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Abstract

With the recent explosion of choices available to us in every walk of our life, capturing
the choice behavior exhibited by individuals has become increasingly important to
many businesses. At the core, capturing choice behavior boils down to being able to
predict the probability of choosing a particular alternative from an offer set, given
historical choice data about an individual or a group of "similar" individuals. For such
predictions, one uses what is called a choice model, which models each choice occasion
as follows: given an offer set, a preference list over alternatives is sampled according
to a certain distribution, and the individual chooses the most preferred alternative
according to the sampled preference list. Most existing literature, which dates back
to at least the 1920s, considers parametric approaches to choice modeling. The goal
of this thesis is to deviate from the existing approaches to propose a nonparametric
approach to modeling choice. Apart from the usual advantages, the primary strength
of a nonparametric model is its ability to scale with the data - certainly crucial to
applications of our interest where choice behavior is highly dynamic. Given this, the
main contribution of the thesis is to operationalize the nonparametric approach and
demonstrate its success in several important applications.

Specifically, we consider two broad setups: (1) solving decision problems using
choice models, and (2) learning the choice models. In both setups, data available
corresponds to marginal information about the underlying distribution over rankings.
So the problems essentially boil down to designing the 'right' criterion to pick a model
from one of the (several) distributions that are consistent with the available marginal
information.

First, we consider a central decision problem in operations management (OM):
find an assortment of products that maximizes the revenues subject to a capacity
constraint on the size of the assortment. Solving this problem requires two compo-
nents: (a) predicting revenues for assortments and (b) searching over all subsets of
a certain size for the optimal assortment. In order to predict revenues for an assort-
ment, of all models consistent with the data, we use the choice model that results in
the 'worst-case' revenue. We derive theoretical guarantees for the predictions, and



show that the accuracy of predictions is good for the cases when the choice data
comes from several different parametric models. Finally, by applying our approach
to real-world sales transaction data from a major US automaker, we demonstrate an
improvement in accuracy of around 20% over state-of-the-art parametric approaches.
Once we have revenue predictions, we consider the problem of finding the optimal
assortment. It has been shown that this problem is provably hard for most of the im-
portant families of parametric of choice models, except the multinomial logit (MNL)
model. In addition, most of the approximation schemes proposed in the literature
are tailored to a specific parametric structure. We deviate from this and propose a
general algorithm to find the optimal assortment assuming access to only a subroutine
that gives revenue predictions; this means that the algorithm can be applied with any
choice model. We prove that when the underlying choice model is the MNL model,
our algorithm can find the optimal assortment efficiently.

Next, we consider the problem of learning the underlying distribution from the
given marginal information. For that, of all the models consistent with the data,
we propose to select the sparsest or simplest model, where we measure sparsity as
the support size of the distribution. Finding the sparsest distribution is hard in
general, so we restrict our search to what we call the 'signature family' to obtain
an algorithm that is computationally efficient compared to the brute-force approach.
We show that the price one pays for restricting the search to the signature family
is minimal by establishing that for a large class of models, there exists a "sparse
enough" model in the signature family that fits the given marginal information well.
We demonstrate the efficacy of learning sparse models on the well-known American
Psychological Association (APA) dataset by showing that our sparse approximation
manages to capture useful structural properties of the underlying model. Finally,
our results suggest that signature condition can be considered an alternative to the
recently popularized Restricted Null Space condition for efficient recovery of sparse
models.
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Title: Associate Professor

Thesis Supervisor: Devavrat Shah
Title: Associate Professor
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Preliminaries

How to read this thesis

This thesis focuses on operationalizing a new nonparametric approach to choice mod-

eling. The thesis is logically divided into three parts: (1) introduction (Chapter 1),

(2) using choice models to make decisions (Chapters 3 and 4), and (3) learning choice

models from historical transaction data (Chapter 5). The introduction sets the stage

by providing the motivation for a nonparametric approach to choice modeling. It

also provides a comprehensive overview of the problems we consider and interprets

the main results we obtain. In order to make this thesis more widely accessible, an

attempt has been made to explain the problems and results in the introduction with

as little notation as possible. A reader is strongly advised to read the introduction

first. The individual chapters provide precise details of the results we obtain. All the

chapters are self-sufficient and can be read in any order.

Chapter 2 deals with background and provides a comprehensive overview of the

rich history of choice models. Due to the fundamental nature of choice models, the

literature on choice models goes back to at least the 1920s and spans several areas.

Chapter 2 stitches together the diverse modeling approaches across the different areas

through two common themes.

Chapters 3 and 4 are devoted to solving decision problems using choice models.

They discuss the algorithmic solutions we provide and the guarantees we can prove

for the algorithms.

Chapter 5 deals with question of learning sparse choice models from historical

preference data. Finally, in order to provide a better flow, some of the implementation

details and experimental setup details have been moved to the appendix.

Bibliographic notes

The preliminary results of Chapter 3 and Chapter 5 have appeared as conference

papers by Farias et al. [2009] and Jagabathula and Shah [2008]. Part of the results



of Chapter 5 are published as the journal paper by Jagabathula and Shah [2011].
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Chapter 1

Introduction

The recent explosion of choices available for products, coupled with easy access to

information through the internet, has fundamentally changed how we make purchases.

Increasingly, purchase decisions are influenced not only by the individual merits of

the products, but also by what else is on offer. An important implication of this

'choice behavior' is that the purchase decisions of customers are greatly affected by

the selection of products that a seller offers. At a first cut, it seems that a good

strategy for the seller is to offer as wide a selection of products as possible - after all,

wouldn't a wide selection increase both sales and customer satisfaction? While this is

a reasonable strategy on surface, it has in fact been shown not to be optimal - there

is such a thing as too much choice, and too much variety can adversely affect both

customer satisfaction and sales (see Iyengar and Lepper [2000]). Moreover, capacity

constraints like limited shelf space for a retailer or limited screen real-estate for an

e-tailer typically constrain the variety a seller can offer in practice. Thus, in order to

optimize the offered selection of products, it has become increasingly important for

the seller to gain a better understanding of the choice behavior of customers.

Added to the explosion of choices, there has been a corresponding explosion of raw

data. Technological advances have made it extremely simple to collect and analyze

large quantities of raw data (such as the point-of-sales scanner data), making available

to businesses a wealth of information to understand customer choice behavior. While

the data possesses a wealth of useful information, extracting it in a meaningful way is



far from trivial. Thus, along with opening several potential avenues, this 'data deluge'

is posing challenges to businesses in handling huge quantities of data and extracting

useful information from it effectively.

Therefore, we are at this critical juncture, where businesses increasingly need

to gain a better understanding of customer choice behavior, and to do that, they

have access to large quantities of data containing rich information about customer

preferences. What is lacking though is a means to effectively capture the information

in the data to gain a meaningful understanding of user choice behavior. The goal of

this thesis is to fill this void through a nonparametric approach to choice modeling,

where we take a data-centric view point and develop tools that enable practitioners to

effectively channel the information into insights by off-loading subjective judgements

to the data. Our approach is a deviation from the traditional parametric approaches

to choice modeling. In order to understand the need for a new approach, we next

take a closer look at the challenges that arise with modeling choice. Before we do a

deep dive, it is worth mentioning that in addition to the applications in operations

management, choice modeling naturally arises in the problem of rank aggregation,

which is important to applications like web-search, recommendation systems, and

polling systems. We elaborate on some of these applications in the later sections.

1.1 Parametric models and their limitations

Understanding and predicting choice behavior essentially boils down to understand-

ing individual preferences - after all, when offered a set of alternatives, an individual

chooses the alternative that is the most preferred of the offered choices. More pre-

cisely, a concrete goal in this context is to predict the probability that a particular

alternative will be chosen from an offer set by using the historical data about the

choices made either by an individual or by a group of "similar" individuals. For in-

stance, in the retail context, historical choice data is available as sales transactions,

and the goal would be to predict the probability of purchase of a particular type

of product when a specific assortment of products is offered. Traditionally, a choice



model has been used for this purpose. Given the ubiquity of choice behavior, several

variants of choice models - each to serve a different purpose - have been studied in

diverse areas at least for the last four decades. But at the core, almost all 'choice

models' model choice behavior through preference lists: each individual has a prefer-

ence list of the alternatives, and when offered a set of alternatives, chooses the most

preferred alternative. This view was proposed several decades ago by the economists

(see Mas-Colell et al. [1995]), and forms the basis for the popular utility maximization

model, where the preferences can be equivalently captured by a utility function (satis-

fying some properties) that maps each alternative to a real number. When we go from

individuals to a group of "similar" individuals, we can talk about an aggregate choice

model, which corresponds to a distribution over preference lists: the weight of each

preference list corresponds to the fraction of people who make choices according to

the particular preference list. A distribution over preference lists also makes sense to

model the choice behavior at an individual level when a single preference list fails to

capture the complexity of individual preferences. Therefore, the typical recipe in this

context is to use the historical choice data to learn the distribution over preference

lists and use the so obtained choice model to make predictions.

Now, the main challenge to learning and using a choice model (a distribution over

preference lists) is the woefully limited data that is available in practice. Particularly,

when there are N alternatives, we are trying to learn a function with N! degrees of

freedom with typically polynomially (in N) many data points. The traditional ap-

proach to overcoming this data limitation has been to limit the degrees of freedom by

imposing a parametric structure on the distribution. This has been a very popular

approach and has led to a rich body of work in diverse areas like statistics, market-

ing, and psychology, resulting in an extensive family of models for the distributions

over preference lists dating back to at least the 1920s. Of these diverse modeling

approaches, the most popular and extensively studied family of distributions is the

Random Utility Maximization (RUM) family (a detailed exposition of the existing

modeling approaches is given in Chapter 2). The RUM family of models has be-

ginnings in the psychological literature, where the goal was to develop models that



were grounded in more basic processes. It is assumed in this model that choices are

driven by various measurable attributes of the alternatives and the individual, which

lead each individual to assign each alternative a utility value; once the utilities are

assigned, the individual chooses the alternative with the maximum utility. This is es-

sentially the view proposed in the classical utility maximization framework; the only

difference is that in the classical setting, the assigned utilities are assumed to be real

values, whereas in the RUM family, utilities are modeled as random variables'. With

utilities modeled as random variables, different choices of parametric distributions for

the random utilities give rise to different members of the RUM family. Once a para-

metric distribution is selected, choices are made as follows: in each decision instance,

the individual samples utilities according to the selected distribution and chooses the

alternative with the maximum of the sampled utilities. The choice of the parametric

distribution is typically motivated by computational aspects and the application at

hand.

It should be noted here that the RUM family has a rich history dating all the

way back to the 1920s and has been successfully applied to real-world contexts. Nev-

ertheless, it has its pros and cons. The strength of the RUM framework is that it

often results in intuitively interpretable structures and also allows incorporation of

fine-grained attribute-level information (through the utility function) about the in-

dividuals and the alternatives. The downside however is that selecting the "right"

structure is far from trivial. Specifically, there are two challenges: Firstly, choosing

the "right" parametric structure for the problem at hand requires making the optimal

trade-off between the richness of the model and the learnability of the model - the

chosen structure has to be simple enough, on the one hand, that it can be learned

from the limited "amount" of information in the data available, and complex enough,

on the other hand, that it can capture the richness of the choice problem being

modeled; striking the right balance is challenging because formalizing the trade-off

between model "complexity" and "amount" of information in the data is non-trivial.

'There are interesting interpretations of the randomness introduced into utilities. See the intro-
duction of Chapter 2 for more details.



Secondly, even if one did choose an appropriate structure, parametric models do not

scale with the "amount" of information at hand. The implication is that, once the

structure is fixed, the model could either under-fit or over-fit as the "amount" of

information in the data changes - which often happens in practice (an illustration of

this fact in a real-world scenario is presented later).

1.2 The task of nonparametric choice modeling

In order to overcome the limitation of the parametric models to scale with data, this

thesis studies2 a nonparametric approach to choice modeling. One of the main appli-

cation areas of our focus is the prediction and decision problems faced by operations

managers. These applications possess three important characteristics:

1. Making accurate and fine-grained predictions is more important than under-

standing the underlying choice process; in fact, the decisions based on these

predictions potentially impact millions of dollars.

2. The choice behavior exhibited by individuals is highly dynamic and rapidly

varying across geographical locations and times.

3. Technological developments have made available enormous amounts of transac-

tion data.

Given these characteristics, it is evident a data-driven modeling approach is not only

a possibility, but also a necessity in this context. Motivated by these considerations,

instead of fixing a structure a priori (not even an exponential structure), we start

with the family of all distributions over preference lists, and off-load to the data the

task of selecting an appropriate distribution from this general family. This data-

driven approach naturally leads to models whose complexity adaptively scales with
2We note that another popular family is the the exponential family of choice models. This family

does allow the model complexity (as measured by the number of parameters) scale with the data.
However, they pose several computational challenges even to simply compute choice probabilities
and hence are not very very popular in the applications of our interest; a detailed discussion is
presented in Chapter 2.



the data. Our experiments with real-world data show that our approach is effective

in reducing the chance of over-fitting and under-fitting. Our approach is particularly

valuable to practitioners because it not only removes the burden of making subjective

judgements, but also allows for the same implementation to be used in different

settings by just changing the input data. The price one pays with this nonparametric

approach is that the rich structure of parametric models - which is typically exploited

to solve decisions problems efficiently - is no longer available. This is however not a

huge price for the following reasons. Firstly, in many applications (like the ones we

are considering in OM) accuracy is more important than computationally efficiency;

solving the decision problem to optimality having assumed an incorrect model is

clearly of not much use. Secondly, as elaborated later, except in the case of the

simplest of the models - namely the MNL model - very little is already known about

solving decision problems efficiently; therefore, most of the parametric models are

already complicated enough that their use does not simplify the associated decision

problems in any meaningful manner. We note here that, as elaborated later, our

results in the nonparametric setting to a large extent subsume the results known for

parametric models making this more general than the existing approaches.

Although a nonparametric approach to choice modeling is very appealing, solving

the core problem of learning distributions over permutations from marginal informa-

tion is a notoriously hard problem; the main challenge, both from a theoretical and

practical standpoint, is the factorial (in the number of alternatives) blowup in their

support size. In addition, their structure does not allow for representation through

a compact graphical model. In fact, one of the main reasons for the popularity of

parametric approaches is the difficultly associated with learning general distributions

over permutations without imposing tractable structures. Very little is already un-

derstood in this setting. Therefore, in addition to the practical implications, solving

the problem of learning a distribution over permutations from marginal information

involves answering rich theoretical methodological questions. A common method-

ological thread in our work is to (a) understand what type of information can be

extracted from marginal data, and (b) propose methods to effectively extract that



information. In each of the settings we consider, we obtain a formal characterization

of the type of information that can be extracted from the given marginal data. We

then propose computationally feasible methods to effectively extract that information

from the marginal data. Our work also has rich connections to the area of compres-

sive sensing that has recently become popular in the areas of coding theory, signal

processing, and streaming algorithms, which we explore in detail in later sections.

Before we detail the concrete problems we consider and the main contributions

we make in this thesis, we introduce some preliminaries of the model.

1.3 Model preliminaries

We describe our model in the context of a customer purchasing a product from an

offered set of products; of course, the model extends trivially to the context of the

choice of general alternatives. We consider a universe of N products or alternatives,

denoted by K = {1, 2,..., N}. Where required, we assume that a customer always

has an 'outside' or 'no-purchase' option; the choice of the 'outside' option is equivalent

to the customer not choosing anything from the offered set of products, and we

often denote the 'outside' option by product 0. Each customer is associated with a

preference list (or ranking) o of the N + 1 products in K U {0}, and the customer

with preference list o- prefers product i to product j if and only if o(i) < o(j). Now,

given any assortment of products M C K, the customer chooses the product that is

the most preferred of the no-purchase option and the offered products in M; in other

words, the customer chooses the product argmin o(i). This view of choice behavior
iEMU{O}

is clearly intuitively very reasonable and very general.

We model the aggregate behavior of a population of customers through a distri-

bution A over the space of all permutations of the products in K U {0}; specifically,

for any permutation o-, A(o) corresponds to the fraction of customers in the popula-

tion with preference list a-. It is easy to see that the distribution A captures all the

desired choice probabilities. Particularly, suppose the customer population described

by distribution A is offered an assortment of products M C K; then, the probability



that product i is purchased (the fraction of customers that purchase product i) from

M is equal to the sum of the weights of A over all permutations that result in the

choice of i when offered M. More precisely, the probability of purchase of i given M

can be written as3

P\(ilM) = A(-),
aESi(M)

where Si(M) is the set of permutations that result in the choice of i from M; equiva-

lently, Si (M) is the set of permutations that prefer i to all the products in M U {O}).

More formally, we can write

Si(M) = {o: o-(i) < o(j) for all j E M U {0}}.

The distribution A captures all the required choice probabilities and we call it the

choice model. As mentioned above, using distributions over permutations to model

choice behavior is very general and forms the basis for the general class of random

utility choice models.

In OM/RM applications, the sales or revenues expected from offering an assort-

ment M of products is an important quantity of interest. Given a choice model A,

one can compute the expected revenue as follows. Let pi denote the price of product

i or the revenue obtained from the sale of product i; as expected, we set po to 0.

Suppose assortment M is offered to customers from a population described by choice

model A. Then, the revenue expected from each arriving customer is given by

R(M) = E pP(iIM).
iEM

Setting pi = 1 for all i E A( in the above expression yields the probability that an

arriving customer will make a purchase, or what is called the 'conversion-rate', which

refers to the probability of converting an arriving customer to a sale.

Broadly speaking, our goal in this thesis is to either learn the choice model A or

3Sometimes we drop A and simply use P(iIM) to denote the choice probability in cases where
the choice model is irrelevant or implied by the context.



estimate a functional of the choice model such as the revenues R(M). In order to

perform either of these tasks, we use the data that is available at hand. We defer the

precise definition of the type of data to later chapters, but we describe here how we

intuitively think of data. Loosely speaking, we think of data as imposing constraints

on the possible distributions A that can describe the population. Specifically, without

any other information, the choice behavior of a population could be described by

any distribution A. Now suppose we gather some data on how the customers make

choices (maybe by offering the population members some assortments and noting

down their choices). This new information now restricts the plausible distributions

A: particularly, disallows all distributions that are not consistent with the observed

choices. With this view, the data available in practice allows us to identify a family of

consistent distributions. Since A has (N + 1)! degrees of freedom and data available is

often limited, it is typically the case that there is more than one consistent distribution

A. For instance, data available in practice typically consists of choices (or purchases)

made by individuals when offered different assortments of products; it is easy to see

that this data does not contain information about the preferences of individuals over

products that are not preferred to the no-purchase option. Because of that, roughly

speaking, learning A or estimating a functional of A reduces to designing the "right"

criterion to pick one of the consistent distributions.

Before we conclude the section on model description, we make the following re-

marks about the model.

Note that we modeled each individual as making choices according to a dedi-

cated preference list. On the surface, it seems that this assumption is restrictive

because it requires individuals to exhibit transitive preferences i.e., if an indi-

vidual prefers a to b and b to c, then the individual must prefer a to c. Although

such rationality is assumed in most economic models, several empirical studies

have invalidated the assumption in practice (see Anand [1993]). Contrary to

what it seems on the surface, our model does not quite require such a strong

rationality assumption. Specifically, an equivalent way to model a population

of "similar" individuals is to assume that in any choice occasion each individual



samples a permutation a- according to distribution A and makes choices accord-

ing to the sampled permutation4 . By modeling individuals as distributions A

over permutations, we allow the same individual to sample different permuta-

tions on different choice occasions leading one to prefer a to b and b to c, but

prefer c to a, as long as the choices are on different occasions. This makes our

model richer and more realistic.

Although we model each individual as making choices according to a preference

list over all the N + 1 products, the individual need not be aware of one's own

entire preference list; in any choice instance, the individual need only be aware

of his/her preferences over the offered products.

1.4 Contributions of the thesis

The main contribution of this thesis is to operationalize such a nonparametric ap-

proach to choice modeling. We distinguish two broad setups based on the ultimate

goals: (a) to learn the choice model, and (b) to use the choice model to make pre-

dictions or decisions. In the latter setup, as shall become evident later, the problem

typically boils down to learning a linear functional of the choice model, rather than

the entire distribution. The latter setup is clearly a special case of the former setup.

However, since the second setup is simpler, we can obtain stronger results; further,

these results have huge practical implications because a wide-range of practically im-

portant problems that are studied extensively in the area of OM reduce to prediction

and decision problems using choice models.

Next, we detail our contributions by providing a brief overview of the problem

we consider and the main results we obtain. Due to the nature of the results, we

first detail our contributions relative to solving prediction and decision problems

using choice models, and then we describe our results for the problem of learning

the distribution over preference lists. The main application area of our focus is the

4Similarity arises from the fact that each individual in the population samples preference lists
from the same distribution.



set of decision problems involving choice models faced by operations managers. In

connection to this, we also describe a case-study applying our solutions to the real-

world problems faced by a major US automaker. While the focus shall remain on

problems in OM, we also briefly describe empirical studies with election data from

the American Psychological Association (APA).

In the context of decision problems, we study two related problems that are central

to the area of OM; their significance stems from the fact that they constitute crucial

components in solving several important problems in the area of OM. Specifically,

given historical sales transaction data, we consider the problems: (a) predict the

expected revenues or sales from offering a particular assortment of products, and (b)

determine the assortment that maximizes the expected revenues subject to a capacity

constraint on the size of the assortment. The second problem is often referred to as

static assortment optimization problem and needs revenue predictions as a subroutine.

As one can imagine, both problems are important in their own right. Their con-

sideration is motivated by the fact that any improvements to existing solutions will

have significant practical implications. Specifically, solutions to these two problems

lead to a solution to the single-leg, multiple fare-class yield management problem;

this problem is central to the area Revenue Management (RM) and deals with the

allocation of aircraft seat capacity to multiple fare classes when customers exhibit

choice behavior. In particular, consider an airline selling tickets to a single-leg air-

craft. Assume that the airline has already decided the fare classes and is trying to

dynamically decide which fare-classes to open as a function of the remaining booking

time and the remaining number of seats. This dynamic decision problem can be cast

in a reasonably straightforward manner as a dynamic program with one state vari-

able. As explained later, the solution to the dynamic program reduces to solving a

slight variant of the static assortment optimization problem. Thus, solution to the

two problems effectively solves a central problem to the area of RM. We next present

an overview of the solutions we propose for the two problems.



1.4.1 Revenue predictions

The problem of using historical sales transaction data to predict expected revenues

or sales for different assortments is a basic - yet, non-trivial - problem faced by oper-

ations managers. An important special case is the prediction of the assortment-level

'conversion-rate' for each assortment - the probability of converting an arriving cus-

tomer into a purchasing customer. As one can imagine, such predictions form critical

inputs to several important business decisions, both operational and otherwise. Now,

in order to predict revenues, we need to predict the purchase probability of each prod-

uct, which in turn depends on all the products on offer due to substitution behavior:

an arriving potentially substitutes an unavailable product with an available one. As a

result, a choice model is used to capture this dependence resulting from substitution.

However, most of the work in OM that deals with solving decision problems requiring

revenue predictions take the choice model as given and assume access to accurate pre-

dictions; when it comes to actually predicting revenues, a popular parametric model

like the multinomial logit (MNL) model is used. Unfortunately, as mentioned above,

parametric models suffer from various limitations, the most important of which is

that their model complexity does not scale with data because of which they fail to

glean new structural information in additional data; put differently, parametric mod-

els tend to over-fit or under-fit resulting in poor accuracy in their predictions. In order

to overcome this issue, we propose a nonparametric approach to predicting revenues

and sales that affords the revenue manager the opportunity to avoid the challenging

task of fitting an appropriate parametric model to historical data. As mentioned

above, we start with the entire family of distributions over preference lists and let

the data select the "right" choice model to make revenue predictions. Specifically, we

make the following important contributions.

Given historical sales transaction data and a heretofore unseen assortment, we

start with the goal of predicting the revenues expected from each arriving customer

when offered the assortment. We first identify the family of distributions over pref-

erence lists that are consistent with the available sales data. This family typically



has more than one distribution because as noted above, there is only limited informa-

tion available in practice, which is insufficient to specify a unique distribution. Thus,

data limitation leads to an inherent uncertainty in specifying the underlying choice

model. A popular approach to resolving uncertainty in model parameters is to use

a 'robust' approach, where one plays out the worst-case scenario. Adopting this ap-

proach, we offer as the prediction the worst-case expected revenue possible assuming

that the true model lies in the set of models consistent with the observed sales data.

In other words, one can expect revenues that are at least as large as we predicted.

We term our method the robust approach. A major advantage of this method from

a practical standpoint is that it eliminates the need for any subjective judgements in

choosing an appropriate parametric structure. This makes its practical implementa-

tion very simple: once the method is implemented, a practitioner can treat it as a

black-box to which one feeds in historical sales data and the assortment to obtain a

revenue prediction. The ability to use the same implementation is valuable especially

when a retailer or a car manufacturer wants to make predictions at different stores or

dealerships distributed across the country, even though choice behavior may change

drastically with geographic location.

Two important questions arise at this juncture: (1) how good are the predictions

in practice? and (2) how can the predictions be made in a computationally efficient

manner (or quickly)? Before we provide answers to these questions, we make the

following remark. Note that the choice model that is used to compute revenues (the

one that yields the worst-case revenue) depends on the input sales data as well as

the assortment for which revenues are being predicted. Dependence of the choice

model on the data is desired. The dependence on the assortment however might

seem unnatural. While that might be the case, we emphasize here that our ultimate

goal is to predict revenues as accurately as possible, and not to learn the underlying

choice model. Thus, the actual distribution used is irrelevant as long as the prediction

is close the "true" value. Put differently, once the assortment is fixed, the revenue

function maps each distribution to a scalar revenue prediction; thus, it is possible

to have different distributions resulting in predictions that are close to the "true"



value, and as long as the distribution used results in a good prediction, we can safely

ignore it. Therefore, we focus on the accuracy of predictions rather than the actual

distribution used.

Quality of revenue predictions

In order to understand how good the revenue predictions are, we conduct empirical

and theoretical analyses. In the empirical analysis, we gauged the practical value of

our approach, both in terms of the absolute quality of the predictions produced, and

also relative to using alternative parametric approaches. In the theoretical analy-

sis, we provide guarantees on the revenue predictions relative to popular parametric

approaches; we also obtain a characterization of the choice model used for revenue

predictions to show that the model complexity indeed scales with the data that is

input. We conducted two empirical studies:

(i) Simulation Study: We use the simulation study to demonstrate that the robust

approach can effectively capture the structures of a number of different para-

metric models and produce good revenue predictions. The general setup in this

study was as follows: We used a parametric model to generate synthetic transac-

tion data. We then fed this synthetic transaction data to our revenue prediction

procedure to predict expected revenues over a swathe of offer sets. Our exper-

imental design permits us to compare these predictions to the corresponding

'ground truth'. The parametric families we considered included the multino-

mial logit (MNL), nested logit (NL), and mixture of multinomial logit (MMNL)

models. In order to 'stress-test' our approach, we conducted experiments over

a wide range of parameter regimes for these generative parametric choice mod-

els, including some that were fit to DVD sales data from Amazon.com. Even

though the robust approach is agnostic to the underlying ground-truth, our re-

sults show that the predictions produced by our method in all the settings are

remarkably close to the ground-truth. From this we conclude that the robust

approach can successfully capture the underlying choice structure to produce

accurate predictions just from limited sales transaction data. An important



implication of this conclusion is that even if the world did behave according to

one of the popular parametric choice models, not much is lost in using the our

robust approach.

(ii) Empirical Study with Sales Data from a Major US Automaker: In addition to

the simulation study, we carried out an empirical case study with sales data

from a major US automaker to test our approach in real-world scenarios. The

purpose of the case study is two-fold: (1) to demonstrate how our setup can be

applied with real-world data, and (2) to pit the robust method in a "horse-race"

against the MNL and MMNL parametric families of models. For the case study,

we used sales data collected daily at the dealership level over 2009 to 2010 for

a range of small SUVs offered by a major US automaker for a dealership zone

in the Midwest. We used a portion of this sales data as 'training' data. We

made this data available to our robust approach, as well as to the fitting of an

MNL model and an MMNL model. We tested the quality of 'conversion-rate'

predictions (i.e. a prediction of the sales rate given the assortment of models on

the lot) using the robust approach and the incumbent parametric approaches

on the remainder of the data. We conducted a series of experiments by varying

the amount of training data made available to the approaches. We conclude

from our results that (a) the robust method improves on the accuracy of either

of the parametric methods by about 20% (this is large) in all cases and (b)

unlike the parametric models, the robust method is apparently not susceptible

to under-fitting and over-fitting issues. In fact, we see that the performance

of the MMNL model relative to the MNL model deteriorates as the amount of

training data available decreases due to over-fitting.

In summary, both our empirical studies demonstrate the practical value of our

method in producing quality revenue and sales predictions.

In addition to the empirical analysis, we provide insights into our approach through

theoretical analysis. Specifically, the success of our empirical studies points to a

characteristic of choice behavior observed in practice that enables accurate revenue



approximations from limited data. Our theoretical analysis sheds light on this char-

acteristic. To understand this, first note that the accuracy of our revenue predictions

depends on two factors: (a) the "complexity" of the underlying choice behavior, and

(b) the "amount" of information in the available data. For a given complexity of

underlying choice behavior, the more the data, the better the accuracy we expect.

Similarly, for a given amount of information in the available data, the greater the

complexity of the underlying choice behavior, the worse the accuracy we expect. The

bounds we derive on the accuracy of our predictions confirm this intuition. We defer

the details to later sections and describe the basic insight: robust approach with lim-

ited data produces accurate estimates if only a "few" products account for most of the

cannibalization of the sales of each product. To elaborate on this, "similar" products

in the offered assortment result in a cannibalization of (reduction in) the sales of each

other; cannibalization of the sales of the notebooks offered by Apple Inc., by their

iPads is a current example. For each product, if only a few products account for most

of the cannibalization, then the robust approach can produce accurate predictions

with limited data. For a given level of accuracy, there is an inverse relationship be-

tween the "amount" of data and the number of products where the cannibalization

is concentrated. Using this insight, we derive general bounds on the relative error

incurred by our approach. The bounds we derive can be computed using the partial

data that is available and, hence, we can provide provable and computable guarantees

for the estimates we produce in practice. We then specialize the error bounds to the

MNL and the MMNL families of models. We observe that for the MNL case, the

above characteristic of choice models that leads to small errors translates into the

following MNL characteristic: sum of the weights of a few products must account for

most of the sum of the weights of all the products in the assortment. Similarly, for the

MMNL case, which is a mixture of MNL models, the characteristic roughly translates

to having less heterogeneity in customer tastes, with the constituent MNL models

possessing above MNL characteristic. Thus, the robust approach can be confidently

used whenever these intuitive conditions are met.



Finally, we claimed above that an advantage of the nonparametric approach is that

it scales the model complexity with the "amount" of data. We formally demonstrate

this fact in this context. Specifically, we use sparsity or the support size of the

distribution over preference lists as a measure of the complexity of the choice model

and the dimension of the data vector as a measure of the "amount" of data; we

shall show in later sections that transaction data can be represented as a vector in

an appropriate dimensioned Euclidean space. With these metrics, we show that the

sparsity of the choice model used by the robust method for revenue prediction scales

with the dimension of the data vector.

Computation of revenue predictions

We now address the question of computing the predictions in a computationally

efficient manner (quickly in practice). As shall be seen later, predicting revenues

through the robust method boils down to solving a linear program (LP) with (N + 1)!

variables. Since we only care about the optimal value (and not the optimal solution),

we instead consider solving the dual problem. The number of the variables in the

dual problem is of the order of the dimension of the data vector, and the number of

constraints scales as (N + 1)!. Now, solving the dual program efficiently is equivalent

to finding an efficient separation oracle for the constraint polytope, whose structure

depends on the type of the available data. We show that for certain types of data, it is

indeed possible to obtain an efficient separation oracle - yielding an efficient method

to predict revenues. Unfortunately, an efficient separating oracle does not exist for

general types of data. In order to handle such cases, we propose two approaches:

1. First, we propose an extremely simple to implement approach that relies on sam-

pling constraints in the dual that will, in general produce approximate solutions

that are upper bounds to the optimal solution of our robust estimation problem.

The approach of sampling constraints is an intuitive and a well-known heuristic;

in fact, the recent theory developed by Calafiore and Campi [2005] provides a

partial theoretical justification for the method. In our empirical analysis with

both simulated and real-data we found the constraint sampling method to be



extremely simple to implement, while producing excellent approximations to

the optimal value.

2. Next, we propose an approach that produces sequentially tighter relaxations of

the constraint polytope. Although this approach is slightly more complex to

implement, it yields sequentially tighter approximations to the robust problem.

In certain special cases, this approach is provably efficient and optimal.

To summarize, we can either efficiently solve the LP in our robust method to optimal-

ity or obtain close approximations in practice. In addition, the methods we propose

to solve the LP are easy to implement in practice.

In summary, our robust method presents a nonparametric way to use historical

sales data to predict revenues or sales for assortments not been offered previously.

Through extensive empirical studies, we establish the practical value of our revenue

prediction method. Furthermore, the almost 20% improvements in prediction accu-

racy for conversion-rates obtained for data from a major US automaker demonstrate

the huge impact our method can create in real-word applications. We also provide

insights into the method through theoretical analysis. Specifically, we can provide

guarantees for our revenue predictions. Specialization of our error bounds to specific

parametric models provides insights into when we could expect the robust method

to produce accurate predictions. Finally, we also formally establish that, as desired,

the choice model used for revenue prediction scales with the "amount" of data that

is available.

1.4.2 Assortment optimization

Next we consider the problem of static assortment optimization, where the goal is to

find an assortment of products of size at most C from a larger universe of N products

that maximizes the expected revenue. This is a classical decision problem that has

straightforward applications to retail, online advertising, and revenue management.

For instance, a retailer typically has a limited shelf capacity and is interested in

offering a profit/sales maximizing assortment of products. In online advertising, the



capacity constraint would correspond to the availability of only a limited number of

slots to show ads and a purchase would correspond to a click on an ad. The goal

of the advertiser then would be to carefully select the assortment of ads to show to

maximize profit. Finally, as mentioned above, the single-leg, multiple fare-class yield

management problem, which is central to RM, reduces to solving a static assortment

optimization problem at each stage.

For this problem, we assume access to a subroutine that can be called to get an

estimate of the expected revenues of any assortment of products. At this stage, we

shall leave the subroutine unspecified - it could either be the revenue prediction sub-

routine we propose (as described above) or some other existing subroutine. Given

this, a straightforward solution to the decision problem is exhaustive search over all

assortment of size at most C, which would require O(NC) calls to the revenue sub-

routine. In fact, in general, one cannot do better than exhaustive search. Whenever,

N or C is small, exhaustive search is a reasonable solution; however, when N or C is

large, an exhaustive search becomes computationally prohibitive in practice. There-

fore, our goal is to propose an algorithm that can produce a "good" approximation

to the optimal assortment with only a "few" calls to the revenue subroutine.

Since the worst-case requires exhaustive search, the design of a more efficient algo-

rithm requires exploitation of problem-specific structure. In order to exploit structure,

previous works considered this problem in the context of a specific parametric struc-

ture for the underlying choice model. The two parametric structures that have been

considered are the multinomial logit (MNL) model and the mixture of MNL (MMNL)

models. The problem is well-understood in the context of the MNL model.

Specifically, two main results have been obtained:

1. When the problem is un-capacitated, or equivalently when C = N, the optimal

assortment belongs to one of the N assortments S1, S 2, .. , SN, where set Si

consists of the top-i products according to their prices/profits (see Talluri and

van Ryzin [2004a]). Thus, the optimal assortment can be found by searching

over at most N assortments.



2. In the capacitated case, Rusmevichientong et al. [2010a] specialize the idea pro-

posed by Megiddo [1979] for solving combinatorial optimization problems with

rational objectives to obtain an exact algorithm to find the optimal assortment.

They show that the algorithm has a complexity of O(NC). They also propose

a more complicated implementation of the algorithm, which can reduce the

complexity to 0 (Clog N).

The first result constitutes a very intuitive characterization of the optimal assort-

ment. The authors show that this characterization results in a practically pleasing

nested policy for the single-leg, multiple fare-class yield management problem, where

lower fare-classes are slowly closed as the remaining time and capacity decrease. The

second result corresponds to the capacitated problem, which turns out to be a sig-

nificantly harder problem than the un-capacitated one. The authors show that the

intuitive characterization of the optimal assortment in the un-capacitated case does

not extend to the capacitated case, requiring a more complicated algorithm. The

characterization they obtain is more complicated and requires careful exploitation of

the MNL structure. In the process, the authors derive several interesting and useful

properties of the MNL structure.

The above two results are significant in that they provide a complete understand-

ing of the static assortment optimization problem in the context of the MNL model.

Unfortunately, it is not too far-fetched to say that beyond the MNL model, very little

is known about the decision problem.

In the context of the MMNL model, it has been recently shown that even the un-

capacitated decision problem is NP-complete even when there are only two compo-

nents in the mixture (see Rusmevichientong et al. [2010b]). The authors also propose

a PTAS for solving the un-capacitated decision problem. However, the running time

of the PTAS scales exponentially with the number of mixture components.

Finally, in the context of the nested logit (NL) model, the authors Rusmevichien-

tong et al. [2009] consider a slightly more complicated variant of the static assortment

optimization problem, where they assume that each product has a fixed-cost of ci and

the goal is to find a revenue maximizing assortment such that the sum of the fixed



costs of the products in the assortment is at most C. Taking cj = 1 for all products i

yields the static assortment optimization problem. The authors show that this prob-

lem is NP-complete in the context of the NL model. Then, they propose a PTAS by

reducing the decision problem to a sum-of-ratios problem.

In summary, we make two observations. First, except for the simple case of the

MNL model, either not much is understood or the decision problem is known to be

hard. Second, the algorithms that have been proposed to solve the decision problem

(exactly or approximately) heavily exploit the sum-of-ratios structure of the objective;

consequently, the algorithms - even without any guarantees - cannot be used with

other choice models like the probit model or the mixture of MNL models with a

continuous mixture.

Given these issues, our goal is to design a general optimization scheme that is (a)

not tailored to specific parametric structures and (b) requires only a subroutine that

gives revenue estimates for assortments. We make several contributions in relation to

this problem.

First, we propose a general set-function optimization algorithm, which given a

general function defined over sets, finds an estimate of the set (or assortment) where

the function is maximized. This set-function optimization algorithm clearly applies to

the static assortment optimization problem, thereby yielding the optimization scheme

with the desired properties. Note that since we are considering a very general setup,

there is not much structure to exploit. Hence, we adopt the greedy method - the

general technique for designing heuristics for optimization problems. However, a naive

greedy implementation algorithm fails even in the simple case of the MNL model.

Specifically, consider the simpler un-capacitated decision problem. Here, a naive

greedy implementation would start with the empty set and incrementally build the

solution set by adding at each stage a product that results in the maximum increase in

revenue; this process would terminate when addition of a product no longer results in

an increase in revenue. It is easy to see that the naive implementation would succeed

in solving the decision problem only if the optimal assortments exhibit a nesting

property: the optimal assortment of size C1 is a subset of the optimal assortment of



size C2 whenever C1 < C2. Unfortunately, the nesting property does not hold even

in the case of the MNL model. In order to overcome this issue, we allow for greedy

"exchanges" in addition to greedy "additions." Particularly, at every stage, we allow

a new product to be either added (which we call an "addition") to the solution set

or replace an existing product (which we call an "exchange") in the solution set; the

operation at each stage is chosen greedily. The termination condition now becomes an

interesting question. As in the naive implementation, we could terminate the process

when addition or exchange no longer results in an increase in revenue. However, since

we never run out of products for exchanges, the algorithm may take an exponential

(in the number of products) number of steps to terminate. We overcome this issue

by introducing a control parameter that caps the number of times a product may

be involved in exchanges. Calling that parameter b, we show that the algorithms

calls the revenue subroutine O(N 2bC2) times for the capacitated problem. We thus

obtain a general algorithm with the desired properties to solve the static assortment

optimization problem.

Next, we establish the usefulness of the algorithm. For that, we first consider the

case of the MNL model, where the decision problem is well-understood. Specifically,

we assume that the underlying choice model is an instance of the MNL family and

the revenue subroutine yields revenue estimates for assortments under the specific

instance. We can show that the the algorithm we propose, when run with b >

C, succeeds in finding the optimal assortment with O(N 2C3 ) calls to the revenue

subroutine. Therefore, in the special case when the underlying choice model is the

MNL model, our algorithm captures what is already known. It also provides a simpler

alternative to the more complicated algorithm proposed by Rusmevichientong et al.

