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Abstract

In this thesis, we study the properties and the classification of embeddings of ho-
mogeneous spaces, especially the case of affine normal embeddings of reductive
groups. We might guess that as in the case of toric varieties, some specific subset
of one-parameter subgroups may contribute to the classification of affine embed-
dings of general reductive group. To check this, we review the theory of affine
normal SL(2)-embeddings, and prove that the classification cannot be solved en-
tirely based on one-parameter subgroups. We can also show that even though
this set does not give a complete answer to the classification problem, but still
contains useful information about varieties. We will also give examples of GL(2)-
embeddings which had not previously been constructed in detail, which might be
helpful in understanding the general classification of affine normal G-embeddings.
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Chapter 1

Embeddings of Homogeneous

Spaces

One interesting problem in algebraic geometry is the study of algebraic group

acting on algebraic varieties. We are interested in the case when the one of the

orbits of this action is dense. It is well known that any orbit is open in its closure,

so a dense orbit is automatically open in X. An irreducible algebraic G-variety X

is said to be an embedding of the homogeneous space G/H, or G/H-embedding,

if X contains an open G-orbit isomorphic to G/H. (When this variety is normal

in addition, we often call it a quasihomogeneous variety.) Toric varieties are the

most famous examples of G/H-embeddings where G is an algebraic torus and H is

the trivial subgroup. Also, flag varieties are another interesting examples of G/H-

embedding, and as a generalization of these varieties, spherical varieties have been

studied widely. In [22], Luna and Vust give a classification of spherical varieties

by suggesting combinatorial structures called colored fan.

Throughout this thesis, we will work over a ground field C, which can be re-

placed by any algebraic closed field of characteristic 0. G denotes a connected

reductive algebraic group unless otherwise specified, and H is an algebraic sub-

group of G. All algebraic groups and varieties are assumed to be defined over

C.



1.1 First Examples

1.1.1 Toric Varieties

Let T = Gm" is an algebraic torus defined over C. A toric variety X is a normal

T-variety which contains T as a dense open subvariety so that the action of T on

X extends the regular action of T on itself by multiplication. By a theorem of

Sumihiro [30], there is a covering of X by T-stable, affine open subvarieties which

are therefore again toric varieties. Hence every toric variety may be obtained by

gluing affine toric varieties together. This implies that the classification of toric

varieties can be reduced to the problem of classifying affine toric varieties, and ob-

serving how those varieties are glued together. The basic theory of toric varieties

can be found in many places such as [8], [11], [16].

Suppose X is an affine toric variety, namely X = Spec A. The open embedding

T " X corresponds to an injective homomorphism A -- C[T] a C[xi, x 1 ,--- , , Xr, -

The action of T on X induces an action of T on A as well via t -f I-+ f(t-'x) for

all f E A.

We denote the set of one-parameter subgroups of T, Hom(Gm, T) by X,(T).

This is a free abelian group, which is dual to the group of characters of T (which

we denote as X*(T)), with respect to the perfect paring (-,-) X*(T) x X,(T) -+ Z

determined by

X(y(a)) = a(xY)

for all X E X*(T), 7 XE (T), a E C.

Let S be a finitely generated semigroup in X*(T). Set C[S] equal to the C-

subalgebra of C[T] = C[X*(T)] generated by characters X E S. As S is finitely

generated, C[S] is a C-algebra of finite type. If S generates X*(T) as a group, then

the inclusion C[S] c C[T] induces an equivariant embedding T C Spec C[S], and



every equivariant T-embedding can be obtained in this way:

Proposition 1. The correspondence S -+ C[S] defines a bijection between the set

of finitely generated semigroups S C 3C*(T) which generate 3*(T) as a group and

the set of isomorphism classes of equivariant affine embeddings of T. Moreover, the

morphisms of equivariant affine embeddings correspond (in a contravariant way)

to inclusions between semigroups contained in X*(T).

A semigroup S C X*(T) is called saturated if X E X*(T) and Xn E S for some

positive integer n, implies that X E S. The normality condition of toric varieties

corresponds to the saturated condition:

Theorem 1.1.1. The correspondence S '-+ C[S] defines a bijection between the set

of finitely generated saturated semigroups S C 3t*(T) which generate It*(T) as a

group and the set of equivariant normal affine embeddings of T.

Therefore, we can classify affine toric varieties by classifying all such saturated

semigroups of X*(T). For a torus T, we can regard X,(T) as a Z-lattice in the real

vector space C,(T)R = It,(T) @z R.

Definition 1.1.2. Let o C XC*(T)R. We call o a convex rational polyhedral cone

if o- = {_1 Aivi : Ai E R>o, for all i } for some finite collection of elements

vi E I, (T). We say a convex rational polyhedral cone o is a strongly convex

rational polyhedral cone if it does not contain any non-zero linear subspace of

I, (T)R.

A strongly convex rational polyhedral cone o- associates to its dual cone oav C

X*(T)R, which is defined as

ov = {u E X*(T)R : (u, v) > 0 for all v E -}.

It is easy to show that ov is a convex, rational, polyhedral cone in C*(T)R and

(ov)v = -. The correspondence o E-+ .v nX*(T) defines a bijection between the set



of strongly convex rational polyhedral cones and the set of finitely generated semi-

groups in X'*(T) which are saturated and generate 3C*(T) as a group by Gordan's

Lemma:

Lemma 1.1.3 (Gordan's Lemma). Given a finite set of homogeneous linear inte-

gral inequalities, the semigroup of integral solutions is finitely generated.

So we can classify affine toric varieties:

Theorem 1.1.4. The correspondence o -+ SpecC[ov n X*(T)] = X, defines a

bijection between the set of strongly convex, rational, polyhedral cones in X,(T)R

and the set of affine toric varieties with torus T. Moreover, for -y E X,(T), we

have -y E - if and only if lim-y(t) exists in X,.
t-+o

Therefore, affine toric varieties X are of the form X,, where

o-= {1- C (T) : limy(t) exists in X}
t-+0

is a strongly convex, rational, polyhedral cone with XI(T).

To construct general toric varieties beside the affine case, we need a new

structure called a fan. Before we define this, recall oav C X* (T)R is the set of

u E X*(T)R such that (u,v) > 0 for all v E u. For each x c orv n X*(T), define

X = {x C X*(T)R : (X, x) = 0}. If a cone T can be obtained as o n xL then we

call T a face of o- and write T -< o.

Definition 1.1.5. A fan E in X*(T)R is a finite collection of rational strongly

convex polyhedral cones o- in X,,(T)R such that

1. Every face of a cone of E is also a cone in E

2. The intersection of two cones in E is a face of each cone.

From a fan E, the toric variety XE is constructed by taking the disjoint union of

the affine toric varieties X,, one for each -in E, and gluing as follows : for cones -



and T, the intersection o- is a face of each cone, so Xa, is identified as a principal

open subvariety of X, and of X. Hence we can glue X, to X, by this identification

on these open subvarieties. The fact that these identifications are compatible

follows immediately from the order preserving nature of the correspondence from

cones to affine varieties. (If T a -, then C[Tv n X*(T)] is the localization of

C[ov n X*(T)] at x, where r = o n -L, so X, is an open subvariety of X,.)

Moreover, the torus T Xfo} is naturally an open dense subset of X, since {0} is

a face of every cone, so we have an open embedding of T onto XE. Therefore, we

have following correspondences.

Theorem 1.1.6. The correspondence E -* XE defines a bijection between fans in

X*(T)R and isomorphism classes of toric varieties with a torus T.

A lot of properties of a toric variety can be observed directly from its fan. Some

properties of algebraic variety are corresponding to combinatorial properties in its

fan in the lattice, so it makes us easier to understand and compute invariants on

the variety. Here are some examples of such properties.

Proposition 2. 1. X is complete if and only if the fan E is complete. (The

fan E is called complete if for all points x E X*(T)R, there exists a cone in

E containing x.)

2. X is smooth if and only if all cones of E are generated by a part of a basis

of the lattice Z ' t ,(T).

3. X is Q-factorial if and only if all cones of E are generated by linearly inde-

pendent elements of the lattice Z' X X,(T).

Now we need to check that how the torus T acts on its toric varieties in terms

of the cones and fan. Since the fan is composed of cones, it is enough to check the

torus action on cones. (The compatibility naturally comes from the conditions to

be a fan.) Without using coordinates, we can describe this as following. When

A is C-algebra, there is an isomorphism of functors Spec A - Homc (A, C). Then



T = Spec C[X*(T)] = Homc(C[X*(T)], C) can be considered as the collection of

semigroup homomorphisms Hom(X*(T), Gm), while X, = Spec C[orv n X*(T)] -

Homc(C[av nfX*(T)], C) consists of C-algebra homomorphisms from C[Uv nX*(T)]

to C. Therefore, we can express x E X, as the element x E Home(C[uvOnX*(T)], C)

such that x(m) = m(x). Then the action of T on X, can be described as following

For t E T and x E X,, (t -x)(m) = t(m)x(m)

where the multiplication on the right side is nothing but multiplication in C.

We can describe this action by using coordinates. Let (ai, -- - , a.) be a system

of generators of the monoid ov n x*(T). With a standard basis of X*(T)R, each

ai may be written in the form ai = (ai, ... air) with aij E Z and t E T is written

as (ti, - - -t,) with tj E Gm(C). When a point x E X, is written x = (Xi, - -- ,

then the action T x X, -- X, of T on the affine subvariety X, is

(t, X) F_ (tax1, -. tar y,)

where tai = tiai, - trair E Gm(C).

