
On the Capacity of Bosonic Channels

by

Christopher Graham Blake

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of ARCHIVES
tMASO-AC~

Master of Science in Electrical Engineering

I FSEP2 7 2011at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY E-. 21RMS

September 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

A u th o r ....................................................................
Department of Electrical Engineering and Computer Science

August 31, 2011

Certified by {...77.).
Jeffrey H. Shapiro

Julius A. Stratton Professor of Electrical Engineering
Thesis Supervisor

Accepted by .................
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses





On the Capacity of Bosonic Channels

by

Christopher Graham Blake

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

Abstract

The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is
a known lower bound that is conjectured to be the capacity. We have quantified the gap
that exists between this known achievable rate and rates achievable by the known methods
of detection including direct, heterodyne, and homodyne detection. We have also quantified
these capacities in the case of multiple independent spatial modes in terms of spectral and
photon efficiency. Furthermore, we have considered the ergodic and outage capacities of fad-
ing channel models for far-field and near-field propagation through atmospheric turbulence.
For the far field, good models for the transmissivity statistics are known. For the near field
we establish bounds on these capacities, and we show that these bounds are reasonably tight.
Finally, we extend the results for ergodic capacity to the case of multiple spatial modes where
a turbulent atmosphere results in crosstalk between different spatial modes.
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Chapter 1

Introduction

Information theory is concerned with determining the ultimate limits on reliable transmission

over noisy communication channels and finding practical means of approaching them. Com-

munication at optical frequencies provides the highest data rates and, through the fiber-optic

backbone, is the major thoroughfare for Internet traffic. The application of information the-

ory to determine the ultimate limits on optical communication, however, must go beyond the

standard classical-physics paradigm that is used, for example, in the study of wireless com-

munication at microwave frequencies. This is because electromagnetic waves are intrinsically

quantum mechanical-their energies are quantized into photons-and high sensitivity pho-

todetection systems are limited by noise of a quantum mechanical origin, whereas microwave

systems are generally limited by thermal noise that can be treated classically.

This thesis addresses a collection of interrelated problems associated with the classi-

cal information capacities of bosonic channels, i.e., optical communication channels treated

quantum mechanically. Before proceeding to discussing the specific problems to be treated,

it is useful to present a quick summary of the key ideas from quantum optics. In partic-

ular, we will will describe the basics of Dirac-notation quantum mechanics applied to the

harmonic oscillator, which models a single mode of the electromagnetic field. This will be

followed with quantum descriptions of the three fundamental photodetection techniques: di-

rect, heterodyne, and homodyne detection. Finally, we will present short characterizations



of the optical channels that will be considered.

1.1 Quantum Optics Essentials

It is outside the scope of this thesis to review all the basics of quantum mechanics, but some

important things will be reviewed. For a more detailed discussion of vector spaces, inner

product spaces, and Hilbert spaces, see [13]. In Dirac notation quantum mechanics, the

state of a system can be represented by a vector, called a ket vector, which will be denoted

by |-). See [13] for a complete description of the properties of a vector space. These ket

vectors form an inner product space. If |x) is a ket vector, then its adjoint (the bra vector) is

denoted by (x| and the inner product between two vectors lx) and ly) is denoted by (x | y).

Furthermore, a finite energy state has unit length, i.e.,

( ) = 1. (1.1)

It may be that a quantum state is a classical mixture of quantum states, i.e., there is some

probability distribution for it to be in a particular set of pure quantum states. Suppose that

a quantum system is in a classically random mixture of states. Denote those states by xn)

and the probability that the system is in state |xn) by p,. Then we can define the density

operator for this quantum system as:

p:P = p n) (Xn l. (1.2)
n

1.1.1 Operators

Before we discuss the quantum harmonic oscillator, a quick review of quantum observables

and operators is needed. See [13] for a more detailed discussion of operators and observables.

For a detailed discussion of quantum optics, see [15].

If we let H, be any Hilbert space, then an operator that maps H, into H8 , denoted T,

has the property that for any jx) E H, there exists a ly) C H, such that T |x) = |y)



An observable is an Hermitian operator that has a complete set of eigenkets. It is a

measurable variable in a quantum system and can be represented by:

O = On lon) (on|, (1.3)
n

where {|oIn)} are the orthonormal eigenkets and a discrete eigenspectrum {on} has been

assumed. If the system is in state |I), a fundamental postulate of quantum mechanics says

that a measurement of this observable gives outcome on with probability

Pr (outcome= =On) = (On I @b)|2.4

when the on are distinct.

If a system is in a mixed state represented by a density operator # = ~ xn) (xnl
we can use classical probability theory combined with the probability law for a quantum

measurement made on a pure state to show that

Pr (outcome = o) = pn Pr (outcome ostate =|xn)) (1.5)
n

Zpn1(o |x onEPn( ) (n o) = (o| Pn |Xn) (Xn] o) = (o|lo). (1.6)
n nn

1.1.2 Quantum Harmonic Oscillator

We can now discuss the quantum harmonic oscillator. The quantum harmonic oscillator

represents a single mode of the electromagnetic field. In the semiclassical understanding of

light, a single mode of light is represented by

ae-iwt (1.7)



where a is some complex number. Then, in this system, the energy is given by

H = hla 12 .

However, in the quantum case, a single mode of the harmonic oscillator is given by

ae iwt

(1.8)

(1.9)

where & is the annihilation operator. In this case, the energy is represented by the Hamilto-

nian operator and is given by

H = hw (did+) (1.10)

where the 1 represents the zero-point energy and at is the creation operator, i.e., the adjoint
2

of a. Annihilation and creation operators have the property that

[at I-, (1.11)

where 5, b] &b - b, is the commutator of a and b.

It is now useful to define some states of interest. One such set of states are the number

states, denoted In), defined for all integers n > 0. They have the property that

N In) = n In) , (1.12)

where N is the number operator and is defined using the annihilation and creation operators

by

5 = at& (.(1.13)



The number states are a complete orthormal set of states. In other words,

(n m) 1, n =114)
0, n: f m

and the states resolve the identity

= |In) (n|. (1.15)
n

Other states of interest are the coherent states, a), which have the property that a la)

a la), for any complex number a. In other words, they are eigenkets of the annihilation oper-

ator. Unlike the number states, these states are not orthonormal, but they are overcomplete.

Their inner product is

(a a') = e
2 1a1

2 
+a,

2 2±a (1.16)

and they resolve the identity as follows:

d2a
S=] |a) (al. (1.17)

Other operators we will define are the quadrature operators, viz., the real and imaginary

parts of the annihilation operator,

a + at
51 = Re (d) = 2

2

and

d2 - I
2z1

(1.19)

These operators lead to two more sets of states, the quadrature eigenstates. These states

(1.18)



have the following properties

i ja1)1 = ai jai), (1.20)

and

&2 a2)2 = a2 |a2)2  (1.21)

where ai and a 2 are real numbers. The quadrature eigenkets have inner products given by

I(a, a1
1)1 = 6 (a1 - a1') (1.22)

and

2 (a 2 a2 )2 = 6 (a2 - a2') (1.23)

so they have infinite energy, but are orthogonal and complete.

1.1.3 Direct Detection Statistics

In a real photodetector, there are many sources of noise. In these systems, incoming light

illuminates an optical filter, and the light emerging from this filter then strikes the photode-

tector, which converts the light into a light-induced current called photocurrent. Photode-

tectors have some current flow in the absence of light called dark current. High sensitivity

photodetectors will amplify this current, and this multiplication has some random noise as-

sociated with it. There is also thermal noise that is injected into the detector's circuit, and

there is also a limited bandwidth to the detector. However, for the purposes of this thesis, all

of these noise elements will be stripped away, and only the fundamental quantum noise will

remain. A diagram of the direct detection system we will use is given in Fig. 1-1. Ideal direct

detection is equivalent to making a measurement of the N observable. If a coherent state

illuminates the detector, then from the postulates of quantum mechanics, the probability of



-wtae

state |")
P(N =n)= -(nj y/

Figure 1-1: Diagram of a direct detection system.

outcome n being observed is

P (N = nstate =|a) ) =|(n | a)| 2  |al e ial2
n!

(1.24)

where we have used the number-state representation

(1.25)
a 'e1a1/2

1a) = a In).

1.1.4 Heterodyne Detection Statistics

A description of balanced heterodyne detection is given in [13]. Figure 1-2 shows a diagram

of a heterodyne detector. In this setup, a single-mode signal field of frequency W is combined

on a 50/50 beam splitter with a strong local-oscillator field frequency of W - WIF, where WIF

is an intermediate frequency.

In [13] it is shown that this setup realizes a measurement of the & positive operator-valued

measurement. Supposing that the quantum system is in a particular coherent state |as) then



signal

cos(wAt)

a2

Tlocal oscillator

sin(wt)

Figure 1-2: Diagram of a heterodyne detection system.

the probability density function for the heterodyne measurement to result in a value a is

p (alstate = a,) = I(a I a') = _I ,12 (1.26)
7r

which is a complex Gaussian distribution with real and imaginary parts having statistically

independent, variance 1 Gaussian distributions. If the state we are in is a random mixture of
2

coherent states with probability density p (as) for the state's eigenvalue, then the heterodyne

detection measurement statistics will be given by:

p (a) d2ap (a) 1  (1.27)
7r

1.1.5 Homodyne Detection Statistics

A detailed account of the quantum theory of photodetection comes from [13]. A diagram of

homodyne detection is given in Fig. 1-3. It is similar to heterodyne detection, in that the



signal field is combined on a 50/50 beam splitter with a strong local-oscillator field, only now

the signal and local oscillator are both at frequency w. Homodyne detection corresponds to

a measurement of

&0 = Re (&,e-j 0 ) , (1.28)

where 6 is the relative phase between the signal and the local oscillator. If 0 = 0, then this

corresponds to measurement of the dS, = Re (&,) observable. If 0 = !, then this corresponds

to the &52 =Im (et) observable.

signal t

local oscillator

Ai(t)=i(t)-i_(t)

.(t) +

i_(t) -

N, + N
wa 2=

K = 2q9

Figure 1-3: Diagram of a homodyne detection system.

If the signal is in the coherent state las), then the homodyne detector's output, as calcu-

lated in [13], will be a Gaussian random variable with mean Re (ase-4O) and variance . For

an arbitrary state 1,), the homodyne detector's output will have probability density function

p (aO||10)) = le (ao |10)12 (1.29)



where dolao)o = aolao)o specifies the eigenket-eigenvalue decomposition of do.

1.2 Modal Theory of Diffraction in Vacuum

z=0 NN~

Vacuum

z=L

AL

Figure 1-4: Diagram of prototypical line-of-site free-space propagation geometry.