[2010a]. We also consider the case when noise corrupts the available revenue estimates

- a common practical issue. In this case, we show that our algorithm is robust to errors

in the revenue estimates produced by the subroutine. Particularly, if the underlying

choice model is the MNL model and the revenue estimate produced by the subroutine

may not be exact but within a factor 1 - e of the true value, then we can show that

our algorithm finds an estimate of the optimal assortment with revenue that is within



1 - f(E) of the optimal value; here f(e) goes to zero with e and also depends on C

and the parameters of the underlying model. In summary, our theoretical analysis

shows that our algorithm finds the exact optimal solution in the noiseless case or a

solution with provable guarantees in the noisy case, whenever the underlying choice

model is the MNL model. In this sense, our results subsume what is already known

in the context of the MNL model.

In the context of the more complicated models like the nested logit (NL) and the

mixtures of MNL models, the decision problem is provably hard. As discussed above,

even obtaining a PTAS can be very complicated and requires careful exploitation of

the structure. We however believe that it is possible to obtain "good" approximations

to the optimal assortments in practice.

1.4.3 Learning choice models

In the problems discussed so far, our ultimate goal was to use a choice model to make

a decision. As a result, we avoided the unnecessary indirection of actually learning

the underlying choice model and developed methods to directly solve the decision

problem. However, as elaborated below, explicit learning of choice models is required

in many important applications.

For instance, consider the problem of 'customer segmentation.' It is central to

several important applications and involves segmenting the customer population into

groups of individuals that have similar preferences. A statement to the extent "your

customers are mainly of 3 types, and their preferences are described by these prefer-

ence lists" is of high value in these contexts. One way to usefully segment customers

is to learn a choice model over K preference lists and then segment the customer

population into K classes with the preferences of each class described by one of the

K learned preference lists. Such segmentation is especially crucial to applications

that need effective targeting of resources. The classical application that heavily uses

customer segmentation is marketing, where it has long since been known that the

marketing strategy needs to be effectively targeted to the specific customer type.

Interestingly, a non-traditional application area that also relies on customer segmen-



tation is the area of the recently popular recommendation/discovery systems, where

the recommendations (be it movies, books, or news stories) need to be tailored in a

useful way to the specific customer types.

In addition to applications related to OM/RM, another broad class of problems

where learning distributions over preference lists becomes important is 'rank aggre-

gation'. As mentioned above, this is an important problem that arises in various

contexts like web-search, polling, betting, and elections, in which the goal essentially

is to come up with a final ranking given some partial preference information. The

rank-aggregation problem has been studied extensively in the area of social choice

theory, where extensive work has been done to determine the "right" final ranking

given access to the entire distribution over rankings. Of course, in most practical

applications, such a distribution is not readily available. What is readily available

though is partial information about the distribution: for instance, in the context of

web-search, clicks give information about which document is preferred from a set of

documents that were shown; similarly, in the context of polling, one may have access

to pairwise comparison information Given this, a reasonable approach to aggregating

rankings is to learn a distribution over rankings that captures the underlying choice

structure from marginal preference information and use any of the several methods

developed in the social choice literature for aggregation.

Finally, there is a host of other applications in which distributions over rankings

are compressed in order to store efficiently5 by retaining only partial information (typ-

ically in the form a subset of Fourier coefficients; see Huang et al. [2008] and Kondor

et al. [2007]). In these cases, the recovery of the compressed distribution essentially

boils down to learning a distribution over permutations from partial information.

In summary, there is a wide-range of important applications that need learning

of the underlying choice model from available marginal information. Now, given

marginal information, we can identify a family of choice models that are consistent

with the given information as explained above; the family is almost certainly not a

'Such compression is indeed a necessity given that distributions over rankings have a factorial
(in N) blow-up.



singleton because the data is insufficient to specify a unique distribution. Therefore,

the problem of learning the choice model reduces to the problem of finding an appro-

priate criterion to select one of the models consistent with the available data. Now,

a popular statistical criterion for model selection that has been extensively used in

many contexts is the criterion of parsimony, which encourages the selection of the

'most parsimonious' model that is consistent with the data.

The criterion of parsimony is justified in many ways. Philosophically speaking,

this criterion is consistent with the Occam's razor philosophy, which roughly stated,

suggests that under the absence of additional information, one should tend toward

'simpler' theories. Statistically speaking, parsimony is born out of the need not to

over-fit. Finally, operationally speaking, parsimony is desired because parsimonious

models are easier to handle in practice - both computationally and otherwise. Of

course, parsimony is nuanced idea and it is not straightforward to operationalize the

criterion. In parametric models, parsimony has often been translated into parsimony

of parameters; for instance, an MNL model with N parameters can be considered

'more parsimonious' than an exponential family with N2 parameters. In the nonpara-

metric case, however, the sparsity (or the support size) of the distribution becomes a

natural candidate for a measure of parsimony of the model. In addition, as described

above in the context of choice models used for revenue predictions, sparsity is also

naturally born out of the fact that only marginal information is available; more pre-

cisely, a distribution of sparsity no more than' (N - 1)2+1 is needed to describe the

first-order information, which captures the probability that i is ranked at position r

for all i and r. Finally, sparse models have found immense success (in both theory and

practice) in the area of compressive sensing, which has gained recent popularity in

the areas of signal processing, coding theory, and streaming algorithms (see Donoho

[2006], Candes et al. [2006b,a]).

Given the considerations above, we propose to recover the underlying choice model

by identifying the sparsest distribution that is consistent with the available data.

6 This statement follows from Caratheodory's theorem that states that every point in a convex
polytope of dimension d can be decomposed into a convex combination of at most d + 1 extreme
points, and the fact that doubly stochastic matrices have a dimension of (N - 1)2.



From an operational perspective, two main questions arise at this point: (1) how

does one find the sparsest consistent distribution in an efficient manner? and (2) how

"good" are sparse models in practice? In addition, from a theoretical standpoint,

the question about the discriminative power of the sparsest-fit criterion arises. More

precisely, it is useful to obtain a description of the the family of models that can be

identified as the unique sparsest models consistent with the marginal information. In-

tuitively, we expect a characterization of the form: if the underlying model is "sparse

enough", then it can be identified by as the unique sparsest solution consistent with

the marginal information; the sparsity bound of course should depend on the dimen-

sion of the data, which can be treated as a measure of the "amount" of information

that is available. Next, we describe the contributions we make to answering these

questions.

First, we consider the issue of efficient learning of sparse models. Specifically, we

consider two settings: the noiseless and the noisy settings. In the noiseless setting,

we assume we have access to marginal information about the underlying distribution

that is not corrupted by noise and seek to find the sparsest distribution that is ex-

actly consistent with the marginal information. In the noisy setting - which is more

practical - we assume that the marginal information is corrupted by noise and seek

to find the sparsest distribution that is within e of the marginal information under an

appropriate norm. We also present our theoretical results on the discriminative power

of the sparsest-fit criterion and why convex relaxations have no bite in the section on

noiseless setting. After we describe our results for efficient learning of sparse models,

we describe our results of an empirical study.

Noiseless setting

In the noiseless setting, we assume we have access to exact marginal information

about the underlying distribution A in the form of an m x 1 vector y that is related to

A through a linear transform. Through a slight abuse of notation, we write y = AA,

where we think of the choice model A as an N! x 1 vector and A is an m x N! matrix

with entries in the set {0, 1}. Most types of marginal information that are both



theoretically and practically interesting can be cast in this form.

Under this setting, our goal is to determine the sparsest distribution that is consis-

tent with the given marginal information y. In other words, our interest is in solving

the problem:

minimize ||A||o
A

subject to AA = y,

1TA = 1,

A > 0.

Two interesting questions arise at this point: (1) can we characterize the family of

models that can be identified as the unique optimal solutions to the program (1.1)?

and (2) how to solve the program in (1.1) efficiently? We answer both these questions

by identifying a family of models 7, which can be efficiently recovered from marginal

information as the unique optimal solutions to the program in (1.1).

Before we describe the family 7 of models, we quickly address the issue of solving

(1.1) through convex relaxation i.e., by solving:

minimize ||Ali
A

subject to AA = y, (1.2)

1TA = 1,

A > 0,

where ||At|1 l ZIA(o-)l. It is clear from the constraints in (1.2) that all feasible

models have the same fi norm (equal to 1). Moreover, it is hardly the case that the

set of consistent models is a singleton. In fact, we can prove that for a marginal data

vector y that comes from a randomly generated distribution of sparsity K > 2, the set

of consistent distributions is not a singleton with a high probability (see Theorem 8).

Thus, the fi criterion is not resulting in any reduction of the family of consistent dis-

tributions, and we cannot guarantee the optimality of an arbitrarily selected model

from the set of feasible models. In fact, as described in the the noisy setting (see

discussion after Theorem 14), selecting an arbitrary consistent distribution can be



highly suboptimal; specifically, we can show that for the first-oder marginal infor-

mation, selecting an arbitrary basic feasible solution that minimizes the f 1 norm can

have a sparsity of E((N 2), whereas the sparsest distribution can be shown to have a

sparsity of O(N).

Coming back to the family of models 7, we define it as consisting all distributions

that belong to the signature family and satisfy linear independence conditions. We

define each of these conditions in turn. The precise definition of the signature family

of distributions depends on the type of data that is available. The definition is easiest

to state for the first-order information, as given below:

Signature family. A distribution (choice model) A is said to belong the

signature family if for each permutation a that is in the support (i.e.,

A(o) > 0) there exist an pair i, r such that -(i) = r and o-'(i) 54 r for any

permutation o-' in the support. Equivalently, for every permutation o in

the support of A, there exists a pair i, r such that a- ranks i at position r,

but no other permutation in the support ranks i at position r.

In other words, whenever a distribution belongs to the signature family, every per-

mutation o- in the support has a unique 'signature', which corresponds to the pair i,

r such that o-(i) = r and o-'(i) 4 r, for every other permutation o- in the support.

Given this, we call a distribution belonging to the signature family as satisfying the

signature condition. The linear independence condition is precisely stated in Sec-

tion 5.4 of Chapter 5 and roughly requires that the all the subset sums of the set

of distribution values in the support {A(ox), A(o-2 ), .. :. A(U-K)} are distinct. Given

this, we can show that whenever there exists a model A in F such that y = AA,

then A is also the unique sparsest model consistent with y (see Theorem 7); Thus,

the family F describes a set of sufficient conditions for the underlying model A that

guarantee that it can be recovered as the unique sparsest model consistent with the

marginal data. These conditions are also essentially necessary because we can exhibit

counter-examples of models that don't satisfy the conditions and are not the sparsest

models consistent with the marginal data. Therefore, as far as identification through



the sparsest criterion goes, the family of models in F is the best we can do.

In addition, we can show that the models in F can be recovered efficiently. Specif-

ically, we propose what we call the sparsest-fit algorithm in order to efficiently deter-

mine the sparsest distribution whenever the data vector y is generated from a model

belonging to F. When run with the marginal information y, the sparsest-fit algorithm

terminates with either (a) the sparsest distribution if the data vector y is generated

by a model in F or (b) a certificate that y is not generated by a model in F. If the

sparsest distribution belongs to T and has a sparsity of K, the the algorithm has

a worst-case complexity of O(m log m + m2K). In fact, under a random generative

model, to be described shortly, the algorithm can be shown to have a complexity of

O(exp(log 2 M)) with a high probability. Compare this to the worst-case complexity

of O(exp(e(KN log N))), and it is evident that restriction to the family of models in

F has resulted in a huge reduction in the computational complexity.

A natural concern at this point is how restrictive the family of distributions F is.

In order to address this issue, we consider the following random generative model for

distributions of with a support size K:

Random model. Given K E Z+ and an interval W = [a, b], 0 < a < b, a

random mode A with sparsity K and values in W is generated as follows:

choose K permutations independently and uniformly at random 7, say

0-1, ... , 7K; select K values from 'W uniformly at random, say pi,... ,pK;

then model A is defined as

A~) pi if o-=o-, 1si<K

{0 otherwise.

Then we establish that as long as the sparsity K scales in a certain way with N, say

K = O(K(N)), a choice model generated according to the random model belongs

to the family F with a high probability as N -+ oo. The precise scaling of K(N)

depends on the type of marginal information that is available. We derive the precise

7Throughout, we will assume that the random selection is done with replacement.



scaling for a variety of important types of partial information. We state below our

results for only three types of partial information; see Section 5.4 of Chapter 5 for

more details. Specifically, we can show that

1. K(N) = log N for comparison information: probability that alternative i is

preferred to alternative j for every pair of alternatives i, j;

2. K(N) = VK for top-set information: comparison information and the proba-

bility that i is ranked first for all alternatives i.

3. K(N) = N log N for first-order information: probability that i is ranked at

position r for all alternatives i and positions r.

See Theorems 9 for precise statements of the results. We establish similar scalings for

other types of partial information. The following remarks are in order. It is easy to see

that the family of choice models that can be recovered efficiently can be characterized

in terms of their sparsity. As desired, the sparsity and hence the complexity of the

models as measured in terms of sparsity, is scaling with the "amount" of information

in the data. In this sense, our results formalize the intuitive notion that first-order

information has "more information" than top-set information has "more information"

than comparison information. Finally, it is clear that the family 7 describes a "large"

family of models satisfying a certain sparsity constraint.

Noisy setting

In the noisy setting, we consider the case when the marginal information available to

us may be corrupted by noise. Specifically, we assume that ||y - AA| < e, where A

is the underlying choice model, y is the data vector that is corrupted by noise, and

e > 0 is a measure of the magnitude of noise. Given this, our goal is to find the

sparsest model that is within e of the data vector y. More precisely, our goal is to



solve the following program:

minimize ||A|o0A

subject to IIAA - y|l , (1.3)

1TA = 1,

Given the program in (5.4), a natural question that arises is whether we can solve

it efficiently. Interestingly, a more fundamental question, which informs the question

of efficient solvability of (5.4), is "how sparse can the sparsest solution be?" To

elaborate further, first observe that for any choice model y, the first-order marginal

matrix M(p) is doubly stochastic. Thus, it follows from Y = M(A) +q and ||0||I2 < 6

that solving the program in (5.4) is essentially equivalent to determining the convex

decompositions of all doubly stochastic matrices that are within a ball of radius J+e of

M(A) and choosing the sparsest convex decomposition. Now, it follows from Birkhoff-

von Neumann's celebrated result (see Birkhoff [19461 and von Neumann [1953]) that

a doubly stochastic matrix belongs to an (N - 1)2 dimensional polytope with the

permutation matrices as the extreme points. Therefore Caratheodory's theorem tells

us that it is possible to find a convex decomposition of any doubly stochastic matrix

with at most (N- 1)2+1 extreme points, which in turn implies that the sparsest model

consistent with the observations has a support of at most (N - 1)2+1 = E(N 2). We

raise the following natural question at this point: given any doubly stochastic matrix

M, does there exist a choice model A with sparsity significantly smaller than e(N 2)

such that |IM(A) - M1|2 <e-

Geometrically speaking, the question above translates to: given a ball of radius

e around M, is there a subspace spanned by K extreme points that intersects the

ball, for any double stochastic matrix M and some K that is significantly smaller

than E(N 2)? Note that the answer to this question can give us an indication of

whether a straightforward approach (such as convex relaxation) can produce good

approximations to the sparsest solution. In particular, it is possible that for a general

doubly stochastic matrix M, there do not exist models A with sparsity significantly



smaller than e(N 2 ) such that |IM(A) - M||2 < e. In other words, it is possible that

for a general M, there is no subspace of K extreme points that intersects the e ball

around M for K < N 2. If such is the case, then convex relaxations - which result in

a models of sparsity O(N 2 ) - can produce solutions close to the optimal, at least for

general M. In that case, we could attempt to characterize the class of matrices M

for which we can solve (5.4) through convex relaxation. If, on the other hand, we can

prove that for a general M, the sparsest model can have sparsity significantly smaller

than E(N 2 ), then using straightforward approaches like convex relaxations can result

in a highly suboptimal solution. Interestingly, we can prove a result that shows that

the "right" scaling in fact is O(N/e 2) (see Theorem 14), showing that the sparsest

solution indeed has a sparsity that is significantly smaller than e(N 2). We thus expect

to go beyond convex relaxations in order to efficiently recover the sparsest solution,

leading us to our next question about efficient recovery of the sparsest solution.

As mentioned above, a brutre-force exhaustive search would result in a computa-

tional complexity of exp(E(KN log N)). In order to obtain a computationally efficient

solution, we restrict our search to the signature family of distributions. With this re-

striction, we can recast the program in (1.3) into an integer program (IP) with m 2

variables and polynomially (in N) constraints (we refrain from describing the IP here

because that requires additional notation; refer to Section 5.8 of Chapter 5 for the

details). While the restriction to the signature family has allowed us to reduce the IP

in (1.3) with N! variables into an IP with m2 variables, we are unable to guarantee

any improvements on the worst-case running time. However, the IP formulation with

m2 constraints affords us the ability to devise a multiplicative weight update heuris-

tic based on the Plotkin-Shmoys-Tardos (PST) (see Plotkin et al. [1991]) framework.

The heuristic is described in detail in Section 5.8 of Chapter 5. We are able to to

provide the following guarantees for the heuristic: Assuming that we have access to

first-order partial information and there exists a model A* of sparsity K in the signa-

ture family such that ||y - AA* II < e, we can guarantee that our multiplicative weight

update heuristic will have a computational complexity of O(exp(E(K log N))) and

will find a model A such that |y - AAII < e and the sparsity of A is 0(K log N) (see



Theorem 15).

Several remarks are in order. Note that for the case of the first-order information,

we have managed to reduce the computational complexity from exp(E(KNlog N))

to exp(E(K log N)) at the cost of a factor log N in the sparsity; although this requires

existence of a distribution of sparsity K in the signature family that is within e of

the data vector y, as will be seen shortly, we can guarantee the existence of such a

distribution. Moreover, note that the distribution A produced by our heuristic may

not belong to the signature family. This in itself is not a matter of concern because

restriction to the signature family was necessitated due to computational issues; in

the case of the heuristic, the signature family plays an indirect role through A*.

Finally, our guarantee applies only to the first-order information. The heuristic we

propose can certainly be applied with other types of partial information. Conditional

on the existence of a model A* with sparsity K, in the signature family such that

|Iy - AA* | < e, we can guarantee that a model with sparsity 0 (K log N) will be found.

However, the computational complexity of the heuristic depends on the existence

of an efficient representation of certain polytopes. For the first-order information,

the polytope of interest is the Birkhoff polytope, which a widely known efficient

representation. This is unfortunately not the case with for other types of partial

information. Nevertheless, the heuristic could be used with "appropriate" relaxations.

For the first-order information, the result we stated above assumed the existence

of a model A* such that Iy - AA*|| < e. We justify this assumption by showing

that the signature family is "dense". Specifically, we show that whenever y is a noisy

observation of AA and A is either the MNL model or the maximum-entropy distribu-

tion (with appropriate conditions on the parameters), then for N large enough, there

exists a model A* in the signature family such that ||y - AA* 1 < 2e and the sparsity

of A* is O(N/E2) (see Theorem 16). Thus, even with the restriction to the signature

family, the sparsity scaling is still O(N/e 2) implying that we are not losing much in

terms of sparsity by the restriction to the signature family.

Although we can provide impressive guarantees for our multiplicative weights

update heuristic - which is trying to solve essentially a very hard combinatorial op-



timization problem - its practical applicability is somewhat limited. This is because

our heuristic is not provably efficient for any type of partial information except the

first-order information; even for the first-order information, the implementation of

the heuristic is slightly involved requiring solving a host of LPs. Due to these consid-

erations, we generalize our sparsest-fit algorithm described above to what we call the

greedy sparsest-fit algorithm so that it always outputs a valid distribution. The greedy

sparsest-fit algorithm reduces to the sparsest-fit algorithm whenever the underlying

choice model belongs to the signature family and there is no noise. Similar to the

sparsest-fit algorithm, for the first-order information and the types of information ob-

tained from sales transactions, the greedy sparsest-fit algorithm it has a running time

complexity of O(mlog m + m2'), where K is the sparsity of the solution obtained.

Moreover, the greedy sparsest-fit algorithm can be used with a host of different types

of partial information. We demonstrate the effectiveness of the greedy sparsest-fit

algorithm through a simulation study, whose results are summarized above.

Empirical study

In order to demonstrate that sparse models are effective in capturing the underlying

structure of the problem, we conducted an empirical study with the well-known APA

(American Psychological Association) dataset that was first used by Diaconis [1989].

The APA dataset comprises the ballots collected for electing the president of APA.

Each member expresses her/his preferences by rank ordering the candidates contesting

the election. In the year under consideration, there were five candidates contesting

the election and a total of 5,738 votes that were complete rankings. This information

yields a distribution mapping each permutation to the fraction voters who vote for

it. Given all the votes, the winning candidate is determined using the Hare system

(see Fishburn and Brams [1983] for details about the Hare system).

A common issue in such election systems is that it is a difficult cognitive task

for voters to rank order all the candidates even if the number of candidates is only

five. This, for example, is evidenced by the fact out of more than 15,000 ballots

cast in the APA election, only 5,738 of them are complete.One way to overcome



this issue is to design an election system that collects only partial information from

members. If we collect only partial information, then we are faced with the issue of

using this partial information to determine the winner. Having complete distribution

affords us the flexibility of using any of the several rank aggregation systems out

there. In order to retain this flexibility, our approach is to fit a sparse distribution to

the partial information and use the distribution with the favorite rank aggregation

system to determine the "winning" ranking. Such an approach would be of value

if the sparse distribution can capture the underlying structural information of the

problem at hand. Therefore, with the aim to understand the type of structure sparse

models can capture, we used the first-order marginal matrix M (5 x 5 matrix with

entry i, j equal to the probability that i is ranked at position r) that is obtained from

5,738 complete rankings with the greedy sparsest-fit algorithm to determine a sparse

model of sparsity 6. Note that the support size of 6 is a significant reduction from

the full support size of 5! = 120 of the underlying distribution. The average relative

error in the approximation of M by the first-order marginals M of the sparse model

is less than 0.075, where the relative error of entry i, j is defined as |Mij - Ij I/Mi.
The main conclusion we can draw from the small relative error we obtained is that

the greedy sparsest-fit algorithm can successfully find sparse models that are a good

fit to the data in interesting practical cases.

In addition, we used the Hare system to determine the winning ranking. When

applied to both the distributions, the winning ranking obtained from the original

distribution was 23145 and from the sparse distribution was 13245, where the can-

didates are ordered from the first rank to the last. Given these outcomes, we make

the following observations. As is not surprising, the rankings obtained are clearly

different, but the sparse model manages to capture the ranking of the candidates

4 and 5. The sparse model declares candidate 1 as the winner, whereas the origi-

nal ranking declared candidate 2 the winner. We argue that declaring candidate 1

as the winner is not totally unreasonable, and in fact arguably the better choice.

Specifically,it was observed in Diaconis [1989] that the data shows that candidate 1

has strongest 'second' position vote and the least "hate" vote or last position vote



(see Table 5.1. Moreover, as observed in Diaconis [1989], the APA has two groups

of voters with different political inclinations: academics and clinicians. The authors

conclude that candidates {2, 3} and {4, 5} belong to different groups with candidate

1 somewhat neutral. From these two observations, one could argue that candidate 1

is a better choice than candidate 2. Furthermore, it is from the winning ranking of

A the grouping of candidates 2,3 and 4,5 are evident, leading us to conclude that the

sparse model A is able to capture the partitioning of the APA into two groups.

In conclusion, our empirical study shows that the greedy sparsest-fit algorithm

can find sparse distributions that not only fit the given data well, but also manage to

capture the underlying structure from only marginal information.

1.5 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 deals with background and

provides a comprehensive overview of the rich history of choice models. Due to the

fundamental nature of choice models, the literature on choice models goes back to

at least the 1920s and spans several areas. Chapter 2 stitches together the diverse

modeling approaches across the different areas through two common themes.

Chapters 3 and 4 are devoted to solving decision problems using choice models.

Chapter 3 discusses the problem of revenue predictions and Chapter 4 presents our

optimization algorithm.

Chapter 5 deals with question of learning sparse choice models from historical

preference data. Furthermore, in order to provide a better flow, some of the imple-

mentation details and experimental setup details have been moved to the appendix.

Finally, Chapter 6 presents the conclusions of the thesis and discusses future

directions.



Chapter 2

Overview of choice models

This chapter is devoted to a brief overview of popular parametric choice models that

have been extensively studied in the literature and successfully applied in several

practical settings. As the name suggests, choice models attempt to capture the very

basic act of human free will: choice. It is then not surprising that the study of

choice models has spanned diverse fields ranging from psychology, sociology, statis-

tics, transportation, marketing, and operations management dating back to at least

the 1920s. Although choice has been the basic building block, the ultimate goal for

the study of choice models has been different in different fields; consequently, the

modeling treatments in different fields have emphasized different aspects of choice

behavior depending on the ultimate goal. Due to this diversity of treatments and

applications, developing a comprehensive summary of the modeling approaches is an

almost hopeless task. The common theme of course is that all approaches eventually

induce a distribution over the permutations, but such a characterization is too gen-

eral. Fortunately, one can obtain a reasonable condensation of the varied approaches.

Specifically, two broad frameworks standout from the vast collection of seemingly dif-

ferent modeling approaches. Historically, most of the initial modeling approaches to

choice were ad-hoc and driven by the specific application at hand. In the process of

formalizing the modeling approaches, two dominant frameworks emerged and most

of the initial ad-hoc models were later shown to be consistent with these frameworks.

The frameworks yield two broad families of choice models: the Random Utility Max-



imization (RUM) family and the exponential family. The RUM family of models has

beginnings in the psychological literature, where the goal was to develop models that

were grounded in more basic processes. The exponential family, on the other hand,

has origins in statistics and emphasizes data availability rather than basic processes

driving choice.

To elaborate further, the RUM family of models assume that choices are driven by

the various measurable attributes of the alternatives and the individual. Specifically,

each indiviudal is assumed to assign to each alternative a utility value that is a

function of the various attributes that influence choice; once the utilities are assigned,

the individual chooses the alternative with the maximum utility. This is essentially

the view proposed in the classical utility maximization framework; the only difference

is that in the classical setting, the assigned utilities are assumed to be real values,

whereas in the RUM family, utilities are modeled as random variables. Introducing

randomness into utilities clearly results in a natural generalization of the classical

utility maximization framework. Interestingly, randomness was initially necessiated

by the empirical need to fit the model to real-world data. As McFadden [2000]

explains, it was soon realized that randomness in utilities is an inherent component

that naturally arises because of heterogeneity in user preferences. More precisely,

when modeling a group of "similar" individuals, the differences in their "tastes" make

them assign "slightly" different utility values to the same alternatives, which can be

captured through randomness. Moreover, even when modeling just one individual,

the individual may assign different utilities to the same alternative on different choice

occasions because of a variation in the attributes (like mood) known to the individual

but not the modeler. With utilities modeled as random variables, different choices

of parametric distributions for the random utilities give rise to different members of

the RUM family. Once a parametric distribution is selected, choices are made as

follows: in each decision instance, the individual samples utilities according to the

selected distribution and chooses the alternative with the maximum of the sampled

utilties. This model clearly induces an appropriate distribution over the space of

permutations. The choice of the parametric distribution is typically motivated by



computational aspects and the application at hand. RUM family of models has been

found to be very rich and several ad-hoc models grounded in basic processes have

later been shown to be special instances of the RUM family.

The exponential family of models naturally arises in contexts where it is relatively

easier to collect summary statistics (or marginal information) of the full set of data.

Such a situation is common when dealing with ranked data. For instance, consider

a ranked election setting where N candidates are running for an election and each

vote is a ranking of the N candidates. In this case, instead of collecting data about

the fraction of voters who vote for each ranking, it is definitely easier to collect (or

estimate) what are called first-order summary statistics: the fraction of people who

rank candidate i to position r. Given only summary statistics, it is natural to con-

sider families of models that are completely described by such statistics. Interestingly,

the classical Fisher-Koopman-Pitrnan-Darmois (see Koopman [1936]) theorem estab-

lishes that the exponential family of models is the richest family of models that are

completely described by a given set of summary statistics. Equivalently, the given

summary statistics are also the sufficient statistics for the distribution. The expo-

nential family of models is very rich and has been extensively studied not only in the

context of ranked data, but also in the context of both discrete and continuous ran-

dom vectors. Especially in the ranked data setting where the underlying distribution

has N! degrees of freedom and only summary statistics are naturally available in prac-

tice, exponentially families provide a rigorous way to scale model complexity with the

data. In this sense, they provide a nonparametric way to model choice data. However,

especially with ranked data, exponential families are quite complicated to deal with:

learning the parameters of an exponential family is usually computationally challeng-

ing (see Crain [1976], Beran [1979], and Wainwright and Jordan [2008]); in addition,

they are present computational challenges' just to compute choice probabilities even

with all the parameters given.

Next, we provide more details about the two broad families of models. We start

'The computational challenge arises because computing the choice probabilities requires com-
puting the marginals of a distribution that has an N! support size (see Wainwright and Jordan
[2008]).



with a brief historical account of methodological developments in choice theory. Af-

ter that we provide an overview of the RUM framework and go into the details of

some important special instances like the multinomial logit (MNL), nested logit (NL),

cross-nested logit (CNL), and mixtures of MNL (MMNL) models. We then formally

describe the exponential family of models and discuss the max-entropy distributions

and distance-based models. Our treatment below is self-contained, however, not

exhaustive; where required, we provide interested readers with pointers to relevant

literature.

2.1 Historical account

We provide below a very brief historical account of choice models, without attempting

to be exhaustive. For a more complete overview we refer interested readers to Diaconis

[1988] and McFadden [2000]. Some of the origins of modem choice models can be

traced back to psychological literature. In 1927, Thurstone [1927] introduced his

law of comparative judgement, which models the comparison of imperfectly perceived

intensities of physical stimuli like weights of objects, temperatures of objects, loudness

of tones, etc. To be concrete, consider a simple experiment as described in Diaconis

[1988], where individuals are asked to rank a set of tones according to their perceived

loudness. It is an established empirical fact that due to various imperfections, the

same individual on different occasions gives different answers. In order to account

for this, Thurstone introduced randomness and modeled the perceived intensity of

each stimulus i as si + (i, where pi is unobservable "true" stimulus and (i are i.i.d

random variables with normal distribution; consequently, on each choice occasion an

individual perceives tone i to be louder than tone j if pi + j is larger than py + (s.

Thurstone derived the probability that tone i is perceived to be louder than tone j, and

showed that it has a form that we now call binomial probit. This model has then be

shown to be a good fit for several tasks. Luce and Suppes [1965] provides a good review

of the experimental validation of Thurstone's model. It is easy to see that Thurstone's

model is a member of the RUM family vhere utilities are the intensities of various



stimuli. Marschak [1959] and Block and Marschak [1960] generalized Thurstone's

model to random utility maximization over multiple alternatives.

In an alternate line of work, Luce [1959] published an axiomatic approach to choice

modeling. Loosely speaking, Luce postulated that the ratio of choice probabilities of

two alternatives is independent of the choice set that includes them. This is called

the Independence of Irrelevant Alternatives (IIA) property. More precisely, Luce's

axiom states that given any choice set M, a subset A C M, and an alternative

i E A, P(iIM) = P(ilA)P(AIM), where P(AIA4M) denotes the probability that subset

A is chosen from the assortment M. If this axiom holds, Luce showed that each

alternative i can be assigned a positive weight wi such that the probability of the

choice of alternative i from any choice set is proportional to wi. This model induces

a distribution over ranked lists through the following generative model: the first-

ranked alternative is chosen from all the alternatives with probability proportional

to its weights, say wi; once i is chosen, the second-ranked alternative is chosen from

the remaining alternatives K \ {i} again with probability that is proportional to its

weight, and so on. Specifically, the probability of choosing any permutation o is

P(o) = W (
r=1 Wu1(r+1) + W-1y(r+2) + + Wcyl(N)

where --1(r) denotes the product that is ranked at position r by o.

Empirical work demonstrated that with the appropriate choice of parameters, the

choice probabilities predicted by Thurstone's model and Luce's model were very close

Luce [1977]. The first major insight into understanding the relationship between

the two models came due to Block and Marschak [1960], who showed that the Luce

model is equivalent to the Thurstone model when the random variables are assumed

to be independent double exponential or Type I Extreme Valued; E. Holman and A.

A. J. Marley (reported in Luce and Suppes [1965]) gave a more direct proof of this

fact. It was later established by McFadden [1973] - and independently by Yellott

[1977] under less restrictive conditions - that the double exponential distribution

condition is indeed necessary. Specifically, it was established that whenever N > 3, a



necessary condition for the Thurstone model with independent random variables to be

equivalent to the Luce model is that the random variables are i.i.d double exponential.

Interestingly, as Yellott [1977] shows, the double exponential distribution condition

is not necessary when N = 2. Thus, an equivalence was established between two

modeling approaches that were perceived to be different. It should be noted here

that the equivalence is by no means obvious and definitely not easy to prove.

As Luce [1977] points out, an interesting outcome of Yellott [1977] work is that

it brought to prominence the double exponential distribution or the extreme value

distribution, which had arisen in statistics many years ago (see Fisher and Tippett

[1928], Gumbel [1966]). The extreme value distribution arises because of its appealing

max-stable property that the maximum of two independent extreme value random

variables with the same scale parameter is also extreme value with the same scale

factor. Interestingly, the following asymptotic property has also been established:

the maximum of N i.i.d random variables converges in distribution to the extreme

value distribution as N -+ oo. This result can be thought of as the counterpart of

the Central Limit Theorem with sum replaced by maximum. With this result the

double exponential distribution can be justified by assuming that the utility assigned

is influenced by the maximum of a number of "small" independent factors.

Independent of all the work above and motivated by modeling the results of horse

races, Plackett [1975] developed family of distributions over permutations of increas-

ing "complexity". The first-order model posited by Plackett is the same as the Luce

model because of which the Luce model is often also referred to as the Plackett-

Luce model. Interestingly, Plackett's approach is the basis for many of the systems

designed for beating the races (see Ziemba and Hausch [1984]).

It should be noted that the Luce model is the same as the multinomial logit (MNL)

model - a workhorse for applications in marketing and econometrics. Particularly in

the area of marketing, the work by Guadagni and Little [1983] paved the way for rich

work in fitting choice models to scanner panel data.

In terms of empirical applications, after initial applications in psychology, travel

demand analysis has been a major area of application for choice models. Many



empirical statistical tools for empirical use of choice models have been developed in

relation to the travel demand analysis. Daniel McFadden, an econometrician who

shared the 2000 Nobel Memorial Prize in Economic Sciences with James Heckman,

pioneered the application of discrete choice models to travel demand analysis. Driven

by the practical issues that arise with applying choice models, the work related to

travel demand analysis has led to several rich developments in the field of RUM

models. See McFadden [2000] for an overview of the role of RUM models in travel

demand analysis.

The Luce model has been empirically tested especially by mathematical psychol-

ogists and was found to be restrictive due to the IIA property mentioned above. The

limitation of the IIA property is commonly explained through the famous "red-bus,

blue-bus" example. Suppose a commuter initially faces a decision between two modes

of operation - a car and a red bus - and is indifferent between them. Then, the

commuter would choose each of these options with probability 1/2. Now suppose we

add a blue bus to the mix. Assuming that commuters do not care about the color

of the bus, we would expect the probability of choosing the car to remain 1/2, while

the probability of choosing the red and blue buses to become a 1/4 each. However,

the IIA property, which dictates that ratio of the choice probabilities of the car and

red bus should be preserved, results in new choice probabilities of a 1/3 each. Intu-

itively, the reason for this failure is that the IIA axiom does not take into account

the existence of "perfect" substitutes.

In order to overcome the IIA limitation of the Luce model, several extensions

have been proposed. Some of the fixes have focused on modifying the model so that

it better reflects the behavioral aspects of the choice process. For instance, Tversky

[1972] describes a choice by a hierarchical elimination process, where it is assumed

that individuals make choices according to features or attributes of the alternatives

through a process of hierarchical elimination. This process is best explained through

an example. Consider the choice of a restaurant for dinner. The choice might be

made by eliminating alternatives based on the cuisine, location, online reviews, price,

etc. until only one alternative is left. Others fixes have focused on relaxing the



independence assumption of the random variables in the RUM models. Popular

among them is the nested-logit (NL). The NL model was first derived by Ben-Akiva

[1973] in connection with applications to travel demand analysis. Roughly speaking,

in an NL model, the alternatives are partitioned into groups or nests and decision

maker first chooses the nest and then one of the products within the nest according

to an MNL model. This model partially addresses the IIA problem. In particular, in

the above example, the red bus and the blue bus would belong to one nest and the

car to another nest; both nests would have the same probability of being chosen and

with the 'bus-nest', both the buses would have the same probability of being chosen.

However, the IIA property still holds within the nest.

In summary, choice models have a rich history dating back to almost a century and

spanning several fields like psychology, statistics, and transportation. As is evident

from the discussion above, there is immense diversity in the approaches taken to choice

modeling. Our historical account has been an attempt at covering the highlights of

choice modeling approaches in connection to the RUM framework. Our account has

indeed not been exhaustive and we refer the interested readers to McFadden [2000]

and Diaconis [1988] for a more comprehensive treatment.

In the next two sections, we provide an overview of the RUM models and the

exponential family of models.

2.2 Random Utility Maximization (RUM) models

In this section, we provide a brief overview of the RUM family of models. We start

with the basic form form of the RUM models and then go into the details of some

important special instances: the multinomial logit (MNL), the nested logit (NL),

cross-nested logit (CNL), and the mixture of MNL models. The descriptions are self-

contained but brief; we refer an interested reader to Ben-Akiva and Lerman [1985]

for more details.

In its most general form, the RUM model models the utilities assigned by the

decision maker as a random utility vector U = (U1 , U2,..., UN), where Uj corre-



sponds to the utility of alternative i. In each decision instance, the decision maker

samples a utility vector u = (Ui, U2 , -- ., UN) from an appropriately chosen joint distri-

bution and from an offer set M chooses the alternative with the maximum utility i.e.,

argminiem ui. Different choices of sampling distributions for the utility vectors yields

different instances of RUM models. For instance, a natural choice for the sampling

distribution could be a multivariate Gaussian distribution; this choice yields what is

called a multinomial probit (MNP) model. Although, Gaussian distribution is natu-

ral to consider, the MNP model is hard handle. Specifically, there is no closed-form

expression for the choice probabilities. The reason is that the Gaussian distribution is

not closed under maximization, and the computation of choice probabilities requires

evaluating tails probabilities of the maximum of the utilities. Choosing the extreme-

value distribution or the double exponential distribution alleviates this issue because,

as noted above, independent extreme-value random variables with the same scale pa-

rameter are closed under maximization. Choosing different forms of extreme-value

distributions yields different families of choice models as we describe below.

2.2.1 Multinomial logit (MNL) family

The MNL model is a popular and most commonly used parametric model in eco-

nomics, marketing and operations management (see Ben-Akiva and Lerman [1985],

Anderson et al. [1992]) and is the canonical example of an RUM model. In the MNL

model, the utility of the customer from product j takes the form Uj = V + (, where

V is the deterministic component and the error terms 1, 62, - - -, 'N are i.i.d. random

variables having a Gumbel distribution with location parameter 0 and scale param-

eter 1. Let wj denote el'; then, according to the MNL model, the probability that

product j is purchased from an assortment M is given by

P(j|IM) = w/ E Wi.
iEM

A major advantage of the MNL model is that it is analytically tractable. In

particular, it has a closed form expression for the choice probabilities. However, it



has several shortcomings. As explained above, a major limitation of the MNL model is

that it exhibits Independent of Irrelevant Alternatives (IIA) property i.e., the relative

likelihood of the purchase of any two given product variants is independent of the

other products on offer. This property may be undesirable in several practical contexts

where some product are 'more like' other products so that the randomness in a given

customers utility is potentially correlated across products. There are other - more

complicated - variants that have been proposed to alleviate the IIA issue - the most

popular being the NL model, which we describe next.

2.2.2 Nested logit (NL) family

The nested logit (NL) family of models, first derived by Ben-Akiva [1973], was de-

signed to explicitly capture the presence of shared unobserved attributes among al-

ternatives. In particular, the universe of products is partitioned into L mutually

exclusive subsets called nests denoted by 1, K2,... , XL such that

L

N= U At and fi n N,=0, for m = f.
t=1

The partitioning is such that products sharing unobserved attributes lie in the same

nest. Each customer has utility Uj for product j given by Uj = V + (e + ;je here,

'(e is the error term shared by all the products in nest Ae, and (yf is the error term

that is product specific and assumed to be i.i.d across different products. In this

logit case, (y are assumed to be i.i.d standard Gumbel distributed with location

parameter 0 and scale parameter 1. The nest specific error terms 1, 2, - - -, L are

assumed i.i.d., distributed such that for each f, j, (e + (y is Gumbel distributed with

location parameter 0 and scale parameter p < 1. Let wj denote es' and let

w(f,M) V E wi.

