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Abstract

Every object in the world has a physical size which is intrinsic to how we interact
with it: we pick up small objects like coins with our fingers, we throw footballs and
swing tennis rackets, we orient our body to bigger objects like chairs and tables and
we navigate with respect to landmarks like fountains and buildings. Here I argue
that the size of objects in the world is a basic property of object representation
with both behavioral and neural consequences. Specifically, I suggest that objects
have a canonical visual size based on their real-world size (Chapter 2), and that
we automatically access real-world size information when we recognize an object
(Chapter 3). Further, I present evidence that there are neural consequences of real-
world size for the large-scale organization of object knowledge in ventral visual cortex
(Chapter 4). Specifically, there are regions with differential selectivity for big and
small objects, that span from along the dorsal and lateral surfaces of occipito-temporal
cortex in a mirrored organization. Finally, I suggest that the empirical findings can
be coherently explained by thinking about the experience of an observer situated
in a three-dimensional world. This work provides testable predictions about retinal
size biases in visual experience, and an approach in which to understand the neural
representation of any object in the world.

Thesis Supervisor: Aude Oliva
Title: Associate Professor of Cognitive Science
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Chapter 1

Introduction

Over a lifetime of visual experience, our visual system builds a storehouse of knowledge
about the visual world. Incoming visual information rapidly makes contact with
these existing object representations, enabling us to effortlessly recognize objects
that are presented for only 100s of milliseconds (e.g. Grill-Spector & Kanwisher,
2006; Thorpe, Fize, & Marlot, 1996; for review see Logothetis & Shineburg, 1996).
Two fundamental endeavors for visual cognition and cognitive neuroscience are to
characterize the nature of these existing object representations and to understand
how are they organized in the brain.

Much behavioral research has focused on understanding the nature of object rep-
resentations, characterizing objects as either 3D-part-relationships (e.g. Biederman,
1987), or as image-based templates (e.g. Tarr et al., 1998). More recently, cog-
nitive neuroscience approaches have been increasingly important for understanding
object representation, but present an interestingly divided view. A few object cat-
egories drive responses in a spatially-contiguous and functionally-specific module of
cortex along the ventral surface of cortex, indicating category-specific object repre-
sentations (Kanwisher, 2010; Downing et al., 2006). However, most object categories
drive responses in a large swath of this cortex to varying degrees, suggesting more
category-general coding dimensions (e.g. Ishai et al., 1999; Haxby et al., 2001). The
patterns of activity to different object categories are reliable even across subjects

(Shinkareva et al., 2008), which suggests that there is some underlying organization
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Figure 1: Real-world objects have a range of physical sizes, from objects you hold in
two fingers to objects that you can walk around.

to object representation that we do not understand (Op de Beeck, 2008a, see also
Freeman et al., 2011), and to date, there is no consensus on the features of visual

object representations (Kourtzi & Conner, 2011; Cavanagh, 2011).

One reason why we have yet to understand the overarching organization of object
representation is that it is not clear how to parameterize all of object knowledge.
There seems to be no continuous parameter that applies across all objects—instead,
objects have more typically been characterized using binary features (is it animate or
inanimate? Is a face or not?). However, one often overlooked and intrinsic property
of objects, that applies to every object in the world, is its physical size (Figure 1).
The real-world size of objects dictates how we interact with them, and fundamentally
shapes the distributions of our visual experience. My thesis is that real-world size
is a basic and fundamental property of object representation, with consequences for
both the nature of object representations and their organization in occipito-temporal

cortex.

Here I briefly review research that focuses on the nature of object representations,
and summarize our current state of understanding about how object representations
are organized in the brain. Next I discuss why the real-world size of objects may
be an important dimension for object representation, and review what is currently
known about the role of real-world size in object representation. Finally I outline the
contributions of this thesis, which presents both behavioral and neural evidence that

real-world size is a basic property of object representation.
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Models of Object Representation

There are two classic theories regarding the underlying nature of object represen-
tations. Structural accounts claim that early transformations of the visual system
parse the world into simple geometric forms (e.g. geons), and objects are subse-
quently represented as a part-relations among simple 3D shapes (e.g. A suitcase is a
thin rectangular solid with a curved cylinder on top; Biederman, 1987). View-based
accounts claim that visual experience of the world is stored as a series of images or
views, and objects are represented by prototypical image templates (e.g. Ashbridge &
Perret, 1998). Distinguishing between these two accounts with behavioral measures
has proven to be empirically challenging, as demonstrations of view-dependent pro-
cesses do not necessarily imply view-based representation, nor do demonstrations of

view-invariant processes necessarily imply structural representations (e.g. Bar, 2001).

More recent approaches have tried to gain insight into the nature of high-level
object representations by focusing on the learning process. For example, Schyns and
colleagues have argued that as we learn new kinds of objects, we have to learn which
features will distinguish them from other objects (termed “functional features”); thus
the underlying features of object representation will be those that are in service
of categorization (e.g. Goldstone, Lippa, & Shiffrin, 2001; Schyns, Goldstone, &
Thibaut, 1998; Schyns & Rodet, 1997). This resonates with recent computational
approaches, which accomplish object recognition by using a set of hierarchal image-
based fragments (e.g. Ullman, 2007). For example, in this model proposed by Ullman,
small image fragments of car parts combine to make larger car fragments, which
further combine to make a car. In this model, the features are learned for a particular
category (e.g. fragments that help recognize a car), as opposed to category-general

features (like geons).

In general, modern models of object recognition rely on a hierarchy of learned
features, ranging from object-generic perceptual features like color and orientation
to mid-level features that have some specificity to particular object classes (e.g.,

Ullman, Vidal-Naquet, & Sali, 2002) to very high-level conceptual features that are
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entirely object category-specific (e.g., Ullman, 2007). These models largely include
a computational efficiency constraint, such that the learned features are efficiently
represent the visual input. Such models derive a range of features, some of which are
shared across multiple object categories while others are more category-specific (e.g.,
Epshtein & Ullman, 2005; Ommer & Buhmann, 2010; Riesenhuber & Poggio, 1999;
Torralba, Murphy, & Freeman, 2004; Ullman, 2007). At the end of this thesis, I will
propose that the size of objects gives rise to systematic biases in visual experience
which may be extracted by efficient learning mechanisms in the visual hierarchy:
specifically, there may be mid-level precursor object representations that capture

features shared across objects of the same real-world size.

Organization of object representations in cortex

Object-responsive cortex is found along the ventral and lateral surfaces of the oc-
cipital and temporal lobes (Grill-Spector & Malach, 2004; Milner & Goodale, 1995;
Ungerleider et al., 1982). Patients with lesions to these ventral temporal areas cannot
recognize visually-presented objects though they can see that something is there (for
review see Mahon & Caramazza, 2009), indicating that this large swath of cortex is
the site of our stored visual object knowledge. What has the neural characterization
of object representation in the brain revealed about object representation, especially
with respect to the the different models described above?

Functional neuroimaging experiments have demonstrated that, within this cortex,
there are a few spatially clustered regions that show responses only for a specific
category. Specifically, this is true for faces, bodies, scenes, and letter strings (Cohen
et al., 2000; Downing et al., 2001; Kanwisher et al., 1997; McCarthy et al., 1997).
These kinds of representations are expected from the computational models that
propose category-specific features at the top of the feature hierarchy. However, not
all objects have a focal patch of category-selective cortex—e.g. there is no such region
for chairs or for shoes. Instead most object categories drive responses in a large

amount of ventral temporal cortex, but to varying degrees. Such distributed response
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profiles are more consistent with the models that learn shared features across object
categories, or even with category-general features (e.g. Geons) that can be used to
construct any shape (e.g. see Tanaka, 1996). These distributed patterns of activation
for each object category are consistent and reliable within a person, across people,
and even across species (Carlson et al., 2003; Cox & Savoy, 2003; Haxby et al., 2001;
Norman et al., 2006; O’Toole et al., 2005; Shinkareva et al., 2008; Kriegeskorte et
al., 2008). Thus, our current state of understanding about the organization of object
representation across cortex is that there are islands of category selectivity amongst
a sea of heterogenous unorganized (but systematic) responses.

Interestingly, approaches to understanding these patterns of activity have largely
ignored how they are arranged spatially across the cortex. However, we know that
the spatial organization of information across cortex is far from random (Kass, 1997).
This is evidenced in primary sensory cortices most clearly, with body maps, mo-
tor maps, tonotopic maps, and retinotopic maps. In visual cortex these maps are
mirrored—where visual areas are aligned by eccentricity and smoothly flip along
polar angle between vertical and horizontal meridian (e.g. Wandell, Dumoulin, &
Brewer, 2007). Beyond the sensory areas, there is further evidence of potentially
meaningful proximity, with face-selective regions adjacent to body-selective regions
(e.g. Schwarzlose et al., 2008), and partial overlap between neural regions responsive
to tools, hands, and motion (e.g. Beauchamp et al., 2002). Assuming that cortex
has meaningful topographic representations, and given that people show similar dis-
tributed activation patterns for objects, this suggests there are organizing dimensions

of object representation that we have not discovered (Op de Beeck, 2008a).

