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Abstract

In the first part of the thesis, we study quantum groups associated to a semisimple
Lie algebra g. The classical Chevalley theorem states that for [ a Cartan subalgebra
and W the Weyl group of g, the restriction of g-invariant polynomials on g to [ is an
isomorphism onto the W-invariant polynomials on , Res: C[g]1 -+ C[]w. A recent
generalization of [36] to the case when the target space C of the polynomial maps is
replaced by a finite-dimensional representation V of g shows that the restriction map
Res: (C[g] 0 V)9 -+ C[] 0 V is injective, and that the image can be described by
three simple conditions. We further generalize this to the case when a semisimple Lie
algebra g is replaced by a quantum group. We provide the setting for the generaliza-
tion, prove that the restriction map Res: (Oq(G) 0 V)Uq(9) -+ O(H) 0 V is injective
and describe the image.

In the second part we study rational Cherednik algebras Hi,c(W, j) over the field
of complex numbers, associated to a finite reflection group W and its reflection repre-
sentation . We calculate the characters of all irreducible representations in category
0 of the rational Cherednik algebra for W the exceptional Coxeter group H3 and
for W the complex reflection group G12 . In particular, we determine which of the
irreducible representations are finite-dimensional, and compute their characters.

In the third part, we study rational Cherednik algebras Ht,c(W, [) over the field
of finite characteristic p. We first prove several general results about category 0, and
then focus on rational Cherednik algebras associated to the general and special linear
group over a finite field of the same characteristic as the underlying algebraically
closed field. We calculate the characters of irreducible representations with trivial
lowest weight of the rational Cherednik algebra associated to GL,(Fp,) and SL,(Fpr),
and characters of all irreducible representations of the rational Cherednik algebra
associated to GL 2(F,).

Thesis Supervisor: Pavel Etingof
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Chapter 1

Introduction

1.1 Chevalley restriction theorem for quantum groups

The first part (Chapter 2) of this thesis generalizes the classical Chevalley restriction

theorem about restrictions of invariant polynomial maps on Lie algebras to the case

when the polynomial maps are vector-valued, with values in a representation V, and

the Lie algebra is replaced by a quantum group.

Let g be a finite-dimensional semisimple Lie algebra over C, its Cartan subalge-

bra, W its Weyl group, G the connected simply connected algebraic group associated

to g, and H the maximal torus of G corresponding to [.

We can consider the space C[g]g of polynomial functions from g to C, invariant with

respect to the coadjoint action of g. Such functions can be restricted to polynomial

functions on 4. The classical Chevalley restriction theorem (the graded version of

the Harish-Chandra isomorphism) states that the restriction map Res: C[g]g --+ C[4]

is injective, and that the image is C[4]w, the space of polynomial functions 4 -+ C

invariant under the action of W.

There is also a version of this isomorphism for quantum groups, see [46].

Recently Khoroshkin, Nazarov and Vinberg [36] generalized this result to the case

when the target space of polynomial maps is V, a finite-dimensional representation

of g. Let Ej be the Chevalley generators of g associated to positive simple roots oa.

Use X.v to denote the action of X E g on v E V, and similarly X.f(y) to denote the



action of X E g on the value f(y) of a function f: [ -+ V (so, if we think of f as an

element of C[ ] 0 V, then E.f = (1 0 Ei)f). [36] showed:

Theorem 2.1.1. The map Res: (C[g] & V)G _+ C[ ] 0 V is injective. Its image

consists of those functions f E C[] 0 V that satisfy:

1. f G C[ ] O V[0];

2. f is W-equivariant;

3. for every simple root a E TI and every n E N, the polynomial Einf is divisible

by al.

We want to generalize this theorem to quantum groups. This is more convenient

to do in the setting of algebraic groups, to which [36] theorem generalizes naturally

and with an almost identical proof.

Consider the Hopf algebra O(G) of polynomial functions on the group G. It comes

with a natural restriction map to O(H), which can be extended to the case when the

target space is V, giving O(G) 0 V -+ O(H) 0 V. We are interested in what this

restriction map does to equivariant functions (O(G) 0 V)G, namely the ones that

satisfy f(gxg- 1) = g.f(x) for all x, g E G. The result of [36] modified to the setting

of algebraic groups is:

Theorem 2.1.5. The map Res: (0(G) 0 V)G -> O(H) 0 V is injective. Its image

consists of those functions f E O(H) 0 V that satisfy:

1. f G O(H) & V[O];

2. f is W-equivariant;

3. for every simple root a and every n E N, the polynomial E '.f is divisible by

(1 - ei)".

This setting is more convenient for generalization to quantum groups for the fol-

lowing reason. By the Peter-Weyl theorem, O(G) L ., L* 0 L, where the direct sum

is taken over isomorphism classes of finite-dimensional irreducible representations of



G (equivalently: over dominant integral weights A - in that case L = LA), and L*

denotes the dual representation. In this setting O(H) D,®C* 0 C,,, where for any

integral weight p, CA is the one dimensional representation on which H acts by the

character e". With these isomorphisms, the restriction map Res: O(G) -+ O(H) is

easy to describe and corresponds to decomposing the irreducible representation L

into its weight spaces (see discussion after theorem 2.1.5 for details).

By analogy with the classical case, in the quantum case we define Oq(G) =

D*L L, with *L being the left dual of L (see Section 7.3.3), and the sum again be-

ing over all dominant integral weights A, with L = LA the irreducible representation of

Uq(g) with highest weight A. As all such representations have integral weights, there

is again a natural restriction map to O(H). For V a finite-dimensional representation

of Uq(g), we then consider the restriction map

(Oq(G) ® V)%(9) -+ O(H) 0 V.

Let Ej denote the standard generator of Uq(g) associated to aj, and let qj = qdi -

q<ai'ai>/2. The main result of this part of the thesis is:

Theorem 2.2.4. The map Res: (Oq(G) 0 V)U(9) -+ 0(H) 0 V is injective. Its image

consists of those functions f E O(H) 0 V that satisfy:

1. f E O(H) 0 V[O];

2. f is invariant under the (unshifted) action of the dynamical Weyl group (see

Section 2.3)

3. for every simple root aj and every n E N, the polynomial Ei.f is divisible by

(1 - qfe"'i) (1 - qifeai .. _in ne aj

Obviously, this statement is a direct generalization of the one for q = 1 case.

Checking that restrictions to O(H) 0 V satisfy properties (1) and (3) is a direct

computation; checking (2) requires more tools. The most involved part of the proof



is checking that every function in O(H) 0 V that satisfies (1) - (3) is a restriction

of an element of (Oq(G) 0 V)Ue(9). The proof of the analogous statement in [36]

uses some basic geometric observations which are not available in the quantum case

(these observations follow from O(G) being an algebra of polynomial functions on the

algebraic variety G). This is the reason their proof cannot be directly generalized.

Instead, the space of invariants can be rewritten in another way, namely as

(Oq(G) 0 V)e(Q) = @(*L 0 L 9 V)Uv(9) a (DHomu(.g)(L, L 0 V).
L L

This natural isomorphism composed with the restriction map above reformulates the

problem in terms of traces of intertwining operators L -+ L 0 V, as it turns out that

4 E Homu,g)(L, L 0 V) maps to the function on H given by x '-+ Tr|L(<D 0 X). Such

functions have been extensively studied in recent years, among others by Etingof and

Varchenko in [27], [26], and satisfy a number of remarkable symmetry properties and

difference equations. Reframing the problem in terms of trace functions enables us

to draw from those results to prove Theorem 2.2.4.

This work is available in [2].

1.2 Rational Cherednik algebras and their repre-

sentations

A rational Cherednik algebra Htc(W, ) is a certain associative, noncommutative,

infinite-dimensional algebra over an algebraically closed field k, associated to a finite

reflection group W, its reflection representation and a collection of parameters t

and c. Parameter t is an element of the field k, and c is a collection of elements of k

parametrized by the conjugacy classes of reflections in W. The algebra Htc(W, ) is a

deformation of the semidirect product of the group algebra k[W] and the symmetric

algebra S(j D tj*), and Hop(W, ) 2 k[W] x S(j e *).

In case W is a Weyl group, these algebras are rational degenerations of double

affine Hecke algebras, which were defined by Cherednik [14] and used to prove Mac-



donald conjectures. They can also be thought of in relation to completely integrable

systems as algebras encoding the structure of Dunkl operators (considered by Dunkl

in [18] and Dunkl and Opdam in [20]), and Calogero-Moser systems [21], or as a spe-

cial case of symplectic reflection algebras of Etingof and Ginzburg [23]. Such algebras

and their representation theory have been intensively studied in the last fifteen years.

A natural class of representations to consider is the category 0 (sometimes called

Ot,c or Ot,c(W, [)). One can define standard or Verma modules M,c(-r), which are

certain lowest weight modules parametrized by the set of irreducible representations

T or the group W. The algebra H,c(W, t) and the modules M,c(r) are graded. There

exists a contravariant form B on Verma modules, such that its kernel on M,c(r) is

the maximal proper graded submodule of M,c(r). The quotient of Mt,c(r) by this

kernel is irreducible, and we call it Lt,c(T). Category 0 is defined in such a way that

all irreducible objects in it (up to, possibly, grading shifts) are of the form Lt,c(r).

An open question in representation theory of rational Cherednik algebras is to

describe the modules Lt,c(r) (for example, by calculating their characters, finding

the dimensions of finite-dimensional ones, finding the composition series of Verma

modules in terms of irreducible modules, or even describing the values of t, c and sets

of r for which such representations are finite-dimensional).

1.3 Rational Cherednik algebras over C

There is a difference in the behavior of the irreducible quotients Lt,c(r) and conse-

quently in the definition of category 0 between cases when the ground field k has

characteristic 0 and characteristic p > 0. The case that has been studied the most

is when k = C. In that case, the category 0 is semisimple for generic values of

parameters t and c, and as a consequence Mt,c(T) are irreducible and equal to Lt,c(T)

for all r.

More precisely, parameter t can be rescaled to allow us to assume t = 0 or t = 1.

For t = 0, the algebra Ht,c(W, ) has a large center, so Mt,c(r) has a large submodule

and the category 0 is never semisimple. For t = 1, there exists a KZ functor (defined



by Ginzburg, Guay, Opdam and Rouquier in [30]) from category 0 to the category

of representations of the Hecke algebra 'Hq(W), with the parameter q depending on

c. If c is a constant, then q = e c. Using this functor one can prove that the

C-algebra 'H((W) is semisimple if and only if Oi,c is semisimple. This, along with

the information about semisimplicity conditions for Hecke algebras from [13], [15],

[29] and [38], resolves the questions about L1 ,c(r) for generic values of parameter

c (namely, L1 ,c(r) = Mi,c(r) for generic c, and the KZ functor enables us to find

conditions on c for which this is true). However, it gives no information about what

happens at t = 1 and special values of c. The structure of category 0 can be quite

complicated there, and no general description of the irreducible modules, or even

information about which ones are finite-dimensional, is known.

Partial information known includes: for (W, y) of type A, Berest, Etingof and

Ginzburg [8] calculate the character formulas for all the finite-dimensional L1,c(r).

Also for type A, Rouquier [41] calculates all the characters for c not a half integer,

and conjectures that the analogous formulas hold for c a half integer. For dihedral

groups, Chmutova [16] computes the characters of irreducible modules in category 0.

Varagnolo and Vasserot [47] answer the question of when is the representation L 1,c(r)

finite-dimensional for W a Weyl group, c a constant, and r a trivial representation of

W. A generalization of this is a recent result by Etingof [22], which gives an answer

for any finite Coxeter group W, trivial r, and any value of the parameter c.

All these results are standard, and described in Chapter 3.

1.4 Rational Cherednik algebras associated to re-

flection groups H3 and G12

We tackle the problem of describing the modules Li,c(T) for all values of c and r for

k = C, and for W the exceptional Coxeter group H3 (Chapter 4) and the complex

reflection group G1 2 in the Shephard-Todd notation (Chapter 5). Both these groups

have only one conjugacy class of reflections, so c is a single complex parameter.



The strategy is similar for both W = H3 and W = G12. We first use KZc functor

to determine the set of parameters c for which category 0 1,c is not semisimple. This

gives a description of L1,c(-r) (namely, Li,c(r) = M1,c(r)) for all but countably many

rational values of c. For W = H3, these are rational numbers of the form c = m/d,

whose denominator d divides a degree of a basic invariant of H3, so d E {2, 3, 5,6, 10}.

For W = G12, we use the CHEVIE package of the computer algebra software GAP

[38] to find the semisimplicity conditions on the Hecke algebra, and translating them

to the rational Cherednik algebra using the KZ functor, we get that 01,c is semisimple

unless c = m/12, m E Z, m = 1, 3, 4, 5, 6, 7, 8, 9, 11(mod 12).

Next, we use a series of equivalences of categories to reduce the set of pairs (c, r) for

which we need to calculate the characters to a small finite set. There are equivalences

between 0 1,c and O1,fc for any character f of the group, coming from the isomorphism

between Hi,c(W, [) and Hi,fc(W, 4). By defining f to be a signum character (taking

value -1 on all simple reflections), we can assume c > 0. Next, there are equivalences

of categories between category 01/d(W, 4) and category O,/d(W, 4), in the case d 74 2

(defined by Rouquier in [40]), and finally between category Oc(W, 4) and category

Oc+1(W, 4) for c >> 0 (defined by Berest, Etingof and Ginzburg in [8]). It is known

how these functors act on the standard and irreducible modules, and consequently

how the characters transform under them.

All this allows us to reduce the possible values of c that we need to consider for

each group to a very small set; c E {1/10, 1/6,1/5, 1/3, 1/2,3/2} for W = H3 and

c E {1/12, 1/4, 1/3, 1/2} for G12. For those values, we use a variety of algebraic,

combinatorial and computational methods, including representation theory of finite

groups, induction and restriction functors for rational Cherednik algebras, and explicit

calculation of the contravariant form B. This form can be calculated inductively on

the graded pieces on M1,c(r), and in cases where we cannot resolve the structure of

L 1 ,c(T) in any other way, we use MAGMA algebra software [11] to calculate this form

and its kernel explicitly.

The work about representations of H1 ,c(H3, [) is joint with Arjun Puranik and

available in [6], and the work about representations of H1 ,c(G12, ) is joint with



Christopher Policastro and available in [5]. The main results of this part are Theorems

4.2.1 and 5.2.1.

1.5 Rational Cherednik algebras in positive char-

acteristic

When k is an algebraically closed field of positive characteristic p, the rational Chered-

nik algebra Htc(W,[ ) has a large center. Consequently, the modules Mt,c(r) always

have a large submodule, and we can define baby Verma modules Nt,c(r) as quotients of

Verma modules by this submodule. These modules are graded, the form B descends

to them, and irreducible modules can be alternatively realized as quotients of baby

Verma modules by the kernel of the induced form B, which is the maximal proper

submodule. The baby Verma modules are always finite-dimensional.

In finite characteristic, we define category 0 to be the category of finite-dimensional

graded modules. It contains irreducible modules and baby Verma modules, but not

Verma modules. All the irreducible objects in it, up to grading shifts, are of the form

Lt,c(r). The kernel of B on Mt,c(r) is the maximal proper graded submodule, and

the kernel of B on Nt,c(T) is the maximal proper submodule.

Every graded piece of the graded module Mt,c(r) and all its submodules and quo-

tients is a representation of W. We define characters which reflect this information.

We then prove that for t = 1 and generic c characters are of specific form, depending

on the structure of a certain reduced module. We also give an upper bound for the

dimension of irreducible modules for t = 1.

These definitions and general observations about category 0 for rational Chered-

nik algebras in finite characteristic are new, and given in Chapter 6.



1.6 Rational Cherednik algebras associated to gen-

eral and special linear group over a finite field

Chapter 7 calculates the character formulas for the irreducible representations Lt,c(T)

for all values of (t, c), for r = triv the trivial representation of W, and for W =

GLn(Fq) and W = SLn(Fq) for all n > 2, q = pr, and Fq the finite field of charac-

teristic p with q = pr elements. The main theorems are 7.2.1, 7.2.8, 7.3.6 and 7.3.11.

The descriptions of these characters is somewhat surprising: for fixed t and for n

and p large enough, the characters don't depend on the value of c, and the form B

diagonalizes in the appropriate basis. These phenomena never occur in characteristic

zero.

Chapter 8 calculates the characters of representations Lt,c(r) for generic c and all

r for the case when W is the group GL 2 (F,). The main result is 8.2.1.

The methods of chapters 7 and 8 are direct combinatorial, group theoretic and

representation theoretic computations. We used MAGMA in the initial stages of the

project, to calculate low rank examples and form conjectures, but we don't reference

those computations in proofs. The hope is that these detailed computations of the

structure of category 0 for specific classes of groups, alongside with those from Chap-

ters 4 and 5, can serve as steps in the direction of fuller understanding of rational

Cherednik algebras associated to any group W.

The work about rational Cherednik algebras in positive characteristic is joint with

Harrison Chen and available in [4], [3].
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Chapter 2

Chevalley Restriction Theorem for

Vector-valued Functions on

Quantum Groups

2.1 The generalized Chevalley restriction theorem

in the classical case

Through this chapter, let C = (aij) be a Cartan matrix of finite type of size r, and

([, [*, I, HV) its realization. This means that is an r-dimensional vector space over

C with a basis Hv = {hi, ... h,}, r* its dual space with a basis of simple positive roots

H = {ai,... a,}, and a(hj) = aji. The matrix C is symmetrizable, so we let di be

the minimal positive integers that satisfy diaij = djaji. Define a symmetric bilinear

form on [* by (a, aj) = diaij and on [ by (hi, hj) = d71 aji. Both of these forms

induce the same isomorphism j* by ai +-+ dihi. Let H be a complex torus of rank

r, so that the Lie algebra of H is , and let exp: -+ H be the exponential map, such

that its kernel is Z-spanned by 27rihj (in other words, exp realizes H as a quotient of

j by the lattice Z27riflv). We will write elements of H by x = exp(h) = eh, h E (, and

characters on the group accordingly, meaning e': H -* C is a character corresponding

to a E *, such that ec(eh) = e&(h). Let W be the Weyl group associated to this data.



Let P be the weight lattice (set of all A E b* such that A(hi) E Z Vi), and P+ the set

of dominant integral weights (A E P such that A(hi) E No Vi).

Let g be a semisimple finite-dimensional Lie algebra over C with a Cartan matrix C

and Cartan subalgebra 4. Let G be the connected simply connected complex algebraic

group with Lie algebra g, maximal torus H, and exp: g -+ G the exponential map

that restricts to exp: [ -+ H. For each root a let g, be the appropriate root space,

and for every simple root ai let E E g,2 , F E g-a 1 denote the Chevalley generators

of g; these satisfy [Ei, F] = 3jjhj and for every i determine a copy of s12 in g.

For every A E P let MA be the Verma module with highest weight A, generated

by a distinguished highest weight vector mA. For every dominant integral A E P+,

the module MA has an irreducible finite-dimensional quotient that we call LA. Call

the image of mA in it 1A. For any finite-dimensional g-module V and any v E P, set

V[v] = {v E Vlh.v = v(h)v Vh E j}, the weight space of V of weight v.

Because G is simply connected, finite-dimensional representation theory of G and

g is the same. In particular, for any finite-dimensional V with an action of G and

action of g derived from it, the set of invariants is the same: {v E Vjg.v = v Vg E

G} = VG - V9 = {v E VIX.v = 0 VX E g}. Because of this, in this section we will

be passing from G representations to g representations and back without comments.

Consider the set C[g] of all polynomial functions on g. The group G acts on it by

the coadjoint action: for f E C[g], X E g, g E G, (gf)(X) = f(Ad(g- 1 )X). Let V be

any finite-dimensional G and g representation; we will write both actions with a dot:

g.v and X.v. Consider the space C[g] 0 V of polynomial functions on g with values in

V. Let G act on this space diagonally on both tensor factors. This means that g E G

maps f E C[g] 0 V to a polynomial function on g given by X '-> g.f(Ad(g-')X).

Call the set of invariants with respect to this diagonal action (C[g] 0 V)G; these are

functions f that satisfy g.f(X) = f(Ad(g)X) for all g E G, X E g.

There is an obvious restriction map Res: C[g] 0 V -+ C[b] 0 V, and Res: (C[g] 0

V)G _+ C[] 9 V. The graded version of the main result of [36] (Theorem 2) describes

this latter map.

Theorem 2.1.1. The map Res: (C[g] 0 V)G - C[b] 0 V is injective. Its image



consists of those functions f E C[ ] 0 V that satisfy:

1. f E CM [0] V[0] ;

2. f is W-equivariant;

3. for every simple root ai E H and every n E N, the polynomial Ei'.f is divisible

by a'.

We recall the proof of [36]. We first need a technical lemma about algebraic

geometry.

Lemma 2.1.2. Let X be a smooth connected complex algebraic variety, f a rational

function on X, and Z a divisor in X such that f is regular on X \ Z. Assume that

for a generic point z of Z there exists a regular map c,: D -+ X from a formal disk D

to X, such that c,(O) = z, cz does not factor through Z (so the limit limt_o f(c,(t))

is well-defined), and this limit is finite (equivalently, f(c,(t)) E C[[t]]). Then f is

regular at a generic point of Z, and hence it is a regular function on X.

Proof. The singular set of the rational function f is a finite union of irreducible

divisors, and it is by assumption contained in the divisor Z. So, it is enough to show

that f is regular at a generic point of Z to see that f is regular on X.

This is a local problem. By localizing to an open subset of X, we may assume

without loss of generality that X is affine and Z is irreducible. One may also assume

that Z is given by a polynomial equation {Q = 0}, for some regular function Q on X

such that dQ =, 0 for a generic point of Z.

Since f is a rational function, there exists the smallest integer m > 0 such that

the function P = fQm is regular at a generic point of Z.

For a generic point z E Z, using that limt_0 f(cz(t)) is finite, we get

P(z) = limP(c,(t)) = limf(c,(t)) - Qm (cz(t)) =t->0O t->0O

= lim f (cz(t)) - lim Qm (cz(t)) = lim f (c'(t)) - Om.
t-+0 t-*o t->0



If m > 0, then this implies that P(z) = 0 for a generic point z, so P/Q is regular

on Z and we can replace P by P/Q and m by m - 1 > 0, contrary to our choice of

m as minimal. So, m = 0 and f = P is regular at a generic point of Z.

0

Remark 2.1.3. Note that the existence of c, for only one specific point z does not

guarantee that f is regular at it. To prove that f is regular at one point z, one would

need to show that the limit is finite when approaching z from any direction, not just

along cz. However, the assumption of the lemma is that a function c. exists for many

points of Z at once. In that case, as we showed, f is regular at all points of Z,

and hence the limit of f is indeed finite when approaching any point of Z from any

direction.

Remark 2.1.4. We will first apply this lemma in the proof of theorem 2.1.1 for

X = g, where c, (t) can be chosen to be linear functions, and then in the proof of 2.1.5

for X = G an algebraic group, where c_(t) can be chosen to be multiplication by an

appropriate element of G.

We now recall the proof of Theorem 2.1.1.

Proof. Let us first show that the conditions 1)-3) are necessary. Let f E (C[g] @ V)G,

and let us abuse notation and write f for Resf.

1) is necessary: For any x E H, h E f), we have

x.f(h) = f(Ad(x)h) = f(h).

From this is follows that f(h) E V[0).

2) is necessary: For NG(H) the normalizer of H in G and ZG(H) the centralizer

of H in G, ZG(H) = H, we have W = NG(H)/ZG( H) = NG(H)/H. The space

V[0] is the e' = 1-eigenspace of H, so NG(H) preserves it and H fixes it pointwise;

therefore W acts on it. Because NG(H) c G, the functions we get are W- equivariant,

meaning:

f(wh) = w.f(h).



3) is necessary: For f a polynomial function on g and X, Y E g, let

(Y) = f(Y + tX)It=0
aX dt

be the directional derivative. We have the usual Taylor series expansion for the

function of one complex variable t i-+ f(Y + tX) given by

f(Y +tX) = -1t" (Y).
n n>0

Let us write down the invariance condition of f with respect to exp(tE) E G. For

h E 4, and t E C, we have:

exp(tE;).f(h) = f(Ad(exp(tEj))h)

Expand both sides into a power series in t to get

tn t"1 E2 '.f(h) = f(exp(ad(tEi))h)
n>O

= f(h -tai(h)Ej)

(-1)ntna(h)n anf (h)

Looking at the corresponding terms in the power series, we get

071fE. f(h) = (-1)a,(h)"En (h),

which is divisible by an.

The map Res is injective: The set of elements in g that are Ad(G)-conjugate to

an element of 4 is dense in g. So, if two G-equivariant polynomial functions on g

match on [, they match on its dense G-orbit, so they are the same.

1)-3) are sufficient: So far we have seen that the image of Res is contained in

the set of all functions satisfying 1) - 3). To see that all functions satisfying 1)-3)



are restrictions of equivariant functions on g, let f be a polynomial function on

satisfying 1)-3) and let us try extending it to g.

Call elements of that are not fixed by any nontrivial element of the Weyl group

regular, and call the set of all such elements reg. It is a complement of finitely many

hyperplanes of the form Kera in , for a a root. Call elements of g that are Ad(G)-

conjugate to an element of reg regular semisimple, and the set of all such elements

9 ,. This is an algebraic variety, open and dense in g. More precisely, there exists a

polynomial in C[g]9 , called the discriminant, such that the set g is the complement

of its zero set. The restriction of this polynomial to 4 is the product of all roots of g.

We can extend the function f to elements of gr, by defining f(Ad(g)h) = g.f(h).

More precisely, consider the diagram

Gx reg > V

{a

Here, a(g, h) = Ad(g)h, and i is the inclusion. The map a is surjective and g, is dense

in g, so i o a is dominant. It is compatible with the map f(g, h) = g.f(h). Indeed,

if i(a(gi, hi)) = i(a(g2, h2 )), then hi = Ad(gi 1g2 )h2 , so g1 1g2 is in the normalizer of

4 in G, and therefore a representative of an element of W. Using that f: [ -+ V is

W-invariant, we get

f(gi, hi) = gi.f (hi) = gi.f(Ad(g 1 g 2)h2) = gig9g 2 .f(h 2 ) = f(g 2 , h2 ).

Therefore, there is a well-defined rational function g -- V that makes the above

diagram commute. We claim this is the required extension of f: [ -+ V to a G-

invariant function on g.

The restriction of this function to j is f, so we abuse notation and call this rational

function on g by the same name f. By construction, it is G-invariant on g, which is

dense in g, so it is G-invariant on the maximal domain in g where it is regular. To

prove this is the required function in (C[g] ( V)G, we just need to show that it is a



regular function on g.

As it is regular on g,., we need to show it is regular on the divisor D = g \ g, and

for that we will use lemma 2.1.2. The assumptions of this lemma refer to a generic

point of the divisor D. The set of elements whose semisimple part is conjugate to an

element of [ which is contained in only one hyperplane of the form Kera is Zariski

dense in D. More precisely, the irreducible components of D are

Da = {elements of g whose semisimple part is conjugate to an element of Kera},

for a a representative of a W-conjugacy class of roots. Therefore we choose all

representatives a to be simple roots. Then the set Da, is equal to

Dc, = {elements whose semisimple part is conjugate to an element of Kerai},

and contains a Zariski dense subset

D' = Ad(G){h + EiIh E Kerai, h V Ker3 V root 3# ±a}.

We will check the assumptions of Lemma 2.1.2 on any element z = Ad(g)(h + E)

the set D'. for any ai, g E G, h E Kerai. We construct a function cz, such that

limtmo f(c,(t)) is finite. Pick y E [) such that ai(y) = 1 and define cz(t) = Ad(g)(h +

ty + Es). Clearly c2(O) = z. The element h + ty + Ei is conjugate, via exp(t-'Ei), to

Ad(exp(t-Ei))(h + ty + Ei) = h + ty,

which is in reg for small t = 0, so f is well-defined there and c, doesn't factor through



the divisor D. Now calculate the limit, using that f is G-invariant:

lim f(cz(t)) = lim f(Ad(g)(h + ty + E))
t->0 t->0

= lim g.f(h + ty + Ei)t-+o

= lim g.f(Ad(exp(-t~'Ei))(h + ty))
t-+0

= lim g.exp(-t~'Ej).f(h + ty)
t->0

= g. lim -(-t)~"Ei Jf(h + ty).
t--+0 n>0 n

This sum is finite because f takes values in V, a finite-dimensional representation on

which Ei is nilpotent. h + ty is in [, and by 3) every term Ef.f(h + ty) is divisible

by ai(h + ty)" = t". So we can exchange limit and sum, and all of the summands are

finite when we let t -+ 0.

Using lemma 2.1.2, we conclude that f is regular on r, as required.

This theorem can be restated terms of polynomial functions on the group G, with

an almost identical proof. Let O(G) be the algebra of polynomial functions on the

algebraic group G, and O(H) the algebra of polynomial functions on the subgroup

H. There is again the obvious restriction map (quotient of algebras) that we will

call Res: O(G) -+ O(H). Let Res also denote the tensor product of this map with

the identity map on a representation, Res: O(G) 0 V -- O(H) 0 V. There is also a

natural G-action on this tensor product, by acting on the first tensor factor by dual of

conjugation in the group, and on the second by a given action on V. The invariants

are then functions that satisfy:

g.f(x) = f(gxg1 ) Vg,x E G,

and the analogous theorem is:

Theorem 2.1.5. The map Res: (0(G) ® V)G -_+ O(H) 0 V is injective. Its image



consists of those functions f E O(H) & V that satisfy:

1. f E O(H) V[0];

2. f is W-equivariant;

3. for every simple root ai and every n

(1 - eai)".

Proof. Essentially, this proof is the same

conditions 1) and 2) follows directly. To ch

exp(-h) exp(tEi) exp(h)

E N, the polynomial En.f is divisible by

as proof of Theorem 2.1.1. Necessity of

eck condition 3), calculate for h E ), t E C:

= exp(Ad(exp(-h))tEi)

= exp(exp(ad(-h))tEi)

= exp(e-ai(h)tE )

It follows that

exp(tEi) exp(h) exp(-tE) = exp(h) exp((e-a(h) - 1)tEi).

Now

t"E f (exp h)
n>O

= exp(tEi).f(exp(h))

= f(exp(tEi) exp(h) exp(-tEi))

= f (exp(h) exp((e-ai(h) - 1)tE,))

1 (e-c() 1) t"R n f(exp(h))
n>(

e -nai (h)g _ i(h))"t"RE n ep~)

Here REf denotes the derivative of f with respect to left invariant vector field Ej.

It is a polynomial function on G. It follows that

E.f(exp h) = e-"ai(h)( - eai(h))"RE f(exp(h)),



and it is divisible by (1 - eai(h))n.

If the function f E O(H)@V that satisfies 1)-3) can be extended to a G-equivariant

function on G, this can be done in a unique way, because the set of elements conjugate

to an element of H is dense in G.

To see it always extends, just as in Theorem 2.1.1, we first extend it to the set of

regular semisimple elements of G, and then use lemma 2.1.2.

Every element of g E G has a decomposition g = gsg, where g, is semisimple,

g, is unipotent and gg, = gugs. Every semisimple element is contained in some

maximal torus. All maximal tori are conjugate. A semisimple element of G is called

regular if there is only one such torus containing g,, equal to the identity component

of the centralizer ZG(g,). The set of regular elements G,, of G is open dense in G.

(See [10]).

We can extend f : H -* V to a G-invariant polynomial function on the set of all

regular semisimple elements of G, by using that such an element is conjugate to an

element of the fixed torus H, and that two elements of H are G-conjugate if and only

if they are W-conjugate. Because the set of regular semisimple elements is open dense

in G, we can consider f to be a rational function G -+ V, regular except maybe on

the set G \ G,s. We will use lemma 2.1.2 to show that it is in fact regular everywhere.

We have G \ G,, = Ua,mDa,m, where a is an arbitrary root and m an arbitrary

integer, and

Da,m = {elements whose semisimple part is conjugate to

some exp(h) E H, h E [), such that a(h) = 27rim}.

Some of these sets coincide (for example, if they are labeled by W- conjugate roots

and appropriately chosen integers). For the purposes of applying lemma 2.1.2, we

will use the following dense subset of Da1 ,m:

D'I,m = {G - conjugates of exp(h) exp(Ei) E H,



h E [ such that ai(h) = 27rim, and e#(h) :54 1 V root # -;A ta}

Let z = g -exp(h) exp(Ei) - g-' be an arbitrary element of D' i. Pick y E [ with

ai(y) = 1. Then

[y, Ei] = Ei [h, Ei] = 2iirmEj,

so for t E C

exp(ty)Ei = etEi exp(ty) exp(h)Ei = Ei exp(h).

From this it follows

exp(_ _ 1 E) exp(h + ty) exp(Ei) exp( t Ei) = exp(h + ty),-1 et  E)=xpht)

in other words exp(h + ty) exp(Ei) is conjugate to a regular element of H. We define

cz(t) = g -exp(h + ty) exp(Ei) - g-'

and calculate, as before:

= lim f(g -exp(h + ty) exp(E) -g-')
t-40O

= limg.f(exp(h + ty) exp(Ei))

1 -1
= lim g.f(exp( t Ei) exp(h + ty) exp( Ei))

1
= ling g. exp(-_ Ei).f (exp(h + ty))

= g. lim -E!.f(exp(h + ty)).

This sum is finite, and every E .f(exp(h + ty)) is by assumption 3) divisible by

(1 - e**)"(exp(h + ty)) = (1 - ei(h+ty))n - (1 _ e 2 i5rm+t)n - (1 - et)n.

Since limt'_o( l- )" = limt-o ent = 1, we see that the limit of every summand is

finite. So, limt.o f(cz(t)) is finite, and by lemma 2.1.2, f is regular at the generic

ling f (cz(t))



point of G \ G,.,, and hence it is regular everywhere.

The main reason for reformulating Theorem 2.1.1 in terms of Theorem 2.1.5 is

that the latter allows generalization to quantum groups. Namely, use the Peter-Weyl

theorem to write

O(G) -D L* 0 L.
LEG

Here the sum is over G, the set of irreducible finite-dimensional representations L of

G; equivalently, it is over all dominant integral weights p E P+, with L = L,. The

module L* is the dual space of L, with the natural G action gp = o g-1 . The

isomorphism A: eLES L* 0 L -> O(G) is determined by sending p 0 1 E L* 0 L

to a function on G given by x - A(o 0 l)(x) = cp(xl). It is a matrix coefficient

of L, and therefore a polynomial function on G. If we put the natural action of G

on every tensor product L* 0 L, meaning letting g E G act by g 0 g, then A is

an isomorphism of G representations: (Ag(o 0 l))(x) = (A(o o g-1 ) 0 (gl))(x) =

p(g-1 xgl) = A ( o l)(gxg-').

The action we had on O(G) 0 V was the natural action on the tensor product, so

A 0 idv: @LE0 L* 0 L 0 V -> O(G) 0 V is also an isomorphism of representations.

There is also a natural isomorphism B: L* 0 L 0 V -+ Homc(L, L 0 V), by B(p 0

1 0 v)(l') = p(l')l 0 v, 1' E L. The map B is a G-isomorphism with respect to

the following G-action on Homc(L, L 0 V): for 4 E Homc(L, L 0 V), 1 E L, g E

G, (g)(l) = (g o g).(4)(g- 1l)). Notice that the invariants with respect to this action

are exactly the G-intertwining operators L -> L 0 V. It is also interesting to note

that the composite map (A 0 id) o B-1: Homc(L, L 0 V) -> O(G) 0 V is the trace

map; more precisely, for a basis 1i of L, dual basis Soi of L*, and 4 E Homc(L, L @V),

its image (A 0 id)(B(4)) is a polynomial on G given by

x '-+ TrIL(o 0x) = ((po 0 id)D(xj) E V.



To summarize, we have the following diagram:

0(G) 0V L* 0 L1, 0 V B ®6P+ Homc(L, Lp 0 V)

{Res {Res tRes

O(H)&V - eP C* 0CV : B ,EPHomc(C,,C , @V)

where C,, denotes a one dimensional representation of H on which H acts by a charac-

ter v. The isomorphisms A and B for H are completely analogous to those for G. All

Res maps are naturally defined. Res: O(G) -+ O(H) is restricting a polynomial map

to a subvariety. Res: @,, L* 0 L, -* @D, C* 0 C, corresponds to decomposing

representations L, and L* into their H-isotypic components L, , and L*,, then an-

nihilating all parts that are not diagonal, i.e. parts of the form L*, , 0 L,,,, v 4 rq, and

finally taking a trace L*,, 0 L,, , -+ C* 0 C, . In other words, for , 0 v , E C* 0 C,

a fixed basis with p , (v) = 1, and for p E L*,,, , v E L,, , , v' E L with v/ v, the

map is V 0 v i-+ 'p(v)pv 0 vv, and 'p 0 v' '-- 0.

This Res is defined to make the left square in the diagram commute. Analo-

gously, the rightmost Res corresponds to viewing the homomorphisms as maps of

H-representations, decomposing and forgetting the nondiagonal parts. The right

square in the diagram also commutes.

Theorem 2.1.5 can now be restated as follows:

Corollary 2.1.6. For every y E P+, let (<b, )j be a basis of the space of intertwining

operators HomG(Lj, LI, 0 V). For every such operator 4(,,j define its trace function

to be T,,j E O(H) 0 V, given by Ip,,(x) = Tr|L,(<b,j o x). Then the set of all xlF,3

is a basis of the space of functions in O(H) 0 V that satisfy 1)-3) from the statement

of Theorem 2.1.5.

This is the form of the theorem that we will prove in the quantum case. Now

let us illustrate this form of the theorem with a simple example where we can write

everything explicitly.

Example 2.1.7. Let g = s 2 , G = SL 2. The rank of g is 1, so identify [)* with C

by z '-+ z2 for a the positive root. Then the dominant weights are identified with



nonnegative integers. Let V = L 2 be the three dimensional irreducible representation

with highest weight 2. Pick a basis v- 2 , vo, v2 of weight vectors for it, so that vi E V[ij,

and F.v 2 = vo, F 2 -V2 = v- 2 . Pick an analogous basis for any L,,, by F'., i = 0, ... p,

and a dual basis to it pi, pi(Fi.ly) = Sig.

Let p E No be arbitrary. Let us first describe all intertwining operators

4 E HomsL (Lm, LI 0 V) = Homg 2 (Ly, L, 0 V).

The map D is determined by Q(ly), which needs to be a singular vector in L,, 0 V of

total weight p. So,

'1(ly) = col,, 0 vo + c1F.ly 0 v2.

The condition that this needs to be a singular vector in L,, 0 V gives a recursion on

the coefficients ci. In general (for any g and any V), if co = 0 then 4 = 0 (see [27],

or Lemma 2.3.1 below). Scaling so that co = 1 in this example we get

2
I(l) = lt0v - -F.l 0v 2 -

The dimension of the space of g-intertwiners L,, --+ L, 0 V is 1, except when y = 0,

when it is 0. This also illustrates the general case, when for generic p the spaces

Hom,(L,,, L, 0 V) and V[0] are isomorphic. The isomorphism sends v E V[0] to the

g-intertwining operator 4) determined by (k(l) = l, 0 v+ terms with first factor of

lower weight (again, see [271 or Lemma 2.3.1 below).

Set h = h1 . Any element of [) is of the form zh, z G C, and a(h) = 2. The trace



function T on H = exp () is then, for z E C

y
WI(ezh) = L, Tr (D o ezh) E 0 id)Q(D(ezh(F'.l,1 ))

i=o

(zh) 2
= Z e(A-ia)(h) (p9 0 id)(F.(l,4 0 vo - -F.l, 0 v 2))

i=0

= e(/-2i)z(i - i)v0
=0 p

= p 2i (ez-(. 2i) _ e-zq(-2))vo

p-2i>O

In this notation, O(H) = C[ez, e-z] = span{ezh F-4 e" , n E Z}. As we vary p E N

and allow linear combinations of such trace functions, we can obviously get all the

functions in O(H) 0 V of the form f (ezh) = En anenvo that satisfy an = -an Vn E
No. On the other hand, a function f (ezh) = En an,ienzv, in O(H) 0 V that satisfies

1)-3) must have:

1. an,i = 0 unless i = 0, so f(ezh) = En anenzvo;

2. the Weyl group invariance: the Weyl group of s12 is 22, and the nontrivial

element acts on the 0 weight subspace of L2m by (-1)m; so in our case f(e-zh)

-f(ezh), which means an = -a-n;

3. E.f(ezh) = EnaenzE.vo = En>O an(e"z - e-nz) - 2v 2 ; every term enz - e-nZ

is divisible by (1 - e")(ezh) = 1 _ e 2z in the ring O(H) (and this condition is

trivial in this case; see remark 2.4.10).

Here we can directly see these are the same spaces of functions, as claimed by the

theorem.



2.2 The generalized Chevalley isomorphism in the

quantum case

We keep the notation from Section 2.1: C = (aij) is a Cartan matrix of finite type,

(j, r*, = {1, ... a} fv = {h1, ... hr}) is its realization, di the symmetrizing

integers, (-,.) the form identifying j and r*, H the complex torus with the map

exp: [ -+ H whose kernel is 2iir times the dual weight lattice, W the Weyl group, P

the weight lattice and P+ the set of dominant integral weights.

Let q E CX not a root of unity. Pick t E C such that e' = q. For x E C, define

qX = etx. For h E , define qh = eth E H, and for A E * use the identification *

to define qA = etA E H. For a function e" E O(H), v E P, we now have

ev(qh) = e (eth) - etv(h) - qv(h),

e" (q') = ev(et\) = et(vA) = q(

To this data one may associate a quantum group Uq(g), and its representations.

First define quantum integers as [m]q = qmq-m, quantum factorials as [m],! = [m]q-

[m - 1]q -... [1]q, and qj = qdi - q(,i,)/2. As an associative algebra, Uq(g) is given

by generators E1 , ... Er, F1 ,... F,, and qh, h E 4 (here, qh is a formal symbol for a

generator, meant to suggest how this element will act on weight spaces), with relations

h. -h.

qh q' - qh+h' [EiI F] = I
qi - q

qhEiq- - qaidh)E qh Fq-h _-aj(h)E

with qfi = qdihi, and Serre relations

1-asi _lk 1a--k F
(kq!l- 1 Ei ~-' -~j~ Ej l

k=0



1-aij ki-~(-) Fil-a-k F-Fk = 0.
_[k]q!- aij- klq! 3

k=0

Uq(g) is a Hopf algebra, with the coproduct A, counit e, and the antipode S given

on the generators by

A(qh) =q q A(E,) =E 0 qi'h + 1 & Ez A(Fi) =Fi1+ qh'OFi

e(qh) = 1 E(Ej) = 0 E(Fi) = 0

S(qh) = q-h S(E) = -Eiqhi S(F) = F

Representations of Uq(g) that we are going to consider are going to be in category

0 and of type I. This means that a representation is a vector space V with an algebra

homomorphism Uq(g) -+ End(V), such that the weight spaces V[v] = {v E Vjq h.V =

q (h)v Vh E [)}, v E P, are all finite-dimensional, V = G),, V[v], and all weights

appearing with nonzero weight space will be contained in a union of finitely many

cones of the form {v - E nio, ni E N0 } in P. Moreover, we will only be interested

in finite-dimensional representations and Verma modules, defined below.

As Uq(g) is a Hopf algebra, its representations form tensor category, as an el-

ement X E Uq(g) acts on a tensor product of representations by A(X). We can

also define duals of representations. For a finite-dimensional Uq(g) module V, de-

fine its left dual *V to be the space of functionals on V together with the Uq(g)

action (Xo)(v) = p(S1 '(X)v). Left dual space *V comes with natural isomorphisms

*V 0 U a Homc(1,*V 0 U) =' Homc(V, U) for every module U. In the classical case

of U(g), we have S = S-1, as S(X) = -X for X E g, so left dual modules for quan-

tum groups are one of two possible generalizations of the notion of dual module for

enveloping algebras. The other one is the right dual module, defined using S instead

of S-1.

For any p E P, let M, denote the Verma module with highest weight p. It is

a module generated over Uq(g) by a distinguished singular vector m,,, with relations

Eim, = 0, qh/ = qA(h)m,1. If p E P+, then M, has a finite-dimensional irreducible

quotient; call it L,, and call the image of m1 in it 1,2. As in the classical case,



the finite-dimensional irreducible representations we are interested in are labeled by

integral dominant weights. We will mainly be interested in them, and occasionally

use an auxiliary Verma module.

Remark 2.2.1. Note that the symbol qh denotes both the element exp(th) of the group

H and the generator of Uq(g). This makes sense because on any representation V in

category 0, these elements diagonalize with the same weight spaces, and act on such

a weight space V[v] with the same eigenvalues: qh E Uq(g) acts by qv(h), eth E H acts

by ev(th), and qv(h) - etv(h) - ev(th).

In other words, there exists a group homomorphism from the multiplicative group

of all elements of the form qh E Uq(g) to H given by qh w exp(th). It is surjective, its

kernel is the set of all qh E Uq(g), h e 2iriZHv/t, and any representation in category

0 factors through this homomorphism.

Remark 2.2.2. Another way to define the setup we need is to avoid defining the

quantum group UQ(g) altogether, and to instead just define its category 0 of repre-

sentations. Namely, we define objects in the category to be P-graded vector spaces V

with graded pieces V[v], v E P, together with operators Ei, F, such that:

" all V[v] are finite-dimensional:

" the set of all v with V[v] $ 0 is contained in a union of finitely many cones of

the form {A - >j niaini E No};

" Ei: V[v] -* V[v+ai], F: V[v] -+V[v-ai];

" Ei, F satisfy Serre relations;

" [Ei7 F L'(hi) _- v(h;)

j [Ei, Fjv[v] = ji' _ 1 idlv[v|-

Morphisms in the category are morphisms of graded vector spaces that commute with

the operators Ei, F. Tensor structure of the category can be defined by similar for-

mulas.