As the action of T on a toric variety XE can be depicted in terms of fans, the

orbits of X, with respect to T can be described using E. For each cone - E E, there

is a base point x, C XE which is the limit point of any one-parameter subgroups

in the relative interior of the cone o. These base points correspond to T-orbits

T . x, in Xr, and moreover, the orbits of T in X of dimension d are in bijection

with the cones of codimension d of E. In particular, fixed points are parameterized

by cones of dimension n and T-stable divisors by one-dimensional cones.



1.1.2 Flag Varieties

The algebraic group G is called semi-simple when the radical R(G) of G is trivial

where R(G) is the maximal closed, connected, normal, solvable subgroup of G. In

this section, we will assume that G is a semi-simple, connected algebraic group

over C. Such groups are almost classified by their Dynkin diagrams (of type

An, Bn, Cn, Dn, E6 , E7, E8 , F4 , and G2 ) or equivalently, by their root systems. One

fundamental techinque to study algebraic groups is to study its Borel subgroups.

A Borel subgroup is maximal, solvable, closed, connected subgroup of G. If G is

reductive, all Borel subgroups are conjugate to each other. If the closed subgroup

P of G contains a Borel subgroup of G, then we call P a parabolic subgroup of G.

Proposition 3. For any complete homogeneous space X, we can find G and a

parabolic subgroup P such that X ~ GP, and X is smooth projective space.

We call a complete homogeneous space G/P a flag variety. Let S be the set

of simple roots of G. Then the set of parabolic subgroups of G containing B (and

then all the set of isomorphism classes of flag varieties with G fixed) is in bijection

with the set of subsets of S. Therefore for I c S, we can associate a parabolic

subgroup P1 . In order to understand the geometry of flag varieties, we often use

their decomposition into B-orbits.

Proposition 4 (Bruhat Decomposition). When W is the Weyl group of G and

B, we have a decomposition

G =[BtbB
wEW

where zb is a representative of w in G. In particular,

G|B = UEw BtbB/B and GP = LwEW/WP BtbP/P

where if P = P1, Wp is the subgroup of W generated by the simple reflections

associated to elements of S \ I.

Since W is finite, we have the following conclusion.



Corollary 1. Flag varieties have an open orbit under the action of a Borel sub-

group.

The closure of the B-orbits in G/P are called the Schubert varieties (often

written as X(w)), and they play an important role in the study of G/P. The

dimension of X(w) is the length I(w) of w (the minimal number of simple reflections

in the expression of w as a product of simple reflections.) In particular, there exists

a unique element wo of maximal length in W/WP.

If G is not semi-simple but reductive, then G/P is isomorphic to G'/(G' n P)

where G' is the semi-simple part (or equivalently, the derived subgroup) of G and

then it is still a flag variety.

1.2 Spherical Varieties and the theory of Luna-

Vust

From now on, G can be any reductive and connected algebraic group over C. For

a closed subgroup H C G, the homogeneous space G/H is spherical if B acts on

it with an open orbit. More generally, G/H is spherical whenever H contains a

maximal unipotent subgroup of G. Also, we define a spherical variety as a normal

algebraic variety with an action of G and a dense orbit of B. It can be also described

as a G/H-embedding for a spherical homogeneous space G/H. The first exam-

ples of spherical varieties are toric varieties (a Borel subgroup of T is T itself), flag

varieties, and symmetric spaces. For this section, our main sources are [2], [7], [25].

The rather abstract notion of a spherical variety actually has a very rich ge-

ometry, which is only partially understood. It combines features of flag varieties

and of symmetric spaces. As for toric varieties, the geometry of fans and convex

polytopes play a role, too. Also, spherical varieties are a test case for studying

action of reductive groups. More precisely, several phenomena, first discovered

for spherical varieties, have been generalized to arbitrary varieties with reductive



group actions. However, many results find a simpler and more precise formulation

in the case of spherical varieties.

1.2.1 Basic properties of Spherical Varieties

For an algebraic variety X with an action of B, we define its complexity c(X) as

the minimal codimension of a B-orbit in X. By a classical result of Rosenlicht [29],

c(X) is the transcendence degree of the extension k(X)B/k where k(X) denotes

the function field of X, and k(X)B its subfield of B-invariants. The set of weights

of eigenvectors of B in k(X) is denoted by F(X). Then F(X) is a free abelian

group of finite rank r(X), and this number is called the rank of X. Motivation

for these notions is the following result, due to Vinberg in characteristic zero [33],

and to Knop in general [19].

Theorem 1.2.1. For any G-variety X, and for any closed, B-stable subvariety

Y C X, we have c(Y) < c(X) and r(Y) r(X).

Note that spherical varieties are exactly varieties with the complexity is zero.

So the theorem implies the following corollary.

Corollary 2. A G-variety X is spherical if and only if X contains only finitely

many B-orbits.

In particular, any spherical variety contains only finitely many G-orbits, and

all of them are spherical. On the other hand, for any nonspherical G-variety X,

there exist a G-variety X that is G-birational to X and that contains infinitely

many G-orbits.

The rank of a G-variety is an important invariant; and it generalizes the rank of

a symmetric space. The G-varieties of rank zero are just unions of flag varieties.

There is a very useful classification of homogeneous spaces of rank one ([1], [26]).

Namely, several theorems on spherical varieties use reduction to rank one.



1.2.2 Classification of Spherical Varieties

Recall that an embedding of a homogeneous space G/H is a normal G-variety

with an open G-orbit isomorphic to G/H. The embeddings of a given spheri-

cal homogeneous space G/H are classified by combinatorial objects called colored

fans, which generalize the fans associated with toric varieties. This theory, due

to Luna and Vust in characteristic zero [22], has been simplified and extended to

all characteristics by Knop [18]. Here a basic role is played by the set V(G/H)

of G-invariant valuations of the field k(G/H), with rational values. It turns out

that V(G/H) is identified with a convex polyhedral cone in the Q-vector space

Q(G/H) := Hom(X*(G/H), Q). In characteristic zero, this cone turns out to be a

fundamental domain for some finite reflection group W(G/H) acting on Q(G/H)

[6].

An embedding X of spherical G/H is called toroidal if the closure in X of any

B-stable divisor in G/H contains no G-orbit. Toroidal embeddings of G/H are

classified by fans with support in V(G/H), i.e. partial subdivisions of V(G/H)

into convex polyhedral cones that contain no line. Smooth, toroidal embeddings

are regular, which means that they satisfy the following conditions [5]:

1. Each G-orbit closure is smooth, and is the transversal intersection of the

smooth orbit closures that contain it.

2. The isotropy group of any point x acts on the normal space to the orbit G -x

with an open orbit.

Conversely, if a homogeneous space G/H admits a complete regular embedding

X, then G/H is spherical and X is toroidal. The compactifications of symmetric

spaces constructed by DeConcini and Procesi are exactly their smooth, toroidal

embeddings [9], [34].

The problem of classifying spherical spaces by combinatorial invariants is still

open, and only completed in very special cases. (Horospherical varieties, symmetric

varieties and wonderful varieties are some of the cases we already understand



well.) Nevertheless, Losev recently proved a uniqueness property for spherical

homogeneous spaces.[21]

We have already seen combinatorial invariants of spherical homogeneous spaces:

the lattice M of weights of k(G/H), the valuation cone and the set D of colors of

G/H together with a map o from D to the dual N of M. We just have to add one

natural family of invariants (the stabilizers in G of the colors) in order to have the

uniqueness of spherical homogenous spaces. More precisely,

Theorem 1.2.2. Let G/H 1 and G/H 2 be two spherical homogeneous spaces with

the same weight lattice M, the same valuation cone in N := Homz(M, Z) and set

of colors D1 and D 2 respectively (together with maps o-1 and a-2 from D1 and D2

to N respectively) such that there exists a bijection t : D1 -+* D2 satisfying, for all

D C D1, o(D) = -2 (t(D)) and StabGD = StabGt(D). Then G/H 1 and G/H 2 are

G-equivariantly isomorphic.

1.3 Affine Embeddings of Homogeneous Space

Recall that an irreducible algebraic G-variety X is said to be an embedding of the

homogeneous space G/H if X contains an open G-orbit isomorphic to G/H. We

often use the notation G/H -+ X. Let us say that an embedding G/H -+ X

is affine if the variety X is affine. It is reasonable to study specific properties of

affine embeddings in the framework of a well-developed general embedding the-

ory for following two reasons. First, from toric vareities, affine embedding may

contribute to understand general embeddings. Secondly, in many problems of in-

variant theory, representation theory, and other branches of mathematics, mostly

affine embeddings of homogeneous space appear.

It is easy to show that a homogeneous space G/H admits an affine embedding

if and only if G/H is quasi-affine as an algebraic variety. In this situation, the

subgroup H is said to be observable in G. A closed subgroup H of G is observable

if and only if there exist a rational finite dimensional G-module V and a vector



v c V such that the stabilizer G coincides with H. (This follows from the fact

that any affine G-variety may be realized a a closed invariant subvariety in a finite

dimensional G-module.) There is a nice group theoretic description of observable

subgroups due to A. Sukhanov: a subgroup H is observable in G if and only if

there exists a quasi-parabolic subgroup Q C G such that H C Q and the unipotent

radical H' is contained in the unipotent radical QU. (A subgroup Q is said to be

quasi-parabolic if Q is the stabilizer of a highest weight vector in some G-module

V.) It follows from Chevalley's theorem that any subgroup H without non-trivial

characters (in particular, any unipotent subgroup) is observable. By Matsushima's

criterion, a homogeneous space G/H is affine if and only if H is reductive. In par-

ticular, any reductive subgroup is observable. A description of affine homogeneous

space G/H for non-reductive G is still an open problem.