The size of objects in the natural world

The nature and organization of object representation has been approached through a
number of different frameworks. However, a fundamental observation about objects
is that they are physical entities in a three-dimensional world. Our experience with

objects, both in our life time and over evolutionary time, arises as we move through
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the world. The physical size of objects in the world thus has a dramatic impact on
our experience of them, both (i) in how we coordinate our motor actions with objects,
and (ii) how object information projects onto the retina. Both of these consequences
of object size may have an impact on how object knowledge is organized across the

cortex.

First, the real-world size of objects is a fundamental dimension for active visual
experience. When entering a movie theatre or attending a lecture, how do we choose
the best seat? When making this decision, we actively maneuver to place the visual
information of interest into a particular part of our visual field, adjusting our angle and
distance to an object like the screen or podium, based on its size in the world. More
generally, object information arrives in retinotopic coordinate frames, and if we want
to act on this object we have to transform the information for the relevant effector,
be it hand-, head-, or body-centered coordinates (e.g. see Cohen & Andersen, 2002).
The real-world size of the object reduces the complexity of this mapping problem:
not all object are equally relevant for all reference frames. Small objects like keys
or paperclips require finger-based action plans, while chairs require body-coordinate
frames, and the exact position of the fingers with respect to the chair is largely
irrelevant (Figure 1). Thus, demands of action systems on visual processes may place
top-down organizing constrains on object knowledge in the ventral pathway such that

it is computationally efficient to be grouped by real-world size.

Second, there are systematic biases in visual experience driven by the size of
objects in the world—in retinal size, eccentricity, height in visual field, head-angle,
shape, and spatial frequency. Due to the geometric structure of the world, objects
of different sizes are interacted with at different distances, and thus gives rise to
systematic distributions of retinal size (Figure 2). A peanut at arms length subtends 3
degrees visual angle, while a car at a typical distance subtends 30 degrees visual angle.
Given that our eyes view the world from a height off the horizon, big objects will also
tend to be higher up in our visual field than small objects. Further, small objects tend
to be shaped for the hand and are rounder whereas larger objects withstand gravity

and provide structural support and are boxier: these differences in shape statistics can
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Figure 2: Hypothetical distributions of visual experience based on typical interaction
distances. Objects of different physical sizes in the world have a distribution of
visual experience over viewing distances. Estimates of typical interaction distances for
objects indicate that objects of increasing physical sizes are experienced at increasing
retinal sizes (see also Hubbard, Kall, & Baird, 1989).

be measured by combinations of image measurements that capture power at different
spatial frequencies and scales and positions across the image (see Oliva & Torralba,
2001; see also Haldane, 1928). Head angle is another dimension that is affected by
object size, where we tend to look down to small objects in our hand, progressively
up to big objects at the horizon. In the appendix at end of the thesis, I explain these
visual biases in greater detail and suggest that they can explain a number of low-level

response properties that have been observed in high-level visual areas.

Taking these visual biases all together, a consequence of natural visual inputs
is that objects of different sizes will have systematically different low-level statistics
arriving in early visual cortex. If visual systems are tuned to efficiently encode visual
input by extracting covariances (Attneave, 1954; Carlson et al., 2011; Field, 1987),
then these low-level correlated statistics are viable candidates. This would lead to
mid-level visual representations that apply to all objects of a particular real-world
size. Due to the way eccentricity is laid out across cortex, these mid-level visual
representations, in essence pre-cursor high-level object representations, may naturally

be arrayed by real-world size in more anterior visual cortex.
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Previous research on real-world size

Up to this point I have been referring to “visual object representations”, which are
the representations along the visual processing stream that enable recognition. In the
broader study of memory systems, this is referred to as the perceptual representation
system, as distinct from the semantic system (e.g. Schacter & Tulving, 1994). The
former concerns visual form (e.g. what an object looks like, allows us to name an
object from a picture), and the latter concerns associated semantic facts (e.g. can
move on it’s own, is edible, is big, is a cow). Interestingly, information about the
real-world size of objects straddles this divide, and research has been done in both

areas.

Semantic information about real-world size is exemplified by a fact-based knowl-
edge: just as you can know the capital of Colorado is Denver, so you can know that
a building is 152 ft tall, or that an elephant is bigger than a mouse. However, given
the task to say which of two named objects is bigger in the world, the time it takes
is related to the log of their real-world size ratios; this is a classic signature of per-
ceptual comparisons, e.g. indicating which of two lines is longer (Moyer, 1973; Pavio,
1975; Rubinsten & Henik, 2002; Srinivas, 1996). This has led some to argue that
real-world size knowledge may actually be stored in some analog or perceptual for-
mat that preserves real-world size, and suggests that real-world size may not have a
purely semantic (non-perceptual) representation. However, understanding “size” as a
semantic fact is outside the scope of this thesis. Rather, here I focus on if, and how,

real-world size influences the perceptual representation system.

Surprisingly, very few studies on the perceptual representation system, i.e visual
object representation, have focused on the dimension of real-world size. In Bieder-
man’s discussion of scene schemas, objects presented at the wrong real-world size in
the scene are one of the 5 scene violations: objects were detected more slowly when
presented at an atypical sized were detected more slowly than objects at a typical
size in the scene context (Biederman, et al., 1982). Knowledge about the real-world

size of objects (“familiar size”) can serve as a cue to depth, but the nature of this
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familiar size knowledge has not been directly examined. In contrast, there have been
many studies examining the dimension of visual size in object representation (Bieder-
man & Cooper, 1992; Fiser & Biederman, 1995; Cave & Squire, 1992; Srinivas, 1996;
Furmanski & Engel, 2000; Jolicoeur, 1987; Millikan & Jolicoeur, 1992). Here, “visual
size” refers to the visual angle of the object projected to the retina. One potential
reason for this focus on visual size in perceptual representation is that visual size is
the input to the visual system, whereas physical size (and viewing distance) have to
be inferred from the retinal projection. Further, in theory an object of any physical
size can subtend any visual angle, by moving closer or farther away. However, as
previously discussed, typical viewing distances are constrained by geometry and in-
teraction. This over-simplification has made it easy to miss the impact of real-world

size on visual experience with consequences for object representations.

Contributions of this thesis

My thesis is that real-world size is a basic and fundamental property of object repre-
sentation, with implications for the object representations and their organization in
occipito-temporal cortex.

Chapter 2 examines how visual size information is represented in our existing ob-
ject representations. In a series of experiments which required observers to access
existing object knowledge, we observed that familiar objects have a consistent visual
size at which they are drawn, imagined, and preferentially viewed. This visual size
was not the same for all objects, but was instead proportional to the logarithm of
the known size of the object in the world. Akin to the previous literature on canon-
ical perspective (Palmer, Rosch, & Chase, 1981), we term this consistent visual size
information the canonical visual size.

Chapter 3 presents evidence that real-world size is an automatically-accessed prop-
erty of object representations. In this study, two real-world objects were presented
at different visual sizes observers had to indicate which was bigger (or smaller) on

the screen. Even though the known size of the objects was irrelevant for this task,
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we observed a familiar size stroop effect. A second experiment demonstrated that
this effect was not cognitively penetrable, implying that real-world size knowledge is
a part of visual representations acquired with repeated experience.

Chapter 4 presents neuroimaging data, and examines the impact of real-world
size on the spatial distribution of neural representations for objects without selective
regions of cortex. In a series of studies, I demonstrate that the representation of
objects in ventral temporal cortex depends on their real-world size, and suggest there
is a large-scale mirrored organization across ventral and lateral occipito-temporal
cortex based on real-world size.

Finally, Chapter 5 summarizes and interprets these empirical findings within a
situated-observer framework. The object representations studied here were learned
over a life time; visual experience was not manipulated in any of these studies. How-
ever, I suggest that these behavioral and neural data can be coherently interpreted
in framework which takes into account the visual experience of a situated observer
in the three-dimensional world and assumes that the visual system is tuned to sta-
tistical regularities of experience. I also describe areas of future research where this
situated-observer framework can provide insight into the underlying representations
of objects and can make testable predictions about the neural representation of any

object.
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Chapter 2

Canonical visual size for real-world

objects!

Real-world objects can be viewed at a range of distances and thus can be experi-
enced at a range of visual angles within the visual field. Given the large amount
of visual size variation possible when observing objects, we examined how internal
object representations represent visual size information. In a series of experiments
which required observers to access existing object knowledge, we observed that real-
world objects have a consistent visual size at which they are drawn, imagined, and
preferentially viewed. Importantly, this visual size is proportional to the logarithm of
the assumed size of the object in the world, and is best characterized not as a fixed
visual angle, but by the ratio of the object and the frame of space around it. Akin to
the previous literature on canonical perspective, we term this consistent visual size
information the canonical visual size.