It is obvious that these two definitions of category 0 are equivalent. The first one is

the usual definition of an algebra and its category of representations. The advantages



of the second one are that it avoids the ambiguity of defining Uq(g), allows for a

very clear restriction functor from this category to the category of representations

of H, avoids the representations of Uq(g) which are not of type I, and is a more

direct generalization of the the category of representations of U(p) that we considered,

because just replacing q by 1 and [m]q by m in all formulas gives exactly the category

of representations of U(g) we considered.

A practical consequence of the last remark is that there is a functor from the

category of Uq(g) representations considered above to the category of representations

of the torus H, given by letting x E H act on the space V[p] by e"(x)idv[,]. In

light of Remark 2.2.1, it corresponds to restricting the representation of Uq(g) to the

subalgebra generated by all the q.

Inspired by the classical case, define functions on a quantum group to be

Oq(G) = *L 9L,.

pEP+

This is a Uq(g) module with the usual action of Uq(g) on *L, 0 L,.

Remark 2.2.3. See [37 for a discussion on various equivalent definitions of quan-

tized algebras of functions on a Lie group. In particular, in Chapter 3, Proposition

2.1.2 it is shown that one can define Oq(G) as @, L,, ® L*. This defnition is equiv-

alent to ours, as there is an isomorphism L* -+ L.. whose dual is an isomorphism

LA --+* L.. Here p* is a dual weight to p, and can be calculated as p* = -wop for wo

the longest element of W. The map p '-+ p* is an involution on the set of dominant

integral weights.

This will be the setting for the rest of the chapter. Also, let V will be a finite-

dimensional representation of type I in category 0, that is a direct sum of finitely

many L,. As we are interested in describing restrictions of functions with values

in V, which corresponds to taking tensor products with V, all the statements and

conditions will behave nicely with respect to decomposing V into direct sums. This

means that the restriction theorems will hold for V if and only if they will hold for



every direct summand of V. As a consequence, we can at any point assume V is

irreducible, and all the conclusions we make will hold for any V that is a direct sum

of (possibly infinitely many) irreducible finite-dimensional modules.

As in the classical case, we have the following diagram:

Oq(G) 0 V = @,lc,*L, 0 LI V e @,,,, Homc(L,,, L, 0 V)

jRes

O(H)0V e @ C*® C , ® V - @ ,,E Homc(C,, C, 0 V)

Here we are using that on H, S = S-' so *C, = C*. Let us list all the maps and

all the actions of Uq(g) on these spaces; checking that all maps are isomorphisms of

Uq(g) modules is then a direct computation.

" The map Res, as in the classical case, corresponds to decomposing the repre-

sentation L = L,, into weight spaces, making an H-representation out of each

weight space by defining XIL[,] = e"(x)idL[, ], annihilating the nondiagonal part

and taking the trace. As in Remark 2.2.2, this corresponds to understanding

a representation L of a quantum algebra Uq(g) as an H-representation given

by weight decomposition together with the operators Ej: L[v] -+ L[v + aj] and

F: L[v] -- L[v - a]. Alternatively, it corresponds to understanding H as a

multiplicative subgroup of Uq(g) like in Remark 2.2.1.

* The maps *L,,L,V -+ Homc(Lj,,L,0V) and C*,C , @V -+ Homc(C , , C , ®

V) are natural, as they were in the classical case:

p 0 1 0 V i- (' i-+ s(l')l 0 v)

for 1,1' E L,, *L,,,v C V, or for l,1' E C, ,W E C*,v E V.

" The map C* 0 C, 0 V -+ O(H) 0 V is, as in the classical case, given by

f @ 1 @ V E-v (x F- (xl)v)

for W E C*j, 1 C,,v E V, x c H.



" Uq(g) action on *L, 0 L1, V is the usual one on a triple tensor product, with

X E Uq(g) acting by A2 (X) = (Aoid)oA(X) = X(1)OX(2)@X(3) in Sweedler's

notation.

" The Uq(g)-action on Homc(L,,, Lm 0 V) is as follows: for X E Uq(g), 1 E L,

4 E Homc(L,, L, 0 V),

(XA)(l) = A(X(2)).'(S'1(X(1))l) = (X(2) 0 X( 3)).I(S 1(X(l))l).

We are interested in the Uq(g) invariants in Oq(G) 0 V and their restrictions to

0(H) 0 V. The above action of Uq(g) on Homc(L, L1, 0 V) is the usual one, so the

space of invariants is exactly

Homc(L,, L1, V)Ue(9) = Homu(.g)(L,, L, 0 V).

We can again write explicitly the composite map Homc(L,, L,4 0 V) -+ 0(H) 0 V;

it is the trace map. It maps ( E Homc(L, L,, 0 V) to the polynomial function

T: H -+ V given by:

F(x) = TrIL (cDo x) E V.

By further abuse of notation, we will call this map Res, as well as its restriction to

the space of invariants.

We can now state the main theorem, analogous to Theorem 2.1.5.

Theorem 2.2.4. The map Res: (0,(G)0V)Uq(9) -+ 0 (H)OV is injective. Its image

consists of those functions f E O(H) 0 V that satisfy:

1. f E O (H) 0 V [0];

2. f is invariant under the (unshifted) action of the dynamical Weyl group (see

Section 2.3)

3. for every simple root a and every n E N, the polynomial E'".f is divisible by

(1 - qi ea)(1 - qiea') ... (1 - qi"e**).



The proof of the theorem will be given in Section 2.4. We will review the definition

and some properties of the dynamical Weyl group in Section 2.3.

2.3 Intertwining operators, dynamical Weyl group

and trace functions

Let us first fix some conventions for the rank one case Uq(S[2). In that situation, the

Cartan matrix is C = [2] and () is one dimensional. As r = 1, we will use the notation

h = hi and a = a 1 ; we have a(h) = 2. Then we can identify [y* with C by n <-+ n2.

Integral weights P are thus identified with integers Z and dominant integral ones P+

with nonnegative integers No.

Next, let us describe the notion of expectation value for general C and Uq(g).

Let V be a finite-dimensional representation and v a weight of V. Any operator

ED C Homu(s) (MA, MA_, 0 V) is of the form 4P(mA) = mA_, 0 v + l.o.t., where l.o.t.

denotes the lower order terms, meaning terms with first coordinate in a lower weight

space. Obviously, v E V[v]. Define the expectation value of 4) to be ((P) = v. That

means that if , denotes an element of the (algebraic) dual of MA_, that is 1 on

mA_, and 0 on all other weight spaces of MA_, then ((D) = (A-, 0id)(4(mA)) E V[v].

An analogous map exists for the situation when Verma modules are replaced by

irreducible modules, and we will also write it as ( - ) : Homuq(g) (LA, LA_,9V) -+ V[Vi].

A morphism of Uq(g) modules MA -+ M1,9V or LA -+ L,@9V is clearly determined

by the image of the highest weight vector, but for generic A even more is true: it is

determined by the first term of it, more precisely by the expectation value. The

precise statement is in the following lemma:

Lemma 2.3.1. 1. For generic A and for A integral dominant with sufficiently large

coordinates A(hi), the expectation value maps ( - ) define isomorphisms

Homuq(9) (MA, MA_, 0 V) e V[v] ~ Homuq(g) (LA, LA-, 0 V).



2. For v = 0 and A dominant integral, the image of the injective map

Homuq(q)(LA, LA 0 V) -+ V[0]

is

{v E V[0] I E-'(h)+1e = 0, i =1, . .. r}.

3. For Uq(Sl2), V = L2m, v = 0 and A dominant integral, the expectation value

map

Homu,(q)(LA, LA 0 V) -+ V[0]

is an isomorphism if and only if A {0, 1 ... m - 1}. If A E {0, 1,...m - 1},

then Homu,(g)(LA, LA 0 V) = 0.

Proof. 1. For A generic or integral dominant with sufficiently large coordinates we

have the following diagram:

Homu(g) (MA, MA_, 0 V) > Homu() (MA, LA_, 0 V) ~ ; Hom q(g)(LA, LA_, 0 V)

V[v]

The map Homu,(q) (MA, MA_, 0 V) -+ Homu,(g)(MA, LA_, 0 V) is the composi-

tion with the projection map MA_, 0 V -+ LA_, 0 V, and it is defined for any

A. In general, it is not injective.

The map Homuq(9)(MA, LA_, 0 V) -+ Homuq(g)(LA, LA_, 0 V) is defined when

all homomorphisms MA -+ LA_, 0 V factor through LA. In particular, this

happens if A is generic (in which case MA = LA and the map is the identity), or

when A - v is dominant integral (in which case LA_, 0 V is finite-dimensional,

so every map MA -+ LA-, V factors through the finite-dimensional LA). In

both of these cases, the map is an isomorphism.

Both maps to V[v] are the expectation value maps.

Let us show that Homuq(g)(LA, LAv 0 V) -+ V[v] is injective. Pick a basis



vi of weight vectors for V. Let 4 :A 0 E Homuq(g)(LA, LA_, 0 V). Consider

4D(l) = Ei 1i 0 vi for some 1i E L,_,. Because D1(lA) and all vi are weight

vectors and vi are a basis, all the 1i are weight vectors as well. Pick 1j. # 0

with a highest weight among all nonzero i. Because -(lA) is singular and li0

has highest weight, li is a singular vector in LA,. Thus, 1j. = c - , for some

c : 0 E C, and (4D) = c -vi, = 0, so the expectation value map is injective.

Lemma 1 in [27] states that for A generic, and in particular integral dominant

with sufficiently large coordinates, the expectation value map

Homu,(g)(MA, MA_, 0 V) -+ V[v]

is an isomorphism. The proof is straightforward, by noticing that the conditions

on this map being an isomorphism are that a certain set of linear equations has

a unique solution. It is a general argument of the type we used in Example

2.1.7 for s 2.

As the diagram from the beginning of the proof commutes, whenever the map

Homu,(g)(Mx, MA_, 0 V) -* V[v]

is an isomorphism, the map Homu(g) (LA, L,_, 0 V) -+ V[v] is surjective and

therefore also an isomorphism.

2. The map is injective due to proof of part (1). This proof also shows that with

the assumptions of (2), namely v = 0 and A dominant integral,

Homu,(g) (LA, LA 0 V) c HomUq(0)(MA, LA 0 V).

The Verma module MA is induced to Uq(g) from the subalgebra Uq(b+), gen-

erated by all qh and Ej; the Uq(b+) module we are inducing from is the one

dimensional module Cx, with qh acting on it by qA(h)id and Ei acting on it by



0. So,

Homuq(9)(M, LA 0 V) e

i Homuq(b+)(Cx, LA ® V) 2 Homu(b+) (CA 0 L*, V).

L* is a lowest weight module with the lowest weight -A. We can define the

lowest weight analogue of Verma module MA, which is induced from the module

CA over the subalgebra generated by all qh to the algebra U(b+); so as a vector

space it is isomorphic to the subalgebra Uq(n+) generated by all the Ej. Call

its lowest weight vector 4_A. The module L* is then known to be the quotient

of M_-A by relations E.(hi)1 -A = 0.

Because of that, any Uq(b+) map CA 0 L* -- V is determined by the image of

the lowest weight vector 1 @# -A in V. This must be a vector v E V of weight

A - A = 0, such that E v(hi)+1. = 0. It is clear that any such vector will define

a Uq(b+) intertwining operator CA 9 L* -> V.

The only thing left to notice is that under the isomorphism

Homuq(b+)(CA 0 L*,, V) - Homuq(g)(LA, LA 0 V),

the vector v from above corresponds to the expectation value of an intertwining

operator LA -+ LA 0 V.

3. This follows directly from 2). V[O] is one dimensional, so either the injective

map

Homuq(g)(LA, LA 0 V) - V[0]

is an isomorphism or the space Homuq(g) (LA, LA 0 V) is zero. As d = 1, and

after the identification ly* a C we have (A, a) = A ("") = A, part 2) of the lemma2

tells us that the image of the expectation value map is the set of v E V[0] such

that EA+1.v = 0. The maps E: V[2i] -- V[2i + 2] are injective for i 4 m,

and E A+1.v E V [2A + 2], we conclude that the image of the map is zero unless

A +1 > m, that is if 0 < A < m -1. If A > m, the set of such v that E+1.v = 0



is the entire V[O], so the injective map is an isomorphism.

This ends the proof, but it is interesting to note that the last case of A E

{0, ... m - 1} is exactly when the commutative diagram from the beginning of

this proof fails to be a commutative diagram of isomorphisms: Homuq(g)(LA, LAO

V) = 0 = Homu,(g)(MA, LA ® V); the spaces V[0] and Homu(g) (MA, MA ® V) 2

Homu,(g)(MA, M-A-2 0 V) are one dimensional, but the map between them is

0.

Remark 2.3.2. Another way to prove (3) is to calculate explicitly the conditions on

a vector in LA® V to be a singular vector of weight A, and get a set of linear equations

that have a solution if and only if A is in the above set. This is done in the first part

of Theorem 7.1. in [26].

Following the notation in [27], for those A for which the expectation value map

(-) : Homuq(g)(MA, MA, o V) -+ V[v]

is an isomorphism, let v -* <DI be the inverse map; i.e. <I is an intertwining operator

such that (<D') = v. For the same situation, let v be the intertwiner LA - LA_ ®V

with (4) = v.

The Weyl group W is generated by simple reflections si associated to simple roots

ai. Let p E P C [* be a weight such that p(hi) = 1 Vi. Let the dot w -A = w(A+p) - p

denote the shifted action of the Weyl group on *. The dynamical Weyl group of V

is a collection of operator valued functions AmV(A) labeled by w E W, rational in

qA, A E j, with Av(A): V[v] -+ V[w -v). To define these operators, we first need a bit

more notation and results from [26]. Let w = si ... si, be a reduced decomposition

of w E W. Let A E P+, and let al = ai,, ai = (si,... si,)ai,, j = 1,...l - 1.

Let n3 - 2 (A + p, a) / (a', a'). These are positive integers. Let d' = di, be the

symmetrizing numbers defined before. The following is Lemma 2 from [27]:

Lemma 2.3.3. For A E P+, the set of pairs (ni, d'),... (nl,dl) and the product



... F ' don't depend on the reduced decomposition of w E W. Hence, the vec-

tor

mA = % '' mE M-\

[n1],d1 ... [ni], ,

is well-defined. It is a singular vector of weight w - A.

We will use Proposition 15 and Corollary 16 from [27] to define the dynamical

Weyl group action.

Definition 2.3.4. Let v E V [v], w ( W, A E P+ with large enough coordinates

compared with v. We have

(I(mA) = mA, 0 v + l.o.t..

Define Aw,v(A)v E V[w - v] by

)= m-("_,) 0 Aw,v(A)v + l.o.t.

(The proof that this is well-defined, i.e. that the vector (bv(m\.,) is of that form, is

in [27]).

The operators Aw,v(A), defined for A dominant integral with large enough coor-

dinates, depend rationally on qA (in the sense that their coefficients in any basis are

rational functions of qA(hi)), so they can be uniquely extended to rational functions of

qA, for A E r)*.

The operators Aw,v(A) do not, in general, define a representation of the Weyl

group. However, we have a weaker result below (Lemma 17 and Corollary 29 from

[27]). Let 1 be the length function on the Weyl group W, defined to be the length of

the shortest reduced expression.

Proposition 2.3.5. 1. If w1 , w2 E W such that l(wlw 2 ) = l(w 1 ) + l(w 2 ), then

Aw1 w2,v(A) = Aw1,v(w 2 -A)AW2 ,v(A).



2. Restrictions of operators Aw,v(A) to V[O] satisfy

Aw1 W2 ,v( A) = Aw1,v(w 2 -A)A 2 ,v (A)

without any requirements on the length of wi E W.

For Uq(s[2 ) and V a simple finite-dimensional module, V[O] is either 0 (if V =

L2m+1) or one dimensional (if V = L2m). In the latter case, the operators Av(A)

restricted to V[0] are just rational functions of qA times the identity operator on V[0].

We can calculate them explicitly:

Lemma 2.3.6. For Uq(s12), V = L 2 m, and s the nontrivial element of the Weyl group

W = Z2 ,

Ay(A) = (-1) [A + .1 +l idv[o].
[A + 1 - j]q

Proof. Follows directly from Corollary 8 (iii) and Proposition 12 in [27]. l

One can now define two actions of the dynamical Weyl group on rational functions

of qA with values in V[0]:

Definition 2.3.7. 1. The shifted action is given by

(w o f)(A) = AWv(w -A)f(w' - A).

2. Define A,,v(A) = A,,v(-A - p).

3. The unshifted action is given by

(w * f)(A) = Aw,v(w-A)f(w- 1 A).

Corollary 2.3.8. Restricted to V[0], the operators Aw,v(A): V[0] -+ V[O] satisfy

Aw1 W2 ,v(A) = Aw1,v(w 2 A)Aw 2 ,v(A).



Remark 2.3.9. In general, the shifted and the unshifted action are defined for rational

functions with values in V. Because of Proposition 2.3.5, in that case they don't define

a representation of the Weyl group W, but define an action of a braid group of W.

However, we will need them only for functions with values in V [0], where both actions

define a representation of W (again due to Proposition 2.3.5).

The statement of the main theorem, 2.2.4, refers to the unshifted dynamical action

from this definition. Here one must remember that we can use the form (-, -) to

identify ~ j*, so this definition of functions on * can be applied to functions on

j. With that identification, the part of the theorem "f E O(H) 0 V invariant under

the unshifted action of dynamical Weyl group" means that for every w E W, A E

f(q 2 ,) = Awv(A)/(q2).

To prove the dynamical Weyl group invariance, we need to invoke several more

definitions and results form [27] and [26].

Remember that for i large dominant and v E V[O] we defined

, E Homu,(0)(M,, M, 9 V)

such that ((Dv) = v, and analogously T E Homuq(g)(L,,, L, 9 V) such that (R) = v.

We also defined their trace functions. To introduce notation of [27], for A E r*, define

Tv(A, p) = TrM(4D",q2A) E V[O].

The functions we are interested in are

T",(A) = Tr|L,(4q ) E V[O].

The paper [27] also uses generating functions for these trace functions. Pick a basis

vi of V[0] and let v E V*[0] be the dual basis. Then define the generating functions



Ty (A, p) = Z Iv'(A, p) 0 v* E V[0]J @V*[0] 5 Homc(V[0], V[0])

T y(A) = T '"'(A) 0 Vo E V[0] 0 V*[0].

We are interested in functions of the type f(q 2A) = WVv(A). More results are

available about functions Wv(A, p). Fortunately, there is a theorem allowing us to

translate results of one type to another, analogous to Weyl character formula and

proved as Proposition 42 in [27]:

Proposition 2.3.10. 4'v(A) = (-1)w(A, w -p)A.,y(p).

Let 6q(A) be the Weyl denominator Sq(A) = E.EW(-1)wq '"w. It satisfies

Lemma 2.3.11. Sq(wA) = (-1)wq(A).

Proof. It follows directly from the W-invariance of the form (-,-). O

For finite-dimensional Uq(g) modules U, V, define the fusion matrix JUV(A): U 0

V -+ U ® V as follows. For generic A and v E V[p], u E U[v], it is an operator such

that

(_ 0 1) o <bV = <bJv(A)(uv)

It is a rational function of qA, and an invertible operator (see [27], Section 2.6).

If Ju,.u(A) = E>ci 0 c', with ci E End(U),c' E End(*U), define Qu(A) =

EZ(c')*ci E End(U) (see [26]). Use these to define the renormalized trace functions

Fv(A, /) = 6q(A)'Tv (A, -A - p)Qjj(-pt - p)-

These satisfy (see Proposition 45 in [27]):

Proposition 2.3.12. Fv(A, p) = (A,,v(w-A) 0 AWV(w1p))FV(w- 1A, w~1p).

These operators appear in many formulas because they transform the action of

operators Aw,V(A) on the space V and its duals. One of these, a special case of

Proposition 20 in [27], is the following proposition:



Proposition 2.3.13. When restricted to V[O],

AWv-(A)* = Qv(A)Aw,v(A)-Qv(w - A)-'.

2.4 Proof of Theorem 2.2.4

As we identified (Oq(G) 0 V) ,(0) ~ (,,,, Homu,(9)(L,, L, 0 V) and are thus in-

terested in the map Res: Homuq(g)(L,, Lj 0 V) -* O(H) 0 V, all the claims can be

stated and proved in this language of traces of intertwining operators. The main

Theorem 2.2.4 can be restated in this language as the following theorem, analogous

to Corollary 2.1.6.

Theorem 2.4.1. For any intertwining operator (D E Homu,(g)(L,, LI, 0 V) define its

weighted trace as a function T E 0(H) 0 V given by AF (x) = TrL (4 o x). Then the

map

Res: ® Homu (g)(L,, L, 0 V) -+ 0(H) 0 V
/pEP+

given by Res@ = 4r is injective, and its image consists of all the functions f E

O(H) 0 V that satisfy

1. f E O(H) o V[O];

2. f is invariant under the (unshifted) action of the dynamical Weyl group, mean-

ing that for all w E W, A E t*

f(q
2

wA) = Awv(A)/(q2A)

3. for every ai E H and every n G N, the polynomial E'.f is divisible by

(1 - qe"'i)(1 - qi'ec') ... (1 - qne a).

Lemma 2.4.2. Trace functions 4F = ResD satisfy 1), i.e. T E O( H) 0 V[O].



Proof. Let 4 E Homu(g) (L,, L,, 0 V). We can assume we are calculating the trace

of <> using a basis of weight vectors in L. The image of every weight vector 1 in L,

under 4 is going to be a weight vector of the same weight, so when we write it as a

sum of elementary tensors and pick the elementary tensor whose first component is

1, the second component is going to have weight 0. E

Lemma 2.4.3. Trace functions IF = Res<} satisfy 2), i.e. for every w E W, A E

IF (q 2wA) = Aw,v(A)k(q2)-

Proof. Using the definition of renormalized trace functions from section 2.3, Propo-

sition 2.3.12, definition of shifted and unshifted action of dynamical Weyl group,

Proposition 2.3.13, defintion of renormalized trace functions again, and finally Lemma

2.3.11, we get

Iv(A,p)=

= 6q(A)-Fv(A, - p - p)Qv( p)

= q(A)~1Aw,v(w~ 1 A)Fv(w 1A, w- 1(-p - p))Aw,v-(w-(-I - p))*Qv(p)

= Sq()-'Aw,v(-w 1 A - p)Fv(w 1 Ak,w 1 (-p - p))Awv.(w- - p)*Qv(t)

= 6q(A)-1Aw,v(-w 1A - p)Fv(w 1 A, -w~ 1 (p + p))Qv(w-1 - p)Ay(w-1 - p)-'

= q(A)- 15q(w- 1A)Aw,v(-w-1 A - p)Iv(w 1A, w 1 (p + p) - p) -

-Qv(w '(i + p) - p)<Qv(w- 1 - p)A.,v(w-1 - -1

= (-1)wAw,v(-w lA - p)iJv(w 1 A ,w -. p)Aw,v(w-1 - p)-

As we are interested in traces of intertwining operators on irreducible modules

and not on Verma modules, we use Poposition 2.3.10 to translate the above identity



to those functions:

",(A) = S(-1)wv(A, w-p)Av(p)
tvEW

E S ~ (-~~wv-W' - p)'lv(w1lA, w-1 -(w p)
wEW

)Awv(- v'A - p)'lv(w~AA, ()
wEW

= S Aw(w-'A) v(w- A,p).
wEW

Finally, we use this and Corollary 2.3.8 to conclude that for any w' E W,

A.,,v(A)4I"(A) = z A.,v(A) A,v(w-'A)'v(w-1 A, p)
UEW

= E Awl,v(w- 1 A)Iv(w- 1 A, p)
UEW

= S Aw,v(w-lw'A)Iv(w-lw'Ap [)
UEW

= '"'(w'A)

as required. This proves the lemma with the above convention

(q 2A) = Tr|L,(4I o q2 A) =

Notice that we used the fact that <b span the space (), Homu,(g)(LA, L, 0 V), so it

is enough to prove the invariance for T".

Lemma 2.4.4. Trace functions 'I' satisfy 3), i.e. for every i = 1,...r and every

n E N, the polynomial Ei".T is divisible by (1 - qieai)(1 - qfesi) ... (1 -qineai).

Proof. If <D E Homu(g)(L,, L, 0 V), we can define its trace function not only as a

function on H, but on the entire Uq(g), by f(X) = TrIL,(<> o X). The restriction of

f to the subalgebra generated by all the qh is the trace function T as in the claim of

the lemma.



This defines a map from Homc(L, L ® V) *L L 9 V to linear functions from

Uq(g) to V. We can make Uq(g) act on the algebraic dual of Uq(g) tensored with V in

a way to make the above defined trace map a morphism of Uq(g) modules. The easiest

way to do that is to remember that the compatible definition of action of Y E Uq(g)

on *L 0 L 0 V was by Y(1) 9Y( 2) 0 Y(3), and to notice that the map from *L 9 L Q V

to the linear functions f: Uq(g) -+ V corresponding to the one we just defined above

is < ® 1 0 v '-4 (X '-f cp(Xl)v). From this it is clear that the action of Y E Uq(g) on

the space of linear functions f: Uq(g) -+ V is

(Yf)(X) = Y(3)-f(S (Y())XY(2))-

If the function f: Uq(g) -> V was defined as a trace f(X) = Tr(<D o X) of an

intertwining operator <b, then it is invariant with respect to the above action, and

hence satisfies

e(Y)f(X) = Y(a).f(S (Y(1))XY(2)).

Specializing this identity to Y = qh, for which E(qh) = 1, S-1 (qh) = q-, and A 2 qh _

h h hq 0 q 0q g, we get that f satisfies

qh.f(X) = f(qhXq-h)_

Specializing it to Y = Ei instead, for which e(Ei) = 0, S-'(Ei) = -q h'Ei and

A2Ei = Et0q qh' +1gE 0q' +101 hiE,

we get that f also satisfies

0 = q .f(-qhiEXqih) +q i.f(XE,) + E.f(X)

so

E.f (X) = f (EiX) - f (qiXEihi).



Using this formula, we will now prove by induction on n that

En.f(q') = (1 - qjqoi(h)) . (1 - q 4qci(h)) ... (1 _ q2nqai(h))f(Enqh)

For n = 0 the claim is trivial. Assume that it is true for n - 1 and calculate

En.f(qh) =

= (1 - q2 qai(h)) . 2.-. ( - q~n-1)gai(h))Ei. f h(E-q^)

= (1 - q2 qai(h)) ... ( _(n- )gai(h)) (f(hEq) - f(q-Ef-lqhEql-*))

(1q-qlgi(h)) ... ( 2(n-1)qai(h)) (f(Eq) - q,2 hi(h)f(nh))

= (1 -q
2 qOei(h)) ... q - qaC(h))f(Elqh).

This ends the induction and proves the lemma. L

Remark 2.4.5. [37], Chapter 3, Definition 1.2.1, defines Oq(G) as the Hopf subalge-

bra of the space of linear functionals on Uq(g) generated by the matrix elements of the

finite-dimensional representations of type L The map from the beginning of the above

proof, associating to W 0 1 E *LA 0 Lx, the functional on UQ,(g) given by X - p(Xl),

is exactly the isomorphism from EDA*LA 0 Lx to this subalgebra of linear functionals,
establishing the equivalence of these two definitions.

Lemma 2.4.6. The restriction map (Oq(G) 0 V)Uq(9) --+ O(H) 0 V is injective.

Proof. We will prove that the map

@ Homuq(s)(Lt, L, 0 V) -> 0(H) 0 V
,EP+

associating to the intertwining operator D its weighted trace I(x) = TrL',(4 o x) is

injective.

Let
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be an element of 63,E,, Homuq(g) (L,, LI, 0 V) whose weighted trace is zero. Notice

that

Tr(5," o x) = E u,,,e'(x)

for some up,, E V[O], with ui,, = 0 unless v is a weight of L,,, and with u,,, = v,,.

The fact that 4 maps to zero can be written as

E up,,ev = 0.

Assume D 5 0. Then one can pick p = po so that 4" is nonzero and po is a

highest weight with that property. Using the fact that e" are linearly independent,

the coefficient with eO in the above equation is

0 = U o,,, = Vio.

But then 0 = T", contrary to the choice of po. So, 4D = 0 and the map is injective.

Lemma 2.4.7. Theorem 2.4.1 holds for Uq(s[2).

Proof. As stated before, we are using identifications C 4 [*, z '-+ zi. Let us use

a slightly different convention for 4: it is also one dimensional, so we can write any

element of it as zh, for h = hi the standard generator of j and z E C. The space

V[0] is one dimensional, so pick any vo 4 0 E V[0] and identify V[0] ' C by it. The

polynomial functions in O(H) 0 V[0] we talk about are, with all these identifications,

C[qZ, q-z], spanned by functions ena/ 2 (qzh) = qfz, n E Z. With all these conventions,

zh <-+ za = 2z2, so and the above definitions of trace functions give 'F(q'h) = p(Za).

This is a good convention because za/2 <-+ z. The dynamical Weyl group invariance,

with all these identifications, has the form

Asy(z)IF(qzh _ (q -zh)

We are proving that two subspaces of polynomial functions O(H) 9 V are equal:



the space of traces of intertwining operators and the space of functions satisfying

1)-3) from the statement of Theorem 2.4.1. Lemmas 2.4.2, 2.4.3 and 2.4.4 show that

the space of traces of intertwining operators is contained in the space of functions

satisfying 1)-3). We will now prove this lemma by proving that these two spaces of

functions are of the same size (more accurately, as they are infinite-dimensional, that

there is a filtration on O(H) such that dimensions match on every filterered piece;

the filtration we use will be the obvious filtration by degree of a polynomial).

As stated in Lemma 2.3.1, the space of intertwining operators L, - L1, 0 V for

V = L2m is zero if p = 0, 1 m1, and is one dimensional if p E N, p > m. The

trace of such an operator is a Laurent polynomial T (x) = Tr I(< ox ) = E aye"(x),

with all the v that appear being weights of L.. So, it is a Laurent polynomial of

maximal (positive and negative) degree p. Using Lemma 2.4.6 that allows us to

calculate the dimension of the space of trace functions by calculating the dimension

of the appropriate space of intertwining operators, we can conclude that for any large

enough positive integer N, the space of trace functions of maximal (positive) degrees

less or equal to N has dimension N - m + 1.

Now, let us calculate the dimension of the space of functions that satisfy 1)-3)

and have degree < N. It is enough to show that it has dimension less or equal to

N - m + 1; from this it will follow that it has exactly this dimension and that the

two spaces are equal.

Let f be such a function. Condition 1) of Imf E V[O] means we can regard f
as an element of C[qz, q-Z] after taking into account V[O] - C. So, f is of the form

f(x) = E ane n/ 2 (X), with only finitely many n E Z, nl < N appearing.

Condition 3) is about E".f being divisible by a certain function. We are in a

Uq(52) module V, which has 1 dimensional weight spaces V[0], V[2], ... V[2m], with

E: V[2i] -* V[2i + 2] being injective for i = 0.... m - 1, and being zero for i = m.

The functions E".f are of the form rational function times a basis vector for V[2n].

For n > m this is zero, so it is divisible by anything. For n = 1, . . .m, the rational

function in E".f is, up to a multiplicative constant, equal to f. Condition 3) in this



case says that f is divisible in the ring C[e", e-] by

(1 - q2 + 2z)(1 _ q4+2z )...(1 q2 m+ 2z)

= (-1)m - qm(m+l)/
2 

. qo
T
z . (qz+l - q--l)(qz+

2 
- qz

2
) ... (qz+m - q-z-

m
)

This is equivalent to saying it is divisible by

(qz+l - q-z-l)(q z+
2 

- q-z-
2

) ... (qz+m - q-Z-n).

Condition 2) says that f is invariant under the unshifted action of the dynamical

Weyl group. As the Weyl group in this case has only one nontrivial element, call it

s, this really means f is invariant under the action of the operator AV, which was

explicitly calculated in 2.3.6. We know s acts on [j by -1, so this means

f(q-z) = Azy,(z)f(qz)

= AzV(-z - 1)f(qz)

M n[-z + j]
= (-1)" [ - f(qz)

[- 1z - j],

m qj-z - qj+z

q+z _ q-j-zz
j=1

Thus, the function

(q) = (qz+l q-z-1)(z+ 2  q 2 ) ... (qz+m - q-z-m)

is W-equivariant, in the sense g(qz) = g(q-z). The function g is also a Laurent poly-

nomial, because by condition 3) above, f is divisible in C[qz, q-z] by the denominator

of g. If f was of degree < N, then g is of degree < N - m. Invariance under W and

limitations on the maximal degree mean that g is of the form

N-m

g(qz) bn(qzn + q-zn

n=O



The space of all such functions has dimension N - m + 1; so, the space of all possible

f that satisfy 1)-3) and have degree less or equal to N also has dimension less or

equal to N - m + 1.

This proves the lemma. E

To finish the proof of Theorem 2.4.1 we need to show that any function f E

O(H) 0 V satisfying 1)-3) from the statement can be written as a linear combination

of trace functions. For this, write f as a sum of characters of H,

f (x) = vue"(z),
UEP

with vA E V[O].

For any fixed i = 1, .. .r one can decompose f as follows:

f = E f, f = Evye".
OEP+/Zai pEO

Lemma 2.4.8. Every fo is a sum of trace functions for the subalgebra Uqi(S[ 2) of

Uq(g) generated by Ej, Fi, qzhi, zEC

Proof. Due to Lemma 2.4.7, it is enough to prove they satisfy 1)-3) for Uqi(S[2).

Condition 1) is clear.

Condition 2) is about dynamical Weyl group invariance. The operators A,,v(p): V[v] -+

V[siv] for Uq(g) and Aj,v(p(hj)): V[v] -* V[siv] for Uq,(5(2) coincide. Using this, the

fact that AV,(A) = Asi,V(-A - p), and the condition that f is invariant under the

action of si, meaning

fQ(q 2
iA) = A,v(A) f f(q 2A),

we get

fo(q2
si") = A,,vy(-d 1 ((ai, A) + 1))fo (q2A)

Now decompose both of these functions into their # parts as we did with f. Call



the left hand side function 1 and the right hand side r. Using (p, siA) = (sip, A)

and the fact that p G 3 implies sip E #, we get l0(q A) = fp (q2 ,iA). On the right

hand side, we know that A,,v(-dT1 ((ac, A) + 1)) maps V[v] to V[siv], so r,3 (qA) =

AsiV(-dj((ai, A) + 1))f)3(q 2A). Thus we have

fo (q2siA) = As,,v(-di 1((ai, A) + 1))fp(q2A).

Remembering the identification 1j 2 [f and restricting this to 2A = zdlai, which

corresponds to zhi we get

f/3(q-"hi) = A,,v,(dT (-z - 1))f,3 (ezhl).

This is exactly the dynamical Weyl group invariance for Uq(S[2), as the function f is

defined in terms of powers of q, and the operator A,'v, which was defined for Uqj(S[2),

in terms of qi = qdi. Replacing q with qi we get the required dynamical Weyl group

invariance for Ui (S[2).

Condition 3): we know that Ef.f is divisible by (1 - qfea1) ... (1 - q?"e'i), call

the quotient g E O(H) and write

Eln. fo ( q eo' . .. (1-q"")-Ego.

Decompose both sides into their 3 parts to get

Ei.f/ = (1 - qiea') ... (1 - q"e"')g3.

Replacing q by qi in all the functions we get the required statement for Uqi ([ 2)-

For f as above, f = E,, e", let D(f) = {p E Plv, # O}, and let C(f) be the

convex hull of D(f) in the Euclidean space ly. Then define the weight diagram of f

to be the set WD(f) = C(f) n P. We will prove the theorem by induction on the

size of the set WD(f).



Lemma 2.4.9. If f satisfies 1)-3), then D(f), and consequently WD(f), is W-

invariant.

Proof. First note that it follows directly from the proof of Lemma 2.4.7 that this is

true for Uq(s[2), as

f(qzh) = g(qzh) . (qz+ -- 1 (q+m - q-Z-
m

)

with g being W-equivariant, so the set of powers of qZ that appear in f is symmetric

around 0. This means D(f), and therefore also C(f) and WD(f), is W-invariant.

Next, write f = E fa as before, for 3 E P+/Zai. The simple reflection si preserves

the equivalence classes #. So, siD(f) = D(f) if and only if sjD(fo) = D(fp).

From the previous lemma, fo is the sum of trace functions, so from the comment

at the beginning of this proof, D(fp) is invariant under the action of the Weyl group

of Uqj(5[ 2). The nontrivial element of this Weyl group is the reflection with respect

to the only simple root for Uqi (s[2), which is ai. So, every D(f 3 ) 9 P is preserved

under si, hence sjD(f) = D(f) and sjWD(f) = WD(f).

Geometrically in the lattice P, the argument in the last paragraph corresponds to

decomposing D(f) into sets D(f)3), so that every D(f 3 ) consists of points of D(f) that

lie on one of the parallel lines in (i*, passing through 3, in the direction of aj. Then we

note that si preserves each of these lines, and that every such line is symmetric with

respect to the hyperplane through 0 orthogonal to aj. This is exactly the reflection

hyperplane of si, so D(f) is symmetric with respect to this hyperplane and preserved

by si.

Of course, once we proved D(f) and WD(f) are preserved by all the simple

reflections si, we immediately conclude that they are preserved by the entire group

W generated by all the si.

Proof of Theorem 2.4.1. Let us prove Theorem 2.4.1 by induction on the size of the

finite set WD(f).

If the set WD(f) is empty, f = 0 and there is nothing to prove.



Otherwise, assume we have proved the theorem for all functions whose weight

diagram has fewer elements than WD(f).

Pick p E WD(f) an extremal point, meaning a point p such that it is not in the

convex hull of WD(f)\{p}. Such a point exists, as WD(f) is a finite set. Moreover,

such a point y is in D(f). To see that, notice that t E C(f) means that either

p E D(f), or p = Ej tipt for some tj > 0, Ej t = 1 and some pi E D(f), pj 4 p. In

the latter case pi E D(f)\{p} c WD(f)\{p}, so p = Ej tipi is in the convex hull of

WD(f)\{p}, contrary to the choice of p.

As D(f) and WD(f) are W-invariant, we can assume without loss of generality

that p is a dominant weight. Finally, for any i = 1,... r, the weight y + a is not

in WD(f). To see that, consider two cases: either (p, a,) = 0 or (p, a,) = 0. If

(p, a,) $ 0, then sjp = p - 2 ("a) cE WD(f)\{p}, p + a, E WD(f)\{p} implies

that p is in the convex hull of WD(f)\{p}, contrary to the choice of p. If (p, ac) = 0,

then the same can be concluded from p + a, E WD(f)\{p}, si(p + a,) = p - as E

WD(f)\{p}.

Let us now restrict f to Uqj (s[2) and decompose into fo as before. Then Lemma

2.4.8 tells us that all f3, and in particular the fo such that p E 3, are traces of

intertwining operators for Uqi(s 2 ). Lemma 2.3.1, 2) then implies that E,' v

0.

Since this statement is valid for every i = 1 ... r, the same Lemma 2.3.1, 2) implies

that there is an intertwining operator I"," : LA -+ L1, V. Its trace function T"A"

has WD(xP"") equal to the convex hull of the set of weights of L,,, i.e. equal to the

convex hull of the W orbit of p. This is contained in the set WD(f). So, the function

fT '," satisfies 1)-3), has WD(f - T"v) contained in WD(f), and has the coefficient

of e' equal to v,, - v,1 = 0. This means D(f - T'") is a subset of WD(f) which does

not contain y, so it's convex hull doesn't contain p, and so WD(f - T",") is a proper

subset of WD(f).

By induction assumption we can now express f - '" as a linear combination of

trace functions. So, we can express f as a linear combination of trace functions. This

proves the theorem.



Remark 2.4.10. It is explained in [36] how theorem 2.1.1 reduces when V is small

enough in the appropriate sense. First, if V is a trivial representation of g, then

conditions (1) and (3) of theorem 2.1.1 are automatically satisfied, so the statement

becomes the Chevalley isomorphism theorem C[g|G-*C[]W . The second special case

is when V is small in the sense of /12], meaning that for every root a, 2a is not a

weight of V. In that case, any function f E C[j] ® V that satisfies conditions (1)

and (2) automatically satisfies (3) as well. To see that, first note that Ei.f = 0 for

all n > 2. Next, for any vector v E V[0|, either Ei.v = 0, or Ej.v = 0, E2.v = 0

and v generates an (512 )i representation isomorphic to either the three dimensional

irreducible representation L 2, or the direct sum of the trivial representation Lo with

L2 . Then condition (1) means that f is a sum of functions of the form f 1 v1 and

functions of the form f 2v 2 , for some fl,2 E C[ ], some v1 which generate a trivial

(S[2 )i representation and some v2 in the zero weight space of some three dimensional

(5[2)i representation. Condition (2) implies that f1 is an even function and f2 an

odd one with respect to the action of the element Si E W corresponding to (S[2)i, so

E.f(h) = f 2(h)Ei.v 2 is divisible by ai. This reduces the theorem 2.1.1 to theorem 1

in [12].

In the context of quantum groups, the same analysis applies to theorem 2.2.4. If

V is trivial, then conditions (1) and (3) are satisfied, and condition (2) reduces to

f(qwA) = f(qA) because Awy(A) = id (by lemma 2.3.6). If V is small in the sense

of [12], then for any copy of Uq(5(2)i, the only representations of it that contain a

nonzero vector in V [0] are direct sums of trivial and three dimensional irreducible

representations. We again conclude that any function f E O(H) 0 V which satisfies

(1) and (2) must be a sum of functions of the form fiv1 and f 2v 2 , with v1 in some

copy of Lo and v 2 in some copy of L2 . If f also satisfies (2), then by the proof of

lemma 2.4.7, f2 is of the form f 2 (qz) = g(qz) - (qz+l _ q-z-1), so E%.f 2 is divisible by

(1 - qiei). All the other parts of condition (3) are satisfied trivially, as Ej.v1 = 0

and E .v 2 = 0. So, in the case V is small, condition (3) is unnecessary, and theorem

2.2.4 reduces to a quantum version of theorem 1 from [12].
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Chapter 3

Rational Cherednik Algebras

3.1 Definitions and basic properties

3.1.1 Reflection groups

For the remainder of the thesis we study rational Cherednik algebras over an al-

gebraically closed field k. We first present definitions and properties which do not

depend on characteristic of k, then focus on k = C for the rest of this chapter and

for Chapters 4 and 5, and then let k have finite characteristic in Chapters 6,7 and 8.

The definitions and statements in this chapter are standard and can, unless oth-

erwise stated, be found in [21] or [24].

Let W be a finite group, and j its n-dimensional faithful representation over k.

We say that an element s E W is a reflection if rank(1 - s)|4 = 1. We say that W

is a reflection group if it is generated by the set S of reflections in W. We call t its

reflection representation.

Let [* be the dual space of E, and (-,-): t* x f -+ k, (-,-): 4 x [* -+ k the canonical

pairings. The group W acts naturally on (* by the dual representation, and that an

element s E W is a reflection on 4 if and only if it is a reflection on *.

Lemma 3.1.1. For any reflection s E S, let a' E [ and a. e 4* be such that s acts

on all x E [* by

s.x = X - (as, X)a,.



Then the action of s on y E is

(y, as) Vs.y = Y + -a..
-(a, a)

The element a, is a basis of Im(1 - s)14., and av is a basis of Im(1 - s)|4. Let

As = 1 - (as, av). If A, $ 1, then the reflection s is diagonalizable on [* with

eigenvalues As, 1... 1 and on t with eigenvalues A1, 1 ... 1. If A, = 1, then s is not

diagonalizable, has a generalized eignevalue 1 and n-1 eigenvalues 1. Such reflections

of finite order are unipotent and only exist in finite characteristic.

The reflection s is uniquely determined by a, 0 a9 E (* 0 (. The vectors as and

a8 are determined by s up to mutual rescaling.

Proof. The rank of 1 - s on r* is 1, so there exist a' and as, unique up to mutual

rescaling, such that (1 - s)|, = (av, -)a,. The formula for the action of s on [ follows

from this and the definition of dual representation, which is

(s.y, s.x) = (y, x).

It is clear from these formulas that a' and a. are basis vectors for the image of 1 - s

on t and *, and that they are (generalized) eigenvectors for s on [ and 4* with

(generalized) eigenvalue A-1 and As. All vectors in 4 which are in the kernel of (a.,-)

are eigenvectors of s with eigenvalue 1, and all vectors in [* which are in the kernel

of (av, -) are eigenvectors of s with eigenvalue 1. If A = 1, then for any x E [*,

s"x = x - n(a , x)a,.

From this it follows that (1 - S)2 = 0, so 1 - s is nilpotent and s is unipotent. If the

order of s s finite (and we consider only finite reflection groups), then some power of

s is the identity, and it follows that n(as , x)a, for some n and all v, so k has finite

characteristic. f

Occasionally, in literature where only semisimple reflections are considered, a dif-



ferent normalization of a, and a' is chosen, such that (a', ag) = 2. This brings about

an additional factor of 12A in some formulas.

Remark 3.1.2. A large class of reflection groups is formed by Weyl groups, and more

generally Coxeter groups. These have the property that all reflections s have non-unit

eigenvalue A, equal to -1, and that they preserve an inner product on t. Using this

inner product, t and [* can be identified. Sometimes in literature only s satisfying this

extra property are called reflections, and only the groups generated by them, and thus

subgroups of the orthogonal group of j, are called reflection groups. In that notation,

the names for the more general elements and groups we defined are complex refections

(or unitary reflections, or pseudoreflections) and complex reflection groups.

