from Exp.

2A and compared them to the 50% highest accuracy observers from Exp. 1. The

error rates reverse (Exp.1=10px, Exp 2A=13px), yet the bias remains present only

in Exp. 1 (Exp. 1=1.07, Exp. 2A=1.00). This provides preliminary evidence that

the difference in accuracy does not drive the difference in bias.
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Figure 2-4: (A) Data from Exp. 2B (B) Predictions on the same data from the model
(with SD=25 pixels). Note that in both the observers' data and the model predictions
the slope of the line is less than x=y, indicating a bias toward making all dots less
extreme in size then they really were, and also note that the blue x's are not above
the red circles on average, indicating no bias toward the size of the same-color dots.

Experiment 2B: Overall accuracy and bias

Experiment 2B experimentally addressed the concern that the lack of bias for ob-

servers in Experiment 2A was driven by their high performance level. In Experiment

2B display time was reduced from 1.5 seconds to 350 milliseconds to increase the

error rate while maintaining the task-irrelevance of color. Observers in Experiment

2B had an error rate of 15.9px on average (SEM: 2.25px). This was significantly less

than our empirical measure of chance, (p< 10-9; empirical chance: 31.3px, SEM:

1.13px) but was no longer significantly less than the error of subjects in Experiment

1 (t(39)=-0.17, p=0.86). Thus, Exp. 1 and Exp. 2B were equated on error rate.

However, when color was task-irrelevant in Exp. 2B, there was still no bias from the

mean of the same-colored items (M=1.00, SEM: 0.01).

Optimal Integration Model

The same model used in Experiment 1 can be applied to the current data, but with

only two levels (no grouping by color): information about the particular dot, and

information about all the dots in the display. This model once again provides a



strong fit to the experimental data (see Figure 2-4). Since the model does not use color

information, it predicts exactly the same performance for both of the matched trials.

This is in line with observers a bias of 1.00 in the experimental data. Furthermore,

the model predicts the overall bias toward the mean size of the display, correlating

with the errors people make across all trials with r=0.53 (p=0.002).

2.3.3 Discussion

In Experiment 2 we find that observers do not display a bias toward the mean size

of the same-colored dots when color is not task-relevant, even when the experiments

are equated on difficulty. However, observers are still biased toward the mean of

the overall display. This is compatible with a Bayesian model in which observers

treat all items as coming from a single group, rather than breaking into separate

groups by color. Furthermore, the results of this experiment help rule out possible

confounds of Experiment 1, such as the possibility that location noise causes swapping

of items in memory, since the displays used in Experiments 2A and 2B are exactly the

same as those used in Experiment 1 except for absence of irrelevant green dots. We

have also run Experiments 1 and 2 as separate conditions in a single within-subject

experiment, and replicate the finding of a bias only on displays with green dots present

(see Chapter Appendix).

2.4 General Discussion

We find that observers are biased by the ensemble statistics of the display when

representing items in visual working memory. When asked to report the size of an

individual dot, observers tend to report it as larger if the other items in the same

color are large and smaller if the other items in the same color are small. These

biases are reliable across observers and predicted by a simple Bayesian model that

encodes a display at multiple levels of abstraction. Taken together, these findings

suggest that items in visual working memory are not represented independently, and,

more broadly, that visual working memory is susceptible to the very same hallmarks



of constructive memory that are typical of long-term memory (Bartlett, 1932).

2.4.1 Representation of Ensemble Statistics

It is well established that the visual system can efficiently compute ensemble statistics

(e.g., Ariely, 2001; Chong & Treisman, 2003; Alvarez & Oliva, 2009) and does so even

when not required to do so by the task, causing, for example, a false belief that the

mean of the set was present when asked to remember individual items (Haberman

& Whitney, 2009; Fockert & Wolfenstein, 2009). However, less work has explored

why the visual system represents ensemble statistics. One benefit of ensemble rep-

resentations is that they can be highly accurate, even when the local measurements

constituting them are very noisy (Alvarez & Oliva, 2008, 2009). Another possible

benefit of ensemble representations is that they can be used to identify outliers in a

display (Rosenholtz & Alvarez, 2007), which can potentially be used to guide atten-

tion to items that cannot be incorporated in the summary for the rest of the group

(Brady & Tenenbaum, 2010, Chapter 3; Haberman & Whitney, 2009). The current

work suggests a new use of ensemble statistics: such statistics can increase the ac-

curacy with which items are stored in visual working memory, reducing uncertainty

about the size of individual items by optimally combining item-level information with

ensemble statistics at multiple levels of abstraction.

It is interesting that in the current experiments observers only used the mean

size of the colors to reconstruct the display when color was task-relevant, despite the

fact that using the mean size of the colors would improve memory for the individual

items in all conditions. This could suggest that the units over which such ensemble

statistics are computed is limited by selective attention (e.g., Chong & Treisman,

2005b). In a different setting, Turk-Browne, Junge and Scholl (2005) suggest that

statistical learning, a form of learning about sequential dependencies, may happen

automatically but the particular sets over which the statistics are computed may be

controlled by selective attention. This is compatible with what we find in the current

experiments: when observers did not attend to the colored sets as separate units

separate summary statistics may not have been computed for the two colored sets



(alternatively, they may have been encoded, but not used in reconstructing the dot

sizes). However, when color was attended, the ensemble statistics for each color seem

to have been computed in parallel, as found by Chong and Treisman (2005a).

2.4.2 Dependence Between Items in Visual Working Mem-

ory

The current results represent a case of non-independence between items in visual

working memory: we find that items are represented not just individually but also

as a group or ensemble. While not directly addressing such hierarchical effects, non-

independence between items in visual working memory has been observed previously.

For example, Huang and Sekular (2010) find that observers tend to be biased in re-

porting the spatial frequency of Gabors, tending to report frequencies as though they

have been pulled toward previously presented Gabor patches. In addition, Jiang, Ol-

son and Chun (2000) have shown that the spatial context of the other items improves

change detection performance even when only a single item changes (see also Vidal

et al. 2005). This suggests that an item is not represented independent of its spatial

context in working memory.

Similarly, work by Brady and Tenenbaum (2010; Chapter 3), Sanocki, Sellers,

Mittelstadt & Sulman (2010) and Victor and Conte (2004) shows that observers can

take advantage of perceptual regularities in working memory displays to remember

more individual items from those displays. Brady and Tenenbaum (2010; Chapter

3) investigate checkerboard-like displays and conceptualize their findings as a kind

of hierarchical encoding, in which the gist of the display is encoded in addition to

specific information about a small number of items that are least consistent with the

gist. This is compatible with the model we present for the simpler displays of the

current experiment, in which observers seem to encode ensemble information as well

as information about specific items.

This dependence between items in memory is not predicted or explained by in-

fluential models of visual working memory. Current theories model visual working



memory as a flexible resource, in which memory resources are quantized into slots

(Zhang & Luck, 2008) or continuously divisible (Alvarez & Cavanagh, 2004; Bays

& Hussain, 2008; Wilken & Ma, 2004). According to these models, fewer items can

be remembered with higher precision because they receive more memory resources.

However, these models assume that items are stored independently, and therefore

cannot account for the dependence between items in memory observed in the current

study. Expanding these models to account for the current results will require a spec-

ification of whether abstract levels of representation compete for the same resources

as item-level representations (e.g., Feigenson, 2008), or whether there are essentially

separate resources for ensemble representations and item-level representations (e.g.,

Brady & Tenenbaum, 2010; Chapter 3).

2.4.3 Long-Term Memory Induced Dependency in Visual Work-

ing Memory

In addition to dependencies between items and hierarchical encoding of a particular

display, there is a significant amount of previous work showing the representation

of items in visual working memory depends on long-term memory information (e.g.,

Brady, Konkle & Alvarez, 2009). For instance, Konkle and Oliva (2007) and Hemmer

and Steyvers (2009), have shown biases in the remembered size of an object after a

short delay based on knowledge of the size of that object in the real world. Hemmer

and Steyvers (2009) provide a model of this as Bayesian inference in a constructive

memory framework, similar to the model we propose for the online representation

of a display in the current experiments. Convergence on similar models for using

ensemble information from the current display and integrating information from long-

term memory suggests a promising future direction for understanding the use of

higher-order information in memory.



2.4.4 Conclusion

We find that observers are biased by the ensemble statistics of the display when rep-

resenting items in visual working memory. Rather than storing items independently,

observers seem to construct the size of an individual item using information from mul-

tiple levels of abstraction. Thus, despite the active maintenance processes involved

in visual working memory, it appears to be susceptible to the very same hallmarks of

constructive memory that are typical of retrieval from long-term memory and scene

recognition (Bartlett, 1932; Lampinen, Copeland, Neuschatz, 2001). Cognitive and

neural models of visual working memory need to be expanded to account for such

constructive, hierarchical encoding processes.

2.5 Chapter Appendix

2.5.1 Replication and a Within-Subject Experiment

Running the experiment on the internet allowed for variation in the visual angle of

the dots and meant that each observer saw only 30 trials . Thus, we ran a control

experiment in the lab with 6 observers using the same paradigm. Observers saw 400

trials each (200 matched pairs). These observers in the lab showed the same effects

as observers tested on Mechanical Turk. They had a mean error of 20.2 pixels and

a bias of 1.04, significantly greater than 1.0 (t(5)=3.47, p=0.02). The maximum

possible bias was 1.37, since the same-colored dots were on average 1.37 times larger

in the larger of the matched trials than the smaller. Thus the observers run in the

lab reported a size 11% of the way between the correct size and the mean of the same

colored dots.

In addition to replicating the experiments in the lab, we also replicated our main

results on Mechanical Turk. In particular, to bolster the evidence for our effect we

have run both a within-subject experiment (N=17) and replicated both the between-

subject experiments (N=16 and N=26, respectively; all conducted on Mechanical

Turk). In the within-subject experiment, we combined Exp. 1 with Exp. 2A within



observers (thus observers performed 60 trials, 30 with green dots and 30 without

green dots present). We found a bias of 1.11 (SEM 0.02) in the trials with green

dots and a bias of 1.02 (SEM 0.02) for trials without green dots, a significantly larger

bias on green dot trials within-subjects (t(16)=2.90, p=0.01). In addition, the bias

was significant in the green-dot displays (t(16)=4.40, p=0.0004) but not the displays

without green dots (t(16)=0.82, p=0.42).

In the between-subject replication of Experiment 1 with a different set of displays

and different observers, the average bias was 1.09 (N=16), with SEM 0.03. The

difference from no bias (1.0) was significant: t(15)=2.29; p=0.037. In the replication

of Experiment 2B with a different set of displays and observers, the average bias was

1.00 (N=26; SEM 0.016), not significantly different than 1.00.

2.5.2 Perceptual Effects

Is the bias from same-colored items a result of memory or a perceptual effect caused

by crowding or grouping principles in our display? To determine this, we ran a study

that was identical to Experiment 1 except that 500ms before the onset of the dots, a

single black 'X' appeared at the location of the dot that would later be tested. We

instructed observers that this cue indicated which item would be tested (it was 100%

valid). If observers have to encode only a single item from the display and know

in advance which item will be tested, this should eliminate any bias resulting from

memory processes. However, if the locus of our effect is perceptual observers should

still be biased toward the size of the same-colored dots. Observers (N=22) reported

the size accurately (error 6.4px, SEM 0.5px) and with no bias toward the mean size

of the same-colored circles (bias: 1.00, S.E.M. 0.01). This suggests the bias was a

result of memory processes, not a perceptual effect from our display.

2.5.3 Potential Reports of the Incorrect Item

Using a similar paradigm but with continuous report of color rather than size, Bays,

Catalao and Husain (2009) report that observers sometimes accidentally report the



color of the wrong item, perhaps because of noise in their representation of the items'

locations. Such location noise would not, in general, affect our conclusion that there

is a bias toward the mean of the same colored dots. In particular, if swapping was

simply a result of location noise, then since our matched displays contain the exact

same size dots in the exact same locations, no difference could arise between them.

However, it is possible that observers would be more likely to swap with items in

the same color as the target item, and that this could account for the bias we find.

If this were the case, we might expect a mixture of correct reports and reports of

the incorrect items in our data, resulting in a multimodal distribution. To address

this concern, we examined whether the location of the same-colored dots affected the

bias we observed, and, additionally, used a mixture model similar to that reported

by Bays, Catalao and Husain (2009) to directly examine the possibility of swapping

with same-colored items.

To examine the effect of the location of the same-colored dots, we divided the

matched pairs by the mean distance of the same-colored dots to the tested dot's

location. On those display pairs in which the same-colored dots were much closer in

location for one of the matched displays than the other, we might expect a larger

bias. Instead, the correlation between the size of the bias and how differently located

they were in the two display pairs was not significant, and in fact trended negative

(r=-0.27, p=0.33) the opposite of the direction predicted from a swapping account.

As a second measure of the potential of swapping, this time ignoring the location

of the items, we used a mixture model to estimate the percentage of swaps directly

from the data, effectively examining its bimodality (Bays, Catalao & Husain, 2009).

The mixture model attempted to parse the observers' responses into those most likely

to have been noisy reports of the correct item, those most likely to have been random

guesses, and those most likely to have been swaps . Excluding all responses except

those the model considered twice as likely to be noisy reports of the correct item

than swaps or guesses still resulted in a substantial bias toward the mean size of the

same colored items (M=1.05, SEM:0.016, difference from 1.0: t(20)=3.20, p=0.004).

Note that this is an extremely conservative measure, since it effectively counts only



responses that are closer to the size of the tested dot than the size of any other dot.

Taken together, we believe these analyses help rule out explanations of our data in

terms of location noise and reporting the size of the wrong item.

2.5.4 Comparison to an Across-Trial Guessing Model

Rather than performing an integration across different levels of representation on each

trial, as proposed in our Bayesian integration model, it is possible that our results

could arise from a model in which on some trials observers remember the dot and on

other trials the observers' guess based on the dots color. For example, on trials in

which the participant retains information about the size of the probed dot, it might

be reproduced without bias. On other trials, in which the participant retains no size

information about the probed dot, the participant might tend to guess something

around the mean of the size of the dots the same color as the probed dot. We will

refer to this model as the across-trial guessing model.

While such a model requires observers encode the display at multiple levels of

abstraction and integrate across these levels by choosing which kind of information

to use in generating a particular response, it is significantly different than the within-

trial Bayesian integration model we propose. We believe the evidence from the current

experiments heavily supports the within-trial integration model.

First, the across-trial guessing model requires there to be a large number of trials

where observers know the color of the tested dot but have no information at all

about this dot's size. Both the original work of Luck & Vogel (1997) and important

work by Brockmole and colleagues (Logie et al. 2009; Gajewski & Brockmole, 2006)

demonstrates that not only is there a benefit to encoding all of the features of a single

object, but that observers do so on nearly all trials and represent the objects as bound

units. A model which requires observers to frequently know only a single feature of

an object is thus theoretically unlikely and in conflict with existing data on binding

in visual working memory.

Second, as reported above in the section on modeling location noise and potential

item swaps, we can examine trials which are unlikely to have been guess trials by



looking at only responses that are closer in size to the size of the correct dot than to

the size of any of the other dots (including those of the same color). This still results

in a substantial bias toward the mean size of the same-colored dots (see results in

location noise section). This is contrary to what you would expect from the across-

trial guessing model, which posits a bias arising only from trials where observers do

not know the size of the tested dot.

Finally, using model comparison techniques, we can directly compare the distri-

butions predicted by the two models. The within-trial Bayesian integration model

assumes the distribution of sizes observers' report for a particular dot has a peak

that is shifted toward the mean size of dots of the same color, whereas the across-

trial guessing model proposes a mixture between correct responses and responses that

are drawn from a distribution around the mean size of the same-colored dots.

The Bayesian model has only a single parameter, the standard deviation of ob-

servers' encoding error (this parameter decides both how noisy the distribution is and

how much the specific item information is integrated with the ensemble size informa-

tion). The across-trial guessing model has two parameters, the standard deviation

of observers' encoding error and the percentage of trials in which observers report

from a distribution around the same-colored mean rather than the correct dot (the

guessing rate). In addition, we can choose to make the guessing distribution a normal

distribution with the true standard deviation of the dots within the same color, or

increase the variance based on the expected sampling error.

For each subject, we performed a leave-one-trial-out cross-validation to find the

maximum likelihood parameters for each model. Then we computed the log-likelihood

of the observer's response on the left out trial using those parameters. Averaging

across all possible left out trials gives us the log-likelihood of each of the two models

for each observer. Finally, we can compare these log-likelihoods using AIC (Akaike

Information Criterion; Akaike, 1974) . This gives us an AIC score for each model

for each observer (lower AIC values indicate a better model fit). We find that across

observers, the AIC for the Bayesian model consistently indicates a better fit than the

AIC for the across-trial guessing model. This is true both if we assume the guessing



distribution is simply a normal with the mean and standard deviation of the true size

of the dots of the same color (Bayesian model AIC = 10.8, SEM 0.2, Discrete-guessing

model AIC = 13.8, SEM 0.8, t(20)= -3.95, p<0.001) or if we increase this standard

deviation by adding in the variance from sampling each dot's size (Discrete-guessing

model AIC = 12.7, SEM 0.18, t(20)= -26.8, p< 10-16). In fact, using AIC the within-

trial Bayesian integration model is preferred in every single observer. Moreover, it is

preferred on average even if we do not use AIC to adjust for the greater flexibility of

the across-trial guessing model (the log-likelihood of the within-trial integration model

is significantly higher than the version of the across-trial guessing model adjusted for

measurement error, t(20)=2.23, p=0.038). Thus, in spite of the greater flexibility of

the across-trial guessing model, it does not fit the data as well as the within-trial

Bayesian integration model.

2.5.5 Optimal Observer Model

To more directly test the idea that observers' represent the display at multiple levels

of abstraction and integrate across these levels when retrieving the size of the tested

dot, we formalized this theory in a probabilistic model. In the model, observers are

assumed to get a single noisy sample from each of the 9 dots on the screen (sampled

from a normal distribution centered around the size of the dot and with a standard

deviation of 25px). Then, the observer attempts to infer the size of each of the dots

on the screen using these samples. A nave, non-hierarchical model simply treats each

of the dots independently and thus report the size of each dot as the size that was

sampled for that dot. As an alternative, we present a hierarchical Bayesian model

that pools information from all of the dots to best estimate the size of any given

individual dot. It does so by representing the display at two additional levels of

abstraction and partially pooling information at each of these levels: (1) all dots of

the same color; (2) all dots on the display. By assuming that dots of the same color

and all the dots on a display are sampled from some underlying distribution and

therefore provide mutual information about each other, such a model arrives at a

more accurate estimate of the size of each dot. Such models are standard in Bayesian



statistics (Gelman, Carlin, Stern & Rubin, 2003) and have been previously applied to

similar problems in cognitive science (Huttenlocher et al. 2000; Hemmer & Steyvers,

2009).

Formally, we assume that observers' treat the dots of a given color as sampled from

a normal distribution with unknown mean and unknown variance, and additionally

treat these distributions' means as coming from an overall normal distribution that

pools information across all of the colors. We put uniform priors over the reasonable

range of possible sizes (0-200 pixels) on the parameters of these normal distributions.

The exact model is represented in WINBUGS as follows. Note that the normal

distribution in WINBUGS is parameterized by a mean and a precision, rather than

a mean and standard deviation; nevertheless we put a uniform prior on standard

deviation, which is a more standard model (Gelman, Carlin, Stern & Rubin, 2003).

WinBUGS code for the model in Experiment 1:

1 model

2 % C = number of colors

3 % L = number of dots of each color.

4 % We observe 'sample '.

5 {

6 overallMean ~ dunif (0 ,100)

7 overallMeanSt d ~ dunif (0, ,100)

8 overallMeanPrec <- 1/(overallMeanStd*overallMeanStd)

9

10 overallStd ~ dunif(0,100)

11 overallStdStd ~ dunif(0,100)

12 overallStdPrec <- 1/(overallStdStd*overallStdStd)

13

14 stdev <- 25

15 precision <- 1/(stdev*stdev)

16

17 for (i in 1:C)

18 {
19 groupMean [ i] ~ dnorm( over allMean , overallMeanPrec)

20 groupStd [i] ~ dnorm(overallStd , overallStdPrec)



groupPrec[i] <- 1/(groupStd[i]*groupStd[i])

}

for (i in 1:C)

{
for (j in 1:L)

{
dotMean [i j

sample [ i , j

~ dnorm(groupMean[ i], groupPrec [i])

~ dnorm(dotMean [ i ,j] precision)

WinBUGS code for the model in Experiment 2:

model

overallMean ~ dunif(0,200)

overallMeanStd ~ dunif (0 ,100)

overallMeanPrec <- 1/(overallMeanStd*overallMeanStd)

stdev <- 10

precision <- 1/(stdev*stdev)

for (i in 1:L)

{
dotMean [ i]
sample [ i]

dnorm(overallMean

dnorm(dotMean[ i,

overallMeanPrec)

precision)
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Chapter 3

A probabilistic model of visual

working memory: Incorporating

higher-order regularities into

working memory capacity

- 1estimates.