Then, with the above assumptions on the error terms, it can be shown that (see Ben-

Akiva and Lerman [1985]) the probability that product j is purchased when offered



assortment M is

((, M )) P w-
P(jIM) = P (NKM) P (jlM, M) = L (2.1)

ET'=1(w(m, M))P w(f, M)

Nested logit models alleviate the issue of IIA exhibited by the MNL models.

Further, they have a closed form expression for the choice probabilities, which makes

them computationally tractable. However, these models still exhibit IIA property

within a nest. Furthermore, in practice, it is often a challenging task to partition the

products into different nests. Another limitation of the NL model is that it requires

each product to be placed in exactly one nest. There are several settings where this

can be restrictive. For instance, a common issue in practice is the placement of the

'no-purchase' option. Although it can be placed in a nest of its own, it is intuitively

more appealing to place it in every nest because it is correlated with all the products.

In order to capture such situations, an NL model has been extended to what is called

a cross-nested logit (CNL) model, which describe next.

2.2.3 Cross-nested logit (CNL) family

A cross-nested logit (CNL) model is an extension of the NL model in that it allows

each product to belong to multiple nests. The name cross-nested seems to be due to

Vovsha [1997] and Vovsha's model is similar to the Ordered GEV model proposed by

Small [1987]. We discuss below only a special form of the CNL model in which only

one product is assumed to belong to multiple nests; the more general form in which

multiple products belong to multiple nests can be obtained from the special form in

a straightforward manner. In the setting where only one product belongs to multiple

nests, the probability of purchase of product j is given by (2.1) (see Ben-Akiva and

Lerman [1985]), where w(M, f) is now defined as

w(, M) + Wi.
ie(NArenM)\{0}



Here a1 is the parameter capturing the level of membership of the no-purchase option

in nest f. The following conditions are imposed on the parameters at, e = 1, 2, ... , L

L

aft =1 and at ;>0, fore = 1,2,...,L.
e=1

The first condition is a normalization condition that is imposed because it is not

possible to identify all the parameters.

While the CNL model overcomes the limitations of the NL model, it is less

tractable and Marzano and Papola [2008] showed that it cannot capture all possi-

ble types of correlations among products. Furthermore, the MNL, the NL, and the

CNL models don't account for heterogeneity in customer tastes. The MMNL family

of models, described next, explicitly account for heterogeneity in customer tastes.

2.2.4 Mixed multinomial logit (MMNL) 2 family

The mixed multinomial logit (MMNL) family of models is a very general class of choice

models. In fact, it is considered to be the most widely used and the most promising

of the discrete choice models currently available Hensher and Greene [2003]. It was

introduced by Boyd and Mellman [1980] and Cardell and Dunbar [1980].

In this model, the utility of customer c from product j is given by Uc, = (,c, xz) +

e,, where xj is the vector of observed attributes of product j; #c is the vector of re-

gression coefficients that are stochastic and not fixed3 to account for the unobserved

effects that depend on the observed explanatory variables; ec, is the stochastic term

to account for the rest of the unobserved effects; and (#,, xj) denotes the dot product

of #c and xj. In this logit context, it is assumed that the variables Ec, are i.i.d across

customers and products and distributed according to the Gumbel distribution of lo-

cation parameter 0 and scale parameter 1. The distribution chosen for 3 depends

on the application at hand and the variance of the components of 3c accounts for the

heterogeneity in customer tastes. Assuming that # has a distribution G(#; 0) param-

2This family of models is also referred to in the literature as Random parameter logit (RPL),
Kernel/Hybrid logit.

3This is unlike in the MNL model where the coefficients are assumed to be fixed, but unknown.



eterized by 0, probability that a particular product j is purchased from assortment

M is

P (jIM) =j exp fTxj G(d#; 0).

The MMNL family is a very rich class of models. McFadden and Train [2000]

show that under mild regularity conditions, an MMNL model can approximate arbi-

trarily closely the choice probabilities of any discrete choice model that belongs to the

class of RUM models. This is a strong result showing that MMNL family of models

is very rich and models can be constructed to capture various aspects of consumer

choice. In particular, it also overcomes the IIA limitation of the MNL and nested

MNL (within a nest) families of models. However, MMNL models are far less compu-

tationally tractable than both the MNL and nested MNL models. In particular, there

is in general no closed form expression for choice probabilities, and thereby the esti-

mation of these models requires the more complex simulation methods. In addition

- and more importantly - while the MMNL family can in principle capture highly

complex consumer choice behavior, appropriate choice of features and distributions

of parameters is highly application dependent and is often very challenging Hensher

and Greene [2003].

2.3 Exponential family of models

The exponential family is a family of general statistical models that have been devel-

oped to fit ranking data independent of the application. Even beyond ranked data,

exponential families have been extensively studied, and several classical distributions

like the normal, exponential, gamma, and binomial distribution are special instance

of the exponential family. The exponential family of distributions naturally arise in

contexts where summary statistics are easier to gather than the entire set of data.

Specifically, the Koopman-Pitman-Darmois theorem establishes that the exponential

family of models is the richest family of models that are completely described by a

given set of summary statistics.



More precisely, in independent works, Darmois [1935], Koopman [1936], and Pit-

man [1936], subsequent to Fisher [1922] own less explicit indication of the result,

established the following result. Loosely stated: suppose IPo(x) is a family of dis-

tributions on the real line with the parameter vector 0 = (01,02,...,0m). Let

Y1, Y2, - , yn be n samples generated independently from the distribution IPo(-) and

let y = (yi7 Y2, -- , yn). Then, the n dimensional joint density 1H' Po(yi) has a suf-

ficient statistic q(y) = (#1(Y), 42(Y),... , 4(Y)) of dimension s < n if and only if Po

belongs to the exponential family. Particularly, PO is of the form

Po(y) oc exp $ by (0)@g (y) ,
(j=1

where r < s and for some functions #Y(-) that are related to the sufficient statistic

#(.). In other words, exponential family of models is the richest family of models

that are completely described by a given set of summary statistics. As mentioned

above, this is of immense importance to the set of ranked data because in practice,

it is reasonable to collect only summary statistics.

Next, we discuss two special instances of models that belong to the exponential

family: max-entropy distributions and distance-based ranking models.

2.3.1 Max-entropy distributions

The exponential family of distributions naturally arise maximum entropy distri-

butions. Specifically, given marginal information of the form E [ti(X)] with i =

1, 2, ... , m for any random variable X, it can be shown that the distribution with the

maximum entropy is a member of the exponential family. More precisely, consider

the setup of ranked data. Suppose we have access to first-order marginal information

i.e., for each alternative i and position r, we have access to the probability of i that

is ranked at position r; we denote this quantity by pir. It is easy to see that taking

tir(0-) = 1 {oi)=r} for any permutation a, where 1A takes the value 1 when the event

A is true and 0 when A is false, we can write pir = E [tir (-)]. It can then be shown



that the maximum entropy distribution is of the form

Po. (o-) oc exp E 0;,tir (o-),(1<ir<N
where the parameter 0* is such that EpO. [tir(o-)] = p.zir for all 1 < i, r < N.

2.3.2 Distance-based ranking models

Distance-based ranking models constitute a popular sub-class of the exponential fam-

ily of distributions. In this class, each permutations o- is assigned a probability given

by

Po,o 0 -(a) oc exp (-Od(a, oo)) ,

where 0 > 0, d(o-, ao) measures the distance of a from o, and o is the permuta-

tion around which the distribution is concentrated. The distance d(-, -) is typically

assumed to be right-invariant i.e., it is invariant to re-labeling of the items being

ranked - more precisely, d(a- o ir, 0 2 o 7r) = d(o-1, o 2), for any permutations a1 , a 2, 7r,

where o- o ir(i) = -(ir(i)). In addition, d(-,-) is also assumed to be a metric satisfying

the usual metric axioms of positivity, symmetry, and triangle-inequality.

Different choices of the distance d(-, -) yield different instances of the distance-

based ranking models. Some of the widely used metrics in applied settings according

to Diaconis Diaconis [1988] are as follows:

1. Kendall's tau metric: d(a, 7r) = E;<j 1 ((i)-u(j))(x(i)--(j))<O i.e., the number of

pairs of items that are ranked in reverse-order by a and ir;

2. Spearman's rho metric: d(o-, 7r) = (;(-(i) -r

3. Spearman's footrule metric: d(a,7r) = Eilo-(i) - 7r(i)|;

4. Hamming metric: d(o, 7r) = E> j,(i)O(i);

5. Cayley's metric: d(o, 7r) = number of minimal transpositions required to go

from a to 7r;



6. Ulam's metric: d(-, -r) = N - (maximal number of items ranked in the same

relative order by o- and r.

Taking d(-, -) to be the Kendall-tau distance yields the popular Mallows' model

(see Mallows [1957]). We note here that the Kendall-tau distance T(-, 7r) between a

permutation o- and the identity permutation id two permutations can be written as

T(o-, id) = ZVi(-),

where V(o-) = L'Z,> l,(j)<,(i) i.e, the number of elements in the set {i + 1, i + 2, ... , N}

that are ranked before i. Since T(-, -) it is easy to see that all the distances are deter-

mined by the distance to the identity id. Hence, Mallow's model can also be written

as

P,, oc exp (-E (o-ro -1 .

Mallow's model has also been extended to extended to yield the Generalized Mallow's

model:

Po,, oc exp -i i M(o- o o--1)).

The Mallow's and the Generalized Mallow's models are versatile ranking mod-

els that provide effective means to model distributions concentrated around a central

ranking o. The size of the parameter 0 controls the "dispersion" of the model around

the central ranking o. One can obtain finer control over the dispersion in the Gener-

alized model; specifically, by taking the values O; to decrease with i one can emphasize

the greater importance of ranking the top-ranked items correctly i.e., according the

central ranking oo.

The distance-based ranking models are popular and have been extensively studied

in the literature and applied in several settings Critchlow et al. [1991].

In addition to the RUM and exponential families discussed above, there is a wealth

of other models that have been studied in the literature in various contexts. Critchlow

et al. [1991] provides a comprehensive overview of the various probabilistic models

over rankings.



2.4 Chapter summary and discussion

This chapter provided a broad overview of the popular choice models that have been

studied in the literature. Due to the diversity of modeling approaches in the litera-

ture, our attempt was not be exhaustive. Despite the diversity, two broad frameworks

standout from the vast collection of seemingly different modeling approaches. The

frameworks yield two broad families of choice models: the Random Utility Maxi-

mization (RUM) family and the exponential family. The RUM family of models has

beginnings in the psychological literature, where the goal was to develop models that

were grounded in more basic processes. RUM framework is a generalization of the

classical utility maximization framework studied extensively in Economics. The ex-

ponential family, on the other hand, has origins in statistics and emphasizes data

availability rather than basic processes driving choice. We provided a brief historical

account of of the methodological developments in choice theory. We then provided an

overview of the RUM framework with details of some important special instances like

the multinomial logit (MNL), nested logit (NL), cross-nested logit (CNL), and mix-

tures of MNL (MMNL) models. Finally, we formally described the exponential family

of models and discussed the max-entropy distributions and distance-based models.

From the discussion of the different modeling approaches, we highlight the follow-

ing two important aspects.

First, it is evident from our discussion above that there is a vast diversity in the

choice modeling approaches that have been taken. In fact, despite the long history

of work dating all the way back to the 1920s, there is neither a convergence to a

consensus nor an emergence of a dominant approach; of course, given the diversity

of the application areas, this fragmentation of modeling approaches is not surprising.

This fragmentation of approaches now makes the task of model selection challenging,

especially for a practitioner. Specifically, different modeling approaches have been

proposed with different objectives and different application domains in mind, and

each comes with its own set of strengths and weaknesses - both in terms of the

structural assumptions it makes and the computational issues it raises. Thereby,



selecting the "right" model for an application at hand requires subjective judgements

and hard to get expert input.

Second, note that different modeling approaches view data differently. In the

RUM framework, the choice process takes the center stage and data is typically an

after-thought. More precisely, choice models are designed to capture the individ-

ual decision making behavior by accounting for the various factors that influence

the choice behavior; for instance, the mean utilities in an MNL model are typically

modeled as linear models of the attributes of the decison-maker and the alternatives,

allowing one to make use of fine-grained inputs. In the case of exponential families, on

the other hand, data (in the form of summary statistics) takes the center stage; here,

instead of explicitly modeling the underlying choice process, the "richest" model that

can be fit to the given data is chosen. Note that this statement is especially true for

the family of max-entropy distributions4 . Consequently, in the case of max-entropy

distributions, the burden of picking the right model maybe off-loaded to the data.

Given the above observations, it is evident that the RUM models allow for fine-

grained inputs at the cost of making subjective judgements and at the risk of pro-

ducing inaccurate predictions due to the selection of incorrect structures. The max-

entropy distributions, on the other hand, off-load the burden of picking the model to

the data at the cost of not being able to include fine-grained information. Depending

on the application at hand, one or the other approach may be appropriate.

Finally, we note here that our approach is more along the lines of max-entropy

distributions in that we want to off-load the burden of model selection to the data.

The applications of our interest possess three important characteristics:

1. Making accurate and fine-grained predictions is more important than under-

standing the underlying choice process; in fact, the decisions based on these

predictions potentially impact millions of dollars.

2. The purchase/choice behavior exhibited by customers is highly dynamic and

4The distance-based models make an attempt to capture some application context by considering
distributions that are concentrated around a central permutation. However, the structure imposed
is very coarse and does not capture the fine-level attribute information.



rapidly varying across geographical locations and times.

3. Technological developments have made available enormous amounts of transac-

tion data.

Given these characteristics, it is evident a data-driven modeling approach is not only

a possibility, but also a necessity for these applications. Now, based on the obser-

vations we made above, it is natural to consider the exponential families for these

applications. However, as mentioned above, learning the parameters of a general

exponential family is a computationally challenging task. Moreover, even if one did

learn the parameters, the N! support size of the distribution makes just the compu-

tation of the choice probabilities challenging. Therefore, there is a need for a new

nonparametric approach, which we propose in the next chapter.
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Chapter 3

Decision problems: revenue

prediction

This chapter deals with the application of choice models to make decisions. There are

several important practical applications where the end-goal is to make a decision, and

a choice model is a critical component to making that decision. The main application

area of our focus is the set of decision problems faced by operations managers. In

this context, a central decision problem is the static assortment optimization problem

in which the goal is to find the optimal assortment: the assortment of products with

the maximum revenue subject to a constraint on the size of the assortment. Solving

the decision problem requires two components: (a) a subroutine that uses historical

sales transaction data to predict the expected revenues from offering each assortment

of products, and (b) an optimization algorithm that uses the subroutine to find the

optimal assortment. The present chapter focuses on designing a revenue prediction

subroutine, and the next chapter deals with the optimization algorithm.

As one can imagine, the problems of predicting revenues and finding the optimal

assortment are important in their own right, and their consideration is motivated by

the fact that any improvements to existing solutions will have significant practical

implications. Specifically, solutions to these two problems lead to a solution to the

single-leg, multiple fare-class yield management problem; this problem is central to

the area Revenue Management (RM) and deals with the allocation of aircraft seat ca-



pacity to multiple fare classes when customers exhibit choice behavior. In particular,

consider an airline selling tickets to a single-leg aircraft. Assume that the airline has

already decided the fare classes and is trying to dynamically decide which fare-classes

to open as a function of the remaining booking time and the remaining number of

seats. This dynamic decision problem can be cast in a reasonably straightforward

manner as a dynamic program with one state variable. As shown in Talluri and van

Ryzin [2004a], the solution to the dynamic program reduces to solving a slight variant

of the static assortment optimization problem. Thus, solution to the two problems

effectively solves the single-leg, multiple fare-class yield management problem At" a

central problem to RM with huge practical implications.

In the context of static assortment optimization problem, a choice model is re-

quired to predict revenues. In particular, a choice model fit to historical data predicts

choice probabilities: the probability that a particular product is chosen from an offer

set of products. Assuming that the prices (or revenues obtained from each sale) of

products is known, the predicted choice probabilities can be used to predict revenues.

Most of the work in OM that deals with solving decision problems requiring revenue

predictions take the choice model as given and assume access to accurate predictions.

When it comes to predicting revenues, a popular parametric model like the multi-

nomial logit (MNL) model is used. As mentioned in the first chapter, parametric

models suffer from various limitations the primary of which is that their complexity

does not scale with data because of which they fail to glean new structural information

in additional data. Put differently, parametric models tend to over-fit or under-fit

resulting in poor accuracy in their predictions. In order to overcome this issue, we

propose a nonparametric approach to predicting revenues and sales that affords the

revenue manager the opportunity to avoid the challenging task of fitting an appropri-

ate parametric model to historical data. Specifically, we start with the entire family

of distributions over preference lists and let the data select the "right" choice model

to make revenue predictions.

Next, we describe in detail the solutions we propose to the above problems. We

begin with a brief overview of the related work in Section 3.1. We then give a formal



description of the model and the precise descriptions of the problems in Section 3.2.

Section 3.3 describes our revenue prediction subroutine and discusses various meth-

ods to implement the subroutine in a computationally efficient manner in practice.

Sections 3.4, 3.5, 3.6 are devoted to establish the quality of the revenue predictions:

Section 3.4 discusses a simulation study that demonstrates that our approach can

produce accurate predictions by effectively capturing various parametric structures;

Section 3.5 describes a case-study with real-world data from a major US automaker in

which our method achieved an improvement over existing approaches of around 20%

in the accuracy of revenue predictions; finally, Section 3.6 derives error guarantees

for our approach when the underlying choice model is either the MNL or the MMNL

model. We finish our discussion about revenue predictions in Section 3.7, where we

obtain a characterization of the choice models used for revenue predictions in terms

of the sparsity of the distribution. Finally, Section 3.8 concludes with a summary and

some thoughts on future directions.

3.1 Relevant literature

The study of choice models and their applications spans a vast literature across multi-

ple fields including at least Marketing, Operations and Economics. In disciplines such

as marketing learning a choice model is an interesting goal unto itself given that it is

frequently the case that a researcher wishes to uncover "why" a particular decision

was made. Within operations, the goal is frequently more application oriented with

the choice model being explicitly used as a predictive tool within some larger decision

model. Since our goals are aligned with the latter direction, our literature review

focuses predominantly on OM; we briefly touch on key work in Marketing. We note

that our consideration of 'sparsity' as an appropriate non-parametric model selection

criterion is closely related to the burgeoning statistical area of compressive sensing;

we discuss those connections in a later section.

The vast majority of decision models encountered in operations have traditionally

ignored substitution behavior (and thereby choice modeling) altogether. Within air-



line RM, this is referred to as the "independent demand" model (see Talluri and van

Ryzin [2004b]). Over the years, several studies have demonstrated the improvements

that could be obtained by incorporating choice behavior into operations models. For

example, within airline RM, the simulation studies conducted by Belobaba and Hop-

perstad [1999] on the well known passenger origin and destination simulator (PODS)

suggested the value of corrections to the independent demand model; more recently,

Ratliff et al. [2008] and Vulcano et al. [2010] have demonstrated valuable average

revenue improvements from using MNL choice-based RM approaches using real air-

line market data. Following such studies, there has been a significant amount of

research in the areas of inventory management and RM attempting to incorporate

choice behavior into operations models.

The bulk of the research on choice modeling in both the areas has been opti-

mization related. That is to say, most of the work has focused on devising optimal

decisions given a choice model. Talluri and van Ryzin [2004a], Gallego et al. [2006],

van Ryzin and Vulcano [2008], Mahajan and van Ryzin [1999], Goyal et al. [2009]

are all papers in this vein. K6k et al. [2008] provides an excellent overview of the

state-of-the-art in assortment optimization. Rusmevichientong et al. [2010a] consider

the multinomial logit (MNL) model and provide an efficient algorithm for the static

assortment optimization problem and propose an efficient policy for the dynamic

optimization problem. A follow on paper, Rusmevichientong and Topaloglu [2009],

considers the same optimization problem but where the mean utilities in the MNL

model are allowed to lie in some arbitrary uncertainty set. Saure and Zeevi [2009]

propose an alternative approach for the dynamic assortment optimization problem

under a general random utility model.

The majority of the work above focuses on optimization issues given a choice

model. Paper such as Talluri and van Ryzin [2004a] discuss optimization problems

with general choice models, and as such our revenue estimation procedure fits in

perfectly there. In most cases, however, the choice model is assumed to be given

and of the MNL type. Papers such as Saure and Zeevi [2009] and Rusmevichientong

and Topaloglu [2009] loosen this requirement by allowing some amount of parametric



uncertainty. In particular, Saure and Zeevi [2009] assume unknown mean utilities

and learn these utilities, while the optimization schemes in Rusmevichientong and

Topaloglu [2009] require knowledge of mean utilities only within an interval. In both

cases, the structure of the model (effectively, MNL) is fixed up front.

The MNL model is by far the most popular choice model studied and applied

in OM. The origins of the MNL model date all the way back to the Plackett-Luce

model, proposed independently by Luce [1959] and Plackett [1975]. Before becoming

popular in the area of OM, the MNL model found widespread use in the areas of

transportation (see seminal works of McFadden [2000], Ben-Akiva and Lerman [1985])

and marketing (starting with the seminal work of Guadagni and Little [1983], which

paved the way for choice modeling using scanner panel data). See Wierenga [2008],

Chandukala et al. [2008] for a detailed overview of choice modeling in the area of

Marketing. The MNL model is popular because its structure makes it tractable

both in terms of estimating its parameters and solving decision problems. However,

the tractability of the MNL model comes at a cost: it is incapable of capturing

any heterogeneity in substitution patterns across products (see Debreu [1960]) and

suffers from Independent of Irrelevant Alternatives (IIA) property (see Ben-Akiva and

Lerman [1985]), both of which limit its practical applicability.

Of course, these issues with the MNL model are well recognized, and far more

sophisticated models of choice have been suggested in the literature (see, for instance,

Ben-Akiva and Lerman [1985], Anderson et al. [1992]); the price one pays is that the

more sophisticated models may not be easily identified from sales data and are prone

to over-fitting. It must be noted that an exception to the above state of affairs is the

paper by Rusmevichientong et al. [2006] that considers a general nonparametric model

of choice similar to the one considered here in the context of an assortment pricing

problem. The caveat is that the approach considered requires access to samples of

entire customer preference lists which are unlikely to be available in many practical

applications.

Our goal relative to all of the above work is to eliminate the need for structural

assumptions and thereby, the associated risks as well. We provide a means of going



directly from raw sales transaction data to revenue or sales estimates for a given offer

set. While this does not represent the entirety of what can be done with a choice

model, it represent a valuable application, at least within the operational problems

discussed.

3.2 Choice model and problem formulations

We consider a universe of N + 1 products, N = {1, 2,...,N}. We assume that

a customer always has an 'outside' or the 'no-purchase' option; the choice of the

'outside' option is equivalent to the customer not choosing anything from the offered

set of products, and we denote the 'outside' option by product 0. A customer is

associated with a permutation (or ranking) a of the products in AU{0}; the customer

prefers product ito product j if and only if u(i) < o(j). When offered an assortment

of products M C N, the customer purchases the product that is the most preferred

of the no-purchase option and the products offered in M. In particular, she purchases

argmin o-(i). (3.1)
iEMU{O}

This view of choice behavior is clearly intuitively very reasonable, and its origins

date back to Economists in the 1950s (see Mas-Colell et al. [1995]). In fact, is view

of preference lists or permutations is the basis for the utility maximization theory,

where for tractability reasons, a utility function that maps products to real numbers

is used to capture customer preferences.

3.2.1 Aggregate choice model

We model the aggregate behavior of a population of customers through a distribution

A over the space of all permutations of the products in N U {0}; specifically, for any

permutation a, A(a) corresponds to the fraction of customers in the population with

preference list a. It is easy to see that the distribution A captures all the desired choice

probabilities. Particularly, suppose the customer population described by distribution



A is offered an assortment of products M C N; then, the probability that product i

is purchased (the fraction of customers that purchase product i) from M is equal to

the sum of the weights of A over all permutations that result in the choice of i when

offered M. More precisely, the probability of purchase of i given M can be written

asi

P..(ilM) = (o),
a E-S(M)

where Si(M) is the set of permutations that result in the choice of i from M; equiva-

lently, Si (M) is the set of permutations that prefer i to all the products in M U {0}).

More formally, we can write

Si(M) = {a: c(i) < o(j) for all j E MU {O}} .

The distribution A captures all the required choice probabilities and we call it the

choice model. As mentioned above, using distributions over permutations to model

choice behavior is very general and forms the basis for the general class of random

utility choice models.

In applications of our interest, the sales or revenues expected from offering an

assortment M of products is an important quantity of interest. Given a choice model

A, one can compute the expected revenue as follows. Let pi denote the price of

product i or the revenue obtained from the sale of product i; as expected, we set po

to 0. Suppose assortment M is offered to customers from a population described by

choice model A. Then, the revenue expected from each arriving customer is given by

R(M) = Z pP,\(ilM).
iEM

Setting pi = 1 for all i E K in the above expression yields the probability that an

arriving customer will make a purchase, or what is called the 'conversion-rate', which

refers to the probability of converting an arriving customer to a sale.

'Sometimes we drop A and simply use P(ilM) to denote the choice probability in cases where
the choice model is irrelevant or implied by the context.



3.2.2 Data

The class of choice models we work with is quite general and imposes a minimal

number of assumptions on customers a-priori. That said the data available in practice

to calibrate such a model is typically be limited - specifically, corresponds to historical

sales transaction data from usually a small collection of assortments. In order to

capture a wide-range of practically relevant cases, we introduce a general compact

representation of the available data. It will be quickly seen that the abstract notion

we posit is relevant to data one might obtain from sales information.

We assume that the data observed by the seller is given by an m-dimensional

'partial information' vector y = AA, where A E {0, 1}mxN! makes precise the rela-

tionship between the observed data and the underlying choice model. Typically we

anticipate- m < N! signifying, for example, the fact that we have sales information

for only a limited number of assortments. Before understanding how transactional

data observed in practice relates to this formalism, we consider, for the purposes of

illustration a few simple concrete examples of data vectors y; we subsequently intro-

duce a type of data relevant to our experiments and transaction data observed in the

real world.

. Comparison Data: This data represents the fraction of customers that prefer a

given product i to a product j. The partial information vector y is indexed by

i, j with 0 < i, j < N; i : j. For each i, j, yij denotes the fraction of customers

that prefer product i to j. The matrix A is thus in {0, 1}N(N-1)xN!. A column

of A, A(o-), will thus have A(o)ij = 1 if and only if o(i) < o(j).

. First-order Data: This data represents the fraction of customers that rank

a given product i as their rth choice. Here the partial information vector y

is indexed by i, r with 0 < i, r < N. For each i, r, Yri is thus the fraction of

customers that rank product i at position r. The matrix A is then in {0, 1}N 2 xN!.

For a column of A corresponding to the permutation o, A(o), we will thus have

A(o-)ri = 1 iff a(i) = r.



. Top Set Data: This data refers to a concatenation of the "Comparison Data"

above and information on the fraction of customers who have a given product i

as their topmost choice for each i. Thus AT = [AT AT] where A1 is simply the

A matrix for comparison data, and A2 E {0, 1}NxN! has A 2(o)i = 1 if and only

if o-(i) = 1.

Transaction Data: More generally, in the retail context, historical sales records

corresponding to displayed assortments might be used to estimate the fraction of

purchasing customers who purchased a given product i when the displayed assort-

ment was M. We might have such data for some sequence of test assortments say

M 1, M 2, ... , MM. This type of data is consistent with our definition (i.e. it may

be interpreted as a linear transformation of A) and is, in fact, closely related to the

comparison data above. In particular, denoting by yim, the fraction of customers pur-

chasing product i when assortment Mm is on offer, our partial information vector,

y E [0, 1]N.M, may thus be indexed by i, m with 0 < i < N, 1 < m < M. The matrix

A is then in {0, 1}N.MxN!. For a column of A corresponding to the permutation a,

A(o), we will then have A(a)im = 1I ifl'i E Mm and o-(i) < o(j) for all products j in

assortment Mm.

3.2.3 Problem formulations

Imagine we have a corpus of transaction data, summarized by an appropriate data

vector y as described in Section 3.2.2. Our goal is to use just this data to make

predictions about the revenue rate (i.e the expected revenues garnered from a random

customer) for some given assortment, say M, that has never been encountered in past

data.



We propose accomplishing this by solving the following program:

minimize R(M)
A

subject to AA = y(3.2)

1TA = 1,

A > 0.

In particular, the optimal value of this program is our prediction for the revenue

rate. In words, the feasible region of this program describes the set of all choice

models consistent with the observed data y. The optimal objective value conse-

quently corresponds to the minimum revenues possible for the assortment M under

any choice model consistent with the observed data. Since the family of choice models

we considered was generic this prediction relies on simply the data and basic economic

assumptions on the customer that are tacitly assumed in essentially any choice model.

In the next sections, we describe our solutions to solving this problem.

3.3 Revenue predictions: computation

In the previous section we formulated the task of computing revenue estimates via a

non-parametric model of choice and any available data as the mathematical program

(3.2), which we repeat below, in a slightly different form for clarity:

minimize L' pg Aj(M)
A jEM

subject to AA =

1T A = 1,

The above mathematical program is a linear program in the variables A. Interpreting

the program in words, the constraints AA = y ensure that any A assumed in making

a revenue estimate is consistent with the observed data. Other than this consistency

requirement, writing the probability that a customer purchases j E M, P(j IM), as



the quantity A (M) = >'oEs 3 (M) A(o) assumes that the choice model satisfies the

basic structure laid out in Section 3.2.1. We make no other assumptions outside of

these, and ask for the lowest expected revenues possible for M under any choice

model satisfying these requirements.

Thus, while the assumptions implicit in making a revenue estimate are something

that the user need not think about, the two natural questions that arise are:

1. How does one solve this conceptually simple program in practice given that the

program involves an intractable number of variables?

2. Even if one did succeed in solving such a program are the revenue predictions

produced useful or are they too loose to be of practical value?

This section will focus on the first question. In practical applications such a procedure

would need to be integrated into a larger decision problem and so it is useful to

understand the computational details which we present at a high level in this section.

The second, 'so what' question will be the subject of the next two sections where

we will examine the performance of the scheme on simulated transaction data, and

finally on a real world sales prediction problem using real data.

3.3.1 The dual to the robust problem

At a high level our approach to solving (3.2) will be to consider the dual of that

program and then derive efficient exact or approximate descriptions to the feasible

regions of these programs. We begin by considering the dual program to (3.2). In

preparation for taking the dual, let us define

Aj(M) A {A(o) : o E Sj(M)

where recall that Sj(M) = { E SN : o-(j) < a(i),Vi E M,i =, j} denotes the set of

all permutations that result in the purchase of j E M when the offered assortment is

M. Since SN = UjEMSJ(M) and Sj(M) nl Si(M) = 0 for i =, j, we have implicitly

specified a partition of the columns of the matrix A. Armed with this notation, the



dual of (3.2) is:

maximize aTy + v
Cf'VT~i V) Pj,(3.3)

subject to max (aTxi+ v) pg, for each j E M.
xi EAj(M)

where a and v are dual variables corresponding respectively to the data consistency

constraints AA = y and the requirement that A is a probability distribution (i.e.

1TA = 1) respectively. Of course, this program has a potentially intractable number

of constraints. We explore two approaches to solving the dual:

1. An extremely simple to implement approach that relies on sampling constraints

in the dual that will, in general produce approximate solutions that are upper

bounds to the optimal solution of our robust estimation problem.

2. An approach that relies on producing effective representations of the sets Aj (M),

so that each of the constraints max (aTxi + V) 5 py, can be expressed effi-
XjEAj(M)

ciently.This approach is slightly more complex to implement but in return can

be used to sequentially produce tighter approximations to the robust estima-

tion problem. In certain special cases, this approach is provably efficient and

optimal.

3.3.2 First approach: constraint sampling

The following is an extremely simple to implement approach to approximately solve

the problem (3.3):

1. Select a distribution over permutations, $.

2. Sample n permutations according to the distribution. Call this set of permuta-

tion S.

3. Solve the program:

maximize a Ty + v
s '" T (3.4)

subject to a TA(o-) + v < pj, for each j E M,4 a- E $_



Observe that (3.4) is essentially a 'sampled' version of the problem (3.3), wherein

constraints of that problem have been sampled according to the distribution V) and

is consequently a relaxation of that problem. A solution to (3.4) is consequently an

upper bound to the optimal solution to (3.3).

The question of whether the solutions thus obtained provide meaningful approx-

imations to (3.3) is partially addressed by recent theory developed by Calafiore and

Campi [2005]. In particular, it has been shown that for a problem with m variables

and given n = O((1/e)(m ln(1/e) + ln(1/6)) samples, we must have that with prob-

ability at least 1 - J the following holds: An optimal solution to (3.4) violates at

most an c fraction of constraints of the problem (3.3) under the measure V). Hence,

given a number of samples that scales only with the number of variables (and is in-

dependent of the number of constraints in (3.3), one can produce an solution to (3.3)

that satisfies all but a small fraction of constraints. The theory does not provide any

guarantees on how far the optimal cost of the relaxed problem is from the optimal

cost of the original problem.

The heuristic nature of this approach notwithstanding, it is extremely simple to

implement, and in the experiments conducted in the next section, provided close to

optimal solutions.

3.3.3 Second approach: efficient representations of Aj(M)

We describe here one notion of an efficient representation of the sets A (M), and as-

suming we have such a representation, we describe how one may solve (3.3) efficiently.

We will deal with the issue of actually coming up with these efficient representations

in Appendix A.2, where we will develop an efficient representation for ranking data

and demonstrate a generic procedure to sequentially produce such representations.

Let us assume that every set Sy(M) can be expressed as a disjoint union of Dj

sets. We denote the dth such set by Sjd(M) and let Ajd(M) be the corresponding

set of columns of A. Consider the convex hull of the set Ajd(M), conv{Agd(M)} A

Ajd(M). Recalling that A E {0, 1I}mxN, Ajd(M) C {o, 1}m. A4d(M) is thus a



polytope contained in the rn-dimensional unit cube, [0, 1 ]m. In other words,

.(Md) = {xd : A > > bi, Ald d -=id A xid be, d E R } (3.5)

for some matrices Aid and vectors bid. By a canonical representation of Aj(M), we

will thus understand a partition of Sj (M) and a polyhedral representation of the

columns corresponding to every set in the partition as given by (3.5). If the number

of partitions as well as the polyhedral description of each set of the partition given

by (3.5) is polynomial in the input size, we will regard the canonical representation

as efficient. Of course, there is no guarantee that an efficient representation of this

type exists; clearly, this must rely on the nature of our partial information i.e. the

structure of the matrix A. Even if an efficient representation did exist, it remains

unclear whether we can identify it. Ignoring these issues for now, we will in the

remainder of this section demonstrate how given a representation of the type (3.5),

one may solve (3.3) in time polynomial in the size of the representation.

For simplicity of notation, in what follows we assume that each polytope Ajd(M)

is in standard form,

Ad(M) = {xld : Aid xid = b, id > 0.} .

Now since an affine function is always optimized at the vertices of a polytope, we

know:

max (aTXi + = max (aTXd +v
xiEAj(M) d,XaidEjad(M)

We have thus reduced (3.3) to a 'robust' LP. Now, by strong duality we have:

maximize a T X d + V
xde minimize idT -yid + v

subject to Aid xid = bid = 7d (3.6)

Xd> 0. subject to yid Aid> a



We have thus established the following useful equality:

(a, v: max (a xi + v)<py=(a, v:IdTaid + y j adAi ,d = 1,27,..., Dj
XzEAj(M)

It follows that solving (3.2) is equivalent to the following LP whose complexity is

polynomial in the description of our canonical representation:

maximize aTy + v
a,z'

subject to bdTyid + v < p2  for all j E M, d = 1, 2, .. ., Dj (3.7)

T Ajd ;> 01 for all j E M,7 d = 1, 2, ...,7 Dj.

As discussed, our ability to solve (3.7) relies on our ability to produce an efficient

canonical representation of Sj(M) of the type (3.5). In Appendix A.2, we first con-

sider the case of ranking data, where an efficient such representation may be produced.

We then illustrate a method that produces a sequence of 'outer-approximations' to

(3.5) for general types of data, and thereby allows us to produce a sequence of improv-

ing lower bounding approximations to our robust revenue estimation problem, (3.2).

This provides a general procedure to address the task of solving (3.3), or equivalently,

(3.2).

We end this section with a brief note on noisy observations. In particular, in

practice, one may see a 'noisy' version of y = AA. Specifically, as opposed to knowing

y precisely, one may simply know that y E E, where E may, for instance, represent

an uncertainty ellipsoid, or a 'box' derived from sample averages of the associated

quantities and the corresponding confidence intervals. In this case, one seeks to solve

the problem:

minimize ' py Aj (M)
AyEe jEM

subject to AA = y,

1TA = 1,

Provided £ is convex, this program is essentially no harder to solve than the variant of

the problem we have discussed and similar methods to those developed in this section



apply.

3.4 Revenue predictions: data-driven computational

study

In this section, we describe the results of an extensive simulation study, the main

purpose of which is to demonstrate that the robust approach can capture various

underlying parametric structures and produce good revenue predictions. For this

study, we pick a range of random utility parametric structures used extensively in

current modeling practice.

The broad experimental procedure we followed is the following:

1. Pick a structural model. This may be a model derived from real-world data or

a purely synthetic model.

2. Use this structural model to simulate sales for a set of test assortments. This

simulates a data set that a practitioner likely has access to.

3. Use this transaction data to estimate marginal information y, and use y to

implement the robust approach.

4. Use the implemented robust approach to predict revenues for a distinct set of

assortments, and compare the predictions to the true revenues computed using

the 'ground-truth' structural model chosen for benchmarking in step 1.

Notice that the above experimental procedure lets us isolate the impact of struc-

tural errors from that of finite sample errors. Specifically, our goal is to understand

how well the robust approach captures the underlying choice structure. For this pur-

pose, we ignore any estimation errors in data by using the 'ground-truth' parametric

model to compute the exact values of any choice probabilities and revenues required

for comparison. Therefore, if the robust approach has good performance across an

interesting spectrum of structural models that are believed to be good fits to data



observed in practice, we can conclude that the robust approach is likely to offer ac-

curate revenue predictions with no additional information about structure across a

wide-range of problems encountered in practice.

3.4.1 Benchmark models and nature of synthetic Data

The above procedure generates data sets using a variety of 'ground truth' struc-

tural models. We pick the following 'random utility' models as benchmarks. A

self-contained and compact exposition on the foundations of each of the benchmark

models below may be found in Chapter 2.

Multinomial logit family (MNL): For this family, we have:

P(jlM) = wy/ E wi.
iEM

where the wi are the parameters specifying the models. See Appendix 2.2.1 for more

details.

Nested logit family (NL): This model is a first attempt at overcoming the 'inde-

pendence of irrelevant alternatives' effect, a shortcoming of the MNL model. For this

family, the universe of products is partitioned into L mutually exclusive subsets, or

'nests', denoted by N,A 2, ... ,L such that

L

f=J U N and Art n N = 0, for m =A.
f=1

This model takes the form:

((, M )) P W
P (jIM) = P (K,|M) P (jIVe, M) = EL . (3.8)

., 1(w(m, M))P w(e, M)

where p < 1 is a certain scale parameter, and

def
W (f, M) = alwo + EWi.

ie(JNfnM)\{o}

Here at is the parameter capturing the level of membership of the no-purchase option



in nest i and satisfies, EL a = 1, a> _ 0, for f = 1, 2,..., L. In cases when

at < 1 for all f, the family is called the Cross nested logit (CNL) family. For a

more detailed description including the corresponding random utility function and

bibliographic details, see Appendix 2.2.2

Mixed multinomial logit family (MMNL): This model accounts specifically for

customer heterogeneity. In its most common form, the model reduces to:

r exp {/#TxzyP(jjM) = IGexp{IpX} G(d#; 0).

where xy is a vector of observed attributes for the jth product, and G(-, 0) is a distri-

bution parameterized by 0 selected by the econometrician that describes heterogeneity

in taste. For a more detailed description including the corresponding random utility

function and bibliographic details, see Appendix 2.2.4.

Transaction Data Generated: Having selected (and specified) a structural model

from the above list, we generated sales transactions as follows:

1. Fix an assortment of two products, i, j.

2. Compute the values of P(il{i, j, 0}), P(jl{Ii, j, 0}) using the chosen parametric

model.