3.1.2 Definition of rational Cherednik Algebras

Let t E k, and let c: S - k be a conjugation invariant function on the set of

reflections. Denoting it s - c8, ti satisfies c, = cg,,-1 for all s E S, g E W. For

any vector space V, let SV and TV denote the symmetric and tensor algebra on V,

and S*V and TV the i-th homogeneous part of it.

Definition 3.1.3. The rational Cherednik algebra Htc(W, ) is the quotient of the

semidirect product k[W] < T(j E [*) by the ideal generated by relations

[x, x'] = 0, [y, y'] = 0, [y, x] = (y,x)t - Zcs((1 - s).x, y)s,
SES

for all x, x' E r*, y, y' E (.

Note that for g E W and y E (, we use notation gy for multiplication in the

algebra, and g.y for the action from the representation; because of the semidirect

product they are related by gyg' = g.y.

Parameters t and c can be simultaneously rescaled, in the sense that H,(W, )

Hat,ac(W, [) for any a E kX (the isomorphism sends generators x E 4* to tx and fixes

4 and G). This implies that it is enough to study two cases with respect to t, t = 0

and t = 1. We are mostly interested in the t = 1 case.



An analogue of the PBW theorem holds for Htc(W, j). Let {xi,. . . z,}X be any

basis of 0* and {yi, . . . , yn} any basis of 0. The proof of the following theorem, not

depending on the characteristic, can be found in [33].

Theorem 3.1.4. Let (X1,... X) be a basis of [* and (y1,... ,yn) a basis of 0. The

elements of the form
al an b1  bn

for g E W, ai, bi E Z>o, form a basis of KH,c(W, 0).

From now on, let {yi, ... , y,} and {1,..., xn} be fixed dual bases of 0 and [*.

Lemma 3.1.5. Let f : W -+ k be a group character. Then c -f : S -+ k is conjugation

invariant, and the algebras Htc(W, ) and H,,.5 (W, ) are isomorphic.

Proof. The isomorphism is defined to be the identity on the generators from 4 and

4*, and to send g E W to f(g) - g.

3.1.3 Verma modules and Dunkl operators

A natural class of representations of rational Cherednik algebra Htc(W, ) are stan-

dard or Verma modules. Let r be an irreducible representation of W. Define a

k[W] < S C H1,c(W, j) action on r by requiring that [ acts on it by zero. The

standard or Verma module Mt,c(r) (sometimes denoted Mt,c(W, r)) is the induced

module

Mt,c(T) = Ind't(4) = Ht,c(W, ) Ok[W]x S T-

As induced modules, Verma modules satisfy the following universal mapping prop-

erty:

Lemma 3.1.6. Let M be an Htc(W, )-module. Let r C M be a W-submodule on

which c Htc(G, ) acts as zero. Then there is a unique homomorphism #$: Mt,c(r) -

M of Ht,c(W, r)-modules such that $|, is the identity.

By the PBW theorem,

Mt,c(T) ~ S4* 0 T



as k-vector spaces. Through this identification, the action of the generators of

Htc(G, ) can be explicitly written as follows. Let f ® v E S* r M,c(r),

x E r*, y E 4 and g E W. Then

X.(f @9v) = (xf) 9 v,

g.(f (&v) =g.f 9 g.v

y.(f (9v) =tO(f) v - c , as)(1-s).f @ s.v.

sES

The operators

D, =tyo l-Zcs a(1-s)Qs
sES

are called Dunkl operators.

Remark 3.1.7. This differs from the more usual definition of the Dunkl operator by

a factor of 2 in the coefficient of s E S. The reason for the different convention is

explained in the comment after Lemma 3.1.1.

Define a grading on H[,c(W ) by letting x E 4* have degree 1, y E have degree

-1, and g E G have degree 0. We will denote by a subscript + the positive degree

elements of a graded module.

We can define a grading on Mt,c(r) - S* 0 r by letting the i-th graded piece be

S'* 0 r. It is clear from the above formulas that this grading is compatible with

the grading on the algebra Htc(W, ), and so are any shifts of it (gradings on Mt,c(r)

defined by Mt,c(r)i+h = S'4* 0 -r for any grading shift h).

We say a homogeneous element v E Mt,c(T) is singular if Dv = 0 for all y E.

They are interesting because singular vectors of positive degree generate a proper

Ht,c(W, 4) submodule. If v is singular and generates an irreducible W representation,

then this Ht,c(W, ) submodule is isomorphic to a quotient of Mt,c(Gv).

We will often use the following simple observation:

Lemma 3.1.8. If M = (Di Mi is a graded Htc(W, 4)-module isomorphic to a Verma

module or any of its submodules or quotients, then for every i the map 4 0 Mi+1 -* Mi



defined as

y3 m -4 DY(m)

is a homomorphism of group representations.

Even thought this claim is very simple, it is useful in finding singular vectors, as

the subspace a- of Mj+1 consists of singular vectors if and only if 4 0 - maps to zero

under the above map. This enables us to make use Schur's lemma in this situation.

3.1.4 Contravariant form and modules Lt,c(r)

There is an analogue of Shapovalov form on Verma modules. First, for any graded

He,c(W, r)-module M = @g Mi with finite-dimensional graded pieces Mi, define its

restricted dual Mt to be the (D Mi*. It is a left module for the opposite algebra

Ht,c(W, [)O of Ht,c(G, 4). Let E: S -+ 1k be the function a(s) = c(s- 1). There is a

natural isomorphism Htc(W, 4)"P --+ Ht,(W, 4*) which is the identity on 4 and [*,

and sends g -4 g-1 for g E W, making M t into an HtE(W, 4*)-module.

Definition 3.1.9. Let r be an an irreducible finite-dimensional representation of W,

Mtc(W , Tr) the Verma module for H ,c(W, ) with lowest weight T, and ME(W *, T*)

the Verma module for Htz(W, 4*) with lowest weight r*. By Lemma 3.1.6, there is

a unique homomorphism <: Mt,c(W, ,T) -+ Mt,c(W, 4*,r*)t which is the identity in

the lowest graded piece T. By adjointness, it is equivalent to the contravariant form

pairing

B: Mt,c(W, 4, r) x Me(W, 4*, r*) -+ k.

Proposition 3.1.10. The contravariant form B satisfies the following properties.

a) It is W-invariant: for g E W, f E Mt,c(r), h E Mt,E(T*), B(g.f, g.h) = B(f, h).

b) For x E *, f E Mt,c(r), and h E Mt,z(T*), B(xf, h) = B(f, Dx(h)).

c) For y E t, f E Mt,c(T), and h E Mt,z(r*), B(f, yh) = B(Dy(f), h).

d) The form is zero on elements in different degrees: if f E Mt,c(T)i and h E

Mt,E(T*)j, i $ j, then B(f, h) = 0.



e) The form is the canonical pairing of r and r* in the zeroth degree: for v E r =

Mt,c(r)o, f E r* = Mt,E(r*)o, B(v, f) = (v, f).

As B respects the grading of Mt,c(r) and Mt,a(r*), we can think of it as a collection

of bilinear forms on finite-dimensional graded pieces. Let Bi be the restriction of B

to the Mt,c(r)i 0 Mt,E(r*)i. By definition, KerB = Ker#, which it is a submodule of

Mt, (G, , r). Singular vectors of positive degree in Mt,c(r) are in KerB, and so are

the submodules generated by them.

Definition 3.1.11. For r an irreducible G-representation, define the Hc(G, [) rep-

resentation Lt,c(r) = Lt,c(G, , r) as the quotient Mtc(G,Tr)/Ker(B).

Lt,c(r) are graded modules. We are going to show that they are irreducible, and

define category 0 in such a way that they will be the only irreducible modules in it (up

to grading shifts). The proof will be different in characteristic zero and characteristic

p, as is the behavior of these modules. In characteristic zero and for generic t and c,

the module Mt,c(r) is irreducible and hence equal to Lt,c(r). In characteristic p, or

in characteristic zero and for t = 0, this never happens. On the contrary, all Lt,c(r)

are finite-dimensional, and Mt,c(r) always have a large submodule. Because of that,

definitions of category 0 differ, and in characteristic p we sometimes prefer using baby

Verma modules defined in Chapter 6 instead of Verma modules.

3.1.5 Grading

For any graded vector space M, we use the notation Mi for the i-th graded piece, and

M[j] for the same vector space with the grading shifted by j, meaning M[j], = Mig.

It is explained above that every Verma module Mt,c(T) is a graded module with

Mt,c(-r) = S'r* r. Then for any j, Mt,c(-r)[j] is also a graded module. However,

some gradings shifts are more natural then others.

If characteristic of k is different then 2, consider the following element of H,(W ):

dimj - csh = siS + 2 - cas.



For any conjugacy class C of reflections in W, the element Z8 ec s is central in the

group algebra k[W]. From this it follows that h acts by constant on every irreducible

representation of W. It is also easy to see that h does not depend on the choice of

the dual bases (xi)i and (y)i, and that it satisfies:

[h, x] = tx, [h, y] = -ty, [h, g]= 0

for x E *,y E t,g E W.

Let hc(r) E k be the constant by which h acts on -r. Then its action on the

i-th graded pieces of Verma module Mt,c(r) is by a constant hc(r) + ti. From this it

follows:

" If t = 0, then h acts on Mo,c(T) and all its submodules and quotients by the

constant hc(T).

" In particular, if there is a subspace of singular vectors isomorphic to a W-

representation a in Mo,c(r), then the action of h on it is by hc(r) (as it is

a subrepresentation of Mo,c(r)) and by hc(u) (as it is a quotient of Mo,c(U));

hence,

hc(r) = hc(a).

" If t = 1 and chark = 0, then h diagonalizes on M1,c(r) with eigenvalues of

the form hc(r) + Z>o. These eigenvalues define a natural Z-grading on M1,(r),

which is compatible with the grading on the algebra H1,c(W, [), and differs from

the grading defined in the previous section by a hc(r)-shift.

" In particular, for t = 1 and chark = 0, if there is a subspace of singular vectors

isomorphic to a W-representation a in M1,c(r), then

hc(T) + i = hc(a).

" If t = 1 and chark = p, then h diagonalizes on M1,c(T), and its eigenvalues

define a natural Z/pZ-grading.



* In particular, for t = 1 and chark = p, if there is a subspace of singular vectors

isomorphic to a W-representation o- in M1 ,c(r)i, then

hc(r) + i = hc(o-) (mod p).

If chark = 2, we can use h' = E> zjyj-- Ess c.s instead, and analogous statements

hold. The reason for the convention to use the di 4 constant shift in the definition of2

h is the following special case.

Assume that k = C and that ! has an inner product which W respects, so that

W _ O(). As h does not depend on the basis, let (yi)i be an orthonormal basis of

1 and (xi)i the dual basis of (*. The following elements of H1 ,c(W, b)

then satisfy

[h, E] = 2E, [h, F] = -2F, [E, F] = h,

so they form a copy of 512(C) in H1 ,c(W, (). This is useful for finding finite-dimensional

representations of H1 ,c(W, [): if L is a finite-dimensional representation, graded by the

eigenvalues of h, then it is in particular a finite-dimensional representation of 5[2 (C).

So, hc(r) is a lowest 512 (C) weight and thus a negative integer, and dimensions of

graded pieces of L are palindromic: dim Li = dim L-j. Integrating this representa-

tion to a representation of the group SL2(C) and using that S[2(C) commutes with

W, we get that the graded pieces of L satisfy Li 1 L-i as W-representations. All

this information provides constriants to values of c for which finite-dimensional rep-

resentations can exist.



3.2 Representations of H1 ,c(W, j) over k = C

3.2.1 Category 0

As explained above, the definitions of category 0 are different for characteristic 0 and

characteristic p. For the rest of this chapter, we let k = C and t = 1.

Definition 3.2.1. Category 0 (also called 0 1,c(W, [) or 01,c is a category whose

objects are H1,c(W, )-modules which are finitely generated over S4* and locally nilpo-

tent over St. It is a full subcategory of H1,c(W, 4)-Mod, closed under subquotients

and extensions.

It is clear that Verma modules M1,c(r) and their quotients L1,c(r) are in 0. The

element h acts locally finitely on 0, and diagonalizes on M1,c(r) with eigenvalues

hc(r) + Z>o. We will always consider objects from category 0 with this natural

grading.

3.2.2 Irreducible representations in category 0

As announced before, we can describe all irreducible objects in 0.

Proposition 3.2.2. All L1 ,c(-r) are irreducible H1,c(W, 4)-modules. All irreducible

objects in 0 are of the form L1,c(r) for some irreducible W-representaton r.

For completeness, we sketch the proof.

Proof. The grading element h diagonalizes on all proper submodules of Mt,c(r), and

has eigenvalues which are all > hc(r). As a consequence, the sum Ji,c(r) of all proper

submodules does not contain r 2 M1,c(r)o, and so it is a proper submodule. The

quotient Kc(r) = M1,c(r)/J1,c(r) is irreducible.

The proof that J1 ,c(r) is the kernel of the contravariant form B and that con-

sequently Ke(T) = Li,c(r) is completely analogous to the proof of the similar claim

about Shapovalov form in Lie theory. Namely, the contravariant form was defined by

the map

#: Mc(Wf , r) -+ Mt'c(W, *, r*)t,



which factors trough

Kj,;(-r*) Mt, E(W, -*,r*f

As Kc(r) is irreducible, there exists an isomorphism Kc(r) -+ KE(r*)t, which maps

the lowest graded piece r of Kc(r) to the lowest graded piece T of KE(r*)t by the

identity map. The uniqueness of the map # implies that, up to a constant, it is equal

to the composition

M 1,c(r) --* Kc(r) ~iKE(T*)t -+ Mt,(W, *, r*)t.

As a consequence,

KerB = Ker# =J1,c(r),

and

Kc(T) = Li,c(r)

is irreducible.

Now let L be any irreducible Hi,c(W, 4)-module. It has a lowest h-eigenspace, and

let T be an irreducible W-subrepresentation of it. Then there is a map M1,c(r) -> L

which is the identity on T. Its image has to be L, as it is irreducible. So, L ~

Lt,c(r).

3.2.3 Characters

We define characters so that they contain all the information about graded pieces of

a module, seen as a representation of W.

Let N be an object of 0. It decomposes as N = ®aN, for Na a generalized

eigenspace of h with eigenvalue a. Let K(W) be the Grothendieck group of finite-

dimensional W representations. We define two versions of character. For a formal

variable z and [Na] a representative of Na in the Grothendieck group K(W), X is a



K(W)-valued formal power series

XN(z) = Z[Na]z".
a

We also define ch as a function of g E W and z,

chN(z, g) = ETrIN.(g)z
a

Over k = C, these two characters are equivalent, and we mostly work with ch.

It is easy to see that

chmui.(r)(z,g)= Trjis,*(g)zhc(r)+i zhc(-r)r I(g)

t ( ) EZyo(1 - zg)

3.2.4 Grothendieck Group

Let K(O) be the Grothendieck group of the category 0 = 01 ,c(W, ). All modules in

O have finite length (this follows from them being finitely generated over S*, and h

acting on them locally finitely). All irreducible modules in 0 are of the form L1,c(r),

so the set [L1,c(r)], for all irreducible representations -r of W, is a Z-basis of K(O).

In particular, there exist fn,,, E Z>0 such that

[M,c(T)] = niir,u[L1,c(o)].

The grading on all modules is given by the action of h, so these integers satisfy:

e nter'r = 1;

* if r = o-, and ft,, / 0, then hc(-) - hc(r) E Zyo.

As a consequence, in the appropriate ordering on the equivalence classes of ir-

reducible representations of W, the matrix [i,,] is upper triangular with 1 on the



diagonal, and hence invertible. So, there exist n,, E Z such that

[Li,c(T)] = E nr,,[Mi,c(-)].

If the integers n,, are

Li,c(r), as

XL1,c(r)(z) =

known, then one can easily compute the characters of

nl,,xul,c~T,)(z) - 1 [S * -

, i>O

and

chL(,r)(z,g) = nchM,,()(zg) - Zn , (zcr10 (g)
,(0, (Z 9'det 14 1- zg)

The numbers t,, are easy to compute from n,,, so this gives the composition

factors of every Mi,c(r) as well.

Chapters 4 and 5 are dedicated to calculating n,, for all r, a, for all Hic(W, y),

and for W of the type H3 and G12.

3.2.5 A useful lemma

We will use the following lemma several times.

Lemma 3.2.3. Let a C [)* 0 T C M1,c(T) be an irreducible subrepresentation of W.

The elements of 4 act on a by zero if and only if hc(o) - he(-r) = 1.

Proof. This lemma can be found in [25] as Lemma 3.5. The proof uses the observation

from Lemma 3.1.8, which in this case states that applying the Dunkl operator to

elements in the graded piece S1rl* o r of M1,c(-r), y 0 v '-f Dy(v), is a homomorphism

(, 0 [j* 0 r -* r. By adjointness, this can be thought of as an endomorphism

) 9 ir -+ Vy* 0 T,



which is then explicitly calculated to be

id - c,(1 - s) 0 s.

sES

This operator acts on o- c * -r by a constant 1 + hc(r) - hc(o-), proving the

lemma. E

3.2.6 Support of a module

We will use the main result from [22].

Just for this subsection, let W be a finite Coxeter group, and assume s F-+ cs is a

constant function on the set of reflections, and r = triv the trivial representation of

W. We are interested in the growth of L1,c(triv).

The paper [19] (as well as the discussion in 3.2.8) shows that the set of c E C for

which Li,c(triv) # Mi,c(triv) is equal to

m>Oi=1 j=1

Here di = di(W) are degrees of basic invariants of W, defined (see Chevalley-Shephard-

Todd theorem) to be integers such that the ring of invariants C[]w is a polynomial

ring generated by homogeneous elements of degrees di, ... d.

The module L1,c(triv) is a module over the commutative algebra C[] 2 30* C

H1,c(W, [). Its support is defined to be the set of all a E = SpecC[] such that the

localization of L1,c(triv) at the maximal ideal a is nonzero, and is equal to the set of

common zeroes of the C[ ] ideal Ji,c(triv).

When c is not of the form m + -, then L1 ,c(triv) = M1,c(triv), which is identified

with C[ ] as a C[ ]-module, J1,c(triv) = 0, and the support is the whole [.

When c is of of the form m + 1, the support is calculated in [22]. Let w -+ 1(w)

denote the length function on the Coxeter group W, Pw the Poincard polynomial of



W, defined as

Pw(q) = E ql') = q
tvEW%

and W = Stabwa the stabilizer of a E 1) in the group W (which is also known to be

a Coxeter group). Theorem 3.1. in [22] states:

Theorem 3.2.4. A point a E tj belongs to the support of L1,c(triv) if and only if

PW (e 2 ric) 0
Pwa

in other words, if and only if

#{ild divides di(W)} = #{ild divides di(Wa)}.

As the support of Li,c(triv) is the subvariety of l determined by the ideal J1,c(triv),

its dimension is equal to the degree of the pole at t = 1 of the Hilbert series of Li,c(triv)

with respect to the usual grading on Sj*. This grading and the grading by h action

differ by a constant hc(triv), so Hilbert series defined using these two gradings differ

by factor of zhc(triv), and have the same order of pole at t = 1.

On the other hand, this Hilbert series is equal to the character chL(tri,)(z, g)

evaluated at g = 1 E W. This will help us determine the coefficients in the character

formulas for Lic(triv).

In particular, Li,c(triv) is finite-dimensional if and only if there is no pole, meaning

if the support is zero dimensional and equal to {0}.

3.2.7 Parabolic induction and restriction functors

A subgroup W' of a reflection group W is called parabolic if it is of the form Stabwa

for some a E [). In that case, W' is a reflection group, with reflection representation

= j/ w', where )w' is the subspace of W'-invariant elements.

Let c' be the restriction of c to the reflections in W'. Induction and restric-

tion functors, introduced in [9], give a way of relating modules for H1 ,c(W, f) and of



H1,s(W', [/Ow'). We omit the details of their construction and give only the proper-

ties we will use.

Proposition 3.2.5. There exist induction and restriction functors

Resa: 0 1,c(W, 0) -+ O1,c(W', 6')

Inda : 1,c (W', 1 ') --+ 01,c(W, b

associated to a E I such that W' = Stabwa. These functors are exact. The following

formulas hold for generic c, and on the level of Grothendieck group for every c:

Resa(M1,c(W, 0, T)) = @ dim(Hom(o-, -rw,))Mi,ci (W', ', o-),
aeIrred(W')

Inda(Ml,d (W', ', O)) = (D dim(Hom(o-, I w,))Mi,c(W, , r).
rEIrred(W)

3.2.8 Iwahori-Hecke algebras, KZ functor and semisimplicity

Category 0 1,c(W, f) is semisimple for generic values of parameter c. We are interested

in describing the irreducible objects L1 ,c(T) in cases when it is not semisimple. The

first step is to determine for which values of c this happens.

For this section, assume c E C is a constant.

Proposition 3.2.6. If W is a Coxeter group and c a constant, then 0 1,c(W, ) is

semisimple unless c E Q, and writing c = as a reduced fraction, d divides a degree

of a basic invariant of W.

This statement can be found in [9], and is a combination of results from [30] and

[19].

For a reflection group W, let H, = Ker(1 - s) be the reflection plane associated

to the reflection s, and let [re, be the complement of all the reflection planes in

j. The braid group BW is then defined as the fundamental group of the quotient

space 7ri([reg/W). It is generated by elements TH for all reflection hyperplanes H,



where TH is defined as a small circle around the image of H = H, in the quotient

space. It is known that the group W is the quotient of BW by relations of the type

ms = 1, where mH E Z>o is the (maximal) order of the reflection s in W defining

the hyperplane H = H,. For a constant q E C, define the Iwahori-Hecke algebra

14(W) as the quotient of C[BW] by the relations

mn-1
(TH - H - e27rij/mHq).

j=1

(A version of Hq(W) with q a collection of conjugation invariant parameters is avail-

able, but we will not use it). Clearly, if q = 1, the Hq(W) = CW.

We also define the generic Hecke algebra as an algebra with the same generators

and relations as above, but over Z[q, q-1] for q an indeterminate. For the rest of

this section, we assume that W is such that the generic Hecke algebra is a free

Z[q, q 1 ]-module of rank |W. This is known for cases when W is a Coxeter group

or a simple complex reflection group different than G12 ,...,19, G24,...27, G29 and G3 1-3 4,

and conjectured in other cases. All the results quoted in this section depend on

this assumption. We will apply the results of these section in Chapter 5 to the case

W = G12, for which the assumption is known to be satisfied.

Example 3.2.7. The Coxeter group W = H3 has a presentation by generators and

relations

(si, s2, s3|s = s = s3 = 1,sis 3 = s3s1, s1s2s1 = s23152, S 2 83 s 2 S 3S2 = 53s253s2s3).

Its braid group BW is

(T1, T2,T3JT1T = T3 T1 , T1T2T1 = T2T1 T2,T 2TT 2TT 2 = T3 T2T3 T2 T3 ).

The Hecke algebra 7-4(W) is a C-algebra with generators T1, T2, T3 and relations

T1T = T3T1 , T1T2T1 = T2T1T2 ,T 2 TT 2 TT 2 = T3 T2 TT 2T



(T - 1)(Ti + q) = 0 i = 1, 2, 3.

Example 3.2.8. The complex reflection group W = G12 has a presentation by gen-

erators and relations

(se, Sf, sgIs2 = s = S = 1, (sesfsg)4 = (sges4 = (sfsgse))4),

its braid group BW is

(Te, T1 , Tg I (TeT5T) 4 = (TgTeT5)4 = (T5TgTe) 4) ,

and its Hecke algebra 7,(W) is the quotient of the group algebra of the braid group

of W by the extra relations

(Te -1)(Te + q) = 0, (T5 - 1)(Tj +q) = 0, (Tg - 1)(T+ q) = 0.

For M a module in 0, let Me, be its localization at reg. Let 0 't be the

subcategory of 0 consisting of those modules for which the localization Mreg = 0.

Theorem 3.2.9. There exists a functor

KZ: O 1,c(W, 4) -+ X,(W) - mod

associating to every module in category 0 for H1 ,c(W, 4) a module for the Hecke

algebra 7,(W), where q is a constant depending on c. If the order of the generating

reflections of W is 2, then q = essic

The functor KZ induces an equivalence of categories

KZ: 01,c/0O'c -+ Hq(W)- Mod.

The definition of KZ and the proof of this theorem first appeared in [30]. It is

useful to us due to the following corollary:



Corollary 3.2.10. The C algebra Xq(W) is semisimple if and only if Oc is semisim-

ple.

Proof. Xq(W) is semisimple if and only if the number of irreducible representations is

equal to the number |W| of irreducible representations of W. The number of simple

objects in 0 is always equal to IWj. Thus, if either 0 or Xq(W) is semisimple, then

0"4'' = 0, KZ is an equivalence KZ: 01,c -- 7q(W)- Mod, and both 0 and 14(W)

are semisimple.

The following result is a combination of [13], [15] and [29].

Proposition 3.2.11. The Hecke algebra 7,(W) for q = v 2 is semisimple if and only

if there exists a symmetrizing form on it, which is if and only is all Schur elements

s,, for r E W, satisfy

s(v) $ 0.

Schur elements are a family of polynomials, labeled by W. They have been cal-

culated, and can be accessed for various groups W via the CHEVIE package of the

algebra software GAP, see [38].

We will use the combination of these results:

Corollary 3.2.12. For constant c > 0, category 0 1,c(W, y) is semisimple if and only

if for all r E W, for v = e"',

s(v) $ 0.

3.2.9 Scaling functors

For the set of constant c such that 0 1,c is not semisimple, there are some equivalences

of categories that enable us to consider a subset of all such c. The following are results

from [41] (see Theorem 5.5.) and [32] (sections 2.6. and 2.16).

Theorem 3.2.13. Assume that g is an element of the Galois group Gal(C/Q), and

cEC, c . + Z, r E R>o such that

g(e2ic 2rirc.



Then there exists an equivalence of categories

4c,rc : 91,c -- 1,rc

and a permutation Pc,rc of W such that

4Dc,rc(M1,c(r)) = Mi,rc(Wc,rc(T))

<Dc,rc(L1,c(T)) = Li,rc((Pc,rc(T)).

We use this to transfer information about characters of irreducible representations

in 01,1/d to O1,r/d, for r E Zyo relatively prime to d.

An effective way of calculating the permutation Wc,rc is given in [32] by formula

(11). Let c = 1/d, d, r C Z>o, and let g E Gal(Q(e 2ni/ 2d)/Q) such that

9(e 27i/d) = e 2 ir/d.

Let

= e -2ir/ 2 d . (e 2 ri/2 d) E C.

Then the irreducible characters X' of the Hecke algebra 'Hq(W) are related by

XWp1/d,r/d(r) (w) (q) = (gx' (w)) (ijq).

After evaluating at q = 1 to get irreducible characters of W, this becomes:

* If i = 1, then X' //() = 0 soPi/d,r/d is a permutation given by the action

of g on the characters of W.

" If i = -1, then the character formula becomes X'egd ()(1) =

The left hand side can be interpreted as a group character, while the right

hand side needs to be transformed. The permutation P1/d,r/d is the composition

of the permutation given by the action of g on the characters of W and the

permutation resulting from the transformation, which can be read off from [39].



While there might be several choices for g, the permutation V doesn't depend on

them.

3.2.10 Shift functors

Scaling functors described above are known to be equivalences of categories for d $

2 and conjectured to be equivalences for d = 2. In absence of a proof, we use

shift functors for equivalences between various parameters of the form c = r/2. For

references on shift functors, see [8].

Let W be a reflection group generated by reflections of order two. We call c E C

spherical if every module in 0 1,c, seen as a W-representation, has a nontrivial W-

invariant. Let O'c be the subcategory of modules in 0 1,c that contain no notrivial in-

variants (W-subrepresentations isomorphic to the trivial representation), and O-c the

subcategory of modules in 0 1,c that contain no anti-invariants (W-subrepresentations

isomorphic to the signum representation).

Theorem 3.2.14. For c = r/2, r E Z>o, there exists an equivalence of categories

(c'c+1: 091,c/+c __ 0i,c+1/O0+1

If c is spherical, then @c,c+1 an equivalence of categories between 0 1,c and 0 1,c+1- In

that case c + 1 is spherical as well, and

'1 c,c+1(M1,c(T)) = M1,c+1 (PC,c+1 (T))

Dc,c+1(L1,c(-T)) =L1,c+1(Vc,c+1(Tr))-

As a consequence, if c = r/2 is positive and spherical, then category 01,,/2 is

equivalent to all 9 1,m+r/2 for m E Z>o, and it is possible to calculate character

formulas in 01,m+r/2 using the permutation pe,c+1 and character formulas in 01,r/2-
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Chapter 4

Representations of Rational

Cherednik Algebras Associated to

the Coxeter Group H3

4.1 The group H3

We will study the rational Cherednik algebra associated to W = H3, the exceptional

Coxeter group with the Coxeter graph

5

Its presentation with generators and relations is

(si, s 2 , s3 s = s =s=1, s is 3 = 33 s1 s2s1 = s s2S 3s2S 3s2 = S3s283s2s3).

It is the group of symmetries of the regular icosahedron, with Coxeter generators

si, s2, 83 corresponding to the reflections along the planes with respective angles of

7r/2, 7r/3 and 7r/5 with each other. The space is the complexification of the 3

dimensional real space which realizes H3 as such symmetry group. H3 preserves the

standard inner product product, so H3 C 0(), and this inner product induces an

isomorphism 4 ' 4*.



The group H3 has 120 elements and is isomorphic to Z2 x A5 . Here Z2 is a cyclic

group of order 2 containing the identity and the central symmetry of the icosahedron,

and A5 is a group of even permutations of the set of 5 elements, in this case the 5

tetrahedra that are formed by centers of the faces of the icosahedron. We will write

elements of H3 as elements of Z2 x A5 , using notation i for elements of Z 2 and cyclic

notation for elements of A5 C S5 . One instance of an isomorphism H3 -+ Z2 x A5 is

si - -(12)(34), s2 F- -(15)(34), s3 --+ -(13)(24).

Let us write down the character table of H3 in this realization. The group Z2 has

two one-dimensional irreducible representations, the trivial one and the signum one.

The group A5 has five irreducible representations: the trivial one, that we will call 1; a

three dimensional one called 3, that realizes it as rotations of an icosahedron; another

three dimensional one, called 3, obtained from 3 by twisting by conjugation with the

element (12) e S5 (S5 is the symmetric group, and conjugating by (12) in S5 preserves

A5 C Ss); a four dimensional representation 4 (the permutation representation of A5

obtained from it acting on the 5 tetrahedra is reducible; it has a 1 dimensional trivial

subrepresentation and 4 as irreducible components); and a 5 dimensional 5, that is

an irreducible subrepresentation of a 6 dimensional representation arising from the

fact that A5 permutes the 6 great diagonals of the icosahedron.

Every irreducible representation of H3 2 Z2 x A5 is a tensor product of an irre-

ducible representation of Z2 and an irreducible representation of A5 . Let us denote

the tensor product of a representation triv of Z2 and a representation T of A5 bt r+,

and the tensor product of the signum representation of Z2 and a representation r of

A5 bt r_. In this notation, ( * ' 3_.

The character table of H3, is Table 4.1. For references about H3 and its represen-

tations see [34], [28].

There is one conjugacy class of reflections in H3, with a representative -(12)(34)

and 15 reflections in it. The conjugation invariant function c: S -+ C is a complex

constant.



- Id -Id (123) -(123) (12)(34) -(12)(34) (12345) -(12345) (13245) -(13245)
# 1 1 20 20 15 15 12 12 12 12
1+ 1 1 1 1 1 1 1 1 1 1
1_ 1 -1 1 -1 1 -1 1 -1 1 -1

3+ 3 3 0 0 -1 -1 - -

3_ 3 -3 0 0 -1 1 1 -1- 5 1--5 -1+,/5

i+ 3 3 0 0 -1 -1 ~ 1 1
5_3 -3 0 0 1 1 1--,5 -1+V5 1+V5 -1-V5

4+ 4 4 1 1 0 0 -1 -1 -1 -1
4- 4 -4 1 -1 0 0 -1 1 -1 1
5+ 5 5 -1 -1 1 1 0 0 0 0
5- 5 -5 -1 1 1 -1 0 0 0 0

Table 4.1: The character table for H3 a Z2 x A5

We can also easily calculate the action of the central element EES s on any

representation. For example, in 5_, it is a constant on a 5 dimensional space, whose

trace is tr = EES trs = -15, so it is -15/5 = 3. Doing this calculation for every

irreducible representation r, we get Table 4.2.

1+ 1- 3+ 3_ 3+ 3- 4+ 4- 5+ 5-
15 -15 -5 5 -5 5 0 0 3 -3

Table 4.2: The action of the central element ZsE s E H3 on all r

Table 4.2 now enables us to calculate the action of h on any lowest weight r, as

hc(r) = 12- cESES S11-

4.2 Main theorem

Theorem 4.2.1. For the Coxeter group H3 , its reflection representation ), c any

complex number, and r an irreducible representation of H3 , the expression in the

Grothendieck group K(01,c) for the irreducible module L1,c(r) in terms of standard

modules M1,c(r) is as below. Any module L1,c(T) for which we do not explicitly write

its dimension is infinite-dimensional. We leave out the index (1, c) in L1,c(r) and

M1,c(r) whenever it is clear from the context, and write L(r) instead of [L1 ,c(T)].

Here r E N, d E {2, 3,5, 6, 10}, and all fractions r/d are reduced.



* If c is not of the form c = r/d or c = -r/d, then for all -r,

Li,c() =M1,c(-)

" If c = -r/d, then the formulas for L1,c(T) in terms of M1,c(o) follow from

formulas for L 1,c(1_ 0 T) in terms of M1,c(1_ 0 o-), which are given below.

More precisely, if

[L1,r/d(r)] = nr,,[M1,,/d(o-)]
a

then

[L1,,r/d(l 0 T)] = nT,,[M1,_r/d(1_ 9 o-)].

Consequently, L1,c('r) is finite-dimensional if and only if L 1,-c(1- 0 r) is.

" c = r/10, r 3, 7 (mod 10)

L(1+) = M(1+) - M(3-) + M(3+) - M(1_)

L(3+) = M(3+) - M(1_)

L(3_) = M(3_) - M(3+) + M(1_)

Every L1,r/ 10(1+) is finite-dimensional, with dim L1,r/10(1+) = r3 and

- det4.(1 - zrg)
chiO(1+)(z,9) - det4.(1 - zg)

* c = r/10, r = 3, 7 (mod 10)

L(1+) = M(1+) - M(5) + M(5+) - M(1_)

L(3+) = M(3+) - M(1_)

L(3_) = M(3_) - M(3+) + M(1_)

Every L1,r/ 10(1+) is finite-dimensional, with dim L1,,/ 10(1+) = ra
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* c = r/6

L(1+) = M(1+) - M(5+) + M(5_) - M(1-)

L(5+) = M(5+) - M(5-) + M(1_)

L(5_) = M(5_) - M(1_)

Every L1,,16 (1+)is finite-dimensional, with dim L1,,/ 6 (1+) = 5r3 and

chL1 ,. 6(1)(z, g) = det -(1 - (TY + Tr3 _ (g) + Trgzdet *- zg) l~~)

" c = r/5, r = 1, 9 (mod 10)

L(1+) = M(1+) - M(4-) + M(3+)

L(3_) = M(3_) - M(4+) + M(1_)

L(4+) = M(4+) - M(1_)

L(4_) = M(4-) - M(3+)

* c = r/5, r = 2,8 (mod 10)

L(1+) = M(1+) - M(4+) + M(3+)

L(3_) = M(3_) - M(4-) + M(1-)

L(4_) = M(4-) - M(1_)

L(4+) = M(4+) - M(3+)



Sc= r/5, r = 3,7 (mod 10)

L(1+) = M(1+) - M(4_) + M(3+)

L(3-) = M(3_) - M(4+) + M(1-)

L(4+) = M(4+) - M(1_)

L(4_) = M(4_) - M(3+)

" c = r/5, r = 4,6 (mod 10)

L(1+) = M(1+) - M(4+) + M(3+)

L(3_) = M(L) - M(4_) + M(1-)

L(4_) = M(4_) - M(1_)

L(4+) = M(4+) - M(3+)

" c=r/3,r odd

L(1+) = M(1+) - M(5+) + M(4_)

L(4+) = M(4+) - M(5_) + M(1_)

L(5_) = M(5_) - M(1_)

L(5+) = M(5+) - M(4_)

e c = r/3, r even

L(1+) = M(1+) - M(5+) + M(4+)

L(4-) = M(4_) - M(5_) + M(1_)

L(5_) = M(5_) - M(1_)

L(5+) = M(5+) - M(4+)



* c = r/2

L(1+) = M(1+) - M(3_) - M(3_) + M(5+) - M(5_) +

+M(3+) + M(3+) - M(1_)

L(3+) = M(3+) - M(1_)

L(3_) = M(3_) - M(5+) + M(5_) - M(3+)

L(3+) = M(3+) - M(1_)

L(i_) = M(5_) - M(5+) + M(5_) - M(3+)

L(5+) = M(5+) - 2- M(5_) + M(3+) + M(3+) - M(1_).

L(5-) = M(5_) - M(3+) - M(3+) + M(1_)

For every r, three of these modules are finite-dimensional, with dim L1,r/2(1+) =

115r 3 , dim L1,r/ 2 (3_) = 10r 3, and dim L1,r/2 (-) = 10r 3 , and

chL1,2 ()(z~) -dete.(1 - zrg)
chLd(3-) (ZZg) (Tr 3 (9)zr +Trl+ (9) +Tr 3 + (9) +Tr 3 _ (9)zr)

det.(1 - zg)

chLl2(5-) (g)=det4.(1 - zrg) - (Tr_ (g)z-r + Tr 4 (g) + Tr5_ (g)zr).C~ir2 ( 3 )kZ~) =det4. (I - zg)

Proof. By Proposition 3.2.6, the only values of c for which Oic is not semisimple are

of the form c = tr/d, with r, d E Z>o, and d dividing the order of a basic invariant

of H3. Basic invariants of H3 have degrees 2,6, 10, so d E {2, 3, 5, 6, 10}.

By Lemma 3.1.5 applied to the group character f = 1_ which sends all simple

reflections to -1, the algebras H1 ,c(H3, fj) and Hi,-c(H3, fj) are isomorphic. Twisting

by this isomorphism makes an irreducible representation L 1,-c(r) into an irreducible

representation of H1 ,c(H3, f)) with the lowest weight 1_ 0 r, and similarly for Verma

modules. Using this, it is enough to calculate Grothendieck group expressions for

c > 0 and they can be transformed into those for c < 0 as is described in the

statement of the theorem.

We calculate the Grothendieck group expressions for c = 1/d, d E {10, 6, 5, 3} and

for c = 1/2,3/2 directly in Theorems 4.4.1, 4.5.1, 4.6.1, 4.7.1, 4.8.1 and 4.9.1. The



Grothendieck group expressions for all other c = r/d > 0 follow from equivalences

of categories 01,1/d -+ 01,r/d described in section 3.2.9 and 0 1,c -+ 0 1,c+1 described

in section 3.2.10. To use the latter one, we check in Lemma 4.9.2 that c = 3/2 is

indeed aspherical for H3. To use both, we explicitly calculate the permutation <Oc,c'

described in section 3.2.9 in Lemma 4.3.1. l

As the characters of Verma modules M1 ,c(o) are known (see section 6.2), the char-

acters of all irreducible modules M1,c(T) can be calculated from the above theorem.

For completeness, we also calculate the Grothendieck group expressions of M1,c(T) in

terms of L1,c(r) in the next corollary; in other words, calculate the composition series

of standard modules.

Corollary 4.2.2. For the Coxeter group H3 , its reflection representation [), c any

complex number, and T an irreducible representation of H3 , the expression in the

Grothendieck group K(01,c) for the standard module M1,c(r) in terms of irreducible

modules L1,c(r) is as below. We leave out the index c in Li,c(r) and M1,c(r) whenever

it is clear from the context. Here r E N, d E {2, 3, 5, 6, 10}, and all fractions rid are

reduced.

e If c is not of the form c = rid or c = -r/d, then for all r,

M1 ,c(r) = L1,c(r).

" If c = -rd, then the formulas for M1,c(T) in terms of L 1,c(o-) follow from

formulas for M 1,_c(1_ 0 r) in terms of L1 ,_c(1_ 0 o), which are given below.

More precisely, if

M1,r/d(T) = n> ,,1(o)

then

Ml,_/rd(l 0 T) = nr,oL1,_r/d(1_ 0 o).
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. c = r/10, r # 3,7 (mod 10)

M(1+) = L(1+) + L(3_)

M(3+) = L(3+) + L(1_)

M(3_) = L(3) + L(3+)

" c = r/10, r =3, 7 (mod 10)

M(1+) = L(1+) + L(5-)

M(5+) = L(5+) + L(1_)

M(5_) = L(5-) + L(5+)

" c = r/6

M(1+) = L(1+) + L(5+)

M(5+) = L(5+) + L(5_)

M(5_) = L(5) + L(1_)

" c = r/5, r =1,9 (mod10)

M(1+) = L(1+) + L(4-)

M(_) = L(Z_)+L(4+)

M(4+) = L(4+) + L(1_)

M(4_) = L(4_) + L(3+)



. c = r/5, r = 2,8 (mod 10)

M(1+) = L(1+) + L(4+)

M(3_) = L(3-)+L(4_)

M(4_) = L(4) + L(1-)

M(4+) = L(4+) + L(3+)

" c = r/5,r = 3,7(mod10)

M(1+) = L(1+) + L(4-)

M(3_) = L(3) + L(4+)

M(4+) = L(4+) + L(1-)

M(4_) = L(4-) + L(3+)

" c = r/5, r = 4, 6 (mod 10)

M(1+) = L(1+) + L(4+)

M(3) = L(3_) + L(4_)

M(4_) = L(4) + L(1_)

M(4+) = L(4+) + L(3+)

" c=r/3,r odd

M(1+) = L(1+) + L(5+)

M(4+) = L(4+) + L(5_)

M(5_) = L(5) + L(1-)

M(5+) = L(5+) + L(4_)



. c= r/3,r even

M(1+) = L(1+) + L(5+)

M(4_) = L(4_) + L(5_)

M(5-) = L(5) + L(1_)

M(5+) = L(5+) + L(4+)

" c = r/2

M(1+) = L(1+) + L(3_) + L(3) + L(5+) + L(5_) + L(1-)

M(3+) = L(3+) + L(1_)

M(3_) = L(3) + L(5+) + L(5_) + L(3+) + L(1_)

M(3+) = L(3+) + L(1_)

M(3_) = L(3) + L(5+) + L(5-) + L(3+) + L(1_)

M(5+) = L(5+) +2- L(5) + L(3+) + L(3+) + L(1_).

M(5_) = L(5) + L(3+) + L(3+) + L(1)

4.3 Two auxiliary lemmas

Lemma 4.3.1. The permutation p = W1/d,,/d, for d = 2,3,5,6, 10 and r EZo

relatively prime to d, is given by:

" d = 2, r = 1, 3 (mod 4), p = id

" d = 3, r = 1, 5 (mod 6), W = id

" d = 3, r = 2, 4 (mod 6), W = (4+, 4-)

e d=5, r=1,9 (mod 10), W =id

" d = 5, r = 2, 8 (mod 10), V = (3_, 3)(3+, 3)(4+, 4-)

" d = 5, r = 3,7 (mod 10), W = (3, 3)(3,3+)
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* d = 5, r = 4,6 (mod 12), p = (4+,4-)

e d=6, r=1,11 (mod 12), p=id

" d = 6, r = 5,7 (mod 12), p = (4+,4-)

" d = 10, r = 1, 9 (mod 20), p = id

" d = 10, r = 3, 7 (mod 20), p = (3_, 3_)(3+, 3+)(4+, 4-)

" d = 10, r = 11, 19 (mod 20), p = (4+, 4-)

" d = 10, r = 13,17 (mod 20), p = (3_, 3_)(3+, 3+)

Proof. Proof is a direct computation, following the algorithm explained in section

4.3.1. The algorithm consisted of setting ( = e'li/d, and finding an element g E

Gal(Q( )/Q) such that g(( 2 ) = g2r. The permutation (P1/d,r/d was then the com-

position of the permutation realizing the action of g on characters of irreducible

representations, and of an additional permutation in case 77 = g( )/r is equal to -1.

In case W = H3, [39] calculates that this additional permutation is the transposition

(4+, 4-).

From this it is clear that the permutations associated to r and to r + 2d are the

same. When calculating the permutation associated to r + d, we can use the same

Galois element g as for r, and 77 will differ by a factor of -1. So, the permutation for

r + d is a composition of the permutation for r and the transposition (4+, 4-).

Let us list g and q for d = 2, 3, 5, 6, 10 and 1 < r < d relatively prime to d.

" Ifr= 1, theng= 1, ij= 1 and cp=id.

" d = 3, r = 2, g = complex conjugation, q = -1, p = (4+, 4-)

* d = 6, r = 5, g = complex conjugation, 71 = -1, p = (4+, 4-)

e d = 5,r = 2, g( ) = (7, g(v/5) = -N/5, 77 = -1, (p = (3-, _)(3+, +)(4+,4-)

" d = 5, r = 3, g() = (3, g(1/5) = - /5, , = 1, W = (3_ 5-)(3+,
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" d = 5, r = 4, g( ) = 9 g(V' ) = 45, -7 = -1, = (4,4-)

" d = 10,r = 3, g(() = (13, g(/51 ) = -/5, r = -1, o = (3_,3-)(3+,3+)(4+,4-)

" d = 10, r = 7, g(() = $7, g(./g) = /5, r = -1, = (3, 3)(3+,i+)(4+, 4-)

e d = 10, r = 9, g(6) = ( 9, g(v/5) = v/5, r; 1, p = id.