When remembering a real-world scene, people encode both detailed information about

specific objects and higher-order information like the overall gist of the scene. How-

ever, formal models of change detection, like those used to estimate visual work-

ing memory capacity, assume observers encode only a simple memory representation

which includes no higher-order structure and treats items independently from each

other. In this chapter, we present a probabilistic model of change detection that

attempts to bridge this gap by formalizing the role of perceptual organization and

allowing for richer, more structured memory representations. Using either standard

visual working memory displays or displays in which the dots are purposefully ar-

'Parts of this chapter were published as Brady, T.F, & Tenenbaum, J.B. (2010). Encoding higher-
order structure in visual working memory: A probabilistic model. Proceedings of the Cognitive
Science Society.



ranged in patterns, we find that models which take into account perceptual grouping

between items and the encoding of higher-order summary information are necessary

to account for human change detection performance. We conclude that even in sim-

ple visual working memory displays, items are not represented independently. Thus,

models of visual working memory need to be expanded to take into account this non-

independence between items before we can make useful predictions about observers'

memory capacity, even in simple displays.

3.1 Introduction

Working memory capacity constrains cognitive abilities in a wide variety of domains

(Baddeley, 2000), and individual differences in this capacity predict differences in fluid

intelligence, reading comprehension and academic achievement (Alloway & Alloway,

2010; Daneman & Carpenter, 1980; Fukuda, Vogel, Mayr & Awh, 2010). The ar-

chitecture and limits of the working memory system have therefore been extensively

studied, and many models have been developed to help explain the limits on our

capacity to hold information actively in mind (e.g., Cowan, 2001; Miyake & Shah,

1999). In the domain of visual working memory, these models have grown particu-

larly sophisticated and have been formalized in an attempt to derive measures of the

capacity of the working memory system (Alvarez & Cavanagh, 2004; Bays, Catalao &

Husain, 2009; Cowan, 2001; Luck & Vogel, 1997; Wilken & Ma, 2004; Zhang & Luck,

2008). However, these models focus on how observers encode independent objects

from extremely simple displays of segmented geometric shapes.

By contrast to these simple displays, memory for real-world stimuli depends

greatly on the background knowledge and principles of perceptual organization our

visual system brings to bear on a particular stimulus. For example, when trying to

remember real-world scenes, people encode both the gist and detailed information

about some specific objects (Hollingworth & Henderson, 2003; Oliva, 2005). More-

over, they use the gist to guide their choice of which specific objects to remember

(Friedman, 1979; Hollingworth & Henderson, 2000), and when later trying to recall



the details of the scene, they are influenced by this gist, tending to remember objects

that are consistent with the scene but were not in fact present (Brewer & Treyens,

1981; Lampinen, Copeland & Neuschatz, 2001; Miller & Gazzaniga 1998).

In fact, even in simple displays, perceptual organization and background knowl-

edge play a significant role in visual working memory. For example, what counts

as a single object may not be straightforward, since even the segmentation of the

display depends on our background knowledge about how often the items co-occur.

For instance, after learning that pairs of colors often appear together, observers can

encode nearly twice as many colors from the same displays (Brady, Konkle, Alvarez,

2009; see Chapter 4). Displays where objects group together into perceptual units

also result in better visual working memory performance, as though each unit in the

group was encoded more easily (Woodman, Vecera & Luck, 2003; Xu & Chun, 2007;

Xu, 2006). Furthermore, observers are better able to recognize changes to displays if

those changes alter some statistical summary of the display; for example, if a display

is changed from mostly black squares to mostly white squares, observers notice this

change more easily than a matched change that does not alter the global statistics

(Victor & Conte, 2004; see also Alvarez & Oliva, 2009).

There is thus significant behavioral evidence that even in simple visual working

memory displays, items are not treated independently (for a review, see Brady, Konkle

& Alvarez, 2011; Chapter 1). However, existing formal models of the architecture

and capacity of visual working memory do not take into account the presence of

such higher-order structure and prior knowledge. Instead, they most often depend on

calculating how many individual items observers remember if the items were treated

independently.

3.1.1 Existing models of capacity estimates

The most common paradigm for examining visual working memory capacity is a

change detection task (e.g., Luck & Vogel, 1997; Pashler, 1988). In a typical change

detection task, observers are presented with a study display consisting of some number

N of colored squares (see Figure 3-1). The display then disappears, and a short time
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Figure 3-1: Methods of a change detection task (as used in Experiments 1 and 2).
Observers are first briefly presented with a display (the study display), and then after
a blank are presented with another display where either the items are exactly the
same or one item has changed color (the test display). They must say whether the
two displays were the same or different.

later another display reappears that is either identical to the study display or in which

a single square has changed color. Observers must decide whether this test display is

identical to the study display or there has been a change. Observers are told that at

most a single item will change color.

The standard way of reporting performance in such a visual working memory task

is to report the "number of colors remembered", often marked by the letter 'K'. These

values are calculated using a particular model of change detection (a 'slot model'),

which supposes that the decline in observers' performance when more squares must

be remembered is caused solely by a hard limit in the number of items that can be

remembered (Cowan, 2001; Pashler, 1988). Such estimates thus assume complete

independence between the items.

For example, imagine that an observer is shown a display of N colored squares

and afterwards shown a single square, and asked if it is the same or different as the

item that appeared at the same spatial location in the original display (Cowan, 2001).

According to the slot model of change detection, if the observer encoded the item in



memory, then they will get the question correct; and this will happen on 4 trials.

For example, if the observer can encode 3 items and there are 6 on the display, on

50% of the trials they will have encoded the item that is tested and will get those

50% of trials correct. Such models suppose no noise in the memory representation:

if the item is encoded it is remembered perfectly. On the other hand, if the observer

does not encode the item in memory, then the model supposes they guess randomly

(correctly choose same or different 50% of the time). Thus, the total chance of getting

a trial correct is:

K N- K
PC(%) = - * 100% + * 50%

N N

By solving for 'K', we can take the percent correct at change detection for a given

observer and determine how many items they remembered out of the N present on

each trial (Cowan, 2001). Such modeling predicts reasonable values for a variety of

simple displays (e.g., Vogel, Woodman & Luck, 2001; Cowan, 2001, 2005), suggesting

observers have a roughly fixed capacity of 3-4 items, independent of a number of

factors that affect percent correct (like set size, N).

However, nearly all visual working memory papers report such values, often with-

out considering whether the model that underlies them is an accurate description

of observers working memory representation of those stimuli. Thus, even in displays

where observers perform grouping or encode summary statistics in addition to specific

items, many researchers continue to report how many items observers can remember

(K values) using the standard formula in which each item is treated as an independent

unit (e.g., Brady, Konkle, Alvarez, 2009; Xu & Chun, 2007). This results in K values

that vary by condition, which would indicate a working memory capacity that is not

fixed In these cases, the model being used to compute capacity is almost certainly

incorrect observers may not be encoding items independently.

Other models have also been used to quantify working memory capacity (e.g.,

Bays, Catalao & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). However,



these models also operate without taking into account the presence of higher-order

structure and prior knowledge, as they model displays that are sampled uniformly,

limiting any overarching structure or gist. It is thus difficult to make claims about

observers capacities using such models. Due to the nature of the models (e.g. multi-

nomial processing tree models like Cowan's K), it is also extremely difficult to expand

existing models to account for summary representations, or representations of items

which are not independent of one another.

3.1.2 Change detection as Bayesian inference

In this paper we reformulate change detection as probabilistic inference in a genera-

tive model. We first formalize how observers encode an initial study display, and then

we model the change detection task as an inference from the information about the

test display and the information in memory to a decision about whether a change oc-

curred. Modeling change detection in this Bayesian framework allows us to use more

complex and structured knowledge in our memory encoding model (e.g., Tenenbaum,

Griffiths & Kemp, 2006), allowing us to make predictions about memory capacity

under circumstances where items are non-independent or summary statistics are en-

coded in addition to specific items.

We begin by modeling a simple change detection task, as shown in Figure 3-1 and

described above. To create a model of this change detection task, we first specify how

observers' encode the study display. For the simplest case, in order to most closely

match the models used to quantify K-values in standard displays (Cowan, 2001), we

assume that memory takes the form of a discrete number of slots, K, each of which

stores which color was present on the display in a particular location (using seven

categorically distinct colors: black, white, red, green, blue, yellow and purple). Also

in line with standard slot models, we initially assume that observers choose which K

of the N dots to encode at random. To model the change detection task, we then

formalize how observers make a decision about whether there was a change when the

test display is presented.

When observers must decide if there has been a change, they have access to all



of the items in the test display and to the items they encoded in memory from the

study display. Using the information that at most a single item can change color

between the two displays, we model the observer as performing an optimal inference

to arrive at a judgment for whether the display has changed. In other words, the

observer places probabilities on how likely each possible display is to have been the

study display, and then effectively "rules out" all possible displays inconsistent with

the items in memory and all displays that have more than a single change from the

test display. They can then arrive at a probability that indicates how likely it is

that the study display was exactly the same as the test display. Interestingly, this

Bayesian model of change detection has Cowan's K as a special case (for details, see

Chapter Appendix, 3.8.1).

Importantly, however, by framing the model in terms of probabilistic inference we

make explicit the assumptions about the architecture of working memory the model

entails. First, we assume that observers remember information about a specific subset

K of the N items. Second, we assume that memory for these items is without noise.

Both of these assumptions are simply properties of the probability distributions we

choose and can be relaxed or generalized without changing the model architecture.

Thus, the Bayesian framework we adapt allows a much greater range of memory

architectures to be tested and made explicit.

3.1.3 The current experiments

In the current paper we use this reformulated model of change detection to examine

the use of higher-order information in visual working memory. While such higher-

order information can take many forms, we begin with two possible representations:

(1) a model that encodes both specific items and also a summary representation

(how likely neighboring items are to be the same color); and (2) a model in which

observers first use basic principles of perceptual organization to chunk the display

before encoding a fixed number of items.

To examine whether such representations can account for human memory per-

formance, we not only look at the overall level of performance achieved by using a



particular memory representation in the model, but also examine how human perfor-

mance varies from display to display. In Experiments 1A and 1B, we test our proposed

memory representations on displays where the items are purposefully arranged in pat-

terns. In Experiment 2, we generalize these results to displays of randomly chosen

colored squares (as in Luck & Vogel, 1997). We show for the first time that observers

are highly consistent in which changes they find easy or difficult to detect, even in

standard colored square displays. In addition, we show that models which have richer

representations than simple slot models provide good fits to the difficulty of individual

displays, because these more structured models representations capture which partic-

ular changes people are likely to detect. By contrast, the simpler models of change

detection typically used in calculations of visual working memory capacity (e.g., the

model underlying K-values) do not predict any reliable differences in difficulty be-

tween displays. We conclude that even in simple visual working memory displays

items are not represented independently, and that models of working memory with

richer representations are needed to understand observers' working memory capacity.

3.2 Experiments 1A and 1B: Patterned dot dis-

plays

Rather than being forced to treat each item as independent, our Bayesian model of

change detection can be modified to take into account the influences of perceptual or-

ganization, summary statistics and long-term knowledge. We thus had observers per-

form a memory task with displays where the items were arranged in spatial patterns.

Observers are known to perform better on such displays than on displays without pat-

terns (e.g., Garner, 1974; see also Hollingworth, Hyun & Zhang, 2005; Phillips, 1974;

Sebrechts & Garner, 1981). Because observers' memory representations in these dis-

plays are likely to be more complex than simple independent representations of items,

such displays provide a test case for modeling higher-order structure in visual work-

ing memory. To examine the generality of observers' memory representations, we



used two similar sets of stimuli (Exp 1A: red and blue circles; Exp iB: black and

whites squares), which vary basic visual properties of the stimuli but keep the same

high-level grouping and object structure.

3.2.1 Method

Observers

130 observers were recruited and run using Amazon Mechanical Turk (see Brady &

Alvarez, 2011 for a validation of using Mechanical Turk for visual working memory

studies). All were from the U.S., gave informed consent, and were paid 30 cents for

approximately 4 minutes of their time. 65 of the observers participated in Experiment

1A and 65 different observers in Experiment 1B.

Procedure

To examine human memory performance for patterned displays, we had observers

perform a change detection task. We showed each of our observers the exact same

set of 24 displays (see Figure 3-1). Each display was presented to each observer in

both a "same" and "different" trial, so observers completed 48 trials each. On each

trial, the study display was presented for 750ms, followed by a 10OOms blank period;

then either an identical or a changed version of this original display was presented

for 750ms in a different screen location (the test display). Observers' task was simply

to indicate, using a set of buttons labeled 'Same' and 'Different', whether the two

displays were identical or whether there had been a change. The order of the 48

trials was randomly shuffled for each subject. Observers started each trial manually

by clicking on a button labeled 'Start this trial', after which the trial began with a

500ms delay.

Stimuli

Unlike traditional displays used to assess visual working memory capacity, we used

displays where the items to be remembered were not simply colored squares in random
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Figure 3-2: a) Example study displays from Experiment 1A b) Example study displays
from Experiment 1B. In both Experiments 1A and 1B, some displays were generated
by randomly choosing each item's color, and some were generated to explicitly contain
patterns.

locations but also exhibited some higher-order structure (as in Philips, 1974). As

stimuli we created 24 displays that consisted of 5x5 patterns in which each space

was filled in by a red or blue circle (Exp. 1A) or the same patterns were filled with

black or white squares (Exp. 1B). The patterns could be anything from completely

random to vertical or horizontal lines (see Figure 3-2). Our displays were thus simple

relative to real scenes but were complex enough that we expected existing models,

which encode independent items, would fail to predict what observers remember about

these displays. 8 of the 24 displays were generated by randomly choosing the color of

each dot. The other 16 were generated to explicitly contain patterns (For details of

how we generated the patterned displays, see Chapter Appendix, 3.8.2).

The displays each subtended 150x150 pixels inside a 400pixel by 180pixel black

(Exp 1A) or gray (Exp 1B) box. On each trial, the pre-change display appeared

on the left of the box, followed by the (potentially) changed version of the display

appearing on the right side of the box. Observers' monitor size and resolution was

not controlled. However, all observers attested to the fact that the entire stimulus



presentation box was visible on their monitor.

3.2.2 Results

For each display we computed a d', measuring how difficult it was to detect the change

in that particular display (averaged across observers). The stimuli in Experiments 1A

were exactly the same as those in 1B, except that the patterns were constructed out

of red and blue dots in Experiment 1A and black and white squares in Experiment

1B. As expected, performance in Experiments 1A and 1B was highly similar: the

correlation in the display-by-display d' was r=0.91 between the two experiments. As

a result, we collapsed performance across both experiments for the remaining analyses,

though the results remain qualitatively the same when considering either experiment

alone.

On average, human observers d' was 2.18 (S.E. 0.06), suggesting that observers

were quite good at detecting changes on these displays. Since the displays each

contain 25 dots, this d' corresponds to a K value of 17.8 dots if the items are assumed

to be represented independently and with no summary information encoded (Pashler,

1988).

In addition, observers were highly consistent in which displays they found most

difficult to detect changes in (see Figure 3-3). We performed split-half analyses,

computing the average d' for each display using the data from a randomly-selected

half of our observers, and then comparing this to data from the other half of the

observers. The same displays were difficult for both groups (r=0.75, averaged over

200 random splits of the observers). Computing d' separately for each display and

each observer is impossible as each observer saw each displays only once. Thus, to

compute standard errors on a display-by-display basis we used bootstrapping. This

provides a visualization of the display-by-display consistency (Figure 3-3). Some

displays, like those on the left of Figure 3-3, are consistently hard for observers.

Others, like those on the right of Figure 3-3, are consistently easy for observers to

detect changes in.
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Figure 3-3: Consistency in which displays are most difficult in Exp 1A. The x-axis

contains each of the 24 display pairs, rank ordered by difficulty (lowest d' on the left,
highest on the right; for visualization purposes, only a subset of pairs are shown on

the x-axis). The top display in each pair is the study display; the bottom is the test

display with a single item changed. The dashed gray line corresponds to the mean

d' across all displays. The error bars correspond to across-subject standard error

bars. The consistent differences in d' between displays indicate some displays are

more difficult than other displays.



3.2.3 Conclusion

In Experiments 1A and 1B, we assessed observers' visual working memory capacity

for structured displays of red and blue dots or black and white squares. We found

multiple aspects of human performance in this task which conflict with the predictions

of standard models of visual working memory.

First, we find that observers perform much better in detecting changes to these

displays than existing working memory models would predict. Under existing mod-

els, in which items are assumed to be represented independently with no summary

information encoded, observers d' in this task would correspond to memory for nearly

18 dots (Pashler, 1998). This is nearly 5 times the number usually found in simpler

displays (Cowan, 2001), and thus presents a direct challenge to existing formal models

of change detection and visual working memory capacity.

Furthermore, observers are reliable in which changes they find hard or easy to de-

tect. This consistent difference between displays cannot be explained under a model

in which observers treat the items independently. Previous formal models of change

detection treat all of the displays as equivalent, since all displays change only a single

item's color and all contain an equal number of items. They thus make no predic-

tions regarding differences in difficulty across displays, or regarding which particular

changes will be hard or easy to detect.

To account for the high level of performance overall and the consistent differences

in performance between displays, it is necessary to posit a more complex memory rep-

resentation or encoding strategy. We next consider two alternative models for what

information observers might be encoding: a model in which observers encode both

an overall summary of the display (e.g., "it looked like it contained vertical lines")

in addition to information about particular items, and a model in which observers

'chunk' information by perceptually grouping dots of the same color into single units

in working memory. These models formalize particular hypotheses about what rep-

resentations observers encode from these displays. They thus allow us to examine

whether observers performance is compatible with a fixed working memory capacity



in terms of some format of representation other than a fixed number of independent

items.

3.3 Summary-based encoding model

In real-world scenes, observers encode not only information about specific objects but

also information about the gist of the scene (e.g., Lampinen, Copeland, Neuschatz,

2001). In addition to this semantic information, observers encode diffuse visual sum-

mary information in the form of low-level ensemble statistics, which they make use of

even in simple displays of gabors or circles (Alvarez & Oliva, 2009; Brady & Alvarez,

2011). For example, in a landmark series of studies on summary statistics of sets,

Ariely (2001) demonstrated that observers extract the mean size of items from a dis-

play, and, moreover, store it in memory even when they have little to no information

about the size of the individual items on the display (Ariely, 2001; see Alvarez, 2011;

Haberman & Whitney, 2011 for reviews). Observers seem to store not only summary

information like mean size but also spatial summary information, like the amount of

horizontal and vertical information on the top and bottom of the display (Alvarez

& Oliva, 2009) and even high-level summary information like the mean gender and

emotion of faces (Haberman & Whitney, 2007). Furthermore, observers integrate

this summary information with their representation of particular items: for example,

Brady and Alvarez (2011) have shown that observers use the mean size of items on a

display to modulate their representation of particular items from that display.

To examine whether such summary representations could underlie performance

on our patterned displays, we built a model that formalized such a summary-based

encoding strategy. We posited that observers might encode both a spatial summary

of the display and particular 'outlier' items that did not match this summary. Our

modeling proceeded in two stages, mirroring the two stages of the change detection

task: view and encode the study display, then view the test display and decide if a

change occurred.

More specifically, in the summary-based encoding model we propose that observers



use the information in the study display to do two things: first, they infer what

summary best describes the display; then, using this summary, they select the subset

of the dots that are the biggest outliers (e.g., least well captured by the summary)

and encode these items specifically into an item-based memory. As a simplifying

assumption, we use a summary representation based on Markov Random Fields which

consists of just two parameters: one representing how likely a dot in this display

is to be the same or different than its horizontal neighbors and one representing

how likely a dot is to be the same or different than its vertical neighbors. This

summary representation allows the model to encode how spatially-smooth a display

is both horizontally and vertically, thus allowing it to represent summaries that are

approximately equivalent to "vertical lines", " checkerboard", "large smooth regions",

etc.

After a short viewing, the study display disappears and the observer is left with

only what they encoded about it in memory. Then a test display appears and the

observer must decide, based on what they have encoded in memory, whether this

display is exactly the same as the first display. Thus, at the time of the test display

(the change detection stage), the observer has access to the test display and both

the item-level and summary information from the study display that they encoded

in memory. Using the constraint that at most one item will have changed, it is then

possible to use Bayesian inference to put a probability on how likely it is that a

given test display is the same as the study display and, using these probabilities, to

calculate the likelihood that the display changed.

For example, an observer might encode that a particular display is relatively

smooth (horizontal neighbors are similar to each other, and vertical neighbors are

also similar to each other), but that the two items in the top right corner violate this

assumption, and are red and blue respectively. Then, when this observer sees the test

display, they might recognize that while both items they specifically encoded into an

item memory are the same color they used to be, the display does not seem as smooth

as it initially was: there are some dots that are not like their horizontal or vertical

neighbors. This would lead the observer to believe there was a change, despite not



having specifically noticed what items changed.

Importantly, when this model encodes no higher-order structure it recaptures the

standard slot-based model of change detection. However, when the displays do have

higher-order regularities that can be captured by the models' summary representation,

the model can use this information to both select appropriate individual items to

remember and to infer properties of the display that are not specifically encoded. For

a formal model specification, see Chapter Appendix, 3.8.3.