3. Repeat the above procedure for all pairs, {i, j}, and single item sets, {i}.

The above data is succinctly summarized as an N2 - N dimensional data vector y,

where yij = P(iI{i, j, 0}) for 0 < i, j 5 N - 1, i 4 j. Given the above data, the

precise specialization of the robust estimation problem (3.2) that we solve may be

found in Appendix A.2.3.

3.4.2 Experiments conducted

With the above setup we conducted two broad sets of experiments. In the first set

of experiments, we picked specific models from the MNL, CNL, and MMNL model



classes; the MNL model was constructed using DVD shopping cart data from Ama-

zon.com, and the CNL and MMNL models were obtained through slight 'perturba-

tions' of the MNL model. In order to avoid any artifacts associated with specific

models, in the second set of experiments, we conducted 'stress tests' by generating

a number of instances of models from each of the MNL, CNL, and MMNL models

classes. We next present the details of the two sets of experiments.

The Amazon Model: We considered an MNL model fit to Amazon.com DVD

sales data collected between 1 July 2005 to 30 September 2005 2,where an individual

customer's utility for a given DVD, j is given by:

Uj = 00 + 1xj,,l + 0 2Xj,2 + Cj; 3

here xz, 1 is the the price of the package j divided by the number of physical discs it

contains, and xj,2 is the total number of helpful votes received by product j and (g

is a standard Gumbel. The model fit to the data has 0 = -4.31, 01 = -0.038 and

02 = 3.54 x 10-5. See Table A.1 for the attribute values taken by the 15 products we

used for our experiments. We will abbreviate this model AMZN for future reference.

We also considered the following synthetic perturbations of the AMZN model:

1. AMZN-CNL: We derived a CNL model from the original AMZN model by

partitioning the products into 4 nests with the first nest containing products 1

to 5, the second nest containing products 6 to 9, the third containing products

10 to 13, and the last containing products 14 and 15. We choose p = 0.5. We

assigned the no-purchase option to every nest with nest membership parameter

ae = (1/4)(1 /P) = 1/16.

2. AMZN-MMNL: We derived an MMNL model from the original AMZN model

by replacing each 0 parameter with the random quantity #i = (1 + ?,j)Oi, for

i = 0,1,2 with qi,j is a customer specific random variable distributed as a zero

mean normal random variable with standard deviation 0.25.
2The specifics of this model were shared with us by the authors of Rusmevichientong et al. [2010a].
3The corresponding weights wj are given by wj = exp(Oo +1 Oxj, + 03Xj,2).
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Figure 3-1: Robust revenue estimates (MIN) vs. true revenues for the AMZN, AMZN-
CNL and AMZN-MMNL models. Each of the 60 points in a plot corresponds to (true
revenue, MIN) for a randomly drawn assortment.

Figure 3-1 shows the results of the generic experiment for each of the three models

above. Each experiment queries the robust estimate on sixty randomly drawn assort-

ments of sizes between one and seven and compares these estimates to those under

the respective true model for each case.

Synthetic Model Experiments: The above experiments considered structurally

diverse models, each for a specific set of parameters. Are the conclusions suggested by

Figure 3-1 artifacts of the set of parameters? To assuage this concern, we performed

'stress' tests by considering each structural model in turn, and for each model gener-

ating a number of instances of the model by drawing the relevant parameters from a

generative family. For each structural model, we considered the following generative

families of parameters:



1. MNL Random Family: 20 randomly generated models on 15 products, each

generated by drawing mean utilities, ln wj, uniformly between -5 and 5.

2. CNL Random Family: We maintained the nests, selection of p and a as in the

AMZN-CNL model. We generated 20 distinct CNL models, each generated by

drawing ln wj uniformly between -5 and 5.

3. MMNL Random Family: We preserved the basic nature of the AMZN-MMNL

model. We considered 20 randomly generated MMNL models. Each model

differs in the distribution of the parameter vector #. The random coefficients #i
in each case are defined as follows: #5 = (1 + qij,)Oj where qi,j is a N(puj, 0.25)

random variable. Each of the 20 models corresponds to a single draw of p,1j j =

0, 1, 2 form the uniform distribution on [-1, 1].

For each of the 60 structural model instances described above, we randomly gen-

erated 20 offer sets of sizes between 1 and 7. For a given offer set M, we queried the

robust procedure and compared the revenue estimate produced to the true revenue

for that offer set; we can compute the latter quantity theoretically. In particular,
def tu~ R'M

we measured the relative error, e(M) * R'''"e)RM N (M ). The three histograms in

Figure 3-2 below represent distributions of relative error for the three generative fam-

ilies described above. Each histogram consists of 400 test points; a given test point

corresponds to one of the 20 randomly generated structural models in the relevant

family, and a random assortment.

In the above 'stress' tests, we kept the standard deviation of the MMNL models

fixed at 0.25. The standard deviation of the MMNL model can be treated as a

measure of the heterogeneity or the "complexity" of the model. Naturally, if we keep

the "amount" of transaction data fixed and increase the standard deviation - and

hence the complexity of the underlying model - we expect the accuracy of robust

estimates to deteriorate. To give a sense of the sensitivity of the accuracy of robust

revenue estimates to changes in the standard deviation, we repeated the above stress

tests with the MMNL model class for three values of standard deviation: 0.1, 0.25,

and 0.4. Figure 3-3 shows the comparison of the density plots of relative errors for
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Figure 3-2: Relative error across multiple instances of the MNL, CNL and MMNL
structural models.

the three cases.

We draw the following broad conclusion from the above experiments:

. Given limited marginal information for distributions over permutations, A, aris-

ing from a number of commonly used structural models of choice, the robust

approach effectively captures diverse parametric structures and provides close

revenue predictions under range of practically relevant parametric models.

. With the type of marginal information y fixed, the accuracy of robust rev-

enue predictions deteriorates (albeit mildly) as the complexity of the underlying
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Figure 3-3: The accuracy of robust revenue estimates deteriorates with increase in

model complexity, as measured here by variance of the MMNL model. The densities

were estimated through kernel density estimation. The density estimates go below
zero as a result of smoothing.

model increases; this is evidenced by the deterioration of robust performance as

we go from the MNL to the MMNL model class, and similarly as we increase

the standard deviation for the MMNL model while keeping the 'amount' of data

fixed.

. The design of our experiments allows us to conclude that in the event that

a given structural model among the types used in our experiments predicts

revenue rates accurately, the robust approach is likely to be just as good without

knowledge of the relevant structure. In the event that the structural model used

is a poor fit, the robust approach will continue to provide meaningful guarantees

on revenues under the mild condition that it is tested in an environment where



the distribution generating sales is no different from the distribution used to

collect marginal information.

3.5 Revenue predictions: case-study with a major

US automaker

In this section, we present the results of a case study conducted using sales transaction

data from the dealer network of a major US automaker. Our goal in this study is

to use historical transaction data to predict the sales rate or 'conversion rate' for

any given offer set of automobiles on a dealer lot. This conversion-rate is defined

as the probability of converting an arriving customer into a purchasing customer.

The purpose of the case study is two-fold: (1) To demonstrate how the prediction

methods developed in this paper can be applied in the real-world and the quality

of the predictions they offer in an absolute sense, and (2) To pit the robust method

for revenue predictions in a 'horse-race' against parametric approaches based on the

MNL and MMNL families of choice models. In order to test the performance of these

approaches in different regimes of calibration data, we carried out cross-validations

with varying 'amounts' of training/calibration data. The results of the experiments

conducted as part of the case study provide us with the evidence to draw two main

conclusions:

1. The robust method predicts conversion rates more accurately than either of the

parametric methods. In our case study, the improvement in accuracy was about

20% across all regimes of calibration data.

2. Unlike the parametric methods we study, the robust approach is apparently not

susceptible to over-fitting and under-fitting.

The 20% improvement in accuracy is substantial. The second conclusion has impor-

tant implications as well: In practice, it is often difficult to ascertain whether the data

available is "sufficient" to fit the model at hand. As a result, parametric structures



are prone to over-fitting or under-fitting. The robust approach, on the other hand,

automatically scales the complexity of the underlying model class with data available,

so in principle one should be able to avoid these issues. This is borne out by the case

study. In the remainder of this section we describe the experimental setup and then

present the evidence to support the above conclusions.

3.5.1 Setup

Appendix A.3 provides a detailed description of our setup; here we provide a higher

level discussion for ease of exposition. We collect data comprising purchase trans-

actions of a specific range of small SUVs offered by a major US automaker over 16

months. The data is collected at the dealership level (i.e the finest level possible) for

a network of dealers in the Midwest. Each transaction contains information about

the date of sale, the identity of the SUV sold, and the identity of the other cars on the

dealership lot at the time of sale. Here by 'identity' we mean a unique model iden-

tifier that collectively identifies a package of features, color and invoice price point.

We make the assumption that purchase behavior within the zone can be described

by a single choice model. To ensure the validity of this assumption, we restrict at-

tention to a specific dealership zone, defined as the collection of dealerships within

an appropriately defined geographical area with relatively homogeneous demographic

features.

Our data consisted of sales information on 14 distinct SUV identities (as described

above). We observed a total of M = 203 distinct assortments (or subsets) of the 14

products in the dataset, where each assortment Mi, i = 1, 2,... , M, was on offer

at some point at some dealership in the dealership zone. We then converted the

transaction data into sales rate information for each of the assortments as follows:

= num of sales of product j when Mi was on offer .
Y num of customer arrivals when Mi was on offer

Note that the information to compute the denominator in the expression for yjmy is

not available because the number of arriving customers who purchase nothing is not



known. Such data 'censoring' is common in practice and impacts both parametric

methods as well as our approach. A common approximation here is based on de-

mographic information relative to the location of the dealership. Given the data at

our disposal, we are able to make a somewhat better approximation to overcome this

issue. In particular, we assume a daily arrival rate of ad for dealership d and measure

the number of arrivals of assortment M as

num of customer arrivals when M was on offer = S ad daysd(M)
d

where daysd(M) denotes the number of days for which M was on offer at dealership

d. The arrival rate to each dealership clearly depends on the size of the market to

which the dealership caters. Therefore, we assume that ad = f x sized, where sized

denotes the "market size" for dealership d and f is a "fudge" factor. We use previous

year total sales at dealership d for the particular model class as the proxy for sized

and tune the parameter f using cross-validation (more details in the appendix).

3.5.2 Experiments and results

We now describe the experiments we conducted and the present the results we ob-

tained. In order to test the predictive performance of the robust, the MNL, and the

MMNL methods, we carried out k-fold cross-validations with k = 2,5, 10. In k-fold

cross-validation (see Mosteller and Tukey [1987]), we arbitrarily partition the collec-

tion of assortments M 1, M 2,. - -, MM into k partitions of about equal size, except

may be the last partition. Then, using k - 1 partitions as training data to calibrate

the methods, we test their performance on the kth partition. We repeat this process

k times with each of the k partitions used as test data exactly once. This repetition

ensures that each assortment is tested at least once. Note that as k decreases, the

number of training assortments decreases resulting in more limited data scenarios.

Such limited data scenarios are of course of great practical interest.

We measure the prediction accuracy of the methods using the relative error metric.

In particular, letting Q(M) denote the conversion-rate prediction for test assortment

100



M, the incurred relative error is defined as I y(M) - y(M) I /y(M), where

num of customers who purchase a product when M is on offer
y(M) : num of customer arrivals when Mi was on offer

In the case of the parametric approaches, -(M) is computed using the choice model

fit to the training data. In the case of the robust approach, we solve an appropriate

mathematical program. A detailed description of how 9(M) is determined by each

method is given in the appendix.

We now present the results of the experiments. Figure 3-4 shows the comparison of

the relative errors of the three methods from k-fold cross-validations for k = 10, 5,2.

Table 3.1 shows the mean relative error percentages of the three methods and the

percent improvement in mean relative error achieved by the robust method over the

MNL and MMNL methods for the three calibration data regimes of k = 10, 5,2. It is

clear from the definition of k-fold cross-validation that as k decreases, the "amount"

of calibration data decreases, or equivalently calibration data sparsity increases. Such

sparse calibration data regimes are of course of great practical interest.

Table 3.1: Mean relative errors in percentages of different methods

k MNL MMNL Robust Percent Improvement over
MNL MMNL

10 43.43 43.39 34.79 19.89% 19.80%
5 43.25 45.73 35.79 17.23% 21.62%
2 45.65 46.61 36.83 19.33% 20.99%

The immediate conclusion we draw from the results is that the prediction accuracy

of the robust method is better than those of both MNL and MMNL methods in all

calibration data regimes. In particular, using the robust method results in close to

20% improvement in prediction accuracy over the MNL and MMNL methods. We

also note that while the prediction accuracy of the more complex MMNL method is

marginally better than that of the MNL method in the high calibration-data regime of

k = 10, it quickly becomes worse as the amount of calibration data available decreases.

This behavior is a consequence of over-fitting caused due to the complexity of the

MMNL model. The performance of the robust method, on the other hand, remains
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Figure 3-4: Robust method outperforms both MNL and MMNL methods in
conversion-rate predictions across various calibration data regimes. The figure com-
pares relative errors of the three methods in k-fold cross-validations for k = 10,5,2.
Each point corresponds to the relative error for a particular test assortment.

stable across the different regimes of calibration-data.

3.6 Revenue predictions: theoretical guarantees

The results from our simulation study (Figs. 3-1, 3-2) demonstrate high accuracy

of the robust approach for a wide-range of practically relevant scenarios. In this

section, we explain the success of the robust approach by deriving analytical bounds

for the relative error. The error bound we derive can be computed using only the

available partial information, thereby providing readily computable guarantees for

our estimates in practical applications. For the analysis in this section, we restrict
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ourselves to the case when we have access to complete kth-order partial information:

for every assortment M of size at most k, we have access to P (j I M U {0}) for all

products j E M; note that k = 2 is the 'censored' variant of comparison information

used above for experiments. This restriction simplifies analysis, provides insights, and

the analysis can easily be generalized to general types of partial information.

As expected, the accuracy of our revenue predictions depends on two factors: (a)

the "complexity" of the underlying choice behavior, and (b) the "amount" of informa-

tion in the available data. For a given complexity of underlying choice behavior, the

more the data, the better the accuracy we expect. Similarly, for a given amount of

information in the available data, the greater the complexity of the underlying choice

behavior, the worse the accuracy we expect. The bounds we derive on the accuracy

of our predictions confirm this intuition. Before we provide the precise details, we

describe the basic insight: robust approach with limited data produces accurate es-

timates if only a "few" products account for most of the cannibalization of the sales

of each product. To elaborate on this, we note that "similar" products in the offered

assortment result in a cannibalization of (reduction in) the sales of each other; can-

nibalization of the sales of the notebooks offered by Apple Inc., by their iPads is a

current example. For each product, if only a few other products account for most of

the cannibalization, then the robust approach can produce accurate predictions with

limited data. For a given level of accuracy, there is an inverse relationship between

the "amount" of data and the number of products where the cannibalization is con-

centrated. Using this insight, we derive general bounds on the relative error incurred

by our approach. The bounds we derive can be computed using the partial data that

is available and, hence, we can provide provable and computable guarantees for the

estimates we produce in practice. We then specialize the error bounds to the MNL

and the MMNL families of models. We observe that for the MNL case, the above

characteristic of choice models that leads to small errors translates into the following

MNL characteristic: sum of the weights of a few products must account for most

of the sum of the weights of all the products in the assortment. Similarly, for the

MMNL case, which is a mixture of MNL models, the characteristic roughly translates

103



to having less heterogeneity in customer tastes, with the constituent MNL models

possessing above MNL characteristic. Thus, the robust approach can be confidently

used whenever these intuitive conditions are met.

We now provide the precise details. In order to derive error bounds for ro-

bust estimates, we first derive a bound for the error incurred when we approxi-

mate P (j I M U {0}) by P (j I M' U {O}), for any assortment M' c M such that

j E M'. For that, as noted above, the demand (purchase probability) observed

for a product in an assortment can be thought of as a combination of its primary

demand and the cannibalization effects of all other products present in the assort-

ment. Thus, when we approximate P (j | M U {O}) by P (j I M' U {O}), we are ig-

noring the cannibalization effects of all the products in M \ M'. Let B (M'; i) t

P (j I M' U {O}) - P (j I M' U {i, 0}), which we call the incremental cannibalization

effect on j of adding i to M', and By(M'; M) = DEiE\, Bj(M'; i). Then, we can

prove that P (j | M')-B(M'; M) < P (j I M) < P (j I M') (see Lemma 1); the right

inequality is straightforward and the left inequality requires a union bound argument.

Since we have access to kth-order partial data, we can readily evaluate the error bound

Bj (M'; M) if |M' < k - 1. Letting S(j, M) {M'c M: j E M', IM'I : k - 1},

it now follows that we can readily compute the bound for P (j I M') - P (j I M)

whenever M' E S(j, M).

With the above approximation bounds for purchase probabilities, we can now de-

rive error bounds for revenue estimates. First, since we are at liberty to choose any

assortment M' E S(j, M) to approximate P (j I M), we choose the one the mini-
def Bj (M';M)

mizes the relative error. In particular, we choose M3 = argminM/Es(j,M) P(UIM')

Now, letting 6k(j, M) def B,(m 3 ;M) it is easy to see that (1 - 6 k(j, M))P (j I Mg) <

P(j I M) < P(j I Mj). Now, let Rk(M) denote 'jEM piPj I Mj) and ok(M) =

maxgEM 3 (j, M). Then, we can write (1 - 6k(M))Rk(M) R(M) < Rk(M). Note

that both 6k(M) and Rk(M) are completely determined by the kth-order partial data

that is available. All the bounds we have derived until now are valid for any distri-

bution over permutations that is consistent with the given kth-order partial data.

Therefore, we can write (1 - Jk(M))Rk(M) Rmin(M) R tre(M) < Rk(M),
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which immediately gives Rr""(M)/Rt"e(M) > 1 - ok(M). This discussion can now

be summarized as the following theorem.

Theorem 1. Given an assortmemt M and product j, suppose we have access to

complete k thorder partial information. Then, R|M > 1 -oJ(M), where 6k(M) =

maxjEM k(j M).

The following is now evident from Theorem 1. The relative error in revenue

estimation through our robust approach is small if 6k(M) is small, which is in turn

small if the best relative error in approximating P (j I M) using sets of size at most

k - 1 is small. Therefore, for any given k, the robust approach provides accurate

estimates if most of the cannibalization effects can be accounted for by at most k -2

products; equivalently, depending on the application at hand, k can be chosen so that

most of the cannibalization effects can be accounted for by at most k - 2 products.

This interpretation provides a convenient way to choose k, or equivalently predict the

performance of the robust approach for a given k in practical applications.

Specializing 6 ko(M) in Theorem 1 for different parametric models yields guarantees

for different models. Specifically, we have the following theorem for the MNL model:

Theorem 2. Suppose the underlying choice model is the MNL model and we are given

kth-order partial information. Without loss of generality, suppose M = {1, 2,... , C}

is the assortment for which we want to predict revenues and the weights are such that

w 1  W2  > - - wc. Then, we have

1 - R<((M)

where Rmn"(M ) is the estimate produced by the robust approach, Rtm"e(M) is the true

revenue, and

k(M) Wk + - -+WC
~ +W1+W2 + - - - +Wk-1

Thus, for an MNL model cannibalization effects are completely captured by the

weights and error is small if the top k products constitute most of the sum of the

weights of the product in M. For k = 2 and M = K, this bound evaluates to 0.16 for
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the Amazon.com data set we considered in the experiments above. Thus, the bound

we derived is tight for this dataset.

Now we consider the MMNL family. Since it is a mixture of MNL models, we

express its error bound in terms of error bounds of MNL models. Particularly, we

have the following theorem:

Theorem 3. Suppose the mixing distribution G(-) is multivariate Gaussian with mean

vector y and covariance matrix E = o.2TD, where ID is D x D identity matrix. Letting

k1(j, M) denote the relative error for MNL model corresponding to 8, we can write

f 5(j, M)L (j I M ) G(d#) ± ,.

- Pj Ul MA) P (j I Mj)'

where

= 2kC(D) exp(-r 2 /(2o. 2))
r

with C(D) a constant that depends only on dimension D of attribute vectors, r =

min i i-Xe , a Mj, cM E Si (M) are assortments where the minimization is

attained in the expression for 6O(j, M) and 6 k(j, M) respectively. Here Lp (i I M) is

the choice probability under the MNL model with weight of product i equal to eQ3,xi)

where xi is vector of features of product i.

In the error bound in the above theorem, the first term corresponds to the error

made in individual MNL models and essentially is the best error possible. The second

term corresponds to the additional error due to heterogeneity in consumer tastes.

This term is small for large r and small a. Variance a.2 can be treated as a measure

heterogeneity. Further, r will be bigger if the mean utilities of products (t, aj) at the

mean vector are sufficiently far apart. Therefore, additional error due to heterogeneity

will be small if the amount of heterogeneity o is small, or if the products are sufficiently

differentiated in terms of their mean utilities along the mean vector p. Hence, robust

estimates are accurate if the tastes of the population are not too heterogeneous and

if the products are sufficiently differentiated along the mean 'taste vector' p.

The proofs of Theorems 2 and 3 are given in Appendix A.4. Before we con-
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clude the section, we formally state Lemma 1 referred to above; its proof is given in

Appendix A.4.

Lemma 1. For any two assortments M, M' and product j such that j E M' and

M' C M, we have

P (j I M') - Bj (M';M) < IP (j I M) < IP (j I M'),

where B3 (M ; M') e ZiEM\M, B (M'; i) and

Bj(M'; i) l P (j I M'U {0}) - P (j I M' U {0, i}).

3.7 Revenue predictions and sparse choice models

We conclude the discussion of our theoretical analysis by establishing a relationship

between the "amount" of data and the "complexity" of the choice model used for

revenue predictions. As noted in the introduction, the main advantage of the non-

parametric approach is that it scales the model complexity with the "amount" of data.

This section is devoted to formalize this fact. Specifically, we use sparsity or the sup-

port size of the distribution over preference lists as a measure of the complexity of the

choice model and the dimension of the data vector y as a measure of the "amount"

of data. Sparsity is a very appealing property of choice models. Particularly, sparse

models allow us to explain the observed substitution behavior using as small a number

of customer preference lists as possible; in addition, such a description also provides

a great deal of tractability in multiple applications (see, for example van Ryzin and

Vulcano [2008]). With these metrics, we show that the sparsity of the choice model

used by the robust method for revenue prediction scales with the dimension of the

data vector. Sparsity is a rich notion and it serves as a criterion to select a choice

model from the family of consistent ones. We devote Chapter 5 to the discussion of

sparse models.

In order to show that the complexity of the choice model scales with the "amount"
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of data, we obtain a characterization of the choice models implicitly used by the robust

approach in terms of their sparsity. More precisely, we first establish that the choice

model implicitly used by the robust approach has sparsity within at most one of

the sparsity of the sparsest model consistent with the data. Next, we show that the

sparsity of the choice model used by the robust approach scales with the dimension of

the data vector y thereby establishing that the complexity of the model used by the

robust approach scales with the "amount" of data available. This provides a potential

explanation for the immunity of the robust approach to over/under fitting issues, as

evidenced in our case study.

To state our result formally, define the set Y as the set of all possible data vectors,

namely the convex hull of the columns of the matrix A. For some y E Y and an

arbitrary offer set, M, let "in (y) be an optimal basic feasible solution to the program

used in our revenue estimation procedure, namely, (3.2). Moreover, let, Asparse(y) be

the sparsest choice model consistent with the data vector y; i.e. ASPaJ*(y) is an optimal

solution to the program

minimize ||AilO
A

subject to AA = y, (3.9)

1TA = 1,

We then have that with probability one, the sparsity (i.e. the number of rank lists

with positive mass) under A""(y) is close to that of AP*(y). In particular, we have:

Theorem 4. For any distribution over Y that is absolutely continuous with respect

to Lebesgue measure on Y, we have with probability 1, that:

0 < ||A m "(y)||o - ||A'Pr"*(y)||o < 1

Theorem 4 (proved in Appendix A.1) establishes that if K were the support size

of the sparsest distribution consistent with y, the sparsity of the choice model used by

our revenue estimation procedure is either K or K + 1 for "almost all" data vectors

y. As such, this establishes that the choice model implicitly employed by the robust
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procedure is essentially also the sparsest model consistent with the observed data. In

addition the proof of the theorem reveals that the sparsity of the robust choice model

consistent with the observed data is either 4 m or m +1 for almost all data vectors y of

dimension m. This yields yet another valuable insight into the choice models implicit

in our revenue predictions - the complexity of these models, as measured by their

sparsity, grows with the amount of observed data. As such, we see that the complexity

of the choice model implicitly employed by the robust procedure scales automatically

with the amount of available data, as one would desire from a non-parametric scheme.

This provides a potential explanation for the robust procedures lack of susceptibility

to the over-fitting observed for the MMNL model in our empirical study.

3.8 Chapter summary and discussion

This chapter considered the application of choice models to making decisions. We

focused on the type of applications that are important to the areas of OM and RM.

The central decision problem in this context is the static assortment optimization

problem in which the goal is to find the optimal assortment: the assortment of prod-

ucts with the maximum revenue subject to a constraint on the size of the assortment.

Solving the decision problem requires two components: (a) a subroutine that uses

historical sales transaction data to predict the expected revenues from offering each

assortment of products, and (b) an optimization algorithm that uses the subroutine

to find the optimal assortment. Clearly, both components are important in their own

right. Specifically, solutions to these two problems lead to a solution to the single-

leg, multiple fare-class yield management problem, which deals with the allocation of

aircraft seat capacity to multiple fare classes when customers exhibit choice behavior.

This chapter focused on designing a nonparametric revenue prediction subroutine.

Most of the existing approaches are parametric in nature. However, parametric ap-

proaches are limited because the complexity of the choice model used for predictions

does not scale with the "amount" of data, making the the model prone to over-fitting

4Here, we assume that matrix A has full row rank.
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and under-fitting issues. Thus, we considered a nonparametric approach, which over-

comes this issue. Specifically, given historical transaction data, we identified a family

of distributions that are consistent with the data. Now, given an assortment of prod-

ucts, we predicted revenues by computing the worst-case revenue of all consistent

choice models. We addressed the computational issues, and demonstrated the ac-

curacy of our revenue predictions through empirical studies. In particular, in our

case-study with transaction data from a major US automaker, our approach suc-

ceeded in obtaining around 20% improvement in the accuracy of revenue predictions

when compared to popular existing approaches. We also provided theoretical guar-

antees for the relative errors. The theoretical guarantees confirm the intuition that

the error depends on the "complexity" of the underlying choice structure and the

"amount" of data that is available.

Although we proposed a nonparametric approach to choice modeling that can

be successfully applied in practice, our work is no panacea for all choice modeling

problems. In particular, one merit of a structural/ parametric modeling approach

to modeling choice is the ability to extrapolate. That is to say, a nonparametric

approach such as ours can start making useful predictions about the interactions of a

particular product with other products only once some data related to that product is

observed. With a structural model, one can hope to say useful things about products

never seen before. The decision of whether a structural modeling approach is relevant

to the problem at hand or whether the approach we offer is a viable alternative thus

merits a careful consideration of the context. Of course, as we have discussed earlier,

resorting to a parametric approach will typically require expert input on underlying

product features that 'matter', and is thus difficult to automate on a large scale.
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Chapter 4

Decision problems: assortment

optimization

This chapter continues our discussion on using choice models to make decisions. The

decision problem of our focus is the static assortment optimization problem in which

the goal is to find the optimal assortment: the assortment of products with the max-

imum revenue subject to a constraint on the size of the assortment. Solving the

decision problem requires two components: (a) a subroutine that uses historical sales

transaction data to predict the expected revenues from offering each assortment of

products, and (b) an optimization algorithm that uses the subroutine to find the

optimal assortment. The previous chapter focused on using a nonparametric choice

modeling approach to make revenue predictions. This chapter focuses on an effi-

cient optimization algorithm to find an approximation of the optimal assortment.

As explained in the previous chapter, the revenue prediction subroutine described in

the previous chapter along with the assortment optimization algorithm described in

this chapter yield a solution to the single-leg, multiple fare-class yield management

problem.

Given the subroutine to predict revenues as described in the previous chapter, we

need an efficient algorithm to search for the optimal assortment. In particular, we
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are interested in solving

argmax R(M),
IMI<C

where R(M) is the expected revenue from offering assortment M. In this chapter, we

assume access to a subroutine that can efficiently generate revenue predictions for each

assortment M, and our goal is to design an optimization algorithm that minimizes

the number of calls to the subroutine. The revenue predictions can themselves be

generated either using a specific parametric choice model or using the nonparametric

approach described in the previous chapter. Assuming there are N products and a

constraint of C on the size of the optimal assortment, exhaustive search would require

o(Nc) calls to the revenue subroutine. Such an exhaustive search is prohibitive in

practice whenever N or C is large. Therefore, our goal is to propose an algorithm that

can produce a "good" approximation to the optimal assortment with only a "few"

calls to the revenue subroutine. Existing approaches focus on exploiting specific

parametric structures of choice models to solve the decision problem efficiently. In

this context, Rusmevichientong et al. [2010a] have proposed an efficient algorithm

to find the optimal assortment in O(NC) operations whenever the underlying model

is the MNL model. Unfortunately, beyond the simple case of the MNL model, the

optimization problem or its variants are provably hard (like the NL and MMNL

models; see Rusmevichientong et al. [2009] and Rusmevichientong et al. [2010b]). In

addition, the algorithms proposed in the literature (both exact and approximate)

heavily exploit the structure of the assumed choice model; consequently, the existing

algorithms - even without any guarantees - cannot be used with other choice models

like the probit model or the mixture of MNL models with a continuous mixture.

Given these issues, our goal is to design a general optimization scheme that is (a)

not tailored to specific parametric structures and (b) requires only a subroutine that

gives revenue estimates for assortments.

Overview of our approach. We propose a general set-function optimization al-

gorithm, which given a general function defined over sets, finds an estimate of the set

(or assortment) where the function is maximized. This set-function optimization algo-
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rithm clearly applies to the static assortment optimization problem, thereby yielding

the optimization scheme with the desired properties. Note that since we are consid-

ering a very general setup, there is not much structure to exploit. Hence, we adopt

the greedy method - the general technique for designing heuristics for optimization

problems. However, a naive greedy implementation algorithm fails even in the simple

case of the MNL model. Specifically, consider the simpler un-capacitated decision

problem. Here, a naive greedy implementation would start with the empty set and

incrementally build the solution set by adding at each stage a product that results

in the maximum increase in revenue; this process would terminate when addition of

a product no longer results in an increase in revenue. It is easy to see that the naive

implementation would succeed in solving the decision problem only if the optimal

assortments exhibit a nesting property: the optimal assortment of size C1 is a subset

of the optimal assortment of size C2 whenever C1 < C2. Unfortunately, the nesting

property does not hold even in the case of the MNL model. In order to overcome this

issue, we allow for greedy "exchanges" in addition to greedy "additions." Particularly,

at every stage, we allow a new product to be either added (which we call an "addi-

tion") to the solution set or replace an existing product (which we call an "exchange")

in the solution set; the operation at each stage is chosen greedily. The termination

condition now becomes an interesting question. As in the naive implementation, we

could terminate the process when addition or exchange no longer results in an in-

crease in revenue. However, since we never run out of products for exchanges, the

algorithm may take an exponential (in the number of products) number of steps to

terminate. We overcome this issue by introducing a control parameter that caps the

number of times a product may be involved in exchanges. Calling that parameter

b, we show that the algorithms calls the revenue subroutine O(N 2bC 2) times for the

capacitated problem. We thus obtain a general algorithm with the desired properties

to solve the static assortment optimization problem.

Guarantees for our algorithm. We derive guarantees to establish the useful-

ness of our optimization procedure. For that, we first consider the case of the MNL

model, where the decision problem is well-understood. Specifically, we assume that
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the underlying choice model is an instance of the MNL family and the revenue sub-

routine yields revenue estimates for assortments under the specific instance. We can

show that the the algorithm we propose, when run with b > C, succeeds in finding

the optimal assortment with O(N 2 C3 ) calls to the revenue subroutine. Therefore,

in the special case when the underlying choice model is the MNL model, our algo-

rithm captures what is already known. It also provides a simpler alternative to the

more complicated algorithm proposed by Rusmevichientong et al. [2010a]. We also

consider the case when noise corrupts the available revenue estimates - a common

practical issue. In this case, we show that our algorithm is robust to errors in the

revenue estimates produced by the subroutine. Particularly, if the underlying choice

model is the MNL model and the revenue estimate produced by the subroutine may

not be exact but within a factor 1 - E of the true value, then we can show that our

algorithm finds an estimate of the optimal assortment with revenue that is within

1 - f(e) of the optimal value; here f(e) goes to zero with e and also depends on C

and the parameters of the underlying model. In summary, our theoretical analysis

shows that our algorithm finds the exact optimal solution in the noiseless case or a

solution with provable guarantees in the noisy case, whenever the underlying choice

model is the MNL model. In this sense, our results subsume what is already known

in the context of the MNL model.

In the context of the more complicated models like the nested logit (NL) and the

mixtures of MNL models, the decision problem is provably hard. As discussed above,

even obtaining a PTAS can be very complicated and requires careful exploitation of

the structure. We however believe that it is possible to obtain "good" approximations

to the optimal assortments in practice.

Organization. Next, we describe in detail the optimization algorithm we propose

and the guarantees we can provide. The rest of the chapter is organized as follows.

The optimization algorithm, which we call GREEDYOPT is described in Section 4.1.

We then describe the precise guarantees we can provide on the algorithm in Sec-

tion 4.2. Finally, we present the proofs of our results in Section 4.3 before concluding

in Section 4.4.
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4.1 Description of GREEDYOPT

We now provide the detailed description of our optimization algorithm GREEDYOPT.

As noted above, most of the algorithms proposed in the literature - both exact and

approximate - are based on heavily exploiting the structure of the assumed choice

model. Unfortunately, since we are considering a very general setup, there is not much

structure to exploit. Hence, we adopt the greedy method - the general technique for

designing heuristics for optimization problems.

A naive greedy implementation however fails even in the simple case of the MNL

model. Specifically, consider the simpler un-capacitated decision problem. Here, a

naive greedy implementation would start with the empty set and incrementally build

the solution set by adding at each stage a product that results in the maximum

increase in revenue; this process would terminate when addition of a product no

longer results in an increase in revenue. It is easy to see that the naive implementation

would succeed in solving the decision problem only if the optimal assortments exhibit

a nesting property: the optimal assortment of size C1 is a subset of the optimal

assortment of size C2 whenever C1 < C2. Unfortunately, the nesting property does

not hold even in the case of the MNL model.

In order to overcome this issues associated with the naive greedy implementation,

we allow for greedy "exchanges" in addition to greedy "additions." Particularly, at

every stage, we allow a new product to be either added (which we call an "addition")

to the solution set or replace an existing product (which we call an "exchange") in

the solution set; the operation at each stage is chosen greedily. The termination

condition now becomes an interesting question. As in the naive implementation, we

could terminate the process when addition or exchange no longer results in an increase

in revenue. However, since we never run of products for exchanges, the algorithm may

take an exponential (in the number of products) number of steps to terminate. We

overcome this issue by introducing a control parameter that caps the number of times

a product may be involved in exchanges. Calling that parameter b, we show that the

algorithms calls the revenue subroutine O(N 2 bC2 ) times for the capacitated problem.
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We thus obtain a general algorithm with the desired properties to solve the static

assortment optimization problem.

The formal description of the algorithm is provided in Figures 4-1 and 4-2. For

convenience, whenever an exchange takes place, we call the product that is removed

as the product that is exchanged-out and the product that is introduced as the prod-

uct that is exchanged-in. Now, the algorithm takes as inputs the capacity C, the

initial assortment size S, and a bound b on the number of exchange-outs. The algo-

rithm incrementally builds the solution assortment. Specifically, it searches over all

assortments of size S. For each such assortment, the algorithm calls the subroutine

GREEDYADD-EXCHANGE (formally described in Figure 4-2) at most C- S times

to construct an assortment of size at most C. Of all such constructed assortments,

the algorithm returns the one with the maximum revenue.

Figure 4-1: GREEDYOPT

Input: Initial size S, capacity constraint C such that 1 < S < C < N, and
revenue function R(-).

Output: Estimate of optimal assortment MOPT of size AOfT C

Algorithm:
Initialization: MOPT & 0
for each M c AN such that IM I = S

Ms <- M

for S+1 < i < C
Mi +-GREEDYADD-EXCHANGE(Mi_ 1,, b, R(-))

end for
if R(MoP?) < R(Mc)

orT +- Mc

end if
end for
Output: OPT

Running-time complexity: It is easy to see that the number of times GREEDY-

OPT calls the revenue function R(-) is equal to (C - S) (N) times the number of

times GREEDYADD-EXCHANGE calls the revenue function. In order to count the
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Figure 4-2: GREEDYADD-EXCHANGE

Input: assortment M, product universe X, revenue function R(-), maximum
number of exhange-outs b

Output: Estimate of optimal assortment of size at most M + 1

Algorithm:
Initialization: M 1 <-- M, K1 <- K, t = 1, exchange-outs(i) = 0 for each i E K
while Mt \Mt 0

//try exchanging products
i*, j* = argmaxiE.tExt\Mt R ((Mt \ {i}) U {j})
Aexchange 4-- (Mt \ {j) U j)

// try adding a product
k* = argmaxkE~i\Mt R(Mt U {k})

add <- Mt U {k*}

if IMtI < IMI + 1 and R(M&add) > R(Mt) and R(.Madd) > R(Mexchange)
// add the product k*
Mt+1 +Madd

else if R(Mexchange) > R(Mt)

// exchange products i* and j*
-A4t+1 +- -Alexchiange

exchange-outs(i*) +- exchange-outs(i*) + 1

if exchange-outs(i*) > b
Kt+1 < rt\{i*}

else
K~t+1 j-Kt

else
break from while

end if
end while
Output: Mt

number of times GREEDYADD-EXCHANGE calls the revenue function R(.), we

first count the number of times the while loop in GREEDYADD-EXCHANGE is

executed. The number of times the while loop runs is bounded above by the maxi-

mum number of iterations before the set Mt \ Mt becomes empty. In each iteration

either an addition or an exchange takes place. Since there is at most one addition that
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can take place and |M \MtI decreases by 1 whenever exchange-outs(i) of a product i

reaches b, it follows that the while loop runs for at most Nb + 1 iterations. In each it-

eration of the while loop, the revenue function is called at most O(CN) times. Thus,

GREEDYADD-EXCHANGE calls the revenue function at most O(CbN 2 ) times.

Since (N) = O(NS), we can now conclude that GREEDYOPT calls the revenue func-

tion O(C 2bNS+ 2). The choice of S will depend on the accuracy of revenue estimates

we have access to. Next, we provide guarantees on GREEDYOPT, which provide

guidance on the choice of S.

4.2 Theoretical guarantees for GREEDYOPT

We now give a precise description of the main results we can establish for the GREEDY-

OPT algorithm. Specifically, suppose that the underlying choice model is an MNL

model with weights wo = 1 for product 0 and wi for product i E N; recall that the

choice probabilities are given by

P(i|M) = Wi

Note that 1 appears in the denominator because of the no-purchase option. In par-

ticular, the probability that an arriving customer leaves without purchasing anything

when assortment M is on offer is given by

P(0|M) = .
1 ZEiEM Wi

Let R(M) denote the expected revenue from assortment M. Under the MNL model,

we have

R(M) = iEM

1+ E wi'
iEM

where pi is the price or the revenue obtained from the sale of product i.

We now have the following theorem when the revenue subroutine provides exact

revenues:
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Theorem 5. Suppose the underlying model is the MNL model with weights w1, w2 , .. ,wN

and the revenue subroutine provides exact revenues. Then, for any S > 0 and

b > C + 1, the GREEDYOPT algorithm finds the optimal solution to CAPACITATED

OPT problem.

Therefore, taking S = 0 and b = C + 1, GREEDYOPT finds the optimal as-

sortment of size at most C by calling the revenue function O(N 2 C3 ). Thus, our

algorithm provides a simpler alternative to the more complicated algorithm proposed

by Rusmevichientong et al. [2010a].

