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Abstract

Epilepsy is a neurological disorder characterized predominantly by an enduring predisposi-
tion to generate epileptic seizures. The apprehension about injury, or even death, resulting
from a seizure often overshadows the lives of those unable to achieve complete seizure con-
trol. Moreover, the risk of sudden death in people with epilepsy is 24 times higher compared
to the general population and the pathophysiology of sudden unexpected death in epilepsy
(SUDEP) remains unclear. This thesis describes the development of a wearable electro-
dermal activity (EDA) and accelerometry (ACM) biosensor, and demonstrates its clinical
utility in the assessment of epileptic seizures.

The first section presents the development of a wrist-worn sensor that can provide
comfortable and continuous measurements of EDA, a sensitive index of sympathetic activity,
and ACM over extensive periods of time. The wearable biosensor achieved high correlations
with a Food and Drug Administration (FDA) approved system for the measurement of EDA
during various classic arousal experiments. This device offers the unprecedented ability to
perform comfortable, long-term, and in situ assessment of EDA and ACM.

The second section describes the autonomic alterations that accompany epileptic seizures
uncovered using the wearable EDA biosensor and time-frequency mapping of heart rate vari-
ability. We observed that the post-ictal period was characterized by a surge in sympathetic
sudomotor and cardiac activity coinciding with vagal withdrawal and impaired reactivation.
The impact of autonomic dysregulation was more pronounced after generalized tonic-clonic
seizures compared to complex partial seizures. Importantly, we found that the intensity of
both sympathetic activation and parasympathetic suppression increased approximately lin-
early with duration of post-ictal EEG suppression, a possible marker for the risk of SUDEP.
These results highlight a critical window of post-ictal autonomic dysregulation that may be
relevant in the pathogenesis of SUDEP and hint at the possibility for assessment of SUDEP
risk by autonomic biomarkers.

Lastly, this thesis presents a novel algorithm for generalized tonic-clonic seizure detec-
tion with the use of EDA and ACM. The algorithm was tested on 4213 hours (176 days) of
recordings from 80 patients containing a wide range of ordinary daily activities and detected
15/16 (94%) tonic-clonic seizures with a low rate of false alarms (<; 1 per 24 h). It is antic-
ipated that the proposed wearable biosensor and seizure detection algorithm will provide
an ambulatory seizure alarm and improve the quality of life of patients with uncontrolled
tonic-clonic seizures.

Thesis Supervisor: Rosalind W. Picard
Title: Professor of Media Arts and Sciences
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Chapter 1

Introduction

1.1 Epilepsy

Approximately 50 million people worldwide are affected by epilepsy [206], one of the most

common serious neurological disorders that has potentially deadly consequences. Epilepsy

is a disorder of the brain characterized predominantly by an enduring predisposition to

generate epileptic seizures - transient manifestations of abnormal, excessive or synchronous

neuronal activity in the brain [62]. In America, the prevalence of epilepsy is estimated

as 3 million with around 200,000 new cases diagnosed each year [55]. Among all medical

conditions, it is as common as lung or breast cancer. Moreover, death from seizure-related

causes is comparable with breast cancer; up to 50,000 deaths occur every year in America

[36].

Epilepsy is not one condition, but a variety of disorders reflecting underlying brain dys-

function that may result from many different causes. In children and young adults, epilepsy

is often attributed to birth trauma, congenital abnormalities or genetic disorders affecting

the brain. In middle-aged adults and the elderly, strokes, tumors and cerebrovascular dis-

ease are more often the underlying causes [103]. Nonetheless, more than half of the time

the underlying cause is unknown. Epilepsy imposes huge physical, psychological, social

and economic burdens on individuals and their families. Due to the fear, misunderstand-

ing and the resulting social stigma and discrimination surrounding epilepsy, many people

with epilepsy suffer in silence, afraid to be found out [206]. This is particularly true in the

developing world where 80% of the burden of epilepsy falls.



1.1.1 Seizures

An epileptic seizure is defined as "a transient occurrence of signs and/or symptoms due

to abnormal excessive or synchronous neuronal activity in the brain" [62]. The diagnosis

of epilepsy requires only one epileptic seizure along with an enduring alteration in the

brain capable of giving rise to other seizures. Many types of seizures exist and accurate

classification is important for prescribing the appropriate therapy.

In 1981, the International League Against Epilepsy (ILAE) formulated an international

classification of epileptic seizures that divided seizures into two major classes: partial

seizures and generalized seizures [79]. This classification is based on clinical and elec-

troencephalographic (EEG) observations of the extent to which the brain is affected by the

ictal discharges. Recently, the ILAE revised the terminology and concepts for organization

of seizures [20], but no major changes were introduced. According to this latest proposal,

focal seizures are perceived as originating within neural networks from only one side of the

brain. They may affect a distinct region or be widely distributed. Moreover, focal seizures

may originate in cortical or subcortical structures. On the other hand, generalized seizures

are thought to originate within rapidly recruiting bilaterally distributed networks. These

networks can include cortical and subcortical structures and do not necessarily involve the

entire cortex.

1.1.2 Treatment of Epilepsy

Over a dozen antiepileptic drugs (AEDs) are available to treat epilepsy. These drugs typi-

cally seek to prevent the development of seizure activity by decreasing neuronal excitation

or increasing inhibition. One approach is to modify electrical conduction along neurons

by blocking certain ion channels (e.g. sodium, calcium or potassium channels) in the cell

membrane. Alternatively, the drugs can target the chemical transmission between neurons

by affecting the neurotransmitter interactions (e.g. GABA, glutamate) at the synapses.

Nonetheless, up to 36% of patients have inadequate control of seizures with drug ther-

apy [92].

For people with medically intractable seizures, some may be candidates for surgery

such as those who have partial seizures. Epilepsy surgery can be performed only if the

seizure origination point can be localized and the surgery to remove that part of the brain



will not significantly alter its normal function. As such, people with generalized seizures

are not candidates for surgery. The ketogenic diet is another treatment option that is

used primarily in children. This high-fat diet is designed to mimic the biological effects of

starvation, but the exact mechanisms of seizure inhibition are unknown. For this treatment

to work, a rigid diet must be followed that requires extraordinary dedication and discipline

from both the child and family. Another approach for treating epilepsy is to use vagus nerve

stimulation (VNS). VNS involves surgically implanting a battery-powered device akin to a

cardiac pacemaker under the skin in the chest. The device is connected to the vagus nerve

in the left side of the neck and can be adjusted to periodically stimulate the vagus nerve.

This therapy has been shown to be an effective treatment for epilepsy in some patients, but

its mechanism also remain unknown.

1.1.3 Mortality in Epilepsy

People with epilepsy have mortality rates two to three times higher than the general popu-

lation [65,118]. Some excess mortality is partly related to the underlying disorder causing

epilepsy such as cerebrovascular disease, respiratory disorders and cancer. In America, up

to 50,000 of deaths each year are direct seizure-related consequences, such as accidents (e.g.

trauma or drowning), suicide, status epilepticus and sudden unexpected death in epilepsy

(SUDEP) [36]. Status epilepticus is a condition in which epileptic seizure activity continues

or is repeated without the person regaining consciousness for an extended period of time.

It is a medical emergency that can lead to permanent injury or death. In adolescents and

young adults, the most common direct seizure-related cause of death is SUDEP [65].

1.2 Sudden, Unexpected Death in Epilepsy

"She rose from Dinner about four o'clock in better health and spirits than she

appeared to have been in for some time; soon after which she was seized with one

of her usual Fits, and expired in it, in less than two minutes, without uttering a

word, a groan, or scarce a sigh. This sudden and unexpected blow, I scarce need

add has almost reduced my poor Wife to the lowest ebb of Misery." [1]

This is one of the earliest accounts of sudden death as a result of a seizure and was

written in 1773 by George Washington, the first US president, concerning his 17 year old



stepdaughter with refractory epilepsy [47]. SUDEP is defined as a sudden, unexpected,

witnessed or unwitnessed, non-traumatic and non-drowning death of a patient with epilepsy,

with or without evidence of a seizure (excluding documented status epilepticus), in which

postmortem examination does not reveal a toxicological or anatomical cause for death [123].

It is the leading cause of death in patients with chronic uncontrolled epilepsy and although

a relatively rare event, the risk of sudden death in people with epilepsy is 24 times higher

compared to the general population [61]. The incidence rate of SUDEP in people with

epilepsy ranges from 0.1 to 2.3 per 1,000 person-years (calculated as incidence proportion

divided by number of years) [183]. Patients with refractory epilepsy are at higher risk (1.1

to 6.0 per 1,000 person-years) [11,118,124,125] and the highest rates fall on epilepsy surgery

candidates or patients who fail to achieve complete seizure control after surgery, reaching

6.3 to 9.3 per 1000 person-years [39,130,170].

The circumstances of deaths in SUDEP cases bear remarkable similarities; death appears

to occur during or shortly after a seizure and often occurs at home (in bed or by the

bed) during the night [177]. Although the deaths are largely unwitnessed, evidence of a

recent seizure is frequently found, such as a bitten tongue/lip, urinary incontinence, signs

of having fallen off the bed and a disrupted environment [126]. Moreover, in most, but not

all witnessed cases of SUDEP, patients died shortly after a generalized tonic-clonic seizure

(within minutes rather than hours) [93, 94,190]. One of the most frequent complaints of

parents of SUDEP victims is that they were not informed of this fatal possibility. Many

struggle with the thought that knowing about the risk of SUDEP beforehand possibly could

have helped them prevent it. Nonetheless, there remains much debate among clinicians

whether the risk of SUDEP should be discussed with all patients. Because SUDEP is a

relatively rare phenomenon, the primary concern is on the potential to cause harm to the

patient by disclosing information that was not actively sought, where the knowledge of

SUDEP does not significantly alter management or outcome [30].

1.2.1 Risk Factors and Pathophysiology of SUDEP

Unlike many disorders that can be prevented by avoidance or correction of risk factors,

the currently known risk factors for SUDEP are not as easily modifiable for many patients

[169]. Nonetheless, knowledge of the clinical profile of SUDEP can guide studies into its

pathophysiological mechanisms as well as help identify patients at risk. The risk factors



consistently associated with SUDEP include poor seizure control, antiepileptic drug (AED)

polytherapy, and a long duration of epilepsy [177]. Five out of six studies analysing seizure

frequency reported that the frequency of generalized tonic-clonic seizures was a significant

risk factor [189]. Although polytherapy with AEDs was a risk factor in several studies, the

absence of treatment with AEDs was also a strong risk factor in the largest case control

study [94].

The pathophysiology of SUDEP remains unclear. As SUDEP is a category and not a

condition, it may represent more than one entity and different mechanisms may operate

in different individuals. In most cases, SUDEP is triggered by a generalized tonic-clonic

seizure [189]. Only eight SUDEP cases have been reported during EEG monitoring. Seven

of the SUDEP events occurred after a secondarily generalized tonic-clonic seizure and in

the single case that occurred after a complex partial seizure, the patient had experienced

two secondarily generalized tonic-clonic seizures (one hour apart) in the two hours prior

to the terminal seizure. Notably, seven out of eight cases reported abrupt interruption of

ictal activity replaced by severe suppression of the EEG that failed to recover in the fatal

seizure [14, 23, 99, 104, 115, 144]. Four of the reports suggested electrical shutdown of the

brain as the primary mechanism [23,98,104,115]. One case postulated that death was due to

asphyxia secondary to obstructive apnea in the setting of post-ictal EEG suppression [144].

Two other reports attributed the deaths to hypoxemia leading to eventual cardiac failure,

although the primary mechanism was not clarified [14]. Another SUDEP case was related to

seizure-induced ventricular fibrillation as seen on the electrocardiogram (ECG) followed by

terminal asystole in a patient with a past history of myocardial infarction and angina [40].

On the other hand, in two monitored cases of near SUDEP, either postictal central apnea

or ictal obstructive apnea was suspected to be the primary dysfunction that led to cardiac

arrest [168,186]. Recently, a third near SUDEP case reported ventricular tachycardia and

fibrillation after a secondarily generalized tonic-clonic seizure in a patient with epilepsy who

had no underlying cardiac disease [56].

It is likely that no single mechanism can explain all cases of SUDEP. The pathophysi-

ology of SUDEP appears to be multifactorial and identifying the primary cause of death is

challenging. In general, three major domains of potential SUDEP mechanisms have been

identified: cardiac, respiratory and autonomic [169]. These mechanisms may not be in-

dependent of each other and many potential mechanisms are in more than one domain,



especially in both cardiac and autonomic domains. As such, Surges et al. proposed a "fatal

coincidence" hypothesis, suggesting that SUDEP is likely caused by the periictal coinci-

dence of several precipitating factors that form a chain of events that culminates in sudden

death [177].

1.3 Seizure Prediction and Detection

Patients with epilepsy often describe seizures as occurring "like a bolt from the blue" which

accentuates the apparent sudden, unforeseen way in which seizures tend to strike [120]. This

represents one of the most disabling aspects of the disease [54], especially for those unable

to achieve complete seizure control. It can lead to an intense feeling of helplessness that has

a strong impact on the everyday life of a patient. In addition, abrupt episodes of staring,

loss of muscle control or loss of consciousness can pose a serious injury risk and can even be

life-threatening if they occur while the patient is driving, crossing a busy street, bathing,

swimming or climbing stairs. Therefore, a method capable of forecasting the occurrence of

seizures could significantly improve the quality of life for epilepsy patients [53].

For many years, epileptic seizures were thought to strike abruptly but there is now

mounting evidence that seizures develop minutes to hours before clinical onset. Clinical

findings corroborating the existence of a pre-seizure state include a significant increase in

blood flow in the epileptic temporal lobes minutes before seizure onset [16, 204], increase

in cerebral oxygenation hours before the ictal event [2], increase in blood oxygen level

dependent functional MRI (fMRI) signals [58] as well as changes in RR intervals on the ECG

minutes before seizure onset [134]. Since Viglione and colleagues pioneered the visionary

work on predicting epileptic seizures in the 1970s, much of the work in seizure prediction

has focused on extracting characteristic features that are predictive of an impending seizure

from intracranial electroencephalogram (EEG) signals [198]. Nonetheless, there is awareness

that single quantitative techniques are unlikely to predict seizures in all patients. In recent

years, seizure prediction work has diversified and there is an increasing interest in methods

for forecasting seizures from other physiological or non-physiological variables [106].

Irrespective of whether seizures can be robustly predicted, a device that can detect

seizures and trigger an alarm has important utility. Since seizures often cause loss of

consciousness, most patients have trouble accurately reporting the occurrence of seizures.



Treatment decisions are primarily based on seizure frequency [43], thus inaccurate self-

reports can lead to ineffective therapy. A seizure detection device would provide objective

measurements for quantification of seizure frequency. More importantly, because most

deaths are unwitnessed, supervision and attention to recovery after a seizure may be im-

portant in SUDEP prevention [93]. If a parent or caregiver is alerted when a seizure occurs,

especially during sleep, the patient can receive timely treatment if injured, be placed in the

recovery position and avoid airway obstruction that could be fatal. One study in a residen-

tial school for children with epilepsy who were closely supervised at night and monitored

after a seizure reported that deaths occurred with students on leave or after they left, but

not at the school [124]. Another large case-control study found that sharing a bedroom

with someone capable of giving assistance and special precautions such as regular checks

throughout the night or using a listening device were all protective factors [94].

1.3.1 Seizure Detection Using Wearable Biosensors

Although neuronal signals are the most obvious candidate for seizure detection, an EEG-

based approach has its disadvantages. To obtain high-resolution data, recordings need to be

intracranial, which is highly invasive and not likely to have widespread applicability. Even

if the quality of recordings from surface-based electrodes is improved, the technical require-

ments for the implementation of a portable EEG recorder are challenging. Furthermore,

much effort will be needed to design a wearable electrode system that is not obstructive,

unwieldy or stigmatizing.

Wrist-worn or leg-worn sensors are appealing because patients can avoid intracranial

procedures and they have the freedom to remove the device at any point in time. For exam-

ple, accelerometers placed on the trunk and limbs have been used to detect motor seizures

based on patterns in physical activity [129]. The autonomic nervous system is an attractive

alternative that may provide a sensitive and easily measured index of central dysregulation

because autonomic output reflects the sum of a wide number of central systems with a host

of central inputs [18]. Therefore, it is likely that seizures can be detected from autonomic

efferents that often accompany them. Many patients are aware of periods when seizures are

more likely, although they can rarely specify an exact time when seizures will happen [106].

Sleep deprivation, emotional, somatic and intellectual stress have also been reported to

provoked stress convulsions, supporting the notion that stress plays a role in facilitating



epileptic seizures [68,70]. Cardiac autonomic activity as measured by heart rate variability

(HRV) has been used to detect neonatal seizures [116]. HRV analysis has also been utilized

for forecasting generalized seizures in rats and complex partial seizures humans by applying

an unsupervised fuzzy clustering algorithm [89].

Using physiological signals other than EEG may not offer the same sensitivity or speci-

ficity for seizure detection, but the convenience and comfort of an unobtrusive device cannot

be overlooked. In a survey of over 90 patients with epilepsy, almost 80% could not accept

having to wear scalp EEG electrodes to obtain seizure warnings, but more than 50% could

imagine wearing a device of the size of a Walkman on a long-term basis [159]. A wearable

device that is non-stigmatizing and comfortable is more likely to be adopted by patients

during their daily lives.

1.4 Overall Aims

Epileptic seizures can result in events that are potentially fatal, including accidents, status

epilepticus and SUDEP. Combined EEG and video-monitoring remains the clinical standard

for seizure detection but this technique is not practical for long-term outpatient monitoring

or everyday use. A round-the-clock seizure monitoring system would allow tracking seizures

for therapeutic purposes and prevent serious complications including death and neurological

injury. Thus, there is a medical need for a reliable, comfortable, cost-effective, and non-

stigmatizing seizure monitor suitable for everyday use. The specific aims of this thesis

(shown in Figure 1-1) are:

" To develop a wrist-worn biosensor for long-term, continuous monitoring of electro-

dermal activity (EDA) as an index of sympathetic nervous system activity, and 3-D

accelerometry (ACM) to measure movement patterns of the arm . The hypothesis

is that a low-cost, compact, and non-stigmatizing device that can be worn comfort-

ably will enable widespread, continuous measurements to be performed over days to

months.

" To characterize autonomic alterations associated with epileptic seizures with the use

of the wrist-worn EDA biosensor and time-frequency mapping of heart rate variability

(HRV). The hypothesis is that epileptic seizures, generalized tonic-clonic seizure in
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Figure 1-1: Outline of thesis aims.

particular, can induce an increase in EDA as a marker for sympathetic activity and

reduce HRV indices of parasympathetic activity.

* To quantify the relationship between the intensity of seizure-induced autonomic imbal-

ance and post-ictal EEG suppression, an objective surrogate marker under investiga-

tion by epileptologists for its possible relation to the risk of SUDEP. The hypothesis is

that the duration of EEG suppression will correlate positively with the degree of sym-

pathetic EDA increase and correlate negatively with the extent of parasympathetic

HRV reduction.

" To develop an algorithm for automatic detection of generalized tonic-clonic seizures

with the use of the wrist-worn biosensor. The hypothesis is that tonic-clonic seizures

can be detected using EDA and ACM signals.

1.5 Thesis outline

The outline of the remainder of this thesis is as follows:



Chapter 2 provides background information on the autonomic nervous system and ap-

proaches to quantify activity using heart rate variability (HRV) and EDA. Existing

information in the literature regarding autonomic activity in patients with epilepsy is

also presented.

Chapter 3 presents a novel, unobtrusive, nonstigmatizing, wrist-worn integrated biosen-

sor for long-term, continuous measurements of EDA and ACM along with the first

demonstration of long-term, continuous assessment of EDA outside of a laboratory

setting. This chapter includes performance evaluation of the biosensor against a Food

and Drug Administration (FDA) approved system for the measurement of EDA during

various classic arousal experiments. The choice of electrode material is also discussed.