3.3.1 Modeling results and fit to human performance

In Experiment 1, we obtained data from a large number of human observers detecting

particular changes in a set of 24 displays. For each display observers saw, we can use

the summary-based encoding model to estimate how hard or easy it is for the model

to detect the change in that display. The model provides an estimate, for a given

change detection trial, of how likely it is that there was a change on that particular

trial. By computing this probability for both a 'same' trial and a 'change' trial, we

can derive a d' measure for each display in the model.

The model achieves the same overall performance as observers (d'=2.18) with a

'K' value of only 4, thus encoding only 4 specific dots in addition to the display's

summary (model d'=1.2, 1.8, 2.05, 2.25 at K=1, 2, 3, 4). This is because the model

does not represent each dot independently: instead, it represents both higher-order

information as well as information about specific dots.

Furthermore, the model correctly predicts which display observers will find easy

and which displays observers will find difficult. Thus, the correlation between the

model's d' for detecting changes in individual displays and the human performance

on these displays is quite high (r=0.72, p<0.00001 with K=4; averaging observers'

results across Exp 1A and 1B, see Figure 3-4). Importantly, this model has no free

parameters other than how many specific items to remember, K, which we set to K=4

based on the model's overall performance, not its ability to predict display-by-display

difficulty. Thus, the model's simple summary representation captures which changes

people are likely to detect and which they are likely to miss.
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3.3.2 Necessity of the summary representation

The summary-based encoding model posits that observers encode a summary repre-

sentation of the display and use this summary to choose outlier items to encode into

a specific item memory. However, it is possible that a single one of these processes

might account for the model's fit to human data. For example, it is possible that

simply choosing outlier items using a summary representation, but not encoding the

actual summary representation into memory is sufficient to capture human perfor-

mance. Alternatively, it is possible that simply encoding a summary representation

but not using this representation to encode outlier items is sufficient to explain human

performance.

To address this and examine the necessity of each component of the model's

representation, we 'lesioned' the model by looking at model predictions without one

or the other of these components.

Choosing outlier items but not remembering the summary representation

Is remembering the summary representation helping us to accurately model human

performance, or can we predict human performance equally well by using the sum-

mary to choose outliers to encode into memory but then discarding the summary

representation itself? To examine this, we looked at the fit of a model that did

not have access to the summary representation at the time of change detection, and

detected changes solely based on the specific objects encoded.

We find that such a model does not fit human performance as well as the full

summary-based encoding model. Firstly, to achieve human levels of performance such

a model must encode as many objects as a model which encodes objects completely

at random (human levels of performance at K=18; d'=0.47, 0.92, 1.30, 1.69, 2.27

at K=4, 8, 12, 16, 20). Furthermore, this model does not accurately predict which

specific changes will be noticed, either at K=4 (r=0.30, p=0.15) or at K=18 (r=0.39,

p=0.06), accounting for at most 28% of the amount of the variance that is accounted

for by the full model.



One reason this model does not fit human performance as well as the full model

is that it fails to recognize changes that introduce irregular items: e.g., if the initial

display is quite smooth and has no outliers, this model simply encodes items at

random. Then, if the 'change' display has an obvious outlier item the model cannot

detect it. To recognize this kind of change requires knowing what the summary of

the initial display was.

Thus, if we remove the memory representation of the summary from the model,

it provides a significantly worse fit to human performance.

Remembering a summary representation but choosing items at random

It is also possible to examine a model that encodes both a summary of the display

and specific items, but does not choose which items to specifically encode by selecting

outliers from the summary. Rather than preferentially encoding unlikely items, such

a model chooses the items to encode at random.

We find that such a model does not fit human performance as well as the full

summary-based encoding model. To achieve human levels of performance such a

model must encode as many objects as a model which encodes objects completely

at random (human levels of performance at K=20; d'=0.26, 0.54, 0.91, 1.39, 2.06

at K=4, 8, 12, 16, 20). Furthermore, it does not do a good job predicting which

specific changes will be noticed, either at K=4 (r=0.09, p=0.68) or at K=20 (r=0.40,

p=0.05), accounting for at most 31% of the amount of the variance that is accounted

for by the full model. One reason this model fails to fit human performance is that

it fails to recognize changes that remove irregular items: e.g., if the initial display is

quite smooth but has a single outlier, it will be encoded as a relatively smooth display.

Then, if the 'change' display removes the outlier item the model cannot detect it. To

recognize this kind of change requires maximizing your information about the first

display by encoding specific items that are not well captured by the summary.

Thus, if remove the model's ability to encode outlier items, it also provides a

significantly worse fit to human performance.



3.3.3 Conclusion

Typically, we are forced to assume that observers are representing independent objects

from a display in order to calculate observers' capacity. By using a Bayesian model

that allows for more structured memory representations, we can calculate observers'

memory capacity under the assumption that observers remember not just independent

items, but also a summary of the display. This model provides a reasonable estimate

of the number of items observers are remembering, suggesting only 4 specific items

in addition to the summary representation must be maintained to match human

performance. The model thus aligns with both previous work from visual working

memory suggesting a capacity of 3-4 simple items (Luck & Vogel, 1997; Cowan, 2001)

and also with data from the literature on real-world scenes and simple dot displays

which suggests a hierarchical representation with both gist and item information

(Lamplin et al. 2001; Brady & Alvarez, 2011; Chapter 2).

Furthermore, because the summary-based model does not treat each item inde-

pendently, and chooses which items to encode by making strategic decisions based on

the display's summary, this model correctly predicts the difficulty of detecting par-

ticular changes. By contrast, a model which assumes we encode each item in these

displays as a separate unit and choose which to encode at random can predict none of

the display-by-display variance. This model thus represents a significant step forward

for formal models of change detection and visual working memory capacity.

3.4 Chunk-based encoding model

Rather than encoding both a summary of the display and specific items, it is possible

that observers might use a chunk-based representation. For example, a large number

of working memory models assume a fixed number of items can be encoded into

working memory (Cowan, 2001; Luck & Vogel, 1997). To account for apparently

disparate capacities for different kinds of information, such models generally appeal

to the idea of chunking, first explicated by George Miller (Miller, 1956). For example,

Miller reports on work which found that observers could remember 8 decimal digits



and approximately 9 binary digits. By teaching observers to recode the binary digits

into decimal (e.g., taking subsequent binary digits like 0011 and recoding them as '3'),

he was able to increase capacities up to nearly 40 binary digits. However, observers

remembered these 40 digits using a strategy that required them to remember only

7-8 'items' (recoded decimal digits). Ericsson, Chase and Faloon (1980) famously

reported a similar case where a particular observer was able to increase his digit span

from 7 to 79 digits by recoding information about the digits into running times from

various races he was familiar with, effectively converting the 79 digits into a small

number of already-existing codes in long-term memory. More recently, Cowan et al.

(2004) have found that by teaching observers associations between randomly chosen

words in a cued-recall task, observers can be made to effectively treat a group of

two formerly unrelated words as a single 'chunk' in working memory, and that such

chunking seems to maintain a fixed capacity in number of chunks even after learning.

In the domain of visual working memory, little work has explicitly examined chunk-

ing or what rules apply to grouping of items in visual working memory. In part, this

is because visual working memory representations seem to be based on representing

objects and features, and so it may not be possible to recode them into alternative

formats to increase capacity without using verbal working memory. However, some

work has focused on how learning associations impacts which items are encoded into

memory (Olson & Jiang, 2004; Olson, Jiang & Moore, 2005) and which items are

represented as a single chunk (Orbn, Fiser, Aslin & Lengyel, 2008). Furthermore, it

has been shown that learned associations can even result in greater numbers of indi-

vidual items being encoded into memory (Brady, Konkle & Alvarez, 2009). However,

almost no work has formalized the rules behind which items are perceptually grouped

and count as a single 'unit' in a slot-model of visual working memory (although see

Woodman, Vecera & Luck, 2003; Xu & Chun, 2007; and Xu, 2006 for examples of

perceptual grouping influencing capacity estimates in visual working memory).

A simple hypothesis is that the basic Gestalt rules of perceptual grouping, in

this case grouping by similarity (Wertheimer, 1938; Koffka, 1935), will determine the

perceptual units that are treated as single units in visual working memory. Indeed,



a. Example display b. Possible ways of chunking this display

Figure 3-5: (a) An example display, (b) Several possible ways of chunking this display.

These are 12 independent samples from our probabilistic chunking model with the
smoothness parameter set to 4. Each color represents a particular 'chunk'.

some work has attempted to examine how observers might group adjacent items of

similar luminance together in order to remember more dots in displays much like the

displays we use in the current task (Halberda et al submitted; see also Hollingworth,

Hyun & Zhang, 2005). However, little formal work has been done examining how

well such a model accounts for human change detection, and no work has examined

whether such a model predicts which displays will be easy or difficult to detect changes

in.

To model such a chunking process, we added two components to our basic change

detection model. First, rather than encoding K single objects, we encode up to K

regions of a display. Second, to select these regions we use two factors, corresponding

to the Gestalt principles of proximity and similarity: (1) a spatial smoothness term

that encourages the model to put only adjacent items into the same chunk; (2) a

likelihood term that forces the model to put only items of the same color into the

same chunk. We thus probabilistically segment the display into M regions, and then

select which K of these M regions to encode by preferentially encoding larger regions

(where chance of encoding is proportional to region size; e.g., we are twice as likely to

encode a region of 4 dots as a region of 2 dots). This allows us to examine how likely



an observer that encoded a display in this way would be to detect particular changes

for different values of K (see Figure 3-5 for a sample of possible region-segmentations

for a particular display).

In this model, we examine the possibility that observers use the information in

the first display to form K regions of the display following the principles of proximity

and similarity, and then encode the shape and color of these K regions into memory.

Then, the second display appears and the observer must decide, based on what they

have encoded in memory, whether this display is exactly the same as the first display.

They do so by independently judging the likelihood of each dot in the second display,

given the chunks they have encoded in memory. This model has a single free parame-

ter, a smoothness parameter which affects how likely adjacent items of the same color

are to end up in the same chunk. For values >0, this parameter prefers larger chunks

to smaller chunks, since it prefers neighboring items to have the same chunk-label.

The model is relatively insensitive to the value of this parameter for values >= 1.0.

For all simulations, we set this value to 4.0 because this provided a model that created

different segmentations of the display fairly often, while still making those segmen-

tations consist of relatively larger chunks. For full model specification, see Chapter

Appendix, 3.8.4.

3.4.1 Modeling results and fit to human performance

The chunk-based model provides an estimate, for a given change detection trial, of

how likely it is that there was a change on that particular trial. By computing

this probability for both the 'same' trial and a 'change' trials that observers saw in

Experiment 1, we can derive a d' for each display in the model.

The model achieves the same performance as people (d'=2.18) with a K value

of only 4, thus encoding only four chunks of dots (model d'=0.44, 0.93, 1.49, 2.08,

2.69 at K=1, 2, 3, 4, 5). This is because the model does not represent each dot

independently: instead, it represents grouped sets of dots as single chunks.

Furthermore, because the chunk-based model does not treat each item inde-

pendently, the model makes predictions about the difficulty of detecting particu-
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Figure 3-6: The fit of the chunk-based encoding model with K=4 (Smoothness=4) to
the observers' data for Experiments 1A (blue x's) and 1B (red circles). Each point is
the d' for a particular display.

lar changes. In fact, the correlation between the model's difficulty with individual

displays and the human performance on these displays was relatively high (r=0.58,

p=0.003; see Figure 3-6).

At K=4, we can examine the effect of different values of the smoothness parameter

on this correlation rather than simply setting this parameter to 4. We find that this

correlation is relatively robust to the smoothness preference, with r=0.35, r=0.45,

r=0.45, r=0.58, r=0.58 for values of 1, 2, 3, 4, and 5 (with smoothness - 5, the model

always segments the display into the largest possible chunks). Thus, the model's

simple summary representation captures which changes people are likely to detect

and which they are likely to miss independently of the settings of the chunk-size free

parameter.

3.4.2 Conclusion

The chunk-based model provides a reasonable estimate of the number of items ob-

servers are remembering, suggesting only 4 chunks need be remembered to match



human performance. The model thus provides evidence that fits with previous work

from visual working memory suggesting a capacity of 3-4 simple items (Luck & Vo-

gel, 1997; Cowan, 2001), with the addition of a basic perceptual organization process

that creates chunks before the items are encoded into memory. Furthermore, because

the chunk-based model does not treat each item independently, this model makes

predictions about the difficulty of detecting particular changes. These predictions

coincide well with observers difficulty in detecting particular changes in particular

displays. Together with the summary-based encoding model, this chunk-based model

thus provides a possible representation that might underly human change detection

performance in more structured displays.

3.5 Combining the summary-based and chunk-based

models

Both the chunking model and summary-based encoding model capture a significant

amount of variance, explaining something about which displays observers find difficult

to detect changes in. Do they explain the same variance? Or do both models provide

insight into what kinds of representations observers use to represent these displays?

To assess this question, we examined whether combining these two models resulted

in a better fit to the data than either model alone.

The summary-based encoding model and chunk-based model's display-by-display

d' predictions are almost totally uncorrelated with each other (r=0.03), despite both

doing a reasonable job predicting which displays people will find difficult. We thus

averaged the predictions of the two models and looked at whether this provides a

better fit to human performance than either model alone. We find that the average of

the two models together results in an impressive fit to human performance (r=0.90,

p<0.00001; see Figure 3-7). In fact, the two models together account for 81% of

the variance in observers' d-prime across displays without any free parameters set to

maximize this correlation. This is compatible with the idea that observers' represen-
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Figure 3-7: The fit of combined model with K=4 in both models to the observers'
data for Experiments 1A (blue x's) and 1B (red circles). Each point is the d' for a
particular display. Combining the predictions of the summary-based and chunking
models results in a better fit to the human data than either model alone.

tations might sometimes be more chunk-based and sometimes be more hierarchical,

perhaps depending on their explicit strategy or perhaps because different displays

lend themselves to different styles of encoding.

Rather than simply averaging the model's predictions, we can also introduce a

parameter that weights the two models unequally. A linear model producing the best

fit weights for the predictions of the summary-based and chunk-based models yields

a best fit of r=0.92, with weights of 0.67 for the summary-based encoding model

and 0.45 for the chunk-based encoding model (intercept: -0.13). While weighting the

summary-based encoding model more produces a better fit, such a model does not

significantly enhance our ability to fit observers' display-by-display difficulty.

3.5.1 Conclusion

We examined whether a Bayesian change detection model with more structured mem-

ory representations can provide a window into observers' memory capacity. We find

that both a summary-based encoding model that encodes specific items and also a



summary representation, and a chunking-based model in which observers first use

basic principles of perceptual organization to chunk the display before encoding a

fixed number of items provide possible accounts for how observers encode patterned

displays. These models can match human levels of accuracy while encoding only 3-4

items or chunks, and moreover, provide a good fit to display-by-display difficulty, ac-

curately predicting which changes observers will find most difficult. Furthermore, the

two models seem to capture independent variance, indicating that perhaps observers

use both kinds of representations when detecting changes in patterned displays. Taken

together, the two models account for 81% of the variance in observers' d-prime across

displays. By contrast, the simpler models of change detection typically used in calcu-

lations of visual working memory capacity do not predict any reliable differences in

difficulty between displays because they treat each item independently. These models

thus represent a significant step forward for formal models of change detection and

visual working memory capacity.

3.6 Experiment 2: Randomly colored displays

Using a Bayesian model of change detection together with more structured memory

representations allows us to examine observers' working memory capacity in displays

with explicit patterns. Can these models also predict which displays are hard or

easy on displays without explicit patterns, as in most typical visual working memory

experiments (e.g., Luck & Vogel, 1997)? If so, what are the implications for standard

K values and for simple models of working memory capacity based on these values?

While most working memory experiments generate displays by randomly choosing

colors and placing those color at random spatial locations, this does not mean that

there are no regularities present in any given display. In fact, any particular work-

ing memory display tends to have significant structure and regularities present even

though on average the displays are totally random.

Variance in observers encoding or storage in particular displays can have a signif-

icant influence on models of memory capacity. For example, Zhang and Luck (2008)



Figure 3-8: Example displays from Experiment 2. These displays were generated
randomly by sampling with replacement from a set of 7 colors, as in Luck & Vogel
(1997).

used a continuous report task (based on Wilken & Ma, 2004) in which observers are

briefly shown a number of colored dots and then asked to report the color of one of

these dots by indicating what color it had been on a color wheel. They then modeled

observers' responses to partial out observers' errors into two different kinds (noisy

representations and random guesses), arriving at an estimate of the number of colors

observers remember, on average, across all of the displays. They found evidence that

supported the idea that observers either remember the correct answer or completely

forget it, and used this to argue for a model of working memory model in which

observers can encode at most three items at a time (a quantized resource model).

Importantly, however, by fitting their model only to the results across all displays

rather than taking into account display-by-display variability, they failed to model

factors that influence the overall capacity estimate, but average out when looking at

many different displays. For example, Bays, Catalao and Husain (2009) showed that

many of observers' 'random guesses' are actually reports of an incorrect item from the

tested display. Reports of the incorrect item tend to average out when looking at all

displays, but for each individual display make a large difference in how many items we

should assume observers' were remembering. Once these incorrect reports are taken

into account, Bays, Catalao and Husain (2009) find that the model of Zhang and Luck

(2008) no longer provides a good fit to the data. This suggests that display-by-display

factors can sometimes significantly influence the degree to which a particular model

of working memory is supported, despite a good fit to the average across all displays.



In the current experiment, we sought to examine whether display-by-display vari-

ance in encoding particular working memory displays could be formalized using our

Bayesian model of observers' memory representations. We applied the same models

used in the patterned displays in Experiment 1 the summary-based encoding model

and chunk-based model to displays like those used in typical visual working memory

experiments. We find evidence that observers use such structured representations

when encoding these displays, and are able to predict which particular displays ob-

servers will find easy or difficult to detect changes in. This indicates that simple

models of working memory which encode a small number of independent objects

at random do not match the representation observers' use even in relatively simple

working memory displays.

3.6.1 Methods

Observers

100 observers were recruited and run using Amazon Mechanical Turk. All were from

the U.S., gave informed consent, and were paid 30 cents for approximately 4 minutes

of their time.

Procedure and Stimuli

We randomly generated 24 pairs of displays by selecting 8 colors with replacement

from a set of 7 possible colors (as in Luck & Vogel, 1997) and placing them randomly

on a 5 x 4 invisible grid (see Figure 3-8). While it is standard to jitter the items in

such displays to avoid co-linearities, to facilitate modeling and comparison with the

previous experiments we allowed the items to be perfectly aligned.

The displays each subtended 320x240 pixels, with the individual colored squares

subtending 30x30 pixels. On each trial, the pre-change display appeared on the left,

followed by the (potentially) changed version of the display appearing on the right.

Observers' monitor size and resolution was not controlled. However, all observers

attested to the fact that the entire stimulus presentation box was visible on their



monitor.

The methods were otherwise the same as Experiment 1.

3.6.2 Results

For each display we computed a d', measuring how difficult it was to detect the

change in that display (averaged across observers). The mean d' was 1.5 across the

displays, corresponding to a K value of 4.0 if we assume all of the items are represented

independently (Pashler, 1988).

However, as in Experiment 1, observers were consistent in which displays they

found easy or difficult (see Figure 3-9). For example, if we compute the average d' for

each display using the data from half of our observers and then do the same for the

other half of the observers, we find that to a large degree the same displays were dif-

ficult for both groups (r=0.68, averaged over 200 random splits of the observers). By

bootstrapping to estimate standard errors on observers' d-prime for each individual

display we can visualize this consistency (Figure 3-9). Some displays, like those on

the left of Figure 3-9, are consistently hard for observers. Others, like those on the

right of Figure 3-9, are consistently easy for observers to detect changes in. Contrary

to the assumption of standard working memory models, observers do not appear to

treat items independently even on randomly generated displays like those typically

used in working memory experiments.

Model fits

We next fit the summary-based encoding model and the chunk-based model to these

data to examine whether these models capture information about observers repre-

sentations in these displays. We find that the summary-based model provides a

good fit to the data, and in addition correlates with observers' display-by-display

difficulty (see Figure 3-10). The summary-based encoding model equals human per-

formance (d'=1.5) at K=4 (d'=1.47 at K=4), and at this K value correlates with

display-by-display difficulty well (r=0.60; p=0.003). Furthermore, this correlation is
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Figure 3-9: Consistency in which displays are most difficult in Exp 2. The x-axis
contains each of the 24 display pairs, rank ordered by difficulty (lowest d' on the left,
highest on the right; for visualization purposes, only a subset of pairs are shown on
the x-axis). The dashed gray line corresponds to the mean d' across all displays. The
error bars correspond to across-subject standard error bars. The consistent differences
in d' between displays indicate some displays are more difficult than other displays.
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Figure 3-10: (a) Fit of the summary-based model with K=4. The blue xs represent
the data from Experiment 2, using randomly generated displays as in typical visual
working memory experiments (fit: r=0.60). The black circles represent data from the
control experiment where displays were generated to purposefully contain patterns
(fit: r=0.55). (b) Fit of the chunk-based model with K=4. The blue xs represent
the data from Experiment 2, using randomly generated displays as in typical visual
working memory experiments (fit: r=0.32). The black circles represent data from the
control experiment where displays were generated to purposefully contain patterns
(fit: r=0.28).

not driven by the outliers: the Spearman rank-order correlation is also high (r=0.53,

p=0.009 ) and if we exclude displays where the model predicts an excessively high

d, the correlation remains high despite the decreased range (excluding displays with

model d>3, r=0.61). The chunk-based model does not provide as good a fit, equaling

human performance at K=4 (d'=0.88 at K=3, d'=1.32 at K=4, d'=1.81 at K=5)

but only marginally correlating with display-by-display difficulty (r=0.33 at K=3,

r=0.32 at K=4, r=0.41 at K=5). In addition, combining the chunking model with

the summary-based model does not significantly improve the summary-based model,

with the average of the two models giving a slightly worse fit than the summary-based

model alone (with K=4 for both models, r=0.56).