Introduction

In the real world, the particular view of an object (i.e., its projected retinal image)
depends on where the observer is standing with respect to that object. This fact is
implicitly understood by observers choosing where to sit in a movie theatre, where
to stand in an art gallery, or where to move to get a better view of an item of
interest. When observers walk around an object, changing the viewing angle of an

object without changing its distance, this image transformation is called a perspective

1 This chapter was published as Konkle, T. & Oliva, A. (2011). Canonical visual size for real-world
objects. Journal of Experimental Psychology: Human Perception and Performance, 87(1):23-37.
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change. Similarly, when observers approach or back away from an object to change
its retinal size within their visual field without changing the viewing angle, the image
transformation is called a visual size change. Given the many possible object views
that can be experienced by an observer, what information about perspective and size

is present in object representations?

Seminal research by Palmer, Rosch, and Chase (1981) examined how object view-
point information was accessed in a number of different tasks, and found evidence for
consistently preferred viewpoints. For example, during goodness judgments of pho-
tographs of objects over different viewpoints, three-quarter perspectives—in which
the front, side, and top surfaces were visually present—were usually ranked highest?.
The best” view was also the perspective imagined when given the name of the object,
the view most photographed, and enabled fastest naming of objects. The consisten-
cies across observers and across tasks led Palmer, Rosch, and Chase (1981) to term

this view the “canonical perspective.”

Two main explanations have been suggested for why objects have a preferred,
canonical perspective. One account is motivated by object properties, where the
canonical perspective maximizes surface information visible with the least degree of
self-occlusion. The other account argues that canonical perspective arises based on
the distribution of visual experience. Evidence for the latter involves studies that
control exposure with novel objects, and find speeded recognition arises at more-
often experienced viewpoints (e.g. Bulthoff & Edelman, 1992; Tarr, 1995; Tarr &
Pinker, 1989). However, canonical viewpoints can be found for novel objects that
have been experienced equally from all angles in the viewing sphere (Edelman &
Bulthoff, 1992), suggesting that a purely experiential account cannot fully predict
the occurrence of canonical viewpoints. These explanations for canonical viewpoints
reflect a trade-off between constraints of object-centered properties, where shape and
orientation determines the best viewing angle, and viewer-centered properties, where

accumulated episodes with that object influence the preferred viewing angle. Likely

2There were a few objects for which this was not true, such as a clock, for which a pure front
view was ranked highest, probably due to the frequency with which it is viewed in this perspective.
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both of these factors contribute to canonical perspective (Blanz, Tarr, & Bulthoff,

1999).

Perspective is determined by the physical orientation of the object relative to the
direction of gaze of the observer. Similarly, visual size is determined by the physical
size of the object relative to the distance of the observer to the object. Given that
there is evidence for canonical perspective, is there similar evidence for canonical
visual size? Here, we employed memory, imagery, and perceptual preference tasks
and asked whether these different mental processes yield consistent visual sizes across
observers. In addition, we examined the contributions of two factors that might

influence an object’s canonical visual size—real-world size and framing.

First, we might expect knowledge about the real-world size of the object to mat-
ter for an object’s canonical size. Intuitively, smaller objects in the world subtend
smaller visual angles on average than larger objects in the world. For example, a
typically sized car would subtend about 30 degrees visual angle at a typical viewing
distance of ~9 m. For a penny to subtend that same visual angle it would have to be
held only ~3 cm away from one eye; at a more typical arms-length viewing distance,
it subtends 3.5 degrees. Thus, natural experience with objects might predict a sys-
tematic relationship between real-world size and canonical visual size. Alternatively,
maximizing the available object information could determine canonical size, e.g. if
the object is centered in the high-acuity foveal or parafoveal region of the visual field.
Such an account might predict that all objects would have the same canonical vi-
sual size that is related to acuity falloff with eccentricity, possibly modulated by the

internal complexity of the surfaces features of the object.

Second, size judgments are strongly influenced by the relative size of an object
within a fixed frame of space. In typical real-world viewing situations, a chair looks
the same physical size as we approach it, despite the increasing visual size it projects
on the retina—a phenomenon known as size constancy. However, failures of size
constancy can be found when the frame of space around an object is manipulated.
For example, Rock and Ebenholtz (1959) had observers adjust the length of one line

to match the length of a standard line. The standard line was framed in a small
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rectangle, while the adjustable line was framed in a larger rectangle. Observers were
strongly biased to preserve the ratio of the line within the frame, adjusting the line
to be much larger than the standard, even though the task was to match the physical
length of the two lines (see also Kunnapas, 1955).

This framing effect occurs not only for simple stimuli but also for objects in the
real world, and is known as the vista paradox (Walker, Rupick, & Powell, 1989; see
also Brigell, 1977; Senders, 1966). Approaching an object makes it physically closer,
but approaching that object through the view of a window creates an illusion that
the object is both shrinking in physical size and getting farther away. On the retina,
both the visual size of the frame and the visual size of the object increase as one
approaches; however, the ratio of the object in the frame decreases because the frame
grows much more quickly than the more distant object. This illusion demonstrates
that our perception of an object’s physical size and distance away are subject to
relative framing ratios, and are not derived from visual angle alone.

In the current experiments, we examined whether or not existing object represen-
tations show evidence for a canonical visual size. Using a drawing task (Experiment
1), an imagery task (Experiment 2), and a perception task (Experiments 3, 4, and
5), we found that all these tasks gave rise to consistent visual sizes across observers
and mental processes. We also observed a systematic and reliable correlation between
canonical visual size of objects and the logarithm of their assumed size in the world.
Further, we demonstrate that this canonical visual size is best characterized not as
a fixed visual angle, but as a ratio reflecting the object size relative to the frame of

space within which it is viewed.

Size Ranking

Observers have prior knowledge about the size of objects in the world, often referred
to as “assumed size” (e.g. Ittleson, 1951; Baird, 1963; Epstein 1963). In the following
experiments, we aimed to assess whether the assumed size of objects influences the

visual size at which objects are accessed across different tasks. Thus, first we gathered
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100 images of real-world objects and had observers sort these objects into 8 groups of
increasing real-world size. These data will give us size ranks that reflect the assumed
size of objects in the real world, and will be used in the rest of the experiments. The
object images spanned the range of real-world sizes from small objects (e.g. a paper
clip) to large objects (e.g. the Eiffel Tower; see Figure 1). Additionally, we examined

how the size ranks compared with the actual real-world size of such objects.

Methods

Six observers (age range 18-35) gave informed consent and received $5 for their par-
ticipation. One hundred color pictures of real-world objects were selected from a
commercial database (Hemera Photo-Objects, Vol. I & II), and all objects appeared
on a white background (see Figure 1). The sorting procedure was adopted from Oliva
and Torralba, 2001. Thumbnails of 100 objects were arrayed on a 30 in (64.5 x 40.5
cm) screen, with a line separating the left and right half of the screen. Participants
were instructed to drag and drop the objects so that the large objects (large in their
real-world size) were on one half of the screen and the small objects (small in real-
world size) were on the other half of the screen. Next, the screen divided into fourths,
and participants refined the two sets of objects into four groups. This processes re-
peated one more time so that the objects were divided into 8 groups, ranked by their
size in the real world. Here, a rank of 1 represents the smallest object size and a
rank of 8 represents the largest object size. Participants were told that they did not
have to have an equal number of objects in each group and that instead they should
make sure each category of objects had roughly the same physical size in the world.
Participants could double click on a thumbnail to view a larger image of that object
(15cm x 15cm). Stimuli were presented using software written in MATLAB.
Observers were instructed to sort objects based on their real-world size”, and we
did not explicitly instruct observers how to think of real-world size (e.g. volume, area,
extent). To obtain a measure of the “actual size” of each depicted object, we used the
following procedure. For each image a corresponding real-world object was measured

or approximated. In the case of the larger objects, the dimensions were found using
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Figure 1: Left: Database of 100 objects. Right: All objects were sorted into 8 groups
based on their assumed size in the world. These ranks are plotted as a function of the
actual real-world size of the object (cm), on a logarithmic scale. The graph shows is
a systematic logarithmic relationship between the actual physical size of the object
and the size ranks.

internet searches. The actual size of the object was quantified in cm (rather than
cm®), measured as the diagonal of its bounding box (i.e., the smallest rectangle that

completely enclosed the object), ignoring the depth of the object?.

Results

The left panel of Figure 1 shows thumbnails of the object set. We defined the size rank
of each object as the mode of its rank distribution over the six observers. There were
9 to 23 objects for each size rank (mean 13 objects/size rank). Next we examined the
relationship between the size ranks and the actual size of such objects in the world.
The right panel shows the actual size of each object, plotted as a function of its size
rank, with the actual size plotted on a logarithmic axis. The graph shows that size
ranks and actual size are related by a logarthmic function. The correlation between
size rank and logl0(actual size) is r* = .91, p < .001.

These results suggest that when sorting objects by assumed size, judgments about

which sizes are similar follow Weber-Fechner-like scaling (as do judgments about most

3The actual size of the object could also be quantified as the diagonal of the three-dimensional
bounding box (height x width x depth). Because of the correlation between height, width, and depth
of these objects, the 3d diagonal and the frontal diagonal are negligibly different on a log scale.
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other psychophysical variables, e.g. weight, sound intensity, frequency, etc; Stevens,
1957). For example, two objects at 1m and 10m in size are more different that two
objects at 1001lm and 1010m. Similar ranking procedures and results were found by
Paivio (1975) and Moyer (1975).