Chapter 4 describes high-resolution characterization of autonomic alterations of epileptic

seizures using the wearable EDA biosensor and time-frequency mapping of HRV. A

comparison between the autonomic impact of complex partial and generalized tonic-

clonic seizures is performed. The possibility that autonomic biomarkers could serve

as biomarkers for SUDEP risk is examined by quantifying the relationship between

the degree of autonomic disturbance and post-ictal generalized EEG suppresion, a

surrogate marker of SUDEP risk.

Chapter 5 presents a novel algorithm for automated detection of generalized tonic-clonic

seizures using the wearable biosensor. The utility of EDA as a supplementary signal

to ACM for seizure detection is evaluated. Performance of the algorithm is tested on

recordings taken over 176 days from 80 patients.

Chapter 6 summarizes this thesis and proposes future work.



Chapter 2

Autonomic Alterations in Epilepsy

2.1 Autonomic Nervous System

The autonomic nervous system (ANS) is the control system responsible for maintaining

homeostasis of the body through regulation of visceral functions including functions of the

heart muscle, smooth muscles, secretory glands and hormone secretion. The peripheral

component of the ANS is composed of two functionally and anatomically distinct divi-

sions - the sympathetic and parasympathetic nervous systems. While the parasympathetic

nervous system promotes restoration and conservation of energy, the sympathetic nervous

system stimulates increased metabolic output to deal with external challenges. As such,

increased sympathetic activity elevates heart rate, blood pressure, and sweating, as well as

redirects blood from the intestinal reservoir toward skeletal muscles, lungs, heart, and brain

in preparation for motor action. The brain controls the ANS via a complex neural network

called the central autonomic network. The central autonomic network comprises the insular

cortex, anterior cingulate gyrus, amygdala, hypothalamus, prefrontal cortex, periaqueduc-

tal gray matter, parabrachial complex, nucleus of the tractus solitarius, and ventrolateral

medulla [18]. Several of these structures, such as the insular cortex, prefrontal cortex and

cingulate gyrus have recognized seizure potential, thus providing direct connections between

epileptic seizures and ANS activity [160].

Autonomic symptoms during epileptic seizures are mediated by an activation of the cen-

tral autonomic network and range from subtle manifestations to severe, even life-threatening

events [15]. Autonomic signatures such as flushing, sweating and piloerection often accom-

pany partial seizures and auras [15,108,109]. In contrast, GTCS are associated with severe



increases in blood pressure and changes in heart rate and cardiac conduction [157]. Seizure-

induced autonomic dysfunction can have serious clinical consequences and potentially fatal

effects when the cardiovascular or respiratory systems are involved [46].

2.2 Heart Rate Variability

The heart is one of the most important target organs of the ANS. Sympathetic innerva-

tion of the heart arises from the cervical and upper thoracic sympathetic ganglia, whereas

parasympathetic innervation is mediated via the vagus nerve originating from the medulla

oblongata. Sympathetic activation increases conduction, excitability and contractility of

the heart. In contrary, parasympathetic activation decreases these cardiac functions.

Heart rate variability (HRV), a measure of beat-to-beat alterations in the heart rate,

provides a measure of the cardiac autonomic modulation because they are mediated by

autonomic inputs to the sinoatrial (SA) node [110]. Analysis of HRV can be performed in

the time and frequency domains to obtain information regarding the influence of parasym-

pathetic or mixed sympathetic and parasympathetic modulation. Vagal modulation can

be quantified by analyzing oscillations at respiratory frequencies (also known as respira-

tory sinus arrhythmia; 0.15 - 0.4 Hz) that are mediated solely by the parasympathetic

system and are abolished by atropine infusion [6,142]. Although there is a consensus that

HF power reflects vagal modulation of the heart rate, sympathetic modulation cannot be

easily uncoupled. It has been claimed that power in the low frequency range (LF, 0.04 -

0.15 Hz) reflects primarily sympathetic modulation of heart rate and that the LF/HF ratio

reflects the sympathovagal balance but this is highly controversial as beta blockade does

not reduce, but rather increases LF power [32] and direct cardiac sympathetic blockage via

epidural anesthesia has no effect on it [76].

2.2.1 Regulation of Heart Rate Variability as a Predictor of Sudden

Death

Studies of HRV in patients with epilepsy suggest a decrease in parasympathetic tone and/or

an increase in sympathetic tone in the inter-ictal state [177]. In patients with temporal lobe

epilepsy, interictal HRV was reported to be reduced compared to healthy controls [148,

188], particularly at night, which is when SUDEP occurs most frequently [94]. Moreover,



HRV was found to increase after epilepsy surgery [74], suggesting that HRV is related to

seizure control. Since most SUDEP cases occur shortly after a seizure, peri-ictal autonomic

alterations might be more relevant to its pathophysiology. In a study of 12 patients, an

increase of parasympathetic activity was observed during the pre-ictal period followed by

a rapid fall 30 s before the onset of temporal lobe complex partial seizures (CPS), raising

the possibility of predicting impending seizures based on hallmark autonomic alterations

prior to their clinical presentation [134]. These findings have yet to be replicated and a

separate study of 10 patients reported elevated parasympathetic activity prior to GTCS

but not CPS [45]. On the other hand, low frequency heart rate oscillations (0.01 to 0.1 Hz)

lasting 2-6 minutes postictally that could indicate neuroautonomic instability were observed

in five female patients [7]. Recently, HRV was found to be significantly lowered postictally

(measured 5 min after seizure offset) in GTCS compared to CPS in 25 patients [175].

Another study of 31 patients also reported that postictal HRV was lower in GTCS compared

to CPS, supporting the notion that GTCS has a greater impact on autonomic function [191].

The authors observed that HRV was lower at two time points measured after GTCS onset

(10-15 min and 5-6 hours) which suggests long-term postictal autonomic disturbance, but

it is worth noting that continuous measurements were not taken in between. Overall,

these studies indicate that there is a window of disorganized autonomic neural function in

the postictal state and there is a need to investigate the duration and dynamics of this

disturbance.

A number of studies have shown that decreased HRV is a consistent predictor of cardiac

mortality and sudden cardiac death, independent of disease status [171]. These studies

have included apparently healthy middle-aged adults who had Holter recordings prior to

their sudden death [119] as well as patients who died suddenly while wearing a Holter

monitor [112]. Furthermore, a report of progressive decrease in HRV in two patients with

eventual sudden death within two years of the first recording suggests that long-term HRV

monitoring can identify patients at high risk of sudden death [122]. Interestingly, a recent

case study described a patient who underwent repeated measures of vagus-mediated HRV,

which progressively deteriorated prior to SUDEP [146]. Another recent study of 19 patients

found an association between vagus-mediated HRV and an inventory of clinical SUDEP risk

factors [44]. Thus, it is reasonable to postulate that decreased HRV could be a potential

risk factor for SUDEP.



2.2.2 Potential Autonomic Mechanisms in SUDEP

Death typically results from failure of one of the two major electrical systems of the body

- the brain or the heart [97]. For example, the brain may fail to send out impulses from

the respiratory centers, causing respiratory failure and subsequent death. Dysfunctional

signalling from the brain to the heart may also cause it to enter a fatal arrhythmia. On

the other hand, the heart may enter an arrhythmia on its own that causes sudden death.

Central apnea and malignant arrhythmia are the only obvious etiologies that would leave

no traces at autopsy [82].

A cat model for SUDEP suggests that ictal and interictal discharges result in abnormal

sympathetic neural discharges monitored from postganglionic cardiac sympathetic branches

and may lead to cardiac arrhythmia by altering ventricular automaticity and excitability

[96]. The sympathetic nervous system can play an important primary pathogenic role as

a trigger of ventricular tachyarrhythmias and sudden cardiac death in patients [150]. In a

case study of a sheep with sudden cardiac death, an outburst of cardiac sympathetic nerve

activity leading to ventricular fibrillation (VF) was observed post myocardial infarction [81].

A recent study using a canine model of sudden death demonstrated a direct temporal

sequence between spontaneously enhanced sympathetic neural activity and the onset of

ventricular arrhythmias [209]. Two ambulatory dogs died suddenly during recording and

in both cases increased sympathetic neural activity preceded the onset of VF. On the

other hand, there is also evidence that excessive parasympathetic outflow can also trigger

death. In a rat model for epilepsy, non-convulsive seizures were accompanied by massive co-

activation of sympathetic and parasympathetic activity [151]. None of the animals that died

showed evidence of VF, but most exhibited significant sinus bardycardia and/or arrhythmia

in the form of atrioventricular (AV) nodal block.

In patients with epilepsy, there is evidence that GTCS is associated with significant sym-

pathetic activation. Plasma catecholamines rise sharply within 30 minutes of GTCS and

are attributed to generalized sympathetic neural and adrenal activation [165]. The increase

in epinephrine may, in some patients, be large enough to cause arrhythmias. Moreover,

impaired vagal function as suggested by reduced HRV [175,191] may result in an increase in

ventricular automaticity, making the heart vulnerable to arrhythmias. Malignant arrhyth-

mias such as VF have been reported in a documented case of SUDEP [40] and have also



been observed in a near SUDEP case [56].

On the other hand, a massive increase in central sympathetic drive could trigger neu-

rogenic pulmonary edema. Enlarged and dilated hearts along with pulmonary edema are

common findings in postmortem studies of SUDEP patients [185]. Antemortem observa-

tions of post-ictal pulmonary edema have also been reported in both definite [178] and

near-SUDEP incidents [139]. Although the degree of pulmonary edema observed post-

mortem is usually not expected to cause death [167], high-levels of sympathetic activity

can also cause transient dilatation of ventricular walls after tonic-clonic seizures [102,172].

This stress-induced cardiomyopathy can lead to left ventricular dysfunction and decreased

cardiac output, thus further compromising the supply of oxygen and leading ultimately

to death. Recently, a fatal case of this stress-induced cardiomyopathy in a woman with

epilepsy was reported and could be one of the mechanisms of SUDEP [172].

2.3 Electrodermal Activity

Electrodermal activity (EDA) is a sensitive index of sympathetic nervous system activity.

Sympathetic postganglionic fibers consisting of non-myelinated class C nerve fibers surround

eccrine sweat glands and their activity modulates sweat secretion [152]. Although postgan-

glionic sympathetic transmission is usually adrenergic, human eccrine sweat glands receive

predominantly cholinergic innervation, with acetylcholine as the primary neurotransmitter.

Nonetheless, sparsely distributed adrenergic fibers have also been found in proximity to

sweat glands [162]. Both cholinergic and adrenergic stimulation induce secretory activity,

with cholinergic stimulation producing the larger effect. Presently, there is no evidence

that sweat glands receive parasympathetic innervation. Since sweat normally vaporizes so

quickly in the absence of sudorisecretory impulses, additional sweat inhibition is unlikely to

reduce the amount of sweat significantly [26].

Sweat is a weak electrolyte and good conductor. The filling of sweat ducts results in

many low-resistance parallel pathways, thereby increasing the conductance of an applied

current. Changes in skin conductance at the surface, or more generally, in EDA, reflect

activity within the sympathetic axis of the ANS and provide a sensitive and convenient

measure of assessing alterations in sympathetic arousal associated with emotion, cognition

and attention [37]. Stress is generally defined as a disruption of the autonomic balance



involving a state of high sympathetic activation. Since EDA is solely determined by the

activity of the sympathetic branch of the ANS which is predominant in stress states, tonic

EDA parameters may be regarded as suitable measures of ANS activity induced by stress

[26]. On the other hand, it remains controversial whether the sweat glands at palmar and

plantar sites participate in thermoregulatory sweating [91].

Based on results from human and animal studies, two sources of central EDA con-

trol may exist. The hypothalamus, which is the main regulator of sweat secretion and

thermoregulatory center, plays a major role in eliciting ipsilateral EDA under the direct

influence of limbic structures. These influences appear to stem from antagonistic actions of

the amygdala (excitatory) and hippocampus (inhibitory) [207,208]. Autonomic responses

in the skin such as sweating, piloerection and vasomotor changes can thus be elicited by var-

ious emotional states via the Papez circuit in the limbic system [136]. The second cerebral

source comprises the basal ganglia along with premotor cortical areas that exhibit mainly

contralateral influences on EDA [156].

2.3.1 Electrodermal Activity in Epilepsy

So far, autonomic alterations in epilepsy have mostly been studied using indirect parameters

such as heart rate, respiratory rate and blood pressure changes that are dually modulated

by both divisions of the ANS. Assessment of cardiac autonomic function by HRV alone is

limited by its poor delineation of parasympathetic and sympathetic activity [166]. As such,

the relative influence of parasympathetic or sympathetic system is not well characterized.

The additional use of EDA can potentially provide more insight given its specificity for

sympathetic activity.

The use of EDA in the context of epilepsy is rare in the literature. In 1958, Van

Buren measured the plantar skin resistance of 13 patients with temporal lobe epilepsy

during induced partial seizures [194]. The procedures used to precipitate seizures (e.g.

hyperventilation, metrazol administration) usually resulted in low skin resistance long before

the clinical manifestation of the seizure such that further ictal skin resistance changes might

be minimal or absent. Nonetheless, some preictal decrease in skin resistance was observed

in 18 out of 20 of the induced seizures. The postictal state was not considered. In a study

of infantile spasms, Frost and colleagues noted that a slow skin potential occurred following

two seizures in a 8-month old baby [69]. No further details were provided regarding the



timing or amplitude of the skin potential changes that accompanied the seizures. Nagai

and colleagues investigated the effect of EDA biofeedback training on seizure frequency in

patients with epilepsy [121]. They reported that biofeedback training significantly reduced

seizure frequency, highlight the potential therapeutic value of EDA biofeedback for patients

with treatment drug-resistant epilepsy.
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Chapter 3

A Wearable Electrodermal Activity

and Accelerometry Biosensor

3.1 Introduction

Electrodermal activity (EDA) is a sensitive index of sympathetic nervous system activity.

Due to the lack of sensors that can be worn comfortably during normal daily activity

and over extensive periods of time, research in this area has traditionally been limited

to lab settings or artificial clinical environments. In this chapter, we describe a novel,

unobtrusive, non-stigmatizing, wrist-worn integrated sensor and present, for the very first

time, a demonstration of long-term (multi-day), continuous assessment of EDA outside of

a lab setting.

In general, regulation of physiological states of arousal is achieved by a balance of activity

within sympathetic and parasympathetic subdivisions of the autonomic nervous system

(ANS). While the parasympathetic nervous system promotes restoration and conservation

of bodily energy, the sympathetic nervous system stimulates increased metabolic output

to deal with external challenges. As such, increased sympathetic activity (sympathetic

arousal) elevates heart rate, blood pressure and sweating as well as redirects blood from

the intestinal reservoir toward skeletal muscles, lungs, heart and brain in preparation for

motor action. Sympathetic postganglionic fibers consisting of non-myelinated class C nerve

fibers surround eccrine sweat glands and their activity modulates sweat secretion [152].

Since sweat is a weak electrolyte and good conductor, the filling of sweat ducts results in



many low-resistance parallel pathways, thereby increasing the conductance of an applied

current. Changes in skin conductance at the surface, or more generally in to as EDA, reflect

activity within the sympathetic axis of the ANS and provide a sensitive and convenient

measure of assessing alterations in sympathetic arousal associated with emotion, cognition

and attention [37].

Stress is generally defined as a disruption of the autonomic balance involving a state of

high sympathetic activation. Given that EDA is solely determined by the activity of the

sympathetic branch of the ANS which is predominant in stress states, tonic EDA parameters

may be regarded as suitable measures of ANS activity induced by stress [26]. The hypotha-

lamus, which is responsible for ANS activity, plays a major role in eliciting ipsilateral EDA

under the direct influence of limbic structures [26]. These influences appear to stem from

antagonistic actions of the amygdala (excitatory) and hippocampus (inhibitory) [207,208].

Autonomic responses in the skin such as sweating, piloerection and vasomotor changes can

thus be elicited by various emotional states via the Papez circuit in the limbic system [136].

In addition, it is widely recognized that attention-grabbing stimuli and attention demanding

tasks also evoke increased EDA responses [51,193].

Despite improvements in measuring equipment since the discovery of electrodermal phe-

nomena more than 100 years ago [60,180,199], much of the research in this area is limited

to observational measurements performed over short periods of time in lab settings or arti-

ficial clinical environments. The need for monitoring patients over extensive periods of time

has stimulated interest in wearable unobtrusive devices that can be worn during normal

daily activity to gather physiological data over periods of several weeks or months [25].

Long-term monitoring of EDA will allow the observation of patterns of sympathetic arousal

and regulation at a significantly longer time scale (days to months) compared to existing

studies (minutes to hours) and could potentially reveal previously unobservable trends. In

addition, long-term measurements taken in a person's natural home environment also pro-

vide a clearer picture of the persons physiological state than a short period of assessment

in an unnatural clinical setting [154]. Clinically, wearable EDA sensors can be used in

psychopathology, dermatology and neurology for diagnostic purposes and therapy evalua-

tion. Potential clinical applications include screening for cystic fibrosis [205], classification

of depressive illnesses [117], prediction of functional outcome in schizophrenia [155], dis-

crimination between healthy and psychotic patients [181], characterization of sympathetic



arousal in autism [72], early diagnosis of diabetic neuropathy [48] and providing biofeedback

in treating chronic hyperhidrosis [49], epileptic [121] and psychogenic non-epileptic [143]

seizures.

To achieve widespread, continuous and long-term assessment of EDA, there is a need

for a sensor that not only is low-cost, compact, and unobtrusive, but also comfortable to

wear and non-stigmatizing to the user. In this chapter, we present a novel solution in

the form of a wearable and fully integrated EDA and accelerometry sensor that fulfills

these characteristics. The study focuses on comparing the performance of the proposed

system with an FDA-approved EDA measurement system during classic arousal experiments

involving physical, cognitive and emotional stressors. We first validate the performance of

the proposed sensor during EDA measurements from traditional palmar recording sites. In

addition, we study the use of the ventral side of the distal forearms as a recording site

for EDA measurements that is non-encumbering. We also investigate how the choice of

electrode material affects performance by compare the use of conductive fabric electrodes

to standard Ag/AgCl electrodes. Finally, we present a weeklong recording of EDA during

daily activity. To the best of our knowledge, it is the first demonstration of long-term,

continuous EDA assessment outside of a lab setting.

3.2 Related Work

At present, ambulatory EDA devices are often composed of a processing unit/analog-to-

digital converter (A-D) and external probes that reduce comfort levels. Commercial sensor

systems at the time this work began included FlexComp [187], SenseWear [24], QPET [29]

and Vitaport [184]; they offer high quality EDA recordings but their current bulky form

factors and high prices limit their widespread use for long-term ambulatory studies. Sim-

ilarly, Tronstad et al. [192] proposed a portable logger for EDA long-term measurements,

but its size is still considerably too large (157 x 95 x 33 mm) to be practical for continuous

monitoring or to be considered a wearable device. In other designs [12, 100], the placement

of electrodes on the fingers or palms is encumbering and highly susceptible to motion or

pressure artifacts [147]. A recent proposal to measure EDA unobtrusively through imag-

ing means [161] offers much promise, but the measurements carry substantial noise and

quantification remains difficult.



Over the years, the Affective Computing group has devoted much effort into developing

wearable EDA sensors suitable for ambulatory measurements resulting in the Galvactiva-

tor [140], HandWave [173] and iCalm sensors [57,64]. The most recent iCalm design was a

low-power wireless EDA sensor using the IEEE 802.15.4 wireless standard and represented

a significant advancement. However, there were several drawbacks to the capabilities of the

system that made it unsatisfactory for long-term clinical studies. Firstly, the iCalm relied

entirely on a radio module for data forwarding to a base station (typically a laptop). This

constrained users to staying within the wireless range of a base station and resulted in fre-

quent loss of data due to dropped radio packets. In clinical studies of rare and unpredictable

events such as epileptic seizures, it is necessary to have continuous measurements available

round-the-clock. Moreover, the timing information of the recorded signals in the original

iCalm were based on time stamps generated by the base station which was unreliable due to

unpredictable radio transmission latency. Since the iCalm only contained an analog vibra-

tion/tilt sensor, it was not suitable for precise measurements of motor activity in three axes.