Generating the displays used in Experiment 2 completely at random means that

few displays contained significant enough pattern information to allow for chunking

or summary information to play a large role. This allowed us to quantify exactly how

well our model representations explained data from truly random displays, as used
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in most working memory studies (e.g., Luck & Vogel, 1997). However, while we find

that even with a sample of just 24 displays some displays are easier than others and

this is well-explained by our summary-based model, the limited range in d' prevents

any strong conclusions about the particular memory representations observers make

use of in displays of colored squares (for example, do observers' representations truly

resemble the summary-based model more than the chunk-based model?). We thus ran

another experiment (N=100 observers that did not participate in Experiments 1 or 2)

using 24 new displays we generated to purposefully contain patterns2 . Within these

new displays, we found that the summary-based model once again provided a strong

fit to the data (r=0.55) whereas the chunk-based model provided a considerably worse

fit (r=0.32). In addition, when combining the displays from this control experiment

with the displays from Experiment 2, we find that the summary-based model provides

a better fit (r=0.64) than the chunk-based model (r=0.50) and averaging the two

models does not improve the fit of the summary-based model significantly (r=0.66).

This suggests that the summary-based model's representation provides a better

fit to how observers encode these working memory displays than the chunk-based

model does. This could be because the distance between the items prevents low-level

perceptual grouping from occurring (Kubovy, Holcombe & Wagemans, 1998).

3.6.3 Conclusion

Even in standard working memory displays, observers are consistent in which displays

they detect changes in and which displays they do not detect changes in. This suggests

that the assumption of independence between items does not hold even in these

relatively simple displays of segmented shapes. Thus, we need models that take into

account basic perceptual grouping and higher-order summary representations in order

to understand the architecture of visual working memory even when our displays are

impoverished relative to real scenes.

2We generated the displays by creating displays at random and retaining only displays where
either the chunk-based model or the summary-based predicted the display would have a d' greater
than 2.
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Interestingly, even in displays chosen to minimize the presence of patterns, our

summary-based model's representation captures which changes people are likely to

detect and which they are likely to miss. By contrast, a model which assumes we

encode each item in these displays as a separate unit and choose which to encode

at random can predict none of the display-by-display variance. This suggests that

observers' representation are more structured than standard models based on inde-

pendent items would suggest, even in simple working memory displays.

3.7 General Discussion

We presented a formal model of change detection which relies upon Bayesian inference

to make predictions about visual working memory architecture and capacity. This

model allows us to take into account the presence of higher-order regularities, while

making quantitative predictions about the difficulty of particular working memory

displays.

In Experiment 1, we found that observers are able to successfully detect changes

to displays containing spatial patterns with much greater accuracy than would be

expected if they were remembering only 3-4 individual items from these displays.

Furthermore, we found that observers are highly reliable in which particular changes

they find easiest and hardest to detect. We posited two memory representations that

might underlie observers performance on these displays: a summary-based represen-

tation, where observers encode both a spatial summary of the display (items tend to

be the same color as their horizontal neighbors) and outlier items; and a chunk-based

representation, where observers group individual items into chunks before encoding

them into memory. Using our change detection model, we demonstrated that both

observers' high performance and a significant amount of the variance in display-by-

display difficulty can be predicted by a model that uses either of these representations.

Furthermore, we showed that a model that combines both forms of representation ex-

plains nearly all of the variance in change detection performance in patterned displays.

In Experiment 2, we examined the memory representations that underlie stan-
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dard working memory displays composed of colored squares with no explicit spatial

patterns. We again found significant consistency in display-by-display difficulty, sug-

gesting that even in simple displays observers are not treating items independently.

In addition, our summary-based encoding model successfully predicted which changes

observers found hard or easy to detect.

We thus show that it is necessary to model both more structured memory rep-

resentations as well as observers encoding strategies to successfully understand what

information observers represent in visual working memory. We provide a framework

for such modeling Bayesian inference in a model of change detection and show that

it can allow us to understand the format of observers memory representations. In-

terestingly, our models converge with the standard visual working memory literature

on an estimate of 3-4 individual objects remembered, even in the patterned displays

where simpler formal models massively underestimate observers performance.

3.7.1 Predicting display-by-display difficulty

Because each individual item in a typical working memory display is randomly colored

and located at a random spatial position, formal models of working memory have

tended to treat the displays themselves as interchangeable. Thus, existing models of

visual working memory have focused on average memory performance across many

different displays. For example, the standard "slot" model used to calculate K values

takes into account only the number of items present and the number of items that

change between study and test, ignoring any display-by-display variance in which

items are likely to be encoded and how well the items group or how well they can

be summarized in ensemble representations. Even modeling efforts that do not focus

on slots have tended to examine only performance across all displays (for example,

Wilken and Mas (2004) signal detection model where the performance decrement with

increasing numbers of items encoded results only from internal noise and noise in the

decision process).

However, even when the items themselves are chosen randomly, each display may

not itself be random: instead, any given display may contain significant structure.
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Furthermore, by focusing on average performance across displays, existing models

have necessarily assumed that each individual item is treated independently in visual

working memory. In the current work we find that this assumption of independence

between items may not hold even in simple displays, but perhaps more importantly,

requiring independence between items leaves little room to scale up formal models

of working memory to displays where items are clearly not random, as in real-world

scenes or even the patterned displays in Experiment 1.

There are two examples of work that fit a formal model which takes into account

information about each individual display in working memory, although neither ex-

amines model fits for each particular display as we do in the current work. In the

first, Bays, Catalao and Husain (2009) showed that taking into account information

about particular displays may be critical to distinguishing between slot models and

resource models in continuous report tasks (Bays, Catalao & Husain, 2009; Zhang

& Luck, 2008). Zhang and Luck (2008) found evidence that observers seem to fre-

quently randomly guess what color an item was, perhaps suggesting a limit on how

many items can be encoded. However, Bays, Catalao and Husain (2009), using data

taking which takes into account display-by-display differences, have argued that many

of these random guesses are actually reports of an incorrect item from the study dis-

play. Reports of the incorrect item tend to average out when looking at all displays,

but for each individual display make a large difference in how many items we should

assume observers' were remembering. Bays et al. (2009) argue that once these trial-

by-trial variations are taken into account, the data support a resource model rather

than a slot model of working memory (although see Anderson et al. 2011).

The second example of fitting a working memory model to each individual display

is work done by Brady, Konkle and Alvarez (2009; Chapter 4) on how statistical

learning impacts visual working memory. By creating displays where the items were

not randomly chosen (particular colors appear in a pair together more often than

chance), they showed that observers can successfully encode more individual col-

ors as they learn regularities in working memory displays. Furthermore, using an

information-theoretic model to predict how "compressible" each display was based
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on how predictable the pairings of colors are, Brady et al. (2009) were able to explain

how well observers would remember particular displays. For example, displays that

have a large number of highly predictable color pairs were remembered better than

displays with less predictable pairs.

In the current work, we introduce the encoding of summary statistics and per-

ceptual grouping as possible factors in observers memory representations. Since the

influence of these factors differs on each display, we are able to separately predict

the difficulty of each individual visual working memory display. We thus collected

data from large numbers of observers performing the same change detection task on

exactly the same displays. This allowed us to examine how well our model predicted

performance for each individual display for the first time. This display-by-display

approach could potentially open up a new avenue of research for understanding the

representations used in visual working memory, because it allows clear visualizations

of what factors influence memory within single displays.

3.7.2 The use of ensemble statistics for summary-based en-

coding

In our summary-based encoding model, we suggested that observers might store two

distinct kinds of memory representations: a set of individual objects, plus summary

statistics which encode an overall gist of the display. We found evidence that such

summary-based encoding can explain human change detection in both patterned dis-

plays and in simple displays. In addition, we found evidence that a crucial role of

summary-based encoding is to guide attention to outlier items.

Our model of summary-based encoding links to both a rich literature on how we

encode real-world scenes (e.g., encoding both scene information and specific objects:

Hollingworth, 2006; Oliva, 2005) and to an emerging literature on the representation

of visual information using ensemble statistics (e.g., encoding mean size of a set of

items or the distribution of orientations on a display: Alvarez, 2011; Haberman &

Whitney, 2011). When representing a scene observers encode not only specific objects
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but also semantic information about a scenes category as well as its affordances and

other global scene properties (e.g., Greene & Oliva, 2009a, 2009b, 2010b). Observers

also represent some scene-based summary statistics that are encoded visually rather

than semantically. For example, Alvarez and Oliva (2009) have shown that observers

are sensitive to some global patterns of orientation but not others, possibly based on

how meaningful such patterns are in the statistics of natural scenes (Oliva & Torralba,

2001). This visual ensemble information seems to be linked to the way we process

texture (Haberman & Whitney, 2011).

There is also existing evidence that the representation of such scene and ensemble

information influences our encoding of specific objects. In real-world scenes, much of

the influence of such gist representations on the representation of individual objects

seems to be semantic. For example, observers are better at remembering the spatial

position of an object when tested in the context of a scene (Mandler & Johnson,

1976; Hollingworth, 2007), and this effect is stronger when the scene information

is meaningful and coherent (Mandler & Johnson, 1976; Mandler & Parker, 1976).

In addition, gist representations based on semantic information seem to drive the

encoding of outlier objects. Thus objects are more likely to be both fixated and

encoded into memory if they are semantically inconsistent with the background scene

(e.g., Friedman, 1979; Hollingworth & Henderson, 2000, 2003).

Visual information from scenes also influences our encoding of objects. Thus,

observers encoding real-world scenes not only preferentially encode semantic outliers

but also visual outliers ("salient" objects) (Wright, 2005; Fine & Minnery, 2009, J

Neuro; although see Stirk & Underwood, 2007). In addition, when computing ensem-

ble visual representations in simpler displays observers discount outlier objects from

these representations (Haberman & Whitney, 2010), and combine their representa-

tions of the ensemble statistics with their representation of individual items (Brady

& Alvarez, 2011; Chapter 2).

Taken together, this suggests that observers representations of both real-world

scenes and simpler displays consists of not only information about particular objects

but also scene-based information and ensemble visual information. Furthermore, this
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summary information is used to influence the choice of particular objects to encode

and ultimately influences the representation of those objects.

In the current work, we formalized a simplified version of such a summary-based

encoding model. Rather than representing semantic information, we use displays that

lack semantic information and used a summary representation based on Markov Ran-

dom Fields (Geman & Geman, 1984). This summary representation represents only

local spatial continuity properties of the display (e.g., the similarity between items

that are horizontal and vertical neighbors). Interestingly, however, a very similar rep-

resentation seems to capture observers impression of the subjective randomness of an

image patch (Schreiber & Griffiths, 2007), a concept similar to Garners (1974) notion

of pattern goodness. Pattern goodness is an idea that has been difficult to formal-

ize but qualitatively seems to capture which images are hard and easy to remember

(Garner, 1974).

Nevertheless, our summary representation is likely too impoverished to be a fully

accurate model of the summaries encoded in human memory, even for such simple

displays. For example, if letters or shapes appeared in the dot patterns in our displays,

observers would likely recall those patterns well by summarizing them with a gist-like

representation. Our model cannot capture such representations. Additional visual

summary information is also likely present but not being modeled: for example, if

we changed the shape of one of the items in Experiment 1 from a red circle to a red

square observers would almost certainly notice despite the large number of individual

items on the display (e.g., see Brady, Konkle & Alvarez, 2011; Chapter 1). However,

we believe that our model nevertheless represents a step forward in understanding

how people make use of such summary information during change detection. Despite

the relative simplicity of the summary representation, the model seems to capture a

large amount of variance in how well observers remember not only patterned displays

but also simple visual working memory displays.
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3.7.3 Chunking

In our chunk-based encoding model, we suggested that observers might make use of

the Gestalt principle of similarity to form perceptual units out of the individual items

in our displays and encode these units into memory as chunks. We found evidence that

such chunk-based encoding can explain part of human change detection in patterned

displays.

This idea that memory might encode chunks rather than individual objects relates

to two existing literatures. One is the literature on semantic, knowledge-based chunk

formation. For example, a large amount of work has been done to understand how

form chunks based on knowledge, both behaviorally (e.g., Chase & Simon, 1973;

Cowan et al. 2004; Brady et al 2009; Gobet et al. 2001) and with computational

models of what it means to form such chunks, how all-or-nothing chunk formation

is and what learning processes observers undergo (e.g., Brady et al 2009; Gobet

et al. 2001). The other literature on chunk formation is based on more low-level

visual properties, as examined under the headings of perceptual grouping and pattern

goodness (e.g., Wertheimer, 1938; Koffka, 1935; Garner, 1974). In the current work

we use non-semantic stimuli and do not repeat stimuli to allow for learning, and

thus it is likely we are tapping a form of chunk formation that is based on grouping

properties of low-level vision rather than based on high-level knowledge.

Some previous work has focused on how to formalize this kind of perceptual group-

ing (Kubovy & Van den Berg, 2008; Rosenholtz, Twarog, Schinkel-Bielefeld, & Wat-

tenberg, 2009). For example, Kubovy and Van den Berg (2008) have proposed a

probabilistic model of perceptual grouping with additive effects of item similarity

and proximity on the likelihood of two objects being seen as a group. In the current

experiments, our items differ only in color, and thus we make use of a straightforward

model of grouping items into chunks, where items that are adjacent and same-colored

are likely but not guaranteed to be grouped into a single unit. This grouping model

is similar in spirit to that of Kubovy and Van den Berg (2008), and in our displays

seems to explain a significant portion of the variance in observers memory perfor-
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mance. This provides some evidence that perceptual grouping may occur before

observers encode items into memory, allowing observers to encode perceptual chunks

rather than individual items per se.

Similar models of perceptual grouping have been proposed to explain why ob-

servers are better than expected at empty-cell localization tasks using patterned

stimuli much like ours (Hollingworth, Hyun & Zhang, 2005) and why some displays

are remembered more easily than others in same/different tasks (Howe and Jung,

1986; Halberda et al. submitted) . However, this previous work did not attempt

to formalize such a model of perceptual grouping. This is important because in the

current experiments we find that summary-based encoding provides another possible

explanation for the benefits observed in patterned displays, and in fact may provide

a more general solution since it helps explain performance in simpler displays better

than perceptual grouping. Thus, we believe it is an important open question the ex-

tent to which summary-based encoding rather than perceptual grouping could explain

improved performance for patterned displays in previous experiments (Hollingworth,

Hyun & Zhang, 2005; Howe & Jung, 1986; Halberda et al., submitted).

3.7.4 Fidelity in visual working memory

In line with the previous literature on working memory, the current modeling effort

largely treats working memory capacity as a fixed resource in which up to K items

may be encoded with little noise. While expanding on what counts as an item (in the

chunk-based model) or suggesting a hierarchical encoding strategy (in the summary-

based model), nevertheless we do not investigate in detail the fidelity stored in the

representations or the extent to which encoding is all-or-none (e.g., slot-like) versus

a more continuous resource.

There are several important caveats to the simplistic idea of all-or-none slots that

we use throughout the current modeling effort. The first is that for complex objects,

observers are able to represent objects with greater detail when they are encoding

only a single object or only a few objects than when they are encoding many such

objects (Alvarez & Cavanagh, 2004; Awh et al 2007). In fact, the newest evidence
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suggests this is true even of memory for color (Zhang & Luck, 2008). For example,

Zhang and Luck (2008) find that observers have more noise in their color reports

when remembering 3 colors than when remembering only a single color. It has been

proposed this is due to either a continuous resource constraint with an upper-bound

on the number of objects it may be split between (Alvarez & Cavanagh, 2004), a

continuous resource with no upper bound (Bays & Husain, 2008; Bays, Catalao &

Husain, 2009), a continuous resource that must be divided up between a fixed number

of slots (Awh et al. 2007), or because observers store multiple copies of an object

in each of their slots when there are fewer than the maximum number of objects

(Zhang & Luck, 2008). In either case, the simplistic model in which several items are

perfectly encoded needs to be relaxed to incorporate these data.

Furthermore, in real-world displays which contain many real objects in a scene,

observers continually encode more objects from the display the more time they are

given (Hollingworth, 2004; Melcher, 2001, 2006). In fact, even on displays with

objects that are not in a coherent scene, if those objects are semantically rich real-

world objects, observers remember more detailed representations for a larger number

of objects as they are given more time to encode the objects (Brady, Konkle, Oliva

& Alvarez, 2009; Melcher, 2001).

Despite these complications, in the current modeling we focus on expanding a

basic all-or-none slot model to the case of dealing with higher-order regularities and

perceptual organization. We use such a model as our basic architecture of working

memory because of its inherent simplicity and because it provides a reasonable fit to

the kind of change detection task where the items to be remembered are simple and

the changes made in the change detection task are large, as in the current studies (e.g.,

categorical changes in color, Luck & Vogel, 1997). Future work will be required to

explore how perceptual grouping and summary-based encoding interact with memory

fidelity.

112



3.7.5 Conclusion

Memory representations of real-world scenes are complex and structured: observers

encode both scene-based semantic and visual information as well as specific objects,

and the objects they encode are chosen based on the scene-based information. By

contrast, formal models of working memory have typically dealt with only simple

memory representations that assume items are treated independently and no sum-

mary information is encoded.

In the current work we presented a formal model of change detection that uses

Bayesian inference to make predictions about visual working memory architecture and

capacity. This model allowed us to take into account the presence of summary infor-

mation and perceptual organization, while making quantitative predictions about the

difficulty of particular working memory displays. We found evidence that observers

make use of more structured memory representations not only in displays that ex-

plicitly contain patterns, but also in randomly-generated displays typically used in

working memory experiments. Furthermore, we provided a framework to model these

structured representations Bayesian inference in a model of change detection and

showed that it can allow us to understand how observers make use of both summary

information and perceptual grouping.

By treating change detection as inference in a generative model, we make contact

with the rich literature on a Bayesian view of low-level vision (Knill & Richards, 1996;

Yuille & Kersten, 2006) and higher-level cognition (e.g., Griffiths & Tenenbaum, 2006;

Tenenbaum, Griffiths, & Kemp, 2006). Furthermore, by using probabilistic models

we obtain the ability to use more complex and structured knowledge in our memory

encoding model, rather than treating each item as an independent unit (e.g., Kemp

& Tenenbaum, 2008; Tenenbaum, Griffiths & Kemp, 2006). Our model is thus ex-

tensible in ways that show promise for building a more complete model of visual

working memory: within the same Bayesian framework, it is possible to integrate

existing models of low-level visual factors with existing models of higher-level concep-

tual information (e.g., Kemp & Tenenbaum, 2008), both of which will be necessary
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to ultimately predict performance in working memory tasks with real-world scenes.

3.8 Chapter Appendix

3.8.1 Basic Change Detection Model Details

Walkthrough

We wish to model a simple change detection task of the form frequently used in

visual working memory (see Figure 3-11). Observers are presented with a display

(the study display) consisting of 8 colored squares. The display then disappears, and

a short time later another display reappears (the test display) that is either identical

to the study display or in which a single square has changed color. Observers must

decide whether the test display is identical to the study display or there has been a

change. Observers are told that at most a single item will change color.

To create a model of this change detection task, we first specify how observers'

encode the study display. For the simplest case, in order to most closely match the

models used to quantify "K-values" in standard displays (Cowan, 2001), we assume

that memory takes the form of a discrete number of slots, K, each of which stores

which color was present on the display in a particular location (using seven colors:

black, white, red, green, blue, yellow and purple). Also in line with standard slot

models, we initially assume that observers choose which K of the N dots to encode

at random. To model the change detection task, we then formalize how observers

make a decision about whether there was a change when the test display is presented.

When observers must decide if there has been a change, observers have access to the

test display and to the items they encoded in memory from the study display. Using

the information that at most a single item can change color, we model the observer

as performing an optimal inference to arrive at a judgment for whether the display

has changed.

For this simple model, this inference is straightforward. When an observer is

looking at a particular test display, there are 49 (1 + 8*6) possibilities for what
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might have been the study display: There is the possibility that the study display

was exactly the same as the test display (1 +), plus the possiblility the study display

had any one of the eight items as a different color then in the test display (since there

are 6 other colors for each of the 8 items, this gives 8*6). Assuming 50% of trials are

'change' and 50% 'no-change', and thus observers use 50% as the prior probability of

a change, this means that after observing the test display, observers start with the

belief that there is a 50% chance that the study display was the same as the test

display, and a 1/(8*6), or 1.04% chance that the study display was any particular one

of the possible changed displays.