We next show that the GREEDYOPT algorithm is robust to errors in the available

revenue estimates. Specifically, we consider the more realistic setting where one has

access to only approximate estimates of revenues i.e., we assume access to a function

R(.) such that for any assortment M we have

(1 - e(M))R(M) R(M) R(M)

for some parameter 0 < e(M) < 1. Naturally, the parameter e(M) determines the

quality of revenue estimates we have available. Assuming that we have access to only

approximate revenues, we find the optimal assortment by running GREEDYOPT with

approximate revenues. In order to describe the result, we need some notation. For

any assortment M, let w(M) denote 1+ EeM wi. Further, let

def ,~def

Emax = max e(M) and Wm = max w(M).
M: IMI<C M: IMI C

Finally, we defer to the next section the precise definitions of two quantities C(6c)

and 6c that we need to describe the theorem; it suffices to say that as Emax -+ 0, we

have oc -+ 0 and C(6c) -* C.

With these definitions, we can now state our result.

Theorem 6. Let MCOP denote the optimal assortment of size at most C and Mc'

denote the estimate of the optimal assortment produced by GREEDYOPT when run
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with inputs S > 0 and b > C(2Jc) + 1. Then, we must have

R(MPT) - R(M3OPT) < f(*,rax)I

R(M8OPT)

where w denotes the vector of weights (w 1, w2 , ... ,wN) and

def W_

f(w,7emax) = W(M8PT) "(max)

with 7(emax) c 4Cemax/(1 - Emax).

It is easy to see that the algorithm calls the revenue function O(N 2C 2C(26c))

times. Note that as Emax -+ 0, ?7(Emax) and hence f(w, emax) go to zero. In addition,

it follows from our definitions that as Emax -+ 0, C(26c) -+ C. Consequently, taking

the error in revenues Emax = 0 yields in Theorem 6 yields the result of Theorem 5 as

the special result. Therefore, we only prove Theorem 6 in the next section.

4.3 Proofs of the main results

In this section we prove Theorem 6; specifically, we establish that the revenues of

the optimal assortment and the estimate of the optimal assortment produced by

GREEDYOPT are "close". In order to establish this result, for the rest of the section,

fix a capacity C. Let MOPT and M 0 ' respectively denote the optimal assortment

and the estimate of the optimal assortment produced by GREEDYOPT. Then, our

goal is to show that R(MOPT) and R(MOPT) are "close" to each other. We assume

that the underlying choice model is the MNL model with parameters wi, w 2 , - -, WN-

Recall that for any assortment M,

E pjwj
R(M) = iEM

1+ E wj'
iEM

where pi is the price of product i. The term in the denominator makes comparison of

the revenues of two different assortment difficult. Therefore, instead of dealing with
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the revenues of the assortment directly, borrowing ideas from Rusmevichientong et al.

[2010a], we consider the following transformation of the revenues of assortments: for

any assortment M and number u E R,

E piWi ( (pi -u)wi -u
R(M) -u = iEM _ _ 'EM /

1+ E wi 1+ wi
iEM iEM

HM(u) -u

w(M)

where HM: R -+ R is a function defined as HM(u) = EiEM(Pi - u)wi and w(M) =l

1+ EiEM wi. We can now write

Hm(u) = u + w(M)(R(M) - u). (4.1)

It is clear that HM (-) is directly related to the revenue R(M). Moreover, as will

become apparent soon, it is easier to compare the transformations HM, (-) and HM2 ()

of two assortments M 1 and M 2 than their revenues R(M 1 ) and R(M 2). Specifically,

we can establish the properties stated in the following proposition.

Proposition 1. For any two assortments M 1 and M 2, let H1 (-) and H2(.) respec-

tively denote the functions HM, (-) and HM2 (-). Further, let u1 and U2 denote the

revenues R(Mi) and R(M 2) respectively. We then have

1. H1(u 2 ) 2 H2 (u2) <#= R(M 1 ) > R(M 2).

2. H1 (U2) (1 + 6(M1))H 2(u2) ==> R(M 1 ) R(M 2),

where 6(M 1 ) V E(M1)w(M1)/(1 - e(M 1 )).

Proof. We prove each of the properties in turn. First note that for any assortment M

with revenue R(M) = u, it immediately follows from our definitions that HM(u) =

U + w(M)(R(M) - u) = u. The first property now follows from a straightforward
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expansion of the terms involved:

H1(u 2) > H2(U2) < U2 + w(M 1)(ui - U2) > U2

V , 1 >_ U2

<=-> R(M 1) > R(M 2 ),

where the second equivalence follows from the fact that w(Mi) > 0. The second

property can also be obtained through a similar straightforward expansion of the

terms. In particular,

H1(u 2) > (1 + e(M1))H2 (U2) == U2 + w(M1)(ui - U2) > (1 ±6(M1))u 2

-,> w(M41))U

= 1> 1+ U2

<-> (1 - e(M1))ui > U 2 , (4.2)

where the second equivalence follows from the definition of 3(M 1 ). Moreover, it

follows from our definitions that R(M 1 ) > (1 - e(M 1 ))ui and u2 > R(M 2). We now

conclude from (4.2) that

R(M 1 ) > (1 - e(M 1))ui ;> u2> R(M 2).

The result of the proposition now follows. 0

The above proposition establishes that if the transformation HM(-) of one assort-

ment is "sufficiently" larger than the other, then it follows that the revenues of one

assortment should be larger than the revenues of the other. Therefore, instead of

keeping track of the revenues of the assortments in our algorithm, we keep track of

their respective transformations HM(.).

Next, we establish a loop-invariance property that arises due to greedy additions

and exchanges in our algorithms. We make use of this property to prove our theorems.
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In order to state the proposition, we introduce the following notation:

def E(M)oc = max 6(M) = max w(M) .M: IMI M: IMI 1-e(M)

We then have

Proposition 2. Consider an iteration t of the while loop of the GREEDYADD-

EXCHANGE algorithm. Let Mt and Mt+1 denote the estimates of the optimal

assortments at the beginning and the end of iteration t. Let M denote the universe

of products at the beginning of iteration t. Then,

1. if a greedy exchange takes place i.e., Mt+1 = (Mt \ {ji*}) U {j*}, then for u =

R(Mt+1), we must have

hi*(u) < hi (u) + Jcu, for all i E Mt

hj*(u) > hj(u) - &cu, for all j E Art \ Mt;

2. if an addition takes place i.e., Mt+1 = Mt U {j*}, then for u = R(Mt+1) we

must have

h3 (u) > h3(u) - Jcu, for all j E At \ Mt.

Proof. We prove this proposition by contradiction. First consider the case when

exchange happens i.e., Mt+1 = (Mt \ {ji*}) U {j*}. Note that for any assortment

M = (Mt \ {i}) U {j} with i E Mt and j E At \ Mt, letting u denote R(Mt+1 ), we

can write

HM(u) - HM,±1(u) = hg (u) - hr (u) + hi*(u) - hi(u). (4.3)

Now, if the hypothesis of the proposition pertaining to exchange is false, then at least

one of the following should be true: either (1) there exists a product i E Mt and

i $ i* such that hi.(u) > hi(u) + ocu, or (2) there exists a product j E Art \ Mt and

j # j* such that hp (u) < h (u) + Cu. In the first case when hi. (u) > hi (u) + 6cu, by

123



taking j = j*, we can write from (4.3) that HM(u) - Hm,,, (u) > ocu. Similarly, in

the second case when h. (u) < h(u) + cu, by taking i = i*, we can write from (4.3)

that HM (u) - Hm,+1 (u) > Scu. Therefore, in both the cases, we have exhibited

an assortment M distinct from Mt+1 that can be obtained from Mt through an

exchange and has the property that HM (u) - HM,+, (u) > ocu. We can now write

HM (u) > HM,,, (u) + Jcu (4.4a)

==> H (u) > HMt+1 (u) + 6(M)u since oc ;> 6(M) by definition (4.4b)

==> HM(u)> (1 + 6(M))Ht+ (u) since Hmt±l(u) = u by definition (4.4c)

= R(M) > R(Mt+1 ) by Proposition 1. (4.4d)

This clearly contradicts the fact that Mt+1 is chosen greedily.

The case when addition happens can be proved in the exact similar way. Partic-

ularly, suppose there exists a product j E Ar \ Mt and j # j* such that hj.(u) <

hj(u) - Jcu, where u = R(Mt+1 ) with Mt+1 = Mt U {j}. Letting M denote the set

Mt U {j}, we can then write

HM (u) - HMt 1 (u) = hj (u) - hj.(u) > ocu.

This implies - following the sequence of arguments in (4.4) - that R(M) > R(Mt),

contradicting the fact that Mt+1 is chosen greedily.

The result of the proposition now follows.

The above proposition establishes a key loop-invariance property that results from

greedy additions and exchanges. Specifically, let u denote the revenue of the estimate

of the optimal assortment obtained at the end of an iteration of the while loop in

GREEDYADD-EXCHANGE. Then, the proposition establishes that whenever a

product j* is introduced (either through addition or an exchange-in) greedily, it must

be that hy.(u) is "close" to the maximum hj(u) of all products j that have been

considered for an addition or exchange-in. Similarly, the product i* that is greedily

exchanged-out must be such that hi. (u) is "close" to the minimum hi(u) of all products
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i that have been considered for an exchange-out.

Using the propositions above, we can establish a key property of the subroutine

GREEDYADD-EXCHANGE. For that, we need the following notation. For any u,

define

Bs(u) =f arg max HM (u) = arg max E hi(u).
M: IMI<s M: IMIss iEM

It is easy to see from the above definition that Bs(u) consists of the top at most

C products according to hi(u) such that hi(u) > 0. Since hi(-) is monotonically

decreasing, it is easy to see that

IBs(ui)I |Bs(u 2)I, whenever ui U u2 . (4.5)

Under appropriate technical assumptions, Rusmevichientong et al. [2010a] showed

that for any 1 < S < N, the optimal assortment of size at most S under the MNL
def

model is one of the assortments in the collection Bs = {Bs(u): u E R}. In fact the

authors show that if us denotes the optimal revenue, then Bs(us) is the optimal

assortment. An immediate consequence of this result and (4.5) is that for any u < us

S IBs(u)I | IMs T . (4.6)

It has been established by Rusmevichientong et al. [2010a] that there can be at most

O(NC) distinct assortments in the collection Bs allowing one to find the optimal

assortment by restricting one's search to O(NC) assortments. The following lemma

shows that the assortment found by the subroutine GREEDYADD-EXCHANGE is

"close" to one of the assortments in Bs. Before we describe the lemma, we need the

following notation. For any 6 > 0 and u E R, let

def
is(u) = min hi(u).

iEBs(u)

Moreover, let

Bs(6, u) d Bs(u) U {j E g \ Bs(u): his(u)(u) - hj(u) < Jul ,
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Also, let

C(3) = maxI5s(6, u)|
uER+

We then have

Lemma 2. Suppose GREEDYADD-EXCHANGE is run with some input assort-

ment M and b > C(6C)+2, where C > S+1. Further, suppose that |Ms0"T | = S+1.

Then, there exists an iteration t* of the while loop such that if M* denotes the as-

sortment Mt.+1 and u* denotes R(M*), then

HB(u*)(u*) - H.(u*) < 2Cu-CU*,

where B(u*) denotes the assortment Bs+1(u*) and 0* is a constant denoting 1 +

|B(u*) \A* M*|.

We defer the proof of Lemma 2 to the end of the section. We now present the

proof of Theorem 6.

4.3.1 Proof of Theorem 6

Let M8PT denote the true optimal assortment, and MC[PT denote the estimate of

the optimal assortment produced by GREEDYOPT. Furthermore, let C* < C denote

the size of McPT. It follows from Lemma 2 that in the C*th invocation of the

subroutine GREEDYADD-EXCHANGE, there exists an assortment M* such that

5(ICO P T) > R(M*) and M* is such that

HB(u*)(u*) - Hm*(u*) < 2CU*cu*,

where 0* denotes IB(u*) \ M* I + 1 and B(u*) denotes the set Bc* (u*). It follows by

the definition of B(u*) that HB(u*)(u*) > HMoPT(u*). Thus, we can write

HmoPT (u*) - HM*(u*) 2 0 u*6Cu* < 2C60u*- (4.7)

126



Let uc denote R(M3PT). Then, it follows by definition that HMoPT (UC)= uc. Thus,

HMoPT (UC) - HMOPT(u*) = Z W(u* - UC) = (u* - UC)(W(MC') - 1)-
jEM3PT

Since HMoPT (uc) = uc, we can write

HMoPT (u*) = UC + (UC - u*)(w(MCOPT) - 1).

Since HM-(u*) = u*, it now follows from (4.7) and (4.8) that

(uc - u*)(w(MC7T) - 1) + uc - u* < 2Cocu*

(Uc - u*)w(McOPT) < 2C6cu*

-- > UC < (1 + E)U*, (

where E cl 2Coc/w(MCPT). Now since N(!JOPT) > R(M*), it follows that

(1 - e(M*))u* < 5(M*) < R(MO0T) < ^c,

where 'tc denotes R(M8PT). It now follows from (4.9) that

UC < (1+ f)U* < ti-1 - e(M*)

Now since

6 c = max E(M)W(M),M: IMis5c 1 - E(MA)

by letting Emax = maxM: IMIc E(M) and Wcm" = maxM: IMisc w(M), we have

6<1 - emaxw

Thus,

2C 2C Emax Wm def

w(Mc P) w(MCO ) 1 - Emax c - (W,&max)/2.
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With these definitions, it is easy to see that e(M*) Emax < f(w, 6max)/2. It now

follows that

c -c ~- -e(M*) <f+ e(M*)
UC - -< < e(M*) + 1 f(w, 7max).

This establishes the result of the theorem.

4.3.2 Proof of Lemma 2

Suppose the while loop in the subroutine terminates at the end of iteration T. Then,

it follows from the description of the subroutine that at least one of the following

conditions holds at the end of iteration T:

1. The set of products rT+1 \ MT+1 available for additions or exchanges is empty.

2. No further additions or exchanges can increase the revenues.

Our goal is to prove the existence of an iteration t* < T such that

HB(u-).(u*) - H.M.(u*) 2Cu-CU*,

where M* denotes the assortment Mt*+1 and u* denotes R(M*). We prove this by

considering two cases corresponding to each of the two ways in which the subroutine

terminates. Note that in order to simplify the notation, we have dropped the subscript

from the notation of Bs+1 (.).

Case 1: Subroutine terminates with NT+1= Mr+1. We first consider the case

when the subroutine terminates when the set of products NrT+1 \ MT+1 becomes

empty. In this case, we prove the existence of an iteration t* < T that satisfies the

condition stated in the hypothesis of the lemma. In fact, we prove something stronger;

we shall show that the iteration * < T*, where T* < T is the first iteration such that

KT* c N (recall that K1 = K). We prove this result by contradiction. In particular,

suppose that after every iteration t < T* of the while loop, we have

HB(u)(u) - HM,+1 (u) > 20uccu, (4.10)
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where u denotes the revenue R(Mt+1) and C denotes the constant 1+ I B(u) \Mt+1|.

Note that a product i would be removed from the universe Art at the end of some

iteration t only if it has been exchanged-out b times. Since b > C(6c), it is easy to

see that we arrive at a contradiction if we show that as long (4.10) is satisfied at the

end of each iteration, each product i can be exchanged-out at most C(6c) +2 times.

In order to bound the number of times a product can be exchanged-out, we estab-

lish a special property that should be satisfied whenever an exchange happens. Specif-

ically, suppose an exchange happens during iteration t i.e., Mt+1 = (Mt \ {i*})U{j*}.

In addition, let u denote the revenue R(Mt+1 ), and let product k* E Ar \ Mt denote

the product such that hk* (u) > hk(u) for all products k E Nr \ Mt. Then, we claim

that

hj (u) > hk*(u) - oCU (4.11a)

hi.*(u) < hk*(u) - oCU. (4.11b)

We prove this claim as follows. Since k* E Nr \ Mt, (4.11a) follows directly from

Proposition 2. We now argue that hi (u) hk* (u) - SCu. For that, we first note that

hi-(u) - hj*(u) < 26cu. (4.12)

To see why, note that since an exchange has happened, it must be that R(Mt)

R(Mt+1 ). This implies by Proposition 1 that HMt(u) < (1+6(M))Hmt±1 (u). Since

6(M 1 ) 5 c and HMt±1 (u) = u by definition, we can write

HM,(u) < (1 +6(Mt))Ht±1 (u) -> Hut(u) - HM+ 1 (u) < Scu

> hi* (u) - hr (u) 5 cu < 2Scu.
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Now, consider

HB(u)(u) - HM,,+(u) = HB(u)(u) - HM,(u) + HM,(u) - HMt+1 (u)

= Z h (u) - E hi(u) + (hi-(u) - hy.(u)).
jEB(u)\Mt iEMt\B(u)

We now collect terms in the above expression as follows. Let M 1 denote the set

Mt\B(u). Further, partition the set B(u)\Mt into Mscr2UM 3 such that M 2flM 3 =

0 and |M 2 | = M 1|; note that such a partitioning is possible because IB(u)I S + 1
(which follows from (4.6) and the hypothesis that IMS' = S+1 ) and |Mt| S+1.

Also note that M 3 # 0 if and only if |Mt| < S + 1. With this partitioning, we can

now write

HB(u)(u) - HMt+l(u) = E (h3 (u) - hi(u)) + E hj (u) + (hi-(u) - hj.(u))
iEMi,jEM2 jEM3

We now claim that at least on of the following must be true: either (1) there exists a

pair of products i E M 1 and j E M 2 such that hj (u)-hi(u) > 2 6cu, or (2) if M 3 3 0,

then there exists a product k E M 3 such that h3 (u) > 26cu. Otherwise, it is easy to

see from (4.12) that HB(u)(u) - HMt+1 (u) 2Cu6cu, where Cu = IB(u) \.Mt+1 |+ 1,

contradicting (4.10). We now consider each of the cases in turn.

First suppose that h3(u) - hi(u) > 2 6cu for some i E M 1 and j E M 2. It follows

from Proposition 2 that hi. (u) hi(u) + ocu. Thus, we can write

hi.(u) < hi (u) + Jcu < hj (u) - 26cu + 6 Cu < hk.(u) - 6CU,

where the last inequality follows from the definition of k* and the fact that j E M 2 C

.I \ Mt. Thus, for this case, we have established (4.11b).

Now suppose that M 3 $ 0 and hk (U) > 26cu for some k E M 3. As noted above,

in this case, we should have IMt+1I < S + 1. This means that an exchange has

happened instead of addition, which in turn implies that R(M) R(Mt+1 ), where
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M denotes the set Mt U {k}. Thus, by Proposition 1, we should have

HM(u) < (1 + 6(M))HMu+I(u)

=> H (u) - Hmt+,(u) < 3(M)HMu+ 1(u)

hk (u) + hi.(u) - h. (u) 6cu

hi- (u) < h (u) - hk(u) + Scu

hi. (u) hp*(u) - 2 3cu + Scu

hi. (u) hk.(u) - SCU

as HM+ I(u) = u, 6(M) < 6c

since hk(u) > 26cu

since hj (u) hk.(u).

We have thus established that hi. (u) hk* (u) - 6cu for both the cases.

We now use (4.11) to bound the number of exchange-outs that can happen for each

product. Specifically, as mentioned above, we arrive at a contradiction by showing

that each product can be exchanged-out at most C(oc) + 2 times. For that, for any

iteration t < T*, let kt denote the product such that kt E Af \ Mt and hkt (Ut+1)

hj(ut+1) for all products j E N\Mscrt and Ut+1 = R(Mt+1 ). Now define the function

g(u) {hk,(u) - cu for ut < u < ut+,t < T*,

hk,(ul) - SCu 1 for u = u1.

Note that for the above definition to be meaningful, for any t < T*, we need to

show that ut ut+1. This should be true because by (4.11), it follows that for

U = R(Mt+1 ), we have hi. (u) hj. (u); this in turn implies that HMt (u) 5 Huts1 (u),

which implies by Proposition 1 that ut = R(Mt) R(Mt+1 ) = ut+1 . It is easy to see

that the function g(-) is piecewise linear. However, note that it may not be continuous.

Now fix a product i, and for this product we argue that it can be exchanged at

most C(6c) times. For that let ti be an iteration in which i is exchanged-out and t2

be the first iteration after t1 when i is exchanged-in. Let u1 , u 2 denote R(Mt,+1 ) and

R(Mt2 +1 ) respectively. Furthermore, let ki and k2 respectively denote the products
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kt, and kt2 . It now follows from (4.11) that

hi(ui) < hki (ui) - SCUi = g(Ui)

hi(u2) hk2 (u2) - 6CU2 = g(u 2 ).

This implies that the line hi(.) is below g(.) at ui and above g(-) at u 2 . We now

argue that hi(.) intersects g(-) at some ui u < u2 i.e., hi(u) = g(u). If g(.)

were continuous, this assertion would immediately follow from the intermediate value

theorem. However, the way we have defined g(.), it may be discontinuous at some

ut with ti < t t 2 . Now the only way h(-) and g(.) do not intersect is if for some

tl < t t 2 ,

g(u~) <hi(ut) < g(u') and hi(u) > g(u) for ut < u u2 -

We argue that this cannot happen. For that consider iteration t. By definition i ( Mt.

Since N = AN, it follows by our definition that hk,(ut+1) hi(ut+1 ), which in turn

implies that g(ut+1) > hi(ut+1) resulting in a contradiction. Thus, h(-) intersects g(-)

from below at some u such that ui < u < U2-

Hence, we can correspond each exchange-out with an intersection point corre-

sponding to hi(-) intersecting g(-) from below. This implies that the total number of

exchage-outs can be bounded above by one plus the number of times hi(.) intersects

g(.) from below beyond ui, where ui is the revenue of the assortment Mt immediately

after i is added to it (either through an exchange-in or addition). Note that hi(.) inter-

sects g(-) at u > ui if and only if wj < Wk(u) and hk(u)(ui) > hi(ui), where k(u) is the

product such that k(u) = kt, where ut < u < ut+1. Thus, the number of intersection

points can be bounded above by the number of products k such that hk(ui) > hi(uj).

We now argue that i E Bs+1(6c, uj). If this is true, then it implies that there can be

at most IBs+1(6c, uj) I C(<c) intersection points, which immediately implies that

there can be at most 1 + C(6c) exchange-outs.
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The only thing we are left with is to argue that i E Bs+1 (6c, ui). To see this, let

M be the assortment obtained after i is added or exhanged-in for the first time. Then,

according to our definition, we have that ui = R(M). Further, since HB(U)(ui) -

H,(uj) > 0, there exists a product k E B(ui) \ .M. It now follows by Proposition 2

that

hi(ui) > hk(ui) - 6 CUi > his+,(u,) - &cui,

where is+1(ui) is as defined above i.e., is+1(ui) d arg mineB(at) hj(uj). It now follows

by the definition of Bs+1(Sc, uj) that i E Bs+1 (6c, ui).

Case 2: Subroutine terminates because no further additions or exchanges

increase revenue. We now consider the case when subroutine terminates at iteration

T because no further additions or exchanges increase the revenue. Now there are two

possibilities: either Kr = K for all t < T or not. In the latter case let T* be the first

iteration t when Me C K. It then follows from our arguments for the above case that

there exists an iteration t* < T* that satisfies the properties of the lemma. Thus, we

consider the case when Nf = K for all t < T*. Assuming this, we prove the result by

contradiction. In particular, suppose at the end of iteration T we have

HB(U) (u) - HM,, (u) 20u6cu, (4.13)

Now consider

HB(U)(u) - HMT+(u) = h(u) + E (h3(u) - hi(u)) ,
kEM 3  iEMi,jEM2

where as above, M 1 denotes the assortment MT+1 \ B(u) and the set B(u) \ MT+1

is partitioned into M 2 U M 3 such that M 2 f M 3 = 0 and IM 2 1 = |Mil; such

a partitioning is possible since IB(u)| = S + 1 (which follows from (4.6) and the

hypothesis that |Ms0+7 = S + 11) and |MT+1| < S + 1. It now follows that one

of the following conditions should hold: either (1) there exists a pair of products

i E M 1 and j E M 2 such that hj(u) - hi(u) > 26cu, or (2) if M 3 4 0, then there

exists a product k E M 3 such that h3 (U) > 2 5cu. Otherwise, it is easy to see that
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HB(u) (u) - HmTl (u) < 2Cu5cu, where C, = B(u) \MT+1 +1, contradicting (4.13).

We consider each of the cases in turn.

First, suppose that there exist a pair of products i E M 1 and j E M 2 such that

hy(u) - hi(u) > 26cu. Let M denote the assortment (MT+1 \ {i}) U {j}. We can

then write

H, (u) - HMT±I (u) = hj(u) - hi(u) > 26cu.

Since HMT () = u and oc > 5(M), it follows that by Proposition 1 that NM >

RMT+l. This contradicts the assumption that the subroutine terminates with MT+1

because no further additions or exchanges result in an increase of revenue.

Next, suppose M 3 5 0 and hk(u) > 2 5cu for some k E M 3. Now let M =

M+1 U {k}; note that since M 3 5 0, it must be that IMT+1I = S. We can now

write

H, (u) - HmT,+(u) = hk(u) > 26cu.

Since HM,,, (u) = u and oc ;> 5(M), it follows that by Proposition 1 that RM >

RMT+1. This contradicts the assumption that the subroutine terminates with MT+1

because no further additions or exchanges result in an increase of revenue. This

finishes the proof of this case.

The proof of the lemma now follows.

4.4 Chapter summary and discussion

This chapter continued the discussion of using choice models to make decisions. As-

suming that we have access to a revenue prediction subroutine, we designed an al-

gorithm to find an approximation of the optimal assortment with as few calls to the

revenue subroutine as possible.

We designed a general algorithm for the optimization of set-functions to solve the

static assortment optimization algorithms. Most existing algorithms (both exact and

approximate) heavily exploit the structure of the assumed choice model; consequently,

the existing algorithms - even without any guarantees - cannot be used with other
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choice models like the probit model or the mixture of MNL models with a continuous

mixture. Given these issues, we designed an algorithm that is (a) not tailored to

specific parametric structures and (b) requires only a subroutine that gives revenue

estimates for assortments. Our algorithm is a sophisticated form of greedy algorithm,

where the solution is constructed from a smaller assortment through greedy additions

and exchanges. The algorithm is proved to find the optimal assortment exactly when

the underlying choice model is the MNL model. We also showed that the algorithm

is robust to errors in the revenue estimates provided by the revenue subroutine, as

long as the underlying choice model is the MNL model.

Note that the focus of the current and previous chapters has been decision making

using choice models. The rationale here is that such decision problems appear in

several important practical applications, and the performance of the decisions can

have a huge impact on the revenues. In this context, we have attempted to solve

the decision problem directly, avoiding the unnecessary step of actually learning the

underlying choice model. Interestingly, a question we haven't explicitly addressed here

identification of a particular choice model itself. Given that the data allows us to only

identify a family of consistent distributions, we need a criterion to pick one of the

distributions. Ideally, we want a criterion that is independent of the decision context.

A criterion we briefly broached in the context of characterizing the choice model

used for revenue predictions is that of sparsity. Sparsity is an appealing notion and

has recently found a lot of success in the area of high-dimensional statistics Donoho

[2006]. The next chapter deals with the sparsity as a criterion to pick choice models

and the rich theory associated with it.
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Chapter 5

Learning choice models

In the problems discussed in the previous chapter so far, our ultimate goal was to use

a choice model to make a decision. As a result, we avoided the unnecessary indirection

of actually learning the underlying choice model and developed methods to directly

solve the decision problem. However, as elaborated below, explicit learning of choice

models is required in many important applications.

For instance, consider the problem of 'customer segmentation.' It is central to

several important applications and involves segmenting the customer population into

groups of individuals that have similar preferences. A statement to the extent "your

customers are mainly of 3 types, and their preferences are described by these prefer-

ence lists" is of high value in these contexts. One way to usefully segment customers

is to learn a choice model over K preference lists and then segment the customer

population into K classes with the preferences of each class described by one of the

K learned preference lists. Such segmentation is especially crucial to applications

that need effective targeting of resources. The classical application that heavily uses

customer segmentation is marketing, where it has long since been known that the

marketing strategy needs to be effectively targeted to the specific customer type.

Interestingly, a non-traditional application area that also relies on customer segmen-

tation is the area of the recently popular recommendation/discovery systems, where

the recommendations (be it movies, books, or news stories) need to be tailored in a

useful way to the specific customer types.
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In addition to applications related to OM/RM, another broad class of problems

where learning distributions over preference lists becomes important is 'rank aggre-

gation'. As mentioned above, this is an important problem that arises in various

contexts like web-search, polling, betting, and elections, in which the goal essentially

is to come up with a final ranking given some partial preference information. The

rank-aggregation problem has been studied extensively in the area of social choice

theory, where extensive work has been done to determine the "right" final ranking

given access to the entire distribution over rankings. Of course, in most practical

applications, such a distribution is not readily available. What is readily available

though is partial information about the distribution: for instance, in the context of

web-search, clicks give information about which document is preferred from a set of

documents that were shown; similarly, in the context of polling, one may have access

to pairwise comparison information (see was and wfn). Given this, a reasonable ap-

proach to aggregating rankings is to learn a distribution over rankings that captures

the underlying choice structure from marginal preference information and use any of

the several methods developed in the social choice literature for aggregation.

Finally, there is a host of other applications in which distributions over rankings

are compressed in order to store efficiently' by retaining only partial information

(typically in the form of a subset of Fourier coefficients). For instance, an important

application, which has received a lot of attention recently, is the Identity Manage-

ment Problem or the Multi-object tracking problem. This problem is motivated by

applications in air traffic control and sensor networks, where the goal is to track the

identities of N objects from noisy measurements of identities and positions. Specifi-

cally, consider an area with sensors deployed that can identify the unique signature

and the position associated with each object when it passes close to it. Let the ob-

jects be labeled 1, 2,... , N and let x(t) = (x1(t), x 2 (t), . .. , XN(t)) denote the vector of

positions of the N objects at time t. Whenever a sensor registers the signature of an

object the vector x(t) is updated. A problem, however, arises when two objects, say

'Such compression is indeed a necessity given that distributions over rankings have a factorial
(in N) blow-up.
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i, j, pass close to a sensor simultaneously. Because the sensors are inexpensive, they

tend to confuse the signatures of the two objects; thus, after the two objects pass,

the sensor has information about the positions of the objects, but it only has beliefs

about which position belongs to which object. This problem is typically modeled

as a probability distribution over permutations, where, given a position vector x(t),

a permutation o of 1,2,..., N describes the assignment of the positions to objects.

Because the measurements are noisy, to each position vector x(t), we assign, not a

single permutation, but a distribution over permutations. Since we now have a distri-

bution over permutations, the factorial blow-up makes it challenging to maintain it.

Thus, it is often approximated using a partial set of Fourier coefficients. Recent work

by Huang et al. [2008], Kondor et al. [2007] deals with updating the distribution with

new observations in the Fourier domain. In order to obtain the final beliefs one has to

recover the distribution over permutations from a partial set of Fourier coefficients.

In summary, there is a wide-range of important applications that need learning

of the underlying choice model given marginal information. Now, as explained in

the previous chapters, given marginal information, we can identify a family of choice

models that are consistent with the given information; the family is almost certainly

not a singleton because the data is insufficient to specify a unique distribution. There-

fore, the problem of learning the choice model reduces to the problem of finding an

appropriate criterion to select one of the models consistent with the available data.

Now, a popular statistical criterion for model selection that has been extensively used

in many contexts is the criterion of parsimony, which encourages the selection of the

'most parsimonious' model that is consistent with the data.

The criterion of parsimony is justified in many ways. Philosophically speaking,

this criterion is consistent with the Occam's razor philosophy, which roughly stated,

suggests that under the absence of additional information, one should tend toward

'simpler' theories. Statistically speaking, parsimony is born out of the need not to

over-fit. Finally, operationally speaking, parsimony is desired because parsimonious

models are easier to handle in practice - both computationally and otherwise. Of

course, parsimony is nuanced idea and it is not straightforward to operationalize the
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criterion. In parametric models, parsimony has often been translated into parsimony

of parameters; for instance, an MNL model with N parameters can be considered

'more parsimonious' than an exponential family with N2 parameters. In the nonpara-

metric case, however, the sparsity (or the support size) of the distribution becomes a

natural candidate for a measure of parsimony of the model. In addition, as described

above in the context of choice models used for revenue predictions, sparsity is also

naturally born out of the fact that only marginal information available; more pre-

cisely, a distribution of sparsity no more than 2 (N - 1)2+1 is needed to describe the

first-order information, which captures the probability that i is ranked at position r

for all i and r. Finally, sparse models have found immense success (in both theory and

practice) in the area of compressive sensing, which has gained recent popularity in

the areas of signal processing, coding theory, and streaming algorithms (see Donoho

[2006], Candes et al. [2006b,a]).

Given the considerations above, we propose to recover the underlying choice model

by identifying the sparsest distribution that is consistent with the available data.

From an operational perspective, two main questions arise at this point: (1) how

does one find the sparsest consistent distribution in an efficient manner? and (2) how

"good" are sparse models in practice? In addition, from a theoretical standpoint,

the question about the discriminative power of the sparsest-fit criterion arises. More

precisely, it is useful to obtain a description of the the family of models that can be

identified as the unique sparsest models consistent with the marginal information. In-

tuitively, we expect a characterization of the form: if the underlying model is "sparse

enough", then it can be identified by as the unique sparsest solution consistent with

the marginal information; the sparsity bound of course should depend on the dimen-

sion of the data, which can be treated as a measure of the "amount" of information

that is available. Next, we describe the contributions we make to answering these

questions.

The rest of the chapter is organized as follows. Section 5.1 gives a brief overview

2This statement follows from Caratheodory's theorem that states that every point in a convex
polytope of dimension d can be decomposed into a convex combination of at most d + 1 extreme
points, and the fact that doubly stochastic matrices have a dimension of (N - 1)2.
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of the related work on learning sparse models from marginal information. We give

a formal description of the problems in Section 5.2. Sections 5.3, 5.4, and 5.5 are

devoted to the noiseless setting: Section 5.3 gives precise descriptions of the problems

we consider; Section 5.4 describes our main results; and finally, Section 5.5 describes

the algorithm we propose for efficient determination of the sparsest model from the

given marginal information. Similarly, Sections 5.6, 5.7, 5.8, and 5.9 are devoted to

the noisy setting: Section 5.6 gives precise descriptions of the problems we consider;

Section 5.7 describes our main results; Section 5.8 describes the algorithm we propose

for efficient recovery of the sparsest model in the noisy setting; and finally, Section 5.9

presents the proofs for our main results for the noisy setting. We describe the results

from our empirical studies in Section 5.11 before concluding with the chapter summary

and discussion in Section 5.12.

5.1 Relevant work

As described in detail in Chapter 2, there is large body of work done on learning

structurally simple parametric choice models from partial information. Our goal

however is to fit sparse (as measured by the support size) models to data. Fitting

sparse models to observed data has been a classical approach used in statistics for

model recovery and is inspired by the philosophy of Occam's Razor. Motivated by this,

sufficient conditions based on sparsity for learnability have been of great interest over

years in the context of communication, signal processing and statistics, cf. Shannon

[1949], Nyquist [2002]. In recent years, this approach has become of particular interest

due to exciting developments and wide ranging applications including:

. In signal processing (see Candes and Tao [2005], Candes et al. [2006b], Candes

and Romberg [2006], Candes et al. [2006a], Donoho [2006]) where the goal is

to estimate a 'signal' by means of minimal number of measurements. This is

referred to as compressive sensing.

. In coding theory through the design of low-density parity check codes Gallager
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[1962], Sipser and Spielman [1996], Luby et al. [2001] or in the design Reed

Solomon codes Reed and Solomon [1960] where the aim is to design a coding

scheme with maximal communication rate.

. In the context of streaming algorithms through the design of 'sketches' (see

Tropp [2006, 2004], Berinde et al. [2008], Cormode and Muthukrishnan [2006],

Gilbert et al. [2007]) for the purpose of maintaining a minimal 'memory state'

for the streaming algorithm's operation.

In all of the above work, the basic question (see Muthukrishnan [2005]) pertains to

the design of an m x p "measurement" matrix A so that x can be recovered efficiently

from measurements y = Ax (or its noisy version) using the "fewest" possible number

measurements m. The setup of interest is when x is sparse and when m < p or m < p.

The type of interesting results (such as those cited above) pertain to characterization

of the sparsity K of x that can be recovered for a given number of measurements m.

The usual tension is between the ability to recover x with large sparsity K as possible

and using a sensing matrix A with as few measurements m as possible.

The sparsest recovery approach of this paper is similar (in flavor) to the above

stated work; in fact, as has been shown in Chapter 3, the partial information we

consider can be written as a linear transform of the the model A. However, the

methods or approaches of the prior work do not apply. Specifically, the work considers

finding the sparsest function consistent with the given partial information by solving

the corresponding fi relaxation problem. The work derives a necessary and sufficient

condition, called the Restricted Nullspace Property, on the structure of the matrix A

that guarantees that the solutions to the eo and 1 relaxation problems are the same

(see Candes et al. [2006b], Berinde et al. [2008]). However, such sufficient conditions

trivially fail in our setup (see Jagabathula and Shah [2008]). Therefore, our work

provides an alternate set of conditions that guarantee efficient recovery of the sparsest

model.
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5.2 Setup and data

In this section, we establish the relevant notation and give precise statements of the

problems we are interested in solving. As before, we assume there are N alternatives

and A denotes the underlying choice model. Let SN denote the space of the N!

rankings of the N alternatives. Our interest is in learning the underlying model A

given marginal information. We assume that marginal information is available to us

in the form of y = AA + q, where we have abused notation and think of A as an

N! x 1 vector, y is an m x 1 data vector, A is an m x N! matrix with entries in the

set {0, 1}, and 77 is the m x 1 noise vector; the magnitude of noise is assumed to be

bounded i.e., j|q|| < e for some E > 0. As discussed in Section 3.2.2 of Chapter 3, the

sales transaction data that is available in practice can be readily cast into the form

y = AA +q.

In addition to the sales transaction data, there is another rich class of marginal

data that can be cast into the form y = AA + 7; this class comprises different types of

data that can be constructed from the Fourier transform of A. The simplest type of

data belonging to this class is what is known as first-order marginal information; we

represent it by an N x N doubly stochastic matrix M(N- 1,1) (A) (the reason for the

superscript in the notation will become clear shortly) in which the element in the rth

row and ith column is the probability under A that i is ranked at position r. More

precisely,

Mr '(A) =E A(a)1{oa(i)=r}-
UESN

We can generalize this idea to consider other types of partial information. An im-

mediate generalization is to consider what is called second-order partial information,

which we represent by an N2 x N2 matrix M(N- 2,1,1)(A) in which each row corre-

sponds to a pair of positions and each column corresponds to a pair of alternatives.

Specifically, if the rth row corresponds to the pair of positions (ri, r 2) and the ith

column corresponds to the pair of alternatives (21 , i 2 ), then

Mi 2,,(A) - A(O)1{o(ij)=ri,(i 2)=r2}-
oESN
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It is easy to see that one can obtain other generalizations by considering triples

(i1 , i 2 , i) of alternatives or unordered pairs {i, i 2} of alternatives. The rigorous way

to construct various generalizations is to consider various partitions of N. More

precisely, define a partition p of N as a tuple p = (pi, P2,..., p,) such that pi ;> P2 >

-. -- ps and p1+p2+---+p, = N. For instance, p = (N-1,1) and p= (N-2,1,1)

are partitions of N. For any partition p of N, we can consider different p-partitions

of the set K = {1, 2, ... , N} in which we partition the alternatives in N into s

partitions with partition i containing pi elements. It is easy to see that the total

number of distinct p partitions of K is given by

N!DP = .j N
1=i pi!

Let the distinct p partitions of K be denoted by tj, 1 < i < D,3. For example, for

p = (N - 1, 1), there are D, = N!/(N - 1)! = N distinct p partitions given by

tj = {1, ... ,7i - 1,i + 1,...,1 N}{i}, 1 < i < N.

Given a permutation -e SN, its action on ti is defined through its action on the N

elements of ti, resulting in a p partition with the N elements permuted. For instance,

in the above example with p = (N - 1, 1), a acts on tj to give the p-partition t,(i),

where

ta(i) = {1, ... , O-(i) - 17 o-(i) + 1, .. ., n}{o-(i)}.

With these definitions, we can now define what we call p-order marginal infor-

mation, which is denoted by the D, x D, matrix MP(A) where the i, jth element

expressed as

MfP(A) - Z A(-)1{o(t)=td-.
UESN

It is easy to see that the first-order and second-order marginal information defined

3To keep the notation simple, we use tj instead of te that takes explicit dependence on p into
account.
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above can be obtained as special cases of the general p-order partial information by

setting p = (N - 1, 1) and p = (N - 2,1, 1). This now clarifies our choice of notation

for the first and second order marginal information above.

It is not difficult to see that the p-order partial information is related to the

underlying choice model A through a linear transform. Specifically, we can write

MP(A) = E A(o)AP(a),
oGESN

where AP(o) is a D, x D, matrix with the i, jth element defined as

Ae (u) = 1, if U(t) = ti,

0, otherwise.