To enable a very low-operational duty cycle and long battery life, the iCalm transmitted

data at a low rate of 2 Hz, which is inadequate for measurement of rapid events. Another

challenge in the design of wearable sensors is robustness and durability. The construction

of the iCalm was not robust enough for unsupervised and continuous use over long periods

of time. Furthermore, the sensor unit and connecting wires were not concealed and these

could act as distractions.

This chapter presents a solution to the issues above. With the exception of the analog

skin conductance circuitry, the design and construction of the wearable EDA and accelerom-

etry biosensor described here are original. Recently, a commercial system based on this work

was launched [3].

3.3 System Design

3.3.1 Circuit Design

For exosomatic measurements of EDA by direct current (DC), the constant current or con-

stant voltage method is commonly used. However, these traditional methods face difficulty

in amplifying the EDA signal since inter- and intra-individual variations in tonic skin con-

ductance levels (SCL) result in a large dynamic range [26]. On the other hand, the phasic



skin conductance responses (SCR) are relatively small. In order to achieve a sufficiently

high resolution of the SCRs over a dynamic range of SCLs without having to uncouple

the two components, we employed an automatic bias control method using two operation

amplifiers as shown in Figure 3-la.

A B 1.8
0.1pF 1.6

1.4

R =1M > 1.2

V" k, R 0.81

0.6
0.4

0.1pF + V. 0.2

1 0.1pF 0 2 4 6 8 10 12 14
C EDA (pS)

R, =100k 3

-2.5

V, 0.1pF 1.5
+

01

0.5

100k 100k 0. 2 4 6 8 10 12 14

EDA (pS)

Figure 3-1: (A) Circuit for EDA measurements. Computed profiles for the (B) voltage and (C)
current flow across skin for a range of typical skin conductance values.

The first stage comprises an active low-pass filter (cutoff frequency fc 1.6 Hz) with

variable gain. To increase the dynamic range of measurements, the bias Vb of the first

operational amplifier is determined by the feedback from the output of the second stage

integrator V (time constant T = 10 ms). The applied voltage across the skin decreases in

a non-linear fashion with increasing skin conductance (Figure 3-1b). Although the current

flow through the skin increases non-linearly with skin conductance (Figure 3-1c), the current

density is well below the recommended limit of 10 pA/cm2 [52]; thus, there is minimal risk

of damaging sweat glands. Within a range of skin conductance between 0.1 and 15 pS, the

average voltage applied is 0.47 V and the average current flow is 2.37 PA. Overall, the skin

resistance Rskin can be calculated as follows:

VCc- Vb (3.1)
Vb - Vo

EDA measured as skin conductance can be obtained simply by taking the inverse of

Equation 3.1.



3.3.2 Sensor Module

The overall system is illustrated in Figure 3-2 1. DC is applied to the stratum corneum

via surface contact dry electrodes for exosomatic measurements of EDA. To achieve a wide

dynamic range of skin conductance measurements, the analog conditioning circuitry utilizes

non-linear feedback automatic bias control with low-power operational amplifiers (LTC6081

by Linear Technology). A triple-axis accelerometer (ADXL330 by Analog Devices, Inc.) is

also included for physical activity measurements. Accelerometry is a low-cost, flexible and

accurate method for the analysis of posture and movement.

Power supply
USB -- - - - - - - - - - - -

-- - i-Poly battery (1.8-5.5 V):

Switch

Charging DCDC 3.3V

circuit regulatoAntenna

DAnalog Digital signal
2 signal controller

- processing 12-bit

Accelero- A-
meter DSPCS

FAT32 Flashy
file system memry

Figure 3-2: Overview of the EDA sensor system architecture. The device is capable of recording
measurements onto an on-board flash memory card (data logging), wirelessly transmitting data to
a remote site (data forwarding) and performing real-time analysis (data processing).

A digital signal controller (dsPIC3OF2Ol2 by Microchip Technology, Inc.) acts as the

control center that can be programmed on-board through an In-Circuit Serial Program-

ming (ICSP) interface. Digital signal controllers (DSC) combine the control attributes of

a microcontroller (MCU) and computation capabilities of a digital signal processor (DSP),

thus allowinig application specific real-time complex analysis on-board. The analog signals

are sampled at 32 Hz via an A-D with 12-bit resolution on the DSC. Power is drawn from

a single lithium polymer battery with a nominal voltage of 3.7 V and a capacity of 1100

mAh. The battery can be recharged directly from a USB port by an on-board single cell Li-



Ion battery charger (LTC4062 by Linear Technology). A step-up/step-down charge pump

(LTC3240 by Linear Technology) produces a fixed, regulated output of 3.3 V for the DSC

and peripheral components.

In order to enable continuous measurements of EDA and physical activity without the

constraint of staying within range of a base station, a data logging system is available on

board. Using a separate microcontroller with dedicated firmware to implement a FAT32

file system (uALFAT by GHI Electronics, LLC) that communicates with the DSC through

a UART (universal asynchronous receiver/transmitter) interface, data can be written to

removable flash memory card. A 2G microSD card provides enough storage capacity for

up to 28 days of continuous measurements with a sampling rate of 32 Hz. If it is desirable

for the data to be accessible to the wearers caregiver for analysis and interpretation, or

if the wearer chooses to share his/her recordings, the proposed system can also operate

as a data forwarding device with the use of a 2.4 GHz transceiver module (nRF2401A

by Sparkfun Electronics). In this mode, real-time measurements can be displayed on a

PC equipped with a separate transceiver module for immediate analysis. The complete

electronic module (20 x 30 x 5 mm) is shown in Figure 3-3. The layout of the sensor board

is shown in Appendix A (Figure A-1).

Figure 3-3: EDA sensor module. The device has a modular design and is shown with an optional
radio transceiver mounted on top.

3.3.3 Packaging

User comfort is a major consideration in the design of any wearable device intended for

long-term and continuous use. Regardless of the capabilities of a wearable system, users

will not be inclined to wear them on a daily basis over a period of days or weeks if the

sensors are bulky and cumbersome. In view of this, we integrated the electronic module



into a regular wristband made out of terrycloth, resulting in a comfortable, attractive

and lightweight wearable sensor (Figure 3-4). Since all electronics and wiring are concealed

within the wristband, the resulting device is also inconspicuous, non-stigmatizing and allows

for discrete monitoring of EDA. Furthermore, the electronic module can be easily detached

when the user desires to wash the wristband.

Figure 3-4: The wearable EDA sensor. (A) Final packaging in an attractive and inconspicuous
wristband. (B) Disposable Ag/AgCl electrodes attached to the underside of the wristband. (C) The

wearable EDA sensor can be worn comfortably on the wrist for long periods of time and during daily

activities.

To date, there is no generally accepted standardization with respect to electrodermal

recording sites [26]. The electrodes are commonly placed on the palmar surface of the hand,

the most popular sites being the medial and distal phalanges of the fingers and the thenar

and hypothenar eminences. However, since both hands are often needed for manipulation,

placement of electrodes on these sites is highly susceptible to motion artifacts and interferes

with daily activities. Thus, we decided to use the ventral side of the distal forearms as our

recording sites. We chose to use Ag/AgCl disc electrodes with contact areas of 1.0 cm 2

(Thought Technology Ltd.) for our recordings as recommended in the literature [66]. These



electrodes are disposable and can be snapped onto or removed from the wristband with ease

(Figure 3-4b).

Overall, the complete wearable EDA sensor is compact (70 x 70 x 20 mm), lightweight

(40.3 g) and the components used can be purchased off the shelf for approximately $150. In

contrast, a commercial system such as the Flexcomp Infiniti (Thought Technologies Ltd.)

measures 130 x 95 x 37 mm, weighs 200 g and costs $6000 for the data acquisition unit and

an additional $275 for an EDA sensor.

3.4 Experimental Methods

3.4.1 Participants

Data were collected from 26 participants between the ages of 18-56 during three separate

experiments (physical task, cognitive task and emotional task) each consisting of a baseline,

task and recovery period. Some participants underwent two consecutive experiments (order

of experiments was not fixed) so there was overlap between the recovery period of the

first experiment and baseline of the second experiment. This study (#0801002576) was

approved by the Massachusetts Institute of Technology Committee On the Use of Humans

as Experimental Subjects (COUHES). Informed consent was obtained from all participants

prior to the beginning of the research session. 16 participants (eight females, eight males)

were enrolled in a physical task, 15 participants (nine females, six males) underwent a

cognitive task and 13 participants (eight females, five males) were subjected to an emotional

task. Due to battery failure on the Flexcomp (one person) and motion-corrupted data (one

person), full-length recordings were not available for two participants during the cognitive

task, but uncorrupted sections were included in analysis. We excluded data from three

participants in the physical task due to failure to turn the proposed sensor on (one person),

disconnection of finger electrodes from the Flexcomp during task (one person) and motion-

corrupted finger data (one person).

In addition, one participant volunteered to wear the proposed sensor for a long-term

experiment to measure EDA in situ.



3.4.2 Physiological Measurements

EDA was measured as skin conductance changes using either the proposed system or a gold

standard, commercially available and FDA-approved device (Flexcomp Infiniti, Thought

Technologies Ltd) at four different recording sites (Figure 3-5). Ag/AgC1 electrodes em-

bedded in hook-and-loop fastener bands were secured around the medial phalanges of the

index and middle fingers bilaterally. The electrodes on the right fingers were connected to

the Flexcomp Infiniti (which served as our control) while the electrodes on the left fingers

were connected to the proposed sensor module for EDA measurements. A wearable EDA

sensor (wristband) was placed on each distal forearm with the sensor module on the right

connected to Ag/AgC1 electrodes, and the sensor module on the left connected to stretch

conductive fabric (silver plated 92%, nylon 8%, surface resistance < 1 Q/sq, contact area

of 3.5 cm 2) that was sewn into the wristband in the place of the Ag/AgCl electrodes. Elec-

trodes for both wristbands were in contact with the ventral side of the distal forearms.

There was no pretreatment of recording sites and no conductive gel was applied to the

electrodes. The clocks for the proposed sensors and the Flexcomp were synchronized prior

to the start of each experiment and the time was recorded at the beginning and end of each

condition. The sampling frequency for all signals was fixed at 32 Hz.

To proposed To Flexcomp
system system

Ag/AgCI Ag/AgCl

IV III
Conductive Ag/AgCI
fabric

To proposed To proposed
system system

Figure 3-5: The experimental setup. Measurements were recorded from (I) right fingers with the
Flexcomp system, (II) left fingers with the proposed sensor module, (III) right distal forearm with
the proposed sensor module using Ag/AgCl electrodes and (IV) left distal forearm with the proposed
sensor module using conductive fabric electrodes.



3.4.3 Physical Task

During the baseline period, participants were asked to sit quietly on the seat of a recumbent

bicycle (Precor USA, Inc.) and relax for 10 min. Participants were then asked to pedal as

fast as they could for a duration of 5 min at a fixed resistance of level 7. After the cycling

task, participants were asked to remain seated for a recovery period of 10 min.

3.4.4 Cognitive Task

Participants were seated in a darkened and sound-dampened room facing a large screen

and briefly oriented to their surroundings. At the start of the experiment, participants sat

quietly for 10 min to obtain a baseline recording. Participants were then asked to follow

instructions on the screen for a cognitive task. On-screen instructions requested them to

perform serial subtractions in intervals of seven, starting with a four-digit number and

to deliver their responses vocally for a 3 min period. A countdown timer was visible to

the participants and a buzzer was sounded for each mistake in subtraction. The mental

arithmetic task was followed by a Stroop word-color matching test. A slide consisting of

color words (red, blue, green, brown and purple), each printed in a color differing from the

color it named was displayed on the screen 3-6 and participants were asked to read the

names of the colors serially as quickly as possible in 1 min. Once again, a countdown timer

was visible and participants were alerted to errors by a buzzer. At the end of 1 min, the

task was repeated again with a second slide that had the words printed in the reverse order.

After completion of the task, participants were asked to remain seated and to relax for a

recovery period that lasted 10 min.

Name the color of each word

red blue green brown red purple blue brown purple green
green purple red green red brown blue brown blue purple
red blue purple green purple brown red green brown blue
blue purple brown blue red green purple red green brown
brown red purple green purple blue brown red blue green
blue brown purple green purple brown blue red green red
purple green red brown blue brown purple blue green red
brown purple green red blue brown red green purple blue
blue brown purple blue green red brown purple red green
purple green blue brown purple green brown red blue red

Figure 3-6: Example of a slide for the Stroop word-color matching test



3.4.5 Emotional Task

Similar to previous task, participants were seated in a darkened and sound-dampened room

facing a large screen and briefly oriented to their surroundings. At the start of the experi-

ment, participants sat quietly for 10 min to obtain a baseline recording. After establishing a

baseline, participants were informed by an investigator that a horror movie would be played

and waited in anticipation for 1 min. A 5 min clip from the movie 28 Days Later involving

scenes of chaos, violence and disturbing images was then shown. At the end of the movie

clip, participants were asked to remain seated and relax for a recovery period that lasted

10 min.

3.4.6 Long-term In Situ Experiment

A healthy volunteer (19 year-old male) wore the proposed sensor with Ag/AgCl electrodes

on his left distal forearm 24/7 for a week to measure long-term EDA during daily activities.

He was given the option to stop participating in the experiment at any moment and to

remove the wristband at any time he chose. After a period between 24 to 30 hours, the

volunteer removed the micro-SD card to download the data and also replaced the battery.

This was repeated daily for a total of seven days.

3.4.7 Data Analysis

All data files were analyzed using custom software written in MATLAB (The MathWorks,

Inc.). The raw EDA signals were filtered with a 1024-point lowpass filter (Hamming window,

cutoff frequency of 3 Hz) to reduce motion artifacts and electrical noise. Pearsons correlation

coefficients and the corresponding p-values were calculated for the filtered recordings from

the different sites and systems as a measure of similarity between signals.

3.5 Results

3.5.1 EDA Increases During Stressor Tasks

All participants reported that the wearable EDA sensors (wristbands) felt comfortable

throughout the duration of the study. Examples of typical EDA signals measured dur-

ing the three different experiments are presented in Figure 3-7. Individual graphs for each



participant can be found in Appendix A (Figures A-2 to A-4).
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Figure 3-7: EDA waveforms during (A) physical activity, (B) cognitive stressors and (C) emotional
stressors (a horror movie clip). Measurements were recorded from (I) right fingers with the Flexcomp
system, (II) left lingers with the proposed sensor module, (III) right distal forearm with the proposed
sensor module using Ag/AgC1 electrodes and (IV) left distal forearm with the proposed sensor
module using conductive fabric electrodes.

In all three experiments, skin conductance gradually decreased to a plateau during the

initial relaxation period to establish a baseline. During the physical task, skin conductance

increased as the participant was cycling (Figure 3-7a). In the course of the cognitive task

experiment (Figure 3-7b), the start of the mental arithmetic test (MAT) was followed by

a steep rise in skin conductance level that remained elevated throughout the test. Skin

conductance increased to a higher level during the Stroop word-color matching task in 73.3%

of participants. Multiple skin conductance responses (SCRs) were also evident during the

tasks. From Figure 3-7c, we see that an SCR was generated when the investigator informed

the participant that a horror movie would be played. At the start of the movie, the skin

conductance level surged upward and remained high with multiple SCRs throughout the

movie. When the tasks ended and the participant was asked to relax, skin conductance



decreased steadily to near baseline in all three experiments.

From Figure 3-7, we also see that recordings from our sensor modules on the fingers (II)

and distal forearm with Ag/AgCl electrodes (III) are in very close agreement with recordings

from the Flexcomp on the fingers (I). Overall, recordings on the wrist with conductive fabric

electrodes (IV) produced the lowest skin conductance measurements in 86.7% of participants

during the cognitive task and 84.6% of participants during the emotional task. However,

the fabric electrodes produced highest readings towards the end of the physical task and

during the subsequent recovery period in 46.2% of participants.
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Figure 3-8: Distributions of correlation coefficients between EDA measurements from bilateral
fingers (I and II in Fig. 4) under (A) physical (n = 13), (B) cognitive (n = 15) and (C) emotional
(n = 13) stressors. Each experiment was separated into baseline, task and recovery conditions for
correlation. The median values of the correlation coefficients, f , are also presented for each condition.

3.5.2 Recordings of Proposed System are Highly Accurate and Strongly

Correlated with FDA System

To evaluate the performance characteristics of our sensor module, we correlated the mea-

sured EDA signals by the proposed device with the Flexcomp from the left and right fingers



respectively (I and II in Figure 3-5) during the baseline, task and recovery conditions for all

three experiments. The resulting histograms of the correlation coefficients, r, are displayed

in Figure 3-8 (p < 0.0001 for all observations). Since some of the distributions were slightly

negatively skewed and the mean is not robust to outlying observations, we chose to use the

median i' as the measure of central tendency. Overall, recordings from the proposed system

and the Flexcomp were stongly correlated (0.93 < f < 0.99) during the baseline, task and

recovery period for all three experiments.
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Figure 3-9: Accuracy of the proposed sensor in fixed resistance measurements. Error bars represent
1 S.D. Inset: Computed sensitivity of the proposed sensor showing increasing quantization error at
higher EDA values.

To test the accuracy of the proposed system, we measured a series of 1% fixed resistors

representative of typical skin resistance values (0.1-4.0 MQ) with the proposed device and

compared our readings to that of a digital multimeter (0.5% accuracy). The resulting

error plot and computed sensitivity of the proposed system is presented in Figure 3-9.

The measurement error of our device was higher at lower resistance values, which is likely

due to the increasing quantization error at higher conductance values (Figure 3-9 inset).

Within the tested range of resistances, the mean measurement error was found to be small

(0.68 i 0.64%). Across a range of typical skin conductance values, the mean sensitivity of

the proposed device (0.01 t 0.01pS) was comparable to that of the Flexcomp (0.01 pS).
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Figure 3-10: Distributions of correlation coeflicients between EDA measurements from distal fore-
arms (conductive fabric electrodes on the left distal forearm and Ag/AgCl electrodes on the right
distal forearm) and ipsilateral lingers under (A) physical (n = 13), (B) cognitive (n = 15) and

(C) emotional (n = 13) stressors. Each experiment was separated into a baseline, task and recov-
ery conditions for correlation. The median values of the correlation coefficients, r, along with the
performance indices (proportion of correlation coefficients geq 0.5), 7Tr, are also presented for each
condition. Dashed lines indicate r = 0.5.

3.5.3 Distal Forearm is a Viable EDA Recording Site

To examine the degree to which distal forearm EDA activity parallels finger EDA activity

(a traditional recording site), we correlated the EDA signals from the distal forearms with

EDA signals from ipsilateral fingers (I and III, II and IV in Figure 3-5). Figure 3-10 presents

the histograms of resulting correlation coefficients for the two different electrode types for

all three experiments (p < 0.0001 for all observations).

In general, the distributions were negatively skewed with long tails to the left. Based

on the median of the correlation coefficients i, correlation between the fingers and distal

forearm was very strong (0.76 < f < 0.96) during the baseline and recovery periods for

all but the physical and emotional recovery period with the Ag/AgCl electrodes. There
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was also a strong correlation between the fingers and distal forearm during the physical

(f = 0.78) and emotional (f = 0.72) tasks. During the cognitive task, the correlations were

lower but remained moderately strong (f = 0.57).

By using Ag/AgCl electrodes on the right distal forearm and conductive fabric electrodes

on the left distal forearm, we also compared the performance of the different electrode

materials. Although the correlation between fingers and distal forearm was also very strong

(0.74 < f < 0.88) during baseline and recovery periods with the conductive fabric electrodes,

the correlation was weak during physical (f = 0.35) and cognitive tasks (f = 0.45) and

moderately strong during the emotional task (f = 0.57). In addition, we herein define a

performance index 7 to be the proportion of observations with moderately strong (0.5 <

r < 0.8) to very strong (r > 0.8) correlation coefficients. Ag/AgCl electrodes yielded high

performance for all three tasks (0.69 < 7r < 0.77) but for conductive fabric electrodes,

the performance index was lower (0.46 < 7r < 0.54). From this perspective, the Ag/AgCl

electrodes once again performed better than conductive fabric electrodes, particularly during

the stressor task periods. Evidence from the analysis of correlation of EDA between fingers

and distal forearms suggest that there are large interindividual differences with a small

proportion (19%) of negative correlations.