To arrive at the final inference, this information must then be updated based on

the K colors encoded in memory from the study display. Using the colors of these K

items, observers can rule out (e.g., assign 0 likelihood) any of the hypothesized study

displays that have a color that differs from their memory. For example, if an observer

remembers a particular item was blue in the study display, and it remains blue in the

test display, this observer can rule out all 6 possible changes in color for that item,

and thus reduce the possible changed displays from 48 to 42.

After ruling out the displays that are incompatible with their memory represen-

tation, observers can then calculate the final posterior probability of a change: this is

the percentage of the remaining probability that is part of the 8*6 "change" displays

as opposed to the 1 "no-change" display. Note that if one of the remembered items

differs from the second display, this will rule out 'no change' and observers will be

sure there was a change (all remaining probability will be on the "change" displays).

If none of the remembered items differ from the test display, then observers will be

more likely to say no change, and how likely they will be to say no change will depend

on how many of the possible study displays can be ruled out based on the items they

remember. The larger the value of K, the more possible study displays will be ruled

out and the more sure observers will become that there was no change (see Figure

3-11).

If we cue which item to check for a change (e.g., by putting only a single square

up when we show the test display and asking whether only this item is the same
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Figure 3-11: Results of probabilistic change detection model on detecting a single
change in a display with 8 colored squares as a function of the number of items
remembered. As more items are encoded, the model gets a larger percentage of
displays correct.

or different), then our Bayesian change detection model becomes even simpler. In

the full Bayesian change detection model, if we do not encode an item and that item

changes, the likelihood we say 'change' is a function of our capacity K. As K increases,

we get greater implicit evidence for 'no-change', since the more items we encode the

less likely it is that we would have failed to encode the item that changed.

However, if we are cued to which item may have changed, then we need only

weigh the probability the color is the same as the first display (50% prior) against the

probability it used to be one of the 6 other colors (50% * 1/6 = 8.3% chance of each

other color). If we encoded the item in memory, which happens on K/N out of each

N trials because we randomly sample which items to encode, then we get the trial

correct. If we don't encode the item in memory, then there is a 50% chance it is same

and 50% chance it is different, given our prior probability about whether there was

a change (regardless of how many items we encoded). Thus, the chance of getting a

trial correct reduces to:
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(A) Encoding (B) Detection

Di D D2

S S C

Figure 3-12: Graphical model notation for the basic multinomial change-detection
model at (A) encoding and (B) detection. Shaded nodes are observed. The red arrows
correspond to observers' memory encoding strategy; the black arrows correspond to
constraints of the task (e.g., at most 1 dot will change between display 1 (D') and
display 2 (D2 )).

P.C.(%) = *1+ N K * 0.50
N N

This is the same as the formula used to calculate Cowan's K (Cowan, 2001). Thus,

the Bayesian model of change detection has Cowan's K as a special case where the

item that may have changed is cued.

Formalization

Formally, in this model with no higher-order information, we treat each of the N items

on the study display as a multinomial random variable D (i from 1, 2,... N), where

the set of possible values of each D' is 1, 2, ..., 7, representing the seven possible

colors. We choose whether to remember each object from the display by sampling K

specific objects from the display without replacement. S denotes the set of K specific

objects encoded: S = S1, ..., SK. For each item encoded in S, we store a multinomial

distribution with 100% of the mass on the color of that item in the display (D').

Nothing is stored about all other items.

At detection, observers have access to the information encoded in S and also the
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items on the test display (D 2 ). This test display is generated by taking the study

display (D') and either modifying no colors (C=0, prior probability 0.5) or modifying

a single color at random (C=1, prior probability 0.5). Observers must infer, using S

and D 2 , whether a change was made (the value of C). To do so, they must use S

and D2 to put a probability distribution on all possible values of D' (e.g., calculate

p(D1D2 , S). In other words, to know if there was a change, observers must know

what the second display and the information in memory suggests about the first

display. In this case, p(D1 ID2) is independent of p(D'jS), and so p(D'ID2 , S) can be

calculated as simply p(D'1D 2) * p(D' IS).

Because of the constraint that at most one item will change between D' and D2 ,

the value of D2 rules out all but a small number of possible displays for consideration

as the possible study display, D1 . In other words, p(D'1D2 ) puts non-zero probability

on only 1 + N*6 of the N' possible study displays. These correspond to the study

display that is exactly the same as the test display (1 +), plus the study displays that

correspond to any one of the N items changing from the color they are in the test

display to one of the 6 other colors (N*6).

The value of S rules out a number of displays proportional to the number of items

encoded in S (K items). p(D'jS) assigns zero probability to all displays where an

item D! is a different color than Si, for all K items encoded in S. All other displays

are given equal likelihood.

Taken together with an equal prior probability of all possible displays D', these

two distributions, p(D D 2 ) and p(D'IS), provide the posterior function for p(D 1 ).

As the final step in the inference, this posterior over possible first displays must be

converted to a posterior on whether there was a change in the display (C). This is

based on the prior probability of a change (0.5) and whether D' is equal to D 2 (e.g.,

whether there is a change between the two displays). Thus:

p(C = 11D 2,S) = 0.5 * p(D 1 - D21 D2, S)
0.5p(D 1 D2 1D2, S) + 0.5p(D 1 # D2 |D2 , 5)
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3.8.2 Patterned Display Generation

To generate the patterned displays used in Experiment 1A and 1B, we sampled a set of

16 displays from a Markov Random Field (MRF) smoothness model like those used in

our summary-based encoding model and our chunking model (see Chapter Appendix,

Sections 3.8.3 and 3.8.4). Using an MRF with separate parameters for horizontal and

vertical smoothness, we used Gibbs sampling to generate a set of four displays from

each of 4 possible parameter settings. These parameters encompassed a wide range

of possible patterns, with horizontal/vertical smoothness set to all combinations of

+/- 1 [e.g., (1, 1), (-1, -1), (1, -1), (1, -1)]. This gave us 16 displays with noticeable

spatial patterns.

In addition, we generated 8 displays by randomly and independently choosing

each dots color (50%/50%). In Experiment 1A, these 24 displays consisted of red and

blue dots. In Experiment 1B they were exactly the same displays, but composed of

black and white squares instead.

3.8.3 Summary-Based Encoding Model Details

Encoding

The graphical model representation of the encoding model (shown in Figure A3)

specifies how the stimuli are initially encoded into memory. We observe the study

display (D1), and we use this to both infer the higher-order structure that may have

generated this display (G) and to choose the specific set of K items to remember from

this display (S).

In the model, any given summary representation must specify which displays are

probable and which are improbable under that summary. Unfortunately, even in

simple displays like ours with only 2 color choices and 25 dots, there are 225 possible

displays. This makes creating a set of possible summary representations by hand and

specifying the likelihood each summary gives to each of the 225 displays infeasible.

Thus, as a simplifying assumption we chose to define the summary representation

using Markov Random Fields, which allow us to specify a probability distribution
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(A) Encoding (B) Detection

00
Figure 3-13: Graphical model notation for the summary-based encoding model at (A)
encoding and (B) detection. Shaded nodes are observed. The red arrows correspond

to observers' memory encoding strategy; the black arrows correspond to constraints
of the task (e.g., at most 1 dot will change between the study display (D 1) and test

display (D 2 )). The blue arrows correspond to our model of how a display is generated;
in this case, how the summary or gist of a display relates to the particular items in

that display.
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over all images by simply defining a small number of parameters about how items

tend to differ from their immediate neighbors. Such models have been used extensively

in computer vision (Geman & Geman, 1984; Li, 1995). We use only two summary

parameters, which specify how often items are the same or different color than their

horizontal neighbors (Gh) and how often items are the same or different color than

their vertical neighbors (G,). Thus, one particular summary representation (Gh =

1, GV = -1) might specify that horizontal neighbors tend to be alike but vertical

neighbors tend to differ (e.g., the display looks like it has horizontal stripes in it).

This summary representation would give high likelihood to displays that have many

similar horizontal neighbors and few similar vertical neighbors.

We treat each item in these change detection displays as a random variable D',

where the set of possible values of each D' is -1 (color 1) or 1 (color 2). To define the

distribution over possible displays given the gist parameters, P(D IG), we assume that

the color of each dot is independent of the color of all other dots when conditioned

on its immediate horizontal and vertical neighbors.

We thus have two different kind of neighborhood relations (clique potentials) in

our model. One two parameters (Gh and Gv) apply only to cliques of horizontal and

vertical neighbors in the lattice (Nh and Nv) respectively. Thus, P(D'IG) is defined

as:

P(DlG) = exp (- En (D 1 G)) (3.1)Z(G)

En(D1 IG)>=G, V )(D,Dj)+Gh Z $(D!,DJ)
(ij)EN, (ij)ENh

where the partition function:

Z(G) = Zexp (-E(D IG))
D1

normalizes the distribution. ?/(DI, DJ) is 1 if DI = D! and -1 otherwise. If G > 0

the distribution will favor displays where neighbors tend to be similar colors, and if
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G < 0 the distribution will favor displays where neighbors tend to be different colors.

The summary of the display is therefore represented by the parameters G of an

MRF defined over the display. Our definition of p(D'IG)) thus defines the probability

distribution p(displaylsummary). To complete the encoding model we also need to

define p(itemsIdisplay, summary) (p(SjD', G)). To do so, we define a probability

distribution that preferentially encodes outlier objects (objects that do not fit well

with the summary representation).

We choose whether to remember each object from the display by looking indepen-

dently at the conditional probability of that object under the summary representation,

assuming all of its neighbors are fixed p(D' IG, D>). S denotes the set of K specific

objects encoded: S = si, ... , sk. To choose S, we rank all possible sets of objects of size

0, 1, 2, ... to K objects based on how unlikely they are under the encoded summary

representation. Thus, the probability of encoding a set of objects (S) is:

p(SIG,Dl) = [1 - p(DjG, D)j)] ]I p(D|G, D),) (3.2)
j:sjES j:sjS

This defines p(SID1 , G), which provides the probability of encoding a particular

set of specific items in a given display, p(itemsIdisplay, summary), in our model.

To compute the model predictions we use exact inference. However, due to the

computational difficulty of inferring the entire posterior distribution on MRF param-

eters for a given display (e.g., the difficulty of computing Z(G)), and because we

do not wish to reduce our summary representation to a single point estimate, we

do not compute either the maximum posterior MRF parameters for a given display

or the full posterior on G. Instead, we store the posterior in a grid of values for

G in both horizontal and vertical directions (Gh = -1.5, -1, -. 5, 0, .5, 1, 1.5, G, =

-1.5, -1, -. 5, 0, .5,1,1.5). We compute the likelihood of the display under each of

these combinations of Gh and G, and then choose the items to store (S) by integrating

over the different choices of G (we store the full posterior over S)). We choose a uni-

form prior on the summary representation (e.g., a uniform prior on MRF parameters

G).
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In summary, to encode a display we first treat the display as an MRF. We then

calculate the posterior on possible summary representations by calculating a posterior

on G at various (pre-specified) values of G. We then use this G and the original display

to compute a posterior on which set of < K items to encode into item memory (S). At

the completion of encoding we have both a distribution on summary representations

(G) and a distribution on items to remember (S), and these are the values we maintain

in memory for the detection stage.

Detection

At the detection stage, we need to infer the probability of a change to the display.

To do so, we attempt to recover the first display using only the information we

have in memory and the information available in the second display. Thus, using

the probabilistic model, we work backwards through the encoding process, so that,

for example, all the possible first displays that don't match the specific items we

remembered are ruled out because we would not have encoded a dot as red if it were

in fact blue.

More generally, to do this inference we must specify P(DIS), P(DIl D2 ), P(D 1 |X),

P(SIG, D). Almost all of these probabilities are calculated by simply inverting the

model we use for encoding the display into memory initially with a uniform prior

on possible first displays. Thus, P(D'IG) and P(SIG, D) are given by the same

equations described in the Encoding section.

Those probabilities not specified in the forward model represent aspects of the

change detection task. Thus, P(D'IS) is a uniform distribution over first displays

that are consistent with the items in memory and 0 for displays where one of those

items differs. This represents our simplifying assumption (common to standard "slot"

models of visual working memory) that items in memory are stored without noise and

are never forgotten (it is possible to add noise to these memory representations by

making P(D 1 |S) a multinomial distribution over possible values of each item, but for

simplicity we do not model such noise here). P(D'ID2) is uniform distribution over

all displays D' such that either D1 = D2 or at most one dot differs between D1 and
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D2 . This represents the fact that the task instructions indicate at most one dot will

change color.

Together these distributions specify the probability of a particular first display

given the information we have about the second display and information we have in

memory, P(D' IG, S, D2 ). Given the one-to-one correspondence between first displays

and possible changes, we can convert this distribution over first displays to a distri-

bution over possible changes. Our prior on whether or not there is a change is 0.5,

such that 50% of the mass is assigned to the "no change" display and the other 50%

is split among all possible single changes. Thus:

P(CG, S, D 2 ) - 0.5P(D 1 = D2 IG, S, D2 )
P G D 0.5P(D1 = D2|G, S, D2) + 0.5 P(D1 # D2|G, S, D2 )

This fully specifies the model of change detection.

Model with no summary information at time of detection

Is remembering the summary representation helping us to accurately model human

performance, or can we predict human performance equally well by using the sum-

mary to choose outliers to encode into memory but then discarding the summary

representation itself? To examine this, we looked at the fit of a model that did

not have access to the summary representation at the time of change detection, and

detected changes solely based on the specific objects encoded.

Formally, this model was identical to the model described, but without condi-

tioning on G when doing change detection. Thus, detection was based only on the

probabilities P(D1IS) and P(D 1ID 2 ), which are once again calculated by using the

same equations as used in the encoding model.

Model with objects chosen at random

It is also possible to examine a model that encodes both a summary of the display

and specific items, but does not choose which items to specifically encode by selecting

outliers from the summary. Rather than preferentially encoding unlikely items, such
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a model chooses the items to encode at random.

Formally, we use S to denote the set of K specific objects encoded: S = s1 , ... , Sk.

In the full model, it is calculated by choosing objects that are outlier with respect to

G:

p(SIG, D') = f [1 - p(DijG,Djg)] J p(DjG,D)) (3.3)
j:sjES j:sj(S

To lesion the model and encode objects at random, we instead choose the set S of

objects to encode at random. Thus, to choose S, we no longer consider all possible

sets of objects up to size K based on how unlikely they are, but simply sample K of

the N objects in the display.

Model as applied to random dot displays

To apply the model to the displays from Exp. 2, we use the same model and treat

the items that are adjacent in the grid as neighbors. Blank spots on the display are

ignored, such that the MRF is calculated only over pair of items (cliques, N, and Nh)

that do not contain a blank location.

To do inference in this model, we can no longer use exact inference, since calcu-

lating the partition function Z(G) for these displays is computationally implausible.

Instead, to calculate the likelihood of a given display under a particular summary

representation, we use the pseudolikelihood, which is the product, for all of the items,

of the conditional probability of that item given its neighbors (Li, 1995; Besag, 1975,

1977). Thus, P(D 1IG) is calculated as:

p(D1 lG) = exp(-En(DIlG))
exp(-En (0|1G)) + exp(-Eni (1|G))

Eni(DIG)=G, E O(D',Dj)+Gh E V)(D',DJ) (3.5)
jENv(i) jENh(i)

Such an estimate of the likelihood is computationally straightforward, and in

MRFs has been shown to be a reasonable approximation to the true underlying like-
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lihood function (Besag, 1977). We can calculate how good an approximation it is for

our particular change detection model by examining how closely predictions using the

pseudolikelihood approximate the exact likelihood computations in Experiment 1. In

that model (with K=4), the change detection estimates (how likely each test display

is to be the same as the study display) correlate r=0.98 between the model that uses

exact inference and the model that relies on the pseudolikelihood to estimate the

likelihood. This suggests the pseudolikelihood provides a close approximation of the

true likelihood in our displays.

3.8.4 Chunking Model Details

To model chunk-based encoding, we add two components to our basic change detec-

tion model. First, rather than encoding K single objects, we encode up to K chunks

from a display (S now encodes chunks rather than individual items). Second, to select

these chunks we use two factors, corresponding to the Gestalt principles of proximity

and similarity: (1) a spatial smoothness term that encourages the model to put only

adjacent items into the same chunk; (2) a likelihood term that forces the model to

put only items of the same color into the same chunk.

We probabilistically segment the display into chunks, and then select which K of

these chunk to encode into our chunk memory, S, by preferentially encoding larger

chunks (where chance of encoding is proportional to chunk size; e.g., we are twice as

likely to encode a chunk of 4 dots as a chunk of 2 dots). This allows us to examine how

likely an observer that encoded a display in this way would be to detect particular

changes for different values of K (see Figure 5 in the main text for a sample of possible

chunk-segmentations for a particular display).

Our formalization of the chunk-based model has three stages. First, we compute

a distribution over all possible ways of segmenting the study display into chunks,

R. Then, for each value of R, we compute a distribution over all possible ways of

choosing K chunks from R to encode into our chunk memory, S. Finally, we calculate

how likely the display is to be the same for each possible value of R and each possible

value of S given this R. Due to the huge number of possible values of R, we use Gibbs
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sampling to sample possible segmentations rather than doing a full enumeration. For

any given segmentation R, however, we do a full enumeration of assignments of S

and thus likelihoods of the display being the same or different.

To compute a distribution over R, we treat the chunk-assignment of each item

DI as a random variable Ri. Thus, Ri corresponds to which region DI is considered

a part of, and each Ri can take on any value from 1 ...25 (the total number of items

present in the display, and thus the maximum number of separate regions).We then

compute a distribution over possible assignments of Ri using a prior that encourages

smoothness (such that items D' that are either horizontal or vertical neighbors are

likely to have the same region assignment), and using a likelihood function that is

all-or-none, simply assigning 0 likelihood to any value of R where two items assigned

the same chunk differ in color (e.g., likelihood zero to any R where Ri-=R, D' # D')

and uniform likelihood to all other assignments of R.

We sample from R using Gibbs Sampling. We thus start with a random assignment

of values for each Ri, and then sample each Ri repeatedly from the distribution

p(RiIR~j, D') to generate samples from the distribution

P(RjR~j) oc exp(-En(RJ|Sm)) (3.6)

En (Ri ISm) =Sm E 0 (Ri, Rj) (3.7)
i,jEN

Where, again, 0 (Ri, R3 ) = 1 if R, = R and -1 otherwise.

For values of Sm >>0, we prefer larger chunks to smaller chunks, since we more

strongly prefer neighboring items to have the same chunk-label. As discussed in the

main text, the model is relatively insensitive to the value of this parameter for values

>= 1.0. For all simulations, we set this value to 4.0 because this provided a model

that created different segmentations of the display fairly often, while still making

those segmentations consist of relatively larger chunks.

The likelihood function, P(RID'), is simply defined such that all chunks/regions

must have only a single color within them. Thus, if for any Ri = Rj, D' / Dj, then

P(RID1 ) = 0, otherwise P(RID') oc 1. Taken together, this likelihood and the MRF
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smoothness prior specify the distribution over R.

To compute a distribution over S for a given value of R, we enumerate how many

unique chunk assignments are present in R (total number of chunks, M), labeling each

of these chunks L = 1, 2...M. We then choose K chunks from this set of M possible

chunks for our chunk memory, S, by choosing without replacement and giving each

chunk label a chance of being chosen equal to the % of the items in the display that

belong to that chunk. Thus:

P(S|R, D') oc 1 Ej ...25 (R = Lj) - 25R = Lj)) (3.8)
i:siES 25 i:siS25

To calculate the chance of the display being the same given a value of R and S,

we use the following logic (similar to Pashler, 1988). The set of items encoded is all

the items assigned to any chunk that is encoded. Thus if D' f D2, and i is part of

a chunk encoded in S, we notice the change 100% of the time. If no such change is

detected, we get more and more likely to say 'same' in proportion to how many items

we have encoded from the total set of items: thus, probability of the display having

changed is:

P(CIR, S) = 1 - (0.5 + 0.5 * E ...25 A )) (3.9)
25
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Chapter 4

Compression in visual working

memory: Using statistical

regularities to form more efficient

memory representations

The information we can hold in working memory is quite limited, but this capacity has

typically been studied using simple objects or letter strings with no associations be-

tween them. However, in the real world there are strong associations and regularities

in the input. In an information theoretic sense, regularities introduce redundancies

that make the input more compressible. In this chapter we show that observers can

take advantage of these redundancies, enabling them to remember more items in

working memory. In two experiments, we introduced covariance between colors in a

display so that over trials some color pairs were more likely than other color pairs.

Observers remembered more items from these displays than when the colors were

paired randomly. The improved memory performance cannot be explained by sim-

ply guessing the high probability color pair, suggesting that observers formed more

'Parts of this chapter were published as Brady, T.F, Konkle, T. & Alvarez, G.A. (2009). Com-
pression in visual working memory: Using statistical regularities to form more efficient memory
representations. Journal of Experimental Psychology: General.
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efficient representations to remember more items. Further, as observers learned the

regularities their working memory performance improved in a way that is quanti-

tatively predicted by a Bayesian learning model and optimal encoding scheme. We

therefore suggest that the underlying capacity of their working memory is unchanged,

but the information they have to remember can be encoded in a more compressed

fashion.