Figure 1-4 gives a diagram of a prototypical line-of-sight free-space propagation geometry.

For a linearly polarized transmitter, we can use scalar wave optics. For a quasimonochro-

matic, paraxial propagation transmitter we can employ the Huygens-Fresnel principle

eikL+i 2l 2
EL (p, t)= dpEo (, t - -) . (1.30)

for p-' E AL, wo is the center frequency, A = 27rc/wo is the wavelength, and k = wo/c is the



wave number. Also,

Eo (p, t) = E (f, t)|r=;z~0

EL (jY, t) = E (f, t)| 1-,z=L

(1.31)

(1-32)

are the input and output complex-field envelopes. For convenience these are taken to have

units fphotons/m 2s, even though they are classical fields. For our quantum capacity anal-

yses they will become the eigenfunctions of coherent states of the electromagnetic field.

We can perform a singular value decomposition for

eikL+i 2L

(1.33)iAL

for , c A 0 , p' c AL, i.e.

(1.34)
n=o

for ' C Ao, p' C AL with (Dn (p) a complete orthonormal set on Ao and <n (p-) a complete

orthonormal set on AL. We also have that

1 > rI > T2 .. .r > 0. (1.35)

Using this decomposition, we get

00

Eo (-, t) = Eon (t) ( (P)I
n=o

(1.36)

and



and

00

EL (p', t) = E Vi 7nEo. (t - L/c) <On (p-'). (1.37)
n=o

Thus 7n represents the fractional photon-flux transfer from AO to AL when the <Dn ()6) mode

is transmitted from A0 . Expanding these Eo, (t) on a transmission interval 0 < t < T using

a generalized Fourier series

00

EOn (t) = aonm (t), (1.38)
M=1

where {m (t)} is a complete orthonormal set on 0 < t < T, we get

00 00

ELn ( = aLm(m (t - L/c) = naonmm (t - L/c). (1.39)
m=1 m=1

Classically the spatiotemporal mode transformation

aonm -4 rlnaLnm (1.40)

will be the foundation for our free-space propagation channel models. Because we are in-

terested in quantum limits on capacity, we must convert this classical description to one

involving modal photon annihilation operators. Here we have aonm being replaced by dtonm

and aLnm being replaced by Lnm. However, in order to ensure commutator-bracket conser-

vation the classical modal transformation from aonm to aLnm is replaced by

rmnaoLm + 1 - Nbnrn (1.41)

where bnm is the modal annihilation operator for an environmental (noise) mode.



1.3 Propagation through Atmospheric Turbulence

Optical communication through the earth's atmosphere is subject to many impairments that

go well beyond the diffraction-induced propagation loss - represented by the modal trans-

missivities {rln}-seen in the last section for vacuum propagation. There are a number of

challenges in this type of propagation. Bad weather, for example fog, rain, or snow, and

atmospheric molecular constituents cause absorption and scattering that degrade the per-

formance of optical communication systems. We will focus on understanding clear weather

propagation away from absorption lines. Temporal and spatial thermal inhomogeneities in

the atmosphere under clear weather conditions cause random fluctuations in the refractive

index at optical wavelengths. These refractive-index perturbations are usually referred to as

atmospheric turbulence and lead to amplitude and phase fluctuations of light beams prop-

agating through the atmosphere. Propagation through a turbulent atmosphere has been

described in [16]. Furthermore, a discussion of the extended Huygens-Fresnel principle as it

applies to atmospheric turbulence can be found in [7].

Consider a field propagating from A0 in the z = 0 plane to AL in the z = L plane, where

the duration of the pulse is much less than the atmospheric coherence time. In general, the

coherence time for the atmosphere is on the order of milliseconds [7, 10]. In this case, the

introduction of atmospheric turbulence in clear weather conditions can be described by the

extended Huygens-Fresnel Principle

I L eikL+i
EL (p',t) JdEo pIt - L) e, (1.42)

c i AL
A0

where x and # are real-valued random turbulence-induced log-amplitude and phase pertur-

bations respectively.

Within the weak-perturbation regime, X and # can be taken to be jointly Gaussian

random processes. Energy conservation implies that the mean of x will equal minus its

variance; the mean of # can be taken to be zero, and its variance much greater than one.



Expressions are available for the covariance functions

Kyx (A , Ap) = (X (-4 + A ,7 _+ AP) X (_, p)) - (X)2, (1.43)

and

KxO (Ap-', Ap) = (x (9 + A9, A+ j#) # ( V )) - (x) (#), (1.45)

but these will not be needed for our work.

1.4 Information Theory Background

Shannon defined the maximum rate for a given channel at which reliable communication is

possible in his noisy channel coding theorem [3]. His results have been applied to determine

the capacities of lightwave channels in which conventional photodetection schemes are em-

ployed, i.e., homodyne, heterodyne, and direct detection [1]. These studies primarily use

semiclassical photodetection theory, in which light is treated classically and detector shot

noise sets the fundamental performance limit. However, high sensitivity photodetection is

fundamentally limited by quantum noise. Thus, light must be treated quantum mechanically

and the receiver must be allowed to use arbitrary quantum measurements if we are to es-

tablish the ultimate capacities of lightwave channels. The quantum equivalent of Shannon's

coding theorem is the Holevo-Schumacher-Westmoreland theorem [4]. The classical capacity

of the single-mode lossy channel is established by random coding arguments akin to those

employed in classical information theory. A set of symbols j is represented by a collection of

input states that are chosen according to some prior distribution pj. The Holevo information



associated with the priors {p } and density operators {&j} is:

X(P],&) =S p3&I- S(&J), (1.46)

where S (&) = -tr (& In (&)) is the Von Neuman entropy of the density operator &. The

Holevo-Schumacher-Westmoreland theorem then gives the capacity of the thermal-noise

channel as:

C = sup (Cn/n) = sup max X[pj, (EN)"O (p )] /n). (1.47)
n n (fPjPj 17

Here, (EN)*O (,) is the density operator at the output of a bosonic channel with transmit-

tivity q and thermal noise with average photon number N when p is the density operator

of its input. The on superscript indicates a sequence of n independent uses of the channel;

,3 is the joint density operator over those n channel uses. The capacity of this channel is

taken as the supremum over n-channel-use symbols because it may be that the channel is

superadditive.

What is unique about a quantum channel, as opposed to a classical channel, is that the

statistics of this channel are determined both by the state that is sent and also the quantum

measurement employed. The capacity of various types of these quantum channels is outlined

in [1]. The capacity of a pure-loss bosonic channel is known. This is a channel in which signal

photons may be lost in propagation and the channel injects the minimum (vacuum state)

quantum noise needed to preserve the Heisenberg uncertainty principle. The thermal-noise

channel is a lossy channel in which noise is injected from the external environment according

to a Gaussian distribution. A lower bound on the capacity of this channel has been proven,

and it is conjectured to be the ultimate quantum capacity of this channel. However, this

capacity cannot be reached by the use of heterodyne, homodyne, or direct detection alone.

Of interest is how big a gap exists between this conjectured quantum capacity and the

known capacities for heterodyne and homodyne detection. In the case of direct detection,

the capacity of a thermal-noise channel in which direct detection is used is not known, but



lower bounds can be computed. We have derived some asymptotic properties of the direct

detection channel and quantified the gap that exists between the known detection techniques

and the conjectured quantum capacity of the thermal-noise channel.

In this thesis we will outline some of the known capacities of various types of bosonic

channels and also present the conjectured capacity for the thermal-noise channel. Next, we

will present the statistics for a thermal-noise channel in the case of direct detection. We

will then prove that in the limit of low average received photon number, the direct detection

capacity is asymptotic to the conjectured thermal-noise channel capacity. Furthermore, we

will discuss the capacity of a channel that experiences fading due to atmospheric turbulence.

We will look at the capacity of fading channels operating in the far field, where exponential

or lognormal fading can occur. Here we will focus on the outage capacity and the ergodic

capacity of this channel. Then, we will discuss bounds on the capacities of the fading channels

in the near field. Finally, we will show results on how to extend these calculations to cases

in which multiple spatial modes are transmitted through a turbulent atmosphere, which can

result in random interference.

We begin, in Chapter 2, by presenting the capacity of the pure-loss channel and a con-

jectured capacity for the thermal-noise channel. From this, we will derive some asymptotic

properties of the thermal-noise direct detection channel. We will then calculate the capacities

in various average received photon number regimes and quantify the gap that exists between

the three known detection techniques and a theoretically optimal detection technique. Here

we will find there is only a modest gap between capacities achieved with known technologies

and the theoretical maximum. Nevertheless, if both spectral and photon efficiencies are to be

optimized, high spectral and high photon efficiencies can be achieved using far fewer spatial

modes if optimal detection is used as opposed to known techniques.

In Chapter 3, we will define the notion of outage and ergodic capacity and derive bounds

on these capacities in the case of near and far field optical communication through atmo-

spheric turbulence. We will do this assuming lognormal and exponential fading statistics,

and also derive some bounds for ergodic capacity in the case of worst-case fading statistics.



Finally, we will investigate the capacity of a multiple input, multiple output fading chan-

nel in which there is intersymbol interference. We will show how to calculate bounds on the

capacity of a particular sparse aperture system and show through simulation how tight these

bounds are.
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Chapter 2

Pure-Loss and Thermal-Noise

Channels

The statistics of the thermal-noise channel model can be derived from the commutator

preserving beam splitter relationship:

t'= % + v/1 - 7I>, (2.1)

where 6, b, and ' are modal photon annihilation operators and 0 < 77 1 is the channel

transmissivity. Here, & is the input mode whose information-bearing state is controlled by

the transmitter, b is a mode injected by the channel, and d' is the output mode from which

the receiver will attempt to retrieve the transmitted message.

For the pure-loss channel, the b mode is in its vacuum state. For the thermal-noise

channel this mode is in a thermal state, i.e., a Gaussian mixture of coherent states with an

average photon number Nb > 0 [1] whose density operator is therefore

Pb =a e rli in 2 ) ( 2.2)
1Nb

For a channel with the beam splitter relation in (2. 1), the average received photon number



that is due to the transmitter is related to the average transmitted photon number as follows:

N, = TINt. (2.3)

Similarly, when the average photon number of the noise input into the beam splitter relation

is Nb, the average photon number for the received noise, N, is given by:

Nr = (1 - rj) Nb. (2.4)

For the sake of notational simplicity, in what follows N will be used to denote the average

received signal photon number (N,), and N will denote the average received noise photon

number (Nr) in what follows.

It has been shown that the pure-loss channel (N = 0) is not superadditive, and that its

classical information capacity is achieved by coherent-state encoding. The capacity is given

by [5]:

(2.5)C = g(N)

where g(x) is the Shannon entropy of the Bose-Einstein distribution with mean x, i.e.,

g(X) = (x+ 1) log (X+ 1) -X log (X). (2.6)

The base used for the logarithm in this expression sets the units for measuring information

content, i.e., base e leads to nats and base 2 leads to bits.