Thinking of the D, x D, matrix MP(A) as a Dx 1 vector y and each of the matrices

AP(a) as a D x 1 column of the A matrix, we can cast the p-order partial information

in the form y = AA.

We note here that the p-order partial information we have defined here is related

to the group theoretic Fourier transform of the underlying choice model A. Specif-

ically, it can be shown that the p-order partial information conveniently captures

the information contained in a subset of lower-order Fourier coefficients up to the

partition p (see Diaconis [1988] for more details). The motivation for considering

group theoretic Fourier coefficients is two fold: first, they provide a rigorous way

to compress the high-dimensional function A (as used in Huang et al. [2008], Kondor

et al. [2007]), and second, Fourier coefficients at different representations have natural

interpretations, which makes it easy to gather in practice.

Given the above definitions, we consider the problem of learning the choice model

given marginal information that is either of the form of sales transaction data or of

the form of p-order partial information. We consider two different cases - the noiseless

case and the noisy case - and describe the methods we propose and the main results

we obtain for each of the cases in turn.
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5.3 Noiseless case: problem formulations

In the noiseless case, we assume that the underlying choice model is A, and we have

access to the exact marginal information y = AA. Given this, our goal is to determine

the sparsest distribution that is consistent with the given marginal information y. In

other words, our interest is in solving the problem:

minimize ||p||1o
p

subject to ApL = y, (5.1)

1T= 1,

p ;> 0.

In this section, we discuss in detail the important questions that arise in this context.

For each question, we discuss its importance and the type of answer we should expect.

The program in (5.1) first raises the following two important questions:

Question one. From a theoretical standpoint, can we obtain a description of the

family of models that can be identified from marginal information via the sparsest-fit

criterion?

Question two. From an operational standpoint, is there a reasonably large

family of models for which it is possible to find the sparsest consistent distribution in

an efficient manner?

We answer both questions by identifying a family of models T, which can be

efficiently recovered from marginal information as the unique optimal solutions to the

program in (1.1); the family of models T is described in the next section.

Before we move to the next question, we try and understand the nature of con-

ditions we expect to be imposed. Now, a condition that first comes to mind is the

linear independence of the columns of A corresponding to the permutations. This

condition is of course necessary; unfortunately it is not sufficient. Moreover, unlike

in the popular literature (cf. compressed sensing), the sufficient conditions cannot be

based on sparsity alone. In order to see why linear independence and sparsity condi-

tions are not sufficient and gain additional intuition into the conditions that need to
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be imposed, we consider the following example:

Example 1. For any N > 4, consider the four permutations a- = (1, 2), -2 = (3,4),

073 = (1, 2)(3, 4) and o-4 = id, where id is the identity permutation; here, we are

representing permutations using the cycle notation. In addition, consider the partition

p = (N - 1,1). It is then easy to see that

AP(o 1 ) + AP(o-2 ) = AP(o-3) + A-(o-4 ).

In order to illustrate the issues that arise with straightforward conditions, we consider

three cases:

1. This example shows that a sparsity bound (even 4) on A is not sufficient to

guarantee that A will indeed be the sparsest solution. Specifically, suppose that

A(o-) = pi, where pi E R+ for1 < i < 4, and A(o) = 0 for all other o E SN-

Without loss of generality, let pi P2. Then,

MP(A)

=p1 AP(o-1 ) + p2AP(U2) + p3 AP(oa3 ) + p4AP(c-4)

=(P2 - p1)A'(o-2 ) + (p3 + p1)AP(o-3)

+ (p4 + pi)AP(o4 ).

Thus, the distribution A with A(o-2) = P2 - P1, A (03) = p3 + P1, A (0-4) = p4 + Pi

and X(o-) = 0 for all other a- E SN is such that MP(X) = MP(A) but || 10 =

3 < 4 = ||Ai|0. That is, A can not be recovered as the solution of to optimization

problem (5.1) even when support of A is only 4.

2. This example shows that there are cases where A is the sparsest solution, but is

not the unique sparsest solution. Specifically, suppose that A(c- 1) = A(o-2) = p

and A(c-) = 0 for all other o- E S. Then, MP(A) = pAP(c-1) + pAP(- 2) =

pAP(o 3 ) + pAP(o-4). Thus, the sparsest solution is not unique.

3. Finally, this example shows that even though the support of A corresponds to
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a linearly independent set of columns of A, the sparsest solution may not be

unique. Specifically, suppose that A(o-i) = pi, where pi E R+ for 1 < i < 3, and

A(o-) = 0 for all other o E SN- Without loss of generality, let p1 P2. Then,

MP(A)

=p1AP(o-1) + P2AR(o-2) + p3 AP(o-3 )

=(p2 - pi)A(o-2 ) + (p3 + p1)AP(o-3 ) + p1AP(o4 ).

Here, note that {AP(o 1 ), AP(o 2 ), AP(o-3)} is linearly independent, yet the sparsest

solution is not unique.

Given the above example, it is clear that a simple sparsity bound or linear inde-

pendence of the columns of A corresponding to the support of A are not sufficient.

Nevertheless, we manage to identify two sufficient conditions, as detailed in the next

section.

Once we identify the conditions that define the family of models 7, we face the

following natural question:

Question three. Given the conditions that define the family of models F, how

restrictive are these conditions?

We expect the conditions imposed on F to translate into a condition on the spar-

sity of the models; particularly, it is natural to expect a characterization of the form:

if the model is "sparse enough", then it can be identified from marginal information

via the sparsest-fit criterion. Such a characterization would quantify the relationship

between the complexity (as measured by the sparsity) of the models and the amount

of information (as measured by the dimension of the marginal information) available.

Unfortunately, as discussed above, the sufficient conditions cannot translate into a

simple sparsity bound on the models. In that case, can we find a sparsity bound such

that "most," if not all, distributions that satisfy the sparsity bound can be recovered

from marginal information via the sparsest-fit criterion? It turns out we can, as de-

scribed in the next section. We make the notion of "most" distributions precise by
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proposing a natural random generative model for functions with a given sparsity:

Definition 1 (Random Model). Given K E Z+ and an interval W = [a, b], 0 <

a < b, a random distribution A with sparsity K and values in W is generated as

follows: choose K permutations from SN independently and uniformly at random 4,

say o-1, . .. , 'K; select K values from W uniformly at random, say p1,..., PK; then the

distribution A is defined as

pi if -=oa, 1<i<K

0 otherwise.

We denote this model by R(K, W).

Given this model, we expect to derive a sparsity bound K* (which depends on the

type of marginal information) such that whenever K < K*, a random distribution

A of sparsity K generated according to the random model R(K, W) belongs to the

family T with a high probability. Such a statement essentially establishes that the

type of situations illustrated in Example 1 occur with a vanishing probability.

Finally, we would like to understand the limitations on the type of models that

could be recovered form marginal information. Specifically, since the marginal infor-

mation is limited, we expect not to be able to recover models that are very complex.

In other words, we raise the following question:

Question four. Can we characterize the limitation on the ability of any algorithm

to recover A from only marginal information y?

In the next section, we describe the answers we propose for each of the questions

raised above.

5.4 Noiseless case: main results

As the main results of this paper, we provide answers to the four questions raised in

stated in the previous section.
4Throughout, we assume that the random selection is done with replacement.
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Answers one &l two. To answer the first two questions, we need to find suffi-

ciency conditions that guarantee that the model A can be recovered from marginal

information via the sparsest-fit criterion and design a simple algorithm to find the

sparsest model consistent with the available information efficiently. For that, we first

try to gain a qualitative understanding of the conditions that the model A should

satisfy. Note that a necessary condition for identification of A is that the program

in (5.1) must have a unique solution; otherwise, without any additional information,

we wouldn't know which of the multiple solutions is the true solution. It is clear that

a necessary condition for (5.1) to have a unique optimal solution is that columns of

A corresponding to the permutations in the support of A must be linearly indepen-

dent. However, as illustrated above, this linear independence condition is, in general,

not sufficient to guarantee a unique solution; in particular, even if the columns of A

corresponding to the permutations in the support S1 of A are linearly independent,

there could exist a set of permutations S2 such that IS2| ISI and AA = AA', where

S2 is the support of A'; Example 1 illustrates exactly such a scenario. Thus, a suffi-

cient condition for the distribution A to be the unique sparsest solution is that not

only is the set of columns of A corresponding to the set Si of permutations linearly

independent, but the set of columns of corresponding to the permutations in the set

Si U S2 are linearly independent for all set of permutations S2 such that IS2 5 IS1 I;
in other words, not only we want the columns corresponding to the support to be

linearly independent, but we want them to remain linearly independent even after

the addition of at most K permutations to the support of A. Note that this condi-

tion is similar to the Restricted Isometry Property (RIP) introduced in Candes and

Tao [2005], which roughly translates to the condition that to optimization recovers

x of sparsity K from z = Bx provided every subset of 2K columns of B is linearly

independent. Motivated by this, we impose the following conditions on A.

Condition 1 (Sufficiency Conditions). We require the model A with support supp (A) =

{o-1, 02, ... , oK} to satisfy the following conditions:

o Signature condition: for any o- E supp (A), there exists a row 1 < i < m of the
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matrix A such that A, = 1 and Ai,, = 0 for all other permutations o-' such

that a' E supp (A).

o Linear Independence: for any collection of integers c1 , ... ,cK taking values in

{-K,. .. , K}, i ckA(o-k) # 0, unless c1 = - = cK = 0.

The discussion above motivates the 'signature' condition; indeed, whenever A sat-

isfies the signature condition, it is easy to see that the columns of A corresponding

to the supp (A) are linearly independent. In addition, as shown in the proof of The-

orem 7, the linear independence condition is required to establish the uniqueness of

the sparsest solution.

Now we state the formal result that establishes Condition 1 as sufficient for re-

covery of A as the unique sparsest solution consistent with the marginal information.

Further, the conditions allow for a simple, iterative recovery algorithm. Thus, Theo-

rem 7 provides answers to Question one and Question two from the previous section.

Theorem 7. Given y = AA, suppose A satisfies Condition 1. Then, A can be recovered

from y as the unique optimal solution to the to optimization problem in (5.1). Further,

a simple, iterative algorithm called the sparsest-fit algorithm, described in Section 5.5,

recovers A.

Linear programs don't work. Theorem 7 states that whenever A satisfies Condi-

tion 1, it can be recovered as the unique sparsest solution consistent with the available

information. In order to solve the to optimization problem efficiently, it is natural to

consider its convex relaxation and solve the following fi optimization problem:

minimize || 1 1
A

subject to AA = y, (5.2)

1T A = 1,

A > 0,

This approach has found a lot of success in the work done in the recently popular

compressive sensing literature. (cf. Candes et al. [2006b,a], Donoho [2006], Berinde
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et al. [2008]). Unfortunately, such convex relaxations have no bite in our setting. For

instance, it is clear from the constraints in (1.2) that all feasible models have the

same f1 norm (equal to 1). Moreover, it is hardly the case that the set of consistent

models is a singleton as illustrated in Example 1. In fact, we can prove that for a

marginal data vector y that comes from a distribution generated as per the random

model R(K, W) with K > 2, the set of consistent distributions is not a singleton.

More precisely, we can prove the following theorem.

Theorem 8. Consider a distribution A generated according to the random model

R(K, W) described in Definition 1 with sparsity K > 2. Then, as long as p is not the

partition (1, 1, ... , 1) (N times), with probability 1 - o(1), there exists a distribution

A' distinct from A such that MP(A) = MP(A') and IA'[1 =| A11.

Thus, the f1 criterion is not reducing the family of consistent distributions at all,

and we cannot guarantee the optimality of an arbitrarily selected model from the set

of feasible models. In fact, as described in the the noisy setting (see discussion after

Theorem 14), for the first-oder marginal information, selecting an arbitrary basic

feasible solution that minimizes the f, norm can have a sparsity of O(N 2), whereas

the sparsest distribution can be shown to have a sparsity of O(N).

Answer three. Next, we turn to the third question. Specifically, we study the

conditions for high probability recoverability of a random distribution A in terms of

its sparsity. In what follows, we spell out our result starting with few specific cases

so as to better explain the dependency of the sparsity bound on the type of marginal

information.

Case 1: We first consider the three of the simplest types of marginal information:

comparison information, top-set information, and first-order marginal information.

All three are described in detail in Section 3.2.2 of Chapter 3. First-order information

is also described above and corresponds to the p-order marginal information with

p = (N - 1,1). In the context of these three types of marginal information, we can

establish the following theorem:
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Theorem 9. Suppose A is a choice model of support size K drawn from the generative

model R(K, W). Then, A satisfies the signature and linear independence conditions

with probability 1 - o(1) as N -+ oo provided K = o(log N) for comparison informa-

tion, K = o(vfK) for the top-set information, and K = (1 - e)N log N for any fixed

e>0.

Case 2: We now consider the p-order marginal information for p = (N - v, v)

with 1 < v = 0(1). Here D, = 8(N") and MP(A) provides the vth order marginal

information. As stated next, for this case we find that the sparsity bound scales at

least as N' log N.

Theorem 10. Suppose A is a choice model of support size K drawn from the gener-

ative model R(K, W). Then, A satisfies the signature and linear independence condi-

tions with probability 1 - o(1) as N -+ oo provided K < "jN' log N for any fixed

e > 0 and p-order marginal information with p = (N - v,v), v = 0(1).

In general, for any p with pi = N - v and v = 0(1), the arguments of Theorem 10

can be adapted to show that the sparsity bound scales as NV log N. Theorems 9

and 10 suggest that the sparsity bound scales as Dp log D, for p = (pi,... p,) with

p1 = N - v for v = 0(1). Next, we consider the case of more general p.

Case 3: p = (pi,..., p,) with pi = N - 0 (NU ) for any 6 > 0. As stated next,

for this case, the sparsity bound scales at least as D, log log D,.

Theorem 11. Suppose A is a choice model of support size K drawn from the genera-

tive model R(K, W). Then, A satisfies the signature and linear independence con-

ditions with probability 1 - o(1) as N -± oo provided K < (1 - e)Dlog log D,

for any fixed e > 0 and p-order marginal information with p = (p1,... , p,), where

p1 = N - N2-' for any 6 > 0.

We next consider the most general case of p-order marginal information.

Case 4: Any p = (p1,. .. , p,). The results stated thus far suggest that the thresh-

old is essentially D,, ignoring the logarithm term. For general p, we establish a
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sparsity bound as stated in Theorem 12 below. Before stating the result, we intro-

duce some notation. For given p, define a = (a 1 ,..., a,) with ai = pi/N, 1 < i < s.

Let
8 8

H(a)=- a log ai, and H'(a) =- ai log aj.
i=1 i=2

Theorem 12. Suppose A is a choice model of support size K drawn from the gener-

ative model R(K, W). Then, A satisfies the signature and linear independence condi-

tions for p-order marginal information with probability 1 - o(1) as N -+ oo provided

K < C DY(a) (5.3)

where

T [ CH (a) - H'(a)
T + 1 H(a)'

with T =

0 < C, C' < oo are constants.

At a first glance, the above result in Theorem 12 seems very different from the

crisp formulas of Theorems 9-11. To understand if that is indeed the case, consider

the following special cases. First, observe that as ai t 1, T/(T + 1) - 1. Further,

as stated in Lemma 3, H'(a)/H(a) -+ 1. Thus, we find that the bound on sparsity

essentially scales as D, for these special cases. Note that the cases 1, 2 and 3 fall

squarely under this scenario since ai = )q/n = 1 - o(1). Thus, this general result

contains the results of Theorems 9-11 (ignoring the logarithm terms). Next, consider

the other extreme of ai 4 0. Then, T -+ 1 and again by Lemma 3, H'(a)/H(a) -+ 1.

Therefore, the bound on sparsity scales as Dp. This ought to be the case because

for p = (1,...,1) we have ai = 1/N -+ 0, D\ = N!, and signature condition holds

only up to o( Dp) = o(v/SI-) due to the standard Birthday paradox.

In summary, the result in Theorem 12 appears reasonably tight for the general

form of partial information p. We now state the Lemma 3 used above.
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Lemma 3. Consider any a = (a1,..., a,) with 1 ai - a, 0 and Z'a =

1. Then,
H'(a) 1

aTi H(a) '

and
H')

lim ______= 1.
a14o H(a)

Answer four. Finally, we wish to understand the fundamental limitation on the

ability to recover A from the marginal information by any algorithm. To obtain a

meaningful bound (cf. Example 1), we examine this question under an appropriate

information theoretic setup.

To this end, suppose the model A with sparsity K is drawn from the random model

R(K, W). However, for technical reasons (or limitations), we assume that the values

pis are chosen from a discrete set. Specifically, let each pi be chosen from integers

{1, ... , L} instead of compact set W. We denote this random model by R(K, L).

Now, consider any algorithm that attempts to recover A from MP(A). Let A be the

estimate produced by the algorithm. Define the probability of error of the algorithm

as

Perr = -(- # A)

Then, we can prove the following result.

Theorem 13. Suppose the choice model A of sparsity K is drawn from the random

model R(K, L). Let A be the estimate of A produced by some algorithm from access

to only MP(A). Then, the probability of error is uniformly bounded away from 0 for

all N large enough and any p, if

3D2  D22-
K > P log VL)

N log N N log N

where for any two numbers x and y, x V y denotes max {x, y}.

The proofs of all the theorems are given in the appendix. Next, we describe the

sparsest-fit algorithm.
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5.5 Noiseless case: sparsest-fit algorithm

As mentioned above, finding the sparsest distribution that is consistent with the given

partial information is in general a computationally hard problem. In this section, we

propose an efficient algorithm to fit the sparsest distribution to the given marginal

information y = AA as long as the underlying model A satisfies the signature and

linear independence conditions. Specifically, when run with marginal information y,

the sparsest-fit algorithm terminates with either (a) the sparsest distribution if the

data vector y is generated by a model satisfying Condition 1 or (b) a certificate that

y is not generated by a model satisfying Condition 1. It follows from Theorem 7 that

whenever the sparsest-fit algorithm succeeds in finding the sparsest distribution, it

find a solution satisfying the signature and linear independence conditions.

The algorithm takes the data vector y as an explicit input with the prior knowledge

of the structure of A as an auxiliary input. It's aim is to produce A. In particular,

the algorithm outputs the sparsity of A, K = |IA||o, permutations o1, ... , o so that

A(o-3) # 0, 1 < i < K and the values A(o-), 1 < i < K. Without loss of generality,

assume that the values yi,... , ym are sorted with yi < -- < ym and further that

A(o1 ) < A(o 2 ) 5 ... A(o-K)-

Before we describe the algorithm, we observe the implication of the two signa-

ture and linear independence conditions. An implication of the linear independence

condition is that for any two non-empty distinct subsets S, S' C {1, ... , K}, S 5 S',

E A(o-r) j E A(o).
iES jES'

This means that if we know all A(oi), 1 < i < K and since we know yd, 1 <

d < m, then we can recover A(Ui)d, i = 1,2, ... , K as the unique solution to yd =

1 A(o-i)dA(o-) in {0, 1}K

Therefore, the non-triviality lies in finding K and A(o-), 1 < i < K. This issue

is resolved by use of the signature condition in conjunction with the above described

properties in an appropriate recursive manner. Specifically, recall that the signature

condition implies that for each o-i for which A(o-) 5 0, there exists d such that
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Yd = A(o-). By linear independence, it follows that all A(o0-)s are distinct and it

follows from our assumption above that

A(o1) < A(o-2 ) <- < A(OK)-

Therefore, it must be that the smallest value, yi equals A(o-1). Moreover, A(u1)1 = 1

and A(oi)1 = 0 for all i # 1. Next, if Y2 = Yi then it must be that A(oI) 2 =

1 and A(Or) 2 = 0 for all i # 1. We continue in this fashion until we reach a d'

such that yd..1 = y1 but yd' > yi. Using similar reasoning it can be argued that

yd, = A(o2), A(o-2)d, = 1 and A(o-)d, = 0 for all i # 2. Continuing in this fashion

and repeating essentially the above argument with appropriate modifications leads to

recovery of the sparsity K, the corresponding A(o-4) and A(o-i) for 1 < i < K. The

complete procedural description of the algorithm is given below.

Sparsest Fit Algorithm:

Initialization: k(1) = 1, d = 1, A(or) = yi and A(o-1 )1 = 1, A(o 1 )e = 0, 2 < f <m.

for d = 2 to m

if Yd = 'iET A(o-) for some T C {1,... , k(d - 1)}

k(d) = k(d -1)

A(oi)d = 1 V i E T

else

k(d) = k(d - 1)+1

A(Ok(d)) = Yd

A(O-k(d))d = 1 and A(ok(d))e = 0, for 1 < f < m, f 5 d

end if

end for

Output K = k(m) and (A(o-), A(o-)), 1 < i < K.

157



The correctness of this algorithm is established in the proof of Theorem 7.

Complexity of the algorithm. Initially, we sort at most m elements of the vector y.

This has a complexity of O(m2 log m). Further, note that the for loop in the algorithm

iterates for at most m times. In each iteration, we are solving a subset-sum problem.

Since there are at most K elements, the worst-case complexity of subset-sum in each

iteration is O( 2 K). Thus, the worst-case complexity of the algorithm is O(m log m +

m2K). The average case complexity can be shown to be much smaller. Specifically,

suppose the marginal data vector y corresponds to p-order partial information and

the underlying model A is drawn from the random model R(K, W). Then, using the

standard balls and bins argument, we can prove that for K = O(Dp log D,), with a

high probability, there are at most O(log D,) elements in each subset-sum problem.

Thus, the complexity would then be 0 (exp(log2 D,)) with a high probability.

5.6 Noisy case: problem formulations

We now consider the more practical scenario when the data vector y might be cor-

rupted by noise. This section will be completely focused on the first-order marginal

information, with the aim to simplify exposition. The methods we propose in this sec-

tion do extend to higher-order marginal information (for p different from (N - 1,1))

and the 'transaction-type' marginal information introduced above. However, some

of the guarantees we provide for the running time complexity of the methods do

not readily extend. We discuss these extensions in detail in the discussion section

(Section 5.12).

Precisely, the setup we consider is as follows. We assume we are given first-order

marginal information about a choice model A that may be corrupted by noise; that

is, we are given an N x N observation matrix Y that is related to the underlying

choice model A as Y = MP(A) + 7?, where, as defined above, MP(A) is the N x N

first-order marginal information matrix of A and y is an N x N matrix capturing the

noise. Note that we have deviated from the notation above, where we have denoted

the observations (noisy or noiseless) by a vector y. We deviate in order to explicitly
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account for the matrix structure of the first-order information. Moreover, since we

fix p = (N - 1, 1) for this section, we drop the p and write Y = M(A) + 7; thus,

unless mentioned otherwise, M(A) denotes the first-order marginal information in this

section. We also assume that the noise can be bounded above as ||9||2 < 6 for some

6 > 0, where
N

ij=1

Given the data Y and an approximation error e > 0, our goal is to find the sparsest

distribution A such that ||Y - M()112 e; for brevity, we call such a model A an e-fit

to the observations Y. In particular, our goal is to solve

minimize ||p||o

subject to ||Y - M(p)112 < e, (54)

1Ty = 1,

t>0.

Given the program in (5.4), a natural question that arises is whether we can solve

it efficiently. Interestingly, a more fundamental question, which informs the question

of efficient solvability of (5.4), is "how sparse can the sparsest solution be?" To

elaborate further, first observe that for any choice model p, the first-order marginal

matrix M((p) is doubly stochastic. Thus, it follows from Y = M(A) + 7 and ||7||2 < 6

that solving the program in (5.4) is essentially equivalent to determining the convex

decompositions of all doubly stochastic matrices that are within a ball of radius 6+e of

M(A) and choosing the sparsest convex decomposition. Now, it follows from Birkhoff-

von Neumann's celebrated result (see Birkhoff [1946] and von Neumann [1953]) that

a doubly stochastic matrix belongs to an (N - 1)2 dimensional polytope with the

permutation matrices as the extreme points. Therefore Caratheodory's theorem tells

us that it is possible to find a convex decomposition of any doubly stochastic matrix

with at most (N - 1)2 + 1 extreme points, which in turn implies that the sparsest

model consistent with the observations has a support of at most (N- 1)2+1 = E(N 2 ).

We raise the following natural question at this point:
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Question one. Given any doubly stochastic matrix M, does there exist a choice

model A with sparsity significantly smaller than E(N 2 ) such that |IM(A) - M1| 2 < e.

Geometrically speaking, the question above translates to: given a ball of radius

e around M, is there a subspace spanned by K extreme points that intersects the

ball, for any double stochastic matrix M and some K that is significantly smaller

than E(N 2)? Note that the answer to this question can give us an indication of

whether a straightforward approach (such as convex relaxation) can produce good

approximations to the sparsest solution. In particular, it is possible that for a general

doubly stochastic matrix M, there do not exist models A with sparsity significantly

smaller than e(N 2 ) such that |IM(A) - M1| 2 < e. In other words, it is possible that

for a general M, there is no subspace of K extreme points that intersects the e ball

around M for K < N 2. If such is the case, then convex relaxations - which result in

a models of sparsity O(N 2 ) - can produce solutions close to the optimal, at least for

general M. In that case, we could attempt to characterize the class of matrices M

for which we can solve (5.4) through convex relaxation. If, on the other hand, we can

prove that for a general M, the sparsest model can have sparsity significantly smaller

than e(N 2), then using straightforward approaches like convex relaxations can result

in a highly suboptimal solution. As explained in the next section, it happens that we

can show that the sparsest solution indeed can have a sparsity that is significantly

smaller than e(N 2). Thus, we expect to go beyond convex relaxations in order to

efficiently recover the sparsest solution, leading us to our next question about efficient

recovery of the sparsest solution.

As mentioned above, if the sparsest solution has sparsity K, then the brute-force

approach would require searching over (') ~ exp(E(KN log N)) options. Thus, we

ask:

Question two. Is it possible to solve (5.4) with a running time complexity that is far

better than O(exp(KN log N)), at least for a reasonable large class of observations

Y?

We obtain a faster algorithm by restricting our search to models that belong to the

signature family. The structure of the family allows efficient search. In addition, we
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can establish that the signature family is appropriately "dense", thereby by restricting

our search to the signature family, we are not losing much. Before we describe our

answers to the questions above, we quickly recall the definition of the signature family

specialized to first-order information:

Signature family. A distribution (choice model) A is said to belong the

signature family if for each permutation o- that is in the support (i.e.,

A(o-) > 0) there exist an pair i, j such that u(i) = j and -'(i) = j for any

permutation a' in the support. Equivalently, for every permutation o- in

the support of A, there exists a pair i, j such that o- ranks i at position j,
but no other permutation in the support ranks i at position r.

In the next section, we provide our answers to the above questions.

5.7 Noisy case: main results

As main results for the noisy case, we provide answers to the two questions raised

above. We provide the answers to each of the questions in turn.

Question one: sparse approximation. As the first result, we establish that given any

doubly stochastic matrix M and e > 0, there exists a model A with sparsity O(N/e 2 )

such that |IM(A) - M1| 2 < e. Thus, we show that by allowing a "small" error of e,

one can obtain a significant reduction from e(N 2) to O(N/e 2 ) in the sparsity of the

model that is needed to explain the observations. Precisely, we have the following

theorem.

Theorem 14. For any doubly stochastic matrix M and e E (0, 1), there exists a

choice model A such that ||A l| = O(N/e 2 ) and |IM(A) - M||2 5 E-

We emphasize here that this result holds for any doubly stochastic matrix M. In

such generality, this result is in fact tight in terms of the dependence on N of the

required sparsity. To see that consider the uniform doubly stochastic matrix M with

all of its entries equal to 1/N. Then, any choice model A with o(N) support can have
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at most N * o(N) = o(N 2) non-zero entries, which in turn means that the f 2 . Thus,

the e2 error |IM(A) - M1|2 is at least (N2 - o(N 2))/N 2 ~1 for large N.

The result of Theorem 14 also justifies why convex relaxations don't have any bite

in our setting. Specifically, suppose we are given a doubly stochastic matrix M and

a tolerance parameter e > 0. Then, all the consistent choice models A, which satisfy

|IM(A) - M||0  e, have the same e1 norm. We claim that "most" of such consistent

models A have sparsity e(N 2 ). More precisely, following the arguments presented in

the proof of Theorem 4, we can show that the set of doubly stochastic matrices M

such that |IM - M1|2 5 e and can be written as M(A) = M for some model A with

sparsity K < (N - 1)2 has an (N - 1)2 dimensional volume of zero. It thus follows

that picking an arbitrary consistent model A will most certainly yield a model with

sparsity E(N 2); this is a factor N off from the sparsest solution, which has a sparsity

of O(N) (ignoring the e dependence).

Question two: efficient algorithm to solve (5.4). We now consider the question of

efficiently solving the program in (5.4). As explained above, a brute-force search

for a model of sparsity K that is consistent with the data requires searching over

exp(E(KN log N)) options. We now show that by restricting ourselves to a reason-

ably large class of choice models, we can improve the running time complexity to

O(exp(E(K log N))) - effectively shaving off a factor of N from the exponent. More

precisely, we can establish the following result.

Theorem 15. Given a noisy observation Y and e E (0,1/2), suppose there exists a

choice model A in the signature family such that |JAJJ0 = K and IIY - M(A)112 < e.

Then, with a running time complexity of exp (E(K log N)), we can find a choice

model A such that |1|A| 0 = O(E- 2K log N) and ||M(A) - D112 < 2e.

Several remarks are in order. We propose a method in Section 5.8 to find sparse

models consistent with the data efficiently. The result of Theorem 15 establishes

guarantees for this method. The result of Theorem 15 essentially establishes that

as long as there is a sparse choice model of sparsity K in the signature family that

is an E-fit to the observations Y, we can shave off a factor of N in the exponent

162



from the running time complexity at the cost of finding a model with sparsity that is

essentially within a factor of log N of K. In other words, we can obtain an exponential

reduction in the running time complexity at the cost of introducing a factor of log N

in the sparsity.

It is worth pausing here to understand how good (or bad) the computation cost of

exp (E(K log N)) is. As discussed below (in Theorem 16), for a large class of choice

models, the sparsity K scales as O(e-2N), which implies that the computation cost

scales as exp (E(N log N)) (ignoring e to focus on dependence on N). That is, the

computation cost is polynominal in N! = exp (8(N log N)), or equivalently, polyno-

mial in the dimension of the ambient space. To put this in perspective, the scaling

we obtain is very similar to the scaling obtained in the recently popular compressive

sensing literature, where sparse models are recovered by solving linear or convex pro-

grams, which result in a computational complexity that is polynomial in the ambient

dimension.

Finally, the guarantee of Theorem 15 is conditional on the existence of a sparse

choice model in the signature family that is an e-fit to the data. It is natural to

wonder if such a requirement is restrictive. Specifically, given any doubly stochastic

matrix M, there are two possibilities. Firstly it may be the case that there is no

model in the signature family that is an e-fit to the data; in such a case, we may

have to lose precision by increasing e in order to find a model in the signature family.

Secondly, even if there did exist such a model, it may not be "sparse enough"; in

other words, we may end up with a solution in the signature family whose sparsity

scales like E(N 2). Our next result shows that both scenarios described above do

not happen; essentially, it establishes that the signature family of models is "dense"

enough that for a "large" class of data vectors, we can find a "sparse enough" model

in the signature family that is an e-fit to the data. More specifically, we can establish

that the signature family is "dense" as long as the observations are generated by an

MNL model or a max-ent (maximum-entropy) distribution. Recall the descriptions

of the MNL model and the max-ent distributions (refer to Chapter 2 for a detailed

discussion):
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Multinomial Logit (MNL) model. The MNL model is a parametric model with

N positive valued parameters - one for each of the N alternatives. Let wi > 0

be parameter associated with alternative i. Then, the probability mass assigned to

permutation o E SN is given by (for example, see Marden [1995])

PW(o-) = H (5.5)
j=1 Wa (j) ± Wg-1(j+1) ± ' W'o-y1(N)

where o-'(j) = i if o(i) = j.

Max-ent distribution. The max-ent distribution is a member of the exponential

family of models. It is the distribution with the maximum Shannon entropy of all

distributions that are consistent with given first-order marginal information. It is

parametrized by N2 parameters Vij for 1 < i, j < N. Given such a vector of parame-

ters 0, the probability mass assigned to permutation o- is given by

Po(o-) oc exp ( Bi- ,
1<i,j< ONoi

( exp ( 1 ijig, (5.6)
Z( ) 15i,J<N

where Z(9) = E,csEN exp (lii,j N Oijo-i); oij = 1 iff o-(i) = j and ai = 0 otherwise.

It is well known that with respect to the space of all first-order marginal distribu-

tions, the above exponential family is dense. Specifically, for any doubly stochastic

matrix (the first-order marginals) M = [Mij] with Mij > 0 for all i, j, there exists

0 E RNxN so that the first-order marginal induced by the corresponding exponential

family is precisely M. An interested reader is referred to, for example, monograph

Wainwright and Jordan [2008] for details on this correspondance between parameters

of exponential family and its marginals.

We can establish the following result about how dense the signature family is.

Theorem 16. Suppose Y is a noisy observation of first-order marginal M(A) with

||Y - M(A)112  e for some e E (0,1/2) and choice model A such that

1. either, A is from MNL model with parameters w 1,..., WN (and without loss of
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generality w1 < w 2 < ... < WN) such that

WN VlogN
Z N - N , (5.7)

for L = N5 for some 6 E (0,1);

2. or, A is from the max-ent exponential family with parameters 0 such that for

any set of four distinct tuples of integers (i1 , ji),(i 2,, j2), (i3,j 3), and (i 4, j 4) (with

1 < ik,jk < N for 1 < k < 4)

exp(iy1 + 0422) < log N. (5.8)
exp (Oi3y, ± 0i4 , 4 ) --

Then, there exists a A in the signature family such that: I|Y - Z112 < 2e and |AJl0 =

O N/e2).

Remark. The conditions (5.7) and (5.8) can be further relaxed by replacing vl7ogN

(in both of them) by C log N/e 2 for an appropriately chosen (small enough) constant

C > 0. For the clarity of the exposition, we have chosen a somewhat weaker condition.

We have established in Theorem 16 that (under appropriate conditions) the rich

families of MNL and max-ent exponential families can be approximated by sparse

models in signature families as far as first-order marginals are concerned. Note that

both families induce distributions that are full support. Thus, if the only thing we care

about are first-order marginals, then we can just use sparse models in the signature

family with sparsity only O(N) (ignoring e dependence) rather than distributions that

have full support. It is also interesting to note that in Theorem 14, we establish the

existence of a sparse model of O(N/E 2) that is an e-fit to the observations. The result

of Theorem 16 establishes that by restricting to the signature family, the sparsity

scaling is still O(N/e 2) implying that we are not losing much in terms of sparsity by

the restriction to the signature family.

In the next section, we describe the algorithm we propose to solve the program

in (5.4) efficiently and also prove Theorem 15. We present the proofs of Theorems 14
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and 16 subsequently.

5.8 Noisy case: efficient recovery of sparse models

In this section, we describe the algorithm we propose for efficient recovery of sparse

models. In the process, we also prove Theorem 15.

The setup for the algorithm is as follows. We are a given first-order observation

matrix Y. Suppose there exists a choice model y in the signature family such that

IIp|o = K and |IM(p) - Y||2 < e. Then, the algorithm we describe below finds

a choice model 1 such that ||1||o = O(- 2 KlogN) and |IM(A) - Y1|oo < 2e with

a running-time complexity of exp(E(K log N)). The algorithm requires effectively

searching over space of choice models from signature family. Before we can describe

the algorithm, we introduce a representation of the models in the signature family,

which allows us reduce the problem into solving a collection of LPs.

Representation of signature family. We start by developing a representation of

choice models from the signature family that is based on their first order marginal in-

formation. All the relevant variables are represented by vectors in N 2 dimension. For

instance, the observation matrix Y = [Y] is represented as an N 2 dimensional vector

with its (i, j)th component Yij indexed by the tuple (i, j). Further, the components

are ordered according to the lexicographic ordering of the tuples: (i, j) < (i', j') iff
i < i' or i = i' and j < j'. Thus, the observation matrix Y is represented in a column

vector form as

Y = [Y(1,i) Y(1, 2) - Y(1,N) Y(2,1) - (N,N)J-

In a similar manner, we represent a permutation o- E SN as a 0-1 valued N 2 dimen-

sional vector o- = [o(i,j)] with -(ij) = 1 if o-(i) = j and 0 otherwise.

Now consider a choice model in the signature family with support K. Suppose it

has the support o- 1, , .K with respective probabilities Pi,..., PK. Since the model

belongs to the signature family, the K permutations have distinct signature compo-

nents. Specifically, for each k, 1 < k < K, let (ik, ik) be the signature component of
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permutation a-k so that a-k(ik) = A1 (i.e. a-4k) = 1) but o-k'(i4) : jA (i.e. o- k) = 0)

for all k' = k, 1 < k' < K. Now let M = [M(ig,)] be first order marginal informa-

tion of this choice model. Then, it is clear from our notation that M(ikjk) = Pk for

1 < k < K and M(id) is a summation of a subset of the K values pi,..., PK, for any

other (i, j), 1 i, j < N,

The above discussion leads to the following representation of a choice model from

signature family. Each choice model is represented by an N2 x N 2 matrix with 0-1

entries, say Z = [Z(id,)(i,,j')] for 1 < i, j, i', j' < N: in Z(ij)(i,), (i, j) represents a row

index while (i', j') represents a column index. The choice model with support K is

identified with its K signature components (ik, jk), 1 < k < K. The corresponding

matrix Z has all of the N 2 - K columns corresponding to indices other than these

K tuples equal to 0. The columns corresponding to (i,jA), 1 < k < K, indices are

non-zero with each representing a permutation consistent with signature condition.

In particular, the Z matrix satisfies the following constraints: for each (ik, jk), 1 <

k < K,

Z(ij)(iA) E {0, 1}, for all 1 < i, j < N, (5.9)

Z(ikjk)(ikjA) = 1, (5.10)

Z(ij)(ijk) = 0, if (i, j) E {(ik',jk') : 1 < k' < K, k' # k}, (5.11)
N N

E Z(, = 1, E Z(eJ)(ikJd) = 1, for all 1 < i, j < N. (5.12)
t=1 t=1

Observe that (5.10)-(5.11) enforce the signature condition while (5.12) enforces the

permutation structure. In summary, given a set of K distinct pairs of indices, (ik, jA),
1 < k < K with 1 < ik, jA N, (5.9)-(5.12) represent the set of all possible signature

family with these indices as their signature components.

Efficient representation of signature family. Indeed, a signature family choice

model with support K can, in principle, have any K of the N 2 possible tuples as

its signature components. Therefore, one way to search the signature family choice

model with support K is to first choose one of the (NM tuples and then for those
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particular K tuples, search among all Zs satisfying (5.9)-(5.12). As we shall see, the

basic searching complexity for determining a sparse choice model arises from going

over each of the distinct (Ns tuples. This is because the the points described by

(5.9)-(5.12) form the extreme points of the following relaxation: for each (ik,jk),

1 < k < K,

Z(ij)(iA) E [0, 1], for all 1 < i, j < N, (5.13)

Z(iknJk)(iknJk) = 1, (5.14)

Z(ij)(iA) = 0, if (i,j) E {(ik',jk,) : 1 < k' K, k' # k}, (5.15)

N N

11 Z(iX)(iVdk) = > 7 Z(ed)(ikdk) = 1, for all 1< ij < N. (5.16)
t=1 t=1

It is easy to see that the points described by the set of equations (5.9)-(5.12) are

contained in the polytope above described by equations (5.13)-(5.16). Thus, in order

to justify the claim that the polytope above is the convex hull of the points described

by (5.9)-(5.12), it is sufficient to argue that the extreme points of the polytope are

integral. For that, we invoke the Birkhoff and Von Neumann Birkhoff [1946], von

Neumann [1953] result which states that permutation matrices are extreme points of

the polytope describing the doubly stochastic matrices. Now, it is easy to see that

the polytope above is the polytope of double stochastic matrices with some of the

coordinates set to Os and Is. Fortunately, such constraints introduce hyperplanes that

do not 'cut through' the doubly stochastic polytope and hence do not introduce any

new extreme points. Thus, the resulting polytope has integral extreme points. An

important consequence of this result is that we can now solve an IP (integer program)

over the constraints described by (5.9)-(5.12) efficiently (polynomial in N time) by

relaxing it to an LP described by (5.13)-(5.16).