These size ranks formed 8 groups of objects which were used in subsequent exper-
iments. While we could use the actual size measured from real-world objects, the size
ranks are used because (i) they reflect empirically gathered data about assumed size,
and (ii) provide natural bins of the assumed size dimension. However, it should be
noted that the size rank reflects a logarithmic scaling of real-world size, thus any sys-
tematic relationship found with size rank also shows a similar systematic relationship

with the logarithm of the real-world size of the object.

Experiment 1: Drawings from Memory

In Experiment 1, we used a drawing task to probe existing object representations,
which is a task that requires reconstruction from long-term memory. Similar tasks
have been used for studies of visual memory, but have typically been used as a measure
of visual free recall of a previously studied image (e.g. Carmichael, Hogan, & Walters,
1932; Intraub & Richardson, 1989). Here, we instead probed pre-existing long-term
memory representations. The observers’ task was simply to draw a picture of the
named object on the page. Unbeknownst to the observers, we were interested in the
size at which they drew these objects.

One possibility is that all objects would be drawn at the same size on the page
(or at the same visual angle). This might be predicted by classic alignment models
of object recognition, which assume that all objects are stored at a specified visual
size in memory, and recognition proceeds by first mentally scaling the input or the
fixed template (e.g., Ullman, 1989). Another possibility is that there will simply be
no consistent relationship between the drawn size of objects and the assumed size of
those objects. Alternatively, there may be a systematic relationship between drawn

size and assumed size, where a number of quantitative relationships are possible.
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Importantly, the task of drawing objects does not require explicit reasoning about
the assumed size of the object nor does it require making judgments about the drawn
size.

We also examined the role of the frame of space in which the object was drawn
by manipulating the paper size across observers. If the frame serves as a ceiling for
drawn object sizes, then we might predict that the physically small objects would
be drawn the same size across paper sizes, but the physically larger objects would
be drawn increasingly larger with bigger paper sizes. However, another possibility is
that objects might be drawn with a consistent ratio of the object to the frame across
paper sizes. This might be predicted if object representations are reactivated from

long-term memory representations relative to a space around them.

Methods

Sixty-four naive observers (age range 18-35) participated in Experiment 1. All gave
informed consent and received a candy bar and a beverage for their participation.
Twenty observers drew on the small paper size, 22 observers draw on the medium
paper size, and 22 observers drew on the large paper size. Participants sat at a table
and were given 18 sheets of paper (all of the same size) and a list of items to draw.
They were instructed to draw one object per page and were explicitly told that we were
not interested in artistic skills. We told participants to draw each object relatively
quickly (within 1 minute). When delivering the instructions, the word “size” was
never used.

The list of items contained 16 different objects that spanned the range of real-
world sizes, with two objects at each size rank. The objects were: paperclip, key,
pet goldfish, apple, hairdryer, running shoe, backpack, computer monitor, German
shepherd, chair, floor lamp, soda machine, car, dump truck, 1-story house, light house.
The order of objects was randomized for each observer. After all 16 objects had been
drawn, observers next drew two scenes, a beach and a park, in random order.

Across observers, we manipulated the size of the drawing paper. Observers were

not aware of this manipulation. The small paper size was 7.6 x 11.4 cm (3 x 4.5
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inches), the medium size 18.5 x 27.9 cm (was 7.3 x 11 inches), and the large size
was 30.5 x 45.7 cm (12 x 18 inches), thus all three sizes had approximately the same
aspect ratio. All observers used a fine black sharpee marker to draw (i.e., the pen
width was fixed, and did not scale with the paper size).

To measure the drawn size of the objects, all drawings were scanned at a fixed
resolution (150 dots per inch). Custom software was written in MATLAB to auto-
matically find the bounding box around the object in the image, and these dimensions
were converted from pixels into centimeters using the known resolution. Drawn size
was calculated as the length of the diagonal of the bounding box around the object.
Using the diagonal, rather than as the height or width alone, better takes into account
variation in aspect ratio and has been shown to account for more explained variance
in relative size measures than height, width, principle axis, and area (Kosslyn, 1987).
The software proceeded one drawing at a time, and each object’s identity and the

corresponding bounding box was verified by eye.

Results

The first author and one additional observer used a strict criterion to filter any draw-
ings with extraneous objects (e.g. trash bins behind the dump truck, a worm sticking
out of the apple, cords connecting the floor lamps, headlight beams on cars, air com-
ing out of the hairdryer), which constituted 21% of the images. The analysis reported
below was conducted on the filtered data set (887 drawings)?.

Figure 2 (left panel) shows the drawn size of the objects (in cm) plotted as a
function of the size rank of the object. The three lines represent the three different
paper sizes. A two-way ANOVA was conducted on drawn size with paper size as a
between-subject factor and object size rank as a within-subject factor. There was a
significant main effect of the size rank of the object on the drawn size of the object

(F(7,391) = 30.1,p < 0.001,7? = .35). That is, objects that are small in the world

4The patterns in the data are unchanged when the analysis is conducted on drawn images using
a more moderate exclusion criteria (connected objects such as worms and wires included) or with
full inclusion (including the trash cans behind the dumptruck).
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Figure 2: Left: Drawn size of objects (measured in centimeters) as a function of their
size rank, for small, medium, and large paper sizes. Right: Drawn size of objects
(measured as the ratio of the drawn object and paper diagonal length), as a function
of size rank for small, medium, and large paper size. There was a separate group of
observers for each paper size. Error bars represent £1 S.E. M.

were drawn smaller on the page than objects that are large in the world. There was
also a significant effect of paper size on drawn size (F(2,41) = 70.9,p < 0.001, 773 =
.78), where the average drawn size of objects increased as the paper size increased.
Additionally, there was a significant interaction between the paper size and the effect
of the object size (F'(14,391) = 4.3,p < 0.001,n2 = .13). In other words, there was
a smaller range of drawn object sizes on the small paper, with progressively greater
ranges of drawn sizes on the medium and large paper.

These data show a clear linear relationship between the drawn size and the size
rank (r? = 0.88,p < 0.001, collapsing across paper size). Thus, this also demonstrates
that the drawn size of an object is proportional to the logarithm of its real-world size.
For each participant, a regression analysis was used to estimate a slope and intercept
for their drawn sizes as a function of the size rank. ANOVAs were conducted on
these slopes and intercepts, with paper-size as a between-subject factor. There was
a significant effect of paper size on slope (F(2,61) = 28.7,p < 0.001,7* = .48), and a
significant effect of paper size on intercept (F(2,61) = 15.1,p < 0.001,7n* = .33).

Across the 16 objects, the systematic variation in the drawn object sizes was

highly consistent. The effective reliability R, which is the aggregate reliability from
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a set of judges (see Rosenthal & Rosnow, 1991) was R=.97.

Figure 2 (right panel) contains the same data as in the left panel, replotted to show
the ratio of the drawn size of the object to the paper size. This was calculated as the
diagonal length of the drawing divided by the diagonal length of the paper size. When
considering the drawn size ratio, there was no longer an effect of paper size (F(2,41) =
1.01,n.s.), whereas size rank still significantly influenced the drawn size of the object
in the frame (F(7,391) = 38.19,p < 0.001,72 = .41). However, there was a small,
but significant, interaction between paper size and size rank (F(14,391) = 1.82,p <
0.05, 773 = .06), which indicates that some of the items had a slightly different ratio
from small to medium to large paper sizes. For example, the smallest objects drawn
on the smallest paper size show slightly larger ratios than for the medium or large
paper. One possible explanation is that because all observers used the same sharpee
marker for drawing across paper size, they may have drawn the smallest objects
on the small paper size somewhat larger than on the larger paper sizes. Separate
ANOVAs conducted on the single subject regression fits revealed no difference between
the slopes across paper sizes (F(2,61) = 2.1,n.s.), nor any difference between the
intercepts (F'(2,61) < 1,n.s.). Figure 3 shows example drawings, both to scale and

with normalized paper sizes.

Discussion

When observers are instructed to draw an object from an existing representation in
visual long-term memory, the drawn size of the object depends on at least two factors.
First, the drawn size of the object depends on the assumed size of the object in the
world. Small objects in the world are drawn small on the page; large objects in the
world are drawn larger on the page. Further, this relationship is systematic: the
drawn size of an object is proportional to the size rank (and thus to the logarithm
of its actual real-world size). Second, the drawn size of the object depends on the
scale of the space it can occupy. Small objects such as a keys occupied 27% of the
image (as measured by the diagonal of their bounding boxes relative to the diagonal

of the paper), whereas large objects like houses occupied 41%. Critically, the raw
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Figure 3: Example drawings of a car from three separate participants. Upper: small,
medium, and large drawings, to scale. Lower: the same drawings, normalized to the
size of the frame. The dashed bounding box is the same size in all three normalized
drawings for reference.
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size at which objects were drawn (and thus the visual angle which the drawn images
subtended in an observer’s visual field) were very different for the small, medium,
and large paper sizes, whereas the ratio of the object within the frame was constant
across paper sizes. This strongly suggests that when objects are reconstructed from
memory, the drawn size is best characterized not by raw visual angle measurements

but as a relative proportion between the object and a frame of space.