One famous class of affine embeddings are affine toric varieties, which we've al-

ready seen in the previous section. The classification of affine toric varieties will

serve us as a guide to the study of more complicated classes of affine embeddings.

Generalizations of a combinatorial description of toric varieties were obtained for

spherical varieties, and for embeddings of complexity one. In this more general

context, the idea that normal G-varieties may be described by some convex cones

becomes rigorous through the method of U-invariants developed by D. Luna and

T. Vust. The essence of this method is contained in the following theorem.

Theorem 1.3.1. Let % be a G-algebra and U be a maximal unipotent subgroup of

G. Consider the following properties of an algebra:

1. It is finitely generated.

2. It has no nilpotent elements.

3. It has no zero divisors.

4. It is integrally closed.

If (P) is any of these properties, then the algebra % has property (P) if and only if

the algebra %U has property (P).



Another interesting aspect of affine embedding is the connection with Hilbert's

14th problem. Let H be a closed subgroup GL(V). Hilbert's 14th problem (in its

modern version) may be formulated as follows: characterize subgroups H such that

the algebra of polynomial invariants k[V]H is finitely generated. It is a classical re-

sult that for H reductive the algebra k[V]H is finitely generated. For non-reductive

linear groups this problem seems to be very far from a complete solution.

Let us assume that H is a subgroup of a bigger reductive group G acting on V.

The intersection of a family of observable subgroups in G is an observable sub-

group. Define the observable hull ft of H as the minimal observable subgroup

of G containing H. The stabilizer of any H-fixed vector in a rational G-module

contains ft. Therefore k[V]H = k[V]H for any G-module V, and it is natural to

solve Hilbert's 14th problem for observable subgroups.

The following famous theorem proved by F. Grosshans establishes a close con-

nection between Hilbert's 14th problem and the theory of affine embeddings [12],

[13].

Theorem 1.3.2. Let H be an observable subgroup of a reductive group G. The

following conditions are equivalent:

1. For any G-module V the algebra k [V]H is finitely generated.

2. The algebra k[G/H] is finitely generated.

3. There exists an affine embedding G/H < X such that codimx (X\(C/ H)) >

2.

Definition 1.3.3. 1. An observable subgroup H in G is said to be a Grosshans

subgroup if k[G/H] is finitely generated.

2. If H is a Grosshans subgroup of G, then G/H - X = Spec k[G/H] is called

the canonical embedding of G/H, and X is denoted by CE(G/H).

Note that any normal affine embedding G/H -+ X with codimx(X \ (G/H))

2 is G-isomorphic to the canonical embedding. A homogeneous space G/H admits



such an embedding if and only if H is a Grosshans subgroup. By Matsushima's

criterion, H is reductive if and only if CE(G/H) = G/H. For non-reductive

subgroups, CE(G/H) is an interesting object canonically associated with the pair

(G, H). One can use CE(G/H) to reformulate algebraic problems concerning the

algebra k[G/H] in geometric terms. For more about Hilbert's 14th problem and

affine embeddings, you may see [3], [10], [31].



Chapter 2

One-Parameter Subgroup of

Affine Embeddings

Embeddings of homogeneous spaces are studied well for spherical varieties, but it

is not well-known for other cases, especially when the complexity is bigger than

1. Therefore, we want to study embedding of homogeneous space apart from the

complexity. It is reasonable to think simple cases first, therefore we are now trying

to understand when X is affine normal embeddings of reductive group G, instead

of homogeneous space G/H.

Based on knowledge about toric geometry, one might guess that one-parameter

subgroup play an important role to determine the G-variety. So we are inter-

ested in describing and classifying affine G-embeddings X by using one-parameter

subgroup of G. From the theory of toric varieties, it is natural to consider the

one-parameter subgroups of G whose limit exists in X. One-parameter subgroups

and their limits have been studied in several applications, including the Hilbert-

Mumford criterion of stability [23], the construction of the spherical building of the

group G and the Bialynicki-Birula decomposition of a smooth projective T-variety

[4]. For our purpose, we will check that an affine G-embedding X is determined

by the set of one-parameter subgroups -y of G such that lim y(t)xo exists in X. In
t-+h

this chapter, we indicate our base algebraic closed field with characteristic 0 as k



for the simplicity.

2.1 Equivalence Relation on X(G)

A one-parameter subgroup of G is a homomorphism of algebraic groups Y : Gm 

G, which hence corresponds to a map y : k[G] -+ k[t, t-']. Let 3,(G) denote the

set of one-parameter subgroups of G. We will denote the trivial one-parameter

subgroup t '-4 e by e. The group G acts on X,(G) by conjugation, g - Y :t 

g(t)g- 1. Each one-parameter subgroup 7 E X,(G) determines a subgroup

P(-y) = {g c G : y(t)g'y(t- 1) E Gk[[t]]}

of G, which is parabolic if G is reductive. In fact, every parabolic subgroup of

G is of the form P(y) for some one-parameter subgroup 7 of G. We define an

equivalence relation on the set of non-trivial one-parameter subgroups of G by

_Y1 ~ 72 if and only if 7 2 (tn2) = gy1(t"l)g--

for positive integers ni1 , n2 and an element g E P( 1 ), for all t E k*. Then the

quotient (X,(G) - {E})/ ~ is isomorphic to the spherical building of G [23].

Every parabolic subgroup P of G defines a subset

AP(G) = { c X*(G) : P(-7) D P}

of X,(G). Clearly -7 E Ap(.,)(G) for all -y G X,(G), so X,(G) = UAp(G) where

the union is over all parabolic subgroups of G. In the spherical building of G,

the images of the sets Ap(G) are simplices and constitute a triangulation of the

building [23].

The inclusion of k[t, t- 1] in k((t)) allows us to view X*(G) as a subset of Gk((t)) =

Homk(k[G], k((t))), the set of k((t))-points of G. Let (-y) E Gk((t)) denote the



point corresponding to the one-parameter subgroup -y. The group Gk((t)) contains

the subgroup Gk[[t]], which consists of all k((t))-points of G that have a specializa-

tion in G as t -* 0. The group Gk((t)) is the disjoint union of the double cosets of

Gk[[t]], as described by the Iwahori decomposition:

Theorem 2.1.1 (Cartan-Iwahori Decomposition). Let G be a reductive algebraic

group over k. Every double coset of Gk((t)) with respect to the subgroup Gk[[t]] is

represented by a point of type (-y), for some one-parameter subgroup -y of G. That

zs,

Gk((t)) U Gk [[t]]()GC.k[[t]]

YEX(G)

Furthermore, each double coset is represented by a unique one-parameter subgroup.

Using this decomposition, we can replace k((t))-points of G with one-parameter

subgroups. Now let's say that X is a G-variety. For each point x of X, there

is a dominant morphism $2 : G -+ X which is defined by Ox (g) = g - x. For

a point xO - X and a one-parameter subgroup -y of G, we say lim-y(t)xo exists

in X if xO o -y : Gm -+ X extends to a morphism y : A1 -+ X. In this case,

lim y(t)xo is defined to be (. That is, the composition of '0 : k[X] -+ k[G] with
t-+0
y : k[G] -* k[t, t- 1] factors through k[t], and the limit, lim -y(t)xo, is the k-point

t-+0
of X corresponding to the composite map k[X] -+ k[t] - k sending t -+ 0. This

is described by the diagrams:

Gm C : Al k[X] - k[G]

G .0)X k[t] c)k[t t-1]

Similarly, if A is a k((t))-point of G, then lim A(t)xo exists in X means AO|k[X]t-+o
k[X] -4 k[[t]].

The following lemma is straightforward.



Lemma 2.1.2. Suppose A G Gk((t)) and a E G , so that a has specialization

ao E Gk. Let X be an affine G-embedding with base point x0 . Then lim'y(t)xot--+0
exists in X if and only if lim[a(t)y(t)xo] exists, in which case

t-+o

lim[a(t)Y(t)xo] = a0 lim y(t)xo.
t--+0 t-+0

The limit of one-parameter subgroup is closely related with G-embeddings. The

following theorem is one of the famous relation.

Theorem 2.1.3. [17] Let X be an affine G-variety. Suppose that Y is a closed

G-stable subvariety of X and that x0 E X is a closed point such that the closure

of the orbit Gx0 intersects Y. Then there is a one-parameter subgroup Y of G such

that lim-y(t)xo E Y.
t-+0o

2.2 One-parameter Subgroup of Affine G-Embeddings

Given a G-variety X and a point x 0 E X, define

F(X, xo) = E X,(G) : lim y(t)xo exists in X}.t-+0

We are interested in the structure of such sets of one-parameter subgroups when

X is an affine G-variety and the orbit of x0 in X is open and isomorphic to G. We

call such an x0 E X a base point. In the theory of toric varieties, this gives the

cone in the lattice X.(T) which gives the one-to-one correspondence to the affine

toric varieties. Therefore these sets can be used to solve the classification problem

of toric varieties. For any reductive group G, we may ask same question:

Question : Can we classify affine normal G-embedding by using F(X, x0 ) for

a reductive group G?

there is a hope that this can contribute to the classification problem of affine

G-embeddings for a general reductive algebraic group G. Before we actually check



this, we state some properties which can be observed easily.