Feasibility of signature components. It is important to check whether for a given

set of K tuples, (ik, jA) for 1 < k < K, there exists a choice model in the signature

family with the given K tuples as signature components. Equivalently, we wish to

check the feasibility of the set of constraints (5.9)-(5.12) (or its relaxation).
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An efficient way to check the feasibility is to reduce this problem to finding maxi-

mum size matchings in K distinct N x N bipartite graphs, as described next. Given

K signature components (ik, jA), 1 k < K, we construct K bipartite N x N graphs

as follows: for each 1 < k < K, we start with a complete N x N bipartite graph

and remove all the edges (i, j) between the left vertex i and right vertex j such that

i = iak and j = jk' for some 1 < k' < K and k' = k. Note that a perfect matching in

any of the bipartite graphs corresponds to a permutation. Thus, once we construct

the K bipartite graphs, we can check the feasibility of the constraints (5.10)-(5.11)

by checking if there exist perfect matchings in all of the K bipartite graphs. Equiv-

alently, we need to check if the size of the maximum size matchings in each of the

bipartite graphs is equal to N. Finding the maximum size matching (and its size) in

a bipartite graph has a computational complexity of O(N 2 5 ) (cf. Micali and Vazirani

[1980], also see Edmonds and Karp [19721). Thus, given a subset of K tuples, (ik, jk)

for 1 < k < K, it can be verified in O(KN 2 5 ) time if it is feasible to have a choice

model with these K as signature components.

Searching in signature family. We now describe the main algorithm that will

establish the result of Theorem 15. The algorithm succeeds in finding a choice model

A with sparsity IAllo = O(e-2 Klog N) and error |IM(A) - Y||o 2e if there exists a

choice model pt in signature family with sparsity K that is near consistent with Y in

the sense that |IM(p) - Y||m < e (note that || - 112 || - 1o). The computation cost

scales as exp (E(K log N)). Our algorithm uses the so called Multiplicative Weight

algorithm utilized in the context of the framework developed by Plotkin-Shmoys-

Tardos Plotkin et al. [1991] for fractional packing (also see Arora et al. [2005]).

The algorithm starts by going over all possible M subset of possible signature

components in any order till desired choice model A is found or all combinations are

exhausted - in the latter case, we declare that there exists no choice model of sparsity

K in the signature family that is an e-fit to the data Y. Now consider any such set of

K signature components, (ik, jk) with 1 < k < K. By the definition of the signature

family, the Y(ikjk) for 1 < k < K are the probabilities of the K permutations in

the support. Therefore, we check if 1 - E Z I- Ykik) < 1 + e. If no, we reject
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this set of K tuples as signature components and move to the next set. If yes, we

continue towards finding a choice model with these K as signature components and

the corresponding probabilities.

The first step is to verify if there exists a choice model with the chosen K compo-

nents as signature components. As discussed above, we can verify that in O(KN 25 )

time. If such a model indeed exists, we search for the appropriate model. The choice

model of our interest, represented by Z satisfying (5.9)-(5.12), should be such that

Y ~ ZY, where Y is viewed as an N 2 dimensional vector and Z as N 2 x N 2 matrix.

Putting it other way, we are interested in finding Z so that

K

Y(i) - e E Z(iJ)(isJ)Y(jikj) Y(id) + e, for all 1 < i, j < N 2  (5.17)
k=1

Z satisfies (5.9) - (5.12). (5.18)

This is precisely the setting considered by Plotkin-Shmoys-Tardos Plotkin et al. [1991]:

Z is required to satisfy a certain collection of 'difficult' linear inequalities (5.17) and

a certain other collection of 'easy' convex constraints (5.18) (due to its exact linear

relaxation (5.13)-(5.16) as discussed earlier). If there is a feasible solution satisfying

(5.17)-(5.18), then Plotkin et al. [1991] finds a Z that approximately satisfies (5.17)

and exactly (5.18). Or else, it discovers non-feasibility of the above optimization

problem. We describe this precise algorithm next.

For ease of notation, we denote the choice model matrix Z of dimension N 2 x

N2 (effectively N 2 x K) by a vector z of KN 2 dimension; we think of (5.17) as

2N 2 inequalities denoted by Bz > b with B being 2N 2 x KN 2 matrix and b being

2N 2 dimensional vector; finally, (5.18), through the linear relaxation (5.13)-(5.16), is

denoted by P. Thus, we are interested in finding z E P such that Bz > b.

The Plotkin et al. [1991] framework essentially tries to solve the Lagrangian re-

laxation of Bz > b over z E P in an iterative manner. To that end, let pe be the

Lagrangian variable (or weight) parameter associated with the fth constraint a Tz > be

for 1 < f < 2N 2 (where at is the fth row of B). We update the weights iteratively:

let t E {O, 1,... } represent the index of the iteration. Initially, t = 0 and pe(O) = 1
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for all e. Given p(t) = [p(t)], find zt by solving linear program

maximize Zpe(t)(a' z - bl)

over z E P. (5.19)

We insist on z' being an extreme point of P. Thus, even in case there are multiple

solutions, zt will be an integral (its components will be 0 or 1) corresponding to a

K-sparse choice model in the signature family. Given such a zt, the weights p(t + 1)

are obtained as follows: for 6 = min (6/8,1/2)

pI(t + 1) = pe (1 - 3(a'z t - be)). (5.20)

The above update (5.20) suggests that if the eth inequality is non satisfied, we should

increase the penalty imposed by pt(t) or else we should decrease. Now be E [0, 1]

since it corresponds to an entry in a non-negative doubly stochastic matrix Y. The

afzt E [0, 1 + E] since it corresponds to the summation of a subset of (non-negative)

K entries Y(ikj), 1 <k < K and by choice, we have made sure that the summation

of all of these K entries is at most 1 + e. Therefore, aTzt - be E [-2,2]. Hence, the

multiplicative update to each of the pe(-) is by a factor of at most (1 ± 26) in one

iteration. Such bounded change is necessary in order to guarantee good performance

of the eventual algorithm.

Now consider the sequence of z' produced for t < T where T = O(E-2 log N)

(precisely, T = 64E-2 ln(2N 2) as per [Arora et al., 2005, Corollary 4] and its utilization

in [Arora et al., 2005, Section 3.2]). If for any t, the value of the objective in (5.19) is

less than 0, then we declare infeasibility. This is because, if there indeed was a z that

is a feasible solution to (5.17)-(5.18), then this optimization problem must have cost

of optimal solution > 0. On the other hand, if for all t < T iterations, the optimal

value of (5.19) is > 0, then 2 = y (E'- 1 zt) is such that (see [Arora et al., 2005,
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Section 3.2])

af 2 be - e, for all 1 < < 2N2 . (5.21)

Now z corresponds to a choice model with support at most O(KT) = O(6-2K log N)

permutations since each z' is a choice model with support over K permutations in

a signature family. Further this choice model, say A (implied by 2) is such that

||M(A) - Y11. < 2e.
Note that the complexity of the above described algorithm, for given subset of K

signature components is polynomial in N. Therefore, the overall computation cost

of the above described algorithm is dominated by term ) which is at most N2K.

That is, for any K > 1, the overall computation cost of the algorithm is bounded

above by exp (E(K log N)). This also establishes the result of Theorem 15.

Utilizing the algorithm. Indeed, it is not clear a priori if for given observation

Y, there exists a signature family of sparsity K within some small error e > 0 with

e < 60 where so is most error we wish to tolerate. The natural way to adapt the above

algorithm is as follows. Search over increasing values of K and for each K search for

e = E0. For the first K for which the algorithm succeeds, it may be worth optimizing

over error e by means of a binary search: Eo/2,Eo/4,.... Clearly such a procedure

would require O(log 1/E) additional run of the same algorithm for the given K, where

e is the best precision we can obtain.

5.9 Proofs for Section 5.7

5.9.1 Proof of Theorem 14

In this section, we prove Theorem 14. We prove this theorem using the probabilis-

tic method. Given the double stochastic matrix M, there exists a choice model (by

Birkhoff-von Neumann's result) A such that M(A) = M. Suppose we draw T per-

mutations (samples) independently according to the distribution A. Let A denote the

empirical distribution based on these T samples. We show that for T = N/e 2, on
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average I|M(A) - M1|2 K e. Therefore, there must exist a choice model with T = N/c2

support size whose first-order marginals approximate M within an f 2 error of e.

To that end, let c-1, 0-2 ,..., oT denote the T samples of permutations and A be the

empirical distribution (or choice model) that puts 1/T probability mass over each of

the sampled permutations. Now consider a pair of indices 1 < i, j < N. Let Xh

denote the indicator variable of the event that -t(i) = j. Since the permutations are

drawn independently and in an identically distributed manner, X! are independent

and identically distributed (i.i.d.) Bernoulli variables for 1 < t < T. Further,

P(X = 1) = E[X = Mi.

Therefore, the (i, j) component of the first-order marginal M(A) of A is the empir-

ical mean of a Binomial random variable with parameters T and Mij, denoted by

B (T, Mij). Therefore, with respect to the randomness of sampling,

E X - M = Var (B(T,Mij))

1
= TMig(1 - Mi)

< ,i (5.22)

where we used the fact that Mij E [0, 1] for all 1 < i, j N. Therefore,

E[ IM(A) - M| = E[Z (TX - Mi)
ij t=1
M.--

< 23

N
N -(5.23)
T

where the last equality follows from the fact that M is a doubly stochastic matrix and

hence its entries sum up to N. From (5.23), it follows that by selecting T = N/E2,

the error in approximating the first-order marginals, |IM(A) - M1| 2, is within E on

average. Therefore, the existence of such a choice model follows by the probabilistic
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method. This completes the proof of Theorem 14.

5.9.2 Proof of Theorem 16

We prove Theorem 16 using the probabilistic method as well. Suppose Y is a noisy

observation of the first-order marginals M(A) of the underlying choice model A. As

per the hypothesis of the theorem 16, we assume that A is either from the MNL family

or the max-ent exponential family with the corresponding regularity conditions on the

parameters. For such models A, we establish the existence of a choice model A that

belongs to the signature family approximates M(A) (and hence approximates Y) well.

Fix a model A, and as in the proof of Theorem 14, consider T permutations

drawn independently and in an identical manner from the distribution A. Let A be

the empirical distribution of these T samples as considered before. Following the

arguments there, we obtain (like (5.23)) that

E[IM(A) - M(A)||| 1 -, (5.24)

For the choice of T = 4N/e2 , using Markov's inequality, it follows that

P||M()) - M(A)I| > 32 . (5.25)

Since |IM(A) - M||2 < e, it follows that |IM(A) - Y112 < 2e with probability at least

3/4.

Next, we show that A, thus generated satisfies signature conditions with a high

probability (at least 1/2) as well. Therefore, by union bound we can conclude that A

satisfies the properties claimed by Theorem 16 with probability at least 1/4.

To that end, let Et be the event that o-t satisfies signature condition with respect

to set (o-1, ... , -r7T). Since all o1, .. ., or are chosen in an i.i.d. manner, the probability

of each event is identical. We wish to show that P (U1 t T Ef) < 1/2. This will follow

from establishing that TP(E') < 1/2. To establish this, it is sufficient to show that

P(Ef) < 1/N 2 since T = 4N/e2
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To that end, suppose o- is such that a-1(1) = i1 ,..i.,co1 (N) = iN. Let Jj =

{at-(j) $ ij, 2 < t < T}. Then by definition of signature condition, it follows that

=U

Therefore,

nP? E(60 P ' fqfc
j=1gc

= n (5.26)
gj=2 t=1 -ec

We establish that the right hand side of (5.26) is bounded above by O(1/N 2) and

hence TP(Efc) = O(E- 2/N) < 1/2 for N large enough as desired. To establish this

bound of O(1/N 2) under the two different conditions stated in Theorem 16, we con-

sider in turn the two cases: (i) A belongs to the MNL family with condition (5.7)

satisfied, and (ii) A belongs to the max-ent exponential family model with the condi-

tion (5.8) satisfied.

Bounding (5.26) under the MNL model with (5.7). Let L = N5 for some 6 > 0 as in

hypothesis of Theorem 16 under which (5.7) holds. Now

P fgf)= 1 -P $1

=1 -P o-t(1) #ii; 2 < t < T)

=1 -P (o 2 (1) ) 1

= I 1 -1 N (5.27)

For j ;> 2, to evaluate P(JIi j), we evaluate 1 - P( rjIni-i 1f). To evaluate,

P($gj ni-19tj), note that the conditioning event nj- suggets that for each

o-t, 2 < t < T, some assignments (ranks) for first j - 1 items are given and we need
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to find the probability that jth item of each of the -2, - - -, -T are not mapped to ij.

Therefore, given nj-lg the probability that 0-2(j) does map to ij is wj/(EkEx Wk),

where X is the set of N - j + 1 elements that does not include the j - 1 elements

to which o2(1), . .. ,U2 (j - 1) are mapped to. Since by assumption (without loss of

generality), w1< ... < WN, it follows that EkEX Wk > EN-i+1 Wk. Therefore,

P(L -1 .) (I -
T-1

n EiOf >1-N-j 1 .
t=1 k=1 Wk

(5.28)

Therefore, it follows that

c) Lj=1
L

1j=1
L

j=1

i. )T-1i
- ( -N-j 1

Ek=1 Wk

WN T-1

-1 N-j 1
Ek=1 Wk)

W )T-1

EN-L+1k=1 wk

WN T-1 L

1 -N-L+1 . (5.29)

Let W(L, N) = WN/ (k=11 Wk). By

W(L, N) < VIog N/N and L - NI. Th

P 1 -8

where we have used the fact that 1 - x

X = v/logN/N) and since T = N/e, (1 -+

exp NTVBN) =

hypothesis of Theorem 16, it follows that

erefore, from above it follows that

- N i

exp (- N L (5.30)

= exp(-x)(1 + O(x 2 )) for x E [0, 1] (with

O (log N/N 2 ))T = 1 + o(1) = E(1). Now

xp (4 log N/2) < 1. (5.31)
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Therefore, using the inequality 1 - x < exp(-x) for x E [0, 1], we have

P exp Lexp(-4 logN/e2)). (5.32)

Since L = N5 for some 6 > 0 and exp(-4/log NIE 2) = o(N81 2 ) for any 6 > 0, it

follows that

P exp (- (NJ/2))

< O(1/N 2 ). (5.33)

Therefore, it follows that all the T samples satisfy the signature condition with respect

to each other with probability at least O(1/N) 5 1/4 for N large enough. Therefore,

we have established the existence of desired sparse choice model in signature family.

This completes the proof of Theorem 16 under MNL model with condition (5.7).

Bounding (5.26) under the max-ent exponential family with (5.8). As before, let

L = N6 for some 6 > 0 (choice of 6 > 0 here is arbitrary; for simplicity, we shall think

of this 6 as being same as that used above). Now

P ffc = 1 - P $1

=1 - P (1~) # i1 ; 2 < < T)

=1 - P o-2(1) / ii . (5.34)

To bound the right hand side of (5.34), we need to carefully understand the impli-

cation of (5.8) for the exponential family distribution. For that, first consider the

simple case where the parameters O93 are all equal. In that case, it is easy to see that

all permutations have equal (1/N!) probability assigned and hence the probability

P(-2(1) =# ii) equals 1 - 1/N. However such an evaluation (or bounding) is not

straightforward for general parameter values because it involves computation of the

'partition' function. To that end, consider 1 < i 4 i' < N. Now by the definition of
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exponential family (and 0-2 is chosen as per it),

P (-2(1) = i) =z1 [ E exP (ZOkrkI)]
Z(e N) (1e() k)

exp Si1)
=E exp Oklgo-k] .

Z() CESN(1-+i) k01,l
(5.35)

In above SN(1 -+ i) denotes the set of all permutations in SN that map 1 to i:

SN(1 -+ i) = o E SN : o~(1) = i}.

Given this, it follows that

P(02(1) = - exp(O1 i) [E,ESN(1+i) exp (Zkf1, Oklo-kl)]

P (-2(= i' exp(Oi') [EsN(1.+i) eXp (Ekfl,l OklPkl)

(5.36)

Next, we consider a one-to-one and onto map from SN(1 -+ i) to SN(1 -* i') (which

are of the same cardinality). Our goal is to construct a mapping such that if o- E

SN(1 -4 i) is mapped to p E SN(1 -+ i'), then we have that

exp Orkl Oki ) og N exp (PkiOki).

In that case, (5.36) implies that

P (0-2(1) =i

(Or25 
< log N.

(5.37)

(5.38)

This in turn implies that for any i, P(C 2 (1)

bounding (5.34).

= i) < VlogN/N, which we can use in

To that end,we consider the following mapping from SN(1 -+ i) to SN(1 -+ i)-

For any o- E SN(1 -+ i), it follows by definition that o-(1) = i. Let q be such that

o-(q) = i'. Then map a- to p E SN(1 -+ i') where p(l) = i', p(q) = i and p(k) = o-(k)

178



for k 1, q. Then,

exp Ekl TkI lOki) exp (O14 + oqvf)

exp Eki PkIOk) exp li + Oqi)

log N, (5.39)

where the last inequality follows from condition (5.8) in the statement of Theorem

16. From the above discussion, we conclude that

P (g1 c) = 1 - IP (o 2 (1) #i
)T-1

< 1 - (1 - ) (5.40)

For j > 2, in order to evaluate P(j Injui1 9), we evaluate 1- P(gjIni-1 sf). To

evaluate, P(Qgj I nji- j), note that the conditioning event ntljff suggets that for

each or, 2 < t < T, some assignments (ranks) for first j - 1 items are given and we

need to find the probability that jth item of each of the o 2,..., -
0 T are not mapped

to i. Therefore, given ntigtf, we wish to evaluate (an upper bound on) probability

of o-2 (j) mapping ij given that we know assignments of o2(1), ... , o 2 (j - 1). By the

form of the exponential family, conditioning on the assignments o2(1),..., o2 (j - 1),

effectively we have an exponential family on the space of permutations of remaining

N - j + 1 element. And with respect to that, we wish to evaluate bound on the

marginal probability of o 2(j) mapping to ij. By an argument identical to the one

used above to show that P(o2 (1) = i) < VlogN'/N, it follows that

Nj1og
P osj) ig|f 5N - j+1

2 N (5.41)

where we have used the fact that j < L = N6 < N/2 (for N large enough). Therefore,

179



it follows that

P -- (1 - 2VTN . . (5.42)

From here on, using arguments identical to those used above (under MNL model),

we conclude that

P exp (- (N,/2))
< O(1/N 2 ). (5.43)

This completes the proof for max-ent exponential family with condition (5.8) and

hence that of Theorem 16.

5.10 Noisy setting: greedy heuristic

In Section 5.8 we proposed a novel scheme based on the multiplicative weight update

idea used by Plotkin et al. [1991]. For the case of first-order marginal information,

we established that the running time complexity of the algorithm is O(exp(K log N))

provided there is a choice model in the signature family with sparsity K that is

good fit to the data. As established in Theorem 16, for a large class of models, the

sparsity K scales as O(N) (ignoring the e dependence), resulting in a computational

complexity for our algorithm the is polynomial in N! = exp(E(Nlog N)). While

our algorithm has managed to obtain a significant reduction in complexity from the

brute-force approach, anything polynomial in N! is still prohibitive for many common

applications in practice. In order to address this situation, we present in this section

a greedy heuristic called the greedy sparsest-fit algorithm, which is based on the

sparsest-fit algorithm proposed above in Section 5.5; specifically, the greedy sparsest-

fit algorithm is a generalization of the sparsest-fit algorithm to the case when the

observations may be corrupted by noise. The reason for the specific modifier 'greedy'

in the name of the algorithm will become clear once we describe the algorithm.
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We can guarantee that the sparsest-fit algorithm always outputs a valid distribu-

tion (see Theorem 17 described below), and in addition, if the underlying model A

satisfies the signature and linear independence conditions and the marginal informa-

tion is noise-free, then it recovers A (see Theorem 18 described below). In this sense,

the greedy sparsest-fit algorithm subsumes the sparsest-fit algorithm. Moreover, we

can guarantee that the running time of the algorithm is essentially polynomial in N

for first-order marginals and the type of data obtained from sales transactions. Un-

fortunately, we cannot provide any guarantees on the sparsity of the models that will

be identified - and hence we call it a heuristic. However, we find that this algorithm

has good performance in practice, as discussed in Section 5.11 in the context of our

empirical study.

We now describe the greedy sparsest algorithm. The theorems that establish

the algorithm's correctness are described subsequently. We describe the algorithm

assuming that we have access to (possibly noisy) observations of p-order marginal

information. In order to keep the exposition simple, we don't describe the extension

of the greedy sparsest-fit algorithm to transaction type data; nevertheless, it does

extend in a straightforward manner.

Loosely speaking, the greedy sparsest-fit algorithm outputs a valid distribution

(see Theorem 17) with "as few permutations in the support as possible" while ap-

proximating the given partial information "as closely as possible." Similar to the

sparsest-fit algorithm, the greedy sparsest-fit algorithm processes the components of

the marginal information matrix Y sequentially and build the permutations in the

support incrementally. While processing each element, the greedy algorithm avoids

introducing a new permutation into the support by trying to express the element

using the permutations already in the support. In this sense, the algorithm makes

'local' greedy decisions. Local greedy decisions can however lead to meaningless dis-

tributions if not done carefully because of the complicated dependence structure of

permutations. The 'greedy sparsest-fit' algorithm avoids this issue by using a global

view obtained by carefully exploiting permutation structure while making local deci-

sions.
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More precisely, we assume access to observations matrix Y that is related to the

underlying choice model A as Y = MP(A) + 71, where q is the noise vector and p is

some partition of N. We consider the general case, where A may not satisfy either the

signature or the linear independence conditions. As mentioned above, the algorithm

exploits the permutation structure to make local greedy decisions with a global view.

In order to reveal this structure, it is useful to represent the D, x D, matrix Y as

a D, x D, weighted bipartite graph with the nodes on each side corresponding to

distinct p-partitions of N and the weight of edge (ti, tj) equal to Y, . With this

representation, it is easy to see that the matrix AP(a) of any permutation a can

be thought of as a D, x D, perfect matching. Thus, Y is a weighted combination

of perfect matchings with weights A(u) for the corresponding o. Note that every

D, x D, perfect matching does not correspond to a valid permutation5 (except of

course when p = (N - 1, 1)). Therefore, we call a perfect matching that corresponds

to a permutation a 'valid perfect matching'.

Before we describe the algorithm, we make the following assumptions. We assume

that every element of the data matrix Y is non-negative. We let {qi, q2, . - - , qL denote

the non-zero data elements sorted in ascending order qi < q2 < ... qL; each index

1 < e < L corresponds to an edge in the weighted bipartite graph, or equivalently,

a pair of p-partitions t, tj. At each stage, the algorithm maintains partial rankings,

which we think of as partial matchings in a D, x D, bipartite graph that can be

completed into valid perfect matchings. The algorithm maintains a partial ranking

as a set of indices/edges B c {1,2,. .

The algorithm also assumes access to what we call a 'complete-order' oracle: given

sets of edges B,3 c {1, 2,... , L}, the oracle outputs whether B can be completed

into a valid perfect matching using the edges in set S. More formally, we assume

90f course, there are DP! possible perfect matchings and only N! permutations.
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access to a function oracle(B, S) such that

S true if 3 valid perfect matching M s.t.

oracle(B, S) = BcMcBUS

false otherwise.

Since not every perfect matching corresponds to a permutation, this entails more

than just determining whether there exists perfect matching that contains edges in B

and uses edges in S. Therefore, except in the first-order case, one may not be able to

design a computationally efficient 'complete-order' oracle. Going into the details of

how one can overcome this issue is beyond the scope of the current work. It suffices

to mention here that depending on the situation at hand one, can design efficient

randomized oracles that output false whenever there is no valid perfect matching

that satisfies A C M C A U S, and true with probability 1 - e whenever there exists

such a perfect matching. The error rate of e is the price one pays for computational

efficiency.

Description. The formal description of the algorithm in given in Figure 5.10.

Similar to the sparsest-fit algorithm, the algorithm takes as inputs a sequence of

positive values sorted in ascending order qi < q2 < - - - < qL, a tolerance parameter

e > 0, and a mapping of the indices 1 < f < L to edges of a D, x D, bipartite

graph. Given these inputs, the algorithm strives to find a distribution that matches

the given data qt to within a relative error of e while trying to use as few permutations

as possible in the support.

The general idea of the algorithm is as follows. The algorithm processes the values

q1, q2, ... , qL sequentially. Roughly speaking, for each edge, the algorithm makes an

attempt to greedily include it into one of the (partial) permutations already in the

support; only in cases it cannot, the algorithm introduces a new permutation into the

support. When attempting to include the edge into one of the permutations already in

the support, the algorithm uses qt and the values Pi, P2, - - -, Pk(e) of the permutations

already in the support as one of the signals. Since greedy local decisions can result in
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ending up with invalid or incomplete permutations in the support, the algorithm uses

oracle(-, -) to narrow down the set of permutations in the support where the edge can

be added. This issue was avoided in the sparsest-fit algorithm through the 'unique

witness' and 'linear independence' conditions.

More formally, in each iteration e, the algorithm maintains the number of (partial)

permutations in the support at the end of iteration f as k(e). Partial permutations are

maintained as sets Bk, which at the end of iteration f are such that Bk C {1, 2,. .. ) }
and correspond to a partial D, x D, matchings that are subsets of valid perfect

matchings. The values corresponding to the partial permutations are maintained as

Pi ,P2, - --,Pk(e). Finally, we maintain a set of 'left-over' edges Se, which at the end

of iteration i contains all edges (or indices in {1, 2, ... , L}) except the ones already

processed. We define Se such that edge e is not present in St. A the beginning of the

algorithm, k(O) is initialized to zero, So is initialized to contain all the L edges, and

the sets Bk are initialized to be empty.

At the beginning of iteration e, the algorithm first determines a set of 'feasi-

ble' permutations feas-perms containing indices k such that after edge e is added to

Bk, it is still possible to complete it into a valid perfect matching using only the

left over edges in Se i.e, feas-perms = {1 < k < k(f): oracle(Bk U {f}, Sf) = true}.

In addition, the algorithm determines a set of 'must be added to' permutations

must-perms c feas-perms containing indices k such that if edge e is not added to Bk,

then it cannot be completed into a valid perfect matching using only the available

edges in Se i.e., must-perms = feas-perms nfl {1 k k(f): oracle(Bk, Se) = false}. It

is by determining feas-perms and must-perms that the algorithm maintains a "global

view." Moreover, it is the determination of feas-perms and must-perms that requires

exploitation of the permutation structure through oracle(-, -). The algorithm then

adds edge f to all sets Bk such that k E must-perms. It removes the weight added

from the edge i.e., updates qe to qe - Ekemust-permsPk- If the leftover weight is "too

small" i.e., if updated value qt is less than e times its original value q+Ekmust-permspk,

then the algorithm stops the iteration here and moves to the next iteration.

If the leftover weight qj is large enough then the algorithm tries to include the
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edge in some of the 'feasible' permutations. More precisely, the algorithm determines

a subset T C feas-perms \ must-perms such that the error I q - kET Pk I is small as

possible; let's call the subset the gives the smallest error best-set and the corresponding

error best-error. If the best error is within eqj, then edge f is added to the permutations

in best-set and the algorithm moves onto the next iteration.

If the best-error is not within eqj, then the algorithm is forced to introduce a

new permutation into the support. Before introducing the new permutation though,

the algorithm checks whether it is possible to create a complete permutation using

only the edges available in set Sj; in particular, it checks whether oracle({e}, S) is

true. If it is indeed possible to add a new permutation to the support, the algorithm

increments k( - 1) to k(f) = k(f - 1) + 1 and adds the edge to the set Bk(e)-

In case it is not possible to create a new permutation with the existing edges i.e.,

oracle({e}, Sj) = false, then the algorithm includes the edge in the best-set although

best-error may not be within eqt. Note that in this case, it is possible for feas-perms

to be empty, in which case this edge would not be added to any permutation in the

support.

Complexity of the algorithm. The derivation of the complexity of the algorithm

is similar to that of the sparsest-fit algorithm. To start with, we sort at most D2

elements. This has a complexity of O(Di log D,). Further, note that the for loop in

the algorithm iterates for at most D times. In each iteration, we call the oracle(-,-)

at most 2K times. In addition, we solve a subset-sum problem, and since there are at

most K elements, the worst-case complexity of subset-sum in each iteration is O(2 K).

Thus, the worst-case complexity of the algorithm is O(D2 log D, + D 2KC(oracle)),

where C(oracle) denotes the computational complexity of the oracle. For the first-

order information, it is known that we can construct such an oracle with a compu-

tational complexity of O(N 2 5 ) (see Micali and Vazirani [1980], Edmonds and Karp

[1972]). Similar to the case of the sparsest-fit algorithm, the average case complexity

of the algorithm can be shown to be much smaller. Specifically, suppose the p-order

partial information comes from an underlying model A that is drawn from the ran-

dom model R(K, W). Then, using the standard balls and bins argument, we can prove
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Figure 5-1: Greedy sparsest-fit algorithm

Input: Tolerance parameter e > 0 and non-negative values {qi, q2 , ... , qL} sorted
in ascending order i.e., qi 5 q2 < ... qL and a mapping of indices 1 < f < L to
edges in D, x D, bipartite graph.

Output: Positive numbers {p1,p2, ... ,PK} s-t-k=1 Pk = 1, and for 1 < k < K
set Bk C {1, 2, ... , L} s.t. Bk corresponds to a valid permutation.

Algorithm:

initialization: po = 0, k(O) = 0, Bk = 0 for all possible k, So 1, 2, ... , L}.
for i = 1 to L

St = St_1 \ {M
feas-perms <- {1 < k' < k(V - 1):

oracle(Bk' U {f} , Se) = true

must-perms +- feas-perms nl1 < k' < k(y - 1):

oracle(Bki, SC) = false }
Bk, +- Bk' U {} V k' E must-perms
qt +- q - EkEmust-permspk,

if qt < e(qf + Ek'Emust-permsPk')
k (f) = k(f - 1)
skip rest of loop

end if
cand-perms = feas-perms \ must-perms
best-set +- arg minTccand-perms|q -W EET Pk',

best-error +- i - ZkEbest-set Pk'
if best-error < eqe

Bk, <- Bk, U {e} V k' E best-set
k() =k(e - 1)

else if oracle({e} , St) = true

k (f) = k(f - 1) + 1

Pk(t) = qt
Bk(t) +- Bkif) U {l}

else
Bk, + Bk, U {e} V k' E best-set
k (f) =k(f - 1)

end if
end for
Pk' +- Pk'/ ,,=21 pw' for k' = 1 to k(L)
Output K = k(L) and (pk,, Bk'), 1 < k' < K.
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that for K = O(Dp log D,), with a high probability, there are at most O(log D,) el-

ements in each subset-sum problem. Thus, for the first-order marginal information,

the complexity would then be 0 (exp(log2 D,)) with a high probability.

We now state two theorems about the correctness of the algorithm. The first the-

orem establishes the correctness of the algorithm, and the second theorem establishes

that the greedy sparsest-fit algorithm subsumes the sparsest-fit algorithm.

Theorem 17. Given any tolerance parameter e > 0 and non-negative partial in-

formation {q1, q2, .. . , qL} corresponding to partition p, the 'greedy' heuristic always

outputs a valid distribution over permutations, provided there exists at least one valid

perfect matching in the edges {1, 2,.. ., L}.

Theorem 18. Consider the noiseless case where the partial information {q1, q2 ,... , qt}

is generated by a distribution A that satisfies the signature and linear independence

conditions. Then, the greedy heuristic with e = 0 recovers A exactly.

Next, we present the proofs of the two theorems.

5.10.1 Proof of Theorem 17

Note that the algorithm normalizes the values so that EK 1Pk = 1. Therefore, we

only need to prove that the non-empty sets of edges Bk, 1 < k < K, correspond

to permutations (valid perfect matchings). For that, we claim that the following

statement is a loop-invariant: at the end of every iteration f E {1, 2, ... , L}, for every

non-empty set Bk, there exists a valid perfect matching Mk,e such that Bk C Mk,e C

Bk U St. Before we prove the claim, note that the result of the theorem readily follows

from this claim. In particular, at the end of iteration L, SL = 0 and hence for every

non-empty set Bk, we must have Bk C Mk,L c Bk, which implies that every non-

empty subset Bk corresponds to a valid permutation. Furthermore, by hypothesis,

since there exists at least one valid perfect matching in the set {1, 2, ... , L}, it follows

that there exists at least one non-empty set Bk.

We are now only left with proving the above claim, for which we use induction

on f. Let 1 < fo < L be the first iteration such that B 1 is non-empty at the end
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of the iteration. Note that eo < L by the hypothesis that there exists at least one

valid perfect matching in the set {1, 2,... , L}. By the end of iteration eo, edge fo

will have been added to set B1 resulting in B1 = {fo}. This necessarily implies that

oracle({}fo}, SIe) = true, and it follows from the definition of oracle(.,-) that there

exists a valid prefect matching M such that

{ 0} c M c { 0} U S
== B c M c B U S,

where the implication follows from the fact that B 1 = {fo}. This proves the base

case.

Now assuming that the claim is true for f - 1, we prove it for o < f < L. Let

IQ denote the set of ks such that edge f was added to set Bk during iteration f i.e.,

at the end iteration e, i E Bk V k E K. It now follows from the algorithm that for

every k E K, we must have oracle(Bk, Sf) = true, which implies that for every k E EQ

there exists a valid perfect matching Mk, such that

Bk C Mk,e C Bk U St.

Now consider any k such that k V K, and Bk is non-empty. Since edge f was not added

to Bk, it must be that k 0 must-perms. This means that either oracle(Bk U {f} , Se) =

false or oracle(Bk, S,) = true. In the first case, since by induction hypothesis there

exists a valid perfect matching M such that Bk c M C Bk U Se U {f}, it must be the

case that M does not contain edge f and hence M C Bk U St. In the second case,

it follows from the definition of oracle(., -) that there exists a valid perfect matching

such that Bk c M c Bk U St. This establishes the claim for f assuming the claim is

true for f - 1. The claim now follows by induction.
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5.10.2 Proof of Theorem 18

Since A satisfies the signature and linear independence conditions, we can run the

sparsest-fit algorithm to obtain the support and values of A as (B', p') for 1 < k < K'.

Suppose we also store the number of partial rankings k'(e) at the end of each iteration

1 <e < L of the sparsest-fit algorithm. For convenience, we let B' = 0 for k > K'.

In addition, let Bk be the sets of edges and Pk the values obtained from running the

greedy heuristic with e = 0. We claim that at the end of any iteration f of the greedy

heuristic, Bk c B1 c Bk U Se for all possible k; Pk = p'k for all 1 < k < k(e); and

k(f) = k'(e). Assuming this claim is true, since SL = 0, it immediately follows that

the greedy heuristic recovers A exactly. We are now only left with proving the claim.

We prove the claim using induction on E. As the base case, let's consider the

first iteration. Because of the signature condition, it follows that qi = pl; further,

oracle({1}, S1) = true because {1} C B' C {1} U S1. Hence, at the end of first

iteration of the greedy heuristic we will have B 1 = {1}, pi = p', and Bk = 0 for all

k > 2. Since only B 1 contains edge 1 because of the signature condition, it follows

that Bk C Bk c Bk U Si for all possible k, pi = p' and k(1) = k'(1) = 1. This

establishes the base case.

Now assuming that the claim is true for all e - 1, we prove it for 1 < f < L.

Let K' denote the set of ks such that B' contains edge F, and consider the beginning

of iteration e. Note that it follows by induction hypothesis that at the beginning of

iteration f

BkC BC C Bk U S1, for any k C,

Bk U{e} C Bk1c Bk U {e} U St, for any k E K'.

Therefore, in order to prove the induction step, it is sufficient to to prove two things:

1. During iteration f, edge f is added to sets Bk for k in K' and only in K', and

2. If k(f) = k(f - 1) + 1, then Pk(e) = p'(,) and k(f) = k'(e).

Before we prove the two things mentioned above, we make the following observa-
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tions. For any k E K',, it must follow by induction hypothesis that Bk U {} c BI c

BkU{f}USe at the beginning of iteration f. This means that oracle(BkU{f} , Se) = true

for any k E K't. This leads us to conclude that

K' n {k: Bk # 0} c feas-perms at start of iteration f. (5.44)

Similarly, it follows from the induction hypothesis that, for any k ( K', Bk C B' c

Bk US at the beginning of iteration f because f ( B'. Therefore, oracle(Bk, S) = true

leading us to conclude that

must-perms c K, n {k: Bk $ 0} at start of iteration f. (5.45)

To prove the induction step, we consider two cases. First, consider the case

when we introduce a new permutation into the support i.e., when K' = {ke} and

must-perms = 0. Note that because of the linear independence condition and the fact

that e = 0, edge f will not be added to any Bk for k E feas-perms. Further, note that

oracle({f} , Se) = true since {f} c Bk, CI {} U St. Thus, the algorithm adds edge 0 to

set Bk(f), where k(f) = k(f -1) +1 = k'(i - 1) +1, the last equality following from the

induction hypothesis that k(f - 1) = k'(f - 1). In addition, since must-perms is empty,

we will have pk(e) = q = pi, (because of unique witness condition). The only thing we

are now left to prove is that k(f) = k'(f) = kt. To prove this, we argue that 0 is the

lowest index in the set B',. If f is the first edge that is added to set Bk,, it follows from

the property of the sparsest-fit algorithm that k'(0) = ke and k'(0 - 1) = k'(f) - 1.

This immediately implies that k(E) = k(f - 1) + 1 k'(f - 1) + 1 = k'(f) = kg.

Therefore, in this case, edge f will be added to Bk for k in K, and only in K', and

k(f) = k(f - 1) + 1 = k'(f) with Pk(l) = piky). To finish this case, we now argue that

i is the first edge added to set Bk,. First, note that it follows by the definition of

must-perms that must-perms is empty only if Bk, is empty at the beginning of iteration

f. Therefore, f must be the first edge added to B', because otherwise the induction

hypothesis Bk, c B, c Bk, U Se-1 will be violated as Bk, is empty and Se-1 does not

contain edge f'.
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Now consider the case when we don't introduce a new permutation into the sup-

port i.e., either |K'j > 2, or |K' = 11 and must-perms 0 0. In this case, we argue that

at the beginning of iteration f the sets Bk for all k E C' are non-empty. Assuming

this is true, it follows from (5.44) and (5.45) that

must-perms C K' c feas-perms.

Therefore, the algorithm adds edge f to must-perms and then to Bk for all k E

K' \ must-perms because of the linear independence condition and the fact that e = 0.

After edge f is added to Bk for k E K', its weight becomes zero and the iteration

ends. Therefore, edge f is added to Bk for k in K' and only in I' and k(f) = k(f - 1).

The only thing we are left with is to argue that Bk is non-empty at the beginning

of iteration f for all k E K'e. We consider two cases. In the case when |K'j > 2, the

unique witness edges of all permutations in K' should have been encountered before

edge f i.e., for each k E ]'e, there exists a unique witness edge f' < f such that f' E B;

if Bk were empty, then the induction hypothesis that Bk C B' C Bk U Se-1 would

be violated since Se_1 does not contain f'. Therefore, in the case when IK' > 2, we

must have Bk must be non-empty at the beginning of iteration e for all k E K'e. Now

consider the case when |Kj' = 1 and must-perms # 0. In this case, since K' contains

only one element and must-perms c K'e n {k: Bk : 0}, it must be the case that Bk

must be non-empty for k E K'. This finishes the proof of the induction step for this

case.

The result now follows by induction.

5.11 An empirical study

In this section, we describe an empirical study we conducted to demonstrate that

sparse models are effective in capturing the underlying structure of the problem.

For the purpose of the study, we used the well-known APA (American Psychological

Association) dataset that was first used by Diaconis [1989] in order to demonstrate the
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underlying structure one can unearth by studying the appropriate lower-dimensional

'projections' of choice models, which include first and second order marginals.

Specifically, the dataset comprises the ballots collected for electing the president

of APA. Each member expresses her/his preferences by rank ordering the candidates

contesting the election. In the year under consideration, there were five candidates

contesting the election and a total of 5,738 votes that were complete rankings. This

information yields a distribution mapping each permutation to the fraction voters

who vote for it. Given all the votes, the winning candidate is determined using the

Hare system (see Fishburn and Brams [1983] for details about the Hare system).

A common issue in such election systems is that it is a difficult cognitive task for

voters to rank order all the candidates even if the number of candidates is only five.

This, for example, is evidenced by the fact out of more than 15,000 ballots cast in

the APA election, only 5,738 of them are complete. The problem only worsens as the

number of candidates to rank increases. One way to overcome this issue is to design

an election system that collects only partial information from members. The partial

information still retains some of the structure of the underlying distribution, and the

loss of information is the price one pays for the simplicity of the election process.