3.5.4 Long-term In Situ EDA Recordings Reveal Patterns in Autonomic

Arousal

The participant who wore the proposed sensor for a week reported no side effects or dis-

comfort. From Figure 3-11, we see that long-term in situ recordings contain rich infor-

mation about daily patterns of skin conductance modulation. For example, there is a

consistent peak between the hours of midnight and 3 am corresponding to sleep activity.

No skin conductance level drift was observable and the recordings were relatively artifact

free, demonstrating the ability of the proposed sensor to continuously measure EDA during

daily activities. The biggest advantage of the proposed wrist-worn Ag/AgCl sensor is the

unprecedented ability to perform comfortable and long-term EDA measurements in situ,

capturing differences in activities such as sleep, studying, lab-work, class-work, etc., with-

out having to use gels or recalibrate baselines as the gel wears off and worry about whether

levels are comparable.
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Figure 3-11: Long-term in situ EDA recordings. Continuous skin conductance measurements
were recorded for seven days in a natural home environment. Daily EDA waveforms displayed are
normalized (Scale bar on the right side indicates original values).

3.6 Discussion

As an index of sympathetic nervous system activity, EDA offers important insight into a

broad spectrum of psychological and neurological disorders. The proposed sensor wristband

provides a practical and comfortable new solution for widespread EDA assessment. Using

Ag/AgCl electrodes, we found strong correlation between the proposed sensor wristband

and an FDA-approved EDA measurement system across all tests. This capability for long-

term EDA measurements both within and outside of a lab or clinical setting creates exciting

opportunities for investigations that would otherwise have been difficult to implement.

It is not a trivial task to design experiments for performance comparison between differ-

ent EDA sensors. Measurements of fixed resistors alone are insufficient and do not provide

evaluation of the dynamic properties of the EDA sensors. Therefore, there is a need to



perform tasks that are well known to elicit changes in EDA while performing simultaneous

measurements with the proposed system and an established system. However, both pairs of

electrodes cannot be placed on the same recording site due to cross-talk interference. Due

to the effect of habituation, which is characterized by decreasing reaction intensity with re-

peated stimulation, performing repeated measurements with the different sensors is also not

a practical solution. This problem can be avoided by placing the different pairs of electrodes

on bilateral recording sites, but there still exists issues concerning left-hand/right-hand dif-

ferences in EDA [63,135]. Thus, it is important to point out the fact that even with identical

sensors (e.g. Flexcomp) placed on bilateral sites, one should not expect to obtain identical

measurements. With this caveat, we formulated the experimental setup described in III.B

and depicted in Figure 3-5 with the goal of comparing the performance characteristics of the

proposed EDA sensor with a "gold standard", FDA-approved and commercially available

EDA measurement system (Flexcomp).

The three experiments performed were selected to capture a variety of EDA responses

to classic stimuli. Furthermore, the cognitive experiment consisted of two separate tasks of

differing complexity (mental arithmetic task and the Stroop word-color matching test) while

the emotional experiment also elicited an anticipatory response prior to providing emotional

stimuli. It is well known that stress can induce an increase in both tonic and phasic

components of EDA. Our measured EDA recordings showed changes of skin conductance

from baseline (at rest) in response to a stressor task and during recovery. As expected, skin

conductance increased during physical strain as induced by intense exercise and emotional

strain as induced by mental arithmetic, the Stroop word-color matching task and the horror

movie clip. Although it is tempting to assume that each different EDA waveform represents

either purely thermoregulatory or emotional sweating, it is worth noting that the responses

are likely a combination of different sweating mechanisms. For example, sweating from

physical exercise involves both thermal and mental sweating [91] and the rapid change from

baseline at the start of the various stressor tasks presumably involves the orienting response.

Therefore, these recordings merely demonstrate changes in EDA under different stressors.

Emotional sweating (increased sweat gland activity as a concomitant of psychological and

especially emotional states) has been observed mainly on palmar and plantar sites, but the

specificity of emotional sweating remains in question [9]. Our findings indicate that the

ventral sides of the distal forearms can also produce sweat responses to emotional stimuli.



The strong correlations between the proposed device and the Flexcomp, placed on the

traditional measurement sites, indicate that our system functions as intended.

The wide distribution in correlation coefficients between the fingers and the dorsal fore-

arm could be due to differences in sweat gland distribution or skin sudomotor innervation.

Indeed, the two most commonly used dermatome maps present different spinal nerve in-

nervations at the ventral side of the distal forearms. According to Fender [59], dermatomes

of the ventral side of the distal forearms are continuous with the palmar sites (C6-C8),

but Keegan and Garrett [87] describe the ventral side of the distal forearms as innervated

by dermatomes C5, C6, C8 and T1. In addition, differences in moisture buildup between

the skin-electrode interfaces could also contribute to the large variance of correlation co-

efficients. This was particularly evident at the end of the physical task, which resulted

in negative correlation coefficients in 38% of participants (decreasing skin conductance at

fingers but increasing skin conductance at distal forearms). There is a lack of evidence to

suggest a dependence on age or gender. Nonetheless, the overall pattern of results suggests

that the EDA measured from the distal forearms closely parallels EDA measured from the

fingers.

Using conductive fabric as electrodes is an attractive option in designing wearable sen-

sors as it potentially enables greater comfort. Although at rest and recovery, the conductive

fabric electrodes performed somewhat similarly to conventional Ag/AgCl electrodes, it is

important to take note that that they have weaker ability to measure EDA changes dur-

ing stressor tasks. Given the stretchy nature of the conductive fabric, it is likely that the

electrodes do not maintain their electrical properties when in contact with the user. Fur-

thermore, the ability of fabric to absorb moisture and sweat also contributes to altering

their electrical properties over time and is the likely reason for our results showing that

the levels of EDA were usually higher after the physical exertion task for the conductive

fabric electrodes than for the traditional Ag/AgCl electrodes (Figure A-2). In view of

this, we recommend using standard Ag/AgCl electrodes for more sensitive analysis of EDA

measurements.

Long-term assessment of EDA revealed interesting trends in the participants sympa-

thetic modulation over a weeklong period. Intervals of elevated EDA frequently corre-

sponded to times when the participant was studying, doing homework or taking an exam.

This is possibly due to the increased cognitive stress associated with those activities. The



characteristic peaks occurring during sleep have been associated with slow wave sleep [85]

and remain a subject for future studies. We found the sensor wristband to provide reliable

and robust attachment of the electrodes to the skin, even in the presence of forearm mo-

tion during normal daily activities. Motion artifacts were typically observed only when the

electrode-skin interface was disturbed such as when external pressure was applied against

the electrodes or when the wearer readjusted the position of the electrodes.

3.7 Conclusion

We have presented a compact and low-cost wearable EDA sensor that enables comfortable

long-term assessment of EDA. The novelty of our system consists in the use of the distal

forearms as recording sites, the miniaturization of the sensor module as well as the design

of a small wristband that allows for unobtrusive and non-stigmatizing continuous EDA

measurements during everyday activities. Experimental outcomes using Ag/AgCl electrodes

correlated strongly with the FDA-approved EDA measurement system.

To the best of our knowledge, we described the first detailed study indicating that the

ventral side of the distal forearms is a viable alternative to the more popular palmar sites

for EDA measurements across physical, cognitive and emotional stressors. Importantly, we

also presented the first long-term recordings of EDA during daily activity outside of a lab

or clinical setting. While palmar electrodes are encumbering, easily lost and frequently

subjected to motion and pressure artifacts, the proposed wrist-worn sensor does not suffer

anywhere near as much from these problems. Given the versatility of the proposed system

that acts both as a data forwarding and data logging device, users are not constrained to stay

within the range of a base station but instead have unrestricted continuous measurements

regardless of location.

The importance of this work is the unprecedented ability to perform comfortable long-

term and in situ assessment of EDA that the proposed system offers. Continuous long-

term (multiple-day) EDA measurements during normal daily activity like that in Fig. 9

have, to our knowledge, not prior to this work been demonstrated in a practical way,

and thus the new technology developed in this paper represents a significant advancement

over existing systems. Investigations of long-term sympathetic nervous system activity

can potentially add precious insight and enrich understanding of widespread neurological



conditions. Studies are currently underway to evaluate the use of the proposed EDA sensor

in a variety of clinical applications, including autism, epilepsy and sleep disorders.



Chapter 4

Autonomic Footprints of Epileptic

Seizures

4.1 Introduction

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death directly related

to epilepsy, and is particularly prevalent in people with chronic epilepsy [164, 175,189].

Although a relatively rare event, the risk of sudden death in young people with epilepsy

is 24 times higher compared to the general population [61]. The incidence of SUDEP in

the general epilepsy population ranges from 0.1 to 2.3 per 1000 person-years [101, 104],

representing a tangible risk of SUDEP. People with pharmacologically refractory epilepsy

are at even higher risk and the incidence rate can reach 6.3 - 9.3 per 1000 person-years in

candidates for epilepsy surgery [39, 130]. The pathophysiological mechanisms of SUDEP

are poorly understood although various seizure-induced mechanisms have been proposed,

including cardiac arrhythmia [40,56], central [168] and obstructive [144] apnea, pulmonary

dysfunction [139,185] and primary cerebral shutdown [23,115]. These mechanisms may not

be independent of each other and are likely interrelated, possibly through the autonomic

nervous system. Case-control studies have provided insight into the clinical risk profiles and

consistently indicate that SUDEP mainly occurs in the context of a generalized tonic-clonic

seizure [75, 94, 131,202]. However, it remains unclear what causal or contributory factors

make tonic-clonic seizures a major risk factor and why in some cases a generalized tonic-

clonic seizure becomes fatal unlike all other similar seizures in the past. One explanation



might be that the intensity of the seizure is a key factor in initiating a lethal vicious cycle

of events [167].

Recently, a case-control study revealed that the duration of post-ictal generalized elec-

troencephalographic (EEG) suppression was associated with SUDEP [104]. The period of

post-ictal diffuse EEG attenuation was significantly prolonged in generalized motor seizures

of the SUDEP group and the risk of SUDEP increased in direct proportion to duration of

suppression. This is consistent with observations from published case reports of SUDEP

that occurred during EEG monitoring; seven out of eight cases reported abrupt interruption

of ictal activity replaced by severe suppression of the EEG that failed to recover in the fatal

seizure [14,23,99,104,115, 144]. EEG features were not described in the eighth case [40].

Moreover, another case that was monitored at the time of a near SUDEP incident with

successful cardio-respiratory resuscitation also involved marked suppression of the post-

ictal EEG [168]. However, another study demonstrated the association between PGES and

GTCS, but challenged the significance of PGES as an independent SUDEP biomarker [176].

This discrepancy could be due to the fact that the data studied were snapshots recorded a

long time before the patients died of SUDEP. Given the inter-seizure variability of PGES

for each patient and that a patients risk for SUDEP may evolve over time, measurements

based on a couple of seizures may not be representative of a patients overall risk. If data

on PGES could be collected over longer durations (e.g. weeks to months) from patients at

home, this would lead to a better characterization of the utility of PGES as a biomarker

for SUDEP.

Here, we describe a pilot study on the autonomic footprints left by different seizures

types and the relationship between the seizure intensity, quantified as the degree of au-

tonomic imbalance and post-ictal generalized EEG suppression, a surrogate biomarker for

SUDEP. To gain a better understanding of the role of the sympathetic nervous system,

we performed continuous measurements of electrodermal activity during peri-ictal periods

of complex partial seizures and secondarily generalized tonic-clonic seizures using a novel

wearable biosensor. Sympathetic postganglionic fibers innervate eccrine sweat glands and

their activity is reflected in measurable changes in skin conductance at the surface [37,153].

Therefore, modulation in skin conductance, or more generally speaking, in electrodermal

activity (EDA), is a unique parameter that reflects purely sympathetic activity without

parasympathetic antagonism [26,37,197,203]. To assess parasympathetic activity, we per-



formed time-frequency mapping of heart rate variability. Heart rate variability, a measure

of fluctuations in the interval between normal heartbeats mediated by autonomic inputs to

the sinoatrial node, is an established measure of cardiac autonomic function [21,110,171].

Vagal modulation can be quantified by analyzing oscillations at respiratory frequencies (also

known as respiratory sinus arrhythmia) that are mediated solely by the parasympathetic

system and are abolished by atropine infusion [6,142]. Here we present, for the first time,

high-resolution characterization of sympathetic and parasympathetic alterations associated

with seizures and show a critical window of autonomic imbalance after tonic-clonic seizures.

Importantly, we found that the seizure intensity of tonic-clonic seizures, quantified as the

magnitude of autonomic disturbance, was strongly correlated with post-ictal EEG suppres-

sion. These results raise the possibility that autonomic footprints of seizures could serve

as biomarkers for the risk of SUDEP, as well as the possibility of a wearable device for

round-the-clock monitoring to identify potentially dangerous seizures

4.2 Experimental Methods

4.2.1 Patients and Seizures

We recruited patients with epilepsy who were admitted to the long-term video-EEG moni-

toring (LTM) unit at Childrens Hospital Boston for characterization of events, pre-surgical

evaluation or invasive monitoring for possible epilepsy surgery. Typically patients stayed

for three to seven days at the LTM. All the participants provided written informed consent.

This study was approved by the institutional review boards of Childrens Hospital Boston

and Massachusetts Institute of Technology. We excluded patients who did not experience

either a complex partial or secondarily generalized tonic-clonic seizure that was successfully

captured during monitoring. We also excluded seizures that were not preceded by at least

60 min of non-ictal activity.

4.2.2 Wearable EDA Biosensors

The design and construction of the wrist-worn wearable EDA biosensor has been described in

the previous chapter. Briefly, the sensor measures exosomatic skin conductance by applying

direct current to the stratum corneum of the epidermis beneath measuring electrodes. To

achieve a wide dynamic range of skin conductance measurements, the analog conditioning



circuitry utilizes non-linear feedback automatic bias control with low-power operational

amplifiers. The sensor module also contains a tri-axis accelerometer for measurements

of physical activity (actigraphy). All the electronic components were integrated into a

wristband made out of terrycloth for comfortable and inconspicuous use. We used disposable

Ag/AgCl disc electrodes with contact areas of 1.0 cm 2 for our recordings as recommended

in the literature [66]. We use the ventral side of the distal forearms as recording sites as

placement of electrodes on the forearm are less susceptible to motion artifacts and highly

correlated to palmar recordings [141]

4.2.3 Recordings

EEG recordings were performed using conventional scalp EEG electrodes (10-20 system)

with a sampling rate of 256 Hz or implanted intracranial electrodes at a sampling rate

of 500 Hz (XLTEK, Oakville, ON, Canada). ECG was monitored concurrently from a

modified lead-II with adhesive electrodes placed below the clavicles. For all the epilepsy

work in this thesis, EDA recordings were recorded at 20 Hz and synchronized with the

video/EEG/ECG recordings by generating technical artifacts at the beginning and end of

each session for offline realignment. Each recording session lasted approximately 24 hours

and batteries were replaced on a daily basis.

4.2.4 EEG Analysis

Video and EEG recordings were examined by two board-certified clinical neurophysiologists

who were blinded to EDA, heart rate variability, and clinical information. Seizure type, ictal

EEG localization, EEG seizure onset and offset, clinical seizure onset and duration of post-

ictal generalized EEG suppression were determined. Post-ictal generalized EEG suppression

was defined as the immediate post-ictal generalized decrease of EEG signals below 10 V in

amplitude, not including muscle, movement, breathing, electrode or other artifacts [104].

4.2.5 EDA Analysis

EDA recordings were analyzed using custom written software in MATLAB (MathWorks

Inc., Natick, MA). Raw EDA recordings were low-pass filtered (Hamming window, length

= 1025, 3 Hz) to reduce motion artifacts and the filtered signals were used in all subsequent

processing. For each seizure, the corresponding peri-ictal EDA recording from 60 min prior



to EEG seizure onset up to 120 min afterwards was segmented. To obtain the time profile

of EDA alterations, a one-minute moving average window with zero overlap was applied

to the pre- and post-ictal segments (e.g. each data point shown in Figure 4-4A and B is

the average of 20 x 60 samples). To calculate the ictal EDA parameters, the segmented

recordings were low-pass filtered (Hamming window, length = 1025, 0.01 Hz) to obtain the

tonic component of EDA. The baseline was computed as the mean level over the entire

60 min pre-ictal period. Response latency was measured as the time from EEG seizure

onset to the moment the filtered EDA signal exceeded two standard deviations (SD) above

the pre-ictal baseline (EDA response onset). EDA response amplitude was determined as

the difference between the response peak and pre-ictal baseline. Response end time was

established as the time when the EDA response fell below 90% of the peak ictal amplitude.

The area under the EDA response curve was calculated by integrating the EDA signal from

the EDA response onset to the end time after subtracting the baseline. Area under the

rising portion was taken as the integral from the EDA response onset to the peak response.

The natural log-transformation was applied to all area calculations as the formation of the

sum of products generates a value that increases and decreases in an exponential manner.

4.2.6 ECG Analysis: Time-frequency Mapping of Heart Rate Variability

All ECG recordings were analyzed using custom written software in MATLAB (Math-

Works Inc., Natick, MA). ECG recordings were processed to remove noise as described by

De Chazal and colleagues [41]. Baseline wander was removed by subtracting an estimate of

the baseline obtained by two median filters. Power-line and high-frequency noise was then

removed from the baseline-corrected ECG using a 12-tap low-pass filter (35 Hz) with equal

ripple in the pass and stop bands. For each seizure, the corresponding peri-ictal filtered

ECG signal from 60 min prior EEG seizure onset up to 120 min afterwards was segmented.

The inter-beat interval (RRI) time series was formed by first employing automated QRS

detecting using filter banks [4] and then manually examining the results to correct for false

positives and missed beats. To remove artifacts such as ectopic beats, the RRI signal was

filtered using the non-causal of variable threshold algorithm [200] with a tolerance of 20%.

Next, the RRI signal was interpolated using a cubic spline at 4 Hz to obtain a uniformly

sampled time series. The time profile of heart rate alterations was computed as with a

one-minute sliding window with no overlap that was applied to the pre- and post-ictal



segments. For time-frequency analysis, baseline non-stationarities of the RRI series were

removed by a detrending method based on a smoothness priors approach with the smooth-

ing parameter [182]. The detrended RRI series was converted into an analytical signal using

the Hilbert transform to remove negative frequencies. The smoothed pseudo Wigner-Ville

(SPWV) time-frequency distribution with 1024 frequency bins was then computed using the

analytical signal. We used a rectangular window (length = 121) for time-domain smoothing

and a Gaussian window for frequency smoothing (length = 127). The parasympathetic me-

diated high frequency spectral component (HF) was extracted from the SPWV distribution

by integrating the spectral powers between 0.15 and 0.4 Hz. The time profile of HF power

alterations was obtained using a one-minute moving average window with no overlap that

was applied to the pre- and post-ictal segments (Figure 4-4A and B). Pre-ictal baseline was

determined by taking the mean value over the 30 min period right before EEG seizure onset.

The minimum HF power level was also determined from the 30 min post-ictal period. The

maximum percentage change in HF power was defined as:

A HFmax = H Fmin - H Fbaseline X 100% (4.1)
H Fbaseline

4.2.7 Statistical Analysis

Statistical analyses were performed using the MATLAB statistics toolbox (MathWorks Inc.,

Natick, MA). Within seizure type comparisons of pre- and post-ictal measurements were

performed using paired, two-sided Wilcoxon signed-rank tests (WSRT). To account for

multiple comparisons, the resulting p values were adjusted using the False Discovery Rate

controlling procedure [19]. Comparisons between seizure types and between SUDEP risk

groups were made using unpaired, two-sided Mann-Whitney-Wilcoxon tests (MWW). The

Pearson correlation coefficient was determined to measure the strength and direction of the

linear relationship between the different pairs of variables. Each test was performed at a

significance level of 0.05. Data are expressed as mean ± standard error (SE).