Proposition 5. [24] Let G be a connected reductive group. Suppose X is an affine

G- embedding and x0 C X a base point.

1. If x'o = hxO, then F(X, x'O) = hr(X, xO)h- 1.

2. If y E F(X, xO) and -y # E, then -y- V F(X, xo).

3. If T is any torus of G, then Tx o ~ T , where - = ['(X, xo) n X,(T) is a

strongly convex rational polyhedral cone in X,(T).

4. If y E F(X, xo) and p E P(y), then p -y E F(X, xo).

5. The image of F(X, xO) in the spherical building is convex ([23], Definition

2.10).

From this proposition, we sometimes call F(X, xo) a cone structure of X. If

this set of one-parameter subgroups can be actually used to solve the classification

problem, we should be able to recover the variety X from F(X, x'O). Therefore we

might need an appropriate valuation on k(G)* related with each one-parameter

subgroup. Now recall that each 7 E X,(G) may be viewed as a k((t))-point of G.

We can find a G-stable valuation VA which is associated to every A E Gk((t)) in the

following way. [22] As A is a k((t))-point of G, we obtain a dominant morphism

G x Spec k((t)) x> G x G -+ G.

This morphism induces an injection of fields

iA : k(G) -+ Frac(k(G) Ok k((t))) -+ k(G)(t).

Then vt o i\ : k(G)* - Z is a valuation of k(G), where vt : k(G)((t))* -4 Z is the

standard valuation associated to the order of t. We define VA = ' (Vt 0 i), where

n, E Z is the largest positive number such that (Vt o i)(k(G)*) C nAZ. This is



G-stable by left translations, i.e., vx(s -f) = v(f) for all s E G, since i\ is clearly

equivariant and k(G) [[t]] is obviously stable for left translations by G in k(G) ((t)).

Here are some properties of these valuations that are proven in [22].

Theorem 2.2.1. 1. Let -y be a one-parameter subgroup of G. For each f G

k(G), there is an open subset U C G, depending only on f, such that

v,(f) = inf vt(f(s.-y(t))).
sEU

2. Let _Y1, _Y2 be one-parameter subgroups of G. Then vI)1 = v- 2 if and only if

So we have good valuations corresponding to one-parameter subgroup which

are stable under the equivalence relation. To answer the question in the beginning

of this section, we will now observe specific varieties when G = SL(2).



Chapter 3

Affine Normal SL(2)-Embedding

As we have mentioned in chapter 1, when U is the maximal unipotent subgroup of

G, the properties of U-invariant ring of O(X) contains important information of G-

variety X. In this chapter we first briefly review the general theory of U-invariant

ring of quasihomogeneous varieties, and explain the classification and construction

of affine normal SL(2)-embedding with more details. By using this, we can show

that the set F(X, xo) does not contain enough information which enable us to

classify all affine normal G-embeddings, unlike the case of toric varieties. In this

chapter, we use some results from algebraic group theory, which can be found in

many places such as [15].

3.1 U-invariant Ring of Quasihomogeneous Va-

riety

Assume that G is a reductive linear algebraic group. Since 0(G)U is a finitely

generated C-algebra of O(G), there is an affine G-variety G(U) with point E E G(U)

such that the mapping #: G -+ G(U), defined by g - gE, is dominant, and

#*(O(G(U))) = O(G)U. The stabilizer of E E G(U) is U, and G(U) \ GE has

codimension at least two.



Theorem 3.1.1. [12], [14] For each G-variety Z, ((Z)U is a finitely generated

C-algebra.

We remark several facts here [20].

1. (O(G)U 0 O(Z))G - O(Z)U.

2. The ring O(Z)U defines an affine variety Z(U) := (G(U) x Z)/G.

a canonical dominant morphism

p: Z -+ Z(U)

which satisfies p*(O(Z(U))) = O(Z)U. (p is a composition of b : Z -+

G(U) x Z and the natural projection #: G(U) x Z - (G(U) x Z)/G.

3. If Z is a G-variety and the map r/: Z -+ Y is U-stable (i.e. r(u -z) = r(z) for

each u C U and z C Z), then 77 factors through the map p and i as follows:

Z - - Z(U)

q"
Y

If Y is a G-variety and # is a G-equivariant map, then we have a commutative

diagram like this:

4,

Pz PY
Z(U) >* Y(U)

The map #(U) is defined as (Id x #(U))/G.

Now let V be a simple G-module. Suppose that v E V is a non-zero element

and define the map

There is



by g '-s gv. Then the corresponding map p* : V* -+ 0(G) is G-equivariant, so it is

uniquely determined by the restriction to the U-invariant subalgebra. The vector

v define a unique one dimensional vector space in O(G)v namely Cv. We may

take the image of Cv C V under G-equivariant embedding V -+ O(G)U. Then we

have the following lemma:

Lemma 3.1.2. p*((V*)U) = Cv c O(G)u.

Now we consider U-invariant function f E O(G)u and G-module (with the

right operation) W generated by f:

W := (9flg E G) C O(G)U.

If Of is the orbit of f in W, Of is closed and y : G - W is the orbit map, so

we can consider a coordinate ring O(Oy) as a subring of O(G) by A*.

Theorem 3.1.3. [20] We have O(Oy) = C[g . f g E G] C 0(G). In particular,

O(Dy-)" contains all components of f in the simple module of 0(G)U.

Proof. The map p* : W* -+ O(G) is given by A - f\ where f.(g) = A(9f). For

h E G, call Ah E W* evaluation at the point h which is defined by Ah(p) = p(h) for

p C W C O(G). Then

fAh (g) = Ah( 9 f = (If)(h) = f(hg) = (h-'f)(g),

so p*(Ah) = h-'f. Since W* is generated by Ah, h E G, we have p*(W*) =

(g -f||g E G), so the theorem is proved. E

The following corollaries follows easily:

Corollary 3. Suppose that W is a G-module and W = @> Wi is the decomposi-

tion into simple modules. For w E W, we can express w = ,wi with wi E W.



Each component wi E Wi defines one-dimensional subspace Cwi C O(G)" and set

W': Cwi C 0(G)". Then we have

0(0,,) = C[G -W'] c O(G).

Corollary 4. Suppose that A C 0(G)" is a finitely generated subalgebra such

that the finitely generated G-module B := (G . A) is a subalgebra of 0(G). If

f1,-.- ft E A are linearly independent generators of A, we can set W := (9 fjjg E

G,i =1, ,t) C O(G) and f := ZE fi E W. Then

0 (Qf)U = A c 0(Uf) = B.

Say f E O(G)U is a highest weight vector with weight w E QG in terms of the

right operation, and let V := (9flg E G) be a simple module. If Of is the orbit of

f in V, then O(Uf~) = C[f] C O(G)U. In particular, Of is normal by theorem

1.3.1.

3.2 First Properties and U-invariant ring of O(X)

The classification of affine embeddings has been completed only in some cases. For

G = SL(2), the simplest algebraic reductive group, the results are well known and

there is a specific construction for each case. This construction allows us to answer

the question suggested at the end of the previous chapter. Before checking this,

we need to understand affine normal SL(2)-embeddings more rigorously.

We recall that an irreducible algebraic variety X is called a quasihomogeneous

variety of the algebraic group G if it has an open orbit isomorphic to G/H, for some

closed subgroup. We are interested in the case when G = SL(2), H = {e}. Most

of this materials can be found in [20] and [28]. When X is an SL(2)-embedding,

we will call the open dense orbit Ox, and the boundary OX is defined as X \ Ox.

Lemma 3.2.1. X does not have any 1-dimensional orbit, and it contains at most



one fixed point.

Proof. Suppose that SL(2) -z is an orbit in X of dimension equal or less than 1.

Then the stabilizer SL(2), has dimension greater or equal to 2, and it contains

a Borel subgroup, for a connected 2-dimensional subgroup of SL(2) is a Borel

subgroup. This implies that z is a fixed point. (For any linear reductive group

G, if Z is a G-variety and z E Z is a point whose stabilizer G2 contains a Borel

subgroup, then z is a fixedpoint.) The second assertion directly follows from the

following; If Z is a G-variety for a linear reductive group G, and Gz C Z is an

orbit, then Gz contains exactly one closed orbit. E

For SL(2), we have an explicit list of all 1-dimensional subgroups.

Lemma 3.2.2. Every 1-dimensional subgroup of SL(2) is conjugate to one of the

following groups :

t 0 0 1
T = {t()C* , N=NSL( 2)(T)=TU T

0 t-1 )(- 1 0

eb
Un = eb E C, n" = 1.

(0 6e1

Lemma 3.2.3. A 2-dimensional orbit in X is closed if and only if the stabilizer

of the orbit is conjugate to T or N.

Proof. One direction is clear. If the stabilizer contains maximal torus, its orbit

is closed. The converse follows from Hilbert's criterion [20]: The closed orbit in

X contains the image of a one parameter subgroup, which is a one-dimensional

torus. E

We call G-embedding X a trivial embedding if X is isomorphic to G.

For any affine G-embedding X, we have the following proposition.

Proposition 6 ([27]). If X is not a trivial embedding, then the boundary OX is a

subvariety of pure codimension 1 in X.



Therefore when G = SL(2), we have

Lemma 3.2.4. If X is not a trivial embedding, dim(X \ Ox) = 2.

From this result, we have two possibilities for an affine SL(2)-embedding X

beside the trivial embedding.