4.1 Introduction

Every moment, a large amount of information from the world is transmitted to the

brain through the eyes, ears, and other sensory modalities. A great deal of research

has examined how the perceptual and cognitive system handles this overwhelming

influx of information (Neisser, 1967). Indeed, this information overload is the moti-

vating intuition for why we need selective attention: to actively filter out irrelevant

input to allow specific processing of the intended stimuli (Broadbent, 1958). However,

since the world is filled with regularities and structure, the information transmitted

to the brain is also filled with regularities (Barlow, 1989). In quantitative terms, there

is significant redundancy in the input (Huffman, 1952; Shannon, 1948). An intuitive

example of the redundancy in the visual input is to consider all the possible images

that could be made from an 8 x 8 grid where any pixel can be any color. Most of

the images will look like noise, and only a very tiny percentage of these images will

actually look like a picture of the real-world (Chandler & Field, 2007). This indicates

that real-world images are not randomly structured, and in fact share many struc-

tural similarities with each other (e.g., Burton and Moorehead, 1987; Field, 1987;

Frazor and Geisler, 2006). Interestingly, computationally efficient representations of

image-level redundancy produce basis sets that look remarkably like primary visual

cortex, providing evidence that our visual perceptual system takes advantage of this

redundancy by tuning neural response characteristics to the natural statistics of the

world (Olshausen & Field, 1996).

Being sensitive to the statistics of the input has direct consequences for memory
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as well as for perception (Anderson & Schooler, 2000). Recent work on the rational

analysis of memory, for example, suggests that the power laws of forgetting and

practice approximate an optimal Bayesian solution to the problem of memory retrieval

given the statistics of the environment (Anderson & Schooler, 1991; see also Shiffrin

& Steyvers, 1997; Shiffrin, & Steyvers, 1998). Here we apply similar principles of

rational analysis (Chater & Oaksford, 1999) to the capacity of the working memory

system. We focus on the abstract computational problem being solved by the working

memory system: the storage of as much information as possible in the limited space

available.

4.1.1 Working memory capacity and redundancy

According to information theory, in an optimal system more content can be stored if

there are redundancies in the input (Cover & Thomas, 1991). In other words, if the

input contains statistical structure and regularities, then each piece of information

we encode limits the likely possibilities for the remaining information (e.g. given a

'q', the next letter is likely to be 'u'). This makes it possible to encode more items in

less space. If the human working memory system approximates an optimal memory

system, it should be able to take advantage of statistical regularities in the input in

order to encode more items into working memory.

However, while the capacity of short-term and working memory has been exten-

sively studied (e.g., Alvarez & Cavanagh, 2004; Baddeley, 1986; Cowan, 2001, 2005;

Zhang & Luck, 2008), little formal modeling has been done to examine the effects

of redundancy on the system. Nearly all studies on visual working memory have

focused on memory for arbitrary pairings or novel stimuli. While some studies have

investigated the effects of associative learning on visual working memory capacity

(Olson & Jiang, 2004; Olson, Jiang & Moore, 2005), they have not provided clear

evidence for the use of redundancy to increase capacity. For example, one study found

evidence that learning did not increase the amount of information remembered, but

that it improved memory performance by redirecting attention to the items that were

subsequently tested (Olson, Jiang & Moore, 2005).
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4.1.2 Chunking

However, the effects of redundancy on working memory capacity have been well stud-

ied through the phenomenon of "chunking", particularly in verbal working memory

(Cowan, 2001; Miller, 1956; Simon, 1974). Cowan (2001) defines a chunk as a group

of items where the intra-chunk associations are greater than the inter-chunk associ-

ations. In other words, in the sequence FBICIA the letters F, B, and I are highly

associated with each other and the letters C, I, and A are highly associated with each

other, but the letters have fewer associations across the chunk boundaries. Thus,

observers are able to recall the sequence using the chunks 'FBI' and 'CIA', effectively

taking up only 2 of the 4 'chunks' that people are able to store in memory (Cowan,

2001; Cowan, Chen, Rouder, 2004). By comparison, when the letters are random,

say HSGABJ, they are more difficult to remember, since it is more difficult to chunk

them into coherent, associated units.

Chunking is not usually framed as a form of compression analogous to informa-

tion theoretic views. In fact, in the seminal work of Miller (1956), chunking and

information theoretic views of memory were explicitly contrasted, and the most nave

information theoretic view was found lacking in its ability to explain the capacity of

working memory. However, at its root chunking approximates a form of compression:

it replaces highly correlated items (which are therefore highly redundant with each

other), with a single chunk that represents all of the items. Thus, it is possible to

frame the strategy of chunking as a psychological implementation of a broader com-

putational idea: removal of redundancy to form compressed representations and allow

more items to be stored in memory. At this level of description, chunking is compat-

ible with information theoretic analyses. In fact, information theory and Bayesian

probability theory may be able to explain exactly when human observers will form a

chunk in long-term memory (e.g., Orban, Fiser, Aslin & Lengyel, 2008), in addition

to how useful that chunk will be to subsequent working memory tasks. Thus, infor-

mation theory may be not only compatible with chunking, but in fact may provide

useful constraints on theories of chunking.
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In the present experiments we asked whether human observers learn and use regu-

larities in working memory in a way that is compatible with an information theoretic

compression analysis. In two experiments we present observers with displays of colors

that are either random or patterned. By presenting regularities in the display over

the course of the experiment, we examine if and how observers take advantage of

these regularities to form more efficient representations. We then present a quan-

titative model of how learning occurs and how the stimuli are encoded using the

learned regularities. We show that more items can be successfully stored in visual

working memory if there are redundancies (patterns) in the input. We also show

that this learning is compatible with the compressibility of the displays according to

information theory.

4.2 Experiment 1: Regularities Within Objects

In classic visual working memory experiments, the stimuli used are generally colored

oriented lines, shapes, and circles with colors, and the aim is to quantify how many

objects or features can be remembered. In one of the seminal papers in this field,

Luck and Vogel (1997) proposed that people can remember four objects no matter

how many features they contain. This view has since been tempered, with some

arguing for independent storage of different feature dimensions (Magnussen, Greenlee

& Thomas, 1996; Olson & Jiang, 2002; Wheeler & Treisman, 2002; Xu, 2002) and

others arguing for more graded representations, in which information load determines

how many objects can be stored (Alvarez & Cavanagh, 2004; Bays & Husain, 2008).

However, nearly all current work emphasizes that at best 3 or 4 features from a given

stimulus dimension can be encoded successfully.

Here we modify the standard paradigm by introducing regularities in the displays

for some observers. One group of participants was presented with colors drawn ran-

domly, as in classical visual working memory tasks, such that all possible pairs of

colors were equally likely to occur. A second group of participants were presented

with colors that occurred most often paired with another color. For example, a par-
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1000 ms -+ 1000 ms -+ Until Response

Figure 4-1: A sample trial from Experiment 1. Eight colors were presented within
four objects. The colors disappeared for one second and then either the inside or
outside of an object was cued by making it darker. Observers had to indicate what
color was at the cued location.

ticular observer might see red most often around yellow, white most often around

blue, while a smaller percentage of the time these colors appear with any other color.

Because this manipulation introduces redundancy into the displays, in information-

theoretic terms these displays contain less information. An information theoretic view

of memory therefore predicts that the observers presented with regularities should be

able to encode more items into memory.

4.2.1 Method

Observers

Twenty naive observers were recruited from the MIT participant pool (age range

18-35) and received 10 dollars for their participation. All observers gave informed

consent.

Procedure

Observers were presented with displays consisting of four objects around the fixation

point (see sample display in Figure 4-1). Each object was made up of two different

colored circles, with one circle inside the other. Observers were informed that their

task was to remember the locations of each of the eight colors. At the start of a trial,

the colors appeared and remained visible for 10OOms. Then the colors disappeared,
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with placeholder circles present for the next 1000ms (long enough to prevent observers

from relying on iconic memory; Sperling, 1960), and then either the inside or outside

circle on a random object was darkened.

The task was to indicate which of the eight colors had been presented at the

indicated location, by pressing one of eight color-coded keys. Observers completed

600 trials, presented in 10 blocks of 60 trials each. Afterward, they completed a

questionnaire, reporting the strategies they employed and whether they noticed the

presence of patterns in the displays.

The stimuli were presented using MATLAB with the Psychophysics toolbox ex-

tensions (Brainard, 1997; Pelli, 1997). The eight colors used were red, green, blue,

magenta, cyan, yellow, black and white.

Manipulation

Observers were randomly assigned to two groups, patterned and uniform, which dif-

fered in how the colors for each trial were chosen. For observers in the uniform

condition, the locations of the colors in each trial were chosen randomly, with only

the constraint that each color had to appear exactly once in a display.

For observers in the patterned condition, the stimuli for each trial were not cho-

sen randomly. First, for each subject a joint probability matrix was constructed to

indicate how likely each color was to appear inside and outside of each other color.

This matrix was made by choosing four high probability pairs at random (probability

= 0.2151), and then assigning the rest of the probability mass uniformly (probability

= 0.0027). As in the uniform condition, all eight colors were present in each display.

In order to achieve this, the diagonal of the joint probability matrix was set to zero

in order to prevent the same color from appearing twice in the same display.

The pairs were constrained so that each color was assigned to exactly one high

probability pair. For example, if (Blue-outside, Red-inside) was a high probability

pair in this joint probability matrix, the observer would often see blue and red appear

together, in that configuration. However, blue and red each would also sometimes

appear with other colors, or in a different configuration. So, for example, (Blue-
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outside, Yellow inside) and (Red-outside, Blue-inside) could also appear with low

probability. High probability pairs accounted for approximately 80% of the pairs

shown during the experiment, and low probability pairs constituted the other 20%.

In the final block of the experiment in the patterned condition, the distribution

from which the displays were drawn was changed to a uniform distribution. This

eliminated the regularities in the display, and allowed us to assess whether observers

had used the regularities to improve their performance. Further, this manipulation

gives a quantitative measure of learning: the difference in performance between block

9 and block 10.

4.2.2 Results

We estimated the number of colors observers could successfully hold in memory using

the following formula for capacity given an eight-alternative forced choice (see the

Appendix for a derivation of this formula):

K = ((PC*8 *8) -8)/7

By correcting for chance we can examine exactly how many colors from each

display observers would have had to remember in order to achieve a given percent

correct (PC). It should be noted that K is a way of quantifying the number of colors

remembered that does not necessarily reflect what observers actually represent about

the displays. For instance, observers may have all 8 colors with uncertainty rather

than some subset of the colors with perfect certainty (see, for example, Wilken & Ma,

2004; Bays & Husain, 2008; however, see Rouder et al. 2008, Zhang & Luck, 2008,

for evidence of discrete fixed-resolution representations).

Performance Across Groups

Observers in the uniform condition remembered 2.7 colors on average throughout the

experiment (see Figure 4-2). This is consistent with previous results on the capacity
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Figure 4-2: Results of Experiment 1. Error bars correspond to +/ - 1 s.e.m.

of visual working memory for colors (e.g. Vogel & Awh, 2008, in which the K values

varied from less than 1 to more than 6 across 170 individuals, M = 2.9, SD = 1).

Critically, we found that observers in the patterned condition could successfully

remember K = 5.4 colors after learning the regularities in the displays (block 9).

This memory capacity is significantly higher than the K = 3.0 colors they were able

to remember when the displays were changed to be uniformly distributed in block 10

(See Figure 4-2; two-tailed t-test, t(9) = 4.90, p=0.0009; note that this is a within-

subjects test, and so the between-subject error bars on Figure 4-2 underestimate the

reliability of this effect). In addition, capacity for colors increased significantly across

the first nine blocks of the experiment: one-way repeated measures ANOVA, F(8,72)

= 12.28, p<0.0001. There was also a significant interaction between color capacity

in the uniform condition and color capacity in the patterned condition across blocks,

with observers in the patterned condition increasing their capacity more over time:

F(8,144) = 2.85, p=0.006.

Seven of ten observers in the patterned condition reported noticing regular pat-
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terns in the display. The magnitude of the decrease in memory performance from

block 9 to 10 was the same for observers who explicitly noticed the regularities

(M=26%) and those who did not (M=27%), and 9 of 10 observers showed such de-

creases (Mean decrease across all observers = 26%). In addition, one of ten observers

in the uniform condition reported noticing regular patterns in the configuration of

colors, although no such patterns existed.

Post-perceptual inference

One concern is that observers might simply have remembered one color from each

pair and then inferred what the other colors were after the display was gone. This

would suggest that observers were actually only remembering three or four colors and

were using a post-perceptual guessing strategy to achieve a higher performance in the

memory test. This makes two predictions. First, when a color from a low probability

pair is tested (20% of the time), observers should guess wrong and thus should show

worse performance on these pairs over time. Second, on these trials they should guess

wrong in a specific waythat is, they should guess the high-probability color of the item

in the adjacent location. For example, if an observer only remembers the outside of

color of an object was blue, and the inside color is tested, they should wrongly infer

and report the high probability color that is often paired with blue.

To test these two predictions, we separated out trials where the tested item was

from a high probability pair from those where the tested item was from a low proba-

bility pair. In other words, if blue often appeared inside red, we considered only the

20% of trials where blue appeared with another color or in another configuration. On

these trials, an explicit inference process would cause observers to report the wrong

color. However, we still find that performance improved over blocks (See Figure 4-3).

Capacity (K), the number of colors remembered, is significantly greater in block 9,

when the low-probability pairs are in the context of high probability pairs, than block

10, than when all the pairs are low-probability (t(9) = 4.08, p=0.003).

We next analyzed trials in the first 9 blocks where a color from a low probability

pair was tested and observers answered incorrectly (on average there were 35 such
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Figure 4-3: Results of Experiment 1 when only considering cases where the colors
appeared in low probability pairings. Error bars correspond to +/-1 s.e.m. The dark
squares represent data from observers in the patterned condition for the 20% of trials
where a low probability pair was tested; the gray circles represent the data from
observers in the uniform condition. The gray circle in block 10 corresponds to 100%
of trials, since all pairs were low-probability.
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trials per observer, for a total of 350 such trials across all 10 observers in the first

experiment). If observers do not know what color was present and are explicitly infer-

ring what was on the display using the high-probability pairings, then their responses

should more often reflect the high-probability color of the adjacent item. However,

on these trials, observers reported the high probability color of the adjacent item only

9% of the time (where chance is 1/7, or 14%). Further, observers wrongly report the

high probability color of the tested color only 2% of the time. In fact, the only sys-

tematic trend on these low-probability error trials is that observers tend to swap the

inner and outer colors much more often than chance: 41% of the time when observers

were incorrect, they mistakenly reported the adjacent color. Interestingly, the rate of

swaps with the adjacent color was lower in the high probability pairs: on trials where

a high probability pair was tested, only 27% of error trials were explained by observers

incorrectly reporting the adjacent color. This could be taken to suggest that the high

probability pairs tend to be encoded as a single perceptual unit or chunk.

This analysis strongly argues against a post-perceptual account of increased mem-

ory capacity, where unencoded items are inferred during the testing stage. Not only

do observers mostly get trials with the low probability pairs correct - suggesting they

are not performing post-perceptual inference - but even on the trials where they do

make mistakes, they do not tend to report the associated high probability colors, as

would be predicted by an inference account.

Instead we suggest that observers learned to encode the high probability pairs

using a more efficient representation. For example, suppose a display contains two

high probability pairs and two low probability pairs. Over time, the high probability

items are encoded more efficiently, leaving more memory resources for the low prob-

ability items. Such an account explains why even colors presented in low probability

pairs show improved memory performance relative to the uniform group, but only

when they are on the same displays as high probability pairs. In addition, an analy-

sis across trials demonstrates that, on trials with more high probability pairs in the

display, more items were successfully encoded (K = 3.2, 3.2, 3.6, 4.0, 4.7 for 0, 1, 2,

3, and 4 high probability pairs in the display, averaged across the entire experiment).

140



This increase in capacity as a function of the number of high probability pairs was

significant, F(4,36) = 4.25, p=0.0065. Furthermore, the only difference between dis-

plays containing 3 or 4 high probability pairs is whether the remaining pair's colors

are presented in the proper inner-outer configuration. Nevertheless, there was a trend

for performance in these two conditions to differ, suggesting that learning may have

been specific to the spatial configuration (t(9) = 1.78; p = 0.11). Together with the

fact that observers did not often flip the inner and outer color of the high probability

pairs, this suggests that observers may have been encoding the inner and outer colors

as a single bound unit or chunk.

4.2.3 Discussion

The present results indicate that, if we consider working memory capacity in terms

of the number of colors remembered, observers were able to use the regularities in

the displays to increase their capacity past what has been assumed to be a fixed limit

of approximately three or four colors. When colors are redundant with each other

(i.e., are correlated with each other), then observers can successfully encode more

than simply 3 or 4 colors. This suggests that the information content of the stimuli is

incredibly important to determining how many can be successfully stored (see Alvarez

& Cavanagh, 2004 for converging evidence of fewer high-information-load items being

stored).

These data can also be interpreted with respect to current psychological constructs

for analyzing the capacity of visual working memory ('slots') and working memory

more broadly ('chunks'). In visual working memory, it has been argued that objects

with multiple features (e.g. color and orientation) can be stored in a single slot as

effectively as objects with only a single feature (Luck & Vogel, 1997, Vogel, Woodman,

& Luck, 2001). In these models, the unit of memory is thus considered an 'object', a

collection of features that are spatiotemporally contiguous (Luck & Vogel, 1997; see

Scholl, 2001, for evidence pertaining to the definition of objects in mid-level vision).

However, it has been found that memory for objects with two values along a single

feature dimension does not show the expected within-object advantage, suggesting
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that what can be stored in a slot is a single value along each feature dimension, rather

than an entire object (e.g. a single object with two colors on it, as in the present

experiment, is not represented in a single slot; see Olson & Jiang, 2002; Wheeler &

Treisman, 2002; Xu, 2002 for further discussion). This is consistent with the present

data from the uniform group, where capacity was 3 colors rather than 3 multi-color

objects (6 colors).

The data from the patterned group represent a challenge to this view. The ability

of the patterned group to remember up to 6 colors represents a capacity of more than

a single color per object, suggesting that capacity cannot be fixed to 3-4 objects with

a single value along each feature dimension. Instead, the present data can be framed

in terms of a slot-model only if slots can hold not just one color, but multiple colors

from the same object as the objects are learned over time. In this sense, slots of

visual working memory become more like 'chunks' in the broader working memory

literature (Cowan, 2001). We return to this issue in Experiment 2, when we explore

whether these regularities can be used when they are present across objects.

We next performed an information theoretic analysis of the current data to ex-

amine if observers have a fixed working memory capacity when measured in bits. We

can estimate the amount of redundancy in the displays to test the hypothesis that

observers actually have the same amount of resources to allocate in both uniform and

patterned conditions. On this account, the difference in memory performance comes

from the fact that the patterned displays allow observers to allocate their memory

space more effectively. This allows us to make quantitative predictions about working

memory capacity given a specific amount of redundancy in the display.

4.3 Modeling

Modeling provides a formal framework for theories of compression, and allows us to

test the hypothesis that there is a limit of visual working memory capacity not in

terms of the number of colors that can be remembered, but in terms of the amount of

information required to encode those colors. The modeling has four stages. First, we
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model how observers might learn the color regularities based on the number of times

they saw each pair of colors. The probability of each color pair is estimated with a

Bayesian model that accounts for the frequency with which each color pair appeared,

plus a prior probability that the colors will be paired uniformly. Second, we assess

how these learned statistics translate into representations in bits, using Huffman

coding (Huffman, 1952). Huffman coding is a way of using the probabilities of a set

of symbols to create a binary code for representing those symbols in a compressed

format. This allowed us to estimate the number of bits required to encode each item

on the display. Third, we show that the information theoretic model successfully

predicts observers data, suggesting they perform near optimal compression. Finally,

we show that a discrete chunking model can also fit the data. Importantly, the best

fitting chunking model is one that closely approximates the information theoretic

optimal. MATLAB code implementing the model can be downloaded from the first

authors website.

4.3.1 Learning the color pairs

We used a Dirichlet-multinomial model (Gelman, Carlin, Stern, & Rubin, 2003) to

infer the probability distribution that the stimuli were being drawn from, given the

color pairs that had been observed. We let d equal the observations of color pairs.