It is conjectured that the capacity of the thermal-noise channel with average received

signal photon number N and average received noise photon number N is [6]:

Cconj(N, N) = g(N + N) - g(N). (2.7)

This rate is achievable with coherent-state encoding, and so is a lower bound of the true



capacity, but it has not been shown to be the capacity.

We also know the classical information capacities of two types of thermal-noise chan-

nels, when the quantum measurement at the receiver is constrained to be either heterodyne

detection or homodyne detection and the transmitter uses coherent-state encoding. Their

capacities are given below:

Chet (N, N) =-log 1 + 1 NN (2.8)

-I 4N
Chom(N, N) = -log (1 + (2.9)

2 1 + 2N)

In the remainder of this chapter we will address the following issues with respect to the

capacity of the thermal-noise channel. First, in Section 2.1, we will study the asymptotic

behaviors of the thermal-noise channel with coherent-state encoding and direct detection.

Then, in Section 2.2 we will consider the photon and spectral efficiencies that can be achieved

for the thermal-noise channel. Here, we will include the use of multiple spatial modes in a

near-field propagation geometry.

2.1 Asymptotic Behaviors of the Direct Detection Chan-

nel Capacity

A closed-form expression for the capacity of the single-mode direct detection channel is not

known. The measurement statistics for an ideal single-mode direct detection channel (in

which the noise injected into the channel is a Gaussian mixture of coherent states), are given

by the Laguerre distribution for the observed photon count n

-112 N" -|as
Pr(n) =e (N+1) L )n±1 LE N (2.10)

(N + 1)+ N(N + 1)'



where la,12 is the average received photon number of a single coherent-state transmission

Ia.) and N is the average received noise photon number, and

Ln (X) = Z(1)m  n ) X (2.11)
m-o n - m)

is the nth order Laguerre polynomial. More details of the derivation of these statistics can

be found in Appendix B.

We can derive some bounds for the capacity of this direct-detection channel given a

constraint on the average received signal photon number by considering an on-off keying

transmitter. The direct-detection receiver can decide if a 0 was sent or a 1 was sent by

simply saying whether or not a photon count of 0 was received. This is not a minimum

probability of error decision rule, but we will show that in the low received photon number

regime it is asymptotically optimal. In this channel, the probability (p) of sending a 1 must

be such that

l0 a 2 p N. (2.12)

With this arrangement we obtain a binary channel whose transition probabilities are shown

in Fig. 2-1. We then note that for every particular value of p in this binary channel, the

mutual information is given by:

I(X; Y) = H(Y) - H(YlX) (2.13)

-N -N
- HB pep(N+1) 1 - P H p(N+1) (IP)HBY(2.)4

= NH + - pH -I1 - p+H , -

where H(Y) is the Shannon entropy [3] and

HB(x) -x log(x) - (1 - x) log(1 - x) (2.15)

is the binary entropy function.
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Figure 2-1: Binary channel that can be produced with on-off keying of coherent-state light
and direct detection on the thermal-noise channel.

The capacity of a channel with Laguerre statistics is at least the maximum over p of

the preceding expression, where p can range from 0 to 1. In particular, for every c and

sufficiently small N, we can use p = cN so that the mutual information is equal to:

I(X;Y) = HB
-1

N +±I

1 - cN
+ N

/ 1(e c(N+1)
-cNHB N±I -(1 -cN)HB

1

N-.1>

(2.16)

Let us explore the behavior of this expression for N < 1.

Our focus on the N < 1 regime stems from the fact that for fixed N heterodyne detection

has a capacity that satisfies

lim Chet (N, N)
&-oo Conj (N,N) =1

(2.17)

whereas, as will be seen when we present capacity plots later in this section, both heterodyne

and homodyne detection have capacities that fall well below Cony (N, N) for N < 1.
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-00



Consider first the case in which N =N, i.e., when the average received signal photon

number is equal to the average received noise photon number. We thus know that:

(B ce c(N+1)

N+1. Cdir (N, N)
hm -
iv->0 - N log NV

Slim
N-+o

- cNHB -N+1))N+1

-N log N

- (1 - cN)

In Appendix A we will show that the limit on the right equals c - ce- and thus conclude:

.Cdir(N,N)1
him - -) >c-ce c
v-RO -NlogN

(2.19)

It is easy to show that

1

lim c - ce- c1
C->OC

(2.20)

For every c, there is a sufficiently small N such that p = cN is a valid probability for all N

less than this value. Thus, we conclude that

(2.21)l Cdir(N, ) 1.
N-io -NlogN

However, from [2] we know that

. Cdir(N, 0)
him - -= 1.
N->o -N log N

(2.22)

We also know that the addition of random noise can only decrease the capacity, thus

Cdir (N, N) <; Cdir(N, 0).

HB( N+1 )

(2.18)

+1-C5NV+1 )

(2.23)



So we get

Cdir (N, N) Cdir(N, 0)
hm I; lim - 1 (2.24)
RN-o -N logN N-O -N log N

Combining our results, it must be that

Cir ( N, N )lim C (, = 1. (2.25)rv--o -N log N

Now let us consider the case in which the noise is a constant multiple of the average

received photon number. Here we find that

"B (cRec(kN+1) ) - c HB - (1 - cN)HB (k±1

lim ;;k lim
ri- o -N logN N-O -N log N

(2.26)

We can then show that:

Cdir(N,kN) _ 1
lim -c-ce (2.27)

N-*O -N log N

the details of this calculation are in Appendix A. From this result we can use the same

argument employed previously to show that

lim Cd- (N, kN) (2.28)
;- o -N log N

In other words, the direct-detection capacity of the thermal-noise channel has a low average

received signal photon number asymptote that is independent of the strength of the noise.

Of course, convergence to this asymptote can be expected to depend on the noise strength.

We will now plot the various capacities for different values of the average noise photon

number. Since we do not have a closed form expression for the on-off keying direct detection

capacity, we instead numerically estimate the capacity by optimizing (2.14) over p. In Fig.

2-2 we show the capacities of the heterodyne, homodyne, and direct detection on-off keying



channels, as well as the conjectured quantum capacity when N = N. From this figure we

see that there is not a large difference between achievable capacities using the best of direct,

heterodyne, and homodyne detection and the conjectured quantum capacity when the noise

is equal to the average received signal photon number. However, we are more interested in

the case in which the average received noise photon number is some realistic constant value.

At near-infrared to visible wavelengths, the average noise photon number is typically much

less than unity [8]. We set N =10~6 and plot the thermal-noise capacities for this case in

Fig. 2-3.
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Figure 2-2: Capacity plots for various bosonic channels when the average received signal
photon number equals the average received noise photon number (N = N). Shown are plots
of the conjectured quantum capacity from (2.7), and the heterodyne capacity from (2.8),
and the homodyne capacity from (2.9). Also included is the direct detection capacity when
on-off keying is used, which is calculated numerically by optimizing (2.14) over p.
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Figure 2-3: Plot of capacity of various bosonic channels when average received noise photon
number is equal to 10--

2.2 Photon and Spectral Efficiencies

In this section we will discuss the achievable photon and spectral efficiencies for hetero-

dyne, homodyne, and on-off keying direct detection, and compare them to the theoretically

achievable photon and spectral efficiencies for optimal quantum detection in the case of the

pure-loss channel. Furthermore, assuming the thermal-noise channel capacity conjecture is

true, we will present curves for the photon and spectral efficiencies for an optimal detec-

tion thermal-noise channel, and compare that to a channel that uses direct detection on-off



keying. We will also demonstrate that heterodyne and homodyne detection cannot achieve

photon efficiencies greater than 1 nat/photon and 2 nats/photon, respectively.

For every method of quantum detection and average received signal photon number, there

is an associated capacity. In the single-mode case, each capacity has a photon efficiency:

C (N,N)
PE = N (2.29)

measured in bits/photon or nats/photon depending on the logarithm base chosen for evalu-

ating C (N, N), and a spectral efficiency

SE = C (I, N), (2.30)

measured in bits/s/Hz, or nats/sec/Hz, depending on the logarithm base.

We will soon see that single-mode operation is incapable of achieving high photon effi-

ciency, PE > 1 and high photon efficiency, SE > 1. If both are desired, there is a way to

accomplish that goal when multiple spatial modes are available. Suppose that the transmit-

ter can employ M spatial modes, whose annihilation operators are &m, for 1 < m < M, and

that each of these modes couples to the receiver by a beam splitter relation of the form (2.1),

i.e.

6dM = d+ 1 -m, (2.31)

where the noise modes bm are in independent thermal states with average photon number

Nb. As we did for the single-mode case, we shall use N and N for the average received signal

and noise photon numbers, respectively, but now N represents the total over all M spatial

modes, while N applies to each mode individually.

By symmetry, the maximum efficiencies are attained when the transmitted photon num-



ber is split evenly between all M modes of the quantum channel, resulting in

C ($,N)
PE =M -

N

SE = MC , N,

where C denotes single-mode capacity.

We will now show that

and thermal-noise channels,

nats/photon, respectively.

pure-loss channel are

heterodyne and homodyne detection, in the case of pure-loss

can never reach photon efficiencies above 1 nat/photon and 2

The homodyne and heterodyne capacities for the single-mode

Chet ( ) log (1 + N)
1

Chom (N) = log (1 + 4N)
2 +4)

(2.34)

(2.35)

Because the addition of random noise can only decrease capacity, we know that the photon

efficiency achieved by heterodyne and homodyne detection on the thermal-noise channel will

not exceed what these detection methods achieve for this metric on the pure-loss channel.

For pure-loss we have

PEhet MChet ) (2.36)
N

and

MChom ($,0)
PEhom = - (2.37

N

The associated M spatial-mode spectral efficiencies are

SEhet = MCet , 0
(M)

(2.32)

(2.33)

(2.37)

(2.38)



and

SEhom = MCho ( N ). (2.39)
(M

If we choose a particular value for the spectral efficiency, for either heterodyne or homodyne

detection, we can solve for N as a function of SE and M. We get

IV= M (e9 -1 (2.40)

for heterodyne detection and

= (eE -1) (2.41)

for homodyne detection. Substituting these results into the PE expressions then yields:

PEhet SE (2.42)
M(e - 1)

and for homodyne

PESom = E (2.43)
m e -i )

With x = S, we have

PEet (2.44)ex -1

which is monotonically decreasing with increasing x, and approaches 1 as x - 0. Likewise

with y = 2, we have

PEhom = (2.45)
e- 1



which is monotically decreasing with increasing y, and approaches 2 as y -+ 0. Thus, PEhet <

1 nat/photon and PEho, 2 nats/photon, with equality in both cases being approached as

N -0, where we have made use of the fact that sE - 0 on the pure-loss channel isM

equivalent to N -+ 0. Because of these limits, we will not plot homodyne and heterodyne

photon and spectral efficiency curves in what follows.