It is interesting that observers did not fill the page, even for the objects with
the largest size, which were only about 40% of the scale of the frame. That is,
observers preserved space around the edges of the objects, even on the smallest paper
sizes. However, it is not the case that observers always leave blank space around
all drawings—when observers drew a beach scene and a park scene, which do not
necessarily have a clear edges as do objects, the average drawn size was 81% of the
frame (SEM 1.8%)°. Further, this preserved ratio of the object and the frame is
especially striking when considering the drawings of the small objects on the large
paper sizes. In this condition, a paperclip was drawn on average 14.0 cm on the large
paper (SEM 1.6 cm), which is dramatically larger than its actual size in the world
(~3-5 cm). Thus, one intriguing possibility is that internal object representations
contain information about the relative visual size of objects and a spatial envelope
around them. For example, when drawing an object, the object is not scaled to the
paper; rather, the object and its envelope are scaled to the paper. A representation

of this kind would produce consistent ratios across different frame sizes.

An important open question is whether the observed relationship between the
drawn size and the assumed size of objects reflects a conceptual (non-visual) bias or a
perceptual (visual) bias. In other words, are these results driven by explicit knowledge
that, for example, cars are typically 5 m long? Whereas semantic (non-visual) knowl-
edge of an object’s physical size likely plays a role, several points suggest that there

is also a strong visual component. First, the relationship between assumed size and

5In these scenes, the calculated diagonal ratio was not 100% because observers typically drew a
horizon line which extended across the entire horizontal axis, but did not necessarily make marks
for grass/sand that touched the extreme bottom edge and for clouds/sun/trees that touched the
extreme top edge of the paper.
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drawn size is systematically logarithmic, which is a classic quantitative relationship
between perceptual properties and physical stimulus properties (e.g. Weber-Fechner’s
law; see also Moyer, 1975). Second, this adjustment of drawing small objects smaller
and large objects larger was not the same across paper sizes; the range of drawn sizes
on the large paper was 11.2 cm, with only a 6.9 cm range for the medium paper and
only a 2.5 cm range for the small paper. However, when normalized by the frame, the
ratios of the object to the paper size were remarkably consistent. Although this does
not rule out a purely conceptual (non-visual) representation driving these results, it
is unclear why explicit knowledge of the physical size would be influenced by a frame,
whereas it is known that perceptual tasks (e.g., adjusting the physical size of a line in
a frame) are biased by framing ratios (Rock & Ebenholtz, 1959). Neither the current
study, nor the subsequent studies can adequately answer the question about whether
physical size information is represented visually or conceptually, but we believe that
both are probably involved (see Hart, Lesser, & Gordon, 1992). The important points
for the current study are that object information accessed from long-term memory
representations contains visual size information that is consistent across observers,
is related to real-world size, and is best characterized as a ratio with respect to the

space or frame it occupies.

Experiment 2: Imagery

Here, we used an imagery paradigm to probe size information in existing long-term
memory representations of objects. Specifically, we examined the visual size at which
objects were imagined within the frame of a computer monitor. Imagery processes can
be thought of as instantiating visual long-term memory representations (i.e., stored
knowledge about the visual properties of an object or class of objects) in perceptual
buffers (see Kosslyn, 1999). Thus mental imagery, like drawing, relies on accessing
existing object representations. If observers imagine objects at a size within the
frame of the computer screen that matches the size they drew objects relative to the

page size, this would show converging evidence using an alternate method of probing
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existing visual object representations.

Previous work examining the imagined size of real-world objects is consistent with
these predictions (Hubbard & Baird, 1988; Hubbard, Kall, & Baird, 1989; Kosslyn,
1978). For example, Kosslyn (1978) used a mental distance estimation procedure
to calculate the visual angle at which animals of various sizes were spontaneously
imagined. Interestingly, he found that small animals were spontaneously imagined
at closer distances than larger animals, and that the visual angle subtended in the
mind’s eye was positively correlated with the size of the animal. In other words, small
animals were imagined at smaller visual angles than large animals. He also noted that
observers were not preserving an absolute scaling of the animals’ physical size in their
mental images, as the largest animals were imagined at less than twice the angle of
the smallest animals despite being an order of magnitude bigger in size. Kosslyn’s
study was aimed at quantifying the extent of the mind’s eye and not the relationship
between object size and spontaneously imagined size; however, these results provide
suggestive evidence that imagined size of objects might show convergent patterns

with the drawn size ratio of objects we observed in Experiment 1.

Methods

A separate group of nine naive observers were recruited from the MIT participant pool
(age range 18-35), gave informed consent, and received 5 dollars for their participation.
Stimuli were presented using MATLAB with the Psychophysics toolbox extensions
(Brainard, 1997; Pelli, 1997).

At the start of each trial, the name of an object appeared at the center of the
computer screen. Observers pressed a key to continue, and the screen blanked for
2 seconds. Observers were instructed to form a clear mental image of the object on
the screen during that time. After two seconds, the mouse cursor appeared at the
center of the screen. As observers moved the mouse, a rectangular box centered on
the screen was drawn automatically: one corner of the rectangle was at the current
mouse position and the opposite corner of the rectangle was at the same distance

from the center of the screen in the opposite direction. Observers adjusted this
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rectangle by moving the mouse, and then clicked when the rectangle “formed a tight
bounding box” around their mental image of that object. After the response, the
screen blanked for 2 seconds and the name of the next object appeared. The names
of the 100 objects in the object set were displayed in a random order. Observers were
given a demonstration of how to adjust the size of the bounding rectangle before the

experiment began.

Results

The left panel of Figure 4 shows the average size of imagined real world objects,
plotted as a function of object size rank. Here, the imagined size was calculated as
the visual angle subtended by the diagonal of the bounding box. The average imagined
size for two sample objects—an egg and a refrigerator, is illustrated in the right panel
of Figure 4. Averaging over the size rank of objects, observers imagined objects at
15.4 degrees visual angle (S.E.M.=4.5 degrees). Taking into account size rank, there
was systematic positive relationship with imagined size (slope = 2.8 degrees/size rank,

r2 = 0.98,p < 0.001).

Importantly, across the 100 objects, this systematic variation in the imagined
object size was again quite consistent across observers. The effective reliability was
R=.96. Thus, despite the subjectivity of the task to simply imagine the object, some
objects were consistently imagined smaller and others were consistently imagined

larger.

The imagery data can be converted into a ratio between the imagined size and the
size of the monitor. This allows for comparison between the drawing data (Experi-
ment 1) and the imagery data. Collapsing across size rank, there was no significant
difference in the average imagined ratio and average drawn ratio, (imagery: 34%, SEM
3.1%; drawing: 36%, SEM 1.2%; t(71) = 0.6,n.s.). However, the slope between size
rank and imagined size was steeper than in the in the drawing study (6.3% per size

rank in Experiment 2 vs. 2.7% per size rank in Experiment 1; ¢(71) = 6.2, p < 0.0001).
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Figure 4: The average imagined size of objects on the computer screen is plotted as
a function of the size rank of the object (black line). Error bars represent +1 S.E.M.
The average imagined sizes of two objects (upper: egg, lower: refrigerator) are shown
on the right.

Discussion

The data show that the imagined size of real-world objects scales with the assumed
size of the object: physically small objects are imagined at smaller visual angles than
physically large objects. Further, when the imagined visual size was normalized by
the monitor visual size, the resulting ratios were fairly compatible with those found in
Experiment 1. Thus, the relative measure between the object and frame holds across

different observers, different tasks, and different kinds of frames.

In the imagery experiment, the slope of the relationship between size rank and
imagined size was actually steeper than the corresponding slope in Experiment 1.
One speculative account of this finding is that during the drawing task, perception
of the drawn objects constrains the dynamic range of the drawn size, and imagery
processes are not constrained in the same way. Indeed, Kosslyn (1978) found that
objects imagined from existing long-term memory were imagined at larger sizes than

when pictures of those animals were shown and then subsequently imagined. Further,
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in his estimation of the “extent of the mind’s eye”, larger estimates (~50 degrees)
were obtained using imagined objects from existing long-term memory than when the
same method was used on images of objects (~20 degrees).

Hubbard and Baird (1988) extended Kosslyn’s study by quantifying the rela-
tionship between the physical size of objects and the distance at which they are
spontaneously imagined (“first-sight” distance). They found evidence for a power-
law relationship between object size and first-sight distance (see also Hubbard, Kall,
& Baird, 1989). For comparative purposes, this relationship between first-sight dis-
tance and object size can be transformed to reveal the corresponding relationship
between the imagined visual angle and object size (as in Figure 4). Interestingly, this
relationship is ‘roughly linear with log object size, consistent with our findings.