The following lemma is a slightly stronger version of the discussion from section

3.2.4, applied to W = H3 .

Lemma 4.3.2. The integers nr,, and nr,,, encoding the changes of Z-bases of K(O)

between M1 ,c(T) and L1,c(o-) satisfy: if ,,, 4 0 or n,,, / 0, then

" hc(o-) - hc(r) = i E Zyo

e if -Id E H3 acts of both r and a by the same constant (either 1 or -1), then i

is even; otherwise i is odd.

Proof. If h,,, = 7 0, then L1,c(-) is a composition factor of Mi,c(r), and a is a W-

subrepresentation of some degree graded piece Si1* 0 T C M1,c(r). The action of the

grading element h on this a is thus

hc(o-) = hc(r) + i.

The action of the central element -Id on every irreducible representation is by 1 or

-1 (the notation for representations of H3 is chosen so that this is signaled by the

subscript of the representation name). The action on * 3 is by -1, so the action

on SW* 0 r differs from the one on r by a factor of (-1)'.

The inverse n,,, of the block-diagonal, upper-triangular matrix nc, has the same

properties.
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4.4 Calculations for c = 1/10

This section contains the explicit calculations in 01,1/10. We omit the subscript

c = 1/10 in in Li,c(r) this section, as it is clear from the context, and write L(r)

instead of [L1,c(r)] E K(O) for better readability.

Theorem 4.4.1. Irreducible representations in category 0 1110(H3 , f)) have the follow-

ing descriptions in the Grothendieck group:

L(1+)

L(1_)

L(3+)

L(3_)

L(3+)

L(3_)

L(4+)

L(4-)

L(5+)

L(5_)

= M(1+)

= M(1_)

= M(3+)

= M(3-)

= M(3+)

= M(3_)

- M(4+)

= M(4_)

- M(5+)

= M(5-)

- M(3-) + M(3+) - M(1_)

(1-)

(3+) + M(1_)

Among these representations only L(1+) is finite-dimensional, with chL(l±)(z, g) = 1.

The rest of this chapter is the proof of this theorem. Let us first calculate the

constants hi/1 0(r) = 1 - 1 E c sb- (see Table 4.3).

1+ 1-- 3+ 3- 3+ 3- 4+ 4- 5+ 5-
0 3 2 1 2 1 3/2 3/2 6/5 9/5

Table 4.3: hi/1o(r)
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Using lemma 4.3.2 we immediately conclude:

L(4+) = M(4+)

L(4-) = M(4_)

L(5+) = M(5+)

L(5_) = M(5_)

Mark the lowest weights of other modules on the real line as

0 1 2 3

1+ 3_ 3+ 1-
3- 34-

This picture represents Lemma 4.3.2 graphically, meaning that n,, can be nonzero

only if both r and o- are represented on the line, with a to the right of r. From this

we can also immediately conclude that

L(1_) = M(1_).

To calculate character formulas for L(3±) and L(3+), we will use Lemma 3.2.3.

First calculate the decomposition into irreducible H3 representations of * ® 3+ and

(0 3+. A computation with characters of finite group H 3 (see [28] and Table 4.1)

gives

0 3+ = 303+ 2 1- e 5- e 3

and

* 0 3+= 3_ 3+ - 4- D 5-.

Lemma 3.2.3 now implies that the subrepresentation a = 1_ C 0* & 3+ consists

of singular vectors, and hence that M(1-) is a subrepresentation of M(3+). It is the

maximal proper subrepresentation, and it follows that L(3+) - M(3+)/M(1_), so in
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the Grothendieck group

L(3+) = M(3+) - M(1_).

On the other hand, decomposition of * 0 3+ does not have 1_ as a subrepresen-

tation, so

L(3+) = M(3+)-

Next, using the decomposition S2[* 1+ e 5+, let us decompose two more H3

representations:

*3_ 4+ e 5+

S2 03_ (1+ ® 5+) & L- 2L E 3eE 4- e 5_.

Because neither 3+ nor 3+ appear as subrepresentations of * 0 3_, nor does 1_

appear in the decomposition of S2 [* 0 3_, the module M(3_) must be simple:

L(3_) = M(3_).

Corresponding decompositions for 3_ are

* @D 3_ c- 1+ (D 3+ E 5+

S2 * 9 3_ c 2 -3 e _ e 4_ D 5_.

From the first of these formulas and using lemma 3.2.3 we can now conclude that

3+ cS 2f* 0 3_ C M(3_) consists of singular vectors, so it generates a Hi,c(H 3f)

subrepresentation. 1_ does not appear in the decomposition of S2 j* 0 3_, so the

subrepresentation generated by 3+ is the whole J(3_). Looking at the computations

for L(3+) we see that the only lowest weight representations with lowest weight 3+

are M(3+) and L(3+) = M(3+) - M(1-). Thus in Grothendieck group, L(3-) =

M(3-) - M(3+) + n 3 _,1_M(1_), for n 3 _,1 _ = 0 or n3 _,1 _ = 1. To see which one of

these it is, notice that 1_ does not appear as an H3 subrepresentation in S2 J*@3 0 c C

M(3_), but it does in SlI* 0 3+ c M(3+). That means that M(3+) cannot be a
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submodule of M(3_); so J(3_) = L(3+), and the expression in Grothendieck group

we wanted is

L(3_) = M(3_) - M(3+) + M(1_).

None of the modules considered so far in this chapter is finite-dimensional. An

easy way to see that is to consider them as s[2 representations. The lowest occuring

weights are then given by Table 4.3. Every finite-dimensional s12 representation will

have integral weights, with the lowest one being less or equal then 0. As none of

the lowest weights of these modules is a nonpositive integer, they are not finite-

dimensional.

This reasoning does not apply to the one module left to describe, L(1+). Its lowest

h weight is 0, so it could be finite-dimensional in case it was a trivial one dimensional

module. That is exactly what happens: it is easy to see by direct calculation that

setting x = 0, y = 0, w = 1, x E l*,y E , w E H3 defines an action of Hi,c(H 3 , l) on

C. So, there is a trivial module at c = 1/10, whose lowest weight is 1+, and it has to

be L(1+). This computation appears in [7], Prop 2.1.

The character of L(1±) is naturally 1; to express it in terms of characters of M(U),

we count the dimensions of h weight spaces. Clearly the copy of 3_ C [* 0 1+M(1+)

consists of singular vectors, spanning either M(3-) or L(3_). To see which one it is,

look at the next h weight space, where dim S2 4* 9 3_) = 9 > 6 = dim S 2 I* 0 1+. So,

the submodule with the lowest weight in h weight space 1 is L(3-). The dimensions

of all higher h weight spaces of M(1+)/L(3_) are 0, so J(1+) = L(3_) and

L(1+) = M(1+) - L(3_) = M(1+) - M(3_) + M(3+) - M(1_).
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4.5 Calculations for c = 1/6

Theorem 4.5.1. Irreducible representations in category 0 1/ 6(H3 , ) have the follow-

ing descriptions in the Grothendieck group:

L(1+)

L(1_)

L(3+)

L(3_)

L(3+)

L(3_)

L(4+)

L(4_)

L(5+)

L(5_)

M(1+)

M(1_)

M(3+)

M(3_)

M(3+)

M(3_)

M(4+)

M(4_)

M(5+)

M(5-)

- M(5+) + M(5_) - M(1_)

- M(5_) + M(1_)

- M(1_)

Only L(1+) among these representations is finite-dimensional, with character

chL(+)(z, g) = Tr1 (g)Z- 1 + Tr3_ (g) + Tri,(g)z.

Let us again first calculate the constants hi/ 6(r) = 1 - 1 Es si (see Table 4.4).

1+ 1- 3+ 3- 15+ I - 4+ 1 4- 15+ 15-
-1 4 7/3 2/3 7/3 2/3 3/2 3/2 1 2

Table 4.4: h116(r)

We immediately conclude that M(3+), M(3_), M(3+), M(3_), M(4+) and M(4_)

are simple.
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The remaining modules have lowest weights represented in the following picture:

-1 0 1 2 3 4
0 p 0 p

1+ 5+ 5_ 1_

So, M(1_) is also simple.

Calculate

S2 * 9 5_ c 1_ D 3_ E3 - E 2 - E4 D 3- 5_

From this we can conclude that L(5_) = M(5_)-n_,1 _ -M(1_), with n5 _,1 _ {0, 11.

It is possible to deduce n5 _,1_ from the rank of the contravariant form B restricted

to S 4 4* 0 5_ C M(5_), but we will use a less direct argument here.

Let us focus on 5+ for a while. We notice that

4* 0 5+ - 3_ E 3_ E 4_ D 5_,

so by Lemma 3.2.3, the H3 subrepresentation 5_ consists of lowest weight vectors.

We know from the previous paragraph that if n 5_,1_ = 0, then there is just one

representation with lowest weight 5_, that is M(5_), and if n5 _,1_ = 1 there are two,

namely the standard one M(5_) and the irreducible one M(5_)--M(1_). The module

M(5+) can also have a b-dimensional space of singular vectors in S4t*05+ g M(5+),

b E No. So, the expression for L(5+) is either

L(5+) = M(5+) - M(5_) - bM(1_),

or

L(5+) = M(5+) - M(5_) + (ns_, 1 - b)M(1_).

Now use the decompositions

S*0 5+ 3. 3- 3- e 3 -4_ 4. 5

S2 [*05- 1- q 3-e _ D 2-4_ D 3- 5
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to deduce that the graded piece of L(5+) with h weight 4 has, in the Grothendieck

group of H3 representations, one of the following two decompositions:

L(5+)4 = M(5+)4 - M(5_)4 - b -M(1_)4

= Sab* - 20* @ 5_ - b - 1_

= 3-3+3-3+3-4_+4-5_ -1_-3 -3_ -2-4_ -3-5--b-1_

= (-1-b) -1+2-3 +2-3+4-+5_,

or

L(5+)4 M(5+)4- M(5_) 4 + (a - b) - M(1_)4

= (n5_,_ - 1 - b) -1-+2 -3-+2 -53-+4_ +5.

These are decompositions of an actual representation of H3 , so all the coefficients

need to be nonnegative integers. -1 - b can never be more than -1, so the correct

decomposition is the second one, n 5 _,1 = 1, b = 0, and the correct formulas for both

irreducible modules are

L(5-) = M(5_) - M(1_)

L(5+) = M(5+) - M(5-) + M(1_).

To describe the module L(1+) we use Theorem 3.2.4. It says that its support,

when viewed as a C[4] module, is the set of a E 4 such that #{i6 divides di(W)} =

#{i16 divides di(W,)}. Degrees of H3 are 2, 6, 10, so the size of that set is 1. Maximal

parabolic subgroups W of H 3 are Coxeter groups obtained by deleting a node from

the Coxeter graph of H3, so they are A1 x A1 , 12(5) and A2. The degrees of their basic

invariants are: d1 (A1 ) = 2, d1 (12(5)) = 2, d2(12(5)) = 5, d1 (A2 ) = 2,d2(A2) = 3. Since

6 does not divide any of them, theorem implies that support of L(1+) is just 0 E .

Thus, its Hilbert-Poincard series does not have a pole at t=1, so it is a polynomial,
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and L(1+) is finite-dimensional.

We know that the expression L(1+) in the Grothendieck group is of the form

L(1+) = M(1+) + n14,5 ,M(5+) + ni+,_M(5_) + ni,, 1 M(1_).

The characters of these representations relate in the same way. Substituting the

known expression for character of M1 ,c(T) and evaluating at g = 1, we get that

z-1 5z 5z 2  z4
chL(l+)(Id, z) = +3 -z 3 +fnL+,5 - ) 3 + ni 1- 3

(1-z)3 j,5 (1 - Z)3 (1-Z)3 (1-Z)3

must be regular at z = 1, i.e. that

Z' + n1 +,5 + -5z + ni]+, 5 - 5z2 + nis,1_ -z4

must vanish to order 3 at z = 1. Solving this system we get that the only case

when this happens is ni,, = ni,,1 = -1, ni,_ = 1, so the Grothendieck group

expression is, as claimed,

L(1+) = M(1+) - M(5+) + M(5_) - M(1_).

It is now an easy computation of H3 characters in S21)* 0 1+ to see that the character

is equal to

Tri (g)z- 1 + Tr3 _ (g) + Tri (g)z.

Looking at lowest h weights again, we see that no module other then L(1+) can

be finite-dimensional, which completes the proof.
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4.6 Calculations for c = 1/5

Theorem 4.6.1. Irreducible representations in category 0 1/ 5 (H3 , 1j) have the follow-

ing descriptions in the Grothendieck group:

L(1+)

L(1_)

L(3+)

L(3_)

L(3+)

L(4_)

L(4+)

L(4_)

L(5+)

L(5_)

= M(1+)

= M(1_)

= M(3+)

= M(3_)

= M(3+)

= M(_)

= M(4+)

= M(4_)

= M(5+)

= M(5_)

- M(4) + M(3+)

- M(4+) + M(1_)

- M(1_)

-M(3+)

None of these representations is finite-dimensional.

In this case, hi/(r) = 1 - . EEs sir are as follows (see Table 4.5):

1+ 1- 3+ 3_ + 3_ 4+ 4- 5+ 5_
-3/2 9/2 5/2 1/2 5/2 1/2 3/2 3/2 9/10 21/10

Table 4.5: h115 r)

An observation we can immediately make by restricting the representations to the

S1 subalgebra is that there are no finite-dimensional modules at c = 1/5, because

those would have integral weights. We can also immediately say that M(5+) and

M(5_) are simple.

Taking into consideration Lemma 4.3.2, draw the remaining 8 representations

schematically as

110



-3/2 -1/2 1/2 3/2 5/2 7/2 9/2

1+ 4- 3+

3+

34+ 1-
3-

This picture means that n,, can only be nonzero if r and o are on the same line,

and o- is to the right of r. The fact that there are now two lines takes into account

the second part of Lemma 4.3.2, meaning the action of a central element -Id E H3.

From this we conclude that modules M(3+), M(3+) and M(1_) are also simple.

To describe L(4_), it is enough to calculate

[* 0 4_ E 4+ E 5+,

and use Lemma 3.2.3 to conclude

L(4-) = M(4-) - M(3+).

To describe L(1+), use Theorem 3.2.4 again. The denominator of 1/5 divides just

one of the degrees of basic invariants of H3 , namely 10. Thus, the support of this

module is the set of all a E [3 whose stabilizer contains 12(5), which is a 1-dimensional

set (union of lines). That means that the character of L(1+), which is of the form

chL(l+) = chM(1+) + n 1 ,4 _ - chL(4 _) + n1 +,3 + - chL(3 +) + nl,5+ - ch

has a pole of order 1 at z = 1, i.e. that the function

z-3/2 + 4n,+,4 t3 /2 + 3n,+,3 +z 5/2 + 3ni+z 5/2

vanishes at z = 1 to order 2. This translates into: nl1 ,4 _ = -1, n1 ,3+ + n,= 1.
This means that there is a 4 dimensional set of singular vectors in M(1+)3/ 2 ; using

the fact that [V* 0 4_ a 3+ D 4+ E 5+, we conclude they span a copy of L(4_), so
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n1+ i+= 1, ni,3, = 0, and the Grothendieck group expression is:

L(1+) = M(1+) - M(4-) + M(3+).

To calculate the characters of L(4+), L(3_) and L(3), let us do more computa-

tions of characters of H3. Namely, we use their characters to see that the multiplicity

of 1_ in S3 * 0 4+ is 1, the multiplicity of 1_ in both S44* 0 3_ and S4 4* 0 5_ is 0,

and that 4+ appears with multiplicity 1 the decomposition of r* 0 3_ and not at all

in the decomposition of r* ,9 3_. From this we can conclude:

L(3_) = M(3_)

L(4+) = M(4+) - M(1-)

L(3) = M(3_) - M(4+) + M(1_).

4.7 Calculations for c = 1/3

Theorem 4.7.1. Irreducible representations in category 0 1y 3 (H3 , [) have the follow-

ing descriptions in the Grothendieck group:

L(1+)

L(1_)

L(3+)

L(3_)

L(3+)

L(3_)

M(5+) + M(4_)= M(1+)

=M(1_)
= M(3+)

= M(3_)

= M(3+)

= M(3-)
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= M(4_)

L(4+) = M(4+) - M(5_) + M(1_)

L(5_) = M(5_) - M(1_)

L(5+) = M(5+) - M(4_)

None of these representations is finite-dimensional.

The constants hi/ 3 (T) = 22- 1 es sI, are as follows (see Table 4.6):

1+ 1- 3+ 3- 3+ 3- 4+ 4- 5+ 5-
-7/2 13/2 19/6 -1/6 19/6 -1/6 3/2 3/2 1/2 5/2

Table 4.6: hi/ 3 (r)

Thus, M(3+), M(3_), M(3+) and

fall apart into two families:

-7/2 -5/2 -3/2 -1/2 1/2
e p p p

1+ 5+

M(3_) are simple. The other standard modules

3/2
-0

4-

5/2 7/2 9/2 11/2 13/2
p p p p

4+ 5_
p p

1~

So M(4_) and M(1_) are simple too. To describe L(5+), calculate

0(9 5+ L 3_ ED 3_ 4_ e 5_,

and conclude using Lemma 3.2.3

L(5+) = M(5+) - M(4_).

Next, let us describe L(1+). Again, the number of degrees of basic invariants that

3 divides is 1 (namely, d2 = 6). The support is the set of all a E ( that have stabilizer

containing A 2 , which is a union of lines. So, the character of L(1+) evaluated at
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g = Id has a pole of order 1 and the function

z-7/2 + n1+'5 + - 5zi/ 2 + n1 ,4 _ - 4zs/2

has a zero of order 2 at z = 1. Writing out this condition gives ni,,5 , = -1,

nis,4_ = 1, so the expression for L(1+) is:

L(1+) = M(1+) - M(5+) + M(4_).

Next, we want to describe the structure of L(5_). As explained before, all the

standard modules M1,c(r) have a contravariant bilinear form B on them, whose kernel

is Ji,c(T). The form respects the grading of M1,c(T), in the sense that graded pieces of

M1,c(r) are orthogonal to each other. Let the restriction of the form B to Sk, *-r be

called Bk. It is easy to compute Bk recursively on k using MAGMA algebra software.

If

L(5_) = M(5_) - a - M(1_),

then the rank of the form B 4 on M(5_) is

dim L(5-)13/2= dim M(5_)ia/2- a -dim M(1)13/2= 75 - a.

Calculating the rank of the same B 4 in MAGMA, we get that it is 74; hence, a = 1

and

L(5_) = M(5_) - M(1-).

To do L(4+), notice that the multiplicity of 5_ in Sl * 0 4+ is 1, that the multi-

plicity of l_ in S' * 0 4+ is 1, and that the multiplicity of 1_ in S4 * 0 5- is 2. So,

writing out the condition that the multiplicity of 1_ in L(4+) must be nonnegative,

we get that the expression for it is

L(4+) = M(4+) - M(5_) + M(1_).
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4.8 Calculations for c = 1/2

Theorem 4.8.1. Irreducible representations in category 0 1/ 2(H3 , f4) have the follow-

ing descriptions in the Grothendieck group:

L(1+)

L(1_)

L(3+)

L(3_)

L(3+)

L(3_)

L(4+)

L(4_)

L(5+)

L(5_)

M(1+)

M(1-)

M(3+)

M(3_)

M(3+)

M(3-)

M(4+)

M(4_)

M(5+)

M(5_)

- M(3_) - M(5_) + M(5+) - M(5_) + M(3+) + M(3+) - M(1_)

- M(1_)

- M(5+)

- M(1_)

-M(5+)

+ M(5_) - M(3+)

+ M(5-) - M(3+)

- 2- M(5_) + M(3+) + M(3+) - M(1-).

- M(3+) - M(3+) + M(1_)

The following of these representations are finite-dimensional: L(1+) (dim = 115),

L(3_) (with chL(3 _)(z, g) = Tr_ (g)z-1 + Tr1 (g) + Tr3a(g) + Tr3 (g)z) and L(_)

(with chL(3-)(g)z = Tr_ (g)z- 1 + Tr4 (g) + Tr_ (g)z).

In this case, hi/2(-r) = 2 - 1 Zse. s IT are (see Table 4.7):

I1+ 1- 3+ 3 5+ - 4+ 4- 5+
-6 9 4 -1 4 -1 3/2 3/2 0 3

Table 4.7: hi/2 (r)

So, M(4-) and M(4+) are simple.

Graphic representation of Lemma 4.3.2 is now
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-6 -1 0 3 4 9

1+ 3_ 5+ 5_ 3+ 1-

3+

Again, M(1_) is simple.

Let us first analyze L(3_) and L(3_). In both cases

dim Hom(5+, * ® 3_) = dim Hom(5+, f* 0 3_) = 1,

so by Lemma 3.2.3 there is a 5-dimensional set of lowest weight vectors at h weight

0. The dimension of both of these modules at h weight 2 is

3- ( 2) (2+2) = 0.
2 2

This means both these modules are finite-dimensional, and we can immediately de-

termine their characters by decomposing weight spaces at h weights 0 and 1 into H3

irreducible representations. They are:

chL(3 _)(z, g) = Tr 3 _ (g)z 1 + Trl+(9) + Ir3+(9) + Tr3- (9)z

chL( _)(g, z) = Trg (g)z~1 + Tr4 +(g) + Tr5_ (g)z.

To express them in terms of characters of standard modules, write them in the

Grothendieck group as

L(3-) = M(3-)-M(5+)+n3 _,5 M(5_)+n3 _,3 M(3+)+n3 _,, M(3-)+n3 _,1_M(1_)

L(3_) = M(3_)-M(5+)+ng_,_ M(5-)+ns_,3+M(3+)+ns_,i+M(3_)+ng_,1_M(1-).

Then write the condition that dimensions of all h weight spaces above 2 must be 0 (it is

enough to write the equations for weights 3, 4 and 9). This produces linear equations

in n-,. with solutions: n 3 _,5- = ng_,5_ = 1, n3_, 3 ++ nsi = n5_,3++ n -_ =

-1,n3_,1_ = n5_,1_ = 0. Finally, writing the H 3 character of M(3_) 4 - M(5+)4 +
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M(5_)4 we conclude it is isomorphic to 3+, whereas M(3_) 4 - M(5+)4 + M(5_) 4 a

3+, so the required expressions are:

L(3_) = M(3-) - M(5+) + M(5-) - M(3+)

L(3_) = M(3_) - M(5+) + M(5-) - M(3+)

Remark 4.8.2. Values of c for which modules with zero set of W invariants exist are

called aspherical. The module L1/ 2(3_) we just described has no H3 invariants and

so shows that c = 1/2 is an aspherical value for (H3 , t). In particular, '41/2,3/2 from

section 3.2.10 is not an equivalence of categories.

We use MAGMA to calculate the rank of the form B 5 on M(3+) and on M(3+)

and in both cases get 62. This means there is a 3 -Q - 62 = 1 dimensional kernel,

and that

L(3+) = M(3+) - M(1_),

L(34) = M(34) - M(1_).

To analyze L(1+), note that the number of degrees of basic invariants of H3, that

2 divides is 3 (all the degrees 2, 6 and 10 are even). This is bigger then the number

of even basic invariants of any parabolic subgroup of H3 except H3 itself, so the

support of L(1+) is the set of elements of t fixed by the entire H3, i.e. just a zero

dimensional set consisting only of the origin. That means that the module L(1+) is

finite-dimensional.

Remark 4.8.3. Notice that the previous argument depended only on the denominator

of c = 1/2; it actually proves that L1,r/2(1+) is finite-dimensional for all odd r > 0.

Now we use MAGMA [11] to calculate the rank of the form B restricted to

M(1+)-1 = S5 * & 1+. This is 21 dimensional space, and the rank of the form

is 15. Since both 3_ and 3_ appear in the decomposition of S5t* into H3 subrep-

resentations, and each of them with multiplicity 2, we need some more calculations

to see how this 6 dimensional space of singular vectors looks. To do that, again use
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MAGMA to compute the H3 character on the 6 dimensional kernel of B on M(1+)-1-

This computation shows that the kernel is 3_ D 3_, so ng,3- = ng,= 1.

Because L(1+) is finite-dimensional and has an s[2 representation structure, we

know that dim L(1+)j = dim L(1+)-j for every integer j. This gives us a system of

linear equations whose only solution yields the following expression for the irreducible

module:

L(1+) = M(1+) - M(3_) - M(3-) + M(5+) - M(5_)+

+nl+,3 ,M(3+) + n 1 ,gM(3+) - M(1_)

with nli, 3 + + = 2.

To calculate nl,34, n g,, we make the following observation. As the copy of 5[ 2 in

Hi,c(H 3, 1) commutes with H3 , for any H1 ,c(H 3, j) module M and any irreducible rep-

resentation T of H3 we can put the 5[2 module structure on HomH3 (r, M) by letting s[2

act on the value. If M = L(1+), then this module is finite-dimensional, so dimensions

of weight spaces are symmetric around 0. In other words, dim HomH3 (7, L(1+) ) =

dim HomH3 (T, L(1+)j). Doing this computation for r = 3+ and j = 4 gives us that

this dimension is dim HomH3 (3+, S2t*) =0.

Representations of A5 and H3 are defined over the field Q[v5A], which is a field

extension of Q of degree 2. The Galois action of Z2 corresponding to this extension

is v/5 -+ -v5. It acts on all characters, and it is clear from the character table 4.1

that the action of the Galois group on the character of a representation V of H3 is

trivial if and only if

dim HomH3 (3-, V) + dim HomH, (3+, V) = dim HomH3 (3, V) + dim HomH3 (3+, V)

in other words, if, seen as a representation of A5 and decomposed into irreducible

subrepresentations, V has the same multiplicity of 3 and 3.

Calculation of the H3 characters for L(1+)- 4 and L(1+)4 = S10r* g 1+ - S50* 0

(3+ @ 3+) + S40* 5+ - S 0* S 05- + n, 34 3++n 3+ (an elementary computation

of H3 characters, though a tedious one) show the character of L(1+)- 4 is invariant
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under the above Galois action, and that the character of L(1+)4 (which is the same) is

invariant if and only if n1 ,3, = nl . So, they both have to be 1, and the character

is, as claimed in the theorem,

L(1+) = M(1+) - M(3_) - M(3_) + M(5+) - M(5_) + M(3+) + M(3+) - M(1_).

4.8.1 Cherednik algebra H1/2(2 2 x Z2, [') and calculation of

L(5_)

We will calculate L(5_) using the induction functor from section 3.2.7. To do that,

let us first describe the algebra we will be inducing from.

A way to get a maximal parabolic subgroups of Coxeter groups is to remove one

vertex from the Coxeter graph, which corresponds to removing one generator. In this

case, let us remove the middle vertex of the H3 graph, and thus get a disconnected

graph

S e

of Z 2 x Z2. In the isomorphism H3 2 x A5 , we can take the Coxeter generators

of H3 to be si = -(12)(34), s2 = -(15)(34), s3 = -(13)(24). Then the generators of

W = Z2 X Z2 are si, s3. Let us write the character table of Z2 x Z2, with the main

purpose of introducing notation and names of representations: see Table 4.8.

Id -(12)(34) -(13)(24) (14)(23)
1++ 1 1 1 1
1+- 1i 1 -1 -1
1-+ 1i -1 1 -1

11 1 -1 -1 1

Table 4.8: Character table for Z2 x Z2

Working out the irreducible modules L 1/2 (T), T E W' is really easy in this case.

They have the lowest weights given in table 4.9. So using only Lemma 3.2.3 and the
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1++ 1+- 1-+ 1--
0 1 1 2

Table 4.9: hi/ 2 (T), -r irreducible representation of Z2 x 22

fact -' G 1- ® 1+-, we get that the module

L1/2(1++) = M 1 /2 (1++) - Mi/2 (1+-) - Mi/2 (1-+) + Mi/2 (1--)

is a one dimensional representation of H1/2 (2 2 x Z2, W').

Let b be any point whose stabilizer is this copy of Z2 x Z 2 . We are going to apply

the induction functor Indb to the one dimensional module L1/2(1++). Before we do

that, let us decompose all the representations of H3 into representations of Z2 x Z2:

Id -(12)(34) -(13)(24) (14)(23)

1+ 1 1 1 1 1++
1- 1 -1 -1 11-

3+ 3 -1 -1 -1 1-+D1+-D1--
3- 3 1 1 -1 1-+ 1-D1++
3_ 3 -1 -1 -1 1 1+- E 1--
3_ 1 1 1 -1 1+-E1++

4+ 4 0 0 0 1--E1-+G1+-E1++
4_ 4 0 0 0 1--E1-+E1+- 1++

5+ 5 1 1 1 1--E1-+E1+_E2-1++
5- 5 -1 -1 -1 2-1__E1-+E1+-E1++

Table 4.10:
Z 2 x Z2

Decomposition of irreducible representations of H3 as representations of

So, using Proposition 3.2.5, the expression in the Grothendieck group of 0 1/ 2 (H3 , [)

for the induced module Indb(L1/ 2 (1++)) is

Indb(Ll/2(1++)) =

= Indb(Mil/ 2 (1++)) - Ind(Ml/2(1-+)) - Indb(Ml/2 (1+-)) + Indb(Ll/2(1--))

= M(1+) - M(3+) - M(3+) + M(5_) + M(5+) - M(3_) - M(3_) + M(1_).
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This means there is a module in 01/2(H 3 , 4) with this expression in the Grothendieck

group. Its composition series must contain an irreducible module containing M(1+)

in its Grothendieck group expression, and there is only one such. Subtracting the

known Grothendieck group expression of L(1+) from the one for Indb(Ll/2(1++)), we

get that there must exist a module with Grothendieck group expression

2(M(5_) - M(3+) - M(5+) + M(1_)).

Now, Lemma 3.2.3 and the decomposition of r* @ 5_ into irreducible subrepre-

sentations imply that the irreducible module L(5_) is of the form

L(5_) = M(5_) - M(3+) - M(3+) + a - M(1_),

with a E Z. There are 3 copies of 1- in M(5_) 9 , 2 copies of 1- in M(3+)9 and 2

copies of 1_ in M(3+)9 , so 3 - 2 - 2 + a > 0 and a > 1.

Subtracting two times this expression from the above expression for the module

we concluded must exist, we get that there also must be a module with Grothendieck

group expression

2(1 - a)M(1_),

i.e. that a < 1, so a = 1. This proves that the expression for the irreducible module

we wanted is

L(5_) = M(5_) - M(3+) - M(3+) + M(1_).

4.8.2 Cherednik algebra H 112(S3, j') and calculation of L(5+)

We start by doing the MAGMA computation of rank of B in degrees 3 and 4 we get

that it is 40 and 51, so the Grothendieck group expression is of the form

L(5+) = M(5+) - 2 -M(5-) + n 5-, 3 ,M(3+) + n5 ,^,M(5+) + n 5 ,1 _ M(1-),
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with n,, + n5-,3, = 2. Looking at the dimension of L(5+)k, which is a quadratic

polynomial in k with leading term j(1 + n5_,1)k 2 , and writing the condition that it

is > 0 for large k, we conclude n5_,1_ > -1.

To finish the analysis, we need to look at another Cherednik algebra associated to

a parabolic subgroup of H3, like in the last section. This time, remove the rightmost

vertex in the Coxeter graph, to get a group W' = S3 generated by si = -(12)(34),

s2 = -(15)(34). Its character table is very well known:

Id si (125)
# 1 3 2

1+ 1 1 1
1_ 1 1 1
2 2

Table 4.11: Character table for S3

Working out the irreducible modules L1/2 (r), T E W' is again really easy. The

lowest weights are

1+ 1-2

Table 4.12: hi/2(r), r irreducible representation of 3

The denominator of 1/2 is a degree of a basic invariant of S3, so the category

0 1/ 2 (S 3 , W') is not semisimple. So, Mi/ 2 (1+) is not simple (as the other two are).

Looking at the possible options and decomposing S2 j' 0 1+ = S22 = 2 D 1_, we

conclude L1/2 (1+) = M1/2 (1+) - Mi/2(1-)-

Now let b be any point with a stabilizer W' and apply Indb to L1 /2(1+). In the

same way as before (using decompositions of H3 representations into S3 irreducible

components, and applying Lemma 3.2.5), we get that there is a module in O1,c(H3, [)
with the Grothendieck group description

M(1+) + M(3-) + M(_) + M(5+) - M(5_) - M(3+) - M(5+) - M(1_).
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Subtracting L(1+), which has to be in its composition series, from it, and doing the

same thing for L(3-) and L(3_), we see that there is a module in 01,c(H 3 , fb) with

the Grothendieck group description

4(M(5+) - M(5_)).

L(5+) must appear as a factor in the composition series of this module 4 times.

So, subtract 4 -L(5+) from it to get that there exists a module with expression

4. M(5_) - 4 - n5_,3,M(3+) - 4 - n-,54 M(3+) - 4 - n 5 _,1_M(1_).

Subtracting the known expression for 4 -L(5-), we get that there must be a module

with expression:

4- (1 - ns_, 3+)M(3+) + 4 - (1 - n5 _,5M(+) - 4 - (1 + n5 _1 )M(1_).

This implies 1 - n5-,3+ > 0 and 1 - n 5 ,i, 0, which together with n5_,3, +

n5_,5+ = 2 means n 5 _,3+ = n5-,5+ = 1. The last module then becomes

-4. (1 + n 5 _,1_)M(1_),

so 1 + n 5 _,1 _ < 0, which means n5 _,1_ = -1. Therefore, we have

L(5+) = M(5+) - 2 - M(5_) + M(3+) + M(3+) - M(1_).

Remark 4.8.4. As explained before, for c = r/d, d > 3, we will use scaling functors

'1/d,r/d : 01,11d - 01,r/d from section 3.2.9 to get the descriptions of all modules

L1,r/d(r). Scaling functors are only conjectured to be equivalences of categories for

half integers, so instead of them for c = r/2 we use shift functors (bc,c+1 from section

3.2.9 to show equivalence 01,(r_2)/2 -+ 01,r/2- The functor (bcc+ is an equivalence of

categories if c is aspherical. For H3 , c = 1/2 is not aspherical, as the module L1/2(3_)

contains no H3 invariants. So, we do the analogous calculation for c = 3/2 and then
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check if 3/2 is aspherical.

4.9 Calculations for c = 3/2

Theorem 4.9.1. Irreducible representations in category 0 3 / 2 (H 3 , ()) have the follow-

ing descriptions in the Grothendieck group:

L(1+) = M(1+) - M(3_) - M(3_) + M(5+) - M(5-) + M(3+) + M(3+) - M(1_)

L(1_) = M(1_)

L(3+) = M(3+) - M(1-)

L(3_) = M(3_) - M(5+) + M(5_) - M(3+)

L(3+) = M1/2 (3+) - Mi/ 2 (1-)

L(3_) = M(3) - M(5+) + M(5-) - M(3+)

L(4+) = M(4+)

L(4-)= M(4_)

L(5+) = M(5+) - 2 - M(5_) + M(3+) + M(3+) - M(1_)

L(5_) = M(5_) - M(3+) - M(3+) + M(1_)

Three of these representations are finite-dimensional: L(1+), L(3_) and L(3_).

In this case, h3 / 2 (r) = 2 - 1 Zses 1ir are (see Table 4.7):

1+ 1 3+ 3 3+ 3- 4+ 4- 5+ 5-
-21 24 9 -6 9 -6 3/2 3/2 -3 6

Table 4.13: h3/ 2 (r)

Graphic representation of Lemma 4.3.2 is:
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1+ 3_ 5+ 5_ 3+ 1

3- 3+

The functor (D1/ 2 ,3/2 is an equivalence of 01/2/0+/2 and 03/2/ 2, we can con-

clude that the modules L(r) = L 3/2(r) for T E {4+, 4-, 5+, 5_, 3+,5+, 1-} have the

Grothendieck group expressions analogous to those in c = 1/2 case.

The argument from the previous chapter shows that L(1+) is finite-dimensional.

Calculating the rank of the form B15 and the character on the kernel lets us con-

clude that J(1+)- 6  3_ D 3. Solving the system of equations dim L(1+)k =

dim L(1+)[-k] in nl,, (it is enough to do so for k = 3,6, 9,24) gives all the coef-

ficients of the Grothendieck group, except nl+,3 and nlg,, for which we can only

conclude that their sum is 2. Then we look at the H3 characters on spaces L(1+)9 and

L(1+)-9 ; the condition that they must be invariant under the Galois group action

V5 -+ -V5 implies that nl+,3+ = n,,i+. This gives us the desired formula for L(1+)

in terms of M(o-).

To describe L(3_) and L(3+), we first use MAGMA to compute the rank of the

form B on the h weight space -3. In both cases we get that there is a 5 dimensional

kernel. Writing out the dimensions of graded pieces we can again conclude that these

modules are finite-dimensional, with the Grothendieck group expressions

L(3_) = M(3_) - M(5+) + M(5-) + na_, 3+M(3+) + na,54M(3+)

L(3) = M(3) - M(5+) + M(5_) + ni_,3+M(3+) + n_,gM(i+),

with n3 _,3 + na_,i+ = n_,3 + ni-,4= -1. Finally, looking at the trace of an

element (12345) on L(3_) and L(3), which of course needs to be 0, we can conclude

that all n,, are as in the statement of the theorem.

By inspection, all modules in 01,3/2 contain an H3-invariant. We conclude:

Lemma 4.9.2. Functors Dc,c+1: 0 1,c -+ c+1 are equivalences of categories for c =

r/2, r odd, r > 3.
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This lemma allows us to derive formulas for Grothendieck group expressions of

Li,c(r) in terms of M1,c(-r) for all c = r/2, r > 3. It is used in the proof of Theorem

4.2.1.
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Chapter 5

Representations of Rational

Cherednik Algebras Associated to

the Complex Reflection Group G12

5.1 The Group G12

In this chapter, we focus on rational Cherednik algebras associated to the complex

reflection group G12 in the Shephard-Todd classification [42]. It is a group of order

48, given by generators and relations (see [13]) as

G12 = (e, f, g I e2 2 2 1, (efg)4 
= (fge) 4 = (gef)4 ).

Alternatively, it can be realized as GL2 (F3) or as a nonsplit central extension of S 4

by Z 2. More precisely, there is a short exact sequence of groups

1 -+ Z2 -+ G12 -+ S4 -+ 1

with the map Z2 - G 12 given by -1 '-+ (efg)4 and the map G 12 -+ S4 given by

e -+ (12), f -+ (34), g '-+ (23). Its reflection representation 4 is two dimensional. For
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= e = + i, the reflection action is given by

1 (3 _ ( -_33 + i
2 (_(3 + ( -(3 + (

f (3
2 (3 _g

(3 - (
_(3 + ( )

0 -(
g (3 0)

The representatives of conjugacy classes in G12 are {id, (efg)4 , e, eg, ef, fg, efg, egf}.

It contains 12 reflections, all in the same conjugacy class with a representative e. The

character table of G12 is given in table 5.1.

1 (efg)4  e eg ef fg efg egf

size 1 1 12 8 6 8 6 6
order 1 2 2 3 4 6 8 8
1+ 1 1 1 1 1 1 1 1
1_ 1 1 -1 1 1 1 -1 -1
2 2 2 0 -1 2 -1 0 0
2+ 2 -2 0 -1 0 1 v/- -v -
2_ 2 -2 0 -1 0 1 -v/ \ / -2
3+ 3 3 1 0 -1 0 -1 -1
3- 3 3 -1 0 -1 0 1 1
4 4 -4 0 1 0 -1 0 0

Table 5.1: Character table of G12

As stated in the character table, G12 has two one-dimensional representations: the

trivial one we call 1+ and the signum one we call 1_. The reflection representation is

written as ' 2+ and its dual is r* j' 2-. Projection to S4 gives, in addition to both

one dimensional representations, another three representations 2, 3+ and 3_. Finally,

there is a four dimensional representation that can be realized as 4 2 2 0 2 2 2.

It should be noted that the names of the representations are chosen to encode the

dimension and the result of tensoring with the signum representation; for example,

2- 0 1 2+ and 2 0 1_ 2.

5.2 Main theorem

In this section we list the main results, which describe the structure of category

0 1,c for an arbitrary complex parameter c. We will write all fractions r/d reduced,
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and assume r, d > 0. Whenever c and the fact we are working in the Grothendieck

group are clear from context, we write L(T), M(r) instead of [Li,c(T)], [M,c(r)] for

readability.

Theorem 5.2.1. 1. If c is not of the form

c =m/12, m E Z, m = 1, 3,4,5,6,7,8,9, 11(mod 12),

then 0 1,c(G1 2, f) is semisimple and M1,c(T) = Li,c(r) for all T.

2. If

[L1,r/d(T)] = E nr,[M1,,/d(o-)],
01

then

[L1,,r/d(1_ 0 r)] = nr,u[Ml,r/d(1 0 o-)].

In particular, dim(Ll,r/d(r)) < oo iff dim(L1,-,/d(1_ 0 T)) < 00, and the char-

acter formulas for c = -r/d are easily derived from those for c = r/d.

3. The expressions for [L1,,/ldr)] for r > 0 and d E {2,3,4,12} are given below.

We include characters for those L1,,/d(r) that are finite-dimensional. For all

pairs (c, r) that don't appear on the list, MI,c(T) = L1,c(s)-

* d = 12, r = 1, 11, 17,19(mod 24)

L(1+)

L(2_)

= M(1+) - M(2-) + M(1_)

= M(2_) - M(1-)

Lr/12(1+) has dimension r 2 , and character

det .(1 - zrg) 1-r
chLg,,r/1)(z, g) = det . (1 - zg) X1+(g) - z
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e d = 12, r = 5, 7, 13, 23(mod 24)

L(1+)

L(2+)

L,/12(1+) has dimension r2 , and character

det (1 - zg)
chL1e,1 (+)(Z, ) = dete(1 - zg)

e d = 4, r = 1, 3(mod 8)

L(1+)

L(2+)

L(3+)

L(3_)

L(4)

= M(1+) - M(3+) + M(2+)

= M(2+) - M(3) + M(1_)

= M(3+) - M(2+) - M(4) + M(3_)

= M(3_) - M(1_)

= M(4) - M(3_)

L1,r/4(1+) has dimension 3r 2 , and character

chLir/4 (1+) (z, g) =
det . (1 - zrg)
det4.(1 - zg) .z-3r+ X2_ (g) . zl~2r)

L1,r/4(2+) has dimension 3r 2 , and character

det .(1 - zrg)
chL,, 4 (2+)(Z7 9) = detb.(1 - zg) ~ (X2+(g)

L1,r/4(3+) has dimension 3r 2, and character

detb.(1 - zrg)
chL g (3+) (Z) 9) "dete.(1 - zg) X34(g) -z
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. d = 4, r = 5, 7(mod 8)

L(1+)

L(2_)

L(3+)

L(3_)

= M(1+) - M(3+) + M(2_)

= M(2_) - M(3_) + M(1_)

= M(3+) - M(2_) - M(4) + M(3-)

= M(3_) - M(1_)

L(4) = M(4) - M(3_)

L1,r/4(1+) has dimension 3r2 , and character

det4(1 - zrg)chL1rg(1+)(g) 9 det4.(1 - zg) (xi+(g)

L1,r/4(2_) has dimension 3r 2 , and character

det4(1 - zrg)
ChLiri 4 (2-) (z, g) = det 4 (1 - zg) (X2_ (g)

L1,r4(3+) has dimension 3r 2 , and character

- z1-3r + X2 (g) - zi- 2 r)

. z + X14(g) -zl+r)_

ChL17 4(3 +)(Z, 9)
det4(1 - zrg)

det4.(1 - zg)
X3±(g) -

e d = 3, r = 1, 2(mod 3)

L(1+)

L(2)

= M(1+) - M(2) + M(1_)

= M(2) - M(1-)

L1,r/3(1+) has dimension 16r 2, and character

chL ,r 3 (1+)(Z g) = det1( Zg) (xi+(g) 'zl4r+X2_ (g).Z1 3r+X3+ (g)19-2r+
det,. (1 - zg)

+X4 (g) - Zl~' + X3+ (9) - Z + X2+ (9) - zl+r + X1+ (g) z1+2r)
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Sd= 2, r = 1(mod 2)

L(1+) = M(1+) - M(3+) + M(2)

L(2) = M(2) - M(3_) + M(1)

L(3+) = M(3+) - M(2) - M(1_)

L(3_) = M(3_) - M(1_)

L1,,/ 2 (1+) has dimension 12r 2 , and character

det* (1 - zrg) 6r +-5r+
chts,-n2(1+) (z, g) = - (X1+(g) - -'+ X2_(g) -zi-'

det .(1 - zg)

+X3+ (g) . zi- 4r + X4 (g) - z1 ~3r + X2 () z1 - 2r)

L1,r/2(2 ) has dimension 12r 2, and character

chLiri2 (2 )(z, g) = det-*!1 _ zrg) (X2 (g) - Z + X4 (g) - +
det4.(1 - zg)

+X3+ (g) z-2r + X2 (g) z-3r + X1( z1-4)

Proof. The proof of the first statement, about the values of c for which 0 1 ,c(G12, f)

is not semisimple, is obtained using Corollary 3.2.12 and inspecting the table A.3 of

Schur polynomials, which was calculated using the CHEVIE packet of the algebra

software GAP [38].