4.3 Results

We included 11 patients with refractory epilepsy in this study, all of which were candidates

for epilepsy surgery. Clinical information for each patient is presented in Table 4.1. In
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Figure 4-1: Long-term electrodermal activity (EDA) recordings obtained from a wearable biosensor.
In this example of a 24 h continuous EDA recording from a single patient, four secondarily generalized
tonic-clonic seizures (GTCS) were captured. Vertical red lines denote EEG seizure onset. Inset: The
wearable biosensor consists of an inconspicuous wristband with an integrated sensor module that
can be worn comfortably for long periods of time and during daily activities. The underside of the
wristband is shown to reveal standard dry Ag/AgCl electrodes used for EDA measurements.

addition to combined video-EEG and electrocardiogram (ECG) monitoring, we successfully

recorded over 1176 hours of EDA data with durations of 4.5t 0.8 days/patient (mean t SD)

using a wearable skin conductance biosensor (Figure 4-1). A total of 34 seizures comprising

22 complex partial and 12 secondarily generalized tonic-clonic seizures met the inclusion

criteria described in the Methods section. The seizures occurred at different day- and

nighttimes and during both awake and sleep states (Figure 4-2). Physiological recordings

of each individual seizure are presented in Appendix C.

4.3.1 Autonomic Footprints Reveal Critical Window of Severe Imbalance

after Tonic-Clonic Seizures

First, we examined the time courses of autonomic alterations in complex partial and secon-

darily generalized tonic-clonic seizures to identify differences that may contribute to tonic-

clonic seizures being a major risk factor for SUDEP. We analyzed both EDA and electrocar-

diogram (ECG) recordings up to 60 min before EEG seizure onset and 120 min afterwards

when possible. ECG recordings were not included for six complex partial seizures and one

tonic-clonic seizure due to short post-ictal recordings (< 30 min), missing data, and signal

corruption by artifacts. We chose time-frequency mapping based on the modified Wigner



Table 4.1: Clinical Characteristics of Patients

Patient Age/epilepsy EEG MRI findings Seizure frequency AEDs Duration Seizures
no./sex duration seizure of moni- included

[years] focus toring

1/m 15/13.5 Right>left Right occipital 2-4 CPS/week; LEV,LTG, 3 nights 2 CPS,
posterior resection cavity 3 GTCS in life MT,OXC 1 GTCS
quadrant (history of

glioma)

2/m 17/1 Bifrontal Frontal 1 GTCS/month VPA 6 nights 4 GTCS
meningioma

3/m 20/3 Left Normal 2-3 CPS/week; CBZ,LEV 5 nights 1 CPS,
fronto- 0.5 GTCS/month 2 GTCS
temporal

4/m 9/9 Left History of right 0.1-2 LTG,TGB, 4 nights 1 GTCS
fronto- thalamic hemor- CPS/month VPA
temporal rhage

5/f 11/7 Multifocal N.A. N.A. LEV,PHT, 4 nights 2 CPS,
VPA 3 GTCS

6/m 16/15 Left Normal 1-2 CPS/month; GBP,LOR, 5 nights 1 GTCS
fronto- 2 GTCS/year LTG,ZNS
temporal

7/m 13/N.A. Right Right fronto- N.A. DIA,LTG, 4 nights 6 CPS
central parietal dysplasia PHT,TPM

8/m 13/8 Left Absence of cor- 1-2 CPS/month; CBZ,LTG 5 nights 5 CPS
fronto- pus collosum, 1 - 2 GTCS/year
temporal dysmorphic ven-

tricles, bifrontal
transmantle gray
matter hetero-
topia, small
pituitary gland

9/f 6.5/3 Left N.A. 3 CPS/day CBZ,LTG 5 nights 4 CPS
hemisphere

10/m 3/1 Multifocal Normal 1-2 CPS/week; CLN,LEV, 4 nights 1 CPS
4 GTCS in life LTG,VPA

11/f 9/5 Left Normal 2-3 CPS/week LEV,VPA 4 nights 1 CPS
temporal

AED antiepileptic drugs; CBZ carbamazepine; CLN clonazepam; CPS complex-partial seizure; DIA diazepam; GBP
gabapentin; GTCS secondarily generalized tonic-clonic seizure; LEV levetiracetam; LOR lorazepam; LTG lamotrigine; MT
melatonin; MRI magnetic resonance imaging; N.A. information not available; OXC oxcarbazepine; PHT phenytoin; TPM
topiramate; VPA valproic acid; ZNS zonisamide
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Figure 4-2: Histogram of the onset times for the complex partial seizures (CPS) and secondarily
generalized tonic-clonic seizures (GTCS) in this study. The occurrence times for both seizure types
were distributed throughout the day and night.

distribution for its high resolution and ability to detect rapid transients [133,134]. Cardiac

vagal activity was estimated by the power in the high frequency spectral component (HF,

0.15 - 0.4 Hz) of inter-beat (RR) interval oscillations that reflect parasympathetic modula-

tion of the heart. Examples of changes in autonomic activity from a single seizure of each

type are shown in Figure 4-3.

In 19/22 (86%) complex partial seizures, we observed an increase in EDA greater than

two SD above the mean pre-ictal level, which we defined as an EDA response. All 12

(100%) generalized tonic-clonic seizures exhibited an EDA response. There was no difference

between the latency from EEG seizure onset to EDA response onset between the two seizure

types (p > 0.1; two-sided Mann-Whitney-Wilcoxon test [MWW)); the median latency for

all seizures was 33.25 s.

By comparing the minute-to-minute evolution of post-ictal autonomic activity to the pre-

ictal baseline (averaged over 60 min before seizure onset), we observed a period of autonomic

disturbance after complex partial seizures (Figure 4-4A). Sympathetic-mediated EDA was

significantly higher for the first 9 min before returning to baseline (p < 0.05; n = 22;

two-sided Wilcoxon signed-rank test [WSRT]). Post-ictal heart rate was elevated for 3 min

(p < 0.05; n = 16; WSRT). Parasympathetic-modulated HF power was persistently lower for

approximately 55 min with sporadic brief periods of reduction afterwards (p < 0.05; n = 16;

WSRT).

Strikingly, we found a period of severe and uninterrupted autonomic imbalance after
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Figure 4-3: Changes in autonomic activity after individual epileptic seizures. Examples of alter-
ations in electrodermal activity (EDA), R-R intervals (RRI) along with time-frequency mapping
of the RRI during peri-ictal segments of 75 min. (A) A small increase of EDA is observed with a
decrease in RRI (i.e. increase in heart rate) during this complex partial seizure (CPS). There is
also a brief reduction of the high frequency spectral component (HF, 0.15 - 0.4 Hz) of RRI during
the post-ictal period that reappears after approximately 5 min. (B) A large surge in EDA is visible
after this secondarily generalized tonic-clonic seizure (GTCS) accompanied by a drop in RRI. Note
the reduction in RRI variability during the post-ictal period and the dramatic reduction of the high
frequency power. Vertical red lines denote EEG seizure onset and offset.
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Figure 4-4: Autonomic footprints of epileptic seizures. High-resolution profiles of autonomic al-
terations computed every minute during a peri-ictal period of 3 h for (A) complex partial seizures
and (B) secondarily generalized tonic-clonic seizures. Each post-ictal measurement epoch was se-
quentially compared to the baseline level taken as the average of the entire 60 min pre-ictal period.
Epochs in red indicate statistical significance after accounting for multiple comparisons using the
False Discovery Rate controlling procedure (p < 0.05; paired, two-sided Wilcoxon signed rank test).
Post-ictal levels of EDA were higher for 9 min after complex partial seizures (n = 22). Heart rate
was also higher lasting 3 min (n = 16). HF power was continuously reduced for approximately 55
min (n = 16). Strikingly, the first 56 min after tonic-clonic seizures was associated with marked
increases in EDA (n = 12) and heart rate (n = 10), as well as profound reduction in HF power
(n = 10). Persistent tachycardia was observed for 40 min; heart rate and HF power levels recov-
ered after 100 min. (C) EDA during the pre-ictal period was marginally similar between seizures
(p = 0.05; Mann- Whitney-Wilcoxon test [MWW]), but was higher in tonic-clonic seizures during
the first 60 min of the post-ictal period (p = 0.004; MWW). (D) There was no difference in pre-ictal
HF power between seizures (p > 0.5; MWW), whereas post-ictal HF power was lower in tonic-clonic
seizures (p = 0.033; MWW).



generalized convulsions (Figure 4-4B). This period was characterized by profound elevation

of EDA for 56 min (p < 0.05;n = 12; WSRT), increased heart rate lasting approximately

100 min (p < 0.05; n = 10; WSRT) with persistent tachycardia for 40 min and suppressed

HF power unrelieved for approximately 100 min (p < 0.05; n = 10; WSRT). These findings

suggest that the early post-ictal phase appeared to be dominated by sympathetic over-

activation coupled with vagal suppression whereas the later phase seemed to be dominated

by impaired vagal reactivation.

4.3.2 Comparison Between Complex Partial and Generalized Tonic-Clonic

Seizures

We also probed the difference in magnitude of autonomic alterations between both seizure

types. Pre-ictal levels (averaged over 60 min) of EDA and HF power were not different

between seizure types; however, post-ictal EDA (averaged over 120 min) was significantly

higher in tonic-clonic seizures compared to complex partial seizures (p = 0.004; MWW;

Figure 4-4C), suggesting much higher sympathetic activation. In addition, post-ictal HF

power was significantly lower in tonic-clonic seizures (p = 0.033; MWW; Figure 4-4D),

suggesting much lower vagal influence. Therefore, autonomic activity after tonic-clonic

seizures was impacted more severely and these alterations lasted longer compared to complex

partial seizures.

4.3.3 Correlations Between Heart Rate, Sympathetic EDA and Parasym-

pathetic HF Power

We examined the relationship between heart rate (HR), EDA and HF by calculating the

Pearson correlation coefficient between HR and EDA as well as between HR and HF during

both pre-ictal and post-ictal periods (60 min) for each individual seizure. In the pre-ictal

period before complex partial seizures, there was no correlation between EDA and HR

(median correlation coefficient f = 0) whereas HF and HR were negatively correlated (f

= -0.64). After complex partial seizures, the correlation between EDA and HR increased

significantly (f = 0.66, p < 0.05, n = 16; WSRT). There was no significant difference in the

correlation between HF and HR (f = -0.62, p = 0.38). In the pre-ictal period before tonic-

clonic seizures, there was also no correlation between EDA and HR (median correlation

coefficient f = 0). HF and HR were negative correlated (f = -0.15) but the correlation was



weaker compared to that of before complex partial seizures (p < 0.005). After tonic-clonic

seizures, the correlation between EDA and HR trended upward (i = 0.35, p = 0.098, n = 10;

WSRT). There was no significant difference in the correlation between HF and HR (f =

-0.09, p = 0.91).
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Figure 4-5: Correlation coefficients between EDA vs HR and HF
and (B) post-ictal period of complex partial seizures.
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Figure 4-6: Correlation coefficients between EDA vs HR and HF
and (B) post-ictal period of generalized tonic-clonic seizures.
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4.3.4 Magnitude of Autonomic Imbalance in Tonic-Clonic Seizures is

Strongly Correlated with Post-Ictal Generalized EEG Suppression

To evaluate a possible link between seizure intensity and SUDEP, we examined the relation-

ship between the autonomic impact and post-ictal EEG suppression in tonic-clonic seizures,
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a proposed biomarker of SUDEP risk. An example of generalized EEG suppression follow-

ing a tonic-clonic seizure along with changes in EDA is shown in Figure 4-7. In general, the

onset/offset moments of PGES appeared to coincide with a steep and smooth increase in

EDA with a lack of high frequency responses 4-8. The duration of post-ictal EEG suppres-

sion could not be measured reliably in one seizure due to excessive corruption of the EEG

signal by artifacts. Post-ictal EEG background attenuation was observed in 9/11 (81.8%)

of the included tonic-clonic seizures. We quantified the magnitude of seizure-induced sym-

pathetic activation by the amplitude of EDA response and area under the EDA response

curve. We applied the log transformation to the area under the curve measurements to

produce a linear change in the measurements. The impact on parasympathetic function

was measured as the maximal percentage change in HF power during the post-ictal period

compared to the pre-ictal baseline.
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Figure 4-8: Morphology of EDA changes relative to the onset/offset moments of PGES. The gray
shaded areas represent the ictal period while the red shaded areas correspond to PGES. Seizures 9
and 11 did not exhibit PGES upon termination.

Across all patients, we found that the amplitude of EDA response was strongly and pos-
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PGES in GTCS on a patient-specific level showed close agreement in trends. Patient 2 had four
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itively correlated with the duration of EEG suppression (r = 0.81,p = 0.003; n = 11; Figure

4-9A). Similarly, the log-transformed area under the EDA curve was positively correlated

with post-ictal EEG suppression (r = 0.75, p = 0.008; n = 11); the area under the rising por-

tion of the EDA response particularly showed strong correlation (r = 0.83, p = 0.002; n = 11;

Figure 4-9B). In contrast, the maximal percentage change in HF power was strongly and

negatively correlated (r = -0.87, p = 0.002; n = 9; Figure 4-9C) with the duration of EEG

suppression (i.e. a greater reduction of HF power was associated with a longer post-ictal

EEG suppression). Notably, the post-ictal EEG suppression was not dependent on the

total seizure duration (p > 0.3, n = 11) or on the duration of the generalized motor phase

(p > 0.3, n = 11).

We also examined the relation between the EEG suppression duration and autonomic

variables on a patient-specific level (within paticnts who had multiple tonic-clonic seizures)

to see how sensitive the autonomic measures might be as an indicator of post-ictal EEG

suppression. We observed that the trends in post-ictal EEG suppression and amplitude of

EDA response amplitude after all four tonic-clonic seizures from Patient 2 were in close

agreement (Figure 4-9D top). This similarity in trends was also present for all three tonic-

clonic seizures in Patient 5 (Figure 4-9D bottom). The two tonic-clonic seizures from Patient

3 could not be compared because the duration of post-ictal EEG suppression could not be

determined in one seizure (excessive corruption of the EEG signal by artifacts).

4.3.5 Binary Outcome Analysis for Prolonged Post-Ictal EEG Attenua-

tion

Next, we divided the convulsive seizures into lower and higher SUDEP risk groups to assess

the difference in autonomic impact between the two groups. For generalized motor seizures,

post-ictal EEG suppression greater than 20 s is associated with a significant elevation of

odds ratios for SUDEP [104] and this served as our threshold for grouping the seizures.

We found that the EDA response amplitude was significantly higher in seizures with higher

SUDEP risk (p = 0.01; MWW; Figure 4-9E). Moreover, seizures in the higher risk group

also had a greater maximum reduction in HF (p < 0.05; MWW; Figure 4-9F).



4.4 Discussion

The present study is the first to quantify both sympathetic and parasympathetic auto-

nomic disturbance after tonic-clonic seizures and to show a significant correlation of these

alterations to the duration of post-ictal EEG suppression. We found that autonomic ac-

tivity after tonic-clonic seizures was impacted more severely compared to complex partial

seizures. Furthermore, this impact lasted up to 100 min. This critical period appears

to involve sympathetic over-activation evidenced by a surge in EDA coupled with vagal

withdrawal indicated by suppressed HF power in the early phase, and impaired vagal re-

activation in the later phase. Importantly, the degree of both sympathetic activation and

parasympathetic suppression increased approximately linearly with duration of post-ictal

EEG suppression. Our results suggest that seizure intensity, as determined by magnitude

of autonomic impact, could be an important factor in the pathophysiological mechanism of

SUDEP.

While many studies have analyzed baseline (inter-ictal) alterations of autonomic func-

tion in patients with epilepsy [160], data on post-ictal autonomic alterations are limited

despite evidence that they are among the most dangerous effects of seizures [46]. Prior

studies on post-ictal autonomic modulation limited heart rate variability analysis to a sin-

gle measurement taken during the early [7,175] post-ictal period (< 15 min) and in one

case, during late [191] post-ictal period (5 - 6 h). As such, little is known about the time

course of autonomic disturbance after seizures. Moreover, decoupling the relative influence

of parasympathetic or sympathetic system is challenging because heart rate, like blood

pressure and respiration rate, is controlled by both branches of the autonomic nervous sys-

tem [197] and the two influences are not easily separated. While there is a consensus that

HF power reflects vagal modulation of the heart rate, there is no clear cardiac measure of

sympathetic modulation. It has been claimed that power in the low frequency range (LF,

0.04 - 0.15 Hz) reflects primarily sympathetic modulation of heart rate and that the LF/HF

ratio reflects the sympathovagal balance but this is highly controversial as beta blockade

does not reduce, but rather increases LF power [32] and direct cardiac sympathetic blockage

via epidural anesthesia has no effect on it [76]. In contrast, EDA provides a sensitive index

of sympathetic activity alone. This work appears to be the first attempt to characterize

changes in EDA before, during and after epileptic seizures.



This study was able to leverage an innovation in bio-sensing that allows sympathetic

EDA to be measured comfortably for long periods of time off the wrist. The findings

here significantly expand current knowledge by presenting continuous, minute-by-minute

profiles of both sympathetic and parasympathetic modulation up to 2 h after complex

partial and secondarily generalized tonic-clonic seizures. Compared to complex partial

seizures, generalized tonic-clonic seizures induced much higher and prolonged sympathetic

activation and greater reduction of cardiac vagal influence compared to complex partial

seizures. This difference in both the degree and duration of autonomic imbalance may

in part explain why tonic-clonic seizures are a major risk factor for SUDEP. The high-

resolution time course revealed what appears to be two-phases of post-ictal autonomic

disturbance after tonic-clonic seizures. The first phase involved a prolonged sympathetic

surge in EDA lasting approximately 65 min. This time course is in close agreement with

changes in plasma concentrations of catecholamines that are maximally elevated in the

first 10 minutes after tonic-clonic seizures and decline over 60 min to normal levels [165].

Together, these findings support the notion of a generalized sympathetic neural activation.

On the other hand, the marked decrease in HF power implies a reduction of vagal control

over the heart. Similarly, the persistent low HF power and delayed decrease in heart rate

even after sympathetic levels are restored to baseline suggest impaired vagal reactivation

in the second phase. Experimental [77] and clinical studies [112,119,122] have consistently

shown that decreased vagal activity is associated with increased risk for cardiac mortality

and sudden death, independent of disease status. A recent case study described a patient

who underwent repeated measures of HF power, which progressively deteriorated prior to

SUDEP [146]. Augmented vagal activity is protective against lethal arrhythmias [42,78,195]

and decreased vagal modulation leading to an increase in ventricular automaticity could in

turn make the heart susceptible to arrhythmias. The autonomic profiles uncovered in this

study indicate that there exists a critical window of disordered autonomic regulation after

seizures, especially tonic-clonic seizures, which may lead to increased vulnerability of a

patient for sudden death.

The strong correlations between post-ictal EEG suppression and both sympathetic and

vagal alterations that act in opposite directions provide the first evidence that post-ictal

generalized EEG suppression is associated with the severity of autonomic disturbance in

tonic-clonic seizures. Post-ictal generalized EEG suppression was shown to provide quan-



tification of SUDEP risk in a retrospective case-control study [104] and provided a surrogate

marker for actual SUDEP. In conjunction with a recent report of association between vagus-

mediated heart rate variability and an inventory of clinical SUDEP risk factors [44], our

findings raise the possibility that autonomic activity could provide markers for SUDEP

risk. We found that tonic-clonic seizures at higher risk for SUDEP had significantly higher

sympathetic activation and greater vagal reduction compared to tonic-clonic seizures in the

lower risk group. These results suggest that seizure intensity as measured by autonomic

dysregulation may be factor in the pathogenesis of SUDEP. Prolonged EEG suppression

may excessively inhibit different neuronal systems, such as parasympathetic centers or cir-

cuits, and result in unbridled sympathetic activation. In turn, sympathetic over-activity

can play an important role as a trigger of ventricular tachyarrhythmias and sudden cardiac

death [81,150,209], especially in the setting of impaired vagal reflexes that lower the thresh-

old for ventricular fibrillation [22]. Indeed, SUDEP due to cardiac arrhythmia following a

partial seizure has been witnessed once, albeit in an individual with a history of myocardial

infarction [40]. Ventricular fibrillation after a secondarily generalized tonic-clonic seizure in

a patient without underlying cardiac disease was also reported in a near-SUDEP event [56].