Figure 2-4 plots PE and SE for the pure-loss and thermal-noise (N = 10-6) channels with

M = 1, 10, 100, and 1000. In all cases we include the optimum-detection quantum capacity

(conjectured capacity in the thermal-noise channel) and the on-off keying direct detection

capacity lower bound. From this figure we see that for a given spectral efficiency, to achieve

the same photon efficiency as is possible based on the thermal-noise channel lower bound, a

factor of over 10 times more spatial modes may have to be used. This is a situation in which

there is a substantial gap between direct detection and the conjectured quantum capacity,

and where there might be some room for improvement. In particular, it may be possible

to achieve a target spectral efficiency and photon efficiency using some optimal detection

technique more easily than using direct detection.
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Figure 2-4: Photon efficiency versus spectral efficiency for a pure-loss (N = 0) and thermal-
noise (N = 10-6) channels with M = 1, 10, 100, and 1000 spatial modes. The lowest
number of spatial modes (M = 1) corresponds to the lowest curves on the graph, and they
increase sequentially until the M = 1000 highest curves on the graph. Quantum capacity
(pure-loss) and the conjectured quantum capacity (thermal-noise), are compared with lower
bounds for the on-off keying direct detection capacities. Also included is a plot of the photon
efficiency versus spectral efficiency for the case of N = 0. We observe that the gap between
the curves for the conjectured quantum capacity and this upper bound is not large in this
region of spectral efficiency. We note that the number of spatial modes required to achieve
a particular photon efficiency in the case of direct detection is much greater than in the
conjectured quantum capacity case.



Chapter 3

Ergodic Capacity and Outage

Capacity

The beam splitter channel models - pure-loss and thermal-noise - whose capacities we

addressed in Chapter 2 represent idealizations that could be applied as first approximations

to vacuum propagation and fiber-optic propagation. However, for line-of-sight propaga-

tion through the atmosphere in clear-weather conditions, they are insufficient because they

fail to capture the severe time-dependent fading that is due to refractive index turbulence

[7]. Fading environments have long been studied - in the classical domain - for wire-

less communication at microwave frequencies and with semiclassical photodetection models

for optical communication through atmospheric turbulence [14]. Our main purpose, in this

chapter, is to extend prior work on fading-channel capacities - specifically the ergodic and

outage capacities - to quantum models for both far-field and near-field propagation through

turbulence.

In Chapter 1 we reviewed the theory of optical propagation through turbulence. Because

we are interested in high data-rate communication - say Gbps - and because turbulence

multipath spread is on the order of psec and its coherence time is on the order of msec, it is

appropriate to model a single channel use between a transmitter employing a fixed spatial



pattern and a receiver extracting a single spatial mode as a beam-splitter model

e' = 77eiod + 1 - (3.1)

where, as in Chapter 2, d, b, and a' are modal photon annihilation operators for the input

mode, the mode injected by the channel, and the output mode, respectively, 0 < iJ < 1 is

the channel's transmissivity, and 0 is the channel's phase shift. Now, unlike Chapter 2, rj

is a random variable, and one that has very strong statistical dependence between different

channel uses. In Section 3.1 we address the ergodic capacity for this fading beam-splitter

channel, and in Section 3.4 we consider its outage capacity. In both cases we will only treat

single-mode operation. The extension to multi-mode operation will be given in Chapter 4.

3.1 Ergodic Capacity

We assume that the channel state, i.e., the transmissivity ij and the phase 0, are known for

each channel use by both the transmitter and receiver. Because as many as 106 channel uses

are achievable for coding within a single channel coherence time, viz., while rj is fixed, the

transmitter and receiver are able to achieve capacity

C (rT, (1 - 1) NB) (3.2)

where NT= (&ft&) is the average number of transmitted signal photons per channel use, NB

K btb is the average number of noise photons entering the channel, and C (NT, (1 - 77) NB)

is the channel capacity of the thermal-noise channel from Chapter 2. With p (71) being the

probability density for the fading channel transmissivity, we have that

1T

Cergodic = dp (n )C (NT, (1 - n) NB) (3.3)
0



is the channel's ergodic capacity. Note that this formulation encompasses both conventional

receivers - by using the heterodyne, homodyne, or direct detection results from Chapter

2 for C (rNT, (1 - 71) NB) - as well as the ultimate quantum form of the ergodic capacity,

which follows from the quantum results in Chapter 2 for C (qNT, (1 - 7) NB) -

We can see that the ergodic capacity depends on the probability distribution for the

value of T1. In the far field, there are a number of models for this distribution. For practical

purposes, it is convenient to suppose that the channel stays stable on the order of msec,

while a practical implementation of a high rate optical channel will transmit at rates on

the order of GHz, so the ergodic capacity could be practically approached by dividing time

into discrete msec intervals, measuring the channel, and then transmitting for that time at a

rate close to the instantaneous capacity of that channel. We note that this requires channel

knowledge, but if the channel is slowly varying in time, this may be practical to achieve. In

this case, during each milliseconds-long time interval, the value of q is a random variable.

We now need to know what the probability distribution of 77 is during each of these time

intervals and then the ergodic capacity can be computed for various channels.

We will consider ergodic capacities in both the far field and the near field, i.e., when the

average power transferred is a small fraction of what was sent in the case of far field, or

when the power transferred is nearly all of what was sent in the case of the near field. In

the next section we proceed to develop two far-field models - exponential and lognormal

fading models - which correspond to earth-to-space communication and space-to-earth

communication, respectively. These will be used in Section 3.3 to evaluate the ergodic

capacities for those communication scenarios. Later, after we introduce the notion of outage

capacity, we will develop tight bounds on the ergodic capacity of near-field operation.

3.2 Fading Models

Figure 3-1 shows a diagram of a bidirectional earth-space channel. For uplink commu-

nication, the transmitter is on the ground and its output is emitted from a diameter-Do

exit pupil A0 . The uplink receiver is in a synchronous orbit and collects light through a
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Figure 3-1: Diagram of earth to space communication geometry.

diameter-DL entrance pupil AL. The turbulence is all contained within a height of 10 to 15

km above ground near the transmitter, i.e., in the troposphere. In applying the extended

Huygens-Fresnel principle to this setup, we have that DL < turbulence coherence length at

the receiver and and that Do > turbulence coherence length at the transmitter, whence

(3.4)

where 0 = is the center of the AL pupil. When -% < l and R < 1, as will be the case for

practical pupil diameters, then the extended Huygens-Fresnel principle can be approximated

L = 40000 km

ikL+i k ,1

EL (fi, t) = djEo , It - L) e 2L ex(d6)+j+(d6,6),c iA L



-eik L (,tL) XOjjO'P
EL (1,t) = J d15Eo At - - ex(0,p~i(oP. (3.5)

zA L c
A0

We shall assume a collimated-beam transmitter

4NT
E 0 (, t) = 2 s (t) (3.6)

which achieves optimum ground-to-space power transfer in the absence of turbulence, where

NT is the average number of transmitted photon and s (t) is a normalized modulation obeying

f Is (t) 2dt =1. The extended Huygens-Fresnel Principle now yields

EL (P, t) = s j N dpxoe i+os (3.7)
AL c) LrDo 2 JK

A 0

Decomposing the AO integral into statistically-independent coherence areas gives us

Jdex(oP1+(o,) Acohexq+i+q (3.8)
A0  q

where the {Xq} and {#q} are the logamplitude and phase fluctuations for these coherence

areas. The central limit theorem now implies that this summation has a zero-mean complex-

Gaussian probability distribution because (exn~in = 0.

Equation (3.7) shows that the field received over AL is a collimated beam, i.e., a single

spatial mode. Thus if we extract the s (t - L) temporal mode from this collimated beam

spatial mode via

a' = dts* t - )Jdg EL (, (3.9)

AL



we get

a' = iea (3.10)

where

a dts* (t) dp 2 EL (, t) (3.11)

Ao

is the corresponding spatiotemporal input mode and

Vie2O ( 7 rDODL e Xq+iq (3.12)
q=1

where we have used

r o2
QAcoh = * (3.13)

4

Thus, we see that for Q > 1, we get Ve 0 to be a complex-valued Gaussian random variable,

which implies that rj is exponentially distributed. We also see that

rDoD 1 7rDTDL 2
(M)= 4AoL) -1 Q2 e2X (62 A < 1 (3.14)4AL)Q2 q=1 2 ~- 4AL)

q=1

where the first equality follows from our assumption that the fluctuations incurred on dif-

ferent coherence areas are statistically independent and the second equality follows from Xq

being Gaussian distributed with a mean value equal to minus its variance, and the definition

DT = Do/v/Q of the turbulence-limited diameter for diffraction-limited propagation over

the ground-to-space path. The final inequality is a consequence of D < 1, _ < 1, andAL A L

Q > 1. Physically, (27) < 1 represents far-field propagation, i.e., only a very small fraction

of the transmitted photons reach the receiver over the uplink to synchronous orbit. Note

that Q > 1 implies that (7) < (" )2 which is the result that applies in the absence of



turbulence.

The preceding analysis of the uplink is entirely classical, although we have chosen to

measure energy in units of photons at the operating wavelength. Because we will employ

coherent-state encoding, we can take the beam-splitter model with exponential fading for

the annihilation operator's input-output relation to be

a' = V/e/ dtd + /1 -I7b. (3.15)

Here, 0 and 7 will be statistically independent with 0 uniformly distributed on [0, 2-r] and ij

exponentially distributed with mean ('fL )< 1. Strictly speaking, we cannot use this

model when q > 1, but the probability of 71 > 1 occurring is extremely small so, as we will

see later, this restriction will not pose any problem.

Now let us consider a system in which the transmitter is in space and the receiver is

on the ground. With the same propagation assumptions that were made for the uplink, we

know that

EL ,t)2 S (t) (3.16)
rDL

achieves optimum space-to-ground power transfer whether or not turbulence is present. The

extended Huygens-Fresnel principle now gives us

E(,t=NDL 2 (t - e(,) (3.17)

If we collect plane-wave spatial modes over each of the Q coherence areas in Ao, and extract

the s (t - L/c) temporal mode what results is

aq =Jdts* t - ) p d, 24 t) (3.18)

Aq



7 DTDLeikL) eXq+ikq a (3.19)
i4A L

for 1 < q < Q where

a= dts*(t)J dp - 2 Eo(p-',t). (3.20)

AL

Quantizing this classical relation yields the beam-splitter model

+ 1 - gfqbq (3.21)

for 1 < q < Q, where {Tjq, Oq} is a set of independent identically distributed random variables,

with rq being lognormally distributed with mean equal to minus its variance and 0 q being

uniformly distributed on [0, 2-r]. Here we see that each coherence area in the ground receiver's

entrance pupil has

_ ('7TDTDL 2

(%q) = 4AL )(3.22)

fractional energy transfer, so that the total average energy transfer is

(DODL 2

Q (q) = 4AL ) (3.23)

which matches what is achieved in the absence of turbulence.