Theorem 3.2.5. If X is not a trivial embedding, X is one of the following types.

Type 1 X = Ox U 00, where Oo ~ SL(2)/T or SL(2)/N.

Type 2 X = Ox U U=1 O Up, where p is the fixed point and O is a 2- dimensional

orbit isomorphic to Urn with some m.

(We will see later that if X is of type 2, the number of 2-dimensional orbits is

always equal to 1.)

From this observation when the variety X is normal, we can decide the singu-

larities of X:

Theorem 3.2.6. Suppose that X is a normal SL(2)-embedding.

1. If X is a Type 1 variety, then X is smooth.

2. If X is a Type 2 variety, then X is singular only possibly at its fixed point.

As a matter of fact, the fixed point p is a singular point.

Lemma 3.2.7. If X is a type 2 variety and p is a fixed point, then OE,p is not a

factorial ring, and p is a singular point.

Proof. We can choose a point e in the dense orbit such that lim A(t)e
t-+o

- p where

E SL(2). Consider the two hyperplanes D := Be and
t-1

) D, where B is the group of upper triangular matrices in SL(2).
0)

Then obviously p E DnDo. If there is another point q E DnDo, then lim A(t)q = p
t-+0 q

t
A (t) =

0

Do:= 0

0)



and lim A--'(t)q = p because ( A = A-1. Therefore, the stabilizer of q
""o -1 0)

contains the image of A(t) , whence q = p. This shows that D n D0 = {p}.

Now assume that D and Do are defined by prime ideals p and po in OE,p, respec-

tively. If OE,p is factorial, each prime ideal is a principal ideal so we can find f and

fo in OE,p such that p = (f) and po = (fo). Then Dn Do is defined by two equation

f = fo = 0, hence codimx D n Do < 2, which is a contradiction. Therefore, OE,p

is not factorial, and p is a singular point. l

Now let's fix one non-trivial SL(2)-embedding X with the general point x0 in

the dense orbit Ox, such that limA(t)zo exist when A(t) = E SL(2).t-+O0t1)

(It is not hard to see that we can always find such x0 for non-trivial embedding.)

Observe that

0O(SL(2)) = C[x, y, z, w]/(xw - yz - 1),

where the maps x, y, z, w : SL(2) - C are defined by

a b a b
X( c d a, Y c d b

a b a b
z =c, w =d.

c d c d

Theorem 3.2.8 ([20]). If X is a normal variety, then the map x E O(SL(2)) can

be extended to the whole X, and its value at the boundary 9X is zero.

Proof. Consider the SL(2)-variety X x C2 with the natural representation of SL(2)

on C2 . Say x' = (xo, (1, 0)) and X' =: O C X x C2 which is the closure of the

orbit of x'.



X pr X X C2 p , C2

X-

X' is an SL(2)-embedding with dense orbit 0'= O,, and we have

O(X) c O(X') c O(SL(2)),

where the two inclusions are induced by # and the map SL(2) -+ X' is given by

g - gx'.

To prove the theorem, now it is sufficient to show:

1. x c O(X') extends to the zero function on the boundary of X'.

2. # is an isomorphism.

An extension of x, Y E O(X'), is given by 3(z, (x, y)) := x. So to show Y

extends to the zero function on the boundary, it is enough to show that -1(0, 0)

contains all 2-dimensional orbits of X'. The map b : X' -+ C2 is equivariant

under the SL(2) action, and the fibers over C2 \ {(0, 0)} are all isomorphic, so each

component of fiber F := 0-1((1, 0)) is one-dimensional. The stabilizer of (1, 0) is

U1= ( c E C C SL(2), so F is U1-stable. Then F n 0' = U1 - x' is
(0 1)

closed in X' (When U is a unipotent group and Z is U-invariant, each orbit in

Z is closed), and an component of F. Suppose that there is another component

C of F. Other component C of F is also U1 stable, so it doesn't intersect U1x'.

Since #(SL(2) - C) = C2 \ {0}, we have dim (SL(2) -C) = 3 , which contradicts

to SL(2) - C c X' \ 0'. It follows that 0-1(C 2 \ {0}) = 0', and it proves the first

assertion.

For the second claim, we note first that the dense orbits of X and X' are

isomorphic, so especially # is a birational morphism. By Richardson Lemma ([20],



II. 3.4), it is enough to show that # is surjective. If X is of type 1, then f
lim A(t)x is a point of 2-dimensional orbit, and f maps to f' := limA(t)x' =
t 0 t-+o
(f, 0) E X' under #, so Of = #(Oy). If X is of type 2, it is enough to show that

the image of # contains Bx because # is SL(2)-equivariant and Bx intersects with

each orbit in X. If y E Bx, then we can easily find a sequence of matrices such

that gn = j E SL(2) with lim gnx = y and lim an = a E C. From
0 an- n-+oo n-+o

this, we have lim gnx'= (y, (a, 0)) E X', hence y (E #(X').
n-+oo

Define a subgroup U, which is an unipotent subgroup of SL(2):

1 0
U:= U1- ={ e C C SL(2).

Then we have 0O(SL(2))U = C[x, y] and 09(X) U C 0(SL(2))U = C[x, y], and

we already observed x E O(X)U when X is normal.

Lemma 3.2.9. If A c C[x, y] is a normal homogeneous subalgebra with x E A

and quot(A) = C(x, y), then A is generated by monomials.

Proof. We first show that for all s, A contains a monomial x'y' for some r. Suppose

that P = zayb + Ei>0 aixa+i y-i is a homogeneous element of A with as E C, b > 0.

If k E N satisfies kb > a, then we have

zbk-ap = ky b + aix (k+l)i(xky)b-i E A,
i>0

so Xk y E A because A is normal. We will now show that Xayb c A, and then

the claim follows by induction. If zayb g A then say that n is a maximal with

zn+ayb ' A. Then for all 0 < i < b,

(on+a+i Yb-i )b= Xd (n+a+1yb)b-i



where d = b(n + a + i) - (b - i)(n + a + 1) = b(i - 1) + i(n + a + 1). Therefore,

on+a+i yb-i E A for i > 0. Because X"P = Xn+ayb + Ei>2 o an+a+i i -i E A, we

have a contradiction. EZ

Theorem 3.2.10. If X is a normal SL(2)-embedding, there is a positive rational

number h such that

0(X)U= Ah := kxiya k E C, i h .

We call this h height of X.

Proof. Suppose that xi yn, . -, xyis are monomials which generate 0O(X)u. Take

h = max, j9. If Xay b E O(E)U, then xzyj E O(E)U for { K j because (xiy )b -
IS ~- a

obi-a (Xayb)j, so the assertion is proved. l

Also, we can show that

Theorem 3.2.11. The height h is invariant under isomorphism.

3.3 Classification of Affine Normal SL(2)-Embedding.

For a G-variety X, we can define an action of G on O(X) as following:

(g- f)(X) := f (g-x)

Now if A is any set in C-algebra with G-action, define (G - A) as the C module

generated by g-a for all g E G and a E A. It is not hard to see that O(X) = (SL(2)-

O(X)U). Conversely, if a finitely generated subalgebra A C C[x, y] satisfies that

the submodule R := (SL(2) -A) is a subalgebra (of O(SL(2))), then RU = A and

R is finitely generated, and we can find SL(2)-embedding Y such that O(Y) = R.

It is therefore important to decide for which h, submodule (SL(2) A) is subalgebra

of O(SL(2)).



Lemma 3.3.1. In O(SL(2)), we have

((SL(2). -xayl) - (SL(2) . x'y'") C" c~> X ynaribsi

Theorem 3.3.2. Suppose that X is non trivial SL(2)-embedding. Then h(X) <

1. Also for every h < 1, there is a normal SL(2)-embedding X with h(X) = h.

Proof. 1) Suppose that f := xiy4 E O(X)U. We have to show that i > j. Consider

the right action of f on the simple module V := C[x, y]i+j. The map

p: SL(2) -+V, g - 9f

induces a map p* : O(V) -+ O(SL(2)), and together with 3.1.3, we have the

following : The image of p is the orbit Of of f in V and

O(Of) = C[g - flg E SL(2)] c O(SL(2)).

This map p factors via X as

SL(2) : X

V

with 7(e) = f. Since the limit lim A(t)e exists, lim A(t)f exists. The action of
t1+0 t-+0

A(t) on f gives us A(t)f = ti-jiyj, so we have i > j.

2) It is enough to show that for given h, (SL(2).Ah) is a subalgebra of 0O(SL(2)).

Suppose zoyb, xrys are two monomials in Ah, then }, 1 < 1, so we have +"r- < ha' r - r- -

for all i > 0. By the previous lemma, we have ((SL(2) . xab)- (SL(2) . zrys))U C

Ah, so ((SL(2) . zayb) - (SL(2) . zrys))U C (SL(2) - Ah). Since Ah is generated

by monomials, this proves the first statement. The normal embedding X with



coordinate ring O(X) = (SL(2) - Ah) has Ah as a U-invariant ring, therefore its

height is h. E

Now we can find a structure of SL(2)-embedding like the following:

Theorem 3.3.3 ([20]). Suppose X is a nontrivial affine normal SL(2)-embedding

with an open orbit Ox C X isomorphic to SL(2).

1. X \ Ox is irreducible and normal. Especially X contains exactly one two

dimensional orbit.

2. h = 1 corresponds to a (unique) smooth SL(2)-embedding with two orbits

X = SL(2) U SL(2)/T.