To assess whether a visible frame is required to drive the relationship between
imagined size and assumed size, we ran another imagery experiment in which there
was no visual frame. Ten observers were blindfolded and asked to imagine an object
(spoken aloud by the experimenter). After observers had formed a mental image,
they remained blindfolded and traced a tight bounding box around the object in
their mental image on a wall-sized blackboard in front of them. The 16 objects from
Experiment 1 were used, and observers were guided to a new part of the blackboard
for each object. Here, there was no visually present frame, but we again found a
consistent linear relationship with the imagined size and size rank (r? = 0.89,p <
0.001), with an average slope of 3 deg/rank, though there was much more variability
across individual’s slopes (min: 1 deg/rank, max: 6.2 deg/rank). Thus, both imagery
tasks on a monitor (with a frame) and blindfolded (without a frame) showed reliable

and systematic influences of assumed size on the imagined size of real world objects.

Experiment 3: Perception

Experiment 1 and 2 used tasks that require observers to know what objects look like
in order to draw and imagine them. In other words, they require retrieval of existing

visual object representations. In Experiment 3, observers simply had to view images
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of real-world objects on the monitor and determine the size at which the objects
“looked best.” Similar tasks have been used on studies of viewpoint preferences (e.g.
Palmer, Rosch, & Chase, 1981) and the aesthetics of spatial composition (Palmer,
Gardner, & Wickens, 2008).

Because this is a perceptual task, one possibility is that the best visual size of
the objects is driven by visual acuity constraints. One might predict that all objects
will be sized at the fovea or parafovea (e.g. 2-8 degrees visual angle), perhaps modu-
lated by the complexity of the image, without any systematic variation due to prior
knowledge about the real-world size of the object. Alternatively, we might predict
converging evidence with the results from Experiment 1 and 2. In this case, the visual
size at which an object looks “best” might be systematically related to the logarithm

of the real-world size of the object.

Methods

A separate group of ten naive observers were recruited from the MIT participant pool
(age range 18-35), gave informed consent, and received 5 dollars for their participation.
100 color pictures of real-world objects were used (see Figure 1). Larger versions of
a few example images can be seen in the Appendix, and the image database can be
downloaded from the first author’s website. The experimental setup was the same as
in Experiment 2.

At the start of each trial, the mouse position was set to the right side of the
screen at a random height. Then, observers were presented with one picture of an
object centered on a white background. The initial size of the object was determined
by the height on the screen where the observer clicked to start the trial. Observers
were told to select their preferred size to view the objects. Specifically, observers
were shown a sample object at the smallest possible size of ~2 pixels (“intuitively,
this size is too small or too far away”) and at the largest size such that the edges
of the object extended beyond the monitor edges (“intuitively, this is too large or
too close”). Observers were shown that they could freely move the mouse up and

down to adjust the size of the object, and clicked the mouse to select their preferred
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Figure 5: The average preferred size of objects, in degrees visual angle, is plotted as
a function of the size rank of the objects (left). Error bars represent £1 S. E. M. The
average preferred size of two objects from different size ranks are shown on the right.

view (“choose the view that’s not too big or too small, but the one that looks best”).
Each observer resized all 100 objects, with the order of objects randomized across

observers.

Results

Data from one observer was excluded because they did not complete the task for
all objects. The left panel of Figure 5 shows the average preferred visual size of
the objects, plotted as a function of the size rank of those objects. As in previous
experiments, the preferred visual size was calculated as the visual angle subtended by
the diagonal of the bounding box. The average preferred size for two sample objects—
an egg and a refrigerator, is illustrated in the right panel of Figure 5. The data show
that as the assumed size of the objects increases, the preferred visual size at which to
view them on the screen also increases systematically (r* = 0.96,p < 0.001). Thus,
we again find a consistent relationship between the preferred visual size of the object
and the size rank of that object in the world.

Across the 100 objects, the systematic variation in the preferred visual size was
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again very consistent across observers. The effective reliability was R=.84. Thus,
despite the subjectivity of the task to select the “best view,” smaller objects were
consistently sized smaller and larger objects were consistently sized larger across ob-
servers.

These data can be converted into a ratio between the preferred visual size and the
size of the monitor. Collapsing across the size ranks, the average preferred size ratio
was 36% (SEM 3.6%), which was not significantly different from the average imagined
size ratio or the average drawn size ratio (Experiment 1 - drawing: ¢(71) = 0.17,n.s.;
Experiment 2 - imagery: ¢(16) = 0.56,n.s.). The slope of the regression line between
size rank and preferred visual size was 3.9% per size rank (SEM 0.8%), which was
significantly shallower than the imagery slope in Experiment 2 (mean: 6.3% per size
rank, t(16) = 2.25,p < 0.05) with a trend toward being steeper than the drawn slope
in Experiment 1 (mean: 2.7% per size rank, ¢(71) = 1.99,p < 0.06).

Discussion

These data show that when observers can freely resize objects on the screen, the
preferred view of the object is proportional to the logarithm of their real-world sizes.
These data rule out the simple account that acuity constraints drive visual pref-
erences, because objects were not all resized to subtend equal visual angles at the
maximal extent of the fovea or parafovea. Instead, we find that knowledge about
the physical size of objects systematically influences the visual size at which objects
are preferentially viewed. Similarly, the preferred visual sizes within the frame of the
monitor match the ratios observed in the drawing experiment well. Thus, these data
suggest that perceptual preferences about objects are related to the representations
invoked by drawing and imagery tasks.

The current experiment required subjective judgments about the size at which
pictures of objects “look best” (see also Palmer, Gardner, & Wickens, 2008). Despite
the subjectivity of this task, observers were remarkably consistent in their preferred
visual sizes, with high inter-rater reliability. One interpretation of what drives the

preferred view of an object is the view with the best representational fit to existing
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long-term memory representations (Palmer, Schloss, and Gardner, in press). Specif-
ically, the visual size at which a refrigerator looks best is the visual size (and the
space around it) that matches with existing object representations, i.e., those that
guided the drawing and imagery tasks. Perceptual preference tasks have also been
conceptualized as a consequence of memory processes reflecting the output of the hu-
man inference system (Weber & Johnson, 2006). Akin to the previous literature on
canonical perspective, we term this consistent visual size information the canonical
visual size. This visual size depends on the assumed size of the object and is best
specified not in terms of visual angle but in terms of visual size ratios between the

object and a frame of space.

Experiment 4: Miniatures

In Experiment 4, we manipulated the size observers assumed an object to be in the
world by presenting them with an image of a real-world object but telling them that
it was a miniature version of that object, fit for a highly detailed architectural model.
If the visual size ratio is truly a consequence of the physical size the observer believes
the object to be in the world, then a “miniature” object should be preferentially
viewed at a smaller size than its larger real-world counterpart.

An alternate account that predicts the data from Experiment 3 is that perhaps
observers prefer to see all objects at a certain average visual size, but tend to mod-
ulate their settings around this size based on knowledge about the physical size of
the object in the world. On this account, in this experiment observers who are view-
ing “miniature” objects should not show any difference in their preferred size ratios
compared to observers who believed the objects to be typically sized real-world ob-
jects. They should have the same mean size setting, and should modulate around
that preferred size by the same or perhaps a smaller dynamic range.

Further, the preferred visual sizes found in Experiment 3 could have been driven by
image-level information solely (e.g. resolution, downward viewing angle, aspect ratio).

The converging evidence from Experiment 1 and 2 make this unlikely. However, the

40



miniature experiment serves as a control, as it uses exactly the same images and task
as in Experiment 3, with only instructional variations. Thus, any differences in the
preferred visual size between objects and miniature objects cannot be attributed to

image-level effects.

Methods

A separate group of ten nailve observers were recruited from the MIT participant pool
(age range 18-35), gave informed consent, and received 5 dollars for their participa-
tion. Stimuli and procedures were identical to those in Experiment 3, except for the
instructions given. Here, the participants were told that they were looking at pictures
of “toys” from a “highly detailed architectural model” (i.e., the kind of model that
might have a toy cheese grater and a toy basketball). As before, participants were

instructed to resize the objects on the screen so that they “looked the best”.

Results

The left panel of Figure 6 shows the average preferred size of the objects that are
thought of as “toys” (black line). For comparative purposes, these are plotted as
a function of the same size rank used previously. The data from Experiment 3 is
replotted for comparison (gray line). The average preferred size for two sample toy
objects—a toy egg and a toy refrigerator, is illustrated in the right panel, along side
the preferred size of the “typically-sized” egg and refrigerator from Experiment 3.
Overall, the average preferred size of toy objects on the screen was 5.5 degrees
(S.E.M=2.13 deg), whereas the average preferred size of the same objects from Ex-
periment 3 was 13.1 degrees (S.E.M.=3.3 deg; t(18) = 4.65,p < 0.001). As before, the
preferred size of the objects, when seen “as toys” by the observers, still preserve the
strong correlation with the size rank of the objects (r? = 0.99, p < 0.001). The slopes
of the regression lines between Experiment 3 sizing regular objects and Experiment 4
sizing toy objects were not significantly different (Object: 3.9% per rank, Toy: 3.1%

per rank, t(18) = 0.9,n.s.). Further, observers were very consistent in the relative
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Figure 6: Left: The average preferred size to see images of “toy” objects on the
screen is plotted as a function of the size rank of the object (black line). The data
from Experiment 3 is replotted for comparison (gray line), in which a different set
of observers resized the same images but thought of them as regular objects. Error
bars represent £1 S. E. M. Right: The average preferred sizes of two toy objects
are shown next to the average preferred sizes of those objects when assumed to be a
typical real-world size.

sizes across all 100 objects, with an effective rater reliability of R=0.94.