3.3 Computation of Ergodic Capacity

In Fig. 3-2 we plot the ergodic capacities of the pure-loss heterodyne, homodyne, direct

detection on-off keying channels, as well as the optimal quantum detection channel for the

beam-splitter model in which q is exponentially distributed with mean value (r) 0.005. In

other words, plotted are the capacities given by:



1

Cergodic f d?7p (77)C (TiNT, (1 - TI) NB) (3.24)
0

where p (TI) is

p (q) - _, for 0 < q < 1, 0 otherwise (3.25)

0

which is a standard exponential distribution that has been truncated at 7 = 1. In the end,

this truncation does not appreciably change the value of the integral because (I) is so small.

Exact expressions for this capacity cannot be obtained, but they have been numerically

evaluated. We note that the ergodic capacity is very close to the upper bound on any ergodic

capacity when evaluated at constant 1 7 (1), indicating that although random fading hurts

the channel capacity, it does not hurt very much.

In Fig. 3-3, we plot the ergodic capacity where p (TI) is taken to be a lognormal dis-

tribution, i.e., when we consider space-to-ground propagation with a single coherence area

receiver on the ground. The lognormal distribution is given in terms of parameters y and o2

as follows:

(in o-_A)2 ( An o 2

N/2r,2e 2172;, e 2,
p (W) = e- 2e , for 0 _ < 1, 0 otherwise (3.26)

I~~ 2, +ia e #d 1  ±erf( 2,

0

where again the distribution is truncated. Once again this truncation is insignificant for very

small (q). In this case, the value of (TI) can be given as:

2

(I) = e, . (3.27)

As we saw in the case of the exponential distribution, with the lognormal distribution the
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Figure 3-2: Ergodic capacity plots for various bosonic pure-loss channels as a function of
average received photon number in the case of exponential fading with (q) = 0.005, compared
to the capacities when the channel transmissivity is always constant 77 = 0.005. We show in
(3.42) that constant-a capacties are upper bounds on the corresponding ergodic capacities.
Notably, the ergodic capacities are very close to their upper bounds for 7 = 0.005.

capacity is not significantly affected by random fading when (q) < 1

3.4 Outage Capacity

Although the ergodic capacity of a channel is of interest to us, achieving this capacity may

be difficult because it requires that channel knowledge be available to both the transmitter

and receiver, and it implies that a continuum of different transmitting rates be used for

a continuum of channel states. Far easier to implement is a transmitting structure that
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Figure 3-3: Ergodic capacities for various pure-loss bosonic channels as a function of average
received photon number in the case of lognormal fading with parameter (,q) = 0.01 and
S2 = 0.5, compared to the capacities when the channel transmissivity is a constant at

, = 0.01. We show in (3.42) that constant-i capacties are upper bounds on the corresponding
ergodic capacities. Notably, the ergodic capacities are very close to theor upper bounds for
' = 0.01.

transmits at one rate if the channel is in a state that can support that rate, and when the

channel is in a poor state, the transmitter does not transmit at all. The capacity of a fading

channel that can be in a transmitting state a fraction pt of the time is called the outage

capacity. We note that over very long periods of time, the average rate of transmission for

this type of channel is

R (pt) = ptCt (pt) (3.28)

where Ct (pt), the outage capacity, is defined as the maximum rate that can be reliably trans-

mitted for at least a fraction pt of the time. For the pure-loss and thermal-noise channels, we



can further calculate the outage capacity as a function of the probability that rq is above a

particular value. We first define 1 max as the maximum value that the channel transmissivity

will equal or exceed with probability pt or greater. In other words, r7max satisfies

Pr (j > max) > pt. (3.29)

Using this definition, and assuming that the receiver knows the channel phase 0, we can

show that the outage capacity as a function of pt is

Ct (Pt) = C (77maxNT, (1 - Tmax) NB) (3-30)

for the thermal-noise channel, where, as in (3.2), NT (did) is the average number of

transmitted signal photons entering the channel, NB Kbf) is the average number of

background photons entering the channel, and C (rimaxT, (1 - qmax) NB) is the thermal-

noise capacity from Chapter 2.

Over long periods of time, the average rate at which information may be reliably com-

municated for a given pt is therefore

R (pt) = ptC (qmaxNT, (1 - rimax) NB). (3.31)

In the remainder of this section we shall use the dependence of 7max on pt for the expo-

nential and lognormal fading models of far-field propagation to maximize R (pt) as a function

of pt in the case of the pure-loss channel, for which

R (pt) = ptC (maxJNT, 0) = ptg (jmaNT). (3.32)

3.4.1 Outage Capacity for the Exponential-Fading Channel

Here we shall presume that 77 follows the truncated exponential distribution p (,q) given in Eq.

(3.25). As explained in Section 3.2, this distribution models the fading statistics encountered



in ground-to-space communication. It is now easy to find ama as a function of pt. We have

that

Jp () d = pt,
77max

from which straightforward integration yields

e -max -

1 -e()_e I

(3.33)

(3.34)

and hence

na = - F) In e) (3.35)

For (1I) < 1, which will be the case deep into the far field, we can safely neglect the truncation

in (3.25), so

(3.36)

Equipped with our expression for qmax as a function of pt, we can now maximize

R(pt) = ptg (- () In e h + 1 i- e )pt)

for the pure-loss channel with exponential fading.

T) ptg (- (n) In (pt) NT) (3.37)

In Fig. 3-4, we have plotted max R (pt)
Pt

versus NT for the pure-loss channel and several values of (I). For comparison, we also plot

the corresponding values of g ((r) NT), the capacity when there is no fading, which is an

upper bound on R (pt), as we now show. Let pt* be the value that maximizes R (pt), and let

r/max ~-_ (,q) In (pt) .

+ 1 N pt)



71* be the associated transmissivity value, i.e.,

Pt* fp (r)dr/ (3.38)

We have that

max R (pt) = R (pt*) = pt*g (n*NT)
Pt

( g (r/NT)p (7) drT

0

< g (())NT) =C( rNT, 0)

(3.39)

(3.40)

(3.41)

(3.42)

where the first inequality follows from g (x) being a monotonically increasing function of x,

the second inequality follows from g (x) being a non-negative function of x > 0, and the

third inequality follows from g (x) being a concave function of x for x > 0.

Interestingly, the ergodic capacity is also an upper bound on R (pt*), as the following

calculation shows:

Cergodic J p (I)
0

1

> p (rI)
77*

C (*NT,

C (rNT,(1 - 7) NB) dr/

C (r/TI, (1 -,q) NB) dy

(1 - r/*) NB) p (I) drq

(3.43)

(3.44)

(3.45)

(3.46)= p*C (*N1, (1 - ry*) NB) = R (pt*)

where the second inequality follows from C (rNT, (1 - r) NB) being a monotonically increas-



ing function of q.

Figure 3-4 shows that exponential fading causes appreciable performance degradation

in terms of outage rates, i.e., R (pt*) falls significantly below g ((I) NT) for the pure-loss

channel.

102

100

10-2

104

10~
10-6 10-4 102 100 102 104

Average transmitted photon number
106

Figure 3-4: This figure shows the optimized outage rate, R (pt*), of an exponential fading
pure-loss channel as detailed in (3.37). In this case, the parameter (q) is varied to demon-
strate how fading affects the outage capacity average rate. From top to bottom, (n) = 0.1,
0.01 and 0.001. For comparison purposes, also shown are the corresponding capacities with-
out fading, i.e., when q = (q).

We are also interested in the outage capacity. Let us assume that (q) < 1 and employ



the untruncated exponential distribution. We then get

pt = Pr ( >- max) = e (7a)

flmax = - (n) In (pt) .

Thus, the outage capacity of the pure-loss channel at (TI) < 1 for the exponential distribution

is

Ct (Pt) = g (- () in (Pt) NT) . (3.50)

If we want a very high availability, i.e., po = 1 - pt < 1 outage probability, we find that the

outage capacity is much lower than the non-fading capacity. For example, for po = 0.05, we

have

Ct (0.95) = g (- (77) ln (0.95) NT) = g (0.0513 (q) NT). (3.51)

3.4.2 Outage Capacity for the Lognormal-Fading Channel

In this section we shall assume that r/ follows the truncated lognormal distribution from

(3.26), which we showed in Section 3.2 applies to a single coherence-area receiver on a space-

to-ground far-field link. Moreover, by invoking (7) < 1 we shall neglect the truncation in

(3.26) without appreciable loss of accuracy. We thus can calculate 7/max as a function of pt

as follows:

pt = Pr (n ; 77max) = 1 - (+ erf (,qt) (52

so that

(3.47)

(3.48)

(3.49)

(3.52)



which yields

max = exp [ 2u 2 (erf 1 (1 - 2pt) + p). (3.53)

So, using this expression for 2]ma as a function of pt, we can now maximize

R (pt) = ptg (exp (2U 2 (erf (1 - 2pt)) +[p) NT) (3.54)

for the pure-loss channel with lognormal fading. In Fig. 3-5 we have plotted max R (pt)
Pt

versus NT for the pure-loss channel and several values of o2 in which (27) has been kept

constant. As we did for the exponontial fading channel, for comparison we also plot the

corresponding values of g ((TI) NT), the capacity when there is no fading. As in the case of

exponential fading, we also note that the lognormal fading causes appreciable performance

degradation in terms of outage rate. However, variation in the or parameter has little effect

on the optimized outage rate.