The statement (2), about translating character formulas from c < 0 to c >

0, comes from twisting the representations using the isomorphism H 1,c(G12, f)) 2

H1,-c(G1 2, f)) from Lemma 3.1.5.

We calculate the characters of L1,c(r) for c = 1/12, 1/4,1/3,1/2 explicitly in

sections 5.4, 5.5, 5.6 and 5.7. The characters for c = r/2, r/3, r/4, r/12 for r > 1 then

follow from these results using the scaling and shift functors 1 1/d,,/d from sections

3.2.9 and 3.2.10. We calculate the permutation W1/d,r/d in Lemma 5.3.1.

r-1
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Using this result, the expressions in the Grothendieck group for [M1 ,,/d(T)] in

terms of [L1,,/d(o-)] are immediate, and we include them for the sake of thoroughness.

Corollary 5.2.2. If

[Ml,r/d(r)] = tr,a[L1,r/d(T)],
or

then

[M1,_r/d(1_ 0T)] = E ir,,[L1,_r/d(1_ 0 0-)] .

The Grothendieck group expressions for standard modules in terms of irreducible mod-

ules are given below for all c = rid > 0. For pairs (c, r) that don't appear on the list,

M 1 ,c(r) =L,c(r).

Sd =12, r 1, 11, 17, 19(mod 24)

M(1+) = L(1+) + L(2-)

M(2_) = L(2) + L(1_)

Sd =12, r 5, 7,13,23(mod 24)

M(1+) = L(1+) + L(2+)

M(2+) = L(2+) + L(1-)

* d = 4, r = 1, 3(mod8)

M(1+)

M(2+)

M(3+)

M(3_)

M(4)

=L(1+) +

=L(2+) +

=L(3+) +

L(3+) + L(4)

L(3_)

L(2+) + L(4) + L(3_)

= L(3_) + L(1_)

= L(4) + L(3_) + L(1_)
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" d = 4, r = 5, 7(mod 8)

M(1+) = L(1+) + L(3+) + L(4)

M(2_) = L(2_) + L(3_)

M(3+) = L(3+) + L(2_) + L(4) + M(3_)

M(3_) = L(3_) + L(1_)

M(4) = L(4) + L(3) + L(1L)

" d = 3,r 1,2(mod3)

M(1+) = L(1+) + L(2)

M(2) = L(2) + L(1_)

" d = 2, r 1(mod 2)

M(1+) = L(1+) + L(3+) + L(1_)

M(2) = L(2) + L(3_)

M(3+) = L(3+) + L(2) + L(3-) + L(1_)

M(3_) = L(3-) + L(1_)

It is a direct calculation to derive the set of aspherical values for G12 from this data.

As the description of such values for any complex reflection group is an interesting

open question, we include the list here.

Corollary 5.2.3. The set of aspherical values of for G1 2 is

E(G12, ) = { -1 -1 - 2 f- -i-i- - - -11 }
Proof. It follows from Theorem 5.2.1. It is obviously enough to inspect the irreducible

134



modules and check for which c there exist L1,c(r) with no nontrivial G12-invariants.

According to Theorem 4.1 in [9], a module in 0 1,c(W, ) which has no nontrivial W-

invariants is either finite-dimensional or induced from a module in 0 1,c(W', u'), where

W' is a parabolic subgroup of W, and c is aspherical for W'. It is easy to see that the

only nontrivial parabolic subgroups of G12 are isomorphic to Z2 , and that the only as-

pherical value for Z 2 is c = -1/2. Indeed, the modules L-1/2 (1_), L-1/2(2), L-1/ 2 (3_)

have no W-invariants, and -1/2 is aspherical for G12 .

We are left with the task of examining the finite-dimensional modules for invari-

ants. First assume c > 0. It can be read off from the character formulas for the

finite-dimensional modules from 5.2.1 that all the L1,,/d(r), for 0 < r/d < 1, contain

an invariant, except Lr/4(3+). Checking values r/4 one by one we see that c = 1/4 is

indeed aspherical (with L1 /4(3+) containing no invariant), c = 3/4 and c = 5/4 are

spherical (L 3/4(3+) and L 3/4(3+) contain 1+ C S 2 '* @ 3+)- Finally, from the prop-

erties of shift functors at the end of section 3.2.10 it follows that if c is aspherical,

then every module in 0 c+1 contains both a W-invariant and a W-antiinvariant, so in

particular c + 1 is spherical too, and conclude that the only positive aspherical value

for G12 is 1/4.

Next, it is clear from the equivalence 0 1,c --+ 01,-c which is realized by twisting

by the isomorphism H1 ,c(W, ) -> H1,-(W, 4) that for c < 0 the module L1 ,c(r) has

no W-invariants if and only if the corresponding module L-c(l- 9 r) has no W-

antiinvariants. A similar computation as above, case by case, finishes the proof of the

corollary.

Finally, this data shows that, as expectedTheorem 3.2.4 (cited from [22]) about

supports of representations L1,c(triv) can not be trivially extended from Coxeter

groups to complex reflection groups. A corollary (3.3 in [22]) of Theorem 3.2.4 is

that for W a Coxeter group, c = n/m E Q - Z, W' C W a parabolic subgroup, and

di(W) degrees of a reflection group, the module dim L1,c(triv) is finite-dimensional if

and only if

# {i : m I di(W)} > # {i : m I di(W')}
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The degrees of G12 are d1 (G12) = 6 and d2(G1 2) = 8 (see [13]). Moreover, G12 has

a maximal parabolic subgroup isomorphic to Z2, with the only degree being 2. By

Theorem 5.2.1, L1, 1/12 (triv) is finite-dimensional. However, 12 { 6, 12 { 8, and 12 { 2,

so this does not hold for G12 .

5.3 Preliminary calculations

5.3.1 The permutation <p

Proposition 5.3.1. For d E {2, 3,4, 12} and r E Zyo relatively prime to d, the

permutation y = 01/d,,/d realizing the equivalence of categories (b1/d,,/d is as follows:

" If d = 2, then p = id;

" If d = 3, r = 1, 2(mod 6), then o = id;

" If d= 3, r= 4,5(mod6), then = (2+2_);

" If d = 4, r 1, 3(mod 8) then p = id;

" If d = 4, r = 5, 7(mod 8) then W = (2+2_);

" If d = 12, r 1, 11, 17,19(mod 24) then p= id;

e If d = 12, r 5, 7, 13, 23(mod 24) then W = (2+2_);

Proof. The calculation is explained in section 3.2.9, and analogous to the one in

Lemma 4.3.1. As there, it is enough to calculate W1/d,r/d for d = 2,3,4, 12 and

1 K r < 2d. The permutation for r differs from the one for r + d by a transposition

(2+2_), so it is enough to calculate them for 1 K r < d. For r = 1, W = id. We list

the values of the Galois group element g and 7 for all the remaining cases.

e d = 2, p = id;

e d = 3, r = 2, g = complex conjugation, q = -1, W = id;
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" d = 4, r = 3, g = complex conjugation, q = -1, o = id;

" d =12, r = 5, = e" 2 g( ) = -7 , r = -,p=( 2 +2 _);

" d = 12, r = 7, ( = ei/12 g( ) = (7, r = 1, <p = (2+2_);

" d = 12, r = 11, - eri/ 12 g() = -1, = -1, so = id.

We use this permutation to get formulas for transforming characters of irreducible

modules: if

[L1,1/d(T)] = nT,[M1,1d(o)],

then

[L1,r/d(W1/d,r/d(r)] = nr,a[M1,,/d(sP1/d,,/d(U))].
a

Using this and the formula for the character of M1,c(-r), we get:

Corollary 5.3.2. Let 71/d,r/d E Gal(Q(V Z)/Q) be the identity or complex conjuga-

tion, depending on whether s1/d,r/d is identity or transposition (2+, 2_). Then

chLlrd(r)(Z, 9) =
det9 ,ldrd(b*)(1 - zrg) 1

detb* (* - zg) 1 ' 71/d,r/d(chL1,1d(r) (9, Z)).

In particular, Ll,l/d(r) is finite-dimensional iff L1,,/d(s1/d,r/d(T)) is, with

dim(L1,,/d (Pl/d,,/d(r))) = r 2 dim(L1,1/d(r)).

5.3.2 Lowest h-weights

The constants hc(r) by which the grading element

dim -c s
i 2 sES

acts on lowest weights of modules in 0 1,c is easy to calculate directly, and given in

Table 5.2.
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Ir 1 1+ 1_ 2 2+ 2_ 3+ 3- 4|
ss 5Ir 12 -12 0 0 0 4 -4 0

hc(T) 1-12c 1+12c 1 1 1 1-4c 1+4c 1

Table 5.2: Lowest h-weights for G12

5.3.3 A-matrix

The following lemma appears in [45], and provides a simple yet computationally very

effective necessary condition on the structure constants n,, for the module L1,c(r) to

be finite-dimensional.

Fix r and c, and suppose the representation L1,c(r) is finite-dimensional. Write

[L1,c(r)] = E nr,,[M1,c(-)]. For g E W, consider det . (1 - gz) as a polynomial (or

a polynomial times a fixed fractional power of z) in z, and let z9,1 , zg, 2 be its roots.

Clearly, g '- {z,1, z9,2 } is constant on conjugacy classes.

Define a matrix A, with columns indexed by W and rows indexed by the ordered

pairs (g, i), for g a conjugacy class in W and i = 1, 2, by setting the element in the

row labeled by (g, i) and column labeled by o- to be equal to z,, T(g)

Lemma 5.3.3. If L1,c(r) is finite-dimensional, then the column vector [nr,,]E! is a

nullvector of A.

Proof. Since L1 ,c(r) is finite-dimensional, it follows that its character is a finite sum

of powers of z. On the other hand, it can be written as

Z7 n,,, -Tr,(g) . z
chL()(z, g) = det.(1 - zg)

For every z9,i, the denominator vanishes; since the character doesn't have a pole, the

numerator must vanish as well. This gives the desired claim. 0

The matrix A is easy to compute and gives a strong condition on n,o.. We compute

it using MAGMA, for variable c. The matrix and basis vectors for its null-spaces at

c = 1/12,1/4, 1/3,1/2 are given in tables A.1 and A.2 of the Appendix.
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5.4 Calculations for c = 1/12

Evaluating the expressions in table 5.2 at c = 1/12, we get the lowest h-weights in

table 5.3.

r 1+ 1- 2 2+ 2_ 3+ 3_ 4

h 1 2 (r) 0 2 1 1 1 2/3 4/3 1

Table 5.3: Lowest h-weights for c = 1/12

We use comments from section 3.2.4, saying that the necessary condition for n,,

to be nonzero is that h1/12 (c) - hi/1 2 (r) is a positive integer. From this immediately

follows that

Mi,i/12(1-) =Li,i/12(1-),

M1,1/12(3+) =Li,i/12(3+),

Mi,i/12(3_) =Li,i/12(3-).

By the same condition, the only M1 ,1112 (-) that can appear in the Grothendieck

group expressions for L 1 ,1 / 12 (T) for r = 2,2+, 2,4 is a = 1. In those cases the

difference hc(a) - hc(r) is 1, so the question is equivalent to checking whether there

exists a subspace isomorphic to o- in 0* 0 r which consists of singular vectors. We use

Lemma 3.2.3 which states that when hc(a) - hc(r) = 1, any such subrepresentation

a will consist of singular vectors. Decomposing these group representations into

irreducible subrepresentations, we get

S10* 0 2 c 4 Sl* 0 2+ 1+ G 3_

S10* 0 2_ a 1_ D 3+ S1f* 9 4 2 D 3+ eD 3.

From this it follows

M1,1/12 (2 ) = L1,1/12(2 ),

Mi,i/12(2+) = Li,i/12(2+),
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M1,i/12(4) = Lii/12(4),

[Li,i1/12(2_)] = [Mi,i/12(2_)] - [M1,i/12(1-) -

Similarly, we calculate the decomposition of S1*01+M1,i1 2(1+); it is S1 *@1+ =

2. By lemma 3.2.3, the entire graded piece Sl * 0 1+ = M1 ,1/ 12 (1+) 1 consists of

singular vectors, and L 1 ,1/12 (1+) is the trivial one dimensional representation. To

express it in terms of Verma modules in the Grothendieck group, we use that 2_ C

Sl[* 0 1+ generates a Cherednik algebra subrepresentation of M1 ,1/ 12(1+). This

subrepresentation is isomorphic to a quotient of M1 ,1 / 12(2_), which we saw was either

M1,1/12(2_) or L1 ,1/12(2_). Comparing dimensions of M1 ,1112(1+) and Mi,1/ 12 (2_)

in the h-eigenspace 2, we see that dim(M1, 1/ 12(2_) 2 ) = dim(j* 0 2_) = 4, while

dim(Mii/12(1+)2) = dim(S 2 * 0 1+) = 3, SO Mii/12(2_) cannot be a submodule of

Mi,1/12 (1+). Dimensions of Li,1/ 12(2_) and Mii/12 (1+) match in all higher degrees,

so we conclude J1 ,1/12 (1+) = L 1,1/12 (2_) and

[L1,1/12(1+)] = [M1/12(1+)]-[Lii/12(2_)] = [Mii/12(1+)]-[Mi, 1/ 12 (2_)]+[Mi, 1/ 12 (1-)]-

This module is one dimensional, and is the only finite-dimensional irreducible

module at c = 1/12. Its character corresponds to vector ei/ 12 in the table A.2 in the

appendix.

5.5 Calculations for c = 1/4

Using table 5.2, we get lowest weights for c = 1/4 in table 5.4.

-r 1+ 1- 2 2+ 2- 3+ 3_ 4

h 1/ 12 (r) -2 4 1 1 1 0 2 1

Table 5.4: Lowest h-weights for c = 1/4

It immediately follows that

M1,114(1_) = L1,1/4(1_).
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We will need the following decompositions:

S 2 * 0 3+ = 1+ e 2 E 3+ E 3-, S 4 * 03+=1+®2 e 2-3+ e2-3_

Sl * ® 2 = 4, S3 * 02 =2+ E2_ e-4

Sl * 9 2+ = 1+e3, S 3 * 9 2+ = 2 e 3+ eD 3

Sl * 9 2_ = 1_ e 3+, S3* 9 2_ = 2 D 3+ E 3_

Sll* 0 3+ = 2+ E 4

Sl4* 9 4 = 2 e 3+ e 3_, S 3 4* 094 =1+ E1- E2 eD2-3+®E2-3_

M 1,1 4(2 ) = L1 ,1/4 (2 )

M1,1/(2-) = L 1,1p(2_)

are simple, because 3_ and 1+ don't appear in the right weight space.

We will use the expression for LI, 1 4(2+) to study L1 ,1p(3_). First of all, lemma

3.2.3 implies that M1 ,1p4(2+) contains a quotient of M1,1/(3_). Comparing dimen-

sions in h-weight space 4, we see that this module cannot be M 1,1p(3-). So,

[L1,1/(3-)] = [M1, 1p(3-)] - [M1,114 (1_)]

[L1,1/(2+)] = [M1,1p(2+)] - [M, 1g(3-)] + [M 1,1/ 4(1_)].
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The latter is finite-dimensional.

To analyze M1,1/ 4(4), first use lemma 3.2.3 to conclude its Grothendieck group

expression is

[L1 ,1/4 (4 )] [M1 ,1/4 (4)] - [M1, 1 4(3-)] + n4 1_ [M1,1/4(1_)].

To find n4,1_, we calculate the rank of the form B in h-weight space 4 in MAGMA. We

find it is 7. Since dim3 (M 1,1/ 4 (4)) = 16, and dim 2(M1,1/ 4 (3_)) = 9, there exist two

possibilities. Either M 1,1/4 (1_) appears as a submodule of M1,1/4(4) and M1 ,1/4(3_),

or as a submodule of neither. While our methods cannot distinguish the two cases,

in both we can conclude

[L1,1/4(4)] = [M, 1/ 4 (4)] - [M1, 1/ 4 (3_)]

By lemma 3.2.3, we know that

[L1,1/4(3+)] = [M, 1/4(3+)]-[L 1,1/4(2+)]-[L1 ,1/4(4;)]imodules with lowest weight > 1.

Looking at dimensions in h-weight space 1, we see that L1 ,1/4(3+) is finite-dimensional.

Writing down the condition that its character must be a polynomial, which we do by

saying that it needs to be a linear combination of vectors in table A.2, we get

[L1,1/4(3+)] = [M1, 1/4 (3+)] - [M1,1/4 (2+)] - [M1, 1/4 (4 )] + [M1,1/4 (3-)],

which corresponds to -e .

Using MAGMA, we find that the form B restricted to M1 /4 (1+)o is zero. Therefore

M1,1/4 (1+) is finite-dimensional. Referring to table A.2 again, it is easily seen that

the only possible linear combination is e4 + el 4 , giving

[L1,1/4(1+)] = [M1,1/4(1+)] - [M1,1/4 (3+)] + [M1,1/4 (2+)]-
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5.6 Calculations for c = 1/3

First we calculate the lowest weights hc(r), see table 5.5.

r 1+ 1- 2 2+ 2_ 3+ 3_ 4
hi1/3(r) -3 5 1 1 1 -1/3 7/3 1

Table 5.5: Lowest h-weights for c = 1/3

Since hi/ 3 (1-) > hi/3 (r) for all r f4 1_, it follows that

M1,i/a(1_) = L1,1/3(1-)-

SImilarly, hi/ 3 (3±) - hi/ 3(r) V Z for all r / 3±, so

M1 ,1/3 (3+) = Li,1/3(3+)

Mi,i/3(3-) = L1,1/3(3-).

If M 1,1 13 (1-) is contained in Mi,1/ 3 (r) as a submodule for r = 2,2+, 2-, 4, then

1_ C M1,1/ 3 (r) 5 = S4f* 0 r. Decomposing S4h* 0 r in all of these cases, we get:

T 2 2+ 2_ 4

S4* @ -r 1+ Le1_ 2 (D3+(@3_ 2_02-4 2+e2-4 2-2+D2-2_E®2-4

Hence

M1 ,1/3(2+) = Li,1/3(2+)

M1,1/3(2_) = Li,1/3(2_)

M 1,1/3 (4) = Lii/3(4)

We see that S4h* 0 2 contains a copy of 1. Let us first analyze Li, 113(1+) and

return to the description of L1,1/3(2) after that.

S 4 [* 0 1+ = 2 e 3+, so it follows that M1, 1/ 3(1+) can contain a quotient of

M 1,1/3 (2). Using MAGMA, we compute the rank of the contravariant form B on
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M1,1/3(1+)1 = S 4 * 0 1+. It is 3 while the dimension of this graded piece is 5, so

M1 ,113 (1+) does contain a quotient of M 1,1/ 3(2). Calculating dim(M1,1/ 3(2 )5) = 10,

while dim(M, 1/ 3(1+) 5) = 9- So we conclude that the module M1,1/3 (2) cannot be

simple. Combining this with the above analysis we conclude

[L1,1/3 (2 )] = [M1,113 (2 )] - [M1,1 3(1-)]

[L1,1/3(1+)] = [M1,1/3(1+)] - [M1,1/3(2 )] + [M1, 1/3 (1-.

5.7 Calculations for c = 1/2

Using the expressions in Table 5.2, we find the following lowest weights for c = 1/2.

T 1+ 1- 2 2+ 2_ 3+ 3_ 4
h 112 (ir) -5 7 1 1 1 -1 3 1

Table 5.6: Lowest h-weights for c = 1/2

It immediately follows that

M1,1/2(1-) = L1,1/2(1-)-

We will need the following decompositions:

S4 * (33+=1+(1)2 E02-3+®D2-3_, S 8 * 0 3+ = 1+ E 1- D2 -2 D 4-3+ D 3 -3_

T 2 2+ 12_ 3+ 14

S 2 0* r 3+ E 3_ 2_ D 4 2+ E 4 1+ E 2 D 2+e2_eD2-4
3+ 23 3_

S6*rT 2+E2-3+( 2-2+e2_E 2+e2-_E 2-2+E202-E2_
2-3_ 2.4 2-4 5.4

M1,1/2(2+) = L1,1/2(2+)
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M1/2(2_) = Li,i/2(2_)

Mii/2(4) = L 1 ,1 /2(4)

are simple because 3_ and 1_ do not appear in the appropriate graded pieces.

Completely analogous to previous cases, we calculate the rank of B on the 6 di-

mensional space Mi,1/2 (2 )3 and get that it is 3. Comparing dimensions of Mi,1/2(2 )7

and Mi,1/ 2(3_) 7 (they are 14 and 15), we get

[Li,1/2 (2 )] = [Mi,1/2(2 )] - [M1,1/2 (3-)] + [M1,1/2 (1-)]

[L1/2(3_)] = [Mi, 1/ 2 (3_)] - [M 1,1/ 2 (1-)] .

Before considering Li,1/2 (3+), let us determine Li,1/ 2 (1+). Using MAGMA, we

find that the rank of B on M1 14(1+)- 1 is 2, while the space is 5 dimensional. So

Mi,i/2(1+) contains a quotient of M 1 / 2 (3+) starting at the h-space -1, and is hence

finite-dimensional. Since dim(Mi,1 /2 (1+)i) = 7, and dim(Mi,1/2(3+)i) = 9, it follows

that M1 ,1 /2(3+) is not simple, but contains a set of singular vectors isomorphic to 2

in h-space 1. Using decompositions S 2 * 03+ = 1+ 0 2 ( 3+ e 3_ and S6 * 91+ =

1+ ® 3+ D 3_ and table A.2, we obtain

[Li,1/2(1+)] = [Mi,i/2(1+)] - [M1 ,1/ 2 (3+)] + [M1 ,1/ 2 (2 )]

corresponding to e/

We know that

[Lii/2(3+)] = [Mi,i/2 (3+)] - [L1/2(2)] i modules with lowest weights > 1.

Using MAGMA, we find that B on Mi,1/ 2 (3+) 3 has rank 9 and conclude

[L1/2(3+)] = [Mi,i/ 2(3+)] - [Mi, 1/2 (2 )] + X - [Mi,1/2(1-)]

for some integer X.
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We will determine X using induction functors. Consider a point a 74 0 on a

reflection hyperplane. We know that the isotropy group of a is isomorphic to Z2-

Let e+, c- E Z2 be the trivial and sign representations. It is easily seen that the

irreducible representations of H1 /2(Z/2Z, E_) have Grothendieck group expressions

[L1,1/2(f-)] = [Mi,1/2(E-)]

[L1/2(6+)] = [Mi,1/2(E+)] - [Mi,i/2(6-)].

We now use proposition 3.2.5 to deduce

[Inda(L1,1/ 2 (E+))] = [Mii/2(1+)] - [Mi,1/2 (1-)] + [Mi, 1/2 (3+)] - [Mi,/2(3_)]

Using the expressions already determined, this can be rewritten as

[Inda(L1, 1/ 2 (E-))] = [L1,1/ 2 (1+)] + [Li, 1/ 2 (2 )]+2- [Lii/2(3+)] - (2X + 2) -[Li,/2(1-)]-

Therefore -(2X + 2) > 0 and X < -1.

Looking at the multiplicity of 1_ in S'4* 0 3+ (it is 1), in S6 (* 0 2 (it is 0), it

follows that l_ appears 1 -0+X > 0 times in Li,1/ 2 (3+) 7. This implies X = -1. So

[L1,1/2(3+)] = [M1/2(3+)] - [M1/2(2 )] - [M1,i1/2 (1-)].-

Finally, we check that all modules L1/ 2 (-r) have a nontrivial G12-invariant. This

means 1/2 is spherical for G 1 2 and that shift functors '1/2,3/2, CI 3/2,5/2, etc. are all

equivalences. So, the description of 01,1/2 can be used to describe Or/2 for all positive

r.
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Chapter 6

Rational Cherednik Algebras over

Fields of Finite Characteristic

For the remaining three chapters, let k be an algebraically closed field of positive

characteristic p. As before, W is a reflection group with a reflection representation

4 over k, and [* the dual representation. We continue the study of the rational

Cherednik algebra Htc(W, ) over k from Chapter 3.

6.1 Baby Verma modules Nt,c(T) and irreducible

modules Lt,c(T)

As explained in Chapter 3, the main difference to characteristic zero is that Htc(W, f)

has a large center, and all Verma modules Mt,c(r) have large submodules. We adept

the definition of category 0 to this situation.

6.1.1 Baby Verma modules

Let (S4*)w be the subspace of W-invariants in S*, and ((Sj*)w)+ the subspace

of W-invariants in S4* of positive degree. At t = 1, the subspace ((S4*)w)+ of p-

th powers of elements from ((S*)w)+, is central in Hi,c(W, 4). As a consequence,

((SA*)W)+M 1,C(T) is a proper submodule of Mi,c(r).

147



Definition 6.1.1. The baby Verma module for the algebra H1,c(W, [) is the quotient

N1,c(T) = N1 ,c(W, , r) = M1,c(r)/((S*)W) M1,c(r)-

Since (S,*)w is graded, N1,c(r) is a graded module. The subspace ((S*)w)+Mic(r)

is contained in KerB. To see this, let Z E ((S*)w)p be an arbitrary homogeneous

element of positive degree m, v E r and y E arbitrary. Then DY(Z 0 v) = (yZ).v =

(Zy).v = Z.(y.v) = 0, so Z 0 v is singular and therefore in KerB.

Because of this, the form B descends to the N1,c(r), and L1,c(r) can be alterna-

tively realized as the quotient of N1,c(r) by the kernel of the induced form.

To define baby Verma modules at t = 0, we use that ((S *)w)+ is central in

Ho,c(W, ), so ((S*)w)+Mo,c(r) is a proper submodule of Mo,c(r).

Definition 6.1.2. The baby Verma module for the algebra Ho,c(W, ) is the quotient

No,c(T) = No,c(W, [, T) = Moc(r)/((S *)w)+Moc(T).

By the same arguments as above, it is graded, the form B descends to it, and

Lo,c(r) can be alternatively realized as a quotient of Lo,c(r) by the kernel of B.

Next, we turn to basic properties of modules Lt,c(r) and Nt,c(r). We will need the

following lemma, which is a consequence of the Hilbert-Noether Theorem and can be

found in [43] as Corollary 2.3.2.

Lemma 6.1.3. For any finite group W, field F, and a finite-dimensional F[W]-

module j, the algebra of invariants (S4)w is finitely generated over F, and S is a

finite integral extension of (S )w.

The following proposition is unique to fields of positive characteristic.

Proposition 6.1.4. All Nt,c(T), and thus Lt,c(r), are finite-dimensional.

Proof. The Hilbert series of a baby Verma module is defined as

HilbN1 ,(,)(z) = dim N,c(r)iz', HilbNoc(r)(z) = dim No,c(r)iz'.
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The series at t = 0 and t = 1 are related by

HilbN1,c(,) (z) = ( HilbNoc(r)(z).

Because of this formula, and because Lt,c(r) is a quotient of Nt,c(r), it is enough

to prove the proposition for No,c(r).

Representation -r is finite-dimensional, so Mo,c(r) = So* 0 r is a finite module

over S3*. By Lemma 6.1.3, S * is a finite module over (S,*)w.

For any commutative ring R, maximal ideal m, and finite R-module M, M/mM

is a finite-dimensional vector space over R/m. Applying this to m = ((SO*)w)

R = ((S3*)w), and M = Mo,c(r), it follows that No,c(r) is finite-dimensional over

k. E

6.1.2 Modules Lt,c(T)

As in characteristic zero, Lt,c(-r) is irreducible. When proving this in characteristic

zero, we used the fact that there is a natural grading on Verma modules given by

the action of h, so all submodules are graded, and as none of them contains anything

from the lowest graded part r, their sum does not contain anything in r either and

it is a proper submodule. In characteristic p this fails, as h only induces a natural

Z/pZ-grading. There exist submodules of Mt,cr) which are not Z-graded.

Example 6.1.5. For any f E (S*)w, the subspace S *(1 + fp) ( T is a proper

submodule. The sum of all submodules of Mt,c(T) of this form equals Mt,c(r), so the

sum of all proper submodules of Mt,c(r) is the whole Mt,cQr).

However, the situation is better if we consider only graded submodules, or if we

let baby Verma modules take over the role of Verma modules. This is explained more

precisely by the following results.

To show irreducibility of Lt,c(r), we will need the following form of Nakayama's

lemma. Recall that the Jacobson radical of a commutative ring R, denoted rad(R), is

the maximal ideal that annihilates all simple modules, or equivalently, the intersection
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of all maximal ideals. Also recall that k[[xi, ... , x,,]] is local, so rad(k[[xi, ... , x,]]) =

(x 1 , .. . , n).

Lemma 6.1.6 (Nakayama). Let R be a commutative ring, I C rad(R) an ideal, and

M a finitely generated R-module. Let m1 , ... ,m E M be such that their projections

generate M/IM over R/I. Then, m 1,... ,m, generate M over R.

Lemma 6.1.7. Let Lt,c(T)+ be the positively graded part of Lt,c(r). If v 1 ,... , vm E

Lt,c(r) are such that their projections V1,... ,2 E Lt,c(r)/Lt,c()+ r span T over

k, then v1, ... , v generate Lt,c(r) as an SJ* module.

Proof. This is a direct application of Nakayama's lemma, with R = k[[x1, ... , X,

M = Lt,c (r), and I = (x1, . . . , x.) = rad(R). By Lemma 6.1.6, vi,. . . , v generate

Lt,c(T) as a k[[xi, ... , xn]]-module. Since Lt,c(r) is finite-dimensional, an infinite power

series really acts on M as a finite polynomial. E

Proposition 6.1.8. Lt,c(Tr) is irreducible for every c and T.

Proof. Let f be any nonzero element of Lt,c(T). We claim that it generates the entire

Lt,c(r) as an Htc(W, f) module.

If the projection f of f to Lt,c(T)o 2 r is nonzero, then the set of W-translates of f

spans the irreducible representation T, so by Lemma 6.1.7 the set of W-translates of f
generates Lt,c(-r) as an S* module, and f generates Lt,c(T) as an Htc(W, [)-module.

If the projection of f to Lt,c(T)o T is zero, write f = fi + --- + fd, with

fi E Lt,c(r) . The form B is nondegenerate on Lt,c(r), so f V KerB; it respects the

grading so there is some r > 0 such that f, g Ker(B). The form is bilinear, so there

exists a monomial ya' ... yn E Sij and v E T* such that B(fr, yal ... yanv) =/ 0. By

contravariance of B, and writing Di for D,, this is equal to 0 =, B(D ' ... Dn-f,, v) =

B(D -l -.- D~af, v). So, Dal ... Diaf is a nonzero element of Lt,c(r), with a nonzero

projection to Lt,c(T)o - r. By the previous reasoning, D al ... Da-f generates Lt,c(T)

as an Htc(W, f)-module, and thus f generates Lt,c(T) as an Htc(W, 4)-module. [

Corollary 6.1.9. The Verma module Mt,c(T) has a unique maximal graded submod-

ule.
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Proof. Consider the sum of all graded submodules. None of these submodules have

elements in Lt,c(r)o -r, since such elements generate the entire module, so their sum

is a proper submodule.

Corollary 6.1.10. The baby Verma module has a unique maximal submodule.

Proof. Let N be any proper submodule, and f E N arbitrary nonzero element. Write

f = fo + ... + fd, with ft in the i-th graded piece. Baby Verma modules are finite-

dimensional, N is a proper submodule, so a similar argument as in Proposition 6.1.8

implies that fo = 0. Thus, any proper submodule has zero projection to the zeroth

graded piece, and so the sum of all proper submodules is still proper. O

The unique maximal graded submodule of Mt,c(r) descends to the unique maximal

submodule of Nt,c(r). We will denote this unique (graded) maximal submodule by

Jt,c(r). The following corollary follows by irreducibility of Mt,c(r)/Ker(B).

Corollary 6.1.11. The kernel of B is Jt,c(r).

Thus,

Lt,c(T) = Mt,c(r)/J,c(r) = Mt,c(r)/Ker(B) _ Nt,c()/Ker(B) = Nt,c(r)/Jt,c(T).

6.1.3 Category 0

We now define category 0 of Hec(W, ) modules. The definition, which is somewhat

different than in characteristic zero, is justified by Example 6.1.5 and Proposition

6.1.13.

Definition 6.1.12. The category O ,c(W,j) is the category of Z-graded H,(W,)-

modules which are finite-dimensional over k.

We usually write Ot,c or 0 instead of O,c(W, f), when it is clear what the argu-

ments are.

The grading element h (or h') does not induce the natural Z grading on objects

in category 0 as it does in characteristic zero. We allow all Z grading shifts.
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Proposition 6.1.13. For every irreducible L E O(,c(W, j), there is a unique irre-

ducible W -representation -r and i ( Z such that L L Lc(W, ,r)[i].

Proof. Let L E Ot,c be any irreducible module in category 0. It is graded and finite-

dimensional, so there must be a lowest graded piece Li. Without loss of generality,

we can shift indices so that the lowest graded piece is in degree zero. Further, if

the degree zero part LO, which is a W-representation, is reducible, then the proper

W-subrepresentation of LO generates a proper Ht,c(W, )-subrepresentation of L. So,

LO T for some irreducible W-representation r. By Proposition 3.1.6, there ex-

ists a nonzero graded homomorphism #: Mt,c(-r) -+ L. Since L is irreducible, this

homomorphism is surjective, and L is isomorphic to Mt,c(-r)/Ker(#). Since Jt,c(r)

is the unique maximal graded submodule, Ker(#) = Jt,c(r) and the result follows.

Uniqueness follows from the fact that Lt,c(r)o r.

6.2 Characters

6.2.1 Definition and basic properties

The two definitions of characters are the same as in characteristic zero, in section 6.2.

In the following sections, we mostly use x instead of ch.

Definition 6.2.1. Let K(W) be the Grothendieck group of the category of finite-

dimensional representations of W over k. For M = eDMi any graded Hc(W, [)

module with finite-dimensional graded pieces, define its character to be the power

series in formal variables z, z- 1 with coefficients in K(W)

XM (Z) = [Mi]z ,

or the following function of g e W

chm(z) = ETr1Mu(g)zi,
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and define its Hilbert series as

HilbM(z) = dim(Mi)z .

If M is in category 0, it is finite-dimensional and its character is in K(W)[z, z-1].

The character of Mt,c(r) is

XMt,c(r) (Z) Si -]Tzi,
i>O

and its Hilbert series is

Hilbm,,cdim(-r)Hilb M,.r (z) = d.(T(1 - Z)

The character of Nt,c(r) depends on whether t = 0 or t / 0; they are related by

1-ZP n

XN1,c(r)(z) = XNo,cr)(ZP ' z

If W is a reflection group for which the algebra of invariants (S4*)w is a polynomial

algebra with homogeneous generators of degrees di,... dn, then the characters of baby

Verma modules are:

XNo,c)c - zdl)(1 d2 Zdn),

XN,c() (Z XM,c(rZ)( - Zpdl)(i zpd2) ... (1 Zpd).

The main focus of the next chapters is describing these modules for particular

series of groups W, in terms of their characters, or through describing the generators

for the maximal proper submodules Jt,c(T), or through describing the composition

series of baby Verma modules and Verma modules.

It is clear from the definition that

00

HilbLtc(r)(Z) = rank(Bi)z.
i=O
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The matrices Bi and their ranks can be calculated in many examples using algebra

software. We used MAGMA [11], and did these calculations for small examples in

order to form conjectures which became chapters 7 and 8.

6.2.2 Characters of Lt,c(T) at generic value of parameter c

By definition, the i-th graded piece of Lt,c(r) is, as a representation of W, equal to

the quotient of S' * 9 T by the kernel of Bi. Let us fix t and consider c = (c,),

as variables; Bi depends on them polynomially. Let kicail be the space of functions

from the finite set of conjugacy classes in W to k, and think of it as the space of all

possible parameters c.

Let d be the dimension of Sr* 0 r and let r be the rank of Bi, seen as an oper-

ator over k[c]. For c outside of finitely many hypersurfaces in kicil, the rank of Bi

evaluated at c is equal to r, and the kernel of Bi is some (d - r)-dimensional repre-

sentation of W, depending on c. All these representations have the same composition

series. (To see that, let V(c) be a flat family of W-representations, for example KerB

for generic c. Let for oi be all irreducible W-representations and iri their projective

covers. Then the number [V(c) : ai] of times ai appears as a composition factor in

V(c) is equal to the dimension of Hom(ri, V(c)). So, for generic c it is the same, and

for special c it might be bigger. But E[V(c) : o4] dim(o'i) = dim V(c) is constant,

so [V(c) : ui] does not depend on c, and all V(c) have the same composition series.

They might however not be isomorphic, because they might be different extensions

of their irreducible composition factors.)

The map c '-4 Ker(Bi) = Jt,c(r), defined on the open complement of hypersurfaces

in kkcQil, can be thought of as a rational function from ki"l'j to the Grassmanian of

(d - r)-dimensional subspaces of Si[* 0 -T.

For c in some finite family of hypersurfaces in the parameter space kicsi, the

rank of Bi evaluated at c is smaller than r, and the dimension of the kernel Jt,c(r)i

is larger then d - r. We want to use the above rational function to define a subspace

Jt,o(T)' C Jt,o(T)i at c = 0, which has similar properties to those Jt,o(r)i would have

if c = 0 was a generic point.
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If c = 0 is generic and rank of Bi at c = 0 is d, let Jt,o(r)' = Jt,o(r). Otherwise,

pick a line in the parameter space kic"I which does not completely lie in one of the

hypersurfaces, and which passes through 0. The composition of the inclusion of this

line to kconl and the rational map from k'c""l to the Grassmanian is then a rational

map from the punctured line to a projective space, and such a map can always be

extended to a regular map on the whole line. This associates to c = 0 a vector space

Jt,o(r)'. It generally depends on the choice of a line in the parameter space, and it

always has the following properties:

" dim(J,o(r)')i = r - d;

" J,o(r)' _ KerBi = J,o(r)i;

" J,o(r)' is W-invariant;

" J,o(r)' has the same composition series as Jt,c(r) for generic c.

By making consistent choices for all i (for example, by choosing the same line in the

parameter space for all i), one can ensure an extra property:

* Jt,o(r)' = EiJt,o(r)' is a Ht,O(W, ) subrepresentation of M,o(T).

So, this produces a subrepresentation Jt'O(r) at c = 0 such that the quotient

Mt,o()/Jt,o(r)' behaves like Lt,c(T) at generic c, even when c = 0 is not generic. In

particular, Mt,o(r)/Jt,o(r)' and Lt,c(r) at generic c have the same character.

Example 6.2.2. For W = GL 2 (F2), T = triv, the form B restricted to M1,c(triv)4 '

S4h* has a matrix, written here in the ordered basis (xi, x3x 2 , XX x 1 X X4):

c2 (c+1) c2(c+1) c2(c+1) c2 (c+1) 0

c2(c+1) c(c+1) 0 0 c2(c+1)

B 4  c2(c+1) 0 0 0 c2(c+1)

c2 (c + 1) 0 0 c(c + 1) c2(c + 1)

0 c2(c + 1) c2(c+1) c2(c+1) c2(c+1)
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When c 5 0, 1, this matrix has rank 4, and a one-dimensional kernel J1,c(triv) 4

spanned by x4 + XX + X. For c = 0, the matrix is zero and Ji,o(triv) 4 is the whole

S4(b*. The above procedure defines J1,o(triv)' to be k(X4 + XX + XI).

We will now draw conclusions about the character of Lt,c(r) for generic c using

information about Mt,o(r)/J',0 (r).

Lemma 6.2.3. Let M be a free finitely-generated graded Sj*-module with free gen-

erators b1 ,..., bin, and N a graded submodule of M. For f E S*, y E [, define

ou fbi = (o8f)bj. If N is stable under O8, for all y E [, then it is generated by elements

of the form >1 fibi for some fi E Sr*.

Proof. First, assume there is only one generator, so M S * as left S* modules.

Let N'= {fP I f E S[*} n N. We claim that S[*N'= N.

Clearly, S,*N' C N. To show that N C Sr*N', we need to show that any f E N

can be written as a sum of elements of the form h(xi, ... , x)f'(z,... , xp), for some

h E S * andf'(4, .. ., xp) E N.

As N is graded, assume f is homogeneous of degree d. Write it as

p-I

f = ZXIfi(4,X2, . ).,z)

i=O

The space N is stable under all partial derivatives, so for each j = 0, ... ,p - 1,

p-I

xzl8f = i(i - 1) ... (i - j + 1)xzfi(4, x2, -.. -. )
i=1

is in N. The coefficient i(i - 1) . .. (i - j +1) is zero for i < j and is nonzero for i =j,

so the matrix [i(i - 1) ... (i - j + 1)]i is invertible, implying that xIfi(4, X2 ,. .. , z)

is in N for all i, and therefore (after applying a'), also fi(x4, x 2 , .. . , X) E N.

Applying the same argument on each fi for x2, - , , it follows that f is of desired

form.

The claim for M ' eSJ*bi follows directly from the one for S4*. O

Let S(P)4* be the quotient of Sj* by the ideal generated by z4, ... xP.
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Proposition 6.2.4. The character of L1,c(r), for generic value of c, is of the form

XLi,c(r)(Z) = XS(p)F*(z)H(zP)

for H E Ko[z] character of some graded W-representation. In particular, the Hilbert

series of L1,c(r) is of the form

HilbLi,c(r)(z) = (-. h(z),
1-z

for h a polynomial with nonnegative integer coefficients.

Proof. As commented above, the character of L1,c(T) = M1,c(r)/J1,c(T) is the same

for all c outside of finitely many hypersurfaces, and it is equal to the character of

M1,o()/J1,o(r)'. At these values of parameter, t = 1 and c = 0, Dunkl operators

are particularly simple, and equal to partial derivatives: D, = &,. By the previous

lemma, J1,o(r)' is generated by p-th powers. Let fi (4, . . 1) 0 vi, for some fi E S*

vi E r, be these generators.

Define J* to be the (S4*)P-module generated by f(4i, ... xn) 0 vi. Let the reduced

module Rt,c(r) be the k[W] < Sr*-module defined as the quotient of S4* 0 r by the

ideal generated by fi(Xi,.... x,) 0 vi. Call its character (in the sense of Definition

6.2.1) the reduced character of Lt,c(r), and let H(z) E K(W)[z] denote it.

Consider the multiplication map

P: S(P)r* 0 ((S *)P 0 T)/J* s- r* 0 T/J1,o(T)'.

It is an isomorphism of graded W-representations, so it preserves characters. From

this it follows that for generic c,

XLi,c(r) (z) = XMi,o(r)/Ji,o(r)' (z) = XS(p) . (z) H(zP).

By inspecting the proof and using that c is nongeneric on a union of finitely many
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hypersurfaces, one can strengthen the claim of the proposition as follows: for any

hyperplane P passing through the origin in the space of functions from the conjugacy

classes of W to k, there exists a function Hp(z) E K(W)[z] such that, for c generic

in P, the character of L1,c(r) is of the form Xs(p)V(z)Hp(zP).

Corollary 6.2.5. Let t / 0 and c be generic. The module Jt,c(T) is generated under

S[* by homogeneous elements in degrees divisible by p. The images of such elements

of degree mp in the quotient

(J,c(T)/*J,c(T))mp = Jt,c(r)mp/[)*Jt,c()mp-1 C S m p[* 0 r/[*Jt,c(r)mp-1

form a subrepresentation of SmP:* 0 T/[*Jt,c(r)mp, whose composition factors are a

submultiset of composition factors of (Sm f*)P 0 T/([*Jt',0(r)mp1 n (Smv* 0& r).

Any such generator in degree mp is a singular vector in the quotient of Mt,c(r) by

the S *-submodule generated by all such generators from smaller degrees.

Proof. For representations a and o-' of G, let us write a -< a' if the multiset of

composition factors of a is a subset of the multiset of composition factors of -'. If o-

and a' are graded G representations, we write a -< a' if o-i -, o for all i. If o-< o-'

and a' 4 a, then [a] = [a'] in the Grothendieck group.

Let us first prove:

Jt,c(T)/*Jt,c(r) 4 Jt',o(T)/*Jt',o(T) 4 (S*)P 0 T/(t*J',o(T) n (S(*)P 0 r).

As Jt,c(r) is a deformation of J,o(r)', for any degree i > 0 we have, in the Grothendieck

group:

[Jt,o(T)'] = [Jt,c(T)i]

[Jt,o(r)'_1 ] = [Jt'c(r)i_1]

sJO()';1 4 *Jtoc(r)'_1

so

Jt,c(T)/0*Jt,c(r-) 4 Jt',O(r)/0*Jt'O(r).
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The statement Jt',o(r)/*Jj,o(r) :4 (S), & r/(*J',o(r) n (S*)P 0 r) follows from

Jt,O(r) being generated under S * by p-th powers (see Lemma 6.2.3).

The module Jt,c(r) is generated under Sj* by elements which have nonzero pro-

jection to Jt,c(-r)/[*Jt,c(r). Because of the above sequence of <, such elements only

exist in degrees divisible by p, and their images in Jt,c(-r)/*Jt,c(T) C SF*@T/0T*Jt,C(T)

form a group representation which is - (S *)P 0 T/(4*J',o(T) n (Sf*) 0 r).

For every v E Jt,c(r)mp and every y E 4, D.(v) E Jt,c(r)mp-1. So, if v is not

in 4*Jc(r).p_1, then its projection is a nonzero vector in Jt,c(T)/*Jt,C(r) with a

property that Dy(v) is zero in Jt,c(,r)/*Jt,c(T), in other words a singular vector. E

6.2.3 A dimension estimate for Li,c(T)

Lemma 6.2.6. Any irreducible H1 ,c(W, )-representation has dimension less than or

equal to p"|W|.