Discussion

When observers think objects are smaller in the world, the preferred sizes of those
objects are smaller on the screen. This is true even though separate groups of ob-
servers participated in Experiments 3 and 4. Further, this experiment demonstrates
that preferred visual sizes are not driven solely by the image-level differences or the
relationship between objects in the set, because the images in Experiment 3 and 4
were the same. Additionally, the relationship between preferred size and assumed size
is preserved when observers think of the objects as miniatures. Likely this reflects
the instructions that these objects were for a model, i.e., made “to scale” but at a
smaller physical size. The largest miniature objects (e.g., houses, statue) were sized
on the screen at around 27%. Thus we can estimate that observers likely thought of

these images as having a physical size of around 30 — 60 cm (e.g. a coffeemaker or
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backpack), based on the Experiment 3 size ratios.

The current data also have interesting implications about how assumed real-world
size influences preferred visual size, and what kind of information is stored in object
representations. Likely, we don’t have much visual experience with toy cheese graters,
but we do have experience with cheese graters and with toys. It is also likely that
learning from experience operates at multiple levels of abstraction (e.g., this specific
cheese grater, all cheese graters, all kitchen appliances; and this toy, toys in general).
Thus, such learned attributes can flexibly combine to generate a representation of,
for example, a toy cheese grater, without ever having seen one before. As evidence
that this is learned over experience, 18 to 30 month-old children sometimes make
scale-errors, in which they attempt to get into a toy car or sit in a dollhouse chair,
indicating that they can recognize a toy version of the object, but fail to incorporate its
apparent physical size and instead carry out the associated actions with the typically-
sized objects (DeLoache, 2004).

Another implication of this result is that assumed size modulates expectations
about visual size. Put more strongly, a cheese grater on a white background will
look more like a miniature cheese grater if it has a small ratio on the screen. Even
though there were completely different observers between Experiment 3 and 4, the
preferred visual size of miniatures was smaller than the preferred visual size of real-
world objects. This further reinforces the main result that smaller objects in the

world have smaller canonical visual sizes.

Experiment 5: Size Range

An additional factor that may be influencing the preferred size is the range of real-
world object sizes in the image set. In all of the experiments reported here, par-
ticipants were exposed to the whole range of real-world sizes (ranks 1-8, from very
small to very large size). Here, we tested the impact of stimulus set in the perceptual
preference task using a between-subjects design, where three groups of observers are

exposed to a restricted range of objects sizes (e.g. only small objects in the world,
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only objects of medium size, or only large objects). If observers simply use a minimum
small visual size for the smallest object and a maximum visual size for the largest
objects, and scale the other objects between these two extremes, then the visual sizes
we observe will be largely due to the stimulus set and not due to the absolute assumed
size of the object. However, if there are reliable differences in the preferred visual
sizes between the observer groups, even when the groups are exposed to a restricted
range of real-world object sizes, then this would show that observers are guided by a

common canonical visual size representation.

Methods

Three groups of 11 naive observers were recruited from the MIT participant pool (age
range 18-35), gave informed consent, and received 5 dollars for their participation.
Observers completed the same procedure as in Experiment 3, but were exposed to
only a subset of the items, with one group seeing only small items (ranks 1-4), another
group seeing only medium items (ranks 3-6), and the final group seeing only large

items (ranks 5-8).

Results

First, we examined if there were reliable differences between the three groups of
observers on the averaged preferred size. We found a significant effect of group on
the preferred size ratio (F(2,30) = 4.4,p < 0.05,7%> = .22), consistent with our
predictions from Experiments 1-4: smaller visual sizes were preferred for the group
seeing smaller real-world objects and larger visual sizes were preferred for the group
seeing larger real-world objects.

We next compared the preferred visual sizes of each group with the original exper-
iment in which observers were exposed to all size ranks 1 though 8. Three ANOVAs
were conducted on the size ratios, one for each group of observers, with size rank as
a within-subject factor, and stimulus set range as a between-subject factor (e.g. data

from the observers seeing only the smallest objects was compared with data from
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Figure 7: Results of size range experiment. The average preferred size of objects
for the three groups of observers, expressed as a ratio between the size of the object
and the size of the screen, is plotted for each group as a function of the size rank of
the objects. Dashed line indicates the preferred sizes from Experiment 3. Error bars
represent +1 S.E.M.

Experiment 3 for only the object size ranks of 1, 2, 3, and 4, and similarly for those
seeing medium sized objects or large sized objects). The results are shown in Figure 7.
Overall, the average preferred size for small objects was the same whether observers
were only exposed to that range or the full physical size range (ranks 1-4; means:
32% and 29%; F(1,18) = 0.7,n.s.). The same held for observers seeing only medium
size objects (ranks 3-6; means: 39% and 38%; F(1,18) = 0.0,n.s.) and for those
seeing large objects only (ranks: 5-8; means: 45% and 45%; F(1,18) = 0.0,n.s.).
However, observers who saw only medium-sized objects or only large objects used
a larger range of ratios on the screen than observers exposed to the whole range
of objects physical sizes (medium ranks 3-6: experiment x size rank interaction:
F(1,18) = 8.2,p < 0.01,n7®> = .31; large ranks 5-8: experiment x size rank inter-
action: F(1,18) = 4.2,p = 0.055,7% = .19).
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Figure 8: Trial 1 Analysis. Average drawn, imagined, or preferred visual size for the
first trial only of all Experiments 1-5. These visual sizes are expressed as a ratio
between the size of the object and the size of the frame, plotted as a function of the
size rank of the objects. Each gray point represents a participant, with the average
visual size per size rank shown in black points.

Discussion

These results show that the range of physical sizes does have an effect on the preferred
visual sizes, by modulating the dynamic range between the smallest and largest item.
Specifically, the preferred sizes found in the three observer groups have more size
range than the preferred sizes found by participants exposed to the whole range in
Experiment 3. This reveals that the object set, or the context in which a collection of
objects is perceived, is another factor that modulates the preferred visual size. This
result is interesting because it suggests that people have some flexibility in the scaling
between assumed size and visual size. However, for the present purposes, it is also
important to note that overall, the average visual size increased for each group exposed
respectively only to small, medium or large objects and was consistent with the visual
sizes from a different set of observers who were exposed to the whole object set. This
demonstrates that the assumed size of objects influenced their preferred visual sizes,
even across observers and stimuli ranges: smaller visual sizes were preferred for smaller

objects and larger visual sizes were preferred for larger objects.

A related concern is that, over the course of multiple trials in the experiment,
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exposure to different objects with different real-world sizes may lead observers to
adopt a systematic relationship between assumed size and preferred visual size over
time. Thus, perhaps without this exposure to a variety of stimuli with different real
world sizes, there would be no remaining effect of assumed size. If this were the case,
then one would not expect to find an effect of real-world size on the very first trial. To
examine this possibility, we conducted an analysis of the first trial completed for the
94 observers in Experiments 1 through 5 (excluding the first drawings of 21 observers
in E1 which did not meet the criterion for inclusion). We again observe a positive
relationship between the physical size rank the visual size (r?2 = 0.18,df = 93,p <
0.001; Figure 8). The slope of relationship is 3.2% per size rank. For reference,
the average slope was 2.7% for drawing, 3.9% for perception, and 6.3% for imagery.
Thus, despite the lack of power due to having only one trial per subject, this analysis
suggests that, even on the first trial, the small objects were drawn, imagined and
preferentially viewed at smaller size ratios than large objects. While there is likely
a contribution of intertrial comparisons on the size effects found here, these analyses
suggest that the consistency of the size ratios we have found in perceptual, imagery
and memory tasks are not solely a consequence of intertrial comparisons or object set

effects.

General Discussion

Evidence for canonical visual size

In the current studies, we asked whether accessing real world object knowledge yields
consistent visual size representations across different mental processes. Using drawing
from memory, imagery, and perceptual preference tasks we found that systematic
visual size ratios were observed across different mental processes and across observers
(See Figure 9). These results provide evidence for different canonical visual sizes for
differently sized physical objects. Second, the data demonstrate that the canonical

visual size of an object depends on the assumed real-world size of the object. Across
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Figure 9: Left: Results of Experiments 1 (Drawn), 2 (Imagined), and 3 (Viewed),
overlaid on one graph. The x-axis shows the size rank of the object; the y-axis shows
the diagonal ratio of the object in the frame. Error bars represent +1 S.E M. Right:
Example drawings of a fish, chair, and dump truck for a single observer. The average
imagined size and preferred size across observers are shown for these same objects
in the adjacent columns. Note that separate groups of observers participated in the
Drawn, Imagined, and Viewed conditions.

all experiments and observers, there was a strong correlation with the size rank, and
thus with the logarithm of the assumed size of the object in the world (Figure 9).
This claim is further supported by the miniatures experiment in which we manipulated
assumed size and showed corresponding changes in preferred visual size. Finally, these
data argue that the canonical visual size is best characterized as a ratio between the
object and the space around it. For instance, the canonical visual size of a chair is not
a specific visual angle but rather is 38% of a surrounding spatial envelope (Figure 9).
Experiment 1 most strongly supports specifying canonical visual size as a ratio, as the
drawn size for any given object was equivalent across paper sizes when characterized
as a ratio between the object and frame.