3. If h = and (p, q) = 1, then X = SL(2) U SL(2)/Up+q U {pt}, and {pt} isp
an isolated singular point in X.

Proof. Let h = I (with (p, q) = 1), and a C O(X) be the ideal of the closed setp

X \ Ox. The exact sequence

0 -+ a O(X) --- O(X \ Ox) -+- 0

is SL(2)-equivariant and hence O(X \ Ox)U = O(X)u/au = Ah/aU, where

Ah = {CXzyj | < h}. By Theorem 3.2.8, we have x E a, and V(x - Ah) C au.

Therefore,

V(x - Ah) = {Cxiby

and Ah := Ah/( (x -Ah)) is a polynomial ring with one variable t := xqyp +

/(x - Ah). If au Z V(x - Ah), then 0(X \ Ox)U = Ah/aU is a quotient ring of

Ah, which is a C-algebra. Then this contradicts the fact that dim(X \ Ox) = 2,

hence

0(X \ Ox) = Ah/( (x -Ah)) = C[t]



with t := xqyp + f(x -Ah). Especially, X \ Ox is irreducible and normal by

Theorem 1.3.1.

Now, suppose that h = 1. Then xy E O(X)U = A 1 and the inclusion C[xy] C

C[x, y] induces an isomorphism C[xy] - A,. The subalgebra C[xy] is T-invariant

under the right operation. So if we define

B := (SL(2) . C[x, y]) = O(SL(2)) T = O(SL(2)/T),

then the exact sequence

B O 0(X) -- +40(X\ OX)

is SL(2)-equivariant isomorphisms. Therefore, X \ 0 is an orbit isomorphic

to SL(2)/T under the morphism p : X -+ X \ Ox defined by p* = i o (p o i)- and

restriction. This gives us the first type of embedding.

Now assume that h < 1. Say n := Ah n (x, y) is the homogeneous maximal

ideal in Ah. Then by lemma 3.3.1, m := (SL(2) - n) c 09(X) is a maximal ideal

defines a fixed point e E X, so X has a fixed point. Now we have

X \ Ox = O' U {e},

and 0' is isomorphic to SL(2)/Us. Since 0' is normal and the fixed point has

codimension 2, we have

00

0(0') = 0(X \ Ox) = 0(SL(2))U" ~® Rni.
i=O

(Rm is the set of homogeneous polynomials of degree m in C[x, y) with G-

action, which is defined as follows; for g E G and f E Rm, g acts on f E Rm as

9f(v) := f(vg) when v = (x, y). We can easily show that Rm is isomorphic to the

homogeneous polynomials of degree m with the usual G action g -f(v) = f(g-1v)



via group automorphism g -+ (g9 )~l. ) U-invariant ring of X \ Ox is given by

Ah/( (x - Ah)) = C[t] with t := xqyp + f(x -Ah). The weights are occurring on

the multiple of p + q, so n = p + q.

To get a more geometrical aspect of X, we are going to determine the tangent

spaces at the fixed point.

Lemma 3.3.4. Suppose that h(X) < 1. If n is the homogeneous maximal ideal of

Ah, define m :=< SL(2) - n >. Then (m 2 )u n2.

Theorem 3.3.5. Let M := {(r, s) E Z x Zlxrys E Ah} be a monoid of lattice. If

{(ri, s)}_1 is a minimal generator of Mh, then the tangent space at the fixed point

eo has the following SL(2)-module decomposition

Ten ( X) ~- 1 ~Rr+si -

In conclusion, if h - | < 1, then Teo (X) contains the representation R1 e Rp+q-q

In particular, dim Te0 (X) ;> 6, so x0 is a singular point. Also, if f E Rn has a

trivial stabilizer and 0 E Of, then Of is not normal.

3.4 Construction of Normal Affine SL(2)-embedding

From the contents of section 3.1, we can easily have the following theorem:

Theorem 3.4.1. For h < 1, let {(ri, sj)}f_1 is a minimal generating sets of semi-

group Mh. Define

f := (xrlys1, . .. , xtyst) E Rnr+si ( ... D Rrt+st-

Then Of is a normal SL(2)-embedding with h(O) = h.

If f E R, E ... Rn has a trivial stabilizer and Of contains 0 E Rni E ... Rt ,

then Of defines an SL(2)-embedding. We want to check that when this is normal,



and as a result, we have that the varieties in the above theorem are all normal

varieties.

Definition 3.4.2. For f = f&1 + - + ft E Rn1 E ... Rnt, we can find aj, ri, si

such that

f = aix7'y'i + E>,o aijxri+jyii where ni = ri + si and ai # 0.

Then define the height of f by h(f) := max> '.

Theorem 3.4.3 (120]). 1. If f E E@'Ri has trivial stabilizer and 0 E 05, then

05 is an affine SL(2)-embedding with h(OQ) = h(f).

2. Of is normal if and only if the monomials composing f generate Ah(f) as a

SL(2)-module.

Proof. 1) Recall that the action of G on R, is given by gYf := (gT)-f. It does not

change the orbit, and we can identify Rn with C[X, y]n. Now we can assume that

f satisfies lim A(t)f = 0 and each component fi has the form of fi = aixriysi +t-+o
Z3 >0 aijXri+jysi-. Then we have

O(O) = C[g ... filg E SL(2), i = 1, ... , t] C 0(SL(2)).

Say q : X -+ Of is the normalization of Of and f e X is a lift of f. Then q is

finite and closed, so lim A(t)f xo exist in X, and xo is a fixed point. Therefore,t-+*o
O(X)U = Ah0 C C[x, y] for suitable ho. According to the definition, h(f) is the

smallest h with fi E Ah for all i. Since fi E O(Uf)U C O(E)U, ho > h(f). Con-

versely, (SL(2) -Ah(f)) is normal and contains O(O), so O(E) C (SL(2) - Ahtyy)

hence ho <; h(f). This completes the proof of the first statement.

2) Say n c Ah(f) is the homogeneous maximal ideal. We assume that the compo-

nent fi has the form fi = aizxrysi + E,>o aXri+jyiSj. The monomials {xriysi -i

1, ... , t} generate Mh(f), so the residue classes fi + n2 = Xr ysi + n2 generate the

vector space n/n 2, and we have Ah(f) = C[f1, - , ft]. Hence O(D)U = Ah(f)



so Of is normal. Conversely, suppose that B C Ah is a proper subalgebra and

A := -y[SL(2) - B] is SL(2)-stable subalgebra of SL(2) generated by B, and

AU C Ah. (This follows from the proof of Lemma 3.3.1 and Lemma 3.3.4.) So if the

monomials composing f doesn't generate the monoid Mh(f), then C[fi, -.- , ft] is

a proper subalgebra of Ah(f) and so O(O)U = C[SL(2) - fdi = 1, - - - , t]U. There-

fore, Of is not normal. LI

3.5 Affine Normal SL(2)-Embedding and I(X, x0)

In this section, we will compute F(X, x0 ) for all affine normal SL(2)-embeddings by

using the classification of SL(2)-embeddings. This will give us a negative answer

to the question in the section 3.2.

3.5.1 Structures of 1(X, x0 )

First we compute F(X, xo) for the case when h = 1. The group SL(2) acts tau-

tologically on space C2 and by conjugation on space Mat(2 x 2). Consider the

point

XO {( E Mat(2 x 2) x C2

(0 -1 0

and its orbit

SL(2)xo = {(A, v) det A - -1, trA = 0, Av = v, V 0}.

It is easy to see that the closure

X = SL(2)xo = {(A, v) I det A = -1, tr A =0, Av =v}.

is a smooth SL(2)-embedding with two orbits, and X \ Ox = {(A, 0) 1 det A =

-1} ~_ SL(2)/T.



We can calculate F(X, xo) by direct computation.

Note that every one parameter subgroup of SL(2) has the form g -1
(0 t-1

for some g E SL(2). Considering an equivalence relation on one-parameter sub-

groups, we have:

Lemma 3.5.1. The set ( X,(SL(2)) - {e}) / can be described as follows:

{g
0

g )
0
1 J(c' E C) or g =

1

0

Proof. Define the right hand side set as W. To show the claim, we need to prove

1) any non-trivial -y(t) E X,(SL(2)) is equivalent to one of the elements in W, and

2) any two elements in W are not equivalent. For Ao(t) and g =

b

d)
we can compute Ao(t)g/o(t- 1) =

ment is in Gk[[t]I if and only if c = 0, so P(Ao(t)) =

For any -y(t) = gAo(t")g- 1 E X,(SL(2)) with g =

integern, we have

1 0

1
a

if a is nonzero, and

if a is zero.

1

0)

a bt2

t-2 d

a b

0 d

Therefore this ele-

E SL(2)

d)

a,b,d E C .

and non-negative

b

d - )

d

b

Also it is not hard to see that for any h e G and -y(t) E .X,(G), P(h - -y) =

a 
b

c



hP(-y)h- 1 , and Al(t) A2 (t) if and only if h - A(t) ~ h - A2(t). Hence, if a is

nonzero,

and if a is zero,

-(t = g - AOt ~ 0O 1 (t)
(1 0 0 b)

0 1 c d 1o 0t o~

100 b C 1

Therefore, the first assertion is proved.

Now assume that gi, g2 are two different element in W and gi A (t) ~ Ao (t).

Then lo(t) ~ g 1 92lo(t) which implies that 91-192 is an upper triangular matrix.