Proof. We begin with a definition, which will only be used in this proof. Let A

be an algebra. A polynomial identity is a nonzero, noncommutative polynomial

f(Xi, .. . , Xr) such that f(ai, .. ., ar) = 0 for all ai, . . . , ar E A. Given an alge-

braically closed field k, a polynomial identity algebra, or PI algebra is a k-algebra A

that satisfies a polynomial identity. We say a PI algebra has degree r if it satisfies

the polynomial identity S2r = E Ss, sgn(o-) J X0(i).

Our first claim is that H1 ,c(W, 4) is a PI algebra. By Proposition V.5.4 in [1],

A is a PI algebra if and only if every localization of A is also a PI algebra. By the

localization lemma (Proposition 3.12. in [24]), Hc(WV, f) H"' (W, 4). Thus, it

suffices to show that H 1,o(W, [) is a PI algebra.

Let Z be the center of H1 ,o(W, j). It is easy to see that Z = ((Sj)P)w ( ((S*)P). w

Z is commutative, so we can consider A' = Frac(Z) ®z H1,0(W, 3), which is an algebra

over the field Frac(Z). By Theorem V.8.1 in [1], this is a central simple algebra,

i.e. an algebra that is finite-dimensional, simple, and whose center is exactly its

field of coefficients. By the Artin-Wedderburn theorem, a central simple algebra is

isomorphic to the matrix algebra over a division ring. Thus, A' is isomorphic to a
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matrix algebra over some division ring. We would like to determine that dimension of

A'. We will write k[x, ... , yP] as shorthand for k[xp,... , xy P ,... , y!] and likewise

for k[xj, ... , y It is clear that

dimIrac(Z) A' = dimFrac(k[zy,...,yn}W) Frac(k[4, .. ., yP]w) k[X,...,,]w H1,(W, b) =

= dimRac(k[x,...,Yn]w) Frac(k[x , ... , y]w)

k[,...,,wk[x, ... , y'] k[., (W x k[x,... ,

We claim that if W acts faithfully on a vector space V, then,

dim~rac(k[ (,...,yg]W) Frac(k[V]W) Ok[V]w k[V] = IWI.

Choose some f E k[V] such that the W.f are distinct. It is clear that 1, f, ... , fIwi-1

is a basis. Thus, the left tensor product has dimension |WI over Frac(Z). The right

tensor product has dimension p2 IWI. Thus, dimFrac(z)(A') = (|Wlp")2 . By Corollary

V.8.4 in [1], an r x r matrix algebra satisfies s2,, so A' is a PI algebra of degree pIW|.

Since A' is a localization of H 1,0 (W, I), H 1,0(W, ) is a PI algebra of degree p"IWI, as

desired.

Thus, Hi,c(W, [) is a PI algebra of degree p"|W|. By Proposition V.6.1(ii) in [1],

an irreducible representation of a PI algebra of degree d must have dimension less

than or equal to d, and the result follows. E

Corollary 6.2.7. Let h be the reduced Hilbert series of L1,c(r) for generic c. Then

L1,c(r) has dimension h(1)p", and 1 < h(l) |W|.

6.2.4 Some observations, questions and remarks

Remark 6.2.8. In many examples we considered, in particular whenever W =

GLn(Fq) or W = SLn(Fq) and r = triv, h(1) is equal to 1 or to |WI. In many

other cases, it divides |WI. However, this is not always true. For W = GL2(Fp),

T = SP-2j, the order of the group is (p2 _ 1)(p 2 - p), and the reduced Hilbert series is
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p + (p - 1)z + pz2 . So, h(1) = 3p - 2, which does not always divide (p2 _ 1)(p 2 _p)

(for example, when p = 3).

Question 6.2.9. For h1(z) the reduced Hilbert series of L1,c(T) and ho(z) the Hilbert

series of L1,c(r), does the inequality

ho < hi

hold coefficient by coefficient?

There is computational data supporting the positive answer. In many examples,

particularly for W = GLn(F) and SLn(F,), the equality ho = hi holds. An example

when strict inequality is achieved is W = SL2 (F3 ), r = triv: the reduced Hilbert

series is hi(z) = (1 + z + z2 + z3)(1 + z + z2 + z3 + Z4 + z), and the Hilbert series of

Lo,c(r) is ho(z) = 1.

Recall that a finite-dimensional Z+ graded algebra A = esAj is Frobenius if the top

degree Ad is one dimensional, and multiplication Ai 9 Ad_ -- Ad is a nondegenerate

pairing. As a consequence, the Hilbert series of A is a palindromic polynomial.

The irreducible module Lt,c(triv) is a quotient of Mt,c(triv) 2 S-ui* by an H,c(W,)

submodule Jt,c(triv), which is in particular an S[* submodule. So, we can consider

it as a quotient of the algebra Sl* by the left ideal J,c(triv), and therefore as a

finite-dimensional graded commutative algebra.

Proposition 6.2.10. Assume that t, c, r are such that the top graded piece of Lt,c(triv)

is one dimensional. Then Lt,c(triv) is Frobenius.

Proof. Let us first prove: a finite-dimensional graded commutative algebra A =

e0__A is Frobenius if and only if the kernel on A of multiplication by A+ = ej>oAj
is one dimensional. One implication is clear: if A is Frobenius, the kernel is the one

dimensional space Ad. For the other, assume the kernel on A of multiplication by A+

is one dimensional. The top nontrivial graded piece Ad is always contained in it, so

Ad is one dimensional and equal to the kernel. Now assume there exists a nonzero

element an E An such that multiplication by an, seen as a map Ad_ -+ Ad, is zero,
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and let 0 < n < d be the maximal index for which such an an exists. As an isn't in the

kernel of the multiplication by A+, there exists some b E A+ such that anb / 0. We

can assume without loss of generality that b is homogeneous, b E Am, 0 < m < d - n.

Then anb E An+m, with n < n + m < d, is a nonzero element such that multiplication

by it, seen as a map Ad-n-m -+ Ad, is zero, contrary to the choice of n as the largest

such index.

Now assume that A = Lt,c(triv) has one dimensional top degree. Let 0 =/ f be in

the kernel of multiplication by A+. As the kernel is graded, assume without loss of

generality that f is homogeneous. Then xf = 0 E Lt,c(triv) for all x E [*, so x is a

highest weight vector. Under the action of Htc(W, [), f generates a subrepresentation

of Lt,c(triv) for which the highest graded piece consists of W-translates of x. As

Lt,c(triv) is irreducible, this subrepresentation has to be the entire Lt,c(triv), and f

is in the top degree, which is by assumption one dimensional.

Remark 6.2.11. In many instances we observed, the algebra Lt,c(triv) is Frobenius

for generic c and has palindromic Hilbert series. However, this is not true in general:

let k = F3 , W = S5 the symmetric group on five letters, [ the four dimensional

reflection representation {(z 1 , ... z5) c k'lz1+. . .+z5 = 0} with the action s.Zi = zs(i),

and r = triv. Then the Hilbert series of Lo,c(triv) is

(1 + z)(1 +z + z2 )(1+ 2z + 3z 2 +4z3 ).

We thank Sheela Devadas and Steven Sam for pointing out this counterexample to us.

6.3 A lemma about finite fields

We finish this section with a lemma which we frequently use in computations in the

next chapters.

Lemma 6.3.1. Let q = p' be a prime power. Let f E k[x1,x 2, - ,xn] be a polynomial
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in n variables, for which there exists a variable xi such that

deg, (f) < q - 1.

Then

f(Xi, ... X3) = 0.
X1,...xnEFq

Proof. It is enough to prove the claim for all monomials f for which deg, (f) < q -1.

First, if n = 1, then f = xT for some m < q - 1. Let Sm := ZiEF im . For every

j E Fq, j' m
Sr = jiEFq(j)m = Sm, which is equivalent to (1 - j m )Sm = 0 for all

j = 0. As m < q - 1, there exists somej such that 1 - j m $ 0, and so Sm = 0 and

the claim is true for polynomials in one variable.

If n > 1 and f = f' -x, with f' a polynomial in X1 ,.. .X_ 1 and m < q- 1, then

f(X1 , ... xn)= f'(Xi, .. Xz- 1) - ' =
X,...Xn EFq X1,...,xn-iEFq Xn EFq

f'(xi, ... Xn1) Sm = 0.
(Xi,,Xn-1)EMn-1

Remark 6.3.2. In particular, the assumptions of the lemma are satisfied by all f
such that deg(f) < n(q - 1).

163



164



Chapter

Representations of Rational

Cherednik Algebras Associated to

Groups GL (F r) and SLn(Fur)

Let q = p' be a power of characteristic p of the ground field k, and let Fq c k be a

finite field with q elements. In this chapter we study the case when W = GL,(Fq)

or W = GL,((Fq), and (j = k" is the tautological representation. Let 4F = F " be the

Fq-form of it.

7.1 GLn(Fq) and SLn(Fq) as reflection groups

7.1.1 Reflections in GLn(Fq)

Let us start by fixing some more notation and discussing conjugacy classes in GLn(Fq).
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For A E Fq, A # 0, let dA be the following elements of GL,(Fq):

A-' 0 0 --- 0 1 1 0 ... 0

0 1 0 --- 0 0 1 0 ... 0
forA41, d\= di 1 -0,d 1 = 0 0 1 -- o

0 0 0 --- 1 0 0 0 ... 1

GL,(Fq) can be though of as a subset of GL,(k) = GL( ). The representation [

is tautological, (Yi)1si<n is a tautological basis of ( = k", and (Xi) 1 i n is the dual

basis of r*. This means that the matrix of g E GLn(Fq) action on in basis (yi)i is g,

and the matrix ofits action on r* in basis (xi)i is (g-1)'. All dA are reflections, with

eigenvalues A-1 on j and A on

An element s E W is called a semisimple reflection if it is semisimple as an element

of GL(j) and it is a reflection; such elements are conjugate in GL(j) to some d\ with

A 4 1. An element of s E W is called a unipotent reflection if it is unipotent as an

element of GL(j) and it is a reflection; such an element is conjugate in GL(4) to

di, and has the property that sP = 1. Note that in characteristic zero, a unipotent

reflection generates an infinite subgroup, so considering unipotent reflections is unique

to working in positive characteristic.

Lemma 7.1.1. Reflections in GLn(Fq) are elements that are conjugate in GLn(Fq)

to one of the d\, A E F'. The group GLn(Fq) is generated by reflections. There

are q - 1 conjugacy classes of reflections in GLn(Fq), with representatives d\. Each

semisimple conjugacy class consists of (q~1)q 1 reflections. The unipotent conjugacyq-1

class (elements conjugate to d1) consists of (q1)(q'1) reflections.(q-1)

Proof. The semisimple conjugacy class associated to an eigenvalue A 4 1 consists of

conjugates of dA. Its centralizer is GL1(Fq) x GLn-i(Fq) c GLn(Fq), so the number

of reflections in this conjugacy class is IGLn(Fq)|/IGL1(Fq) x GLn-1(Fq)I = (q-14.

The unipotent conjugacy class is the orbit of di, which is centralized by any
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element of the form:
a b -- c

0 a -- 0

0f * *

Here, a = 0, the rest of the variables are arbitrary, and the bottom right (n-1) x (n-2)

submatrix is invertible. The order of the centralizer is q2 n- 3(q - 1)IGLn- 2 (F,)|, and

the order of the conjugacy class is (q"-1)(q--1)

Let CA be the conjugacy class of reflections containing dA. Let cA denote the value

of the function c on elements of CA.

The following lemma is a strengthening of Lemma 3.1.1 for the case W = GLn (Fq).

Lemma 7.1.2. There exists a bijection between the set of reflections in GLn(Fq) and

the set of all vectors a 0 av $ 0 in [N 0 4F such that (a, av) $ 1. The reflection s

corresponding to a 0 av acts:

on )* by s.x = x - (ax)a

on ) by s.y = y + (y,a) a
1 - (a, av)

Such a reflection s is semisimple with nonunit eigenvalue A = 1 - (av, a) on l* if

(a, av) 7A 0, and unipotent if (a, av) = 0.

Example 7.1.3. If n = 2, the parametrization of CA by a 0 av E (* 0 (F described

in Lemma 7.1.2 is as follows:

1 1- A- bd0aA 4 1: CA-+ { A d Ib,d E Fq} U { 0 0 a a E Fq}
b d 1 1- A

A = 1 :C1 -+ { 0 b , d E Fq, d 4 0 @ a EFqa O}.
b d 1 0
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7.1.2 Invariants and characters of baby Verma modules for

W = GLn(Fq) and W = SLn(Fq)

Recall that the baby Verma module Nt,c(T) is a quotient of Mt,c(T) a S* 0 T by

(S*)Y 0 T if t = 0 and by ((Sj*)W) 0 -r if t # 0. For all groups for which

we know the Hilbert series of the space of invariants (S[*)w, we can calculate the

character of baby Verma modules easily. An especially nice case is when (S *)w is a

polynomial algebra generated by algebraically independent elements of homogeneous

degrees di, ... dn. In that case, such elements are called fundamental invariants, and

di are called degrees of W.

In [17], Dickson shows that GLn(Fq) is such a group; the result for SLn(Fq) follows

easily and is explained in [35]. Let us recall the construction of invariants and the

calculation of their degrees before calculating the characters of baby Verma modules.

As before, let Xi, ... , X be the tautological basis for (n. For an ordered n-tuple

of nonnegative integers e,... ,en, let [e1,... , en] E S* be the determinant of the

matrix whose entry in the i-th row and j - th column is Xo . The action of W on

* is dual to the tautological action, so the matrix of g E GLn(Fq) in the basis (xi)i

is (9-1)t. Taking determinants is a multiplicative map, so a direct calculation gives

that for g E GL,(Fq),

g.[e ,... ,e] = (det(g))-1[ei, . . . , en].

Define

L,, := [n -1, n - 2, . .. , 1, 0],

Qi :=In, n - 1,1 ... ., i + 1,7 i - 1, . .. ,7 1, 0]/Ln, i= 1, ... n -1,

and

Q q= *-1.

The paper [17] shows that [In, n - 1,... ,i + 1,i - 1,... , 1,0] is divisible by Ln,

and so Qj are indeed in S*. From the observation that all [ei,..., en] transform as
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(det g)-' under the action of g E GLn(Fq), it follows that Qi,i = 0,...,n - 1 are

invariants in S*. The main theorem in [17] states a stronger claim:

Theorem 7.1.4. Polynomials Qj, i = 0,..., n - 1, form a fundamental system of

invariants for GLn(Fq) in Sr*, i.e. they are algebraically independent and generate

the subalgebra of invariants.

A comment in Section 3 of [35] gives us the following corollary.

Corollary 7.1.5. Polynomials L, and Qj for i = 1, ... ,n - 1 form a fundamental

system of invariants for SLn(Fq).

The degrees of these invariants are:

deg L = 1+ q +. . . + qn-1

deg Qo = (q - 1) degL. = (q - 1)(1 + ... + q" -- -q 1

deg Qj = (1 + q + ... +q" -q) -(1 + q+...+q" 1 ) = q" -q .

From this, we can calculate the characters of baby Verma modules for these groups.

Corollary 7.1.6. For W = GLn(Fq), the characters of baby Verma modules are

n-I

XNo,c(r)(Z) XMoc(T)(Z) -J(i - Zqn-qi)
n=O

n-1

XNt,c(r)(Z) = XMt,c()(Z) -7J(1 - t $ 0.
n=o

For W = SLn(Fq), the characters of baby Verma modules are

n-i

XNo,c(r)=Z) = XMO)(Z)(-(1 - 1+q1+..+q"n1) J( _ Zqn"-q),
n=1

n-1

X~e~c(r)(2) = 1 _cZp) p(1+g ...+q"-1) p(q"-i

n=1
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7.2 Description of Ltc(triv) for GL,(Fpr)

7.2.1 Irreducible modules with trivial lowest weight for GLn(Fq)

at t = 0

Theorem 7.2.1.

Cherednik algebra

The characters of the irreducible modules Lo,c(triv) for the rational

Ho,c(GLn(Fq), f ) are:

(q, n) c XLo,c(triv) (z) HilbLc(triv) (z)

(q, n) = (2, 2) any [triv] 1

(2,2) 0 [triv] 1

(2, 2) c / 0 [triv] + [f*]z + ([S2 *] - [triv])z 2 + 1+ 2z + 2z 2 + z3

+([3 - * - [triv])z 3

Proof. We claim that when (n, q) / (2,2), all the vectors x E [* 0 triv - Mo,c(triv)i

are singular. To see that, remember that the Dunkl operator associated to y E 4 is

Day @ 1 - cs ,( as))

sES a'S

which for t = 0 and T = triv becomes

D = - c(Ya) (1-s).
sES as

To see that D,(x) = 0 for all x E *, y E 4 for all values of parameter c, let us

calculate the coefficient of cA in Dy(x). Using parametrization of conjugacy classes

from Proposition 7.1.2, this coefficient is equal to

- z(yas)(1 -s).x = -

as
(y, a)(av x) - (a, y) x,)1: av

avgo a (a,av)iA
(a,afv)= i_

We claim that for fixed a E 4*, the sum (c,,v)_-lA av is zero. Fix a and let us

change the coordinates so that a is the first element of some new ordered basis.
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Write the sum E,, _ av in the dual of this basis. The set of all nonzero av

such that (a, av) = 1 - A written in these new coordinates then consists of all av =

(1 - A,a2 .... , a,) 0, for a2 E Fq. If A $ 1, the sum of all such av is the sum over

al a2 ,... , a,, E Fq, so the sum is zero. If A = 1, the first coordinate is always zero,

so the sum is over all a2 E Fq which are not all simultaneously 0. However, adding

(0, ... , 0) doesn't change the sum, which is then equal to

E (0, a2, ... a,,) = (0, gn-2 Y a, ... ., q"~-2 E a).
a2,...,an EFq aEFq aEFq

This is equal to 0, as claimed, unless n = 2 and q = 2.

In case (n, q) = (2, 2), direct computation of matrices of the bilincar form B imply

the claim. More precisely, if c = 0 then all D, = 0, the form B is zero in degree one,

and the module Lo,o(triv) is one dimensional. If c 5 0, then the only vectors in the

kernels of matrices Bi are the invariants in degrees 2 and 3 and all their S4* multiples.

This implies that Lo,c(triv) = No,c(triv), and gives the character formula from the

statement of the theorem.

7.2.2 Irreducible modules with trivial lowest weight for GL,(Fq)

at t # 0

For the rest of this section we assume t = 1. As t and c can be simultaneously

rescaled, the results we obtain for t = 1 hold (after rescaling c by 1/t) for all t 4 0.

Proposition 7.2.2. Suppose (q, n) # (2, 2). For any x E )*, the vector xP is singular

in M1 ,c(triv).

Proof. Method of proof is an explicit calculation analogous to the proof of Theorem
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7.2.1. By definition,

D,(xl) =a,,(xl) - c.(as, y)-(1 - s).xP

sES a.

= 0 - ZcS(as,y)((1 - ).x)
sES a.

We will show that for every conjugacy class CA of reflections, the sum

S(as, y) ((1 - s).x)P
SECA a.

vanishes. By Proposition 7.1.2, this is equal to

(aY)!((aVx)a)P = -(a,y)aPl v (ax)p

aav$0 a0 av#o

(a aV)=1_A (a aV)=1-A

It is enough to fix a and show that the inner sum over av is zero. After fixing a,

let us change the basis so that a is the first element of the new ordered basis. The

set of all av =A 0 such that (a, av) = 1 - A, written in the dual of this new basis, is

A := {((1 - A), a2,..., an) 4 0 1 a2,..., an E Fq}. For a fixed x, the expression

aVEA

is a sum over all possible values of n - 1 variables a2 , .. ., a of a polynomial of degree

p. By Lemma 6.3.1, this is zero if p < (n - 1)(q - 1). This is only violated when

n =2, p = q. In that case (a.,vx)P = (av, x) for all x E [)., so the expression is equal

to the sum over all possible values of one variable a2 of a polynomial of degree 1; this

sum is again by Lemma 6.3.1 equal to zero whenever 1 < p - 1. So, the expression is

equal to zero, as desired, whenever (n, q) $ (2, 2). l

When (n, q) = (2, 2), the claim of the lemma is not true, and the irreducible

module with trivial lowest weight is bigger. We will settle the case (n, q) = (2, 2)
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separately by explicit calculations.

As explained before, studying Li,c(triv) is the same as studying the contravariant

form B on M1,c(triv). The following proposition tells us that the set of singular vectors

from the previous proposition is large, in the sense that the quotient of M1,c(triv) by

the submodule generated by them is already finite-dimensional.

Corollary 7.2.3. Suppose (q, n) / (2,2). Then, the form Bk = 0 and Ll,c(triv)k = 0

for allk > np-n+1.

Proof. Any degree n(p-l)+l monomial must have one of then basis elements, say xi,

raised to at least the p-th power by the pigeonhole principle. Then, B(x 1 . ny)=

B(xzi, y') = 0, where y' is the result of the Dunkl operator being applied to y succes-

sively. L

We write matrices of the form Bk in the monomial basis in xi for S* and yj for St,

both in lexicographical order. In the case of GLn(Fq) these matrices are surprisingly

simple.

Proposition 7.2.4. Suppose (q, n) = (2,2). Then the matrices of Bk are diagonal

for all k.

Proof. We will use invariance of B with respect to W to show that for (a1, a. ) ,

(bi, . .7. ,bn) E ZyO, such that Eai = Zbi = k, if B(Xzl ... Xan' yl ... ybn) / 0 then

(ai,.. , an) = (bi, ... , bn). This means the matrices Bk, written in monomial basis in

lexicographical order, are diagonal.

Let g E W be a diagonal matrix with entries A1, . . . , An E F' , so that g.yj = Ajyj

and g.xi = AT'xi. Then for any (a1 ,..., an), (bi,...,b.) E Znyo, such that E ai =

Z bi = k, we have

B(z * .. yb . . .y I) = B(g.(Xz" ... "n), g. (ybi ... yn))

= B((Alxi)al ... (An-1X)a, (A 1 y 1 )bl ... (AnY")b)

= All-" ... Ab'"-anB(zl . . . "Xan, y i . .. yb).
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So, whenever B(x"' .. . Xz, yb' . . . y$") # 0, it follows that A b~4a ... A-"a- = 1 for all

,)...,I An E F. Fix i. Set all Aj where j / i to be equal to 1, and set Ai to be a

multiplicative generator of Fx. Then, necessarily, bi - ai = 0 (mod q - 1).

If q > p and bi - ai = 0 (mod q - 1), then either ai = bi for all i, or there exists an

index i for which bi - ai = 0 (mod q - 1), ai = bi. In the second case, either ai or bi

is greater or equal to p, so by the previous proposition, B(zal ... xa, ybi ... ybn) = 0.

This finishes the proof if q > p.

Now assume q = p, and B(X' .X. . x Y, yb' . .. y ) 4 0, so ai = bi (mod p - 1) for

all i, and aj, bi < p for all i. Then either all ai = bi as claimed, or, there exists an

index i such that {ai, bi} = {0, p - 1}. Assume without loss of generality that i = 1,

ai = 0, b1 = p - 1. Using that E a3 = E bj = k, there exists another index, which

we can assume without loss of generality to be 2, such that a2 = p - 1, b2 = 0. Now

we are claiming that for any f monomial in X3,... , Xn, any f' monomial in y3, - --, Yn,

B(4- 1f, y- 1f') = 0.

We will be working only with indices 1 and 2 and choosing g E W which fixes all

others, so assume without loss of generality that n = 2, f = f = 1. We use the

invariance of B with respect to di E W:

B(4-1, yf-1 ) = B(d 1 .(4-1), di.(y-')) =B((xi - x 2 )p 1 , yl/11)

=B(( + ... + 4-1), Y )

=B(4i-1, y - ) + 0 + B(4i-1, ypi-1)

where the terms in the middle are all zero, as their exponents do not differ by a

multiple of p - 1. Thus, B(- 1, yf~1 ) = 0 as desired.

Elements of W C Htc(W, ly) have degree 0 and preserve the graded pieces. So, ev-

ery graded piece is a finite-dimensional representation of W. This makes the following

lemma useful.
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Lemma 7.2.5. Suppose (q, n) : (2,2). Then, for every i, Si'*/((x, . . ., x) n Si*)

is either zero or an irreducible W -representation.

Proof. Suppose i is such that Si'*/((x{,... , xP) n Si4*) is nonzero, and let V / 0

be a submodule of it. Let M be the set of all n-tuples of integers (min, ... , m,) such

that 0 < mi < p and El_lmr = i. For m E M, we will denote x"" - x'"n by x m ;

these monomials are a basis of Si4*/((xP,... , xz) n Si*). We say that m, m' E M

re congruent modulo q - 1, and write m _ m' (mod q - 1), if for every i the integers

mi and m' are congruent modulo q - 1.

Claim 1 If V = EmEM amx m E V, and m(0) is such that am(o) $ 0, then

E amxm E V.
m=m() (mod q-1)

To prove this, let g.) E GL(Fq) be the diagonal matrix which has A- on the

j-th place and 1 everywhere else on the diagonal. It acts on [* by xj '-+ Axj, x '-*

for j = 1, and on S* by xm  - A"ntx"n. Fix j, and let A E Fq. This can be

thought of as a linear system of equations whose matrix is the Vandermonde matrix

[Aj]AEF _2O<j<q.2* It is invertible, which allows us to express Em=m' (mod q-1) amxm as

a linear combination of g().v. This proves it is in V.

Claim 2 V contains some monomial xm.

If q > p, then the nonzero element of V from Claim 1, Emm() (mod q-1) amxm, is

a monomial because of the my < p condition.

For the rest of the proof of Claim 2, assume q = p. Let Em=m() (mod p-1) amx E

V. If it has only one term, then it is a multiple of a monomial and we are done.

If it has at least two terms, with multi-indices m()0 and m(l, then m(l) = m(0) and

m = E, m ') = i mean there exist two indices, for which we assume without loss

of generality to be 1 and 2, such that m(O) = p - 1, m(") = 0, m(1) 0 ml = p -

The vector v can then be written as
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for some polynomials fi, f2 not depending on x 1, x 2 . The group element di fixes

x2 ,. .. and maps x 1 - x1 - x 2, so

di.v = (-' + 2x 2 +... +-4 1 )f1 (X3 ,... X) + 4 1 f2(X3 , ... Xn) E V.

Applying Claim 1 on this element, we get that

(4-~1+ x- 1)fi(x3,... Xn)+ x-lf 2 (X3 , ... Xn) E V,

and subtracting v from this element we get

zi1fi(Xa, . . . Xn) E V.

Thus, starting from v, we produced an element of V which is a linear combination

of monomials x' whose exponents m = (Mi, m2 , ... mn) all have the same (Mi, iM2).

Repeating this, we get a monomial in V.

Claim 3 V = Si*/((, ... , x fn Snir).

By using group elements which permute the variables, and Claim 2, it is enough to

see that if m E M with mi > 0 and x' E V, then for m' = (m- 1, m 2 +1, m 3 , ... mn),

X"/ E V as well. This is seen by applying di to xm and using Claim 1.

0

Proposition 7.2.6. Suppose (q, n) / (2, 2). Then, in each degree i, the diagonal

elements of the matrix of Bi are constant multiples of the same polynomial in c,.

Proof. By previous lemmas, every Bi is a diagonal matrix, with diagonal entries

polynomials fm in c parametrized by n-tuples of integers m = (mi, ... , m,) such that

Zm 3 = i. The kernel of B at specific c is spanned by all monomials xm for which

fm(c) = 0. As the kernel is a submodule of S' * containing < 4j,..., x > nSi[*,
by the previous lemma it can either be < , ... , xz > nSw0* or the whole SWo*. In

other words, all polynomials fm where one of m3 is > p are identically zero, and all

others have the same roots, so they are constant multiples of the same polynomial in

cs. E
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Next, we will find these polynomials fm in each degree and calculate their zeroes.

Proposition 7.2.7. Suppose (q, n) # (2, 2). Then,

a) If n = 2 and q = p, then Bi depends on the cS for p - 1 < i < 2p - 1. The

diagonal entries of Bi are k-multiples of c1 + ... + cp_ 1 - 1 for i > p - 1 and

k-multiples of (c1+ ... + c,_1 - 1)(c1 + 2c 2 +...+ (p - 1)c- 1 + 1) for i > p.

b) If n = 3 and q = 2, then Bi depends on the cS for i = 2,3, and the diagonal

entries are k-multiples of c1 + 1.

c) Otherwise, the form B doesn't depend on c.

Proof. The matrices B are diagonal, with all diagonal entries being constant multiples

of the same polynomial. Our strategy is to compute one nonzero diagonal entry.

First, we will show claim c). It is sufficient to show that the Dunkl operators on

the quotient Mi,c(r)/KerB are independent of c. As in the proof of Proposition 7.2.2,

we compute the part of the Dunkl operator associated to the conjugacy class CA with

eigenvalue A, and claim that for any monomial f E S *, the part of Dv(f) which is

the coefficient of cA,

- E(y, as)1(1 - s).f,
SE A as

is in Ker(B).

Using Proposition 7.1.2, we can write this sum over nonzero a E * and av E

such that (a, av) = 1-A. Writing it as consecutive sums over a and then over av, it is

enough to show that the inner sum, over all av such that (a, av) = 1- A, is contained

in (4,.... , x). As in the previous calculations, we fix a, and change basis of [* to

... , ' so that x = a. Let the dual basis of [ be y', .. . , y'. The inner sum,

with vectors written in the basis y', is then over av E A: {((1 - A),a 2 , .,an) '

0 | a2, ... , an E Fq}. By Proposition 7.1.2, the reflection s corresponding to a 9 av,

a = (1,0, ... , 0), av = ((1 - A),a2, ... , an), acts on * as

s.z'i = Ax'
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s.x' = X' - aix, i>1

In addition to fixing a, let us also factor the constant -(y, a) out. The inner sum

for fixed a is then ZQVEAA -(1 - s).f. The set A, is parametrized by (a 2 , ... , an) E

F"-1 if A - 1, and by (a 2 , ... ,an) # 0 E Fn-1 if A = 1. However, if A = 1, the

summand corresponding to (a2,... , an) = 0 is 0, so we can assume the sum is over

all (a2 , ... , an) E F"~1 in both cases.

The inner sum we are calculating is equal to

(*)f(. .F'q) - f(Ax', x' - a2X', . an')

(a2,...,an)EF"-

It is enough to calculate it for f of the form f = z'b ... X'b, b; < p. For such f,

(*)= ,

(a2,..a)F~

-1
-- (A') - a2X')b2 ... (X' - anz)b" - z'ii .. .'Ib"z'1 n 1

- . . . "U n Abi ( - a )i2 . ( a n ' b + i 2 + -. i. - 1 2'22 - i 2  . . b. z ' - iT
i2 iny A (-a2) ... k(-an)x 1 2

(a2,..,an)E 2,.

the last sum being over all 0 < i3 < bj such that not all ij are 0 at the same time. The

coefficient of each monomial in x can be seen as a monomial of degree i2 + .. . in in

variables aj, so when we sum it over all (a2 ,... an) E F"-1 to get the sum (*), we can

use Lemma 6.3.1 to conclude (*) is 0 whenever the degree of all polynomials appearing

is small enough, more precisely, whenever there exists an index j such that ij < q -1.

As ij < by < p for all j, this only fails when p = q and b2 = b3 =...b = p - 1. In

other words, this proves c) whenever q : p.

Now assume q = p. By the above argument, the only monomials f for which (*)

is not yet known to be zero are the ones of the form f = Xz'X'P- 1 -. -P-1. For such

f, the sum (*) is by the above argument equal to

(-1)(p1)(n-
1 )+1

(a2,...,a)EF"~1

A\b(a2)-1 . .- (an1 )p-jX1b+(p-1)(4-1)-1
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While this is not 0, the monomial x 1  is by Lemma 7.2.2 in KerB when-

ever it has degree at least p, meaning whenever

b+ (p - 1)(n - 1) - 1 > p.

If n = 2, this condition is b> 2, which is not satisfied only when b = 0,1. Thus,

for n = 2, q = p, the diagonal matrices Bi don't depend on c in degrees i < p - 1,

their entries are multiples of some polynomial in c in degree p - 1, and some other

polynomial (divisible by the first one) in degrees p and higher. Finally, by corollary

7.2.3, all matrices Bi become zero at degrees 2p - 1 and higher.

For n = 3, this condition is b + 2(p - 1) - 1 > p, which is equivalent to p + b > 3.

This will not be satisfied only if p = 2 and b = 0. So, for n = 3, p = 2, the matrices

BO and B 1 don't depend on c, the diagonal entries of Bi are multiples of the same

polynomial in c for i = 2, 3, and B 4 = 0. For n = 3 and all other p, the matrices B

don't depend on c.

For n > 3, the inequality b + (p - 1)(n - 1) - 1 > p is always satisfied, so there is

never a dependence of matrices Bi on the parameters c.

This finishes the proof of (c) and describes the cases in a) and b) for which there

might be dependence on parameters c. To finish the proof, it remains to find specific

polynomials in cases: (a) n = 2, q = p, degrees p - 1 and p and; (b)n = 3, q = 2,

degrees 2 and 3.

Next, we prove (a). Let n = 2 and q = p. We need to compute one nonzero entry

of the matrix B,_ 1 and one nonzero entry of Bp.

To compute the polynomial in degree p-1, by Proposition 7.2.6, it suffices to com-

pute B(4- 1, yF- 1) = B(DYI(4- 1),y- 2 ). For that, by Proposition 7.2.4, it suffices to

show that the coefficient of -2 in D 1 (Xz- ) is a constant multiple of c1 +.. .+ -1.

Compute

DYI (4-1) = 19Y, (4-') - c. (as, y1) (x- - (s-x1)P-1).
C sEC as
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The coefficient of xzj 2 in o(xf 1 ) = ( 1 isp-1 = -1,so it suffices to show

that for each conjugacy class C the coefficient of z4~2 in

(a., yi) 1 ((s.xi)P-1 - 4-1)
SEC as

is 1. Using (Pl) = (-1)i, we can write this as

(a, yi)±((x1 - (xi, a)a 8 )~ 1 -as-) =
SEC a'

p-1

Z(as, yi) o(a', xi) 47lx4 -
SEC i=1

The bases x and yj are dual, so a. = (a., y 1)xi + (a,, y2 )X2 , and the coefficient of

Xz-1 in a'i- is (as, y 1 )i-1. Thus, the coefficient of z- 2 in the above sum is

p-1

(yi, as) (aev, zi)'(y1, 7as)'-'
SEC i=1

which can be written as

((as, zi) (as, y1) - 1)W1- 1)
SEC

Each term ((av , xi)(as, yi) - 1)P-1 - 1 is nonzero if and only if (av , xi)(as, yi) = 1,

in which case it is -1. There are p - 1 choices of the first coordinates of a., av that

make their product 1. The product of the second coordinate must now be (a, av) - 1.

This is nonzero, so there are p - 1 choices for the second coordinates. Hence, the sum

is (p - 1)2(-1) = -1, as desired. Note that this term will appear as a multiplicative

factor in higher degrees, since the matrices of B are defined inductively. This proves

the claim for degree p - 1.

Now let us consider degree p, with n = 2 and q = p. We calculate

B(4z-X 2, Y Y2) = B(Dy2 (z4x 2 ), y1 -1),
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which is equal to the product of the coefficient of z'~ 1 in Dy2(X'-Ix 2 ) and B(x- 1 , yP- 1 ).

We proved that B(xI 1, y- 1) is a constant multiple of c1 ... + c, 1 - 1, so we are

now calculating the coefficient of 4-1 in

Dy2 (X'z~x 2) = O x2(zi~X2) - c (as, y2)-(1 - s)-(X' 2)
A sECA

= 4~1 - c (as, y2)- (4- 1x2 - (s-zi)P-1(s-z2)).
A sEC)

We now use parametrization of conjugacy classes CA by a g av from Lemma 7.1.2

and Example 7.1.3:

A =, 1 :CA <-+ { - b, b d E F,} U { 0 |9 a a E F,}
b d 1 1-A

1 - 0 a b

A=1: C1 -+ {[ ] b, d ] F, dE }U { [ 0 |a E F, a 0}.
-b d 1 0

We are calculating the coefficient of 4-1 in

4- - S CA E (a, y2)1 (4z 1X2 - (Xi - (av, X -)a)p1 (X2  (av, X2)a))_
A aoav -+CAk a

- CA (a, Y2) (4- 1X2 - (x - (aV, X )a)pX2-
A aaav<-+C12

CA (ay2) I((i - (av ) -1 v

A aoav<-+C,\

The term 4-1 - (xi - (av, xz)a)P- 1 is divisible by a, so

- (z4-1X 2 - (x 1 - (av,-x)a)P1 (x 2 - (av,X2 )a ))

written in a monomial basis in x1 and x2 , is divisible by X2. These terms can be

disregarded when calculating the coefficient of 4- 1 in the above sum.
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Let ab = x1 + bX2. We are calculating the coefficient of xz~1 in

4- - ZC\ E (a, y 2 ) ((xi - (av xl)a)P-1 v(oX2 )a)
A a&Cfv<->C a

= xF~-Z CA b bab ((xi - (1 - A - bd)ab)pd) X ((xi - a2)p~( - A)x 2

A b,da

p-1

= - >3c A(bdZ(1-A-bd)txz -- (xi1+bX2)i + (1- A)Z(i-ax 2 )~
A b,d i=0 a

Here, the sum over is over all b, d E F, and over all a E F, if A $ 1, and over

a, b, d E Fp, d, a # 0 if A = 1. The coefficient of z- 1 is:

p1
1-Z cA(Zbd (1-A-bd)i+(1-A)E1)=

A b,d i=O a

1- c\ (bd)-1 (-A)) -cl( (bd)P-1) = 1 + AcA.
A$1 b,d b,d A

This ends the proof of (a).

To prove (b), n = 3, q = 2, we computed the matrices Bi explicitly. El

The combination of these results and the explicit computations in case (n, q) =

(2,2) gives us the main theorem of this section:

Theorem 7.2.8. Let k be an algebraically closed field of characteristic p. Let W =

GLn(Fq) for q = p' and n > 2. The following is a complete classification of charac-

ters of L1,c(triv) for all values of c:
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(q, n) c F XL1,c(triv)(Z) HilbLi~,tn(z)

(q, n) = (2, 2) generic EjZ>([Si*/ (x, ...,) n Si*])zi

(2,2) generic (> 0 [Si*] Zi) (1 - Z4)(1- z 6) (1 - zu
(1 - Z)2

(2,3) c=1 [triv) + [*] z 1+ 3z
p-1 p-2 p- 2

(p, 2), p 2 ci =1 E [Si*]zi E(i + 1)zi
i=1 i=0 i=O

p-1 p- 1  
p-1 p-1

(p, 2), p /2 E ci / 1, ici =-1 E [SVi *] zE(i + 1)zi
i=1 i =1 i=0 i=O

(2,2) c= 1 [triv] 1

(2,2) c= 0 [triv]+ [ *] z + [triv] z 2  1+ 2z + z 2

Proof. For (n, q) = (2,2), the matrices B of the form B can be computed explicitly,

and one can see that they are 0 starting in degree 1 when c = 1 and starting in degree

3 when c = 0. For all other c, they are full rank on Ni,c(triv), so L1,c(triv) = NI,c(triv)

is the quotient of the Verma module by squares of the invariants, which are in degrees

4 and 6.

For (q, n) = (2, 2) and generic c, we saw in Proposition 7.2.2 that J,(triv) contains

(4, ... , xP), so by Proposition 6.2.4 the reduced module R1,c(triv) is a quotient of

the trivial module. From this it follows that for generic c, J1,c(triv) = (4, ... , xz)

and that the character of LI,c(triv) for generic c and (q, n) = (2, 2) is as stated above.

Characters for special c are computed by looking at roots of polynomials on the

diagonal in Bi, and are computed directly from Proposition 7.2.7. O

Remark 7.2.9. Notice that for n,p, r large enough, the character doesn't depend on

c at all. This never happens in characteristic zero.

Remark 7.2.10. Notice that the claims from Remarks 6.2.8 and 6.2.11 and Question

6.2.9 hold in case of W = GLn(Fq). Namely, by observing the characters one can

see that all Lt,c(triv) for generic c have one dimensional top degree and are thus

Frobenius; that for h1 the reduced Hilbert series of L1,c(triv) at generic c, hi(1) is

either |WI (in case of (q,n) = (2,2), when they are both 6) or h1 (1) = 1 (in all other

cases), and that for ho the Hilbert series of Lo,c (triv) at generic c, the equality ho = h1

always holds.
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7.3 Description of Lt,c(triv) for SLn(Fr)

In this section we explore category O for the rational Cherednik algebra associated

to the special linear group over a finite field. We start with some preliminary facts

about relations between rational Cherednik algebras associated to some group and to

its normal subgroup, and by looking more carefully into conjugacy classes of reflections

in SLn(Fpr).

7.3.1 Normal subgroups of reflection groups

Let W C GL(() be any reflection group, and assume N C W is a normal subgroup

with a property that two reflections in N are conjugate in N if and only if they are

conjugate in W. Let c be a k-valued conjugation invariant function on reflections of

N, and extend c to all reflections in W by defining it to be zero on reflections which

are not in N. Then one can consider the rational Cherednik algebra Htc(N, [) as a

subalgebra of Ht,c(W, j); it has fewer generators and the same relations.

Let r be an irreducible representation of W, and assume it is irreducible as a

representation rIN of N. Consider two representations of Ht,c(N, t): the irreducible

representation Lt,c(-r|N) = Lt,c(N, IrN), and the irreducible representation Lt,c(r) =

L1 ,c(W, J, T) of H ),c(W, restricted to Ht,c(N, f).

Lemma 7.3.1. As representations of Hi,c(N, j), L1,c(r-IN) L1,c(T)IH1,c(N,y)-

Proof. The reflections in N are a subset of reflections in W. Because N is normal in

W, every conjugacy class in W is either contained in N or doesn't intersect it. By

the assumption, two reflections in N which are conjugate in W are also conjugate in

N, so conjugacy classes in N are a subset of conjugacy classes in W.

The Verma modules M,c (W, , r) and Mt,c (N[ , TIN) don't invoke the group in

their definition, and are naturally isomorphic as Htc(N, j) representations. The mod-

ules Lt,c(r) and Lt,c(r|N) are their quotients by the kernel of the contravariant form,

which is controlled by Dunkl operators. Because of the discussion of conjugacy classes

in N and W and because of the definition of c, the Dunkl operators are the same for

Ht,c(N, ) and Ht,c(W, I). E
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One could define Verma modules, baby Verma modules and their quotients by

the kernel of the contravariant form (chosen so that it is nondegenerate on lowest

weights) even in cases when the lowest weight is not irreducible as a representation of

the reflection group. In that case, a lemma analogous to the above one would be that

the composition series of -r as a representation of N is the same as the composition

series of Lt,c(r) as a representation of Htc(N, 4). We will not need this here.

7.3.2 Conjugacy classes of reflections in SL,(Fq)

In this section we will study W = SL,(Fq) for q = pr is a prime power and n > 1.

As before, let [ = k", k = F,, and r be the trivial representation. Further, let Q be

the set of nonzero squares in Fq and R be the set of non-squares.

All reflections in SLn(Fq) are unipotent, conjugate in GLn(Fq) to di. It is easy

to see that SLn(Fq) is generated by them. SLn(Fq) is a normal subgroup of GL,(Fq)

and it contains all the reflections from the unipotent conjugacy class in GL,(Fq).

However, the second condition from the above discussion, that two reflections are

conjugate in GLn(Fq) if and only if they are conjugate in SL,(Fq), is not satisfied for

all n, q. For example, in SL 2(F3),

1 -1 -1 0 1 1 -1 011
is not conjugate to .

0 1 0 1 0 1 0 1 0 1

Proposition 7.3.2. Let q = pr be a prime power. If n > 3, or p = 2, then two

reflections are conjugate in SLn(Fq) if and only if they are conjugate in GLn(Fq),

and there is one conjugacy class of reflections in SLn(Fq). Otherwise, there are two

conjugacy classes of unipotent reflections in SLn(Fq).

Proof. Every reflection s E SLn(Fq) is a unipotent reflection in GLn(Fq), so there

exists g E GLn(Fq) so that s = gdig- 1 . To conclude that s and di are conjugate

in SLn (Fq), it is enough to find some h in the centralizer Z(di) of di such that

gh E SLn(Fq). For that, it is enough to find an element of Z(di) of arbitrary nonzero

determinant.
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The general form of an element of Z(di) is

al l a 12 a13 * aln

0 anl 0 ... 0

h= 0 a32 a33  a3n

0 an2 ana -.. ann

Its determinant is
a 33 ... a3n

a21 -det

Lana ... an

If n > 3, determinant of the (n -2) x (n -2) matrix in the bottom right corner can

be any nonzero element of Fq (as this matrix is a arbitrary element of GLn-2(Fq)),

so there exists h E Z(di) of an arbitrary determinant and the claim is proved.

If n = 2, the centralizer of di in GL 2 (Fq) consists of matrices of the form

a bh= ,
0 a

whose determinants are of the form a2 , a E Fq.

If p = 2, then any nonzero element of Fp, has a square root (as the map a -+ a2 is

injective and hence surjective on F'), and there exist elements in Z(di) of arbitrary

determinant. So, for SL 2(F2r) contains only one conjugacy class of reflections.

Finally, assume n = 2, p 74 2 and let us show there are two conjugacy classes of

reflections in SL2 (Fq), namely

Co = {gdig- 1 g E GL 2(Fq), det(g) is a square}

and

CR = {gd 1 g g c GL2 (Fq),det(g) is not a square}
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Two reflections are conjugate in SL2 (Fq) if and only if they are conjugate in

GL 2(Fq) by some element whose determinant is in Q. From this it is clear that any

two elements in Co are conjugate in SL2 (Fq).