3.5 Best Case and Worst Case Statistics Given (r/)

The exponential and lognormal models whose ergodic and outage capacities we addressed

earlier in this chapter do not apply to near-field propagation. Also, they need not represent

all possible fading situations that might be encountered on bosonic channels. Thus in this

section we will seek bounds on these capacities that only require knowledge of (71), the average

value of the channel's transmissivity. It turns out that these results will be of value for near-

field operation, in which 1 - (q) < 1. We will begin our development with bounds that

are relevant to outage capacity. Suppose we know the value of (Y) but not the probability

distribution of q. The best-case and worst case capacities for a given pt are defined to be

Cbest ((2]) , pt) = max Ct (pt) (3.55)
p(q)
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Figure 3-5: Plot of
when (TI) = 0.001.
detailed in (3.54).
outage rate.

optimized outage rates, R (pt*), for lognormal fading pure-loss channel,
Shown are plots of the optimized outage rate, optimized over pt, as

As the parameter o2 is varied, we see little difference in the optimized

and

Cworst ((g7) , (3.56)Pt) = min Ct (Pt)
P(7)

where p (,q) is a probability distribution on 0 ; r ; 1 satisfying

(q) = Jp(n)dq.
0

(3.57)

We know that

Ct (Pt) = C (lgmaxNr, (1 - 77max) NB)

quantum capacity at Y1=0.001
- optimized outage rate R(p ) when 02=0.5

- optimized outage rate R(pt) when Y20.

optimized outage rate R(p ) when 02=2

10-2

10-8 r
10 -

10~6

0-4-

0_-

(3.58)



for the thermal-noise channel where

Pt J p (TI) d (3.59)
r/max

and NB= 0 gives the pure-loss case. Because C (TmaxNT, (1 - Tmax) NB) is monotonically

increasing with increasing qmax, the distributions, Pbest (71) and Pworst (rj), that give the upper

and lower bounds on Ct (pt) are found by choosing Pbest (,q) to maximize the q* value for

which

1IPbest (77) d1 ) Pt

subject to

(3.61)

Likewise, Pworst (,q) minimizes the q* value for which

(3.60)

1IPworst (ri) d1 Pt

I TIPworst (n) d = (q)

We will use Tiest and 'worst to denote these maximum and minimum values of q* as defined

above. The following theorem gives our results for 7best and TWorst.

subject to

(3.62)

(3.63)

'qpbest (q) d77 = (y) .



Theorem: For given values of (q) and pt,

(77)
Pt

for (7) ( pt ( 1

1, otherwise

(q)-Pt
1 -Pt

0, otherwise

Proof: We will start with the 77best result. Consider the discrete probability distribution

Pr (77 = 0) = I - pt

Pr (i = x) = pt (3.66)

where 0 < x ( 1 is chosen to satisfy the (q) constraint,

x Pr (] = x) = (q) . (3.67)

We conclude that

x = , for (77) pt (l 1 (3.68)

and we assert that this distribution yields i7max for pt in the range given above.

To prove that this distribution is indeed optimal, we first write

(n) =J Jp (,) da (3.69)

flbest

and

(3.64)

Worst { for pt < (71)
(3.65)



for 0 _ x <, 1 and then use the lower limits in each integral to obtain

(rj) ;- Op (r/) df d +
0

xp (r) d7 = xpt, (3.70)

where we have assumed that x is such that

p (17) dn = pt.

X
(3.71)

Therefore, any transmissivity x that is supportable a fraction pt of the time must satisfy

(3.72)
Pt

The distribution from (3.66) saturates this bound, and so it must be optimal when (q) < Pt.

We can thus conclude that in this (7) range

p7))
Pt j

(y)NT,

NB) =Cest{

for the thermal-noise channel.

When (r/) > pt we cannot use the preceding r/max expression. In this regime, however, we

have 77max = 1, and

Ct (Pt) < C (NT, 0) =C best ((77) ,Pt) (3.75)

because /max is a monotonically increasing function of (TI), and for (71) Pt, ilim ( - = 1.

Ct (pt) < C NT,

and

,pt) . (3.73)

R (pt) < ptC pr) Nb) (3.74)



Now let us turn to the case of gWorst. Consider the distribution

Pr (n = 1) = pt

Pr (q = x) = 1 - pt

where 0 <; x -;; 1 is chosen to satisfy

Pr (q = 1) + x Pr (7 = x) = (q)

so that

1t -Pt
1-Pt

for 0 ; pt ;; (q) .

To prove that (3.76) is the distribution that yields Tlmin, we proceed as follows.

7max proof, we start with

( y) = (y) dy + jp (I) dy.
0 x

(3.78)

As in our

(3.79)

This time, however, we use the upper limit on each integral to obtain

(q) <;; xp (n)dl + 1p (q)dr/ = x (1 - pt) + pt

(1 -Pt
1-Pt

where we have assumed that x satisfies (3.71). Because the distribution in (3.76) satisfies

(3.76)

(3.77)

so that

(3.80)

(3.81)



this bound with equality, it gives lmin when (I) > pt. In this pt range we then have

Ct (pt) > C (r,-Pt 1T(77)NB =Cworst (Kr),pt) (3.82)

and

(_ -Pt 1 -P(t
R (pt) ptC (q) - Pt NT, 1- NB) (3.83)

1 - pt (1 - pt

for the thermal-noise channel. For (rj) < pt <; 1, monotonicity implies that y7min = 0, and

hence

Ct (pt) > C (0, NB) - 0 = C.orst ((7) , Pt). (3.84)

In Fig. 3-6, we plot outage rate bounds, (3.83) and (3.74), versus pt for the pure-loss

channel with NT = 0.001 and (71) = 0.99, and in Fig. 3-7 we do the same for (q) = 0.9. We

see that our bounds are quite tight for pt appreciably less than (7) in these near-field cases.

We will not plot the outage-rate bounds for (I) < 1, because the lower bound is quite bad

in this far-field regime.

Note that (3.83) gives a lower bound on the average rate of transmission for a fading

channel with average transmissivity (7) regardless of the details of the distribution. It is of

interest to find what this rate is for various values of (rI) . In Fig. 3-8 we plot this bound for

various values of (71), and compare them to the value of C((j), NT), the non-fading capacity.

On the other hand, we may want to set the probability of transmitting to a constant and

then calculate what the best possible rate of transmission is for this fraction of the time.

We can use (3.84) to calculate a lower bound on the capacity for a realistic pt. Suppose we

wish to transmit for fraction 0.95 of the time, and we are in the near field where (7) = 0.99.

Then we conclude from (3.84) that our outage capacity is guaranteed to be satisfy:

Ct (0.95) > C (n PtST, 0 g (0.8NT) (3.85)
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Figure 3-6: Upper and lower bounds on the outage rate, R(pt), of a fading pure-loss channel
as a function of pt when NT = 0.001 and (rq) = 0.99.

for the pure-loss channel. In other words, during each coherence interval we can transmit at

a rate that is as if the transmissivity of the channel was 0.8, but we can do that for fraction

0.95 of the time. So, our long term average rate of transmission is given by

R = 0.95g (0.8]rT) . (3.86)

for the (ri) = 0.99, pt = 0.95, pure-loss case.

--- average rate of transmission R(pt) given worst case statistics

- average rate of transmission R(pt) given best case statistics

-
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Figure 3-8: Lower bounds on outage rate, R (p*), for (from top to bottom) (71) 0.95, 0.5,
and 0.001. We note that this bound is very tight for high (ii), but it quickly becomes a very
bad bound for low (,). Thus, this bound works very well in the near field, but poorly in the

far field. Also plotted is the capacity when the transmissivity is constant. This acts as an
upper bound on outage rate, and also on ergodic capacity. Interestingly, as we showed in

(3.46), the R (p*) curve also is a lower bound on ergodic capacity. So, these curves also show

upper and lower bounds on the ergodic capacity of a fading channel given ('), regardless of

the specific distribution of (,q).



Chapter 4

Multi-mode Fading Channel with

Intermodal Interference

4.1 Definition of Channel

To model a multi-mode quantum fading channel with intermodal interference, we will denote

each of the t transmitters by a vector of annihilation operators

(4.1)

The receiver's output corresponds to a vector of annihilation operators

(4.2)

br)



each one a random mixture of the input annihilation operators and a vector of noise modes

e] (4.3)

given by:

H + R 8 (4.4)

where r = t-+k. Here, H is an r x t matrix and R is an r x k matrix such that the annihilation

operator commutator relationships are preserved:

=0

[be, b o] .

(4.5)

(4.6)

We will allow the noise modes to be in independent thermal states with average photon

number 8 NB -

Suppose that the transfer matrix H is given by

V/711 V/712

V/17I21 7r

17q2t
(4.7)



t
where E m.5 < 1 for 1 i <; r. It follows that

j=1

t

j=1

0 .

(4.8)
t

1- jry
j=1

achieves the commutator preservation, making Fig. 4-1 the multi-mode generalization of the

fading channel model from Chapter 3. In general, the matrix H will be random. In what

follows, we will first calculate the capacity of the channel for deterministic H. After that

we will calculate the ergodic capacity for random H. Finally, we will apply our results for

random H to a sparse aperture system operating through atmospheric turbulence.

&47]a,a-

at

- b= H&+J R

Figure 4-1: Model of multi-mode fading channel with intermodal interference. The entries of
the matrices H and R are such that the output modes have the proper commutator relations,
[bby] = 0 and 6b, = ogy.

A

Ot



4.2 Deterministic Transfer Matrix

To find the capacity of a multi-mode channel whose H matrix is deterministic, we follow the

derivation from [9]. By the singular-value decomposition theorem, any matrix H C Crxt can

be written as

H = UDVt (4.9)

where U C Crxr and V E CX' are unitary. Furthermore, D E Crxt is a diagonal matrix

whose non-zero values are the non-negative square roots of the eigenvalues of HHt. We can

thus express (4.4) as

b UDVt + R6. (4.10)

We let b Utb, * = Vt&, and R* UtR. Because U and V are invertible, the original

channel is equivalent to

S=D&* + R*d. (4.11)

Because the rank of H is at most min {r, t}, it will have at most min {r, t} non-zero singular

values, which we will denote r,. Writing the input output relationship component-wise,

we get

k

E* = rj56,* + Zr , for 1 i t* (4.12)
j=1

where t* = rank (H) and we have ignored any modes associated with zero eigenvalues. At

this point we will specialize to a pure-loss channel, so that the { } will all be in their vacuum

states. We can then rewrite (4.12) in terms of a transformed set of vacuum state modes {8*}



such that

rFhl±* + 1 - gi 7, for 1 <i-<,t* (4.13)

Having reduced our multi-mode channel to a collection of t* independent channels with

individual transmissivities qi, it remains for us to determine its capacity, subject to the

restriction that the total average transmitted photon number is less than or equal to NT.