It is not hard to see that this only happens when gi = g2, so the second assertion

is proved. El

Therefore it is enough to check limits when an one-parameter subgroup is one

of the followings:

Now go back to the affine variety X when h = 1. For -y(t) = ( t

a(t - t- 1 )

1 0 a b
g(t)=g- (t")~-g -A(t)~ -%1 E 1 0 c k (t)

1 0 a b 1 0

E 1 0 d-j 1 ot : .A~

t

ae(t - t-1 )

0 t-1 0

) or -y(t) = .



we can compute

1 0
-Y~t~xo2a(1 - t -2) - 1

t

a(t - t-')

It has a limit in X if and only if a = 0.

t-1 0
For y(t) = , we can compute

0 t)

7Y(t)zo=,.
(0 -1 0

and the limit doesn't exist regardless of a.

Therefore, the cone structure of X can be described as follows: If To

t 0
tGEC*,

0 t-1

-0

T

Remark 1. When g =

be described together in the first picture.

gTg- 1 where g = 1 0
a1

0 1 9 t 0 g-t-1 0

1 0 0 t-1 )0 t

Also, we can show that (
0 ~ ,so negative part of F(X, xo) n.,(T) for each maximal

0 t 0 t
torus T should be all same when G = SL(2).

For varieties with h = < 1, the descriptions are similar with the above. First,q

consider Ah = {CXzyJ |{ < h}, and define Mh as {(ij) E Z2lXiyi E Ah}. Take

the generators of the semigroup Mh:

so it can

1 0

a 1



((1, 0), (ri, si), - - . , (r., s.), (p, q)).

Consider this as a point xO in Vi e Vi+si e -- e Vrn+s, E V+q, where V is

the SL(2) module composed of degree k homogeneous polynomials. (Action of

A ( ) E SL(2) on x is ax + cy, and on y is bx + dy.) Then the affine
c d)

normal SL(2)-embedding corresponding to h is

SL(2)xo

Now let's compute the cone structure of it.

For -y(t) =
t

a(t -t-)

0
,its action on

t1)
x is 'Y(t)x = tX + a(t - t-1 )y, so

in order to have a limit, a should be 0.

-Y(t)(Xiyj) - ti-3 x iY3 .

If a = 0, 'y(t) = and

Since for any x'y3 we have i > j, the limit is zero point

in V e Vrl+si G - - ( Vrs+s ( F +qwhich is obviously inside the closure.

0 , 'y(t)x = t-x, so
0 t , the limit doesn't exist.

Hence, the cone structure of X for any h < 1 is the same with the case of

h = 1, and can be described as following :

gTg- 1 where g =
0

1 J
In conclusion, we can have the following theorem.

Theorem 3.5.2. For any affine normal SL(2)-embedding, the cone structure F(X, xO)

is unique.

For -y(t) =



The solution to classification problems using F(X, £o) should include how to

reconstruct X from this set. More precisely, as in [24], one can ask that following

claim is true:

Let G be a connected reductive group. If X is an affine G- embedding with

base point zO, then X ez Spec Ar(x,xo), where Ar(x,xo) := {f E k[G] : v(f) >

0 for all -yE F(X, XO)}.

Unfortunately, this does not hold in general. As we can see in the above cone

structure construction of affine normal SL(2) -embedding, the varieties which are

not isomorphic give us the same cone structure F(X, £o), and the same Ar(x,xo). So

it is obvious that F(X, £o) doesn't give us enough information to solve classification

of G-embedding completely.

Now to check the claim more precisely, we will verify that for the unique cone

structure F(X, £O) of affine normal SL(2)- embedding, Spec Ar(x,xo) is isomorphic

to the unique smooth affine SL(2)-embedding as following.

t 0
Note that any 7 E F(X, £O) is equivalent to A(t) = ( ) except the

a b
trivial one-parameter subgroup c. For this A, if A ( E SL(2),

(c d

at bt-'
AA(t) = ct dt-

Therefore, we can easily find all functions in k[SL(2)] = k[x, y, z, w]/(xz - yw - 1)

whose t-valuation is non-negative are generated (as an algebra) by the monomials

x, Z, £y, zW, yz, zw. That is,

Ar(x,x0 ) = k[x, Z, xy, £W, yz, zw]/(xy - zw - 1) c k(SL(2)).



Recall that the unique smooth affine SL(2)-embedding can be described as

X = SL(2)x = {(A, v) det A = -1,trA = 0, Av = v}.

a b x
If we take the coordinate system asA= ( andv= , we can find

c d )z
the ring of regular function as O(X) = k[a, b, c, d, x, z]/(ad - bc + 1, a + d, ax +

bz - x, cx + dz - z).

Then, we can find the following transformations:

Ar(x,20 ) = k[x, z, xy, xw, yz, zw]/(xy - zw - 1).

J} xy - d, xw - b, yz - c, zw -+ a

k[x, z, a, b, c, d]/(d - a - 1, ad - bc, dz - cx, bz - ax)

a 1 b c d 1
2 2 2' 2 2

k[x, z, a, b, c, d]/(a + d, ad - bc + 1, ax + bz - x, cx + dz - z) = 0(X).

3.5.2 Some applications using F(X, x,)

Even though F(X, x,) doesn't give us the solution to the classification, still it

contains useful information of the G-embedding X. Suppose f : X -+ Y is a G-

equivariant morphism between affine G-embeddings X and Y. If xO E X is a base

point for X, then yo = f(xo) is a base point for Y. Moreover, if -Y is a one-parameter

subgroup of G such that lim y(t)xo = x, exists in X, then lim y(t)yo exists in Y
ino t-+o

and is equal to f (x7) since f is continuous and f(y(t)xo) = -(t)f(xo) = -y(t)yo for

all t # 0. Therefore, there is an inclusion ](X, xo) C F(Y, f(xo)) whenever there

exists an equivariant morphism f : X -* Y of affine G-embeddings.

Another interesting properties can be found when X not only has a left G-

action, but also right G-action too, which is compatible with the left action. We

call X biequivariant G-variety in this case.



Proposition 7 ([24]). If an affine G-embedding X have both a left and a right

G-action, then the associated strongly convex lattice cone F(X, xo), for any choice

of base point xo E X, is G-stable for the conjugation action of G on (X),(G).

Proof. Suppose that X is a (G x G)-equivariant affine G-embedding and let x E X

be a base point. We want to show that F(X, h - x) = F(X, x) for any h E G. Let

h E G and assume that y E F(X, x), so lim'y(t)x exists in X. Then we can check
t-o

lim[y(t) - hx] = lim[-y(t) - xh'] = lim[y(t) - x] - h', for some h' E G, and this limit
t-+o t-+o in+o
exists in X. Recall that hIF(X, x)h- 1 = JF(X, h -x). Thus F(X, x) C hF(X, x)h-1 .

Now assume that -y' E F(X, h -x). Then, the same argument implies -y' E IF(X, x).

Therefore, for every h E G, F(X, x) = hF(X, x)h- 1. Thus F(X, x) is G-stable for

the conjugation action of G on X(G) for any choice of base point x E X. I

Suppose that X is a normal affine SL(2)-embedding. If X is a biequivariant

G-embedding and xO is a base point, P(X, xo) is G-stable, so F(X, xo) n X(T)

is equal to F(X, xo) n X(gTg~ 1) as a cone. By the structure of 1F(X, zo) we've

already observed, we have the following.

Corollary 5. There is no biequivariant normal affine SL(2)-embedding except

the trivial embedding.
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Chapter 4

Some examples of Affine Normal

GL(2)-embedding

The classification of affine normal G-embedding has not been solved except some

special cases. We don't even know complete classifications when G is GL(2) or

SL(3). To understand more possible relations between the cone structures F(X, xo)

and G-embedding, we need to observe what happens in specific cases, but the lack

of examples make things a bit difficult. So it is worthwhile to construct some

family of affine GL(2)-embeddings and its cone structures.

When G = GL(2), the situation is more complicated as we might guess. The

dimension of orbits now can be 2 or 3, and there are too many kinds of algebraic

subgroups of GL(2). Also, the maximal torus has dimension 2, so some of useful

facts in SL(2) case do not hold anymore.

We can easily observe that every maximal torus is conjugate to

a 0
TOee a, dc C* ,

0 d)

every maximal unipotent subgroup is conjugate to



1 0

b 1 B

and evry Borel subgroup is conjugate to

Now let

can fix one

{ a b)adC bC}Bo = a, d E C*, IbE C .
(0 d)

X be an affine normal GL(2)-embedding. As for the case of SL(2), we

maximal unipotent subgroup U as above. Then from

O(GL(2)) = C[x, y, z, (XWYz) ~C z, y, z 1 w yz

we have O(GL(2))U = C X, y,1 I, and O(X)U C O(GL(2))U = C X, y 1
Since Ax := O(X)U c O(GL(2))U = C [X, y, 1 , we can construct some

examples of GL(2)-embeddings when Ax is generated by monomials.

Assume that Ax is generated by monomials. Note that O(X)U is finitely

generated by Theorem 3.1.1. Also by Theorem 1.3.1, Ax is normal when X is

a normal variety. Therefore we can find a rational strongly convex cone -x in

R3 
- Z3 03z R where

Mx :=(p, q, r) E Z3|Xzy ) E Ax = -x Z3.

Pick a set of lattice points {(pi, qi, ri)};_1...t which generates Mx as a monoid.