These findings must be considered in light of several limitations of the present study.

First, due to the exploratory nature of the study, a relatively small number of patients and

seizures were included. The limited number of patients also precluded us from comparing

autonomic and EEG features in different seizure types within individual patients or selecting

only one seizure per patient to reduce the effect of individual differences. There is a pos-

sibility of patient selection bias since the study group involved only patients with epilepsy

severe enough to merit hospitalization, and are at higher risk for SUDEP. As SUDEP is a

rare phenomenon and cannot be reasonably expected to occur during a monitoring situa-

tion, direct assessment of the risk of SUDEP is very challenging. Thus, we derived the risk

for SUDEP from post-ictal EEG suppression, a surrogate marker that is possibly related to

SUDEP risk.

The current results provide a promising outlook for patients with epilepsy. The possibil-

ity of autonomic biomarkers of seizure intensity or SUDEP risk is attractive for ambulatory

monitoring without the need for continuous EEG measurements. It remains challenging to

implement a-low-cost, wearable EEG recorder that is not unwieldy or stigmatizing. On the

other hand, the wrist-worn EDA biosensor utilized in this study allows comfortable round-



the-clock monitoring without social awkwardness. With the onboard tri-axis accelerometer

and wireless transceiver, it is possible to develop convulsive seizure detectors that can auto-

matically alert caregivers in the event of a seizure [90,107]. Furthermore, EDA parameters

such as the amplitude of EDA response would provide caregivers with important informa-

tion regarding the severity of the seizure and aid in the identification of seizures that require

immediate medical attention. Our data suggest that the correlation between amplitude of

EDA response and duration of EEG suppression amplitude also exists within seizures of a

specific individual. Supervision and attention to recovery after a seizure may be important

in SUDEP prevention because most deaths are unwitnessed [931. A study in a residential

school for children with epilepsy who were closely supervised at night and attended to after

a seizure reported that deaths occurred with students on leave or after they left, but not at

the school [125]. Another large case-control study found that sharing a bedroom with some-

one capable of giving assistance and special precautions such as regular checks throughout

the night or using a listening device were all protective factors against SUDEP [94]. The

findings here might help discriminate when a post-ictal period is likely to be life-threatening.

SUDEP in most cases is triggered by a generalized tonic-clonic seizure but it remains

unknown what physiological contributory factors make this particular seizure fatal unlike all

other seizures in the past. Our data reveal a window of significantly disordered autonomic

regulation after tonic-clonic seizures that may create conditions for sudden death. These

findings further establish a correlation between the degree of autonomic dysregulation and

duration of EEG suppression following a tonic-clonic seizure. Since prolonged post-ictal

EEG suppression was observed in patients who subsequently died of SUDEP, it will be of

great interest to establish whether or not these autonomic footprints could provide reliable

biomarkers to identify epilepsy patients who are at risk of SUDEP.
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Chapter 5

Convulsive Epileptic Seizure

Detection Using Electrodermal

Activity and Accelerometry

5.1 Introduction

People with epilepsy often describe seizures as occurring "like a bolt from the blue" which

reflects the apparent sudden, unforeseen way in which seizures tend to strike [120]. Abrupt

episodes of staring, loss of muscle control or loss of consciousness can pose a serious in-

jury risk and can even be fatal if, for example, they occur while the person is driving,

crossing a busy street, bathing, swimming or climbing stairs. The danger of brain damage

increases with seizure duration and seizures can progress to become status epilepticus, a life-

threatening medical emergency in which the brain is in a state of persistent seizure. More-

over, sudden unexpected death in epilepsy (SUDEP), although a relatively rare event, tends

to occur during or shortly after a seizure and the deaths are largely unwitnessed [177,183].

The apprehension and worry about injury, or even death, resulting from a seizure often over-

shadows the lives of those unable to achieve complete seizure control [54]. Many parents of

children with epilepsy fear that their child might be seriously injured by seizures and the

fear increases when they are unable to observe their children's seizures during sleep [84]. An

unobtrusive device suitable for long-term, continuous monitoring and capable of automated

detection of an ongoing seizure could have a significant positive impact on the everyday lives



of patients and families. Timely detection of an ongoing seizure and subsequent notification

of caregivers would enable a patient to receive treatment if injured, or to be placed in the

recovery position to avoid airway obstruction that could be fatal.

Combined electroencephalogram (EEG) and video-monitoring remains the gold standard

for seizure detection in clinical routine. As such, the vast majority of work in automatic

epileptic seizure detection has focused on analyzing the EEG [71,145,149,163]. Nonetheless,

an EEG-based approach for a seizure detection alarm system has many practical disadvan-

tages for long-term or everyday use. To obtain high-resolution data, the electrodes need to

be placed on the surface of the brain or within its depths, involving a highly invasive proce-

dure [106]. Non-invasive scalp EEG-based algorithms have achieved good performance [163],

but the ambulatory EEG units available today are bulky and cumbersome. The technical

requirements for the implementation of wearable EEG recorder are challenging and much

effort will be needed to design a wearable electrode system that is not obstructive, unwieldy

or stigmatizing [34]. In a survey of 141 patients with uncontrolled epilepsy from two differ-

ent epilepsy centers, almost 80% of patients were opposed to wearing scalp EEG electrodes

to obtain seizure warnings [159]. This strong aversion may be due to the discomfort associ-

ated with wearing scalp electrodes, the fear of stigmatization, or both. On the other hand,

up to 55% of patients were willing to consider the use of a mobile device.

The special requirements for a seizure detector suitable for everyday use in terms of cost,

comfort and social acceptance call for alternative sensing modalities. The clinical manifes-

tation of a seizure depends on the location and extent of the propagation of the affected

neurons. For seizures that result in motor accompaniments, video analysis of the movements

can be used for seizure detection [86, 105]. Nonetheless, it is difficult to detect movements

under a blanket and these video-based approaches are limited to bedtime monitoring when

the patient is within the camera's field of view. Similarly, sensor-embedded mattresses can

be used to detect generalized tonic-clonic (GTC) seizures but cannot provide ambulatory

monitoring [33]. Accelerometry (ACM) recordings have also been reported to be a valu-

able sensing method for detection of seizures with motor accompaniments [129] but few

algorithms for automated detection have been proposed [17,38,80,128]. More importantly,

these studies did not evaluate the rate of false alarms during normal daily movements, a

critical parameter for any wearable seizure detector. Two recent clinical studies evaluated

the use of wrist-worn device containing a three-dimensional accelerometer to detect GTC



seizures over long periods of monitoring, but the feature derivations and seizure detection

algorithms were not described [90,107]. Another study reported promising results in a small

training set, but lacked any independent test data for proper evaluation [158].

Epileptic seizures are often associated with changes in autonomic nervous system (ANS)

functioning. These ictal autonomic symptoms range from subtle manifestations such as

flushing, sweating and piloerection to severe increases in blood pressure and changes in

heart rate and cardiac conduction [15,108,109,157]. They are not merely simple reactions

to motor manifestations of seizures, but are mediated by an activation of the central auto-

nomic network [15]. The various ictal clinical manifestations outlined represent alternative

options to the EEG that can potentially be used for seizure detection. A multi-modal ap-

proach that combines two or more complementary physiological signals may lead to better

discriminability. In the previous chapter, we showed that electrodermal activity (EDA),

which reflects the modulation of sweat gland activity by the sympathetic nervous system,

increased during both 86% of complex partial seizures and 100% of GTC seizures in a set

of 34 seizures measured. However, no one has explored the utility of EDA in the context of

seizure detection.

In this chapter, we describe a novel algorithm and device for seizure detection using

a wearable EDA and ACM sensor that is suitable for round-the-clock monitoring. This

method uses Support Vector Machines to construct semi-patient-specific classifiers for sen-

sitive and specific detection of GTC seizures. We outline the steps involved in pre-processing

the data, feature extraction and creating the models. The problem of seizure detection is

posed as a supervised learning task in which the goal is to classify a time series segment

as seizure or non-seizure based on extracted features from EDA and ACM recordings. We

evaluate the performance of our algorithm on EDA and accelerometry data comprising a

wide range of daily movements from epilepsy patients undergoing long-term monitoring in

video-EEG units. We demonstrate how analysis of ictal autonomic changes in EDA can be

used to supplement accelerometer-based motion analysis in order to enhance overall seizure

detection performance.



5.2 Related Work

Accelerometry (ACM) is a practical and low-cost method of objectively monitoring human

activity patterns [114]. It has been used in many clinical research areas such as performing

activity recognition [13,179], estimating metabolic energy expenditure [28], studying sleep

and circadian rhythms [10,83], detecting falls in the elderly [27] and assessing the severity

of motor complications in Parkinson's disease [137]. In the context of epilepsy, the use

of accelerometers for monitoring seizures was rare [69] until recent years. In 2005, Nijsen

and colleagues first proposed the use of accelerometers as a sensing method for seizure

detection [129]. Out of 897 seizures that were recorded, 428 (48%) of the seizures could

be detected by visual analysis of the ACM patterns. Moreover, the authors observed that

95% of the 428 motor seizures contained stereotypical ACM patterns. Although visual

analysis of ACM is labor intensive, this early work highlighted the potential value of ACM

for detection of motor seizures.

Since then, investigators have started to develop automated seizure detectors based on

ACM pattern analysis. Niijsen and colleagues presented an approach for automated de-

tection of tonic seizures using ACM in 2009 [127]. Using linear discriminant analysis for

classification, their algorithm detected 80% of the 27 tonic seizures from 18 patients. How-

ever, the positive predicted value (PPV), which is the proportion of detections that are

true seizure events, was relatively low at 35%. In subsequent work, Niijsen and colleagues

described a method for detecting myoclonic seizures also based on linear discriminant anal-

ysis using features derived from time-frequency analysis of ACM [128]. Four accelerometers

were attached to a patient's wrists and ankles. 35 myclonic seizures from 21 patients were

recorded and the Niijsen algorithm detected 80% of the seizures with a PPV of 15%.

Several investigators have focused on detecting nocturnal seizures of a patient in bed.

Cuppens and colleagues introduced a simple method for motor seizure detection based on

setting a threshold for the mean ACM energy [38]. This method achieved 92% sensitivity

and 84% specificity on a validation set comprising 24 motor seizures from 3 patients. How-

ever, the performance was not evaluated on a test data set. Jallon used a Bayesian approach

with hidden Markov models for statistical modeling of nocturnal seizures [80]. Based on a

validation set composed of 46 seizures from 2 patients, the author reported a sensitivity of

89% and PPV of 65%. As was the case with the Cuppens study, no independent test data



was evaluated. Moreover, seizure occurrences were based on witness accounts and were not

confirmed using video-EEG.

A major limitation of all the studies above is the lack of performance evaluation on long-

term recordings containing a wide range of daily movements. In these works, the tested

recordings were restricted to night time recordings (when patients were in bed and relatively

inactive) or limited recordings of normal movements. Patel and co-workers highlighted the

importance of assessing the rate of false alarms during routine daily activities in the devel-

opment of a wearable seizure detector [138]. They proposed a method combining features

from ACM and electromyography (EMG) and performed classification using a C4.5 decision

tree. Based on evaluation on long-term data (48 hours) from a single patient with 3 seizure

events, they reported an accuracy of 98%. It is worth noting that in unbalanced data sets

(as is the case with rare seizure events) the overall accuracy can be misleading and is not an

appropriate measure of performance. Another group reported that a Wii remote attached

to the forearm could be used to detect four GTC seizures in three patients with 100% sen-

sitivity and > 88% specificity [158]. These results were based on visual determination of

a suitable intensity threshold of the ACM signal for each seizure as well as a heuristically

selected threshold for the time span in which the movement had to exceed the intensity

threshold. As no independent data was tested, the generalizability of this simple thresh-

olding method was not determined. Recently, Kramer and colleagues developed a seizure

detection bracelet (EpiLert) and conducted a preliminary clinical trial [90]. The EpiLert

detected 19 of 22 (91%) convulsive seizures from 15 patients and when tested on all 31 pa-

tients enrolled (including those who didn't experience seizures), it produced 8 false alarms

during 1692 hours of monitoring. These results are very promising, but the authors did not

disclose their method for feature extraction or classification methodology. Furthermore, the

low false alarm rate could be because patients likely to have frequent seizure-like movements

such as dystonic posturing, subtle behavioral automatism and pseudoseizures were excluded

from testing. Another commercial wrist-worn motion detection device, the SmartWatch,

was evaluated in a clinical study of 40 patients [107]. Out of the 40 patients, six had a total

of eight GTC seizures and seven (88%) were detected by the SmartWatch. False alarms oc-

curred 204 times over the duration of testing which was unspecified. Moreover, the seizure

detection algorithm was not described.



5.3 Methods

5.3.1 Wearable EDA and ACM Biosensor

A complete description of the wearable EDA and ACM biosensor is described in Chapter

3. Briefly, the sensor measures exosomatic EDA (skin conductance) by applying direct

current to the stratum corneum of the epidermis beneath measuring electrodes. To achieve

a wide dynamic range of skin conductance measurements, the analog conditioning circuitry

utilizes non-linear feedback automatic bias control with low-power operational amplifiers.

In addition, the sensor module also contains a triaxis accelerometer for measurements of

physical activity (actigraphy). A microcontroller digitizes the analog signals via a 12-bit

A-D at a sampling frequency of 20 Hz. The data is then written to an onboard microSD

card. We integrated the sensor module into a regular wristband made out of terrycloth,

resulting in a comfortable and lightweight wearable sensor. Since all electronics and wiring

are concealed within the wristband, the resulting device is inconspicuous, non-stigmatizing

and allows for discrete monitoring of EDA. Furthermore, the electronic module can be easily

detached when the user desires to wash the wristband.

We used dry Ag/AgCl disc electrodes with contact areas of 1.0 cm 2 for our recordings

as recommended in the literature [66]. These electrodes are disposable and can be snapped

onto or removed from the wristband with ease. Although the electrodes are commonly

placed on the palmar surface of the hand (e.g. medial and distal phalanges of the fingers

and the thenar and hypothenar eminences), we used the ventral side of the distal forearms

as recording sites. Placement of electrodes on the forearm are less susceptible to motion

artifacts and highly correlated to palmar recordings [141]. A 3.7 V lithium polymer battery

with a capacity of 1100 mAh provides around 40 hours of operation; the battery can be

recharged via a micro-USB cable.

5.3.2 Patients and Seizures

Over a period of eight months, we enrolled patients with epilepsy who were admitted to

the long-term video-telemetry monitoring (LTM) unit at Childrens Hospital Boston for

assessment. The patients stayed at the LTM for 1-7 days for characterization of events

or localization of the seizure onset zone in the setting of pre-surgical evaluation. EEG

recordings were performed using conventional scalp electrodes (10-20 system) at a sampling



rate of 256 Hz or implanted intracranial electrodes at a sampling rate of 500 Hz (XLTEK,

Oakville, ON, Canada). EDA sensor wristbands were placed on both wrists such that the

electrodes were in contact with the ventral side of the forearms. EDA and ACM recordings

were sampled at 20 Hz and synchronized with the video-EEG recordings by generating

technical artifacts at the beginning and end of each session for offline realignment. Each

recording session lasted approximately 24 hours and batteries were replaced on a daily basis.

5.3.3 EEG/ACM/EDA Analysis

Ictal video-EEG recordings were retrospectively reviewed by two board-certified clinical

neurophysiologists who were blinded to the EDA data. Each GTC seizure was reviewed for

both EEG and clinical ictal onset and offset times, EEG location and seizure semiology on

video recordings. EDA and ACM recordings were analyzed using custom written software

in MATLAB (The Mathworks, Inc.). Only recordings from one wearable biosensor were uti-

lized for seizure detection (default choice was the right forearm unless data was unavailable

or corrupted).

5.3.4 Seizure Detection Architecture

The various stages of the GTC seizure detector is depicted in Figure 5-1. A sliding window

was used to extract 10 s epochs from both ACM and EDA recordings for each 2.5 s increment

(75% overlap). The data was then pre-processed to removed non-motor and non-rhythmic

epochs. Various features including time, frequency and non-linear features are extracted

from remaining epochs of the ACM and EDA signals. Finally, each feature vector comprising

features from both ACM and EDA signals was assigned to a seizure or non-seizure class using

a Support Vector Machine. A seizure was declared after one feature vector was assigned to

the seizure class.

5.3.5 Data Reduction

A GTC seizure typically lasts for 1-2 minutes whereas the patients were monitored con-

tinuously throughout their stay (days) in the hospital. As such, there is a vast amount

of non-seizure data (forming the majority class), which causes the data set to be highly

imbalanced. Thus, pre-processing of the data is important to decrease the computational

workload as well as reduce the degree of data imbalance during supervised learning.



Accelerometry (ACM)

ACM feature extraction
Time-domain features
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Time-domain features

Electrodermal activity (EDA)

Figure 5-1: Overview of seizure detection architecture.

The first step was to divide the data into non-movement and movement events. We

combined information from all three axes of the accelerometer to calculate the magnitude

of the net acceleration, a as:

a = a +a+ a (5.1)

A sliding window of 10 seconds with 75% overlap was used to calculate the standard

deviation, o- of the acceleration epoch (ai, a 2 , ... , aN):

1N

= N 1 Z(ai -p) 2  (5.2)

where
1N

y= a2  (5.3)

Epochs with a- below 0.1 g were automatically discarded from further analysis and

treated as non-motor, and hence non-seizure events. The remaining epochs were detrended

using a smoothness priors approach (smoothing parameter A = 300) [182] and the discrete

Fourier transform (DFT) was computed (200-point).

GTC seizures are composed of two primary phases - the tonic phase and the clonic

phase. The tonic phase involves stiffening of the limbs and fiexion or extension of the

neck, back and extremities. During the clonic phase, muscles of the entire body start to

contract and relax rapidly. These convulsions are manifest in the ACM signal as rhythmic

activity typically above 2 Hz. Thus, each epoch was evaluated for important periods using

an algorithm by Vlachos et al [201]. The underlying assumption is that the magnitudes

of the coefficients of the DFT of a non-periodic time series are distributed according to an



exponential distribution.

f (x) = AeAX

Important periods will have powers that deviate from the power content of the majority

of the periods and can be identified by locating outliers according to an exponential distri-

bution. As a result, we seek for infrequent powers by setting the probability p to a very low

value to derive a power threshold T,.

p = P(x > T,) = e- AT

Solving for the power threshold,

T - n(p) (5.4)
A

For 99% confidence, we set p = 0.01 and A is the reciprocal of the mean of the detrended

acceleration signal power.
1 1N

A Ni=1Z

Epochs with no frequency components that exceeded T, were discarded and labelled as

non-seizure events. Otherwise, fdominant, the frequency component with the highest power

beyond T, was identified. If fdominant 2 2 Hz, the epoch was accepted for subsequent

feature extraction.

5.3.6 Feature Extraction

A total of 19 features were computed to characterize each measurement epoch. These

features were chosen to describe the time, frequency and phase space characteristics of the

ACM signal as well as the temporal traits of the EDA signal.