We will now provide a simple Lagrange multiplier derivation for this capacity. We first

realize that it only makes sense that each individual, independent channel uses an input

distribution that makes full use of its allocated average photon number. In doing so, the

contribution to the capacity from the ith subchannel will be g (riSi), where Ni is its average

transmitted photon number. Thus, finding the overall capacity reduces to allocating the

powers N 1 ,... , NT to maximize

t*

Z g (77A 2) (4.14)
i=1

subject to the restriction that

Ni = NT. (4.15)
i=1

The constrained maximization is equivalent to the unconstrained maximization of

t* t*
g (niA i) - A N.i N . (4.16)

Using

g' (x) = In (x + 1) - ln (x) (4.17)



to take the partial derivative of (4.16) with respect to Ni gives

(N) - A ( N --- j =ri (log (li]i + 1) - log (gAT2)) - A. (4.18)

A necessary condition for optimization will be when this equation is zero, implying an opti-

mum value occurs when

7i (in (qi]Ni + 1) - In (A)) - A= 0. (4.19)

Solving for Ni we find that

S= 1 . (4.20)

h(e - 1i

We note that Ni is positive for all possible values of the parameter A, indicating that all

modes with non-zero path gain should be used if optimal transmission is to occur. This

contrasts to the classical case of an additive white Gaussian noise channel with different

path gains, in which the well known "water-filling" formula implies that some modes will

not be used until the available power becomes sufficiently high to justify their use [17]. We

now have the values of Ni parameterized by A, where A must be chosen so that

t*I
A -NT. (4.21)

1 gm -- 1)

With this value of A our multi-mode channel capacity will be given by

t* t*

C = g (Ni) = g ( . (4.22)
1i ei -1



4.3 Deterministic Transfer-Matrix Examples

The capacity of a pure-loss channel with an r x t transfer matrix H can be calculated by

finding the eigenvalues of HHt and using the results of the previous section. We will now

perform such calculations for several transfer matrix examples.

Consider a transfer matrix in which all of the entries are idential and r = t, i.e., H is the

t x t matrix

t(r)t (4.23)

For this H matrix we can take the R matrix to be the t x t matrix

1-(I) 0 0 0

0 21 -(7r) 0 0

0 0
0 0 ... 1 (

(4.24)

We then have that HHt is the t x t matrix

HHt

(r/) ... (ri)

K) ... (7 .)
(4.25)

This matrix has one non-zero eigenvalue, namely t (rj), hence, the optimal photon-number
t

allocation is achieved when all the photons are used on used on the eigenmode & = a.

The resulting pure-loss channel capacity for this H matrix is then

(4.26)C = g (t (q) IVr) .



As another example, suppose that H is the t x t diagonal matrix

(r6 0 ... 0

H = 0)(4.27)
- . -. 0

0 --- 0 (

and so:

(0) 0 ... 0

HHt (4.28)
.0

0 - 0 (r) )

This matrix has t non-zero eigenvalues, each equal to (a), whose eigenmodes are the {di}.

Capacity is thus achieved when NT is equally distributed across these eigenmodes, yielding,

C = g ( () =tg ((n) .(4.29)

For the rest of this chapter the transfer matrix under consideration will not be as simple as

these two deterministics examples. Instead, we shall treat H matrices that are random, and,

in particular, focus on a model for a sparse-aperture system operating through atmospheric

turbulence.

4.4 Transfer Matrix Statistics

Consider the sparse-aperture system for communication through atmospheric turbulence

that is shown in Fig. 4-2 [11]. Here there are t small transmitter apertures in the z = 0

plane and r small receiver apertures in the z = L plane. Each of the small transmitter

apertures, At,, for 1 j < t, is a diameter-dt circular pupil with center ,. Each of the



small receiver apertures, A,,, for 1 < j < r is a diameter-dr circular pupil with center 5,

The center-to-center spacing between the adjacent transmitter apertures is 6t, and that for

the receiver apertures is 6,. The center of the constellation of transmitter apertures is the

origin 0 in the z = 0 plane, and similarly that for the receiver apertures is the origin in the

z = L plane.

L 1

J*
D

dt

t transmitters r receivers

Figure 4-2: Diagram of sparse aperture system. Transmitters and receivers are arranged in
a two-dimensional constellation.

We shall assume, similar to [11], that the photon-units classical complex field transmitted

from the jth transmitter aperture is

4Nj 
__Et, (p, 3 sj (t) e L

rdt
for I '- 'I l j<P Pi 2

where Nj is its average photon number, dt /AL < 1 is assumed, and the phase tilt has the

effect of centering the resulting z = L field pattern in the constellation of receiver apertures.

(4.30)



Here, sj (t) is the field's information-bearing modulation, normalized to satisfy

T

1 T sj (t) 2dt = 1 (4.31)

0

for the 0 < t < T channel use. Note that because we will be concerned with the coherent

state transmitters, it suffices, for now, to work with the classical fields that are the coherent-

state eigenfunctions.

We will continue to parallel [11] by assuming that the kth receiver element only measures

light arriving within the diffraction-limited field of view. Thus, if Erk (V, t) is the photon-

units, baseband field operator in the kth receiver aperture, the receiver associated with this

aperture measures

S(t) =J d 4r2 r (g, t), (4.32)
7dr

Ark

where we will presume dr 2/AL < 1.

Applying the extended Huygens-Fresnel principle to this sparse-aperture configuration

we have that

t 4 f4 N . - jk ,5- 6

y (t) = dP 2] d5 e 'h (g, p) si (t) (4.33)
Yk (t) 7r I 7r dt

j=1Ark At 3

where we have suppressed the L/c propagation delay, and

e ikl+ ik I 2

h (g, ;) = e e x(F A+iOP,/fi) (4.34)
zAL

is the atmospheric impulse response, as in Chapter 3, gives the coherent state eigenfunction

for Qk (t), conditional on knowledge of the logamplitude and phase fluctuations X (p, () and



We next assume that dt and d, are smaller than the turbulence coherence lengths in the

z = 0 and z = L planes, respectively, thus allowing us to use

ikl+ i 15,_ 12

AL

for p~ E At, and g c Ak. Under this condition we have that

(4.35)

t

Yk (t) =Z1
:7-1

e 2L x(f,) ) +i+ (A,1) (t)
Ad 

rk 
L r dg 2Nj 1 Ji (7rdt l l/AL)

d, 2(AL AL ,rdt |pf/2AL

(4.36)

(4.37)

where we have used the fact that # (p'-, ,y) is Gaussian with a variance that is much greater

than one to neglect the receiver-aperture quadratic phase term and a - phase shift.

Our final assumptions are: (1) that A exceeds the overall span of the receiver constella-

tion (~ rAr); and (2) that At and A, are larger than the turbulence coherence lengths in

the z = 0 and z = L planes, respectively. We then get

(4.38)Yk (t *7idtdr N j(t ~k
4AL Ns t ?k

where the {0kj} are statistically independent, identically distributed complex-valued random

variables with

(4.39)

We can now put our sparse-aperture channel model for pure-loss operation into quantum

Vmk = X (ak, I P) + idV (p1, Pf) .



form, with the following result:

b1

bH&+ R8 (4.40)

br

and

[1
I (4.41)

L t
are the vectors of output (receiver) and input (transmitter) annihilation operators for a single

channel use, and the {8;} are in their vacuum states. The transfer matrix H is r x t with

kjth element

h, d eek (4.42)
4AL

and, as explained earlier in this chapter, the R matrix ensures that b has the proper

annihilation-operator commutator brackets.

Now let us employ the singular-value decomposition for H - whose eigenvalues and right

eigenvectors will be random quantities - as in the previous section to get an input-output

relation of the form

bk = ikk±* + v/1 -k8*k (4.43)

for 1 < k t*, where {rl} are the non-zero eigenvalues of HHt, and t* is the rank of HHt.

The {&*}, {b*} and { } are annihilation operators for input, output, and noise modes, with

the noise modes being in their vacuum states.

As in Chapter 3, we will seek the ergodic capacity of the preceding sparse-aperture channel

model under the assumption that the transmitter and receiver have perfect knowledge of the



eigenvalues and the eigenmodes. The value - from an analysis point of view - of the

sparse-aperture setup we have specified is that random matrix theory will allow us to get

results for the statistics of {7k}, and it is the eigenvalue statistics that we will need to find

the ergodic capacity.

Puryear and Chan [11] developed the sparse-aperture setup and studied its performance

for receivers that used heterodyne detection. Our work will go beyond theirs by treating

optimum quantum reception. To do so, we will build on the same theorem from random-

matrix theory that they used. That key result is the following. Let A be a random r x t

matrix whose entries are independent, identically distributed, complex-valued, zero mean,

unity variance random variables. Then, the eigenvalues {pk} of the matrix At have their
t

empircal distribution given by the Marchenko-Pastur law [12]

y2(-(1- )(1 + 0)2 )

f (p = (1 - #1)+6 + (4.44)

where # = and (y)+ = max (y, 0), in the limit as t - oc at constant 3.

The entries in the transfer matrix for our sparse-aperture system are independent, iden-

tically distributed, zero-mean, complex-valued random variables, but their variance is

((h ) e2x( 4 (4.45)

because 2X (p- , ) is a Gaussian random variable whose mean equals minus its variance. It

follows that, for large t, the empirical distribution of the eigenvalues {r/k} can be found by

setting Tlk = Ityk, where

S 7dtdr) 2 < (4.46)
4AL L

is the average single transmitter aperture to single receiver aperture transmissivity, and the

{Ak} follow the Marchenko-Pastur law. Note that , < 1 follows because we assumed AL

exceeds the overall span of the receiver constellation, which is itself much bigger than dr.



Accounting for the preceding scaling, the Marchenko-Pastur law for the {Tk} becomes

fi (7) = (1

1-
- #4)+ (g) +

(1- +)2)(1 + VO-) 2

27ro3r

We have plotted this eigenvalue distribution in Figs. 4-3 and 4-4 and also a simulation for

various values of t and r.
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Figure 4-3: Blue curve is the Marchenko-Pastur eigenvalue distribution, from (4.47), of

random H matrix when t = 100 and r = 100, K = (7r )2 = 0.0001. The histogram
represents the distribution of eigenvalues obtained by computer simulation after 50 trials.

Another important result from random-matrix theory that we will use is that, in the

(4.47)
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Figure 4-4: Blue curve is the Marchenko-Pastur eigenvalue distribution, from (4.47), of
random H matrix when t = 100 and r = 50, = (L) 0.0001. The histogram
represents the distribution of eigenvalues obtained by computer simulation after 50 trials.

limit as t - oc at constant 0, the maximum eigenvalue of HHt is:

Umax = t (I + / (4.48)

i.e., for our sparse-aperture system with r/t fixed and t > 1, the maximum transmissivity

over all modes is this 1max value. It is important now to understand a limitation of this

result. The turbulent atmosphere is passive, so it is not possible for any singular value of

this system to have a value greater than 1. We need to recognize that the model used in

this section is only an approximation of the atmosphere. In fact, the lognormal distribution

model of the atmosphere is also only an approximation; the lognormal distribution has a non-



zero probability of having a value greater than 1. For our Marchenko-Pastur law eigenvalue

distribution in our sparse aperture system, we can ensure qmax is much smaller than one by

choosing # ~ 1 and Kt < 1, because we already have r, < 1.