On a broader interpretation of these data, tasks which access object represen-
tations for visual size information are likely probing an underlying distribution of
visual sizes, rather than just one specific canonical visual size. For example, while
a strawberry may look best when presented at a size ratio of 18%, this may reflect
only the most probable of a range of possible visual sizes. Exemplar-based models

and view-centered models of object representation argue that observers store many
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instances of objects (e.g. Nosofsky, 1986; Edelman & Butlhoff, 1992; Ullman, 1989);
if visual size information is also stored with these exemplars, this could give rise to
a probability distribution over this dimension. The idea that object knowledge oper-
ates over probability distributions along various spatial and featural dimensions has
received support from memory paradigms, in which systematic biases can be observed
that reflect coding an episode with respect to a prior distribution (e.g. Huttenlocher,
Hedges, & Duncan, 1991; Huttenlocher, Hedges, & Vevea, 2000; Konkle & Oliva,
2007; Hemmer & Steyvers, 2009; see also Baird, 1997). Broadly, accessing an existing
object representation, e.g., for a drawing or imagery task, can be thought of as taking
a sample from underlying distributions, of which visual size and perspective may be

stored dimensions.

Framing effects

We found that observers were sensitive to the amount of space specified by a frame,
drawing objects in such a way that across observers, a consistent ratio between the
object and the paper size was preserved over a range of different frame sizes. These
findings show converging evidence in support of a framing account of the “vista para-
dox,” in which a large distant object viewed through a window (or through a naturally
occurring corridor, e.g. in a cavern or street scene) appears to both shrink in physical
size and recede in distance as the observer approaches it (Walker, Rupich, & Powell,
1989; see also the “coffee cup illusion”, Senders, 1966). This notion that the framing
ratio affects the perception of an object’s physical size properties, beyond information
from the object alone, has been documented in a number of other studies (e.g. Brigell
et al, 1977, Kunnapas, 1955, Rock & Ebenholt, 1959). Further, it is interesting to
note that under natural viewing conditions, objects are always seen in a space, max-
imally limited by the extent of the visual field. As such, any experienced view of an
object has an implicit frame of space around it.

The relationship of the object with the space around it is only one simple statistic
that may be stored from visual experience. More generally, these framing effects

support the notion that object representations are inherently linked to contexts, both
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spatially and semantically (e.g. Bar, 2004; Oliva & Torralba, 2007). For example,
reaction time benefits are found for identifying objects in semantically consistent
versus inconsistent scenes (e.g., Palmer, 1975; Biederman, Mezzanotte, & Rabinowitz,
1982; Davenport & Potter, 2004), as well as for items appearing in a more likely
position given the identity and position of a previous item (e.g. Grunau, Neta, & Bar,
2008). Combined, these results highlight the relative nature of object representations:
in our accumulated visual experience with objects in the world, objects never appear
in isolation. As such, pre-existing knowledge of object properties may be specified not
only as item-specific information but also with more relative statistics, such as object-
object and object-scene associations (e.g. keyboard and mouse; bed and bedroom).
In the case of object size, for instance, we suggest that rather than simply storing
visual angle information about objects, the relevant statistics may actually be relative

measures between object angle and a visual frame of space.

Task-Demand Characteristics

One concern about these results is the issue of task-demands: are people showing ef-
fects of assumed object size because they are explicitly thinking about size while they
make a size response? There are several pieces of data that speak to this issue. First,
while both the imagery and perception studies (E2 and E3) directly involve making
a resizing response, the drawing study (E1) does not. Here, the task instructions
focus much more on object identity (“draw a cat”), while the drawn size is an indi-
rect aspect of the task. Importantly, the results still show an effect of assumed object
size. Second, demand characteristics might arise over the course of the experiment, as
observers reference previous responses rather than treating each trial independently.
Indeed, this is evident in our data in the restricted size range experiment (E5). How-
ever, even on observers’ very first trial, the drawn/imagined/preferred visual size was
still influenced by the assumed size of the object. Finally, the miniatures experiment
(E4) also speaks to the issue of task-demands. Observers were told that the images
were pictures of miniatures for an architectural model, i.e. very small in real-world

size. Surely as a participant, one might feel as if they should select smaller sizes.
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However, smaller than what? The observers were not the same as those who did E1.
If there was no common understanding about the preferred visual size of a typically-
sized car, they would not know how to make a toy car smaller. While none of these
analyses and experiments perfectly address the issue of demand characteristics (and
indeed, E5 points to the fact that other factors beyond assumed size and framing mod-
ulate the accessed visual size), the combined data from all the experiments strongly
point to a role that the canonical visual size depends on the assumed size of the object
in the world. The results of the drawing task (E1) are the strongest evidence of this
point, as this experiment is least subject to task demand characteristics, and also
provides the clearest support that canonical visual size is a relative statistic between

the size of the object and its surrounding space.

Relationship between canonical visual size and real-world view-
ing

Experience typically arises in the real-world in which 3-dimensional geometry con-
strains the distributions of visual sizes that are likely for different sized objects. How
do the canonical size for real-world objects compare to typical viewing distances? To
explore this question, we first need to obtain typical viewing distances for real-world
objects and thus what the corresponding visual angle is in one’s visual field. Hubbard,
Kall, & Baird (1989) obtained estimates of the typical distance of interaction for a
range of everyday objects, which can be converted into visual angle measurements
(from 1.5 degrees for a 3 cm object like a coin, to 25 degrees for a 4m object like
a giraffe). Next, our data suggest that canonical sizes are not specified in absolute
visual angles but are instead relative to a frame of space. Thus, in order to see if
the visual size subtended by objects at their typical viewing distance is the same as
the canonical visual size, one needs to specify what the “frame” is during real-world
viewing. One intuitive possibility for the frame of real-world viewing is the whole
visual field. However, with a 180-degree hemisphere as the frame, the corresponding

visual size ratios at typical viewing distances are all much smaller that the canonical
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visual size ratios we observed in the present data. Another possibility is to use extent
of the mind’s eye as a proxy for the useable visual field and frame. The estimation
varies between 20 to 60 degrees (Kosslyn, 1978; Hubbard & Baird, 1988; Hubbard,
Kall, & Baird, 1989), with the larger estimates obtained when estimating over-flow
distance of real-world objects. With a 60 degree estimate as the frame, typical visual
size ratios would be between 3% for the coin to 42% for the giraffe. These estimated
ratios are similar to the imagined ratios observed in the present data (see Figure 9).
Of course, this speculation should be taken lightly as assumptions have been made
about the size of the real-world frame and the accuracy of subjective reports of typical
viewing distances. More work is required to integrate the canonical sizes found on
the computer screen and drawn pages with the statistics of visual experience in the

real world.

Finally, Hubbard, Kall, & Baird, (1989) have some evidence suggesting that there
may be systematic differences between sizes arising from imagery vs. perceptual
processes. For example, in their study, observers imagined bird’s nests an average
distance of ~ 1 m while the average typical viewing distance was ~ 6 m. In fact,
when Hubbard, Kall, & Baird had observers imagine rods (unfamiliar objects) of a
prespecified length, and then estimate their distance to the rod, they found that the
relationship between size and viewing distance was less noisy than with familiar ob-
jects. These data suggest that canonical visual size may be derived not only from
the distribution of visual experience, but also from structural or geometric properties
of the object (e.g. bird’s nests are rarely seen up close but the canonical visual size
may be more similar to an object of similar size, such as a football, even though
the distributions of visual experience with these objects are likely quite different).
Future studies are required to distinguish between these hypotheses; as with canon-
ical perspective, likely both visual experience and structural geometric factors are

involved.
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Familiar Size as a Depth Cue

Existing knowledge about the size of objects in the world can serve as a cue to depth—
this is typically referred to as the familiar size cue. For example, in a classic study by
Ittelson (1951), observers had to judge the distance to different monocularly viewed
playing cards, where unbeknownst to the observers, all the cards were presented at
the same distance but some playing cards were either three-quarters or one-and-a-half
times the size of a normal playing card. The larger playing cards were estimated to
be closer to the observer, such that a normal card at the reported distance would
match the visual size of the card. Similar results were found for the smaller playing
cards, estimated to be father away. These data show that when objects that have a
familiar or known size, seeing them at a particular visual angle influences the perceived

distance (see also Baird, 1962; Yonas et al., 1982).

Familiar size and canonical visual size are not the same: familiar size means
that observers know the real-world size of objects in the world (e.g. expressed in
meters). This is knowledge about an object property, i.e. object-centered information.
In contrast, canonical visual size indicates that there is a privileged visual size for
perceiving objects (where the visual size is expr