Time-domain Analysis

To quantify the time-domain attributes of the ACM signal, we computed four different

features. We calculated the mean, standard deviation, and root mean-squared of the net

acceleration. In addition, we estimated the amount of force by accumulating the magnitude



of accelerometer data from each axis amag throughout the 10 s epoch.

amag = ifr lax(t)| + |ay(t)| + |az(t)Idt (5.5)

Spectral Analysis

The major energy band for daily activities falls between 0.3 and 3.5 Hz [174] whereas during

GTC seizures the power is typically concentrated at frequencies above 2 Hz (Figure 5-2). To

capture the spectral information of the net acceleration, we detrended the net acceleration

using a smoothness priors approach (smoothing parameter A = 300) [182] and computed the

power spectral density using Welch's method (eight segments of equal length, 50% overlap,

Hamming window). The entire frequency spectrum was divided into eight non-overlapping

bands and the total integrated power within each spectral band was included as a feature

(8 features). The dominant frequency within each epoch (across the entire 0 to 10 Hz band)

along with its maximum power were also computed as features (2 features). Thus, a total

of 10 spectral features were included for classification.
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Figure 5-2: Time-frequency mapping of the ACM signal during a tonic-clonic seizure (63 s long).
The first 20 s do not contain much movement energy because the seizure starts off as a complex
partial seizure before secondarily generalizing and affecting the motor cortex. The power distribution
during the tonic clonic phase (after 20 s) is concentrated at frequencies above 2 Hz.

Non-linear Analysis: Recurrence Quantitative Analysis

Recurrence plots provide a graphical method designed to locate hidden recurring patterns

and compute non-linear dynamical measures [50]. This technique allows signals to be rep-

resented in state (phase) space by constructing embedded vectors x(k) using the method of
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Figure 5-3: Example of recurrence plots for various events. Time series of net acceleration (top)
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time delays:

x(k) = x(k), x(k + d),..., x(k + (m - l)d)]

where m is the embedding dimension and d is the time delay.

Recurrence analysis was performed using the Recurrence Plot toolbox for Matlab [113].

The optimal parameter m = 5 was chosen as the embedding dimension where the amount

of false nearest neighbors approached zero [88]. The delay d = 1 was calculated from the

first minimum of the mutual information function [67]. The recurrence plot R(i, j) was

then constructed by computing distances between all pairs of embedded vectors; a critical

radius e = 1 was established to create a binary plot showing, for a given moment in time,

the times at which the state space trajectory visited roughly the same area in the state

space.

R(i, j) = 8 (E - 1 (i) - X(j)

where E(x) is the Heaviside step function.

An example of a recurrence plot constructed from a seizure epoch is shown in Figure

5-3A. The short line segments parallel to the main diagonal suggest that the time series is

deterministic. These small scale structures were quantified using recurrence quantification

analysis [113]. The first feature included was the Shannon entropy ENTR of the lengths

of the diagonal lines, which reflects the complexity of the deterministic structure in the

system.
N

ENTR = - ( p(l) In p(l) (5.6)
l~lmin

where p(l) is the probability that a diagonal line has exactly length 1 estimated from the

histogram P(l) of the lengths I of the diagonal lines.

p(l) = P()
ZYmnP(l)

The second feature computed was laminarity LAM, the percentage of recurrence points

which formed vertical lines. LAM is related with the amount of laminar phases in the

system (intermittency).
EN VP(V)

LAM= """UVmin (5.7)
wsag vP(v)

where P(v) is the histogram of the lengths v of the vertical lines.



To summarize, 16 ACM features were computed including 4 time-domain (mean, stan-

dard deviation, root mean-squared and accumulated magnitude), 10 spectral (dominant

frequency, maximum power, and integrated power values from 8 non-overlapping frequency

bands) and 2 non-linear features (entropy and laminarity).

EDA Analysis

First, the EDA recordings were lowpass filtered (Hamming window, length = 1025, 3 Hz) to

reduce artifacts. Since GTC seizures are associated with an increase in EDA, we included

three features extracted from each 10 s EDA epoch (Figure 5-4). We performed a linear

least squares fit to the EDA segment and computed the slope as the first feature. The

number of measurement points within the epoch that were greater than the previous point

(i.e. x(n) > x(n -1)) was determined as the second feature. The third feature corresponded

to the difference between the EDA measured at the start and end of the 10 s epoch.

y = 0.16*x - 4.7

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 5-4: Features extracted from a 10 s EDA epoch. Dotted line represents the least squares
line fit. Green circles indicate measurement points that were greater than the previous point. Red
squares indicate start and stop of the epoch.

5.3.7 Support Vector Machines

Support Vector Machines (SVMs) are state-of-the-art binary classification methods that

exhibit a remarkable resistance to overfitting and have shown excellent performance in

complicated pattern recognition problems [31,73]. An SVM can learn a decision boundary



in the form of a hyperplane that separates two classes. This hyperplane is selected such

that the classification margin, which is the geometric distance between the hyperplane and

the boundary cases of each class (i.e. the support vectors), is maximized for the best ability

to accurately classify unseen data [132,196]. Moreover, SVMs can map the original finite

dimensional feature space into a much higher dimensional space through the use of a kernel

function to improve the separability of the data.

An SVM is a good choice for the task of seizure detection because its unique learning

mechanism allows it to perform well with moderately imbalanced data without any mod-

ifications [5]. Since an SVM only takes into account those instances that are close to the

boundary for building its model, it is unaffected by negative instances far away from the

boundary even if they are large in number. This is important given that the number of

non-seizure instances far outnumber the seizure instances.

5.3.8 Model Selection and Testing Methodology

Designing the SVM algorithm for seizure detection consisted of a training phase, in which the

model was learned on a subset of data and a testing phase, in which the model performance

was evaluated on a different subset of data. We chose the Gaussian Radial Basis kernel

function (RBF) as it provides non-linear mapping of the original feature vectors fi into a

higher dimensional space.

RBF :K(f , f)=exp(--||f -y fy l112), _7 > 0

Overall, the SVM model required two parameters to be chosen: the penalty ("soft

margin") parameter of the error term C which specifies the trade-off between maximizing

the classification margin and minimizing the training error, and the RBF kernel parameter

-y which controls the curvature of the hyperplane. SVMs were implemented using LibSVM,

a publicly available software library for support vector classification [35]. Each feature in

the training data was linearly scaled to the range [0, 1] to assure commensurability of the

various features before applying SVM. The same scaling template was applied to the testing

data before performing classification.



Performance Metrics

The problem of seizure detection was posed as a supervised learning task in which the goal

was to classify each 10 s epoch as seizure or non-seizure based on extracted features from

EDA and ACM recordings. If any epoch between the start and end of a labelled seizure

was correctly classified as a seizure event, the seizure was considered to be detected (true

positive). If multiple epochs within the seizure duration were detected, these were treated

as a single correct detection event. False detections that occurred within 30 s apart from

each other were treated as a single false alarm.

We characterized the performance of our seizure detector using the following metrics:

" Sensitivity The percentage of recorded seizures that were identified by the detector.

" False Alarms Per 24 h Number of times over the course of a day (24 h) that the

detector incorrectly declares a seizure.

" Electrographic Detection Latency The delay between EEG onset and detector

recognition of seizure activity (first epoch classified as seizure).

" Clinical Detection Latency The delay between clinical (onset of physical or cog-

nitive symptoms) onset and detector recognition of seizure activity. This was done

based on video analysis and was not blinded to EEG since the visualizing software dis-

played both recordings concurrently. Note that the same neurophysiologists labelled

both the EEG and clinical onset.

For model selection, values of C and -y are typically selected based on the best cross-

validation accuracy. However, in learning imbalanced data, the overall classification accu-

racy is not an appropriate measure of performance since a trivial classifier that predicts

every instance as the majority class (non-seizure) would achieve very high accuracy but be

of little use. As such, we used the F-measure to evaluate the performance of the SVM while

searching for the best pair of C and -y.

F-measure 2 xSensitivity x PPV
Sensitivity + PPV

where the positive predictive value (PPV) is the proportion of seizures declared by the



detector that were true seizure events.

number of True Positives
number of True Positives + number of False Alarms

Non-Patient-Specific Seizure Detection

We first examined the performance of a non-patient-specific or "generic" seizure detection

algorithm that excludes all data from a test patient in the training phase. Since limited data

was available, we implemented a leave-one-patient-out strategy to evaluate the performance.

The total number of patients with recorded GTC seizures is denoted by Msz. In this

approach, the entire recording session from a single patient Ptest was set aside for the testing

phase. The remaining data from the other Msz - 1 patients was included in the training

phase. The goal of the training phase was to identify appropriate values of C and y for

model selection. As it is not known beforehand which values of C and -y are best for a given

problem, we performed a grid-search to evaluate various combinations of the parameters

(C = 2--5, 2-,. .. , 2"; y = 215, 2- 13. . ., 2-1). To avoid selection of SVM parameters that

would result in overfitting to the training set, the training data was again separated into

two parts, of which data from a single patient was considered "unknown". Sequentially

data from each "unknown" patient were tested using the classifier trained on the remaining

Msz - 2 patients. As such, we performed (Msz - 1)-fold cross-validation for each possible

combination of C and -y. The pair of C and y that produced the highest average cross-

validation F-measure was selected (see Appendix D for the values selected). Using the

selected parameter values, the whole training set (data from all Msz - 1 patients) was

trained again to generate the final classifier and tested on the data from the single patient

Ptest that had been set aside. This entire process was repeated with a re-training of the

SVM in each round, such that data from each patient were excluded once for testing, and

the remainder used as training data (Msz-fold cross-validation). Overall performance was

determined by taking the average of the performance of all tested patients.

Semi-Patient-Specific Seizure Detection

To allow the SVM to learn from previous examples of seizures from the test patient if that

patient had more than a single GTC seizure recording available, we also implemented a

leave-one-seizure-out strategy to assess the performance of our seizure detection algorithm.
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As the detector was not trained solely on data from a particular test patient but included

examples from all other patients, this approach was semi-patient-specific.

We divided the data from the Msz patients into Nsz seizure recordings and NNS

non-seizure recordings (NNS = 2Nsz). In this approach, one seizure recording Rtestsz

along with two non-seizure recordings RtestNS were set aside for testing. The remaining

data from the other Nsz - 1 seizure and NNS - 2 non-seizure recordings were used for

training the SVM. A grid-search was performed to evaluate various combinations of the

parameters (C = 2-5, 2-3, ... 2"; y -= 2-15, 2--13, ... , 21). To avoid overfitting to the

training set, the training data was again separated into two parts, of which data from a single

seizure recording together with two non-seizure recordings were considered "unknown".

Sequentially data from each "unknown" seizure and non-seizure recordings were tested using

the classifier trained on the remaining Nsz - 2 seizure and NNS - 4 non-seizure recordings.

As such, we performed (Nsz - 1)-fold cross-validation for each possible combination of C

and -y. The pair of C and -y that produced the highest average cross-validation F-measure

was selected (see Appendix D for the values selected). Using the selected parameter values,

the whole training set (data from all Nsz -1 seizure and NNS -2 non-seizure recordings) was

trained again to generate the final classifier and tested on the data from the single seizure

recording Rtestsz and two non-seizure recordings RtestNS that had been withheld. This

entire process was repeated with a re-training of the SVM in each round, such that data from

each seizure and non-seizure recording were excluded once for testing, and the remainder

used as training data (Nsz-fold cross-validation). Overall performance was determined by

taking the average of the performance of all tested recordings.

Testing For Generalization of False Alarm Rate to New Group of Patients

To evaluate the generalization of the seizure detection algorithm in terms of its false alarm

rate, we utilized recordings from MNS patients who did not experience GTC seizures for

testing. Data from all the Msz patients with GTC seizures were used to train the SVM.

A grid-search was performed to evaluate various combinations of the parameters (C =

2-, 2- ,. .. , 21"; y = 2-15, 2--13, ... ,2-1). To avoid overfitting, the leave-one-seizure-out

approach was employed such that Nsz-fold cross-validation was performed for each possible

combination of C and -y. The pair of C and -y that produced the highest average cross-

validation F-measure was selected. Using the selected parameter values, the whole training
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set (entire data set from Msz patients with GTC seizures) was trained again to generate the

final classifier and tested on the recordings from all MNS patients that had been withheld.

5.4 Results

We included 80 patients in this study. A total of 16 secondarily GTC seizures were recorded

from 7 patients. This includes all the patients with GTC seizures from Chapter 4 along

with one new patient who had four GTC seizures (not included previously since EEG and

video data lost). The seizures occurred at different day and night times as well as during

both awake and sleep states. All 16 GTC seizures started as partial seizures that eventually

generalized and resulted in tonic-clonic activity (data for each individual seizure presented

in Appendix D - note that the seizure numbers). These 7 patients provided 688 h (29 days)

of EDA and ACM recordings throughout their stay at the LTM (4.1 i 1.2 days/patient).

On average, the data reduction technique described in 5.3.5 reduced the amount of data by

98%. Moreover, the degree of imbalance between non-seizure and seizure epochs which was

approximately 1500 to 1 before pre-processing was decreased to 50 to 1 (most recordings

contained low amplitude, non-rhythmic motor activity). The remaining 73 patients who

did not experience GTC seizures provided 3525 h (147 days) of recordings. Altogether, the

total recordings available for analysis was 4213 hours (176 days). These recordings were

obtained in a routine clinical environment and contained a wide range of activities of daily

living.

5.4.1 Performance Comparison of Seizure Detection Modes

To visualize the performance of the non-patient-specific and semi-patient-specific seizure

detection modes, we performed receiver operating characteristic (ROC) analysis (Figure

5-5). The ROC curves depict the trade-off between sensitivity and false alarm rate as

the decision threshold is varied. At the optimal cut-off point that maximized sensitivity

and minimized the false alarm rate (i.e. point nearest the top left-hand corner), the non-

patient-specific detector achieved 88% (14/16 seizures detected) sensitivity with an average

of 1 false alarm per 24 h. On the whole, the semi-patient-specific seizure approach improved

the performance. At the optimal threshold, 15/16 (94%) seizures were detected with 1 false

alarm per 24 h.
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Figure 5-5: ROC of the non-patient-specific (blue circles) and semi-patient-speciic seizure (red
squares) detectors.

Figure 5-6a shows the true positive detections declared on each test patient under the

semi-patient-specific mode. Only one seizure was missed (patient 4). There were 28 false

alarms during the 688 hours of testing (0.98 per 24 h). The average false alarm rate across

patients was 1.05 ± 0.71 per 24 h (Figure 5-6b). The electrographic and clinical latencies for

each seizure are illustrated in Figure 5-6c. In all seizures, the electrographic onset preceded

its clinical onset. Three seizures had a particularly long non-motor lead in (seizures 10, 11

and 12 in Figure C-1) and seizure 10 was missed completely. The median electrographic

latency was 42.95 s; median clinical latency was 31.42 s.

5.4.2 Physiological Signal Fusion Improves Performance

To evaluate the utility of combining ACM and EDA, we compared the performance of two

semi-patient-specific seizure detectors. One detector included features from both the ACM

and EDA recordings (original feature set), and the other incorporated features from only the

ACM recordings. Figure 5-7 illustrates the ROCs of the two different detectors. The overall

performance was lower when only ACM features were included. The optimum performance

achieved was 94% sensitivity with a higher average false alarm rate of 1.5 per 24 h compared

to the detector utilizing both ACM and EDA features (1 per 24 h).

103



A B
3

4/4 4/4 UDetected
4El Missed

3 W2
W E

2 12 ( 1

191/

02. 0

C

.0 -

E 1/1 0/ /
z -

E
Z

0 0
1234567 1234567

Patient number Patient number

C
500 - Electrographic
4 - Clinicl

425-
400-
375-
350-
325-

63 300
; 275

C 250-
o 225
-| 200 -

175-
150-
125-
100-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GTC seizure number

Figure 5-6: Semi-patient-specific seizure detection performance. (A) Number of GTC seizures
detected per patient. (B) Number of false alarms per 24 h per patient. (C) Latency of detection for
each GTC seizure. *Seizure 10 (Patient 4) was not detected by the algorithm.

5.4.3 False Alarms in Patients with No GTC Seizures

After training the SVM using data from the 7 patients with GTC seizures, we tested the

seizure detection algorithm for false alarms on the 3525 h (147 days) recordings from the 74

patients who did not have GTC seizures. On average, each patient was tested over 48 ± 35

h of data. There were 102 false alarms during the 3525 hours of testing (0.69 per 24 h).

The average false alarm rate across patients was 0.98 t 2.61 per 24 h (Figure 5-8), which is

similar to the rate observed in the 7 patients with GTC seizures. The majority of patients

(77%) had less than one false alarm per 24 h. Out of the 73 patients, 46 (63%) did not raise

any false alarms during the entire monitoring period, resulting in a median false alarm rate

of zero. On the other hand, four patients had an unusually high rate of false alarms.
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5.5 Discussion

In this chapter, we presented a novel sensor and algorithm for GTC seizure detection. The

present study is the first to demonstrate the utility of EDA as a new physiological signal

to supplement ACM signals for seizure detection. Moreover, we evaluated the algorithm

on 80 patients containing a wide range of ordinary daily activities to test for false alarms.

Since the EEG recording system was ambulatory (in the form of a backpack), patients were

not constrained to staying in bed but could walk around the room, go over to a playroom

nearby or leave the LTM for imaging studies and other tests. Overall, our algorithm achieved

high sensitivity, detecting 15/16 (94%) of GTC seizures recorded from 7 patients and only

triggered 130 false alarms over 4213 hours of recordings (0.74 per 24 h) from 80 patients.

An important property of this algorithm is its adaptability. We examined a non-patient-

specific seizure (generic) detection mode to assess the baseline performance on unseen pa-

tients and compared it to an adaptive approach that included previous examples of seizures

from the test patient in training. Our results indicate that the adaptive, or semi-patient-

specific mode produced superior performance compared to the generic mode. Since the GTC

seizure manifestation in ACM and EDA signals may vary from patient to patient, it is rea-

sonable that an adaptive approach which takes advantage of the consistency of an individual
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Figure 5-8: Histogram of False Alarm rates across 73 patients with no GTC seizures.

patient's unique seizure signature as well as typical non-seizure activity patterns improves

performance. For practical use, the generic mode is important for a seizure detector to be

of immediate use to every patient right "out of the box". As more examples of seizures are

obtained over time, the algorithm can then improve and become more customized for each

particular patient.

Another unique feature of our methodology is the use of EDA as an additional input

signal for classification. Our study illustrates how a seizure detector that combines infor-

mation extracted from both EDA and ACM recordings can perform better than a detector

that only uses information extracted from ACM. Sympathetic postganglionic fibers inner-

vate eccrine sweat glands and their activity modulates sweat secretion [152]; EDA refers to

modulation in skin conductance and is a unique parameter that reflects purely sympathetic

activity [26,37]. Several cortical structures with recognized seizure potential (e.g. the fontral

cortex or cingulate gyrus) have direct or indirect connections with autonomic centers from

the medulla oblongata [160] and electrical stimulation of such structures can induce changes

in EDA [95,111]. In the previous chapter, we showed that epileptic seizures, GTC seizures

in particular, can induce elevations in EDA reflecting strong ictal sympathetic discharges.

Importantly, we showed how the amplitude of the EDA response is strongly correlated with

the duration post-ictal EEG suppression, a biomarker for SUDEP risk. Thus, incorporating

EDA measurements in a seizure detector can potentially improve detection performance as

well as provide a quantitative measure of the autonomic impact for each seizure.
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The proposed algorithm failed to detect one of the test seizurse because that seizure

only produced mild motor convulsions and little change in the EDA signal (see seizure 10 in

Figure D-1). Furthermore, the missed seizure was not similar to the other seizure example

from the same patient (seizure 11). It is possible that with more training examples that

resembled the missed seizure, the algorithm would have produced the correct classification.

The relatively low number of seizure examples represents one of the limitations of this

study, but the promising results should encourage further efforts in this direction. On the

other hand, the extensive amount of non-seizure data allowed a good estimation of the

false alarm rate. Based on analysis of the video recordings, the false alarms were typically

triggered by forceful, rapid and rhythmic motions during activities such as dice shaking,

hand flapping and juggling. In other instances, a patient was shaking a balloon and hitting

a toy violently. During several occasions, the patients were out of sight from the video

camera; thus, the activity associated with the false alarms could not be determined. Out

of all 80 patients, only four patients had a relatively high amount of false alarms. In two

cases, the high false alarm rates (8 and 16 per 24 h) occurred in patients with Autism

Spectrum Disorders who exhibited frequent hand flapping, a behavioural automatism. Of

note, ACM has been utilized for automated detection of stereotypical motor movements in

such persons [8]. In the third case, the patient was engaged in vigorous motion-controlled

gaming (Nintendo Wii) regularly throughout the monitoring duration (9 false alarms per

24 h). The fourth patient's video recordings were not available and therefore the cause

of false alarms could not be determined. Again, more examples of these harder cases in

the training set may improve the decision boundary and performance. Alternatively, the

addition of another physiological signal such as heart rate or heart rate variability may

provide better discriminability of these cases.