Next, sets Q and R both have (q - 1)/2 elements, and satisfy R - R = Q and

R-1 = R. From this it follows that any two elements of CR are conjugate in SL 2 (Fq):

for gidi gI and g2digj' both in CR, we can write gidigi 1 = (gigg')(g2digg')(gigg')-1

to see that they are indeed conjugate via an element g1gj 1 whose determinant is a

square.

Finally, assuming that some element gdi g -1 E CR is conjugate in SL2(Fq) to some

element of CQ means it is equal to g'dig'-1 with g' E SL 2 (Fq), so an gg'-' E Z(di),

and has the determinant equal to det g. But det g is by assumption not a square,

whereas every element of Z(di) has determinant of the form a2 . So, Co and CR are

really separate conjugacy classes in SL2 (Fq). O

Let us continue using the same notation for conjugacy classes of reflections in

GLn(Fq), CA, A = 1, ... , q-1. If n > 3 orp = 2, then SLn(Fq) has only one conjugacy

class, equal to C1. Let us call it C, and the constant associated to it by c. If n = 2

and p 7/ 2, there are two conjugacy classes CR and Cq, with associated parameters

cR and cQ, and they satisfy CR U CQ = C1. In the situation of only one conjugacy

class we will use Lemma 7.3.1 to transfer character formulas for rational Cherednik

algebras associated to GLn(Fq) to character formulas for rational Cherednik algebras

associated to SLn(Fq). In the situation of two conjugacy classes, we will have to do

more computations to get character formulas. Let us first look more closely into the

situation of two conjugacy classes.

Lemma 7.3.3. Let n = 2, q = pr, and p 4 2. Let y e R be an arbitrary non-square

in Fq. Let s be a reflection in SL2(Fq). Then, s and -ys - (-y - 1) are in different

conjugacy classes.

Proof. The proof follows from Proposition 7.3.2. The map F. : s - ys - (Y - 1)

maps reflections to reflections, and its inverse is F,-1. So, it is enough to show it

maps s E CQ to an element of CR.
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Let d. as before denote the diagonal matrix with diagonal entries -y1 , 1,1,..., 1.

For s = di, we have F,(di) = d-'didy E CR. If s is a conjugate in SL2(Fq) to di, say

s = hdih-1, then Fy(s) = hdij'didyh- 1 = (hd,-lh-1)s(hd,-lh- 1)~' E CR. O

The following lemma is useful in computations, and is a stronger version of Lemma

6.3.1.

Lemma 7.3.4. If d = 0 (mod q - 1), then id = i = g1 If d

(mod q -1), then d = -ieR -1. Otherwise, Z id- id = 0.

Proof. For this proof, let SQ = EiEQ id and SR = ZiERid. Suppose d = 0 (mod q -

1). Then, id = 1 for all nonzero i E F, and SR= S = |Q = |RI = Suppose

d ! (mod q - 1). In that case, if i E Q, id = 1, and if i E R, then id = 1.

Thus, Sq = -SR = 2. Suppose neither holds. For any a E Q it is easy to see that

aR = R and aQ = Q, so SR = ad SR and SQ = adSQ. If a is a multiplicative generator

of the cyclic multiplicative group F', then 1 and ad are different elements of Q, so

(1 - ad)SQ = (1 - ad)SR = 0 implies that SR = SQ = 0.

Next, we parametrize reflections in each conjugacy class. Remember the notation

from Proposition 7.1.2: unipotent reflections are identified with all a 0 av E ' * 0 &

such that (a, av) = 0, in such a way that the action of a reflection s on x E r* and

y E [ is

s.x = x - (av x)a

s.y = y + (a, y)av

Lemma 7.3.5. Conjugacy classes CQ and CR of reflections in SL 2 (Fpr), p > 2, are

parametrized through a 0 av as

CQ= { [aE]Fq,70E] U 0Q} 1[ ®[ YE] ,Q}a -1 1 0

CR = 0 @ aE Fe,7-ER U 7 17 ly R .
a -11 0 I
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Proof. The proof is straightforward. The reflection di is identified with [
1 a b

. Conjugating it by g = E GL2(Fq) gives us a reflection gdig-1

identified with

1-c a

det g a c

As g can always be scaled by an element of the centralizer of di so that either c = -1

or c = 0 and a = 1, and that gdig- 1 is in Cq or CR depending whether det g is in Q
or R, the description follows. E

7.3.3 Description of Lo,c(triv) for SL.(IF,)

Theorem 7.3.6. Characters of the irreducible modules Lo,c(triv) for the rational

Cherednik algebra Ho,c(SL,(F, 4)) are:

(q, n) c XLo,c(triv)(z) HilbLo,c(triv) (Z
(q, n) =/ (2, 2) any [triv] 1

(2,2) 0 [triv] 1

(2,2) c / 0 [triv] + [ *]z + ([S2 4*] - [triv])z 2 + 1 + 2z + 2z 2 + z3

+([S3 *] - [4*] - [triv])z 3

Proof. SLn(Fq) is a normal subgroup of GL(Fq), and for n > 3 or p = 2, by Proposi-

tion 7.3.2 it satisfies the conditions of Lemma 7.3.1. Thus, in those cases, irreducible

representations of Ht,c(SL,(Fq), j) have the same characters as irreducible represen-

tations of Ht,c(GLn(Fq), fj), where c is extended to conjugacy classes of reflections in

GLn(Fq) - SLn(Fq) by zero. So, in those cases we can deduce character formulas for

Lo,c(triv) from Theorem 7.2.1.

The remaining case is SL 2 (Fq), p = 2, for which we claim that Dy(x) = 0 for all

x and y, and so the character is trivial. We have

D,(X) = -CR S (y, )(X,av) - CQ (y, a)(x, av
agaVECR aQaVECQ
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so it is enough to show that for T = Q or T = R,

a~E C7a

ca0 aV ECT&0!

is zero.

We know from the proof of Theorem 7.2.1 that EaVECRus a 0 av = 0, so it

is enough to prove that the sum over Co is zero. For this, let us calculate, using

parametrization from Lemma 7.3.5:

Z eoav = ZZ'y(x1+ax2)0&(ay1 - y2) + YX2 Y1
a~aVECQ YEQ aEFq 7YEQ

By Lemma 7.3.4, if q =, 3, then ZEQ Y = 0 and the whole sum is zero, as claimed.

For q = 3, Q = {1}, so the sum is equal to

E (-Xi ( y 2 - aX2 9 Y 2 + axi @ y1 + a2x2 y Y1) + X2 (0) 1 =
aEF3

-X2 )Y 1 + X2 0y 1 = 0.

7.3.4 Description of L1,c(triv) for SLs(Fpy) if n > 3 or p = 2

As explained above and demonstrated in case of t = 0, we can get character formulas

for H1,c(SLn(Fq), ) directly from the ones for H1,c(GLn(Fq), 4) when n > 3 or p = 2.

The following is a corollary of Lemma 7.3.1, Proposition 7.3.2 and results from Section

7.2, most notably 7.2.8.

Corollary 7.3.7. Let n > 3 or p = 2. Consider the rational Cherednik alge-

bra H1,c(SLn(Fq), 4), its representations Mi,c(triv), the contravariant form B on it,

and the irreducible quotient L1,c(triv). Then all the results we proved for the group

GLn(Fq) hold also for SLn(Fq ). Specifically,
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a) Dy(xP) = 0 in M1,c(triv).

b) The form B on M1,c(triv) is zero in degrees np - n + 1 and higher.

c) The matrices of the form B on M1,c(triv) in lexicographically ordered monomial

bases are diagonal in all degrees.

d) All diagonal elements of the matrix of the form Bi on any graded piece MI,c(triv)i

are k-multiples of the same polynomial in c.

e) If (q, n) / (2, 3), (q, n) / (2, 2) the matrices Bi of the form on M1,c(triv)i don't

depend on c.

f) If (q, n) = (2,3), only the matrices B 2 and B3 depend on c. Their nonzero

diagonal coefficients are constant multiples of c + 1.

g) If (q, n) = (2,2), then GLn(Fq) = SLn(Fq) so the character formulas are the

same.

h) The character formulas for representation L1,c(triv) of the rational Cherednik

algebra H1,c(SLn(Fq), ) are the same as for the rational Cherednik algebra

H1,c(GLn(Fq), j), with c extended to all classes of reflections in GLn(Fq) which

are not in SLn(Fq) by zero.

7.3.5 Description of Li,c(triv) for SL,(Fpr) if n = 2 and p > 2

As in the case of t = 0, we need to study the case n = 2 and p > 2, when there

are two conjugacy classes of reflections in SLn(Fq), separately. The case q = 3 is the

most complicated and we solve it by calculating the matrices of the form B explicitly.

The following results address the remaining cases.

Proposition 7.3.8. Let n = 2, q = p' for p an odd prime, and q j4 3. In the Verma

module M1,c(triv) for H1,c(SL 2(Fq)), all the vectors xP, x E j*, are singular.
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Proof. We need to show that for every conjugacy class CT, for T = R or T = Q, and

any x, y, the coefficient in Dy(xP) of cT is zero. This coefficient is equal to

y, (a)(x, av),aP~1.
agaVECT

Again, as CR U CQ = C1 is a conjugacy class of reflections in GL 2(Fq), and the result

holds there, it is enough to show this for CQ.

As in the proof of Proposition 7.2.2, we claim that after writing it as a double

sum, with the outer sum being over a and the inner over av, the inner sum is already

zero for any a. Fix a and change coordinates, so that we assume without loss of

generality that a = x1 . Then the inner sum is

(>3 (aV)' = (Y2 , X)p E 7P
QV=7Y2 YEQ

-YEQ

Using Lemma 7.3.4, this is zero unless p 0, 1 (mod q - 1). However, this only

happens in cases we excluded: q = 2 and q =3. E

Next, we prove that acting by Dunkl operator produces elements of M1,c(triv) of

a specific form.

Lemma 7.3.9. Let n = 2, q = pr for p an odd prime, and q $ 3, and consider the

Verma module M1,c(triv) for H1,c(SLn(Fq)). For any f E M1,c(triv)/ (x4) S */ (x[)

and any y E 4, there exists h E S3* such that, as elements of M1,c(triv)/ (x),

DY(f) = Oif +cQ - h+CR - h

Proof. The Dunkl operator action in case of SL2 (Fq) is

Dy(f) = y (f) -T c a., (1 s).f
TE{Q,R} SECT

The strategy is to compute the sum ESECT (as Y)(1 - s).(f) parallel for T = Q, R,
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disregarding all terms that don't depend on the choice of T (these contribute equally

to the coefficient of cQ and CR), and any elements of the ideal (4j). We will use:

L am = 0 unless
aEFq

7 = [7m unless
yEQ YER

m=0 (modq-1),m$/0

2 (mod q - 1)

in Mi,c(triv)/ (z4)

and the parametrization of conjugacy classes from 7.3.5:

1]

a]
0 [a]

-1J |a E Fq, 7 E T U 0Sy
0

|7ET .

(7.3.4)

The rest of the proof is this computation.

We will do it for Dv(f) for y = y1 and f = zuz2. The general statement follows

from this case by symmetry and linearity. We can assume u, v < p - 1.

We claim that the sum

)(XzX2 - (s.X1 )u(s.X2 )")
SECT

doesn't depend on T.

Reflections s corresponding to elements of the form -y

(as, yi) = (YX2 , Yi) = 0, so they don't contribute to the sum.

01
1J 0

satisfy

1a
For s of the form 7 0 ,let us write the action on xi E )* explicitly,

a -1

using notation a' = xi + az2. The explicit action is

s.Xi

S.X 2

= x1 - aa'

= X2 + -a'.
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Substituting this into (*) we get

(*)' (z) z" - (xi - a-ya')"(X2 + 7a')")=() ET aEF a a
-tET aEFq -/aa

( i v ) u ( 1 ) i a X V j a i -
yET aEFq i=0 j=0 a

(i,j)/(0,0)

SZ S 7 (u) (v) (1)i+1aiy+ixu i(x1 + ax2)i+j-1 -

-yET aEFq i=0 j=0
(i,j)#(0,0)

U o i+j-1

yET aEFq i=0 j=0 k=0
(i,j)0(0,0)

(U (V (v' i + , -
1 +kyi+jv+j-1-kv-j+k

Let us evaluate the sum EaEFq ai+k. By (7.3.1), this is only nonzero if i + k is

divisible by q - 1. We know that

i+ k < 2i+ j - 1 < 2u + v - 1 < 3 (p - 1) - 1 < 3(p - 1) 3(q - 1),

so let us consider three different cases: i + k = 0, i + k = q - 1 and i + k = 2(q - 1).

CASE 1: i + k = 0. In that case, EaEF, a0 = 0, so this doesn't contribute either.

CASE 2: i + k = q - 1. After substituting EaEFq a -1 = -1k= q - 1 - i, and

after that m = i + j, we get that part of (*) corresponding to this case equals

yET i=0

u+v V

'YET m=1 j=

U V A \

E i j
j=0 ( U

(i,j)0(0,0)

M (rU- j ) (0 o -

i + )- 1 )ii+jiu+j+i-q v-j+q-1-i

m - 1 (_ 1 )m-j mu+m-q v-m+q-1

-1-n +j X X2

Now we use (7.3.2) to describe Z'y 7m and disregard all terms except m = 2

(mod q - 1) (these terms we disregarded contribute to the coefficient h). There are
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again few cases, as

m < u + < 2(P - 1) < (p- < 5(q - 1)
2 - 2'

so we consider separately m = f and m = 3(q1)22

CASE 2.1: m = q. One of the binomial coefficients in the expression is

(q_-+j), and we claim it is always zero for this choice of m. This is because

q 1 q-1 q-1
q-1-m+j= I +2j> > -1=m-1.

2 2 2 2

In other words, case 2.1. never actually appears in the sum.

CASE 2.2: m = 3(q)2 1 We will show that this part of the sum is zero. First,

3(q-1)= m < u + v < 2(p - 1)2

implies that this can only happen when p = q. Next, because we = 0 in the

quotient, the only terms that can be nonzero are the ones with the power of xi less

than p, so

u+m-q p- 1

which means
p+ 1

usp-1±q-m= 2
2

Next, the term (mUj) is zero unless

. U 3(p - 1) _p + 1 p
2 2

Since

j < p - 1,

it follows that j E {p-2, p-1}. In both those cases, the binomial coefficient (q-27 +j)

is 0, as the numerator has a factor p and the denominator doesn't.
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CASE 3: i + k = 2(q - 1). The part of the sum (*) corresponding to this case is

+ j2 - ( (+) x +j-1-2q+2+ix vj+2q-2-i
-YET i=O j=O

(i,j)#(0,0)

U+V V U ~m-j m M +m-1-2q+2 x -m+2q-2

m-j j 2q - 2 - m+ 1
YET m=1 j=O( -j)V M +)

The powers of x 2 in this sum and the original power of x1 are both < p - 1, so

p - 1 > v - m + 2(q - 1)

p - 1 > u > m - v > 2(q - 1) - (p - 1) > p - 1.

From the last string of inequalities, u = p - 1, m = u + v and p = q. The above sum

then becomes

p-12 ()P-+v-jy-1+vg-i
EE G--1 )G+v-j j) 1--1

YET j=O

As j ; v, the first binomial coefficient in this sum is zero unless j = v, producing

+ ( vP - 2 )P1+vV-1i -1p: - 1 ) i

The sum ZET rYP-1+v = ET YV only depends on T if v = (mod p - 1), which

only happens if v = a. In that case, (=-2 (p+v- 2) = 0, as the numerator is

divisible by p. El

We can use the previous proposition to transfer the results we had about GL 2 (Fq)

to SL 2(Fq), as in the previous chapter. Namely, the structure of irreducible modules

for H1 ,c(SL 2 (Fq), 0j), where c takes value cQ on CQ and CR on CR, is determined by

Dunkl operators. By the previous proposition,

sECQ C sCR
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so the Dunkl operator is equal to

D, = ay - cq (1 - s) y)
sECQ SECR a.

= 19Y - +cQ c E (as, y)(l ,
C SC ECRUCQ a. 1-s

In GL 2 (Fq), the union CQ U CR is one conjugacy class Ci (unipotent reflections).

Define the function c on all reflections in GL 2(Fq) by letting it be c1 = cR+cQ on

all unipotent reflections, and CA = 0 on all semisimple reflections. Then the Dunkl

operators controlling the structure of L1,c(triv) for Hi,c(GL2(Fq), ) are

D&= y E ZECA (a~y (1-s)
A=1 SECA a.

= ay - EC1(a, y) (1-s),
sEC1 a8

which is exactly the same as the Dunkl operator for Hi,c(SL 2(Fq), ). From this we

get:

Corollary 7.3.10. Let n = 2, q = p' for p an odd prime, and q , 3, and consider the

Verma module L1,c(triv) for H1,c(SLn(Fq)). All the results we proved for the rational

Cherednik algebra associated to GLn(Fq) hold for SLn(Fq). Namely,

a) Dy(xP) = 0 in M1,c(triv).

b) The form B on M1,c(triv) is zero in degrees 2p - 1 and higher.

c) The form B on M1,c(triv) is diagonal in all degrees.

d) All diagonal elements of the matrix of the form Bi on any graded piece M1,c(triv)i

are k-multiples if a single polynomial in c.

e) If q = pr with r > 1, then B doesn't depend on c.
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f) If q = p, the matrices of Bi on M1,c(triv)i are constant for i = 0,. .. ,p - 2,

constant multiples of CQ + CR - 2 for i = p - 1, and constant multiples of

(cQ + cR - 2)(cQ + cR + 2) for i = p,..., 2p - 2.

Putting together the previous Corollary, Corollary 7.3.7, explicit computations for

the rational Cherednik algebra associated to SL2(F3), and noticing that SL 2(F2) =

GL 2(F 2), we get the main theorem of this section.

Theorem 7.3.11. Let p be a prime, q = pr and n > 2. The characters of L1,c(triv)

for the rational Cherednik algebra H1,c(SLn(Fq), ) over an algebraically closed field

of characteristic p are as follows:

We omit the characters for (q, n) = (3,2) and special c as there

cases to concisely list.

are too many

Remark 7.3.12. All Lt,c(triv) for generic c have one dimensional top degree and

are Frobenius. For h1 the reduced Hilbert series of L1,c(triv) at generic c, h1 (1) is

either |WI or 1. For ho the Hilbert series of Lo,c(triv) at generic c, the inequality

ho < h1 term by term always holds, but not the equality: for SL 2(F3), ho(z) = 1, and

h(-Z)(-Z
6

)
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(q, n) c xtLtavy(z HilbL ,g(tv z
. 1-z"(q, n) $ (2, 2), (3, 2) generic E>o([S*4*/ (4, ... , ) n Si4*])zi 1 -z

(3, 2) generic (EZ>0 [Si4*] zi) (1 - zl 2)(1 - z18 ) (1 - )1 - z)

(2,2) generic (Ei>0 [Si4*] zi) (1 - z4)(1 - z6) (1 z zo)

(2,2) c = 1 [triv] 1

(2,2) c = 0 [triv]+ [ *] z + [triv] z 2  1+ 2z + z 2

(2,3) c = 1 [triv]+ [4*] z 1+ 3z
p-2 p-2

(p, 2), p ) 2, 3 cQ + cR = 2  E [Si4*] zi E(i + 1)zi
i=0 i=0
p-1 p-1

(p, 2 ), p $ 2 , 3  CQ + CR = - 2  E [Sip* zi E(i + 1)zi
i=0 i=0



Chapter 8

Representations of Rational

Cherednik Algebras Associated to

the Group GL 2(Fp)

8.1 The group GL 2 (Fp)

8.1.1 Reflections in GL 2 (Fp)

In this chapter we will be considering the rational Cherednik algebra associated to

the group W = GL 2(F,), for F, c k the finite field of p elements, and p an odd

prime. This group has (p2 _ 1)(p2 - p) elements, and so p divides the order of the

group and its category of representations is not semisimple. Let F = F2, = k2 *

[, X1, X2, Y1, Y2, CA, cA, d\ be as in the previous chapter. Let us repeat the result of

Lemma 7.1.2 and Example 7.1.3 in this case, which state that the conjugacy classes

in GL 2(F,) are CA, A E Fx, and are parametrized by a 0 av E F 0 4F as

A /1: CA 1-+1- A - bd d E F,} U { 0 |a E F,}

b d 1 1 -A
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0 b 0 aEI~

C1 -{[ ]b, d E Fp d / 0} U {[ 0 a E F , a # 0}.
b d 1 0

In this parametrization, the reflection s corresponding to a 0 av acts:

on l* by s.x = x - (a', x)a

on(yby s.y=y+ av

8.1.2 Invariants and reduced characters

Specializing the results of section 8.1.2 to W = GL 2 (F,), we see that the space of

invariants (S(,*)w is a polynomial algebra generated by

p-1
Qo - (~x - x)~ 1  ~ (p-i) (p-i) (-)il

i=O

[2,0] 2[2,0] 4 x2 - x1 x2

L [1,0] 4X2 - Xi-. 1 2

with degrees deg(Qj) = p2 - p'. Alternatively, the L can be described as a product

of all the linear polynomials of the form x1 + ax2 and X2, Qo as the product of all

the nonzero linear polynomials axi + bX2 , and Q1 as the product of all the irreducible

monic quadratic polynomials x2 + axzX 2 + bXz.

The characters and Hilbert series of baby Verma modules are

XNo,c(r)(Z) = XMo,c(1)(Z)(1 - Z 2 1))(1 Z(p2 -)),

(1 - z(p2 ))(1 Z(2p))
HilbNo,c(r)(z) = dim(T) (1 - 2

XNc(r) = XMt,c(r)(Z)(1 - Zp(p2 1))(1 Zp(p 2 p))7

(1 - zp(2-))(1 zp( 2 p))
HilbN1 ,(,r)(z) = dim(r) (1 -

Let us recall from Proposition 6.2.4 that for t $ 0 and generic c, the character of
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Lt,c(r) is of the form

XLtyr(r) ()-Xs(P)4. (z) H(zP),

HilbLte(r)(Z) - z;)f zP).

In case of GL 2(F, ), the character of S(P)* is

XS(v *(z) = Xs*(z) - 2Xs*(z)zP + Xse.(z)z 2 ,

with the Hilbert series

Hilbs(p)*(z) = 1

8.1.3 Representations of GL 2 (F,)

Most of the results from this section can be found in [31], or proved directly.

Proposition 8.1.1. All irreducible representations of GL 2(F, ) over k are of the form

S' 0 (det)j,

for i = 0, 1,. .. p - 1, j = 0,...p - 2.

Proof. From the paper of Steinberg [44] it follows that all the irreducible representa-

tions of SL2(F, ) are of the form S' . Any irreducible representation of GL 2(F, ) stays

irreducible when restricted to SL2(F,). The group GL 2(F, ) is generated by SL2 (F,)

and the subgroup of elements of the form [ ], which act by a character, say
0 A

[1 I Ai on the one-dimensional subrepresentation y'. So, any irreducible
0 A

representation of GL 2 (F, ) is of the form Sz4 0 (det)i. E

Lemma 8.1.2. As representations of GL 2(F, ),

* -j 09 (det)-1,
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and the isomorphism is x1 - -Y2, X 2 I'4 Y1-

a b
Proof. The matrixg= E E

c d

a b
way as .It acts on *, in

c d

GL 2(Fp) acts on , in basis Y1, Y2, in a tautological

a basis x 1, x2, as

0 1
-1 0

Next, we will need to know how the higher symmetric powers and tensor products

of such representations decompose into irreducible components.

Proposition 8.1.3. For any i, j > 0, there is a short exact sequence of GL 2 (Fp)-

representations

0 --+ S"6 9 Sj-' 9 det -> S'b 3 Sj -> S+jh -> 0.

The first map is f og - (y1 @y 2 -y 2 9y1)- f og, and the second map is f Og -* f -g.

Proof. One can see directly that both maps are indeed GL 2(Fp)-representation maps

and that they compose to 0. Multiplication of factors Sio 0 S-[j -> Si+j --+ 0 is

surjective, multiplication by (Y1 0 Y2 - Y2 0 Y1) is injective, and the dimensions agree:

i j + (i + j + 1) = (i + 1)(j + 1), so this is really a short exact sequence of group

representations.

Proposition 8.1.4. Let 0 j < p, and n > 0. There is a short exact sequence of

GL2 (Fp) -representations:

0 -+ SJ4 & S,4 -> S -+pn4 _S g-j-24 (g Sn-14 0 detj+1 -> 0.
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Here we use the convention S' = 0 if i < 0. The first map is

ae(yayb y& cy ) = yap + +dp1 1i~ 2 Y1 Y2

and the second, for 0 < a, b < p, is

3 (a+pc b+pd = () -Y1 2 9Y1y2, a+b p+j
#(y1 y2 ) =

0 , otherwise

Proof. Both a and 3 send monomials to monomials. Every monomial in Sj+Pnh can

be written as Ya+C Y+d2 with 0 < a b < p. Then either a + b = j and the monomial

is in the image of a and the kernel of #, or a + b = j++dp is not in the

image of a and 3(ya+cpYb+dp) $ 0. It is clear that a is injective and 3 surjective, so

the sequence is really a short exact sequence of vector spaces.

It remains to see that both maps commute with GL 2(Fp)-action. The map a can

be written as a composition of raising all monomials in the second tensor factor to the

p-th power and multiplication of tensor factors, both of which are GL2 (Fr)-maps. To

see that 3 is a GL 2(Fp)-map, let yi+CP Y+dp E Sj+P"4, with 0 < a, b < n, and assume

first that a + b = j, c + d = n. Then #(ya+CP Y+dp) = 0, and for any g E GL2 (Fr),
3(g.(ya+,y2+dP)) = 0.

Next, consider ya+CP y2+dp E Sj+P" with 0 < a, b < n, a+b = p+j, c+d = n-1,

and let us show that applying 3 to this element commutes with the group action. For

0 1 e 0
this it is enough to see that 3 commutes with A = ,B = [,C =

1 0 0 1

01,e E Fp , which generate GL2 (Fp).
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Using det A = -1, we get

3(yb+dpya+cp)

(b 1)b -1 a-j-1 d C

+ Y)1 Y2 01Y2

= A.( (

= (-1)+1 
b-j-1 a-j-1 d

Yi Y2 0Y1 Y2'

However, these are the same because

(1)j+1 + ( ) ( (41)

so3A=A/A.

Next, using det B = e, we get

B.(ya+cb+dp 
_ ea+c y--1 b-j-1 yy = B.(#(ya+yb+dp)).

Finally,

i=0 1=0

(b) (d)

C.(3(ya+cpyb+dp))

i=0 =

b-1 d(b

i=O 1=0

a + a-1 b-i-i-j-1 +I d-l

j±+1Y Y2

+i-j-1 -i - +Y1(d(ja1) a+i-j-I b-i-j-1 ( c+l d-I

So, the claim that /C = C3 is equivalent to showing that

(b) (a+i) _ (b-j- 1)( a
i j+1 i + j1)'
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Using a + b = p + j and (A) = (-1)i(-At-), this is equivalent to

(-1);+a + i j -i 1

which is true because both left and right hand side are equal to

(V(a +i)(a +i - 1) ... (a - j)
(-1) !(j +1)!

8.2 Category ( for the rational Cherednik algebra

Ht,c(GL2(Fp), [3)

The main theorem of this chapter is:

Theorem 8.2.1. Up to a grading shift, any irreducible representations in category 0

for the rational Cherednik algebra Ht,c(GL 2(Fp), ) is isomorphic to Lt,c(Sib 0 (det)j)

for some 0 < i < p - 1 and 0 < j p - 2. The characters and Hilbert series of these

representations are as follows.

Fort = 0:

* IfO<i p-3,

XLo,c(Si4j@(det))(Z) = [ 0 (det)3],

HilbLoc(Si 4@(det)i)(Z) = i + 1.

* Ifi=p-2

XLo,c(Sit@(det)j)(Z p 0 9(det)] + [SP 0SP 2 0 (det)j] 22

HilbLoc(Sp-2 @(det)i)(Z) = (p - 1) + pz + (p - 1)Z2
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* If i= p-1

XLo,c(SP-10(det)i)(z) = XMo,c(SP-11)@(det)i)(Z)(1 - zP 1)(1 - 2 21

= (1 - zP~1)(1 - zp2_')
HilbLo,c(SP-14,®(det)i)(z) = p (1 - Z)2

For t = 1,

XLc(r)(z) = HL,.c( r ) (ZP) XS(P)y* (z),

HilbLi,( )(Z) hL1 c(r )(ZP) ( P) 2

XS(P * (z) = xs .(z) - 2Xs .(z)zP + Xs*(z)z 2p

where

and the reduced character and Hilbert series is:

* IfO i p-3,

HL1,c(Si4O(det)j)(Z) = [Si 0 (det)j],

hLic(Si;J@(det)i)(Z) = z + 1.

" Ifi=p-2

HL1,c(Sp-24ye(det)3)(z) = [Sp- 2 4j® (det)j]+[SP-1(09(det)j- 1]z+ [Sp-2 @(det)j~ 1]z ,

hLic(Sp-2 ,@(det)j)(Z) = (p - 1) + Pz + (p - 1)z2

* If i= p - 1

HL1,c(SP-14)@(det)j)(z) = XMo,c(SP-ily@(det)j)(Z)(1 -- zp 1 )(1 -Zp2_1

= (1 - zP-1)(1 - zP2 -1)
hLic(SP-1(det)i) (1 - Z)2

Proof. Lemma 8.2.7 shows that all the formulas for the characters of Ltc(S 0 (det)j)

follow from the ones for j = 0. Those are proved for 0 < i < p - 2 in Propositions
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8.3.1 (for t = 0) and 8.3.2 (for t = 1); for i = p - 2 in Propositions 8.4.1 (for t = 0)

and 8.4.5 (for t = 1), and for i = p - 1 in Propositions 8.5.5 and 8.5.6 (for t = 0)

Propositions 8.5.8 and 8.5.9 (for t = 1). E

Remark 8.2.2. For G = GL 2(Fp), one can notice from the previous theorem that

the reduced character for L1,c(-r) is equal to the character of Lo,c(T) for all T. So, the

answer to question 6.2.9 is affirmative in this case.

8.2.1 Blocks

We are going to use the grading element of Ht,c(GL2(F,), ly):

h= E Zxiyi+1 - E css.
i=1,2 sES

Lemma 8.2.3. For t = 0, the element h is central and acts by a constant

hc(Tr)hc(T) = 1 - E cs \

sES

on Mo,c(r). For t = 1, h acts by hc(r) on M1 ,c(r)o and by hc(r) + i E k on M1,c(r)i.

It gives a Z,-grading on representations. A consequence of this is:

Lemma 8.2.4. Fort = 0, 1, if Lt,c(o-)[m] is a composition factor of M,c (r) or Nt,c(r),

then

hc(o) - hc(r) = t - m E Z,.

In particular, this happens if M is any quotient of Mt,ct(), and - C Mm is a GL 2 (F,)

subrepresentation consisting of singular vectors.

For t = 1 and generic c, the Hilbert series is of the form (Q ) 2h(zP), so the only

composition factor in M1,c(r) and N1,c(T) are of the form L1,c(o)[mp]. Hence, for

t = 0 or for t = 1 and generic c, the above condition reduces to

hc(o) = hc(r),
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and separates representations into blocks.

The constants hc(T) are easy to calculate directly.

Lemma 8.2.5. For GL 2 (Fp) and conjugacy class C\ of reflections in it, the action

of central elements E s on symmetric powers of the reflection representation is:

For$1,Zs~~={0, i<p-1For A 1, sis J
SEcQ1 N = p -1

-,i< P-1
For A =1, slsq =

SEC1 0 ,i=p - 1

So, for -r = S' 0 det-, the action of h on the lowest weight r C Mt,c(r) is by the

constant

=1+ c1 , i <p-i

- EX, 1 A-cA, i = p - 1

Proof. We use the parametrization of conjugacy classes from Lemma 7.1.2 and Ex-

ample 7.1.3 .

As EsEC, S is central in the group algebra and acts on S'4 as a constant, it is

enough to compute EsECA s.y'. As we are computing it, we may disregard all terms

of the type y-'y' for j > 0, as we know these sum up to zero. We use Lemma 6.3.1

several times.

For A $ 1, the action of Eca s on y' is by a constant:

(1+ - 1 - (1 -A - bd)) + E 1 + -0)=
b,dEF, aEF,

1 Z (1 - bd)=+ mi= - m ={0 <P1
b,dEF, mEF, mEF, 1 , = 1
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For A = 1, a similar computation yields:

(1 - bd)4 + E 4=(p - 1) m' + 1 =
b,dEF, aEF, mEF, O p - 1.

d$O a0

The formulas for the action of h on irreducible representations S t 0 det is now

computed from this directly. E

Corollary 8.2.6. For generic c, the representations of the form Lt,c(SP- 1j 9 det3 )

form blocks of size one, meaning that the only irreducible representations that appear

as composition factors in any representation with lowest weight SP-'1 0 det' are

isomorphic, up to grading shifts, to Lt,c(SP-l1 0 det3 ).

8.2.2 Dependence of the character of Lt,c(S') 0 (det)j) on j

Lemma 8.2.7. The algebras Ht,c(G, ) and Ht,c.det(G, I) are isomorphic. Therefore,

for generic c and any irreducible representation T of G, the Hilbert series of Lt,c(r 0

(det)j) doesn't depend on j, and their characters are related by

XLt,c(r~det) = XLt,c(r) - [det].

Proof. The existence of the isomorphism follows directly from Lemma 3.1.5, for the

group character f = det. Twisting by this isomorphism makes a representation

Lt,c.det(r) of H,c.det(G, I) into a representation Lt,c(r 0 det) of Ht,c(G, j). So, picking

c is such that both c and c -det are generic parameters, the Hilbert series of Lt,c(T)

and Lt,c(r 0 det) are the same, and that their characters satisfy

XLt,c(r&det) = XLt,c.det(r) - [det] = XLt,c(r) - [det]

(here, multiplication is in the Grothendieck ring and corresponds to taking tensor

products of representations). D

Note this is false for special values of parameter c; more specifically, it shows that
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c is special for r 0 det if and only if c -det is special for r.

Because of this lemma, for G = GL2 (F,) it is enough to calculate the characters

of Lt,c(S' ) for generic c.

8.3 Characters of Ltc(Sf)) for i = 0...p - 3

8.3.1 Characters of Lt,c(S[)) for i = 0 ... p - 3 and t = 0

Proposition 8.3.1. For i = 0, .. .p -3, t = 0 and all c, the space Mo,c(S t[) 1 consists

of singular vectors. So, the character of Lo,c(Sir) is

XLo,c(S1[)(z) = [Sib] HilbLo,c(Si )(z) =i+1.

Proof. The space Mo,c(S'f)1 is isomorphic to r* 0 Si4 as a GL 2(F,)- representation.

To show that it consists of singular vectors, we will show that for any x E 4*, any

y E h, and any f E S'4,

Dy (x o9 f) = (y, x) - 1 cs (y, as) @)X( sjf
SES 

a

is zero. As t = 0 and we are claiming this holds for all c, it is equivalent to showing

that, for any conjugacy class C of reflections,

Z(y, as) ( s @x 9s.f
.SEC,\a

is zero.

Using Lemma 7.1.2, this sum is equal to

E (y, a)(x, av) 0 s.f.
aoavfo

(a,av)=l_A

We now use Example 7.1.3, which parametrizes all a9 av such that (a, av) = 1-- A as
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11- A- bd0a
nonzero vectors in { @ d b, d E Fp}U{[ @ |a E F,}.

Sb d 1 1 - A
We write the above sum as a sum over a, b, d E F, which produce nonzero elements of

this set. First note that if a or av are zero, they don't contribute to the sum, so we

can sum over all a, b, d E F,. Next, note that s.f is a polynomial of degree i in a and

in d, so the summand (y, a) (x, av) 0 s.f is a polynomial in degree 1 + i < p -2 < p -1

in d and in a. By Lemma 6.3.1, this means the sum is zero, as claimed. O

8.3.2 Characters of Lt,c(S'4) for i = 0. . .p - 3 and t = 1

A very similar computation gives the analogous answer in case t = 1.

Proposition 8.3.2. For i = 0,... p - 3, t = 1 and all c, all the vectors of the form

zP 0 v E SP* 0 S' are singular. For generic c these vectors generate J1 ,c(Sit), and

the character of the irreducible module L1,c(S ') is

XL1 ,c(Si4)(Z) = XS(P)*(Z) ' [S ,

its Hilbert series is

HilbL1,c(Si)(Z) = (i + 1) ZP 2

and its reduced character and Hilbert series are

H(z) = [S'[], h(z) =i + 1.

Proof. The proof is very similar to the proof of the previous proposition. To show

that all vectors of the form zP 0 v E SPV* 0 S4 a M1,c(S), are singular, we need

to show that the

D,(xp @f) = a8xp - cE y ) , a gs.f

sES as

= - c (y, a)ap- Z(x, av)P 0 (s.f)
A a O
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is zero. Again use Lemma 7.1.2 and Example 7.1.3 to write this as a sum over all

a, b, d E F, parametrizing a ® av. For x E g C f*, (x, av) is in F1, k, and

(X, cv)P = (x, av). Using this, the inner sum over av again becomes a sum over all

d E F, or over all a E IF, of a polynomial (x, av) 0 (s.f) of degree 1 + i < p - 1 in d

or a, so the sum is zero by Lemma 6.3.1.

To see these vectors generate J1,c(S 4) at generic c, we use Proposition 6.2.4, by

which the character of L1,c(S4) is of the form

X (r)(Z) = Xstp,(z)H (zP).

The character of the quotient of Mi,c(S'r) by the singular vectors found in this lemma

is

XMt~(r)(z) = Xs(P)4.(z)[S*N]

and so the graded GL 2(F, ) representation with the character H(z) is a quotient of

the irreducible representation concentrated in one degree [S'4]. As it is nonzero, there

is no other choice then H(z) = [Sit], so the character of L1 ,c(S' ) is as claimed, and

the maximal graded submodule J1 ,c(S'4) is generated by singular vectors of the form

XP E

Note this proposition says nothing about the character at special values of c;

we can only conclude that for some special values of c, the modules L1,c(S'() are

smaller then the above described modules for generic c. The vectors zP 0 f are still

singular, but for particular values of c the character does not have to be of the form

XS(p) v.(z)H(zP), so there could be other singular vectors in degrees 1,2,... p - 1.

In the appropriately chosen Grothendieck ring, for di = p2 - p, d2 = p2 - 1, and

using

XN1,c(-r) = XM1,c(r)(1 - Z ')(1 -

we have

L1,c(S' ) = M1,c(S't ) - Mi,c(* 0 S'i) [p] + Mi,c(det 0S')[2p]
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and

XL1,c(Si ) =
XN1,c(Si) (z) - XN1,c(b*OSiO) (Z)Zp + XN1,c(det OSi4)(z)zp

(1 - ZPdi)(1 - zPd2)

8.4 Characters of Lt,c(S'l) for i = p - 2

8.4.1 Characters of Lt,c(S'j) for i = p - 2 and t = 0

Proposition 8.4.1. The character of Lo,c(S- 2 4) is

[Sp-2] + [SP-1 0 (det)-1 ]z + [Sp-2 0 (det)- 1]z2,

and its Hilbert series is

(p -1)+pz + (p - 1)z 2.

Proof. We will prove this in a series of lemmas. Let us outline the proof here, and

define several auxiliary modules, used only in this subsection.

The character of the Verma module Moc(SP~2 ) is

XMo,(SP-24)(Z) = 0 Sp 2 4]z.
j>0

Lemma 8.4.2 shows that the space of singular vectors in Moc(Sp-24) 1 is isomorphic to

SP-34, and consequently that Jo,c(S-2) , Sp-3. We define M1 to be the quotient

of the Verma module Moc(Sp-2) by the submodule generated by these vectors.

The character of M' begins as

XM1(Z) = [Sp 2j] + ([j* 0 p-2 [SpI1)Z + ([S 24* p-2 [* Sp-34])Z 2

+([S34* 0g -[-2 S2 * g0 S-3])z3 +...,

which is, using Lemmas 8.1.3 and 8.1.4, equal to

XM1 (z) = [Sp-2] + [SP- 14 0 (det)-1 ]z + [SP' 0 (det)~2]z 2 + [SP+' 0 (det)- 3 ]zs +....
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The module M 1 has the property that its zero-th and first graded piece are equal to

those of the irreducible module Lo,c(T).

However, M 1 is not irreducible. Lemma 8.4.3 shows that the space of singular

vectors in M21 c SP4 0 (det)- 2 is isomorphic to [ 0 (det)-2. This subspace is thus

also in Jo,c(SP-2r). Define M 2 as the quotient of M1 by the submodule generated by

these vectors. M 2 is equal to LO,c(Sp-24) in graded pieces 0, 1 and 2, and its character

begins as

XM2 (Z) = [Sp-24] + [SP-14 0 (det)']z + ([SP4 0 (det)- 2] - [4 0 (det)- 2 ])z2 +

+([SP+14 0 (det)- 3] - [ * 0 [ 0 (det)- 2])z 3 + ... =

= [Sp-24] + [SP-14 0 (det)-1]z + [Sp- 2 0 (det) 1 ]z2 + ([Sp-34 0 (det)-1]z + ...

Finally, Lemma 8.4.4 shows that M32 S- g-340 (det) 1 is entirely made of singular

vectors. From this it follows that the quotient of M 2 by this subspace, which is an

Ho,c(GL2 (Fp), 4)-module with character

[Sp-2] + [SP-1 0 (det) 1 ]z + [Sp-24(det)-1]z 2 ,

is irreducible and equal to Lo,c(Sp-2 ).

This proves the proposition, modulo Lemmas 8.4.2, 8.4.3 and 8.4.4.

0

Lemma 8.4.2. The space of singular vectors in Mo,c(Sp-24), ( [. 0 S-2 is iso_

morphic to Sp-3 and consists of all vectors of the form

x1 0yif + X2 y2 f, f E Sp-3.

Proof. As a GL 2 (Fp)-representation, the first graded piece of the Verma module,

Moc(Sp-2 )1 is isomorphic to 4* 0 Sp-24. By Lemma 8.1.2, this is isomorphic to
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1j 0 (S2 (det)-1, and by Lemma 8.1.3, it fits into a short exact sequence

0 -S- _+ 4 0 S-2j 0 (det)~1 -> SP-1 0 (det)-r -+ 0.

The irreducible subrepresentation isomorphic to Sp-34 includes into [* 0 Sp-2 by

f - X1 y 1 f +X 2O y2 f. Both this subrepresentation and the quotient are irreducible.

If a vector v E Moc(Sp~ 24) 1 is contained in the kernel of B, which is the maximal

proper graded submodule Jo,c(Sp-24), then action on it by y E [ produces an element

of Jo,c(Sp-2 )o. However, the form is nondegenerate in degree 0, and Lo,c(Sp-2,) 0

Mo'c(Sp-2 )o, so y.v = 0. In other words, such a vector is singular.

To show that Joc(Sp-2), _- S-34, we are going to show that:

1. At least one nonzero vector from Sp-3 is singular;

2. Not all vectors in Mo,c(Sp~ 2 )1 are singular.

The space of singular vectors is invariant under the group action, and both Sp-3 and

the quotient are irreducible, so this proves the claim.

First, let us show that the space Sp-34 consist of singular vectors. The set of

vectors X1 0 yif + X2 0 Y2f is symmetric with respect to changing indices 1 and 2, so

it is enough to show that

DYI(x 1 o y1f + X2 @ y 2f)

is zero. We use parametrization of conjugacy classes from Lemma 7.1.2 and Example

7.1.3 and the definition of Dunkl operator DY,, and denote ab = x1 + bX2, and see
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that the coefficient of -c\ in D, 1(x1 0 Yif + x2 0 Y2f) is

(y 1 , a)1 ((xi - S.X1) 0 (s.y1)(s.f) + (X2 - S.X2) 0 (s.y2)(s-f))

a~av EC,.

= 1 - 1 ((1 - A - bd)ab 0 (s.yi)(s.f) + dab 0 (s.y 2 )(s-f))
b,d ab

= 1 ((1 - A - bd)s.yi+ ds.y2) s-f
b,d

= 10 1 ((1 - A - bd)y1 + dy2 ) s.f.
b,d

The sum is over all b, d E Fp if A = 1, and over all b, d E Fp with d # 0 E Fp if A = 1.

However, if A = 1, then the d = 0 term does not contribute to the sum, so let us

consider the sum to be over all b, d E F, in both cases. The term s.f is a vector in

SP-'3 with coefficients polynomials in b, d whose degree in b and in d is less or equal

to p - 3. The overall expression is a sum over all b, d E Fp of polynomials whose

degree in each variable is < p - 2, and it is thus zero by Lemma 6.3.1.

So, the subspace isomorphic to SP 3tj indeed consists of singular vectors.

To see that the space of singular vectors in Moc(Sp~20) 1 is not the whole space, it is

enough to find one vector which is not singular. For example, the above computation

shows that Dy1 (x1 0 (y 1 )- 2 ) has a coefficient of -ciy- 2 equal to

p-2

- bd(1 - bd)p- 2 = p E (- k 2) (-1)k(bd)k+l = (bd)p-' = 1 $ 0,
b,dEFp b,dEFp k=O b,dEFp

so x 1 0 (y 1)p~2 is not singular.