Thus, if the trial represented in Figure 4-1 is the first trial of the experiment, after this

trial d = 1 Yellow-Green, 1 Black-White, 1 Blue-Red, 1 Magenta-Cyan. We assume

that d is sampled from a multinomial distribution with parameter 0. In other words,

we assume that at any point in the experiment, the set of stimuli we have seen so

far is a result of repeated rolls of a weighted 64 sided die (one for each cell in the

joint probability matrix; i.e., one for each color pair), where the chance of landing

on the ith side of the 64 sided die is given by O6. Note that this is a simplification,

since the experiment included the additional constraint that no color could appear

multiple times in the same display. However, this constraint does not have a major

effect on the expected distribution of stimuli once a large number of samples has been

obtained, and was thus ignored in our formalization.
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We set our a priori expectations about 0 using a Dirichlet distribution with pa-

rameter a. The larger a is, the more strongly the model starts off assuming that the

true distribution of the stimuli is a uniform distribution. The alpha parameter can

be approximately interpreted as the number of trials the observers imagine having

seen from a uniform distribution before the start of the experiment. Using statistical

notation, the model can be written as:

.6 ~ Dirichlet(a)

d ~ Multinomial(6)

To fit the model to data we set a fixed a and assume that the counts of the

pairs that were shown, d, are observed for some time period of the experiment. Our

goal is to compute the posterior distribution p(O|d, a). The mean of this posterior

distribution is an observers best guess at the true probability distribution that the

stimuli are being drawn from, and the variance in the posterior indicates how certain

the observer is about their estimate. The posterior of this model reduces to a Dirichlet

posterior where the weight for each color pair is equal to the frequency with which

that color pair appears in d, plus the prior on that pair, a1 .

4.3.2 Encoding the color pairs

Any finite set of options can be uniquely encoded into a string of bits. For example, if

we wished to encode strings consisting of the four letters A, B, C, and D into strings

of bits, we could do so by assigning a unique two bit code to each letter and then

concatenating the codes. Imagine we had assigned the following codes to the letters:

A = 00, B = 01, C = 10, D = 11. The string ACAABAA could then be written as

00100000010000 (14 bits), and uniquely decoded to retrieve the original string.

Importantly, however, this nave method of generating a code performs quite badly

in the case where some letters are much more likely to appear than others. A better

method gives items that occur most frequently the shortest codes, while less frequent
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items are assigned longer codes. So, for example, if P(A) = 0.5, and P(B) = 0.2,

P(C) = 0.2, and P(D) = 0.1, then we can achieve a great deal of compression by

representing strings from this language using a different code: A = 0, B = 10, C

= 110, D = 111. Using this code, the string from above, ACAABAA, would be

represented as 0110001000 (10 bits), a significant savings even for such a short string

(29%). Note that it can still be uniquely decoded, because no items code is the same

as the beginning of a different items code.

Huffman coding (Huffman, 1952) is a way of using the probabilities of a set of sym-

bols to create a binary code for representing those symbols in a compressed format.

(as in the example of A, B, C, D above). Here, we used Huffman coding to estimate

how much savings observers should show as a result of the fact that the color pairs

in our experiment were drawn from a non-uniform distribution. In the Appendix, we

demonstrate that the same results also hold for another way of assessing compression

using self-information.

We used the probabilities of each color pair, as assessed by the Bayesian model

described above, to generate a unique bit string encoding the stimuli on each trial,

averaged for each block of the experiment. We supposed that if observers were us-

ing some form of compression to take advantage of the redundancies in the display,

the length of the code that our compression algorithm generates should be inversely

proportional to how many objects observers were able to successfully encode. In

other words, if there were many low frequency color pairs presented (as in block 10),

these items should have longer codes, and observers should be able to successfully

remember fewer of them. Alternatively, if there are many high frequency color pairs

presented, the better they should be able to compress the input, and the more colors

they remember.

4.3.3 Information theory

With these learning and coding models, we can compute a prediction about the

memory performance for each subject for each block. In order to assess the fit between

the model and the behavioral data, we used the following procedure. For each display
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Figure 4-4: The average length of the Huffman code for a single color, by block.

in a block, we calculated the number of bits required to encode that display based on

the probabilities from the learning model. Next, we correlated the average number of

bits per display from the model with the memory performance of the observers. We

expect that the fewer bits/display needed, the better observers memory performance,

and thus we expect a negative correlation.

This prediction holds quite well, with the maximum fit between this Huffman code

model and the human data at a = 34, where r, the correlation coefficient between

the human and model data, is -0.96 (See Figure 4-4; p<0.0001). This large negative

correlation means that when the model predicts there should be long bit strings

necessary to encode the stimuli, human visual working memory stores a low number of

items. This is exactly as you would expect if visual working memory took advantage of

a compression scheme to eliminate redundant information. In addition, this modeling

suggests that if observers encoded the displays completely optimally, they would be

able to remember approximately 6.1 colors. By block 9, observers are remembering

5.4 colors on average, significantly better than with no compression at all, but not
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Figure 4-5: The correlation between the information theoretic model and the human
behavioral data as a function of the value of the prior, a.

quite at the theoretically maximal compression.

The fit between the human data and the model is reasonably good across a broad

range of values for the prior probability of a uniform distribution (see Figure 4-5).

The fit is not as high where the prior is very low, since with no prior there is no

learning curve the model immediately decides that whatever stimuli it has seen are

completely representative of the distribution (as a non-Bayesian model would do).

The fit is also poor where the prior is very high, because it never learns anything

about the distribution of the stimuli, instead generating codes the entire time as

though the distribution was uniform. However, across much of the middle range, the

model provides a reasonable approximation to human performance.

Importantly, this model allows us to examine if there is a fixed information limit

on memory capacity. The Huffman codes provide a measure of the average number

of bits per object, and the memory performance gives a measure in number of colors

remembered. Thus, if we multiply the average bits / item specified by the Huffman

code times the number of items remembered, we get an estimate of the number

of bits of information a given set of observers recalled in a given block (Figure 4-

6). Notice first that both groups of observers in the uniform condition and the

patterned condition show roughly the same total capacity in bits, despite the overall
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Figure 4-6: The size of memory estimated in bits, rather than number of colors (using
the Huffman coding model). Error bars represent +/-1 s.e.m.

difference in the number of items remembered between the groups. Second, the

total bit estimate remains remarkably constant between block 9 and block 10 in the

patterned group, even though the memory performance measured in number of colors

showed a significant cost when the statistical regularities were removed. Thus, while

the patterned group was able to remember more colors throughout the experiment,

this increase was completely explained in the model by the fact that the items to be

remembered were more redundant and presumably took less space in memory.

4.3.4 Chunking model

The information theoretic modeling gives a way of formally specifying how com-

pressible a set of input is given the accumulated statistics about the previous input.

Huffman coding and self-information are ways to formalize this, and are thus a form

of rational analysis or computational theory, specifying the optimal solution to the

computational problem facing the observer (Anderson, 1990; Marr, 1982). Interest-
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ingly, we find that observers closely approximate this optimum. However, Huffman

coding and self-information are not meant as serious candidates for the psychological

mechanism people use for implementing such compression. Indeed, it is a different

level of analysis to understand what psychological algorithms and representations are

actually responsible for allowing more items to be encoded in memory when those

items are redundant with each other. For instance, is the nature of the compression

graded over time, or all-or-none?

In the information theoretic models (Huffman coding, self-information), the 'cost'

of encoding each color pair is equal to the log of the chance of seeing that pair relative

to the chance of seeing any other pair. This is the optimal cost for encoding items if

they appear with a given probability, and provides for graded compression of a color

pair as the items probability of co-occurrence increases. However, the actual psycho-

logical mechanism that people use to remember more items could be either graded as

in the rational analysis, or could function as a discrete approximation to this optimum

by sometimes encoding highly associated items into a single representation. Chunking

models are one way of approaching this kind of discrete approximation (e.g., Cowan

et al. 2004). They show increased memory capacity for highly associated items, but

convert the compressibility to a discrete form: either a single chunk is encoded or the

two colors are separately encoded into two chunks. This distinction between graded

compression and all-or-none compression is important because it predicts what is ac-

tually encoded by an observer in a single trial. The current results do not address this

distinction directly, however, since we do not examine the representational format of

the color pairs on each trial. However, there is a broad literature with a preference for

viewing compression in working memory as based on discrete chunking (e.g., Cowan,

2005; Chase & Simon, 1973; Miller, 1956; however, see Alvarez & Cavanagh, 2004;

Bays & Husain, 2008; and Wilken & Ma, 2004, for support for a graded view). Thus,

we sought to examine whether our data could be accurately modeled using this kind

of approximation to the information theoretic analysis presented above.

To implement a simple chunking model, one needs to determine a threshold at

which associated items become a chunk. The most naive chunking model is one in
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which observers reach some fixed threshold of learning that a pair of colors co-occur

and treat them as a chunk thereafter (perhaps after this new chunk enters long-term

memory). However, this simple model provides a poor fit to the current data. In such

a model, each subject will have a strong step-like function in their graph, and the

graded form of the group data will arise from averaging across observers. However, in

the present data, single observers showed a graded increase in performance by block,

suggesting this kind of model does not accurately represent the data.

A more sophisticated class of chunking models have a probabilistic threshold,

allowing for a single observer to treat each color pair as one chunk more often if they

strongly believe it is a chunk, and less often if they are unsure if it is a chunk. In the

case where the chance of chunking in such a model is logarithmically proportional

to the association between the items, this chunking model is exactly equivalent to

a thresholded version of the information theoretic compression model and therefore

makes the same predictions across large numbers of trials. However, a chunking

model could also assume that the possibility of chunking is linearly proportional to

the association between the items (Pchunk(ij) -- * Oi,j), in which case it would be

possible that the chunking models fit would differ significantly from that of the more

ideal compression algorithms. We do not find this to be the case for the current

experiment.

The graph from the best fit linear chunking model is shown in Figure 4-7. The

best fit constant of proportionality was 15, which provided a fit to the data of r=-

0.90 (e.g., for each pair, the chance of being chunked on any given trial was equal

to 15 * 2,5j, such that once the probability of seeing a given color pair was greater

than 1/15th, that color pair was always encoded as a single chunk). Interestingly,

this constant of proportionality, because it causes such a steep increase in the chance

of chunking even at very low associations and plateaus at a 100% chance of chunking

by the time the association reaches 1/15, or 0.067, approximates the shape of a

logarithmic curve. The correlation between the probability of chunking under this

linear model and the optimal cost function derived via information theory (using

self-information) is therefore approximately r=-0.73. This model thus provides an
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Figure 4-7: The size of memory (in chunks) for Experiment 1 estimated using the
probabilistic linear chunking model. Error bars represent +/-1 s.e.m.

excellent approximation to the ideal compression algorithm as well.

Thus, we find that the best chunk-model matches the data well and generates a

flat estimate of the number of chunks needed across the entire experiment. Impor-

tantly, however, the expected probability of chunking in this model closely matches

the optimal information-theoretic cost function (higher cost = lower probability of

chunking). This is to be expected because the information theoretic model predicted

92 percent of the variance in the behavioral data. This suggests that chunking can

be usefully thought of as a discrete approximation to an ideal compression algorithm,

and therefore can be thought of as a possible psychological implementation of com-

pression.

It is important to note that, despite the assumptions we make in this modeling

section, it unlikely that the degree of association between items determines when they

form chunks in long-term memory. Instead, it may be that human chunk learning

depends on how useful a particular chunk would be in describing the world while
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avoiding suspicious coincidences (see, for example, Orban et al. 2008, which provides

an elegant Bayesian analysis of this problem). Our analysis of chunking here is meant

only as a proof of concept that chunking models in general implement a form of

compression that approximates the true information theoretic optimum.

4.3.5 Discussion

The modeling work we present illustrates two main conclusions: First, compression

of redundancies must be taken into account when quantifying human visual working

memory capacity; Second, this compression can be modeled either in a graded fashion,

or in an all-or-none fashion ('probabilistic chunking') which closely approximates ideal

compression algorithms.

The fact that the estimate of the amount of information observers are able to store

is constant across the entire experiment, whereas the estimate in terms of number of

colors varies a great deal, suggests that compression of redundancies must be taken

into account when quantifying human visual working memory capacity. In addition,

it is important to note that fitting our information theoretic model by minimizing

the correlation to the data is not guaranteed to provide a fit that results in a flat line

in terms of the total information remembered. In fact, in most instances a negative

correlation will not lead to a flat estimate across the experiment, since a flat line

additionally depends on the proportional amount of the decrease at each step. The

information theoretic modeling results provide significant evidence that the capacity

of working memory is a fixed amount of information. Because the chunking model

is the discrete version of an optimal compression scheme, this model leads to a fixed

capacity measured in discrete units ('chunks') just as the information theoretic model

let to a fixed capacity measured in continuous information ('bits').

While our model suggests a working memory capacity of 10 bits, this number

should not be taken as indicative of limits on human performance. The exact number

10 bits depends critically on assumptions about how the colors are encoded (3 bits/-

color in our model, given the 8 possible color choices). Importantly, however, the fact

that the estimate of memory size is constant across the experiment and across condi-
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tions does not depend on our choice of encoding scheme, but only on the redundancy

inherent in the associations between colors. If observers actually required 100 bits

to encode each color then our estimate of capacity in bits would change to be about

300 bits but the estimate would still remain consistent across the experiment, since

each color still provides the same proportional amount of information about each

other color. Thus, it is safe to conclude that our results are compatible with a fixed

amount of information limiting memory performance, but it is difficult to quantify

the exact number of bits without specifying the true coding model (see the General

Discussion for further discussion of the problem of specifying an encoding scheme).

4.4 Experiment 2: Regularities Between Objects

The aim of Experiment 2 was to examine if compression can affect encoding across

objects as well as within objects. This experiment was very similar to Experiment 1,

with the only difference being how the colors were presented on the display. In Ex-

periment 2, colors were presented side-by-side as separate objects, in close proximity

but not spatially contiguous.

While there are many possible definitions of 'object', we use the term to refer

to a specific well-defined definition of what counts as an object for mid-level vision.

Specifically, an object is a spatiotemporally contiguous collection of visual features

(Scholl, 2001; Spelke, 1990). This definition is motivated by both neuropsychological

and behavioral evidence (Behrmann & Tipper, 1994; Egly, Driver, & Rafal, 1994;

Mattingley, Davis, & Driver, 1997; Scholl, Pylyshyn, & Feldman, 2001; Watson &

Kramer, 1999). For example, simply connecting two circles with a line to form a

dumbbell can induce 'object-based neglect,' in which the left half of the dumbbell is

neglected regardless of the half of the visual field in which it is presented (Behrmann

& Tipper, 1994). If these two circles are not connected, neglect does not operate

in an object-based manner. Thus, on this definition of what counts as an object,

the displays of Experiment 1 contained 4 objects while the displays of Experiment 2

contained 8 objects (see Figure 4-8).
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Figure 4-8: A sample trial from Experiment 2. Eight colors were presented and then
disappeared, and after 1 second, one location was cued by making it darker. Observers
had to indicate what color was at the cued location.

In the present experiment, we examined whether or not working memory capac-

ity can take advantage of the statistics between objects. If visual working memory

capacity limits are 'object-based', i.e. if capacity is constrained by mid-level visual

objects, then observers will not be able to take advantage of regularities across ob-

jects. However, if multiple visual objects can be stored together, (akin to 'chunks' of

letters, as in FBI-CIA), then people will be able to remember more colors from the

display as they learn the statistics of the input.

4.4.1 Method

Observers

Twenty naive observers were recruited from the MIT participant pool (age range

18-35) and received 10 dollars for their participation. All gave informed consent.

Procedure

Observers were presented with displays consisting of eight objects arranged in four

pairs around the fixation point (see sample display in Figure 4-8). Each object was

made up of only one colored circle. Here the two associated colors appeared on

separate objects, but we provided a grouping cue in order to not significantly increase

the difficulty of the learning problem. All other aspects of the stimuli and procedure

were identical to those of Experiment 1.
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4.4.2 Results

Performance Across Groups

Observers in the uniform condition remembered K = 3.4 colors on average throughout

the experiment (see Figure 4-9), consistent with previous results on the capacity of

visual working memory for colors (Vogel & Awh, 2008), and the results of Experiment

1.

We found that observers in the patterned condition could successfully remember

K = 5.4 colors after learning the regularities in the displays (block 9). This memory

capacity is significantly higher than the K = 3.3 colors they were able to remember

when the displays were changed to be uniformly distributed in block 10 (See Figure

4-9; t(9) = 9.72, p<0.0001). In addition, capacity increased significantly across the

first nine blocks of the experiment: F(8,72) = 7.68, p<0.0001. There was a significant

interaction across blocks between capacity in the uniform condition and capacity in

the patterned condition, with observers in the patterned condition remembering more

colors over time: F(8,144) = 2.27, p=0.025.

Eight of ten observers reported noticing regular patterns in the display. The

magnitude of the decrease in memory performance from block 9 to 10 was the same

for observers who explicitly noticed the regularities (M=22%) and those who did not

(M=23%), and 9 of 10 observers showed such decreases (mean decrease across all

observers 23%). Three of ten observers in the uniform condition reported noticing

regular patterns in the configuration of colors, although no such patterns were present.

We once again separated out trials where the tested item was from a high proba-

bility pair from those where the tested item was from a low probability pair. When

we examine only the low probability trials, we still find that capacity in block 9 is

significantly higher than in block 10 (4.9 colors in block 9 and 3.4 colors in block

10; t(9)=4.84, p=0.0009). Thus, as with Experiment 1, we do not find evidence

that people are remembering more items from the display by using post-perceptual

inference.
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Figure 4-9: Results of Experiment 2. Error bars correspond to +/-1 s.e.m.

Performance Across Experiments

We compared the first 9 blocks in the patterned condition to the first 9 blocks in the

patterned condition of Experiment 1. There were no main effects or interactions, all F

< 1. Furthermore, we compared the drop in performance between block 9 and block

10 across the two experiments. The size of the drop was not significantly different,

t(9) = 0.58, p=0.58, suggesting that learning was of a comparable magnitude in both

experiments. Verbal Interference

One potential concern is that observers could have used some verbal memory

capacity to augment their visual working memory in either the current experiment or

Experiment 1. Many past studies have found that estimates of visual working memory

capacity are similar with and without verbal interference (e.g., Luck & Vogel, 1997;

Vogel et al. 2001). However, because of the added element of learning regularities in

our experiments, we decided to test the effects of verbal interference on our paradigm.

Because of the similarities between Experiment 1 and Experiment 2, we ran a control
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experiment using only the paradigm of Experiment 2.

This control experiment was conducted with 7 observers using an identical paradigm

to Experiment 2s patterned condition, but with the addition of a verbal interference

task (remembering 4 consonants throughout the duration of the trial, with a new set

of 4 consonants every 10 trials). Observers successfully performed both the verbal

interference task and the visual working memory task, with a capacity of 4.5 colors

in block 9 but only 3.2 colors in block 10 (t(6) = 2.1; p=0.08). Capacity in block 9

under verbal interference was not significantly different than that obtained in block

9 of Experiment 2 (t(9) = 1.07, p=0.3 1). These data show that observers are still

capable of learning the regularities to remember more colors, when subject to verbal

interference in a challenging dual-task setting.

Modeling

We once again modeled these results to see if they were compatible with a model in

which compression is explained via information theory. The maximum fit between the

Huffman code model and the human data occurred at a = 31 where r, the correlation

coefficient between the human and model data, is -0.96 (p < 0.0001). This large

negative correlation means that when the model predicts there should be long bit

strings necessary to encode the stimuli, observers memory capacity in terms of the

number of colors remembered is low. This is exactly what one would expect if visual

working memory had a fixed size in bits and took advantage of a compression scheme

to eliminate redundant information.

In addition, this model allows us to once again examine if there is a fixed-bit limit

on memory capacity. The Huffman codes gives a measure of average bits per object,

and the memory performance gives a measure in number of objects remembered. As

in Experiment 1, multiplying the average size of the Huffman code times the number

of items remembered gives us an estimate of the number of bits of information a given

set of observers recalled in a given block (Figure 4-10). Notice that once again both

the groups of observers in the uniform condition and the patterned condition show

the same total capacity in bits, despite the overall difference in the number of items
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Figure 4-10: The size of memory estimated in bits, rather than number of objects

(using the Huffman coding model). Error bars represent +/-1 s.e.m.

remembered between the groups. Second, the total bit estimate remains remarkably

constant between block 9 and block 10 in the patterned group, even though the

memory performance measured in number of items showed a significant cost when

the statistical regularities were removed.

One interesting prediction of the model is that the patterned group should actually

be worse at block 10 than the uniform group, since the patterned group now has a set

of statistics in mind that are no longer optimal for the displays. Indeed, the pattern in

the behavioral data trends this way, but the difference between both groups in block

10 is not significant (See Figure 4-9; t(9) = 0.64; p=0.4 7 ). One possible explanation

for why performance for the patterned group does not fall completely below the

uniform group is that observers notice that their model has become inappropriate

after several trials in block 10, and begin using a relatively local estimate of the

probability distribution (e.g., across the last few trials), or revert to a uniform model.

This suggests a good deal of flexibility in the model observers use to encode the
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The size of memory (in chunks) for Experiment 2 estimated using the
linear chunking model. Error bars represent +/-1 s.e.m.

display.

In addition, we modeled these results using a probabilistic chunking model where

the chance of chunking was linearly proportional to the probability of the color pair.

Using the same parameters as in Experiment 1, this model too provided a good fit

to the data (r=0.94; see Figure 4-11), and it produced an almost flat estimate of the

number of chunks over time in both groups.