Previous work on non-EEG based wearable GTC seizure detectors have focused primar-

ily on ACM as the input signal. Table 5.1 provides a comparison of the key features for

each system. Schulc and colleagues utilized a Wii Remote mounted on the forearm using

a stocking to detect four GTC seizures from three patients based on a visually determined

intensity and duration threshold of the ACM signal [158]. However, the results have to

be taken with caution as independent assessment of the algorithm was not performed on

separate test data to determine whether the perfect sensitivity achieved was due to overfit-

ting. Two commercial wrist-worn motion sensors, the SmartWatch and EpiLert have been
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Table 5.1: Comparison

Schulc et al. [158]

Signals

Setup

Number of
patients tested

Number of
seizures tested

Duration of
recordings
tested

Algorithm
described?

Sensitivity

False alarms

ACM

Wii Remote on
forearm

3

4

27 - 43 h

Yes, heuristic se-
lection of thresh-
olds for ACM in-
tensity and time
span

10 0 %t( 4 / 4 )

Not reported

of Wrist-worn C

SmartWatch
Lockman et al.
[107]

ACM

Wrist-worn
motion sensor

40
(6 with seizures)

8

Unspecified

88% (7/8)

204

onvulsive Seizure Detectors

EpiLert MIT Wearable
Kramer et al. [90] Biosensor

ACM

Wrist-worn
motion sensor

31
(15 with seizures)

22

1692 h

91% (20/22)

0.11 per 24 h*(8
in 1692 h)

ACM + EDA

Wrist-worn
biosensor

80
(7 with seizures)

16

4213 h

Yes, Support
Vector Machine

94% (15/16)

0.74 per 24 h (130
in 4213 h)

Latency Not reported 5-43 s 17 s (median) 31 s (median)

ACM accelerometry; EDA electrodermal activity
t Training results only (no independent testing performed).
* Patients with dystonic posturing, subtle behavioral automatism, and suspected pseudoseizures were ex-

cluded.

evaluated in separate clinical studies [90, 107]. The SmartWatch produced a large num-

ber of false alarms whereas the EpiLert had a very low rate of false detections (8 in 1692

h). One drawback of the EpiLert study is that patients expected to have a high incidence

of seizure-like movements such as dystonic posturing, subtle behavioral automatism and

pseudoseizures were excluded from testing, which could explain the low false alarm rate.

These devices also employed proprietary algorithms that were not described. Our proposed

seizure-detection methodology was tested on the largest number of patients and the results

compare favorably with these studies.

Timely detection of seizures allows caregivers to monitor their severity and duration to

determine whether immediate treatment is necessary. Case control studies have consistently

indicated that sudden unexpected death in epilepsy (SUDEP) mainly occurs in the context

of a GTC seizure [177,189]. As most deaths are unwitnessed, supervision and attention

to recovery after a seizure may be important in SUDEP prevention [93]. One study in a
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residential school for children with epilepsy who were closely supervised at night and moni-

tored after a seizure reported that deaths occurred with students on leave or after they left,

but not at the school [124]. Another large case-control study found that sharing a bedroom

with someone capable of giving assistance and special precautions such as regular checks

throughout the night or using a listening device were all protective factors [94]. Moreover,

since GTC seizures often cause loss of consciousness, most patients have trouble accurately

reporting the occurrence of seizures. Treatment decisions are primarily based on seizure

frequency [43], thus inaccurate self-reports can lead to ineffective therapy. A seizure detec-

tion device would provide objective measurements for quantification of seizure frequency.

We anticipate that the proposed wearable biosensor and seizure detection algorithm will

enable ambulatory, round-the-clock monitoring and improve the quality of life of patients

with uncontrolled GTC seizures.
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Chapter 6

Conclusions

6.1 Thesis Contributions

The overall goal of my research was to design and evaluate a wearable electrodermal activity

(EDA) and accelerometry (ACM) biosensor, as well as to demonstrate its clinical utility in

the assessment of epileptic seizures. The resulting thesis has the following contributions:

" I have designed, built and evaluated a low-cost, unobtrusive, nonstigmatizing, wrist-

worn sensor that can provide comfortable and continuous measurements of EDA and

ACM over extensive periods of time. The device is capable of on-board data logging,

wireless transmission of data and performing real-time analysis. This device offers the

unprecedented ability to perform comfortable, long-term (over multiple days), reliable

and in situ assessment of EDA. It opens up opportunities for future investigations that

were previously not feasible, and could have far-reaching implications for diagnosis and

understanding of psychological or neurological conditions.

" I have validated the use of the distal forearm as an alternative site for EDA measure-

ments. When compared to recordings from traditional palmar sites, high correlations

were observed during physical, cognitive, as well as emotional stressors. The distal

forearm provides an attractive alternative for long-term measurements because it is

less encumbering and not as susceptible to motion artifacts as the palmar or plantar

surfaces during normal activities of daily living.

" I have demonstrated the ability of the wearable biosensor to collect continuous record-

ings of EDA and accelerometry for a stretch of 1-7 days from patients with epilepsy
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in a clinical environment (in-patient hospital). The device was tested on 95 patients

and collected approximately 4500 (188 days) hours worth of EDA and ACM.

* I have characterized the alterations in both sympathetic (EDA) and parasympathetic

activity (heart rate variability, HRV) that accompany complex partial and gener-

alized tonic-clonic seizures in patients with epilepsy. The autonomic footprints re-

vealed a period of prolonged autonomic imbalance involving sympathetic overacti-

vation and parasympathetic suppression that is exacerbated after generalized tonic-

clonic seizures. These findings may represent a critical window of vulnerability and

may explain why generalized tonic-clonic seizures are a major risk factor for sudden

unexpected death in epilepsy (SUDEP).

* I have presented the first evidence that the magnitude of autonomic alterations af-

ter generalized tonic-clonic seizures is associated with post-ictal EEG suppression, a

possible biomarker related to the risk of SUDEP. The strong correlations between

post-ictal EEG suppression and both sympathetic (e.g. amplitude of the EDA re-

sponse) and vagal (e.g. maximal change in high-frequency HRV) alterations that act

in opposite directions suggest that the intensity of a seizure may play a role in the

pathophysiology of SUDEP. These results also raise the possibility that autonomic

footprints of seizures could serve as biomarkers for the risk of SUDEP, as well as the

possibility of a wearable device for round-the-clock monitoring to identify potentially

dangerous seizures.

* I have presented a novel algorithm for generalized tonic-clonic seizure detection with

the use of the wearable biosensor. This is the first demonstration of the utility of

EDA to supplement ACM signals for seizure detection. The algorithm was tested

on 80 patients containing a wide range of ordinary daily activities and achieved high

sensitivity (94%) with a low rate of false alarms (< 1 per 24 h). It is anticipated

that the proposed wearable biosensor and seizure detection algorithm will provide an

ambulatory seizure alarm and improve the quality of life of patients with uncontrolled

tonic-clonic seizures.
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6.2 Other Relevant Contributions

Beyond the scope of this thesis, during the time of work on my Ph.D., several other studies

I have worked on have contributions in the broader field of mobile and pervasive health

technologies. In particular, these efforts have sought to advance the state-of-the-art in

measurements of cardiorespiratory function. These works have the following contributions:

" I designed a novel embodiment for wearable photoplethysmography (PPG) comprising

a magnetic earring sensor and wireless earpiece. The miniaturized sensor can be

worn comfortably on the earlobe and contains an embedded accelerometer to provide

motion reference for adaptive noise cancellation. This system provides a platform

for comfortable, robust, unobtrusive and discreet monitoring of heart rate. For more

information, please refer to:

Poh, M.Z., Swenson, N.C., and Picard, R.W., Motion Tolerant Magnetic Earring
Sensor and Wireless Earpiece for Wearable Photoplethysmography. IEEE Trans Inf
Techol Biomed, 14 (2010), 786-794.

" I designed a comfortable, even stylish system for measuring the bilateral blood volume

pulse that fits inside ordinary earbuds. By adopting a smart phone as part of our

platform, I exploited commonality in components such as microprocessors, memory,

screen, keyboard and battery to reduce cost, weight and eliminate redundancy. Instead

of having to carry additional gear, this system only relies on modified earphones and

a cell phone, common pocket items, to provide measurements such as heart rate and

beat-to-beat changes in heart rate (HRV). Since devices such as the iPhone and iPod

touch tend to be very personal devices and are intended to be carried wherever people

go, this system is a natural extension that adds the capability to track personal health.

For more information, please refer to:

Poh, M.Z., Kim K., Goessling, A., Swenson, N.C., and Picard, R.W., Cardiovascular
Monitoring Using Earphones and a Mobile Device. IEEE Pervasive Comput, Epub
ahead of print (2011).

" I developed a novel technique for automated, contact-free physiological measurements

of heart rate, respiratory rate and HRV using a basic webcam. This methodology can

be applied to color video recordings of the human face and is based on automatic face

tracking along with blind source separation of the color channels into independent
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components. As an example of an embodiment that fits seamlessly into the ambient

home environment, the technology was integrated into a mirror interface to provide

real-time measurements of heart rate. This interface is intended to offer a convenient

means for people to track their daily health with minimal effort. For more information,

please refer to:

Poh, M.Z., McDuff, D.J., and Picard, R.W., Non-contact, Automated Cardiac Pulse
Measurements Using Video Imaging and Blind Source Separation. Opt Express, 18
(2010), 10762-10774.

Poh, M.Z., McDuff, D.J., and Picard, R.W., Advancements in Non-contact, Multipa-
rameter Physiological Measurements Using a Webcam. IEEE Trans Biomed Eng, 58
(2011), 7-11.

Poh, M.Z., McDuff, D.J., and Picard, R.W., A Medical Mirror for Non-contact Health
Monitoring. ACM SIGGRAPH Emerging Technologies, to appear (2011).

6.3 Future Work

6.3.1 Home-based, Ambulatory Studies

Even though the seizure detection algorithm presented in this thesis was tested on a wide

range of everyday activities in the hospital, more studies are needed to validate the perfor-

mance of this methodology in an outpatient setting, e.g. at home. This represents a crucial

step in translating the technology to patients for everyday use. Patients with refractory

epilepsy who are prescribed an ambulatory EEG system for use at home would be eligible

for such a study. The feasibility of the wrist-worn biosensor for home-based ambulatory

seizure monitoring can also be evaluated in terms of patient compliance, comfort levels

and side effects. Another interesting experiment would be to explore alternative locations

for attachment of the biosensors. For example, one could compare the performance of the

seizure detection algorithm when the sensors are placed on the ankles instead of the wrists.

6.3.2 Off-line Seizure Detection and Classification

The thesis focused on on-line detection of ongoing seizures to allow timely notification of

caregivers. Nonetheless, an off-line detector would still be valuable for tracking seizures

for therapeutic purposes. It would provide an objective measure of seizure frequency, and

improved outcome measures over currently used seizure diaries based on self-report. Because
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latency is not an issue for an off-line detector, a much longer sliding window can be chosen.

Given that the changes in EDA that accompany convulsive seizures last well into the post-

ictal period, more EDA features could be utilized including the amplitude, area under the

curve, rise time, fall time etc. It is likely that the detector's overall performance would

improve, especially with regards to the false alarm rate, because the common false positive

triggers such as hand flapping do not induce a prolonged EDA response.

It would also be worthwhile to evaluate the utility of a Bayesian approach using a Hidden

Markov Model (HMM) for statistical modelling of the various stages of convulsive seizures.

If stages such as the "tonic" and "clonic" phase could be well represented, this approach

would provide further information beyond the occurrence of a seizure by allowing detailed

classification of the seizure manifestation, e.g. clonic-tonic, tonic-clonic, clonic only, tonic

only etc.

6.3.3 Detection of Complex Partial Seizures/Subclinical Seizures

The data indicate that changes in EDA do accompany certain complex partial seizures as

well as subclinical seizures. However, larger studies will be needed to identify the epileptic

foci that result in these autonomic alterations. Attempting to design a complex partial

seizure detector based solely on EDA and ACM will be challenging, as the magnitude of

EDA increase is low in general and not easily distinguished from other daily activities. It

is unclear whether these focal seizures would result in an asymmetrical increase between

bilateral measurements. If so, bilateral EDA measurements may provide useful information

regarding seizure activity. Otherwise, incorporating information from other physiological

recordings such as heart rate and heart rate variability parameters will provide a more

promising approach.

6.3.4 Responsive, Closed-Loop Devices

Beyond providing notification to caregivers in the event of a seizure attack, there is also a

need for intelligent devices that can respond promptly to deliver an intervention to abort

the seizure. These closed-loop devices would require rapid detection algorithms as well as

an effective treatment strategy. Interventions that could potentially abort seizures include

electrical brain stimulation, vagus nerve stimulation and localized drug delivery. While

the intervention devices may be implantable, wearable sensors that communicate with the
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implanted devices could be used for seizure detection and triggering therapy. The success

of these interventions is likely dependent on how soon a seizure can be detected, given the

rapidity with which seizures may spread.

6.4 Outlook

This thesis has demonstrated the utility of a wearable EDA and ACM biosensor for the

quantification of seizure intensity in terms of autonomic impact, as well as to provide a

platform for timely detection of generalized tonic-clonic seizures. It also presented high

correlation between autonomic measures such as EDA amplitude and post-ictal EEG sup-

pression, a possible biomarker for SUDEP risk. It will be of great interest to establish

whether or not these autonomic footprints could provide biomarkers to identify epilepsy

patients who are at risk of SUDEP. Beyond the area of epilepsy, I envision that this wear-

able biosensor could aid in the diagnosis and understanding of other medical conditions

such as schizophrenia, psychogenic non-epileptic seizures, hyperhidrosis and cystic fibrosis.
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Appendix A

Supplementary Information on

Design and Evaluation of Wearable

Biosensor
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Figure A-3: Individual EDA recordings of each participant during a cognitive task including a

mental arithmetic test (MAT) and Stroop word-color matching test . Measurements were made

from (I) right fingers with Flexcomp, (II) left lingers with MIT sensor, (III) right distal forearm

with MIT sensor using Ag/AgCl electrodes and (IV) left distal forearm with MIT sensor using

conductive fabric electrodes
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Figure A-4: Individual EDA recordings of each participant during an emotional task consisting
watching a horror movie clip. Measurements were made from (I) right lingers with Flexcomp, (II)
left fingers with MIT sensor, (III) right distal forearm with MIT sensor using Ag/AgCl electrodes
and (IV) left distal forearm with MIT sensor using conductive fabric electrodes
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Appendix B

Supplementary Information on

Clinical Study
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Figure B-1: Data collection from patients with epilepsy staying at the long-term monitoring unit
at Children's Hospital Boston. Continuous video, electroencephalographic (EEG), electrocardio-
graphic (EKG), electrodermal activity (EDA) and 3-D accelerometry (ACM) recordings were ob-
tained throughout the stay. Patients were not constrained to remaining in the bed as the EEG
recording system was ambulatory (backpack). Video frames shown depict patients wearing the
wrist-worn biosensors and performing a variety of daily activities
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Figure B-2: Summary of data collected from clinical study performed from Jan to September 2009.
(A) 94 patients were enrolled and 80 provided over 12 hours of complete EDA and ACM recordings.
(B) Due to a server crash, only 64% of those patients had complete EEG-EKG-video recordings.
(C) 11 patients experienced at least one complex partial seizure (CPS) or generalized tonic-clonic
(GTC) seizure. 7 patients experienced at least one GTC seizure.
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Figure B-3: Example of a 24-hour recording from an 11-year-old female with refractory epilepsy.

A single complex partial seizure and two GTC seizures that occurred during the monitoring period
were accompanied by an increase in EDA.
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Figure C-1: Peri-ictal EDA recordings (sympathetic) of individual complex partial seizures (CPS).
Red lines denote seizure onset and offset
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Figure C-2: Peri-ictal heart rate recordings of individual complex partial seizures (CPS). Red line
denotes CPS.
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Figure C-3: Time-frequency mapping of heart rate variability of individual complex partial seizures

(CPS). Two main spectral components can be observed. The high frequency (HF: 0.15 - 0.4 Hz)
component reflects vagal modulation of the heart rate; the low frequency (LF: 0.04 - 0.15 Hz) reflects
a complex mixture of sympathetic and parasympathetic modulation. Black lines denote seizure onset
and offset.
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Figure C-4: Peri-ictal high-frequency heart rate variability power (HF: 0.15-0.4 Hz; parasympa-
thetic) of individual complex partial seizures (CPS). Red line denotes CPS.
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Figure C-5: Peri-ictal EDA recordings(sympathetic) of individual generalized tonic-clonic seizures

(GTCS). Red lines denote seizure onset and offset
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Figure C-6: Peri-ictal heart rate recordings of individual generalized tonic-clonic seizures (GTCS).
Red line denotes GTCS.
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Figure C-7: Time-frequency mapping of heart rate variability of individual generalized tonic-clonic
seizures (GTCS). Two main spectral components can be observed. The high frequency (HF: 0.15 -
0.4 Hz) component reflects vagal modulation of the heart rate; the low frequency (LF: 0.04 - 0.15
Hz) reflects a complex mixture of sympathetic and parasympathetic modulation. Black lines denote
seizure onset and offset.

134



GTCS 3 (Patient 2) x 10' GTCS 5 (Patient 2)

S1.5 1.5
31

2 2000
LL 1 0.50.

-60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120

x 104 GTCS 6 (Patient 3) x 10' GTCS 7 (Patient 3) GTCS 9 (Patient 5) GTCS 10 (Patient 5)
4 2 2000 1500

3 1.5 1500 10

0., 
150 000

3: 2 1 1000 II .0 1aX 500LL 1 0.5 500L. 0  11J .
-60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120

GTCS 11 (Patient 5) GTCS 12 (Patient 6) Time (min) Time (min)
3000 10000

8000
2000

1000 4000

2000

-60 -30 0 30 60 90 120 -60 -30 0 30 60 90 120

Time (min) Time (min)

Figure C-8: Peri-ictal high-frequency heart rate variability power (HF: 0.15-0.4 Hz; parasympa-
thetic) of individual generalized tonic-clonic seizures (GTCS). Red line denotes GTCS.
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Figure D-1: Electrodermal activity (EDA) and net acceleration recordings of individual generalized

tonic-clonic seizures (GT CS) from seven patients included for seizure detection. This recordings are

zoomed-in to highlight the ictal period. See Fig. D-2 for a broader view of the EDA changes

surrounding each seizure.
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Figure D-2: Electrodermal activity (EDA) recordings of individual generalized tonic-clonic seizures
(GTCS) from seven patients included for seizure detection. Note: One new patient (patient 3) was
included in this study so the numbering and ordering of seizures are different compared to Fig. C-5
from the previous study.
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Figure D-3: Time-frequency mapping of the net acceleration recordings of individual generalized

tonic-clonic seizures (GTCS) from seven patients included for seizure detection.
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Figure D-4: SVM parameter tuning for non-patient-specific seizure detection: Grid-search for
optimal pair of C and -y values based on cross-validation of F-measure for (leave-one-patient-out
using both EDA and ACM features).
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Figure D-5: SVM parameter tuning for semi-patient-specific seizure detection: Grid-search for

optimal pair of C and -y values based on cross-validation of F-measure for (leave-one-seizure-out

using both EDA and ACM features).
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Figure D-6: SVM parameter tuning for semi-patient-specific seizure detection: Grid-search for
optimal pair of C and -y values based on cross-validation of F-measure for (leave-one-seizure-out
using only ACM features).
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