In the proof of Proposition 8.4.1 we defined M' as the quotient of Moc(SP~ 2 0) by

the submodule generated by singular vectors x1 0 Yif + x2 0 Y2f, f E SP 3 0 from

the previous lemma. It is explained in this proof that M1 agrees with Lo,c(SP~ 20) in

graded pieces 0 and 1, and that its character is

XM1(Z) = [S- 2 ] + [Sp 1 0 (det- 1 ]z + [S 0 -1 (det)- 2]z2 + [Sp+10 0 (det)-3 ]z3 +....
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Next, we find the subspace of M2 which is in KerB, and which is by the same

argumentation as in the proof of Lemma 8.4.2 equal to the space of singular vectors

in M2
1.

Lemma 8.4.3. The space of singular vectors in M2 is isomorphic to tj9(det) 2 . The

representatives of these vectors in the Verma module Moc(Sp 2 ) are linear combi-

nations of x y p2 and x 2 y20-2

Proof. The space M 1 c SP40(det)- 2 fits, by Lemma 8.1.4, into a short exact sequence

of GL2 (Fr) representations

0 -+ 4 0 (det)- 2 -- S 0 (det)- 2 _, S-24 0 det -- 0.

We are claiming that the irreducible subrepresentation consists of singular vectors,

but that the quotient is not in the kernel of B. Tracking through all the inclusions,

quotient maps and isomorphisms in the previous lemma shows that x2 0 y-2 and

Xz y E Moc(SP2 j) 2 really map to the basis of 4 0 (det) 2 under the quotient

map Moc(gp-2) - MI.

We use the following observation. For any rational Cherednik algebra module N,

and any y E [, n E N, g E G, the relations of the rational Cherednik algebra imply

that g.(y.n) = (g.y).(g.n), so the map t 0 Ni -+ N;_1 given by y O n F-* y.n is a map

of GL 2(Fp)-representations. So, if N is a quotient of the Verma module and Dy the

induced Dunkl operator on the submodule, then the map y 0 n -4 Dy(n) is a map of

group representations.

In particular, applying the Dunkl operator is a homomorphism

2 o _ + M1.

Showing that [ 0 (det)- 2 C M2 consists of singular vectors is equivalent to showing

that the restriction of the above map to this space, which is

4 0 @ 09 (det)- 2
-+ M1,
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is zero. To do this, notice that the short exact sequence calculating the composition

series of 0 0 r 0 (det)- 2 is

0 -+ (det)-1 -+ 0 0 (det) 2 
- S 2 j 0 (det) 2 - 0,

while the target space of the homomorphism is the irreducible Mi - SP-1 0 (det)-'.

By Schur's lemma, this homomorphism has to be zero, and thus 4 0 (det)- 2 consists

of singular vectors.

To see these are all singular vectors in M2, it is enough to find one nonsingular

vector, because the quotient of M2 by [ 0 (det)- 2 is irreducible representation. Direct

computation shows that DY1x 1x 2 0 y-2 has c1 coefficient equal to x2 0 u-2, which

is nonzero in M1. 0

The next module to consider is M 2 , defined as the quotient of M 1 by the singular

vectors from the previous lemma. The irreducible module Lo,, (Sp- 2 ) is a quotient

of M 2 , and they agree in degrees 0, 1, 2. We proceed looking for singular vectors in

M2, which turn out to be all of it.

Lemma 8.4.4. All vectors in M3 - Sp-3 0 (det)-1 are singular.

Proof. We are going to prove the lemma in two steps: first, we show that the claim

follows from showing that the image of DY1 (xIx 2 0 yf 2) in M2 is zero, and then

showing this is true.

First, M3 is the quotient of Mo,c(Sp 2 4)3 c S3  0 S-2 by the image of singular

vectors from Lemma 8.4.4, isomorphic to S2 .rj S- 3rj. The short exact sequence

describing this inclusion is the one from Lemma 8.1.3 combined with Lemma 8.1.2,

giving

0 -+ S2I 0 g-ag ag 0 -2 _, gP+1 i 0 9 (det) 3 -+ 0.

Under these morphisms, the image of x1x 2 0 yf 2 E S3[ 0 gP2[, in S+10 (det)3

is yP1 Y.

Second, M3 is the quotient of M 1  S P+10 & (det)- 3 by the image of singular

vectors from Lemma 8.4.3, which is the space isomorphic to r* 0 0 (det)-2. The
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short exact sequence realizing this inclusion and quotient is the one from Lemma

8.1.4, giving

0 -+ [ 9 3 09 (det)- 3 - Sp+' 0 (det)~ 3 __+ S-3 & (det) 1 -+ 0.

The image of ~'y!E SP+10 @ 0 (det) 3 under this quotient morphism is -yf3 E

Sp~ 3  0 (det)- 1, which is a nonzero element of it.

Hence, the image of ziz2 0 y-2 in M2 is the nonzero vector in an irreducible

representation. Hence, if we show this vector is singular, it will follow that the entire

space M2 consists of singular vectors.

Third, applying Dunkl operators is a map [ 0 M3 -* M2, so let us decompose

(&o M3 c [ 0& Sp-3 0 (det)~1. The short exact sequence doing this is the one from

Lemma 8.1.3,

0 -+ Sp-4 0 Sp~30 0 (det)- 1 -+ Sp-20 0 (det)~1 -+ 0.

As applying Dunkl operator maps this to M2 c Sp-20 g (det)- 1, by Schur's lemma

the submodule SP-'4 maps to zero, and the map is zero on S 0 S 3 (30 (det)-' if

and only if it is zero on the quotient Sp-20 0 (det)- 1. Under this quotient map, the

vector yi 0 (-yF2 ) maps to -yF 2 , which is a nonzero element of the irreducible

representation Sp-2 0 & (det)- 1. Showing that the entire 4 0 M3 maps to zero is

equivalent to showing that this vector maps to zero,which is equivalent to showing

that the image of DYI (x1X2 0 y12) in M2is zero.

Finally, we prove Dy1 (XzX 2 0 yW2) is zero in M2 by an explicit calculation using

the parametrization of conjugacy classes from Lemma 7.1.2 and Example 7.1.3. The

factor of -cx in DY,(xJX2 0 y 2 ) is

(z2d(A + bd) 2 + XiX 2 (1 - A - bd)(1 + A - bd + 2bd(1 - A - bd))+
b,d

+x2(1- A - bd) 2b(bd - 1)) 0  p- ( 2) (1 - bd)'dp-2- -2-i
i=2
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The sum is over b, d E Fp if A / 1 and over b E F,, d E F, if A = 1. After

quotienting out by vectors from the previous two lemmas, whose images in degree 2

are xi(x 1 0 Y1 + x 2 0 y2 )f, f E SP-3 , and x2 0 y-2, X2 0 p-2, we can write this as

Z xix2 j2 0 (-p-2 d(A(+ bd)2  ' (P 2") (1 -

b,d i=1

p-2

+(1 - A - bd)(1 + A - bd + 2bd(1 - A - bd)) p 2 (1 -2

p-3  - ddpYiYp )
-(1 -A -bd) 2 b(bd- 1) - bd) d 2

i=0

Reading off the coefficients of X1 X2 0 Y 2- for all 0 < i < p - 2 and using lemma

6.3.1 multiple times, we see this is indeed 0. L

This completes the proof of Proposition 8.4.1.

8.4.2 Characters of Lt,c(S9) for i = p - 2 and t = 1

Proposition 8.4.5. The reduced character of L1,c(Sp- 2 ) for generic value of c is

H(z) = [S-2] + [SP~ 1 0 (det)~1 ]z + [Sp~ 2 j 0 (det)~1]z2,

so its character is

XLI,,(SP-2I)(Z) = ([Sp-2 ] + [SP-14 0 (det)-']zP + [Sp-24(det)- 1]z2P) - xS<, .(z),

and its Hilbert series is

(1) -zP)2
((p - 1) + pz + (p - 1)z~p Z)2.(1 -z)2

Proof. It is explained in Proposition 6.2.4, Corollary 6.2.5 and comments between

them that the generators of the module Jt,c(r) for generic c and nonzero t are in

degrees divisible by p, and their composition factors are a subset of the composition
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factors of (S *)P9r. In Lemmas 8.4.6, 8.4.8, and 8.4.10 below we explicitly find these

generators for -r = Sp-2, and in Lemmas 8.4.7 and 8.4.9 we prove they are the only

ones in degrees p, 2p and 3p. The quotient of the Verma module M 1,c(SP-2[) by the

submodule generated by these elements is finite-dimensional, and zero in degree 4p,

from which we conclude that they generate the whole J1,c(Sp-2 ) for generic c, and

that this quotient is irreducible.

The reduced character is calculated in the way explained after Proposition 6.2.4:

as we know the generators of Jic(S- 2[) explicitly, we evaluate them at c = 0 (in

fact, they don't depend on c). They are of the form fi(x4, x) 0 vi. The reduced

module is then defined to be S4*0Sp-2/ (fi(x1, x 2) 0 vi). In our case, the generators

f2 (X1, 4i) 9vi form subrepresentations of type SP 3tJ in degree p, [ 0 (det) 2 in degree

2p, and SP- 3 rj0(det)- 1 in degree 3p. The quotient of S,*0Sp-2 4 by (fi(X1 , x 2 ) 0 vi) is

thus equal to the quotient by subrepresentations of type SP- 3 0 in degree 1, 6 0 (det)-2

in degree 2, and SP-3 0 (det)-1 in degree 3, which is easily seen to have the character

H(z) = [Sp-24] + [S-14 0 (det)-1]z + [Sp-24 (det)- 1]z2.

Lemma 8.4.6. The vectors

4&yif +xoy 2 f

in SpJ* (0 Sp-2 ~- Mic(Sp-2)p are singular in M1,c(Sp-2 ) for all f E SP3E). They

form a GL 2(p) subrepresentation of M1 ,c(SP-2)p isomorphic to SP- 3[.

Proof. The space of these vectors are symmetric with respect to switching indices 1

and 2, so it is enough to prove D, acts on it by zero. A computation very similar to

the one in Lemma 8.4.2 gives that the coefficient of -c\ in DY1 (x 0 y1f + xy 2 f) is

E(x 1 + bx2 )p 1 0 1 ((1 - A - bd)y 1 + dy2)(s.f
b,d A
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The sum is over all b, d E Fp if A # 1 and over all b E Fp, d E F, if A = 1. However, if

A = 1, then every summand is divisible by d so the term with d = 0 doesn't contribute

and we can consider it as a sum over all d E FP. The degree in d of every term of this

polynomial is less or equal to 1 + deg f = p - 2 < p - 1, so by Lemma 6.3.1, the sum

is zero. 0

Lemma 8.4.7. For generic c, the vectors from Lemma 8.4.6 are the only singular

vectors in M 1,c(SP- 2f).

Proof. We will use Corollary 6.2.5, which in our case states that the space of singular

vectors in M1,c(Sp- 2 )p has the same composition series as some subspace of (4*)P ®

Sp~2 . This space is isomorphic to r* 0 Sp-20 and fits into a short exact sequence

from Lemma 8.1.3

0 -+ SP~3 0 _+ 0* g gp-2 - -10 ( (det)~ -+0,

so the space of singular vectors in degree p can either be isomorphic to Sp-30 or to

its extension by SP-'1 0 (det)-1.

We are going to show that the quotient of (0*)p 0 Sp-20 by Sp-30 isomorphic

to SP-10 0 (det)~ 1 does not consist of singular vectors, and that there is no other

composition factor of Sp4* 0 Sp~20 isomorphic to SP-10 9 (det)- 1. This will prove

the claim.

First, we claim that there is a vector in (0*)P 0 Sp-20 which is not singular.

Namely, we claim that D,,(x 0 y2) is not zero. From the calculation in the proof

of Lemma 8.4.6 we can read off that the coefficient of ci in it is equal to

E~3 bd(xi + bX2 )p- 09 ((1 - bd)y1 + dy 2)- 2,
bEF,,dEFX

which in turn has a coefficient of z4- 1 0 y 2 equal to

( bd(1 - bd)p- 2 = 1 $ 0.
bEFp,dEFx
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Second, we claim that SP * 0 SP~2 has only one composition factor of type

SP-'1 0 (det)- 1 . The quotient of SP* 0 SP2[' by the space (4*)P 0 SP 2fj which we

already considered is isomorphic to Sp~ 2 0 S-2, which by repeated use of Lemma

8.1.3 has subquotients of the form S 2P- 4 -2[j 0 (det)j. More precisely, the expression

in the Grothendieck group of GL 2(Fp) representations for [Sp- 2 j 0 Sp-2 ] is

[S2p- 4 4] + [S2p- 6r 0 (det)]+ ... + [S2p-4-2jh 0 (det)j]+ ... + [S 4 0 (det)-2].

Some of these are irreducible (the ones with 2p-4-2j < p), and the others decompose

further using Lemma 8.1.4 and 8.1.3

[S2p-4-2j4 0 (det)j] = [Sp-4-2j( 0 @ 0 (det)'] + [S2j+2 0 (det)j+1+p-4-2j]

= [Sp- 5 -2 0 4 0 (det)j+1 ] + [SP~ 3-2j 0 9 0 (det)j) + [S2j+2 ) 0 (det)j+1+p-4-2.

These are all the composition factors, and none of them is equal to SP-1 0 (det)-1 .

Next, we consider the auxiliary module M 1 , defined as the quotient of the Verma

module M 1 ,c(Sp 2
4) by the submodule generated by singular vectors (x40y1+x0y2)f

from Lemma 8.4.6. This module M1 matches Li,, 2(Sp
2 ) in degrees 0, 1, ... 2p - 1,

and we search for singular vectors in M1,.

Lemma 8.4.8. The images of the vectors

Xi @p 0y2-2, 7 | @ 2p0yP-2

in M' are singular, and span a subrepresentation isomorphic to 4 0 (det)-2

Proof. The claim that they span a subrepresentation isomorphic to (9 0(det)- 2 is easy

to check. As this representation is irreducible, it is enough to show that one of them

is singular, for example xi" 0 y-2 Calculating, as before, the coefficient of -c in
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Dp,(zXi ( yp- 2 ), and denoting ab = xi + bX2 , we get it is equal to:

1 (xP - (xi - (1 bd)ab)2 p) ( (b(1 - A - bd)y1 + (A + bd)y 2)p- 2

-b (z 1- dab2P-2
b,d

p-1

(1 - A - bd) ((1 + A + bd)x4 - b(1 - A - bd)x4) ( 1 )b i) 0
b,d (i=0

p P 2 b(1 - A - bd)ji(A + bd)~ 2 y-2-j.
j=0

Summing over all d and using lemma 6.3.1, this is equal to

2(1p-1 1i 1p-2 2 _1jb+-y
E (2Abxz - 2b2 (1 - A)4i) ( (-1)'bizi-- P 2 (- )ib9+P- 2 p- 2 -+

b i=0 j=0

2p-1
+E(b 2 x + b34) b)zi-1-P ® -bAP-2-3 2 -2(1-A)b2P -2+

b i=0

p-3Y p2-

+ (P 2 (-1)b- 3 -(-2A - j)yJy-2-)
j=1

Summing over b E Fp using lemma 6.3.1 and reorganizing the terms, we get

(2(1 - A) (x " 2x2 - 4-14r) ® + 2A 2- 44- 1) 2

A + -2Azizj1 y +2(1- A)-1x 0 -2 +2(1 - A)ziz p 2 0

+ 3 ((2 + i)X2 p-2-i +±1 _ -1- g P-2-i)

i=1

This is nonzero in M 1 ,c(Sp-2f), and the vectors from lemma are not singular there.

However, in the quotient M', this expression is zero. This can be shown by replacing,

in the above long expression, anything of the form a -4- Y2 - f (meaning any term

whose degree of x2 is at least p and whose degree of Y2 is at least 1) by the equivalent

expression -a - z .- y1 f. The expression then simplifies to 0, showing that in the

quotient M', Dp1 ( 1 y- 2 )=0.
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Similarly, the coefficient in Dy (xi" 0 y&2) of -cA is equal to

b (x2P - (xi - (I A - bd)ob)2 ) 0 (b(1 - A - bd)y1 + (A + bd)y 2)p 2 +
b 1 - A(--2

b,d

+ ((2p - (x1 - aX2)2p) ( (ay1 + y 2 )p-2

+/-X -x-x) Ap- 2

a

The proof that the first part of the sum is 0 in M 1 is very similar to the previous

computation, as it differs from the expression calculated there just by one power of

b. The second part is equal to

-17/2 
21 p32Ap- 2 (2xx- 1 0 y1- 2 + 2x yY2),

which is also zero in M 1. E

Lemma 8.4.9. For generic c, the vectors from Lemma 8.4.8 are the only singular

vectors in M2,.

Proof. The space of p-th powers in M1,c(Sp- 2 )2, is isomorphic to S 2 . 0 S- 2 C

S2p. 0 ST-24. Using Lemma 8.1.3, its image in the quotient M' is isomorphic to

the quotient of S 2 (0 ST-2 0 (det)- 2 by 0 SP-3h 0 (det)- 1, which is SP 0 (det) 2.

So this is the maximal possible space of singular vectors in M1 , and the space of

singular vectors in M1 is its subspace.

This space decomposes by Lemma 8.1.4 as

0 -> 9 0 (det)- 2 -> Sa( 0 (det)- 2 _+ Sp-2j 0 (det)' -+ 0.

We already showed in that the subspace 0 (det)- 2 consists of singular vectors; to

prove that not the entire SP4 0 (det)- 2 does, it is enough to find one nonsingular

vector. By another explicit computation, one can show that xPxi 0 y!j is a p-th

power that is not annihilated by D, 1.

Finally, we need to show that there is no other composition factor of M1 made of

singular vectors. If such a composition factor existed, it would have to be isomorphic
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to SP- 2 0 0 (det)- 1 , and show up as a submodule of the quotient of M, by the space

of p-th powers which we already considered.

Using Lemmas 8.1.3 and 8.1.4, this space is isomorphic to

Sp-2 0 SP-'1 0 (det)-1.

Using [31], Theorem (5.3), this is isomorphic to

SPCP-')~' 0 (det)-1.

The only possible space of singular vectors would be isomorphic to Sp-2 @ (det)- 1

and contained in the socle (maximal semisimple submodule) of SP(P-')-l 0 (det)- 1 .

However, Theorem (5.9) in [31] show that this socle is in fact

(p-3)/2
®@ s 2m10l 0 (det)-3-m.
m=O

As these are all irreducible modules and none of them is isomorphic to Sp-2 0@(det)-1,

we conclude there are no other singular vectors in M1p.

The second auxiliary module M 2 to consider is the quotient of M 1 by the rational

Cherednik algebra submodule generated by the two dimensional space of singular

vectors from the previous lemma. Because of Corollary 6.2.5 and the previous lemmas

in this section (Lemma 8.4.7 and 8.4.9), M 2 is equal to Li,c(Sp20) in degrees up to

3p - 1. In degree 3p, M 2 contains some new singular vectors, given in the following

lemma.

Lemma 8.4.10. All the vectors of the form (S 3 J*)p 0 S - 20 c M1 ,c(Sp-20) 3p are in

KerB.

Proof. The space of p-th powers in Mi,c(Sp- 2 0) 3P is (S 3 4*)p S-2. The quotient of

this space by the subspace (S20*)pO&Sp-30 generated by singular vectors from Lemma

8.4.6 is by Lemma 8.1.3 isomorphic to SP+10 0 (det)- 3. The quotient of this space by
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the subspace (j*)P 0 [ 0 (det)- 2 generated by singular vectors from Lemma 8.4.8 is

by Lemma 8.1.4 isomorphic to Sp-3 0 (det)~ 1, and this is the space of p-th powers

in the M .

We are going to show that this space is made of singular vectors by showing that

the restriction to 0 0 SP3u 0 (det)- 1 of the map

M2, -> m,

given by y 0 m '-+ Dy(m), which is a homomorphism of group representations, has to

be zero.

The source space of this map is [ 0 Sp-3 0 (det)- 1 , which fits into the short exact

sequence

0 - + - 0 Sp~ 3 0 (det)' - Sp-2 0 (det)' -> 0.

The image of the map is a subrepresentation of the target space M2,_1, so if we show

that the socle ofM_ doesn't have S- 4 4 nor S- 2 6 0 (det)- 1 as direct summands,

it will follow that the map is zero.

By applying Lemma 8.1.4 twice and Lemma 8.1.3 once, we see that the quotient

of M2, 1 by the image S 2 p-14* 0 S-3 of singular vectors from Lemma 8.4.6 is

isomorphic to SP-14 ( SP4 0 (det)-2. The quotient of that by the image SP-14* 0

4 0 (det)- 2 is by Lemma 8.1.4 isomorphic to Sp-14 @ Sp-2 0 (det)-1. Using [31],

Theorem (5.3) again, this is isomorphic to SP(P-)-1f 0 (det)~ 1, whose socle is by

Theorem (5.9) in [31] again equal to

(p-3)/2
@ s 2 ,1 ( (det)P-3-m.

m=O

None of these summands is of the type Sp-4 nor Sp-24 0 (det)- 1, so the required

map is zero. This proves the lemma.
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8.5 Characters of Lt,c(Sily) for i = p - 1

8.5.1 Characters of Lt,c(SM) for i = p - 1 and t = 0

In this section we will calculate the character of Lo,c(SP- 1 ) for generic c. We first find

a certain space spank{vo, ... , vp_1} of singular vectors in Mo,c(SP-1 )p_ 1 . We define

an auxiliary module M as a quotient of Mo,c(SP-'1) by the Ho,c(GL2, r)-submodule

generated by these singular vectors and by the action of the algebra of invariants

(S *)G = k[Qo,Q 1 ]+ (for definitions of Qo and Q1, see section 8.1.2). We calculate

the character of M, and finally we show that M is irreducible and isomorphic to

Lo,c(SP-' ).

We will extensively use Corollary 8.2.6, which states that all the composition

factors of Mt,c(SP-1 ) are of the form Lt,c(SP- 1O). Because of that, all the singular

vectors in Mt,c(SP-1 0) form subrepresentations with composition factors isomorphic

to Sp-[.

First, we find singular vectors in degree p - 1.

Lemma 8.5.1. The vector

1  0- 1 -1

in SP-'[* 0 SP-10 -- Mo,c(SP-10)p- 1 is singular.

Proof. The proof is pure computation, using the parametrization of conjugacy classes

from Lemma 7.1.2 and Example 7.1.3 and Lemma 6.3.1 extensively.

First, this vector is antisymmetric with respect to indices 1, 2, so it is enough to

show that Dy1 acts on it by 0. For any A the coefficient of -c, in Dyl(z-@ y- -

4i-1 0 y ~1 ) is

z1 -~P-1 z-1 - s.4P-1 .(
(y 1 , as) (P ax1 0 (s.y2)P 1 - 2 2X 1y M

LEt u ts as

Let us rewrite this using the parametrization of C\ from Lemma 7.1.2 and Example
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7.1.3. We use notation ab = b E *. The sum is over all b, d E Fp if A # 1 and

over all b, d E Fp, d $ 0, if A = 1. The above expression is equal to:

(*) =

b,d
1

- ,
b,

+I

(4-1 - (xi - (1 - A - bd)aob)p~) 0 (b(1 - A - bd)y1 + (A + bd)y2)" +

1
r2- dab)P- - 04 ) -' ((1 - bd)y1 + dy2)P~=

p-1
~ ~P7 ±)~1)tlx~l(1 -A -bd)a<' 0D (b(1 - A - bd)yl + (A + bd)Y2 )'

d i=1

1(-1) 4-1 d a'- - ((1 - bd)y1 + dy2)P-

;1 p - 1).

b,d i=1 j=0 k=0
- (-1)i+1 _ bd)bzI4- -2 x 0 b"~-(1 - A - bd)P-1-(A + bd)kyP-y-kyk+

+(-1) d b - - iz-~ 0 (1 - bd)Pl-d - ys) -

zp-1 p-2
k14-j-2 1- 2

k=0 j=0

1) (-1)i+1(1 - A - bd)P~1-k+i(A + bd)kb-1-k+j +

- bd)P- 1k )

p-1

i=p-1-j

Reading off the coefficient of -2 and using that - ( k) is never

zero, the claim that (*) = 0 is equivalent to showing that for every 0 < k < p - 1,
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0 < j 5 p - 2, the expression (**) is zero, where (**) is

p-1.

b d i=j+1

p-1

p+ 1

S)'+ (1( - A - bd)P-1-k+i(A + bd)kI-1-k+j +

j) (-1 )idi+k bil+1-P(1 - bd)P1 k

,&=p- -J

p-1

b d (i=j+1

(. (P7
2;

( + 1 )+( 1 - A - bd)P-1-k+i(A + bd)k- 1-k+j +

(-1)idP-1+k-% -i(1 - bd)P-1 -k)
i=o

p-1 p-1-k+i k.

b d i=j+1 m=0 n=0
i) n ++

- A)P-1-k+i-m Ak-n bm+n+p-1
-k+jdm+n+

j p-i-k 
2 / 1

E -1-zv-2- 7'

Now we will use Lemma 6.3.1, which states that EbEFp bN = 0 and EdEF, N 0,

unless N = 0 (mod p - 1).

First assume A = 1. The first part of the sum includes Eb bm+n+p-1-k+i and

Ed d T+", so it is zero unless

m+n=0 (modp-1)

m+n+p- 1- k+j 0 (mod p - 1),

which implies

j = k (mod p - 1).

The second part of the sum includes Ed bdi+ldp-l+k-i+l, so it is zero unless

j - i+ l 0

P - 1+ k - i+ l

(mod p - 1)

0 (modp-1),
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which again implies

j = k (mod p - 1).

As 0 < k < p - 1, 0 < j 5 p - 2, the possibilities for j = k (mod p - 1) are

j = 0, k = p - 1 or j = k. Let us calculate (**) in those two cases separately.

If j =O,k =p- 1, then

pn- 1) (_i)m++1( _A)i-mAP-1-nbm+ndm+n +(**)

p-1 i p-1

b,d i=1 m=O n=O

+Z d2(p-)
b,d

p-1 i p-1

Sz E E E 1) () P - 1) (_ 1 )m+i+1(l - A)-mAP-1-bm+ndm+n
b,d i=1 m=O n=O m

= Z(A - bd)2(p-1 - (A - bd)P-= 0.
b,d

If j k, then, using that aP = a,

p-1.

) 1 P - 1 +1(1 - A - bd)t-3 bP-1 (A + bd)j +
b,d (i=j+1

+ f(P 1) ( 2 i ()idp-1+j-ii( - bd)P-1-j

p-1 i
ijmjn_1 m+i+1 p-1

- z ~ ~(i - 1) (P 1' (i J~(j) (1 - A)i-3-mA-n(1)~~b-
b,d i=j+1 m=O n=O

1) 2 1+i -i+jp-1+j-i+

b,d i=0 1=0j

Again using that _bEFp bN = 0 unless N = 0 (mod p - 1), N / 0, this is equal to:

(** 2) (-1)j+1  2 -1 p- 1  p-12) ( )bPld 2 (p-)

b,d b,d
=0.
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Let us now do a very similar computation for A = 1. Now Zb,d is over b, d E Fp,

d $ 0.

(**) p-1 k (i - 1) - ) ( l)p-k b2(p-1-k)+i+n+jdp-1-k+i+n +

b,d (i=j+1 n=0

+ p-i-k _ - 1 )( i) - 1 - k) (_1)i+l j-i+ldp-1+k-i+l
i=0 1=0

Again, this is zero unless j = k (mod p - 1). If j = 0, k = p - 1, it is equal to

p-1 p-1

b,d i=1 n=O

p-1

i=0

i-1
i=0

7 11)b+ndi+n + E bod2p-1
2 n b,d

bbd

2 = 0.

p-1 j .
1~b2(p-1-j+i+"dp-1-j+i+ng-~ ~ - (ji~i, ) (-)P-ib (l3 t n P l± ±+

b,d i=j+1 n=0

+ -- p -1 p -2 -i p - 1- j) (_,)i+lo-i+ldp-1+j-i+l

i=O 1=0

p >_ 2 _-)~3(p') d 2 p-1) +
b,d

+E p - 2 )(-1)P-1-bP-1d2p-1 -

b,d (

-2)+ p -2 _) =-)P1i 0.
j3 + -2 -j
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So, (**) = 0 and the vector 41 0 y2- - 0-1 0 yP-1 is singular.

Lemma 8.5.2. There are no singular vectors in Mo,c(SP-'J)j for i < p - 1, and

the space of singular vectors in MO,c(SP-1),_ 1 is isomorphic to SP-14 as a GL2(Fp)-

representation.

Proof. From the previous lemma it follows that the space of singular vectors in

Mo,c(SP- 1 )p- 1 is nonzero, and from Lemma 8.2.6 that all the composition fac-

tors of it are isomorphic to SP-1'. We will now show that for 0 < i < p - 1,

Mo'c(SP ) Sir* 0 SP-1 has no composition factors isomorphic to SP-14 unless

i = 0 or i = p - 1, in which case it has one. The claim follows from this.

Using Proposition 8.1.3 about the tensor products of symmetric powers, and calcu-

lating in the Grothendieck group of the category of finite-dimensional representations

of the group GL 2(Fp) (so, disregarding the question whether the short exact sequence

is split or not), we get:

[S'[* 0 SP-f] - [S*4 0 SP-1[ 0 (det)-]

= [SP+[-14 0 (det)~t ] + [Sp+i-34 0 (det)-+']+ ... + [SP- 1 ~4].

The representation SP-14 only appears on this list of representations Sp+'-1-2j 0

(det)-'+j for 0 < j < i, when i = 0, which is the trivial case. However, some of

the representations on the list are reducible, namely the ones with i - 1 - 2j > 0.

Decomposing them by Proposition 8.1.4,

[Sp+i-1-2j 0 (det)~+=

= [S'- 1 ~2i4 0 [ 0 (det)-'+j] + [SP-1-'+24 0 (det)-3 ]

= [Si-2-2j 0 (det)-+j+1 ] + [S'~ 2 h 0 (det)-i+j] + [SP-1-'+2j 0 (det)-j]

Here, we follow the convention that Sk4 = 0 if k < 0. In this decomposition all

representations are irreducible. Using that i - 1 - 2j 0, p - 1 > i > 0 and

233



i > j > 0, we see that SP-'r appears on this list only once, namely when j = 0,

i= p- 1.

This space is generated by the singular vector from Lemma 8.5.1. Its explicit basis,

which we will need in computations below, is given by vo, ... , v,_ 1 E SP-!* 0 SP-'t,

where

k p-1
Vk = (l)iX -1-k+i 1- i + 1+k-i i-k -1-i

i=O i=k

Recall that the algebra of invariants (S*)GL2(Fp) is a polynomial algebra generated

by polynomials Qo and Q1 of degrees p2 - p and p2 - 1. Also recall that at t = 0, the

space (S*)GL2(Fp) 0 r C Moc(r) is always a subspace of Jo,c(r), and that the spaces

Q1 @ 0r and Qo 0 -r consist of singular vectors.

Let us consider three spaces of singular vectors in Mo,c(SP-14), all isomorphic to

SP-'1 : span{vo, . . .v,_ 1} in degree p-1, Q10SP-1 in degree p2 -p, and Qo@SP-14 in

degree p2 -1. We want to study the Ho,c(GL2 , [)-submodule of Mo,c(SP- 1 ) generated

by these vectors, and calculate the character of the quotient M of Mo,c(SP- 1f) by this

submodule.

Proposition 8.5.3. Let V be the Ho,c(GL 2(F,)) submodule of Mo,c(SP-1[) generated

by singualr vectors vo, ... v_ 1 . Then

Q 1 & SP-14 C V,

while the intersection of the submodule generated by Qo 0 SP-14 and V is generated

by Qovo, ... Qov,- 1 in degree (p2 _ 1)(p _ 1).

Proof. Let 1 = 0 or 1, and let us study the intersection of the submodule generated

by Qi 0 SP-1 4 and V. This is a graded submodule of Mo,c(SP-'1 ), with elements of

the form

hovo + hiv1 +... h,_ 1v,_ 1 = Qif,

where h(x1, X2 ) E Sfl* for some n > 0, and f E Sn+p-1-deg(Qz) * g S- 1 4.

234



This is a linear equation in S *9 SP- 1 with unknowns hi and f. Reading off the

coefficients with y1- y2 E SP-10 in this equation, we can think of it as a system of

p linear equations in So, with unknowns hi and fi E So*, f = Ej fi 0 ypi 1 ~y . The

left hand side can then be written as

z1~ +-ix~ 2 k-1-k -1 h4-1~+4 x14~ ... X12... 4~j ho

-X 242  + xi 1) ... -x-xz-1) ... 4-2 2 hi

ki3-22 .- f2xp-k+1 x- 3 x2  h

1 22 k - 1 2

x-l x14~ ... X~1 ... 4 +4 JL hp-

The i-th row represents the coefficient of y1- y2, and the k-th column corresponds

to Vk. Call the matrix of this system A, denote the vector with entries hi by h and

the vector with entries fi by f . The system of equations in matrix form can then be

written as

Ah =Qf.

Next, we need a lemma.

Lemma 8.5.4. det A = (1)P-1/ 2Q.

Proof. Factoring out the coefficient -1 from all even rows accounts for the sign

(-1)(P- 1 )/ 2 . The remaining matrix A' has 4-1 + 4-1 on the main diagonal, x1z-2

above the main diagonal, x2z4- 3 above that etc, and 4r-2X2 below the main diagonal,

4- 3 x2 below that, etc.

To show det A' is invariant under GL 2 (Fp) action, let us show it is preserved by

the generators of GL 2((F,), for example transformations

A: x1 i- x 2, X2 - Xi

B: x 1 '-p axi,X 2 '-4 X 2 ,a E F,,
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C: x 1 -4 X1 + X 2, X2 -4 X2-

This proof is direct. The action of A corresponds to transposing A', which preserves

the determinant. The action of B can be calculated as multiplying the entry of A' in

the (i + 1)-th row and (k + 1)-st column (the ones corresponding to the coefficient of

y ~ y in Vk) by ai-k. Factoring out a' from i + 1-th row and a-k from the k + 1-st

column, for all rows and columns, we get the determinant we started from multiplied

by a(+1+---P)-(O+1+---P) = 1. The action of C produces a new matrix, which can

be reduced to A' by a series of row and column operations which don't change the

determinant. More precisely, it is possible to use row operations, adding to each row

a linear combination of the rows below it, and achieve that the first column is that

of the original matrix, and to follow that by a series of column operations, adding to

each column a linear combination of the ones before it, and get the matrix we started

from.

We concluded that the determinant of A' is a polynomial in X1 , X2 of degree

p(p - 1), invariant under the GL 2(F,) action. Hence, it is a multiple of Q1. The

coefficient of 4(P-1 in both the determinant and Q1 is equal to 1, and this finishes

the proof of lemma. 0

We return to the proof of the proposition and to the system of linear equations

Ah =Qf.

The inverse of A is , for A the adjugate matrix to A. For fixed 7, the

unique rational solution h is given by

Q1

This solution will be polynomial if and only if every entry of the vector Q f is

divisible (in Sly*) by Q1.

If 1 = 1, this becomes

h =Af,
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so a polynomial solution exists for every f E S* 0 SP-'[. In particular, we can pick

f E S't* 9 SP-0 , and it follows that Q1 0 SP-'1 is contained in V.

If 1 = 0, then using that Qo and Q1 are algebraically independent, it follows that

the polynomial solution h will exist if and only if every entry of f is divisible by

Q1. So let f = Qi f', and notice that

h = QoAf'

means that every entry of h is divisible by Qo. From this it follows that the intersec-

tion of the submodule generated by Q0 9SP- 1 and V is generated by Qovo, ... Qov_1,
which are in degree (p2 _ 1)(p _ 1).

E

As explained above, the purpose of proving the previous proposition was to con-

clude:

Corollary 8.5.5. Let M be the quotient of Mo,c(Sib) by the Ho,c(GL 2(Fp), b)-submodule

generated by singular vectors vo,.... v_ 1 in degree p - 1, Q1 0 Sr in degree p2 _ p

and Qo 0D Sir in degree p 2 - 1. Then its character is

XM(Z) = XMoc(SP-1w)()(1 - zZ 1)( - zP2 1)

and its Hilbert series is a polynomial

(1 - zP- 1)(1 - zp2_1)HilbM(z)=p 21-z-
(1 - Z)2

Proposition 8.5.6. Lo,c(SP-'j) = M.

Proof. By Lemma 8.2.6, the irreducible representation Lo,c(SP- 1 0) forms a block of

size one. That means that all the irreducible composition factors that appear in the

decomposition of Mo,c(SP-14) and of M, are isomorphic to Lo,c(SP-14)[m].
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As a consequence, the character of Lo,c(SP-'1 ) divides the character of M;

XLo,c(SP-1 )(z)F(z) = XM(z),

for some polynomial F(z) with positive integer coefficients. The character of Lo,c(SP fj)

is of the form

XLo,c(SP-')(z) = XMo0 c(SP- 14)(z)h(z)

for some polynomial h with integer coefficients (T is divisible by (1- z) 2 , as Lo,c(SP- 1)

is finite-dimensional and Mo,c(SP- 1) has quadratic growth). Substituting this and the

character formula for M in the above equation, we get that

h(z)F(z) = (1 - zP~1)(1 - zp2_1).

Let us use the other version of the character which will enable us to compute h.

Recall that for V = Ek Vk a graded Cherednik algebra module, we defined chv to be

a function of a formal variable z and of a group element g, defined as

chv(z,g)= ZzktrlVk(g).
k

It is then easy to see that

1
chMo,c,(sP-1)(z, g) = tr Sp-i(g) -

(1 - zP-1 )(1 - zP2 1)
chm(z, g) = trsp-4(9 - det (1 - zg)

h(z)
chLo,c(SP-1 )(z,g) = trjsp-i,(g) - (z)

Let g E GL 2(F,). It can be put to Jordan form over a quadratic extension Fq of
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F,, and assume it is diagonalizable with different eigenvalues, of the form

A 0

0y

with AL /M E Fq. Then

trlsp-14(g) = AP- 1 + AP 2 p + ... p-0 f 0

and chLo,c(SP- 1)(z, g) is a polynomial in z, so

h(z) h(z)

det 4(1 - zg) (1 - zA- 1 )(1 - zp-1)

must be a polynomial in z as well. By choosing all possible A and y in F Fq, this

implies that h(z) is divisible by all linear polynomials of the form 1- zA-1, and hence

by their product 1 - zP-'. If A and p are in the extension Fq and not in F,, then the

product (1 - zA- 1)(1 - zp-1) is an irreducible quadratic polynomial with coefficients

in F, with a constant term 1. All such polynomials can be obtained in this way, and

h(z) is divisible by their product (1 - z 2 ~-)/(1 - zP- 1). From this we conclude that

h(z) is divisible by 1 zP2 _1

Let us write

h(z) = (1 -z )#(z)

for some polynomial #. Then

#(z)F(z) = 1 - zP-1.

However, it follows from Lemma 8.5.2 that h is of the form 1 - z ., so #(z) is of

that form as well, and it follows that #(z) = 1 - zP-1, F(z) = 1 and Lo,c(SP-l1) = M.

Ez
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8.5.2 Characters of Lt,c(SS) for i = p - 1 and t = 1

Computing the character of L1,c(SP- 1) is very similar to computing the character of

Lo,c(SP-'1 ) in the previous section. We define a set of vectors analogous to vi:

k P-1
= (-)ixp(k-i)Xp(p-1-k+i) g - + Z(- )ix(P-1+k-i)Xp(i-k) -1-

i=O i=k

Lemma 8.5.7. The space spanki{vo,..., _1 } c S()*S j M,c(SP P-1)

consists of singular vectors, and isomorphic to SP-1 as a GL 2 (Fp) representation.

This is the only space of singular vectors in M1 ,c(SP- 1,)p.i for i = 1, ... p - 1.

Proof. The proof that they are singular is an explicit computation analogous to the

one in the proof of Lemma 8.5.1, showing that one vector from this irreducible rep-

resentation of GL 2(Fp) is singular. The space spanned by them is only space of p-th

powers in degrees p, 2p,.. . , (p - 1)p which is isomorphic to SP- 1 as a GL 2 (Fp) rep-

resentation; this follows directly from Lemma 8.5.2 and implies that this is the only

space of singular vectors for generic c in degrees up to p(p - 1).

Proposition 8.5.8. Let M' be the quotient of M1,c(S'[) by the H1 ,c(GL2 (F), [)-

submodule generated by singular vectors v',... v' 1 in degree p(p - 1), QP 0 S'[ in

degree p(p2 - p) and QP 0 S'4 in degree p(p 2 - 1). Its character is

XM'(z) = XM1,c(SP-1)(ZP)(1 - zpl)(1 - zp(21)) - zP)

and the Hilbert series

(1 - zP(P-1 ))(1 -z(2_
Hilbm,(z) = p -(1-z

(1 - Z)2

Proof. The claim is equivalent to the reduced character being equal to

XM 1 ,c(SP-1t)(z)(1 - zP- 1 )(1 - zp2_1).
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By definition of M' and the reduced character, it is equal to the character of the

S[*-module defined as the quotient of SW* 0 SP-1 by vo,... v_ 1 from the previous

section, Qo 0 Si4 and Q1 9 S04. Corollary 8.5.5 in the previous section shows that

the character of this module is as claimed in the proposition.

E

Finally, we have

Proposition 8.5.9. For generic c, L1,c(SP-14) = M'.

Proof. The character of L 1,c(SP-1[) for generic c is of the form

XL 1 ,c(sP-1 )(z) = xM 1',(sP-i4)(z 1 z( ) h'(z)

for some polynomial h'. It divides the character of M', so h'(z) divides (1 - zP-1)(1 -

zP2 _1). Using the same version of the character as in the proof of Proposition 8.5.6,

we see that

chL1 ,c(sP-1)(zg) = trISp-i1(g) h(zp)

det 4(1 - zg)

and we see that h(zP) is divisible by (1 - zP2 _1). From this it follows that h(zP)

is divisible by (1 - zp(p2 -1)). Finally, it follows from the previous proposition that

h'(z) is of the form 1 - zP-1 + ... , and from this, its divisibility by (1 - z, 2 -) and

the fact it divides (1 - zP2 _1)(1 - zP-') it follows h'(z) = (1 - zP2 _1)(1 - zP-1) and

L1,c(SP~14) = M'.
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Appendix A

Computational data

/1
1

_y-
144

-y-
144

_-Y
144

1
(4 - 1)y-96

-
4y- 192

-e 6 y- 216

66y- 72

g4y- 48

(-64 + 1)y-240
(-V 6)y-

252

-6 3y- 180

(65 - 6)y-10
8

63y- 36

1
1

-y 144

-y1 44

y144

-1

(W -1)y96

_g 4 y 192

_
6
y
216

6 
y
72

4
y
48

(_4 + 1)y240

( 5 - )y252

' 3y18o

(-V + Y168y
_-3y36

2
2
-2
-2
0
0

-4+1

64

-2(6
26

-1s
64 _ 1

0
0
0
0

2
2
2
2
0
0

-(4 +1

g4
0
0
4

_4 + 1

-1

-6 1

2
2
2
2
0
0

- ±+1
64

0
0
64

-64 + 1

(6+1
_66 + 1

6 + 1
-66 + 1

3
3

-3y- 48

-3y- 48

-Y-48

1
0
0

6 y-
72

-66y-24

0
0

(6-5 )y-84

63y-60

(65 + 6)y-36
-6 3y- 12

Table A.1: A-matrix for parameter c
labeled by W, in the order 1+, 1-, 2

where ( = e27i/24 and y = (c The columns are

, 2+, 2, 3+, 3_, 4.

c= 1/12 ei/ 12 = (1, 1, 0, 0, -1, 0, 0, 0)
c=/1/4 ei =(1,0, 0,0, 0,0,1 1,), e14 = (0, 1, 0,0,0, 1,0, -1), e 14 = (0, 0, 01,0, -1, -1, 1)
c =1/3 e1/3 =(1, 1, -1, 0, 0, 0, 0,)
c =1/2 el/ = (1, 0, 1, 0, 0, -1, 0, 0), e2 =(01,,0,,0,-,)

Table A.2: Nullspace bases for A-matrix at c = 1/12,1/4,1/3,1/2
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3
3

-3y48

-3 y48

y
48

-1
0
0

g6y72

_- 6 y24

0
0

(-65 + ()y
84

3 y 60

(5 - o3

3y12

4
4
4
4
0
0

(-1
-(4

0
0

-44
-1*

(4 - 1

0
0
0
0



Table A.3: Schur Elements for 'H,(G12), q = v2 = 22r/24
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s1+ v-24(V _( )(V + )(V - 63 )2V4 +63)2(V _ 4)(V +64A)(V - 61 )(V +61 )(V - 61)2(V +

6)2(V - ()(v + 67)(V - 61)(V + 61)(V - 61)2(V + 69)2(V _ 611)(V + 11)

s1- (V - 6)(V + 6)(V - (3)2(v + 63)2(v - 4)(v + 4)(v - 6)(v + 61)(v - 66)2(V +

66)2(V _7) (V + ()(v - 61)(V + 61)(V - (9)2(V + 69)2(V _ 11)(v + 11)

2 2v-4(V - 4)(V + 64)(V - 6)2(v + 66)2(V - (8)v + 68)

s2+ -12v- 4(V - 6)(V + 63)2(v + 5 )(V + 67)(V + 69)2(v - 611)

s2- -12v~4(V + 6)(V - 63)3(V _ 6)( _ 7)(V _ 9)2(V + 11)

s3+ v-1 0 (v - 63)2(v + 63)2 (v - 6)2(v + 6 )2(V - 69)2(V + 9)2

83- v-2(V _ 3 )2 (v + 63)2 (V _ 66)2(V + 66)2(V - 69)2(V + 9)2

84 3v-4(v - 63)2(V + 3)2(V _ 69)2 (V ± 69)2
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