Now define V to be the C-vector space of degree d homogeneous polynomials in

C [x, y, XW-yz], with a action of G as f - 9f. (This action can be described as

follows if g = a GL(2), then x maps to ax + cy, y maps to bx + dy
c d

and mas t ( (ad-bc) (xw -Yz) ) Now consider the element

fz w - z (Z f zwt -yz qt)XW



in J f _1Vpi+qi+ri-

Lemma 4.0.3. Assume that o- is a cone in R3, which does not lie on any plane

ax + by + cz = 0 with integers a, b, c satisfying a + b + c = 0. Then the stabilizer

of f is trivial.

a b
Proof. Suppose that 9f = f holds for some g = E GL(2). Then for

c d
each i,

(ax + cy)Pi(bx + dy)*i((ad - bc)(xw - yz))-i = XPi y"(Xw - yz)ri.

Since we can find two linearly independent (pi, qi) by assumption, there are nonzero

pi and qj, which implies that ab = 0 and cd = 0 (by comparing the coefficients of

XPi+i and ypi+i.) Because ad - bc # 0 and there is i such that pi # qj, we have

b = c = 0. Therefore, aPidq (ad)-ri a(- r-)d(q-n) 1 for each i.

By assumption, we can find i, j E {1, - - - , t} such that (pi -ri, qj -ri) is linearly

independent from (pj - rj, q3 - ry). (If they are dependent for all i, j, there are

integers A, B such that A(pi - ri) + B(qi - ri) = 0 for all i, and this leads a

contradiction to the assumption.) Hence we can find a, # such that a(pi - ri, qj -

ri) - #(pj - r, qj - rj) = (1, 0). Then

1 (a(Pi -n) d (qi-))a =aa(pj-n)-#8(pj-rj)da (qi-r)-O(qj-rj) - a.
(a(P -rj)d( r))#a -r 

.

Similarly, we can show d = 1. Therefore, we can conclude that the stabilizer of f

in GL(2) is the trivial group. E

From the lemma, the closure of the orbit GL(2) - f in f=iVpj+qj+r gives GL(2)-

embedding when o- is the cone in R3, which does not lie on any plane ax+by+cz = 0

with integers a, b, c satisfying a + b + c = 0. Let's first consider the case when

ri = 0 for all i and the cone a- lies in the ij-plane. Then Mx is generated by

{(pi, qj, 0)}1...,. Say f = (Xpl yq, - - - , XPt yq) is the element in oJf_ 1 Vpi+qi. As we



discuss above, X := GL(2) - f is affine normal GL(2)-embedding.

conclude that O(X) = (GL(2) - f).

Note that every one parameter subgroup of GL(2) has the form g (
for some g E GL(2) and a, b E Z.

By 4, we can

ta 0

0 tb ) g
Considering an equivalence relation on one-

parameter subgroups, we have:

Lemma 4.0.4. The set (X*(GL(2)) - {e}) / can be described as follows:

a - b > 0, (a, b) = 1,g = (a E C) or g =

Proof. Define the right hand side set as W. To show the claim, we need to prove

1) any non-trivial -y(t) E X(GL(2)) is equivalent to one of the elements in W,

and 2) any two elements in W are not equivalent. For A(a,b) (t) = (
p q

g= ,we can
r s

this element is in Gk[[t]]

always when a = b.

So when a > b,

compute AO(t)g(a,b)(t- 1 ) =

if and only if r = 0 when a >
r

p qta-b

tb-a J
b, q

Therefore

= 0 when a < b, and

P(A(a,b))(t)) =

q

when a < b,

0

s

E GL(2)

E GL(2) p, r, s E C ,

ta 0

0 tb
g (

and

p, q, s E C 

P (A (a,b) )(t)) =



and when a = b

P(A(a,b))(t)) = { E GL(2) p, q, r, s C = GL(2).
r s)

Therefore when a = b, we have g -A(a,b) ~ A(a,b), so it is equivalent to either ~ A(1,1)

or ~ A(-,,-1)-

Now assume that -y(t) = gA(a,b)(t)g-1 E LC(SL(2)) with g = q and non-
r s

0 1
negative integer n. Since A(a,b)= A(b,a), we only need to check when

(1 0
a > b. We can observe that

p q 1 0 p q
P )( P

if p is nonzero, and

p q 0 1 r s

r s1 0 0 q

if p is zero.

Say a'= a and b' = (. If p is nonzero,

y(t) =Qg -A(ab)(t) g -Atalb,)(t) ~ -A(a',b') (
p1 0 s - p

1 0 p q 1 0

~A ( a , b ) ( t ~l ~ A t , b ) M t )



Similarly, if p is zero,

(t) = g - A(a,b)(t) , g . A(a',b')N ~ (
rl (

s)

1

0

s

q)

1

0
- A(al,b')(t) )

A (a/,b' (t)

- A(a',b')(t).

Therefore, the first assertion is proved. The second assertion can be proved simi-

larly with the proof of Lemma 3.5.1.

Hence it is enough to check limits when an one-parameter subgroup is one of

the followings:

(t) = ( ta 0

aflta - t1) tb

This one-parameter subgroup acts on the monomial xPyq as

_Y(t)(xPyq) = (tax+a(tatb1y)P(tbY) - N
0 9- t (aj +bq) ga - tb) (P-j) x y p+q-jp AA)

From this we obtain the following:

1. When a = 0, the limit lim-y(t)(xPyq) exists when lim(t(ap+bq)) exists, which
t-+0 t-+0

is equivalent to ap + bq > 0.

2. When a # 0, the limit limy(t)(xPyq)t-+O
exists when for all j, lim(t(aj+bq))(ta _

t-+o
t )(P-j) exists. If a = b, the limit exists if and only if (ap+bq) = 2a(p+q) > 0.

If a # b, the limit exists if and only if (aj + bq) + a(p - j) > 0 and

(aj + bq) + b(p - j) > 0 for all j. It is easy to observe that this is equivalent

to ap + bq > 0 (which includes the case a = b) and b > 0.

0 1

1 0



Therefore for f = (xPly21, - , xPtycJt), the limit limy(t)f exists (which auto-
t-+o

matically implies that lim y(t)f exists in X by definition of X) if and only if,
t-+o

either

1. a = 0 and api + bqj > 0 for all i, or

2. a 0, b > 0 and api + bqj > 0 for all i

Hence the cone structure of X can be described as following:

2 -2

gTog- 1 where g =
0

1

Remark 2. When g =
1

0,
0]

ta 0

0 tb
9-1 =

tb 0

0 ta

described together in the first picture. Also when a < b, we

P(A(a,b)(t)), therefore
1 0

a 1 ( ,)

, so it can be

1 0have E
a a

so a < b part of

F(X, xo) n X(T) for each maximal torus T should be all same when G = GL(2).

For the general cone u which satisfies the property in the above lemma, Mx is

generated by {(pi, qi, r Say f = (XP

is an element in e(D i+qi+r. Then X

1 yql + _ , xPtyt + L-))

GL(2) f is affine normal GL(2)-

embedding. Hence we can conclude that O(X) = (GL(2) -f).

0 2 4 6



The one-parameter subgroup y(t)

xPyq(,,iy) as

ta 0

a (ta - tb) tb) acts on the monomial

1
= (tax + a(ta - t-)y)y(t)y)q( a-bta (xw -y)r

= a
j=0

() (taj+bq-r(a+b)) (ta - tb)(P-j)xiyp+q-j

From this we obtain the following:

1. When a = 0, the limit 'y(t) (xPYq (4 1 7)
exists, which is equivalent to a(p - r) + b(q - r) > 0.

2. When a # 0, the limit lim y(t)
t-+o (xPy q yW - exists when for all j,

xw - y z

lim(t(aj+bq))(ta - tb)(P i) exists. If a = b, the limit exists if and only if
t-+0
(ap + bq) - r(a + b) = a(p + q - 2r) 0. If a # b, the limit exists if and only

if (aj+bq) -r(a+b)+a(p-j) > 0 and (aj+bq)+b(p-j) -r(a+ b) > 0 for

all j. It is easy to observe that this is equivalent to (p - r)a + (q - r)b > 0

(which includes the case when a = b) and -ra + b(p + q - r) > 0.

Therefore for f = (xPy" + ( XWYZ ,xptyqt + ( ,iYZ ,
lim -y(t)f ex-t--*o

ists (which automatically implies that lim y(t)f exists in X by definition of X) ift-+0
and only if either

1. a = 0 and a(pi - ri) + b(qi - ri) 2 0 for all i, or

2. a # 0, -ar + (pi + qj - ri)b > 0 and a(pi - ri) + b(qi - ri) > 0 for all i.

Unlike SL(2) case, the cone structures I(X, x0 ) are not unique for affine nor-

mal GL(2)-embeddings. Therefore, we can expect that this structure implies some

characteristics of those embeddings, and it might help us find an explicit way to

y(t ) (XPy

exists when lim(t(ap+bq-r(a+b)))
t-+0

(XW1 yz)r)



classify general G-embeddings. Also this GL(2)-embedding construction is inter-

esting when we study the properties of embeddings of homogeneous space with

complexity 1. Because the codimension of a Borel subgroup is 1, the complexity is

1 for GL(2)-embedding. We have a combinatorial description for the complexity

1 case [32], but general theories are not well developed on this kind of variety.

For more studies of complexity 1 case, it would be helpful to have a precise de-

scription of affine normal GL(2)-embeddings. We hope that the cone structure

F(X, xo) can contribute to many problems related to affine normal G-embeddings,

and furthermore, general embedding theory.
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