We are now ready, with our random-matrix theory results, to calculate some ergodic

capacity bounds for the sparse-aperture system. Note that to calculate the ergodic capacity

of this system, we would need to know the joint distribution of the ordered eigenvalues. We

do not have that distribution, but we can use the knowledge that we have to derive some

bounds on the ergodic capacity. We suppose that the transmitter and receiver have full

channel knowledge and can use this knowledge to optimally transmit and detect. One lower

bound on the ergodic capacity follows from assuming that the transmitter devotes its entire

photon budget to the eigenmode with the maximum eigenvalue. For t sufficiently large, the

maximum eigenvalue is given by (4.48) with probability 1, and so the ergodic capacity is at

least:

Cergodic > g ( ATmax) g (NTr(t ( )2)

Another lower bound on the ergodic

distributes its photon budget equally

results in the lower bound

capacity is

over all the

obtained by assuming that the transmitter

eigenmodes with non-zero eigenvalues. This

Cergo[ic > E g E [g (=>) mE [g (l T11)
i=1 _ i=1 -

Nr 3 (1 -2) (1, + 0)2 )

= mg --T 'q (T -- K dT1
(M) 27#I

(4.50)

(4.51)

where m = min (t, r). In Fig. 4-5 we plot various ergodic capacity results from the

Marchenko-Pastur law along with simulation results for the ergodic capacity. We see that

simulated results closely match the Marchenko-Pastur law. We also see that these bounds

very closely approach a simulated ergodic capacity in which for each random transfer matrix

the photon budget is optimally allocated over each of the eigenmodes according to (4.20).

(4.49)



Note that we have not included a closed-form expression for this capacity, because it requires

a joint distribution for the ordered eigenvalues, which is unavailable.

10 i
10-4 10-2 100 102 104

Average transmitted photon number

Figure 4-5: Ergodic capacity results for a sparse-aperture, pure-loss system with NT varying,
t=25 and r=50, and r = (7"r)2 = 0.0001. The figure includes the ergodic capacity
when the photons are distributed evenly among all eigenmodes of the system, and also a
simulation of this equal-sharing ergodic capacity. Also shown is a simulated optimal power
allocation ergodic capacity and a capacity obtained when the maximum eigenvalue is used.
We observe that when the maximum of the two lower bounds is used, the result is close to the
simulated optimal capacity. We also oberve that the Marchenko-Pastur distribution allows
us to calculate very closely the capacity when equal power sharing among the eigenmodes is
used because our simulations very closely match the theoretical result. We cannot be sure
that this is true because Marchenko-Pastur is only a perfect distribution when the size of the
matrix is infinite, but of course in any practical case it is not. This simulation demonstrates
that this is not a problem for the chosen values of t and r.



4.5 Scaling Behavior of the Packed Sparse-Aperture

System

Now, we would like to calculate how the addition of transmitters and receivers affects these

capacity results when the maximum possible number of such transmitters and receivers are

used while still preserving this sparse-aperture setup shown in Fig. 4-2. From this figure we

see that the maximum number of transmitters that can be accommodated within a given Dt

diameter region satisfies

t < kt 2 (4.52)

where kt - 1 is a fill factor that accounts for the areas of the transmitter apertures at the

edge of the overall constellation. Similarly, the number of receivers is bounded by:

kDr 2
rr 2 , (4.53)

where k, 1 is defined analogously. We have already required that

AL
A Dr

(4.54)

and

AL

dr
(4.55)

so that each transmitter uniformly illuminates the receiver constellation and each receiver is

uniformly sensitive to the entire transmitter constellation. Of course, the diameters of the

transmitters and receivers cannot exceed the center-to-center spacings, i.e., it must be that

dt <, At (4.56)



and

dr < Ar. (4.57)

We shall now assume that for every transmitter and receiver diameter, the maximum cor-

responding number of transmitters and receivers are used, and that we are in the region in

which the bounds in (4.56) and (4.57) are satisfied.

Rearranging to solve for D, in (4.53) (assuming this inequality is met with equality) and

plugging into (4.54) we observe that:

dk = AL r (4.58)

Similarly for dr we conclude that:

dr = AL - 12. (4.59)

Substituting (4.58) and (4.59) into (4.46) gives us the following expression for K in the case

of a completely packed sparse-aperture system

7AL kt kr (4.60)4ArAt tr

We can now vary t and r, assuming a totally packed sparse-aperture setup, and observe

how this changes the ergodic capacity of the channel, using (4.60) for K and increasing Dt

and D, to accommodate increases in t and r, respectively. In Fig. 4-6 and Fig. 4-7 we

plot the ergodic capacities for maximum eigenvalue and equal photon sharing assignments

as we vary t and r. These plots demonstrate that a sparse-aperture setup, once filled, will

lose ergodic capacity with the addition of more transmitters or receivers. This is because

adding more receivers requires shrinking the transmitter diameters so that their outputs fully

illuminate the larger receiver constellation. Similarly, the addition of transmitters requires



the shrinking of the receiver apertures so that each receiver is uniformly sensitive to the

light from each transmitter. These changes come at the cost of a reduced average received

photon number, which does not sufficiently compensate for the benefit of spatial diversity in

the fading channels. However, if the transmitter and receiver diameters are constant, it does

make sense to fill the Dt-diameter transmitter region and the Dr-diameter receiver region,

as this will increase the capacity, cf. Fig. 4-5.
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Figure 4-6: Pure-loss channel ergodic capacity results as a function of the number of trans-
mitters t for a fully packed sparse-aperture system where r = 100, NT = 10-2, kt = k, = 0.9,
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Chapter 5

Conclusion

In this thesis we have investigated the capacities of several bosonic channels. We first intro-

duced the fundamentals of quantum optics that are relevant to the study of classical commu-

nication over bosonic channels. Then we presented the Holevo-Schumacher-Westmoreland

(HSW) theorem, which is the quantum equivalent of Shannon's noisy-channel coding the-

orem. Next we introduced two important bosonic channels: the pure-loss channel and

the thermal-noise channel. The pure-loss channel has a known quantum capacity, and the

thermal-noise channel has a lower bound to its capacity that is conjectured to be the ca-

pacity. We showed that when the average received noise photon number is proportional to

average received signal photon number and much smaller than one, then direct-detection

on-off keying is asymptotically tight to the conjectured quantum capacity of the thermal-

noise channel. We extended the single-mode result by computing the spectral and photon

efficiencies of the thermal-noise channel when multiple spatial modes are used. Here we

found that heterodyne and homodyne detection cannot achieve high photon efficiencies, but

that direct detection and optimal quantum detection can achieve high photon efficiency for

a given spectral efficiency if enough spatial modes are employed. However, optimal quantum

detection can reach target photon and spectral efficiencies with far fewer spatial modes than

would be required with direct detection on-off keying.

The results summarized in the preceding paragraph were for non-fading channels. We



also treated fading bosonic channels, in which the transmissivity is random. In particular,

we developed statistical models - exponential and lognormal fading - for ground-to-space

and space-to-ground communication through atmospheric turbulence. Using these far-field

models we computed their ergodic capacity and their outage capacity. For near-field com-

munication in which the average transmissivity is quite high, the fading distribution is not

known. Here we were able to find capacity bounds, based only on average transmissivity,

that were very tight.

Our last effort addressed multiple-input, multiple-output communication through atmo-

spheric turbulence. We reviewed the channel model for a sparse-aperture system that had

previously been employed for heterodyne-detection analysis. We used its Marchenko-Pastur

statistics to estimate its ergodic capacity when optimum quantum reception is employed and

we showed that simulated results corroborated our analytical results. Finally, we considered

the scaling behavior of the sparse-aperture system. For fixed diameters of the transmitter

and receiver constellations, we showed that ergodic capacity increases as the number of re-

ceiving apertures is increased until the system is fully packed. However, once the system

is fully packed, increasing the number of transmitters or receivers requires increasing the

diameters of their respective constellations, and this results in a decreased ergodic capacity.

There remain many areas related to this thesis that can be further explored. First, a

proof to the conjectured quantum capacity of a thermal-noise channel has still not been

found. Furthermore, better bounds on the ergodic and outage capacities of near-field fading

channels can be developed if a better understanding of their statistics is known. Finally, it

may be of interest to see what other results from random matrix theory can be applied to

finding capacity results for different multi-mode fading channels with intermodal interference.

This thesis discussed the sparse-aperture setup, but it is not clear whether random matrix

theory can be applied to other multi-mode setups.



Appendix A

Evaluation of Two Limits

To prove (2.19) we need to show that
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We expand the numerator using the definition of the binary entropy function:
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We can now employ a simple use of L'Hopital's rule to calculate the required limit on each

one of these terms, the tedious details of which are omitted:
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Adding the results above gives us
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To prove (2.27), we need to show that:

T TJ (e(kN+1)clvIIBkN+1 - (1 -cR)HB kR+1

-N log N

This can be accomplished by expanding the numerator as we did in the previous paragraph
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and then calculate each limit using L'Hopital's rule. The details of this calculation are

omitted.
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Appendix B

Laguerre Statistics Derivation

We would like to calculate the statistics of the photon-number measurement on a thermal-

noise channel, i.e., a channel whose input-output relationship is given by

5' = d + V'l - 7f>, (B. 1)

where d, b, and ' are modal photon annihilation operators and 0 < rI _ 1 is the channel

transmissivity. Here, & is the input mode whose information-bearing state is controlled by

the transmitter, b is a mode injected by the channel, and ' is the output mode from which

the receiver will attempt to retrieve the transmitted message. For the thermal-noise channel

the b mode is in a thermal state, i.e., a Gaussian mixture of coherent states with an average

photon number N > 0 whose density operator is therefore

bexp (-# (B.2)

We let a coherent state las/I) be input into this channel with eigenvalue as/r,, so that it

is equivalent to a coherent state with eigenvalue as being received. Let as = as + n where

ns is a complex-valued Gaussian random variable with statistically independent, zero-mean

real and imaginary parts each having variance N/2. This corresponds to the thermal-noise

channel described above in which n, is the received noise injected into the channel by the



thermal mode. The statistics of a direct detection measurement given a particular value of

a. is

2n

Pr (N, = nla,) = las| e lasi1
n!

(B.3)

because given as, we have that the a' mode is in the coherent state las). We can use this

(and the fact that the statistics of ns are Gaussian distributed) to calculate the unconditional

direct-detection measurement statistics as follows:

Pr (N = n) = d 2a Pr (N, = nI a)p (a,)
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In this computation, we used the fact that

27 eocos(#)
d# =2 -I0(2)

0

where I0 (2#) is a zeroth order modified Bessel function of the first kind, and

n

L(x) =
M-0

n m

n - m)'
(-)m (

is the nth order Laguerre polynomial.
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