4.4.3 Discussion

Observers in the patterned group were able to successfully take advantage of the re-

dundancy in the displays, as their capacity increased significantly over time. These

data, as well as the estimated capacity in bits from the modeling, reveal strikingly

similar patterns between Experiment 1 and Experiment 2. This suggests that ob-

servers were equally able to take advantage of the redundancy in the displays when

the redundancies were present between adjacent mid-level visual objects rather than
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within such objects.

This experiment has some implications for the classic slot-model of visual working

memory (Luck & Vogel, 1997; Zhang & Luck, 2008). Specifically, a strict interpre-

tation that one slot can hold only one mid-level visual object from the display does

not account for the present data. The patterned group was able to remember more

objects over time, so the capacity of working memory cannot be a fixed number of

mid-level visual objects. However, if multiple objects can fit into one slot, then the

present data can be accounted for. Indeed, this suggests that 'slots' in visual working

memory should be viewed similarly to 'chunks' in verbal working memory (Cowan,

2001). Thus, in the present experiment 'visual chunks' could be formed that consist of

pairs of colored objects (see also Orban et al., 2008 for evidence of statistical learning

of chunks of multiple objects). Of course, another possibility is that working memory

capacity should be thought of as graded, rather than based on chunks or slots at all

(e.g., Alvarez & Cavanagh, 2004; Bays & Husain, 2008; Bays & Husain, 2009). This

would make it more closely approximate the information theoretic ideal and would

account for the present data directly.

An important factor in the present experiment is that we provided a grouping cue

for observers, by putting the two colors that will co-vary in closer proximity to each

other than to the other colors. We expect that learning would still be possible even if

the items were not specifically grouped, as others have demonstrated that statistical

learning can operate across objects, even in cases when the display is unparsed, and

that such learning results in the formation of visual chunks (Fiser & Aslin, 2001;

Fiser & Aslin, 2005; Orban et al., 2008; see also Baker et al., 2004). However, our

aim in this experiment was not to create a difficult learning situation; rather, our

aim was to demonstrate that visual working memory can take advantage of these

learned statistics to remember more of the display even when the statistics relate the

co-occurrence of different objects, as in the work of Fiser and Aslin (2001). It is an

avenue of future research to explore what kinds of statistics can be gleaned from the

input and where the statistical learning mechanisms fail. It will also be important to

discover if there exist situations in which observers can successfully learn statistical
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regularities but are unable to take advantage of those regularities to efficiently store

items in memory.

Finally, as in Experiment 1, the modeling showed that even though people are re-

membering more items, their working memory capacity is actually constant when

quantified by the amount of information remembered (or the number of chunks

stored). In general, this suggests that the tools of information theory combined with

Bayesian learning models enable us to take into account the compressibility of the in-

put information, and provide clear, testable predictions for how many items observers

can remember. This suggests that compression must be central to our understanding

of visual working memory capacity.

4.5 General Discussion

We presented two experiments contrasting memory capacity for displays where colors

were presented in random pairs with memory capacity for displays where colors were

presented in recurring patterns. In the first experiment, the colors which formed a

pattern were presented as part of the same object. In the second experiment, the

colors which formed a pattern were presented on two different but spatially adjacent

objects. For both experiments we found that observers were successfully able to

remember more colors on the displays in which regularities were present. The data

indicate that this is not due to post-perceptual inference but reflects an efficient

encoding. We proposed a quantitative model of how learning the statistics of the

input would allow observers to form more efficient representations of the displays,

and used a compression algorithm (Huffman coding) to demonstrate that observers

performance approaches what would be optimal if their memory had a fixed capacity

in bits. In addition, we illustrated that a discrete model of chunking also fits our

data. The degree of compression possible from the display was highly correlated with

behavior, suggesting that people optimally take advantage of statistical regularities

to remember more information in working memory.

We thus show that information theory can accurately describe observers working
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memory capacity for simple colors that are associated with each other, since such

a capacity depends on compression. By using a statistical learning paradigm, we

control the statistics of the input, allowing is to measure the possible compression in

this simple task. Since in the world almost all items we wish to remember are asso-

ciated with other objects in the environment (Bar, 2004), using information theory

to quantify the limits of working memory capacity is likely of more utility for natural

viewing conditions than measuring the number of independent items that people can

remember.

4.5.1 Resolution versus number

One interesting factor to consider is whether the increase in percent correct we observe

during training in the patterned group could be due to an increase in the resolution

at which observers store the colors, rather than an increase in the number of colors

remembered per se (similar to the claims of Awh, Barton, & Vogel, 2007).

We believe several factors speak against such an account. In particular, if a fixed

number of items are remembered and only the resolution of storage is increasing, then

the fixed number of items remembered would have to be at least 6 (the number of

colors remembered by the patterned group in the 9th block of trials). This seems

very unlikely, given that previous estimates of the fixed number are on the order of

3 or 4 (Luck & Vogel, 1997; Cowan, 2001), even for studies that explicitly address

this issue of the resolution with which items are stored (Awh, Barton, & Vogel,

2007; Zhang and Luck, 2008). In addition, while Awh et al (2007) provide some

evidence that for complex objects there may be a difference of resolution between

different object classes, both Rouder et al. (2008) and Zhang and Luck (2008) have

recently argued for discrete fixed-resolution representations in the domain of color

(although see Bays & Husain, 2009, for a critique of this work). These papers provide

evidence that for simple features like color, the colors are either remembered or not

remembered, rather than varying in resolution. Finally, it is not clear why the co-

variance introduced in the colors would affect the resolution of a single color, and

what the proper relationship would be between the resolution and the association
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strength. For these reasons we believe it is unlikely that the current data reflect

changes in the resolution of the items rather than the quantity of items stored.

4.5.2 The relationship between slots and objects

Much of the work on visual working memory has emphasized the privileged role of

objects in memory capacity. For example, there is often an advantage to representing

two features from the same object as opposed to two of the same features from two

different objects (Luck & Vogel, 1997; Xu, 2002). In fact, visual working memory is

often conceptualized as containing 3-4 'slots', in which one object, and all its features,

can be stored into one slot (e.g., Luck & Vogel, 1997; Zhang & Luck, 2008) with some

degree of fidelity. In this literature, 'objects' typically are assumed be the units of

mid-level vision, specifically a spatiotemporally contiguous collection of features.

Our data suggest that at least the simplest version of an object-based capacity

limit, in which one object in the world is stored in one slot in the mind, is not sufficient.

If observers have a fixed working memory capacity of 3-4 objects on average, then

both the uniform and patterned groups should show the same memory performance in

Experiment 2. Similarly, if observers can remember at most 3-4 values along a single

feature dimension (like color), then both the uniform and patterned groups should

show the same memory performance in Experiment 1. However, in both Experiment

1 and Experiment 2, the patterned groups were able to remember almost twice as

many objects by the end of the experiment. Thus, if there are slots in the mind,

they must be able to hold more than one mid-level visual object, much like 'chunks'

can contain multiple digits or words in the verbal working memory literature. The

critical point here is that visual working memory should not be said to hold only 3-4

mid-level visual objects or 3-4 values along a single feature dimension, but instead

needs to allow for 'visual chunking'. Alternatively, visual working memory capacity

may be characterized in a more graded fashion rather than using slots or chunks as

a unit of measure (Alvarez & Cavanagh, 2004; Bays & Husain, 2008; Wilken & Ma,

2004).
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4.5.3 Chunking

The current behavioral data cannot directly address whether the proper way to char-

acterize the capacity of the system is in terms of a continuous measure of information

or in terms of a model in which items are stored discretely in chunks or slots (Cowan,

2001; Luck & Vogel, 1997; Miller, 1956; Simon, 1974). Our information theoretic

analysis puts a theoretical limit on how compressible this information should be to

a learner. However, exactly how this compression is implemented in psychological

constructs remains an open question. One possibility is that associated items become

more and more compressible over time (i.e., start to take up less space in memory).

Another possibility is that pairs of items take up either two chunks or one, depending

on a probabilistic chunking threshold. Importantly, a continuous model of compres-

sion can be closely approximated by a discrete model, as long as the threshold for

forming a chunk is related to the cost of the items in information theoretic terms. In

fact, any chunking model which will account for our data will need to form chunks

in a way that is compatible with our information theoretic analysis. In this sense,

information theory allows us to constrain chunking models significantly, and has the

potential to break us out of the circular dilemma of determining what ought to count

as a single chunk (Simon, 1974).

4.5.4 Coding model

It is important to emphasize that compression must be defined with respect to a

coding model. Naive information theoretic models (e.g., Kleinberg & Kaufman, 1971),

which simply assume that all items are coded with respect to the possible choices for

a particular task, are not adequate ways of characterizing the capacity of the memory

system. For example, using such a coding scheme it takes 1 bit to represent a binary

digit and 3.3 bits to represent a decimal digit. However, as described clearly in Miller

(1956), if observers can remember a fixed amount of information, then based on the

number of decimal digits they can remember, they ought to be able to remember

many more binary digits.
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Some hints at what the psychological coding model might be like in this case

comes from evidence that shows observers tend to store digits phonetically (Badde-

ley, 1986). Thus, perhaps a proper information theoretic model would encode both

binary and decimal digits with respect to the entire set of phonemes. Of course, even

the phoenetic coding scheme is not sufficient for capturing how much information is

in a string, as the conceptual content matters a great deal. For example, people can

remember many more words if they make a coherent sentence than if they are ran-

domly drawn from the lexicon (Simon, 1974). This is also true in memory for visual

information: sparse cartoon drawings are remembered better when given a meaning-

ful interpretation (Bower, Karlin, & Dueck, 1975; see also Wiseman & Neisser, 1974).

Presumably abstract line drawings have much longer 'coding strings' than when those

same line drawings can be encoded with respect to existing knowledge.

In the current experiment, we specifically avoided having to discover and specify

the true coding model. By exploring compression within the domain of associations

between elements (colors in the current study), we only need to specify the information

present in their covariance. Specifying how long the bit string is for a display of eight

colored circles would require a complete model of the visual system, and how it

encodes the dimensions of colored circles. Since the true coding model is likely based

in part on the natural statistics of the visual input, and given the frequency of gray

screen with eight colored circles on them in our everyday visual experience, the bit

strings for such a display are likely quite long. Instead we used a paradigm that

builds associations between elements over time, allowing us to control the coding

model that could be learned from the regularities in the displays. This method

avoids many of the pitfalls traditionally associated with information theoretic models

(e.g., those examined by Miller, 1956). Importantly, our results demonstrate that in

this simplified world of associated colors, visual working memory is sensitive to the

incoming statistics of the input. This approach opens the door for future work to

apply information theoretic models to human cognition without first solving for the

perceptual coding schemes used by the brain.

Moving beyond simple pairwise associations between colors, for more complex
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stimuli and in more real-world situations, observers can bring to bear rich conceptual

structures in long-term memory and thus achieve much greater memory performance

(e.g., Ericsson, Chase, & Faloon, 1980). These conceptual structures act as internal

models of the world, and therefore provide likelihoods of different items appearing

in the world together. For example, observers know that computer monitors tend

to appear on desks; that verbs follow subjects; that kitchens tend to be near dining

rooms. Importantly, our information theoretic framework can, at least in principle,

scale up to these more difficult problems, since it is embedded in a broader Bayesian

framework which can make use of structured knowledge representations (Kemp &

Tenenbaum, 2008; Tenenbaum, Griffiths, & Kemp, 2006).

4.5.5 Relation to learning and long-term memory

Compressibility and chunking are rarely formalized outside the literature on expertise

(e.g., chunking models: Gobet et al., 2001), and thus the relation between visual

working memory capacity and the learning of relations between items has received

little attention in the literature (although see Cowan et al. 2004 for an analysis in

the verbal domain). However, there are several interesting data points about the role

of learned knowledge in working memory capacity more broadly: for example, adults

have a greater working memory capacity than children (Simon, 1974). In addition,

there is a large literature on expertise and chunking (Chase & Simon, 1973; Gobet et

al., 2001), where there is significant appreciation of the fact that long-term knowledge

is a significant factor in working memory capacity (see also Kurby, Glazek & Gauthier,

2009; Olsson & Poom, 2005; Scolari, Vogel & Awh, 2008).

By relating working memory capacity and chunking strongly to information the-

ory, our results suggest a broad purpose for a particular kind of long-term knowledge

acquisition: statistical learning. In particular, a great deal of recent work has focused

on a set of statistical learning mechanisms which are capable of extracting many

different regularities with only minutes of exposure and appear to be relatively ubiq-

uitous, occurring in the auditory, tactile and visual domains, and in infants, adults,

and monkeys (Brady & Oliva, 2008; Conway & Christiansen, 2005; Fiser & Aslin,
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2002; Kirkham, Slemmer & Johnson, 2002; Hauser, Newport & Aslin, 2001; Saffran,

Aslin & Newport, 1996; Turk-Browne, Junge & Scholl, 2005). The present results

suggest that one of the primary reasons for being sensitive to such regularities might

be that it allows us to remember more in working memory by eliminating redundancy

in our representations. They also emphasize how quickly such long-term memories

can be built and can start to influence capacity measures observers in the present

studies demonstrated significant improvements in working memory capacity by block

2, only a few minutes into the experiment. In addition, it is important to keep in

mind that statistical learning mechanisms need not be limited to learning simple as-

sociations between items. Both the learning process and the representations that are

learned can be, and likely are, much richer than simple associations (see, for example,

Orban et al. 2008 and Frank, Goldwater, Mansinghka, Griffiths & Tenenbaum, 2007).

4.5.6 Conclusion

The information we can hold in working memory is surprisingly limited. However, in

the real world there are strong associations and regularities in the input, and our brain

is tuned to these regularities in both perception and memory (Field, 1987; Anderson,

1990). In an information theoretic sense, such regularities introduce redundancies

that make the input more compressible.

We have shown that observers can take advantage of these redundancies, enabling

them to remember more colors in visual working memory. In addition, while we

showed this using simple associations between colors, the Bayesian modeling frame-

work we used has the potential to scale up to learning over more complex represen-

tations. Thus, we believe that the tools of probabilistic modeling and information

theory can help in understanding how observers form long-term memory representa-

tions and use them in working memory. More generally, our data support the view

that perceptual encoding rapidly takes advantage of redundancy to form efficient

codes.
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4.6 Chapter Appendix

4.6.1 Model Results using Self-Information

The self-information at seeing a given item, i, expressed in bits, is:

S = -log 2(pi)

More bits of information (S) are gained by seeing items that are of low probability

(small pi) than items that are of high probability (large pi). The number of bits of

self-information is the mathematical optimum for how many bits must be required to

encode particular stimuli from a given distribution (Shannon, 1948).

In practice, it is difficult or impossible to achieve codes that are exactly equal in

length to the self-information for an item, simply because codes must be discrete.

Hence, throughout the paper we focused on a particular coding scheme Huffman

coding that is both simple and approximates optimal compression. However, it is

worthwhile to ask whether we find similar results looking not at the length of the

Huffman codes for all the items in a given block, but instead looking at the number

of bits of surprise for those items. Thus, we modeled our experiment using surprise to

calculate the number of bits for each item rather than the length of the code generated

by Huffman coding.

We used the same values for the priors as the Huffman code results in the main

text: a = 34, and a = 31, respectively, for the two experiments. The number of bits

of self-information correlate r = -0.94 (Experiment 1) and r = -0.95 (Experiment 2)

with human memory performance. Figures 12 and 13 show the results of multiplying

the number of bits of surprise with the number of colors remembered by observers

for Experiments 1 and 2, respectively. The results once against support the idea

of compression as a major factor in visual working memory: observers are able to

remember an approximately fixed number of bits, remembering more colors when the

items are more redundant.
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Figure 4-12: The size of memory for Experiment 1 estimated using self-information.
Error bars represent +/-1 s.e.m.

4.6.2 Derivation of K formula

In an eight-alternative forced-choice, observers may choose the correct answer for

one of two reasons: (1) they may know the correct answer, or, (2) they may guess

the correct answer by chance. In order to estimate capacity (the number of items

remembered out of the 8 items in the display), we need an estimate of the first kind of

correct answers (knowing the colors), discounting the second kind of correct answers

(guesses).

To begin deriving such a formula we write percent correct (PC) as a function of the

two different kinds of answer answers for those items that observers remember, which

they get right 100% of the time, and answers for those items that observers do not

remember, which they get right 1/8th of the time. If observers successfully remember

K items from a display of 8 items, percent correct (PC) may thus be formulated as:
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Figure 4-13: The size of memory for Experiment 2 estimated using self-information.
Error bars represent +/-1 s.e.m.

K 8 -K 1
PC = ( *1) + (8 K * -)

8 8 8

Where the first term accounts for items correctly remembered and the second

term accounts for items on which the observer guesses. For example, if an observer

remembers 2 items (K=2), then for 2/8ths of the items they choose the right answer

100% of the time, whereas the other 6/8ths of the time, they guess and choose the

right answer 1/8th of the time. Simplifying and solving for K, we get:

(PC*8*8)=8*K+8-K

(PC * 8 * 8) - 8 = 8 * K - K

(PC * 8 * 8) - 8 = K * (8 - 1)
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K = ((PC * 8 * 8) - 8)/7

This equation then allows us to directly calculate the capacity of an observer (K)

as a function of percent correct (PC).
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Chapter 5

General Discussion

How much visual information can a person hold in mind at once? From William

James (1890) "primary memory" to current studies of visual working memory ca-

pacity, researchers have struggled to understand how much about the visual world

we can maintain in memory. The present thesis provides a novel perspective on this

question by proposing that observers form rich, structured memory representations,

and proposing a framework for modeling such representations.

Chapter 2 demonstrated that observers form hierarchical memory representations

in simple working memory displays. In the same way that observers looking at real

scenes encode both scene-based information (e.g., it is a blue kitchen) as well as spe-

cific items (e.g. that refrigerator), the experiments presented in Chapter 2 scaled up

traditional working memory displays to contain patterns, where items are perceptu-

ally related to one another. We found that even within a single display observers

do not encode items in isolation; instead, they encode both the individual items and

the summary statistics of the display, and use the summary statistics to adjust their

representation of each individual item. Thus the remembered size of each individual

item is biased toward both the mean size of the set of items in the same color, and

the mean size of all items in the display. This suggests that visual working memory

is constructive, encoding the display at multiple levels of abstraction and integrating

across these levels rather than maintaining a veridical representation of each item

independently. Furthermore, this pattern of data is compatible with a simple hier-
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archical Bayesian model where memory representations are stored at multiple levels

of abstraction, suggesting that even such structured memory representations can be

usefully formalized despite the fact that observers representations are more complex

than a simple list of independent items.

Chapter 3 showed that, in addition to using simple summary information like

the mean size to help encode specific items, observers may also encode spatial pat-

terns from a display. This kind of higher-order summary information is incompatible

with traditional formal models of change detection, like those used to estimate vi-

sual working memory capacity (e.g., Cowan, 2001), which assume observers encode

only a simple memory representation which includes no higher-order structure and

treats items independently from each other. Thus, Chapter 3 presented a proba-

bilistic model of change detection that attempted to bridge this gap by formalizing

the role of perceptual organization and allowing for richer, more structured memory

representations. Using either standard visual working memory displays or displays in

which the dots are purposefully arranged in patterns, we showed that models which

take into account perceptual grouping between items and the encoding of higher-

order summary information are necessary to account for human change detection

performance. Such models can account for observers' performance even on individual

displays, whereas models which assume independence between items fail to capture

performance even in the simplest displays of colored dots. This demonstrates that

items are not encoded independently of each other, and provides a formal framework

for understanding this integrative encoding and retrieval.

Chapter 4 examined the influence of learned regularities on visual working mem-

ory performance. In the standard visual working memory paradigm, observers are

asked to remember a set of arbitrary colored objects, and it is usually found that they

can remember only 3 or 4 of the colors (e.g., Luck & Vogel, 1997). This is surprisingly

impoverished, and raises the question of how we are able to successfully function in ev-

eryday memory tasks. One of the major distinctions between this standard paradigm

and real-world tasks is that in the real-world we often have prior knowledge that in-

forms what features we expect to see where in a given scene. Chapter 4 showed that
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if we introduce regularities into standard visual working memory stimuli, observers

not only learn these regularities, but are able to encode the learned items more effi-

ciently in working memory, representing twice as many colors. Furthermore, using an

information-theoretic model, we that observers' memory for colors is compatible with

having a fixed capacity in terms of information (bits). This provides a theoretical

explanation for memory capacity in terms of how compressible the information is in

a given display, rather than how many objects can be remembered.

Ultimately, working memory representations in the real-world contain information

about scenes that is not purely in the form of a list of independent items contained

in those scenes: we make use of our prior knowledge about what items go together,

we encode texture, surfaces and other ensemble statistics from scenes, and we make

use of the relationships between items to provide information on items we did not

specifically encode. Models of working memory need to be capable of dealing with

these phenomena in order to provide true insight into the structure of the working

memory system and its capacities. In this thesis we have proposed that information

is represented at the individual item level as hierarchical feature bundles (Chapter

1), across individual items in terms of ensemble or scene context (Chapter 2; Chapter

3), and that our prior knowledge about regularities between items is crucial to de-

termining the structure of our memory representations (Chapter 4). This thesis thus

provides empirical evidence that observers use structured knowledge to represent dis-

plays in working memory, and, in addition, provides a set of computational models

to formalize these structured memory representations.
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