For example, one can gather first-order partial information i.e., the fraction of people

who rank candidate i to position r. As discussed by Diaconis [1989], the first-order

marginals retain useful underlying structure like: (1) candidate 3 has a lot of "love"

(28% of the first-position vote) and "hate" (23% of the last-position vote) vote; (2)

candidate 1 is strong in second position (26% of the vote) and low hate vote (15% of

last-position vote); (3) voters seem indifferent about candidate 5 (see Table 5.1).

If we collect only first-order information, then we are faced with the issue of

using this partial information to determine the winner. Having complete distribution

affords us the flexibility of using any of the several rank aggregation systems out

there. In order to retain this flexibility, our approach is to fit a sparse distribution to

the partial information and use the distribution with the favorite rank aggregation

system to determine the "winning" ranking. Such an approach would be of value if the

sparse distribution can capture the underlying structural information of the problem
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Rank
Candidate 1 2 3 4 5

1 18 26 23 17 15
2 14 19 25 24 18
3 28 17 14 18 23
4 20 17 19 20 23
5 20 21 20 19 20

Table 5.1: The first-order marginal matrix where the entry corresponding to candidate
i and rank j is the percentage of voters who rank candidate i to position j

at hand. Therefore, with the aim to understand the type of structure sparse models

can capture, we used the first-order marginal matrix M that is obtained from 5,738

complete rankings and given in Table 5.1 with the heuristic described in Section 5.10

to determine the following sparse model A:

24153 0.211990

32541

15432

43215

51324

23154

0.202406

0.197331

0.180417

0.145649

0.062206

In above description of the model A, we adopted the notation used in Diaconis [19891

to represent each rank-list by a five-digit number in which each candidate is shown

in the position it is ranked i.e., 24153 represents the rank-list in which candidate 2

is ranked at position 1, candidate 4 is ranked at position 2, candidate 1 is ranked at

position 3, candidate 5 is ranked at position 4, and candidate 3 is ranked at position

5. Note that the support size of A is only 6, which is a significant reduction from

the full support size of 5! = 120 of the underlying distribution. The average relative

error in the approximation of M by the first-order marginals M(A) is less than 0.075,
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where the average relative error is defined as

|M(A)ij - Mig|

1 i,j 5 Mig

Note that this is a much stronger (since its relative) guarantee than just an additive

error guarantee. The main conclusion we can draw from the small relative error we

obtained is that the heuristic proposed in Section 5.10 can successfully to find sparse

models that are a good fit to the data in interesting practical cases. Now that we

managed to obtain a huge reduction in sparsity at the cost of an average relative error

of 0.075 in approximating first-order marginals, we next try to understand the type

of structure the sparse model is able to capture from just the first-order marginals.

In order understand that, we compared the 'stair-case' curves of the cumulative

distribution functions (CDF) of the actual distribution A and A^ in Figure 5.11. Along

the x-axis in the plot, the permutations are ordered such that nearby permutations

are "close" to each other in the sense that only a few transpositions (pairwise swaps)

are needed to go from one permutation to another. The figure visually represents the

how well the sparse model approximates the true CDF.

We next considered structural similarities between A and A beyond the similari-

ties between their CDFs. Particularly, as evidenced by the applications discussed in

Chapter 3, in several practical applications, what one is eventually interested in is

a functional of the distribution - rather than the distribution itself. In the case of

APA dataset, a functional of interest is the one that declares the outcome of the elec-

tion in the form of a "socially preferred" ranking of the 5 candidates. As mentioned

above, the Hare system was used to determine the winning ranking. When applied to

both the distributions, the winning ranking obtained from the original distribution

A was 23145 and from the sparse distribution A was 13245. Given these outcomes,

we make the following observations. As is not surprising, the rankings obtained are

clearly different, but the sparse model manages to capture the ranking of the can-

didates 4 and 5. The sparse model declares candidate 1 as the winner, whereas the

original ranking declared candidate 2 the winner. We argue that declaring candidate
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1 as the winner is not totally unreasonable, and in fact arguably the better choice.

Specifically,it was observed in Diaconis [1989] that the data shows that candidate 1

has strongest 'second' position vote and the least "hate" vote or last position vote

(see Table 5.1. Moreover, as observed in Diaconis [1989], the APA has two groups

of voters with different political inclinations: academics and clinicians. The authors

conclude that candidates {2, 3} and {4, 5} belong to different groups with candidate

1 somewhat neutral. From these two observations, one could argue that candidate 1

is a better choice than candidate 2. Furthermore, it is from the winning ranking of

A the grouping of candidates 2,3 and 4,5 are evident, leading us to conclude that the

sparse model A is able to capture the partitioning of the APA into two groups.

Finally, it is somewhat tantalizing to relate the support size 6 of the sparse ap-

proximation with the structure observed in the dataset by Diaconis [19891: there are

effectively three types (groups) of candidates {1}, {2, 3} and {4, 5} in view of the

voters. Therefore, all votes are effectively exhibiting their ordering/preferences over

these three groups and therefore effectively the votes are representing 3! = 6 distinct

preferences. And 6 is the suppose of the sparse approximation.

5.12 Chapter summary and discussion

In this chapter, we considered the problem of learning choice models from marginal

information about the model. Such problems naturally arise in several important

application settings like customer segmentation, rank aggregation, and compression

of distributions over permutations. Since the information available is limited, learning

the model is equivalent to choosing a criterion for selecting one of the potentially many

models that are consistent with the data. The criterion we choose is that of parsimony

or sparsity. Specifically, we propose to select the sparsest model that is consistent

with the data.

In the context of learning choice models, this chapter addressed broadly two main

questions: (1) how to learn the sparsest model efficiently? and (2) how "good" are

sparse models in practice. In order to answer the first question, we considered two
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Figure 5-2: Comparison of the CDFs of the true distribution and the sparse approxi-
mation we obtain for the APA dataset. The x-axis represents the 5! = 120 different
permutations ordered so that nearby permutations are close to each other with respect
to the pairwise transposition distance.
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settings: the noiseless and the noisy setting.

For the noiseless setting, given marginal information y = AA, we identified a

family of models called the 'signature' family T, whose definition depends on the

type of marginal information available. We showed that F possesses the following

two appealing properties: given y = AA such that A belongs to T, then (a) A is

also the sparsest model consistent with y, and (b) A can be recovered from y in

a efficient manner using the sparsest fit algorithm. In addition, we showed that the

signature family is not merely a theoretical construct by establishing that a randomly

chosen choice model that is sparse enough belongs to the signature family with a high

probability.

For the noisy setting on the other hand, we showed that for the first-order in-

formation, if we are willing to allow for an f2 error of e in approximating a given

doubly stochastic matrix, then there exists a choice model with sparsity O(N/E) that

is an E-fit to the data. Note that this is a significant reduction from E(N 2) that is

guaranteed by the Birhkoff-von Neumann and Caratheodory's theorems. Given that

we can expect to find sparse models, we considered the issue of efficient recovery of

sparse models. We showed that as long as there is a choice model A of sparsity K in

the signature family that is an e-fit to the data, we can find a choice model of sparsity

O(KlogN) that is a 2e-fit to the data in time O(exp(E(KlogN))) as opposed to

the brute-force time complexity of O(exp(e(KN log N))). Finally, we justified the

existence of a model in signature family that is a good fit to the data by showing that

the signature family is appropriately "dense" for a large class of models.

Given the results above, we note here their connection to the recently popular area

of compressive sensing. As mentioned above, the main goal in compressive sensing

is to learn a sparse vector in p dimensions from m linear "measurements", where

m < p. The main result of this work is that a the restricted null space condition

on the measurement matrix is necessary and sufficient for linear (convex) programs

to be able to find the sparsest solution. As argued above, the restricted null space

condition is not met and hence linear (convex) programs fail in our setting. Thus,

the signature conditions we derive are another set of sufficient conditions that allow
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efficient recovery of sparse models.

Finally, we discuss the applicability of our results in the noisy setting to types

of marginal information other than the first-order marginal information. The proof

for the result (Theorem 14) on "how sparse the sparse models are" does not ex-

ploit the structure of first-order marginals and hence can be extended in a reasonably

straightforward manner to other types of marginal information. Similarly, we strongly

believe the result (Theorem 16) that we can find good approximations in the signa-

ture family for a large subclass of choice models extends to other types of p-order

marginal information. In particular, for any p, one should be able to combine the

proof ideas of Theorem 16 and the theorem corresponding to p in Section 5.4 for the

noiseless setting to obtain a similar result. However, the result about computational

efficiency (Theorem 15) strongly relies on the efficient description of the first-order

marginal polytope by means of Birkhoff-Von Neumann result and will not readily

extend to other types of marginal information. Finally, the heuristic we presented

in Section 5.10 clearly does extend to case of general p-order marginal information,

but the computational complexity depends on the computational complexity of the

oracle. Indeed, an important future direction of research is to overcome this issue,

possibly developing better computational approximations.
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Chapter 6

Conclusions and future work

The thesis studied a nonparametric approach to choice modeling. The main contri-

bution of this thesis is to operationalize such a nonparametric approach to choice

modeling. We distinguished two broad setups based on the ultimate goals: (a) to

learn the choice model, and (b) to use the choice model to make predictions or deci-

sions. The latter setup is clearly a special case of the former setup. However, since

the second setup is simpler, we can obtain stronger results.

We first considered the problem of using choice models to make decisions. We

focused on the type of applications that are important to the areas of OM and RM.

The central decision problem in this context is the static assortment optimization

problem in which the goal is to find the optimal assortment: the assortment of prod-

ucts with the maximum revenue subject to a constraint on the size of the assortment.

Solving the decision problem requires two components: (a) a subroutine that uses

historical sales transaction data to predict the expected revenues from offering each

assortment of products, and (b) an optimization algorithm that uses the subroutine

to find the optimal assortment. Clearly, both components are important in their own

right. Specifically, solutions to these two problems lead to a solution to the single-

leg, multiple fare-class yield management problem, which deals with the allocation of

aircraft seat capacity to multiple fare classes when customers exhibit choice behavior.

In the context of making decisions, we first considered the problem of predict-

ing revenues from offering a particular assortment of products. Most of the existing

199



approaches are parametric in nature. However, parametric approaches are limited

because the complexity of the choice model used for predictions does not scale with

the "amount" of data, making the the model prone to over-fitting and under-fitting

issues. Thus, we considered a nonparametric approach, which overcomes this issue.

Specifically, given historical transaction data, we identified a family of distributions

that are consistent with the data. Now, given an assortment of products, we pre-

dicted revenues by computing the worst-case revenue of all consistent choice models.

We addressed the computational issues, and demonstrated the accuracy of our rev-

enue predictions through empirical studies. In particular, in our case-study with

transaction data from a major US automaker, our approach succeeded in obtaining

around 20% improvement in the accuracy of revenue predictions when compared to

popular existing approaches. We also provided theoretical guarantees for the relative

errors. The theoretical guarantees confirm the intuition that the error depends on

the "complexity" of the underlying choice structure and the "amount" of data that

is available.

We next considered the problem of assortment optimization. Assuming that we

have access to a revenue prediction subroutine, we designed an algorithm to find an

approximation of the optimal assortment with as few calls to the revenue subroutine

as possible. We designed a general algorithm for the optimization of set-functions to

solve the static assortment optimization algorithms. Most existing algorithms (both

exact and approximate) heavily exploit the structure of the assumed choice model;

consequently, the existing algorithms - even without any guarantees - cannot be

used with other choice models like the probit model or the mixture of MNL models

with a continuous mixture. Given these issues, we designed an algorithm that is

(a) not tailored to specific parametric structures and (b) requires only a subroutine

that gives revenue estimates for assortments. Our algorithm is a sophisticated form

of greedy algorithm, where the solution is constructed from a smaller assortment

through greedy additions and exchanges. The algorithm is proved to find the optimal

assortment exactly when the underlying choice model is the MNL model. We also

showed that the algorithm is robust to errors in the revenue estimates provided by
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the revenue subroutine, as long as the underlying choice model is the MNL model.

Finally, we considered the problem of learning choice models from marginal in-

formation about the model. Such problems naturally arise in several important ap-

plication settings like customer segmentation, rank aggregation, and compression of

distributions over permutations. Since the information available is limited, learning

the model is equivalent to choosing a criterion for selecting one of the potentially

many models that are consistent with the data. The criterion we choose is that of

parsimony or sparsity. Specifically, we propose to select the sparsest model that is

consistent with the data.

In the context of learning choice models, we addressed broadly two main questions:

(1) how to learn the sparsest model efficiently? and (2) how "good" are sparse models

in practice. In order to answer the first question, we considered two settings: the

noiseless and the noisy setting.

For the noiseless setting, given marginal information y = AA, we identified a

family of models called the 'signature' family F, whose definition depends on the

type of marginal information available. We showed that F possesses the following

two appealing properties: given y = AA such that A belongs to F, then (a) A is

also the sparsest model consistent with y, and (b) A can be recovered from y in

a efficient manner using the sparsest fit algorithm. In addition, we showed that the

signature family is not merely a theoretical construct by establishing that a randomly

chosen choice model that is sparse enough belongs to the signature family with a high

probability.

For the noisy setting on the other hand, we showed that for the first-order in-

formation, if we are willing to allow for an12 error of e in approximating a given

doubly stochastic matrix, then there exists a choice model with sparsity O(N/E) that

is an e-fit to the data. Note that this is a significant reduction from e(N 2) that is

guaranteed by the Birhkoff-von Neumann and Caratheodory's theorems. Given that

we can expect to find sparse models, we considered the issue of efficient recovery of

sparse models. We showed that as long as there is a choice model A of sparsity K in

the signature family that is an e-fit to the data, we can find a choice model of sparsity
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O(KlogN) that is a 2e-fit to the data in time O(exp(E(KlogN))) as opposed to

the brute-force time complexity of O(exp(e(KN log N))). Finally, we justified the

existence of a model in signature family that is a good fit to the data by showing that

the signature family is appropriately "dense" for a large class of models.

6.1 Future work

Although we proposed a nonparametric approach to choice modeling that can be suc-

cessfully applied in practice, our work is no panacea for all choice modeling problems.

In particular, one merit of a structural/ parametric modeling approach to modeling

choice is the ability to extrapolate. That is to say, a nonparametric approach such

as ours can start making useful predictions about the interactions of a particular

product with other products only once some data related to that product is observed.

With a structural model, one can hope to say useful things about products never

seen before. The decision of whether a structural modeling approach is relevant to

the problem at hand or whether the approach we offer is a viable alternative thus

merits a careful consideration of the context. Of course, as we have discussed earlier,

resorting to a parametric approach will typically require expert input on underlying

product features that 'matter', and is thus difficult to automate on a large scale.

Thus, reconciling the two approaches would be a natural next step.

More precisely, having learned a choice model that consists of a distribution over a

small number of rank lists, there are a number of qualitative insights one might hope

to draw. For instance, using fairly standard statistical machinery, one might hope

to ask for the product features that most influence choice from among thousands

of potential features by understanding which of these features best rationalize the

rank lists learned. In a different direction, one may use the distribution learned as a

'prior', and given further interactions with a given customer infer a distribution spe-

cialized to that customer via Bayes rule. This is effectively a means to accomplishing

'collaborative filtering'.

There are also interesting directions to pursue from a theoretical perspective:
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First, extending our understanding of the limits of identification. In particular, it

would be useful to characterize the limits of recoverability for additional families of

observable data beyond those discussed in this thesis. Second, we have exhibited an

efficient way to find a sparse approximation to the given first-order data. Can we

extend the algorithm to other types of partial information like the one captured by

transaction data? Finally, the robust approach of predicting revenues presents us

with a family of difficult optimization problems for which the present work has pre-

sented a generic optimization scheme that is in the spirit of cutting plane approaches.

An alternative to this is the development of strong relaxations that yield uniform

approximation guarantees (in the spirit of the approximation algorithms literature).

203



204



Appendix A

Appendix: Decision Problems

A.1 Proof of Theorem 4

The result of Theorem 4 follows immediately from

prove below.

Lemma 4. Let d denote the column rank of matrix

of the columns of A. Then, it must be that y belongs

|Amrin(y)||o < d + 1, and

the following lemma, which we

A and Y denote the convex hull

to a d - 1 dimensional subspace,

VOld1(ysparse) = Vold-1(Y),

where Y'Par C Y denotes the set of all data vectors such that

IIArin(y)IIo 5 d + 1 and IAsp"(y)||o > d

and voldl(S) denotes the d - 1 dimensional volume of a set S of points.

Proof of Lemma 4 We prove this lemma in two parts: (1) Y belongs to a d - 1

dimensional subspace and |Amin(y)|10 < d+1 for all y E Y, and (2) Vold 1 (y sparse)_

0.

To prove the first part, note that any data vector y E Y belongs to d - 1 di-

mensional subspace because A has a d dimensional range space and y belongs to the

intersection of the range space of A and the hyperplane I, A, = 1. Let A denote the
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augmented matrix, which is obtained by augmenting the last row of matrix A with a

row of all Is. Similarly, let denote the vector obtained by augmenting vector y with

1. The equality constraints of (3.2) can now be written as 9 = AA, A > 0. Since A

has rank d, the rank of A will be at most d +1. Therefore, for any data vector y E Y,

an optimal BFS solution to (3.2) must be such that

|A""in(y):o 5 d+1, Vy E Y. (A.1)

Coming to the second part of the proof, for any r < d - 1, let Yr denote the

set of all data vectors that can be written as a convex combination of at most r

columns of matrix A. Let L denote the number of columns of A of size at most

r, and let Si, S2,... , SL denote the corresponding subsets of columns of A of size

at most r. Then, it is easy to see that Y, can be written as the union of disjoint

subsets Y, = UfZiYri, where for each i, Y,.i denotes the set of data vectors that can

be written as the convex combination of the columns in subset Si. For each i, since

Yi is a polytope residing in r - 1 < d - 2 dimensional space, it must follow that

voldl(Y,.i) = 0. Since L is finite, it follows that voldl(Y,) = 0. Therefore, we can

conclude that

vold.1 (y E Y: ||A"P""*(y)||o 5 d - 1) = 0 (A.2)

The result of the lemma now follows from (A.1) and (A.2).

A.2 The exact approach to solving the robust prob-

lem

Here we provide further details on the second approach described for the solution

to the (dual of ) the robust problem (3.3). In particular, we first consider the

case of ranking data, where an efficient representation of the constraints in the dual

may be produced. We then illustrate a method that produces a sequence of 'outer-

approximations' to (3.5) for general types of data, and thereby allows us to produce a
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sequence of improving lower bounding approximations to our robust revenue estima-

tion problem, (3.2). This provides a general procedure to address the task of solving

(3.3), or equivalently, (3.2).

A.2.1 A canonical representation for ranking data

Recall the definition of ranking data from Section 3.2: This data yields the fraction

of customers that rank a given product i as their rth choice. Thus, the partial

information vector y is indexed by i, r with 0 < i, r < N. For each i, r, Yi denotes

the probability that product i is ranked at position r. The matrix A is thus in

{0, 1}N2xN! and for a column of A corresponding to the permutation 0r, A(o), we will

thus have A(o),i = 1 iff o-(i) = r. We will now construct an efficient representation

of the type (3.5) for this type of data.

Consider partitioning S (M) into Dy = N sets wherein the dth set is given by

Sjd(M) = {o E Sj(M): o-(j) = d}.

and define, as usual, Agd(M) = {A(o-) : o- E Syd(M)}. Thus, Ajd(M) is the set

of columns of A whose corresponding permutations rank the jth product as the dth

most preferred choice.

It is easily seen that the set AdA(M) is equal to the set of all vectors xid in {0, I}N 2

satisfying:

N-1 = .rO i< -
N-E xjd = 1 for 0 < r < N - 1
i=O
N-1.

E {0, 1} for O<i r<N-1. (A.3)xr=1

=0 for all i E M,i f jand 0 < d' < d.

The first three constraints in (A.3) enforce the fact that xid represents a valid

permutation. The penultimate constraint requires that the permutation encoded by

Xid, say a-id, satisfies a-id(j) = d. The last constraint simply ensures that o-id E Sj(M).
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Our goal is, of course, to find a description for Ajd(M) of the type (3.5). Now

consider replacing the third (integrality) constraint in (A.3)

E {O, 1} for 0 < i, r < N - 1

with simply the non-negativity constraint

xI >0 for 0<i, r<N-1

We claim that the resulting polytope is precisely the convex hull of Agd(M), Agd(M).
To see this, we note that all feasible points for the resulting polytope satisfy the first,

second, fourth and fifth constraint of (A.3). Further, the polytope is integral, be-

ing the projection of a matching polytope with some variables forced to be integers

(Birkhoff [1946], von Neumann [1953]), so that any feasible solution must also satisfy

the third constraint of (A.3). We consequently have an efficient canonical represen-

tation of the type (3.5), which via (3.7) yields, in turn, an efficient solution to our

robust revenue estimation problem (3.2) for ranking data, which we now describe for

completeness.

Let us define for convenience the set V(M) = {(j, d) : j E M,0 < d < N - 1

and for each pair (j, d), the sets B(j, d, M) = {(i, d') : i E M, i 4 j, O < d' < d}.

Then, specializing (3.7) to the canonical representation just proposed, we have that

the following simple program in the variables a, y and yid E R 2N is, in fact, equivalent

to (3.2) for ranking data:

maximize aTy + v
OLi

subject to fyjd + 74&+r > ar. for all (j, d) E V(M), (i, r) ( B(j, d, M)

Eg id + Erd YN+r + V < Pj - adj for all (j, d) E V(M)

(A.4)
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A.2.2 Computing a canonical representation: the general

case

While it is typically quite easy to 'write down' a description of the sets Aid(M) as all

integer solutions to some set of linear inequalities (as we did for the case of ranking

data), relaxing this integrality requirement will typically not yield the convex hull of

Agd(M). In this section we describe a procedure that starting with the former (easy

to obtain) description, solves a sequence of linear programs that yield improving

solutions. More formally, we assume a description of the sets Ayd(M) of the type

I1j(M) = { 9 d : Ad jd ' bd A d Xid = bd A d Xid< , jd d E {O, 1}m }

(A.5)

This is similar to (3.5), with the important exception that we now allow integrality

constraints. Given a set Tjd(M) we let f.(M) denote the polytope obtained by

relaxing the requirement xjd E {0, 1} to simply xjd > 0. In the case of ranking

data, Ijd(M) = conv(Ijd(M)) = Ajd(M) and we were done; we begin with an

example where this is not the case.

Example 2. Recall the definition of comparison data from Section 3.2. In particular,

this data yields the fraction of customers that prefer a given product i to a product j.

The partial information vector y is thus indexed by i, j with 0 < i, j N; i = j and

for each i, j, yi,j denotes the probability that product i is preferred to product j. The

matrix A is thus in {0, 1}N(N-1)xN!. A column of A, A(o), will thus have A(o-)ij = 1

if and only if o-(i) < -(j).

Consider S,(M), the set of all permutations that would result in a purchase of j

assuming M is the set of offered products. It is not difficult to see that the corre-

sponding set of columns Aj(M) is equal to the set of vectors in {0, l}(N-1)N satisfying

the following constraints:
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xi > xLik + 2x-k-1 for all i,k,lEA,i54k54l

xik + 4Xk = 1 for all i, k E A,ik 6 k
(A.6)

x = 1 for all i E M,i # j

xi kE {0,1} for all i, k e N,i # k

Briefly, the second constraint follows since for any i, k, i = k, either o-(i) > o-(k)

or else o(i) < c-(k). The first constraint enforces transitivity: o(i) < c-(k) and

o-(k) < o-(l) together imply o-(i) < o-(1). The third constraint enforces that all o E

Sj(M) must satisfy u(j) < o-(i) for all i E M. Thus, (A.6) is a description of the

type (A.5) with Dj = 1 for all j. Now consider the polytope i(M) obtained by

relaxing the fourth (integrality) constraint to simply xik 0. Of course, we must have

IT(M) ;2 conv(Ij(M)) = conv(Aj(M)). Unlike the case of ranking data, however,

$j (M ) can in fact be shown to be non-integral 1, so that Ej(M ) =,A conv(A4(M )) in

general.

We next present a procedure that starting with a description of the form in (A.5),

solves a sequence of linear programs each of which yield improving solutions to (3.2)

along with bounds on the quality of the approximation:

1. Solve (3.7) using Ij(M) in place of conv(2i d(M)) = Ayd(M). This yields a

lower bound on (3.2) since Ijd(M) D Aid(M). Call the corresponding solution

ai), (1i).

2. Solve the optimization problem max (J)xid subject to xid E Yijd(M) for each

pair (j, d). If the optimal solution sid is integral for each (j, d), then stop; the

solution computed in the first step is in fact optimal.

3. Otherwise, let sjd possess a non-integral component for some (j, d); say 2d E

(0, 1). Partition Ayd(M) on this variable - i.e. define

Ayo (M) = {A(o-) : A(o-) E Ajd(M), A(-)c = 0}

'for N > 5; the polytope can be shown to be integral for N < 4
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and

Ajd,(M) = {A (o-) : A(o-) E Ajd(M), A(o-)c = 1

and let j A(M) and Id,(M) represent the corresponding sets of linear in-

equalities with integer constraints (i.e. the projections of ?Id(M) obtained by

restricting xid to be 0 and 1 respectively). Of, course, these sets remain of the

form in (A.5). Replace Ijd(M) with Ia4(M) and 2 ad(M) and go to step 1.

The above procedure is akin to a cutting plane method and is clearly finite, but the

size of the LP we solve increases (by up to a factor of 2) at each iteration. Nonetheless,

each iteration produces a lower bound to (3.2) whose quality is easily measured (for

instance, by solving the maximization version of (3.2) using the same procedure, or

by sampling constraints in the program (3.3) and solving the resulting program in

order to produce an upper bound on (3.2)). Moreover, the quality of our solution

improves with each iteration. In our computational experiments with a related type

of data, it sufficed to stop after a single iteration of the above procedure.

A.2.3 Explicit LP solved for censored comparison data in

Section 3.4

The LP we want to solve is

minimize E p Aj (M)
A jEM

subject to AA = y, (A.7)
1TA = 1,

For the 'censored' comparison data, the partial information vector is indexed by ij

with 0 < i, j <; N - 1, i $ j. For each i, j such that i : 0, yij denotes the fraction

of customers that prefer product i to both products j and 0; in other words, Yij

denotes the fraction of customers that purchase product i when then offer set is

{i, j, 0}. Further, for each j 0 0, yoj denotes the fraction of customers who prefer
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the 'no-purchase' option to product j; in fact, yOj is the fraction of customers who

don't purchase anything when the set {j, 0} is on offer. The matrix A is then in

{0, 1 }N(N-), with the column of A corresponding to permutation o, A(o-), having

A(o-)i = 1 if o-(i) < o(j) and u(i) < o-(O) for each i $ Oj, and A(o)og = 1 if

o(O) < o(j) for j # 0, and A(o-)ig = 0 otherwise.

For reasons that will become apparent soon, we modify the LP in (A.7) by replac-

ing the constraint AA = y with AA > y. It is now easy to see the following:

minimize E pj Aj (M) minimize E_ pj Aj (M)
A jEM A jEM

subject to AA > y, < subject to AA = y' (A.8)
1TA = 1, 1TA=1,

A>0. A>0.

We now take the dual of the modified LP. In order to do that, recall from section

3.3 that Sj(M) = {- E SN: o(j) < o(i),Yi E M, i 5 j} denotes the set of all permu-

tations that result in the purchase of the product j E M when the offered assortment

is M. In addition, A 3(M) denotes the set {A(o): o E S(M)}. Now, the dual of the

modified LP is

maximize aT y + v
af,!

subject to max (Tzi + V) < pj, for each j E M (A.9)
zi EAj (M)

a > 0.

where a and v are dual variables corresponding respectively to the data consistency

constraints AA = y and the requirement that A is a probability distribution (i.e.

1TA = 1) respectively.
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Now, consider the following representation of the set Aj(M), for a fixed j.

Z) = min of}

zo = xok

Zik E {01}

1 > d + -1

+ik += 1

1

X'4 k E {0,1}

for all i,k E A,i 4 ki $ 0

for all k E NM,k # 0

for all i,k E Ai # k

for all i,k,l E A,i4 k =,l

for all i,k E .A,i $ k

for all i E M,i / j
for all i, k E K,i # k

The last four constraints are the same as the set of inequalities in (A.6), which

correspond to the representation of the set A,(M) for comparison data; thus, every

point satisfying the set of last four constraints in (A. 10) corresponds to a permutation

o- E S(M) such that xzi = 1 if and only if o-(i) < o-(k). We now claim that the set

of points zi that satisfy the constraints in (A.10) is equal to the set of vectors in

A(A4). To see that, note that zik = 1 if and only if the corresponding i k = 1 and

x'O = 1, for i # 0. This implies that z-k = 1 if and only if i is preferred to k and i is

preferred to 0. Similarly, zok = 1 if and only if xzk = 1 i.e., 0 is preferred to k.

Let A(M) denote the convex hull of the vectors in A(M), equivalently, of the

vectors zi satisfying the set of constraints in (A.10). Let 17(M) be the convex

hull of the vectors zi satisfying the constraints in (A.10) with the constraint zi =

min {X k, XIO} replaced by the constraints zi < Xi and zi xiO, and the constraint

ZJk = X3k replaced by the constraint Zgk < XOk. Finally, let Ij (M) represent the

polytope 1 (M) with the integrality constraints relaxed to z > 0 and de 0. We

now have the following relationships:

a > 0, y : z max (aTzi + v) Py}
Erj (M)I

= , a> 0, y :max (aTzi

E ziEz(M)

Sa 2 0, il: zimax (aTzi
f ~zEz-j (M)

+v) Pi}

+ V) < P}

(A.11)
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The first equality follows because a > 0 and, hence, at the optimal solution,

zik = 1 if xik = xiO = 1, and zOk = 1 if XOk = 1. It should be now clear that in order to

establish this equality we considered the modified LP. The second relationship follows

because of the relaxation of constraints. It now follows from (A.8), (A.9) and (A.11)

that

E pj j(M)
jEM

AA = y,

1TA = 1,

A > 0.

maximize

> subject to

ay +v

max
z3EA 3 (M) (a Tzi + v) 5 p, for each j E M

a > 0.

maximize

; subject to

aTy +v

max
ziEIj(M) (aTzi + v) 5pi, for each j E M

a > 0.

(A.12)

Using the procedure described in Section 3.3.3, we solve the last LP in (A.12) by

taking the dual of the constraint in the LP. For convenience, we write out the program

maxzj E (M) (aTzi + v) and the corresponding dual variables we use for each of the

constraints.

maximize aTzi + v

subject to

zi - Xik < 0

Zik - i 0

Xikzk ;> 0

for

for

for

for

for

for

i,k E A,i f k
i,k E Ai 5 ki $ 0

i, k, I E K,i $ k 41

i,k EKN,i < k

i E M, i # j

i,k E ,i 4 k

Dual Variables

iki

Aik
sik

Let P denote the set {(i,k): i ) k0 < i, k < N - 1}, and T denote the set

214

minimize
A

subject to

(A.13)



{(i, k, 1): i # k = 1, 0 < i, k, 1 < N - 1}. Moreover, let g(a, b, k, j) denote EkEK,ka,b ]Fabk

+ EkN,kga,b ]kab - EkE ,kAa,b rakb. Then, the LP we solve is

maximize V + E(i,k)EP aikYik

subject to

E +ikl+ E Ak+ E spy- v
(i,k,l)ET (i,k)EPi<k iEM,ifhj

g(a,b,k,j) +Aab-Q'ab 0

g(a, b, k, j) + Aja - Qlab -> 0

g(a, b, k, j) + Aab +E - Q1'ab > 0

g(a, b, k, j) + AL +Eb - Ql'ab > 0

g(a, b, k, j) + AL - EkEK,koa Q2jk 0

g(a, b, k, j) + AL + - EkEN,kfa Q22L > 0

Q1lab + Q 2 _ab a ab

Q2-'5 > aas

Q1V > aab
ab 12 0

VjEM

M,a,bEA/,a<b; ifa=j,bOM

M,a,bEN,a>b,bO0; ifa=j,bOM

M,a=j,bEM,a<b

M,a=j,bEM,a>b,b540

M,a E N,a $j,b=0

M,a=j,b=0

M,a,bE P,a # 0,b5 0

M, a NE\{0},b=0

M,a = 0,b E\ {0}

(A.14)

A.3 Case-study: major US automaker

In this section, we provide precise details of how each method was used to produce

conversion-rate predictions. We first establish some notation. We let ,Wtriaing and

-&test respectively denote the set of assortments used as part of training and test

data. Further, for some product i E M, let Ci,M denote the number of sales observed

for product i when assortment M was on offer at some dealership; CO,M denotes

the number of customers who purchased nothing when M was on offer. Finally, let
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Table A.1: Relevant attributes of DVDs from Amazon.com data and mean utilities
of MNL model fit by Rusmevichientong et al. [2010a]

Product ID Mean utility Price ($) Avg. price per disc ($) # of helpful votes
1 -4.513 115.49 5.7747 462
2 -4.600 92.03 7.6694 20
3 -4.790 91.67 13.0955 496
4 -4.514 79.35 13.2256 8424
5 -4.311 77.94 6.4949 6924
6 -4.839 70.12 14.0242 98
7 -4.887 64.97 16.2423 1116
8 -4.757 49.95 12.4880 763
9 -4.552 48.97 6.9962 652
10 -4.594 46.12 7.6863 227
11 -4.552 45.53 6.5037 122
12 -3.589 45.45 11.3637 32541
13 -4.738 45.41 11.3523 69
14 -4.697 44.92 11.2292 1113
15 -4.706 42.94 10.7349 320

Training (Test) denote the set of tuples (i, M) such that M E /trini"g (_test) and

the count CiM is available; in our case study, we treated count CiM as unavailable

if either no sales were observed for product i when M was on offer or CiM < 6, in

which case we discarded the sales as too low to be significant2 .

Robust method. Given Wtraining and an assortment M E &tes, the robust ap-

proach predicts the conversion-rate of M by solving the following LP:

minimize
A

subject to

E Pa(j|M)
jEM

at PA(iIM) <; bt, Vt = (i, M) E Ttraining

1T A = 1,

A > 0,

(A.15)

where recall that P'(ilM) = E,ESi(M) A(o-) with Si(M) denoting the set

{o-: o-(i) < 0-(j) Vj E M, i :/ j}

and [at, bt] denotes the interval to which PA(ilM) belongs. The LP in (A.15) is a

2In other words, we discard counts that are "too small" in order to avoid noisy sample probability
estimates.
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slight modification of the LP in (3.2) with the prices pi all set of 1 and the equalities

yt = P(M) changed to inequalities at < P'(M) < bt. Setting all the prices to 1

has the effect of computing conversion-rate for the assortment, and the inequalities

account for the fact that there is uncertainty in the choice probabilities because of

finite sample errors. For each tuple t = (i, M) E ,fftraining, we computed the left and

right end-points as at = yt(1 - zEt) and bt = yt(1 + zEt), where

Cim1-Y
9Y = CO, + -C 

C

Here, yt is the sample average, itet is the standard error, and z is a constant multiplier

that determines the width of the interval. Different values of z give us approximate

confidence intervals for P(ilM). If z is very small, the problem in (A.15) will be

infeasible, and on the other hand if z is very large, the estimate produced by (A.15)

will be very conservative. For our experiments, we set z to be 3.15, which corresponds

to the smallest value of z for which (A.15) was feasible; incidentally, this value of z

also corresponds to approximate 99.8% confidence interval for IPA(ilM).

Note that depending on the values of z, et, Yt, it possible that either at < 0, or

bt > 1, or both at < 0 and bt > 1. In cases when one of the end-points lies outside the

interval [0, 1], effectively only one of the bounds P)\(ijM) > at and P\(iIM) 5 bt is

imposed. Likewise, when both the end-points lie outside the interval [0, 1], the entire

constraint at < P(ilM) < bt becomes redundant. This implies that depending on

the estimate 9t and its quality et, the robust approach automatically discards some

of "low-quality" data while generating predictions.

MNL model. We assumed the following specific random utility structure for the

MNL model: Uj = Vi + , i = 0, 1,2,..., N, where Vi is the mean utility and (i

are i.i.d. Gumbel distributed with location parameter 0 and scale parameter 1, and

N = 14 is the number of products. With this assumption, we used the package

BIOGEME Bierlaire [2003, 2008] to estimate Vi for i = 1, 2,..., N (with V fixed at

0) from training data _4Ktraining.

MMNL model. We assumed the following specific random utility structure for the

217



MMNL model: U = Vi +#3xi + (i, i = 0,1,2,...,14, where as before Vi denotes the

mean utility and N = 14 the number of products, (j are i.i.d. Gumbel with location

parameter 0 and scale parameter 1, xi are dummy features with xO = 0 and xi = 1

for i > 0, and # is Gaussian with mean 0 and variance s2 . Again, fixing V to 0, we

used BIOGEME Bierlaire [2003, 2008] to estimate Vi, i > 0, and s.

A.4 Proofs of Section 3.6

In this section, we give the proofs of Theorems 2 and 3, and Lemma 1.

A.4.1 Proof of Theorem 2

We want to upper bound &(M). Since ok(M) = maxJEM ok(j IM), we start with

upper bounding Sk(j I M). Using the definitions, we have

o(j I M) = m ii B,(M';M)
M'CM: jEM';IM'I<k P (j M' U {0})'

where By(M'; M) = EiEM\M' Bj(M'; i) with

Bj (M';i) = P (j I M'U {0}) - P (j I M'U {i, 0}).

Now, let M denote the set {1, 2,... , k - 1} U {j}. Clearly, IMI < k. Therefore, for

any i E M \ Mj, we can write

By(Mj;i) = 1i
+ EMEwe 1 +Wi + EMW ,w

w1 _ 1 + EEM w
1+ EIEn, W 1 + wi + EIEn, We)

=P(jI M U {0}) Wi
1 +w i + EEM, Wt

< P (j IMy U {o}) Wi
1 + W1 +W2 + -Wk-1
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It now follows that

Bj (M3 ; M) < ZiEM\M, Wi

P (i I M U {0}) - 1 + Wi + - - - + Wk-1

< Wk±+Wk+1 + - +WC

I± W1 + - - Wk-1

The result now follows from the definition of ok (M).

A.4.2 Proof of Theorem 3

Fix a product j E M. Our goal is to upper bound 6 k(j I M). For that, we need the

following notation. Given any assortment M, for any 3, let M denote the assortment

that minimizes Bj (M'; M)/L# (j I M' U {0}) over all assortments M' C M such

that j E M' and IM' < k for the MNL model with weights wi = exp((#, xi)). As

discussed above, M corresponds to the assortment with essentially the largest k

weights in M; more precisely we must have we > wi for all products f E Mk \ {j}
and i E M \ Mf. In other words, we have:

(#,x - xi) 0 V M E 4 \ {j} and i E M \ M. (A.16)

Clearly, (A.16) is a a polyhedral cone. In fact, if the attribute vectors xj are all

distinct, then it is a pointed cone with 0 as the only extreme point. Now, let

R1,?2, - , Rv denote the different polyhedral cones obtained for different assort-

ments M' C M such that IM' < k. One can then write

V

P (j I M U {0}) = E J L (j | M U {0}) G(d#).
V=1 R_

Further, for each 1 <v < V let M' C M denote the subset of k - 1 products with

the largest weights according to wo = exp ((#, xi)), where # E R, (it follows from our

definitions that the subset of largest k - 1 weights remains the same for all # E R,).

Further, let Mv denote the set M' U {j}. Also, without loss of generality assume

that p E Z1 .
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Now for any product i E M \ M', we have

Bj (M; M)= E Bj (M'; i)
iEM\M'

= E (P(jIMu{0})-P(j MIMU{0,i}))
iEM\M1

(L3 (j I M' U { 0}) -L,, (j lMU {0, i})) G(d#)
V=1 "i EM\Ml

V

(L8 (j I M" U {O})- L (j I M" U {0, i})) G(d#)
v=1'Z iM\M'

+ E (Lp(j|MU{O})L+ E Lp(jMU{0i}})G(d)
v=2 1 iM\M1 iEM\Mv

V

5(j; M)Lp (j I Mv U {0}) + 2k(1 - G(-1)),
v=1'

where the last inequality follows because (a) Mv is the assortment that maximizes

Bj(M'; M) among all assortments such that j E M' and IM'| < k for the MNL

model with weights wi = exp((/3, xi)) and # E Rv7, and (b) Lp (j I M 1 U {O}) < 1,

Lp (j I Mv U {0, i}) 1, and |M1 , IM| < k.

In order to finish the proof of the theorem, we only need to establish that

1 - G(R 1 ) e,..

For that, let B' denote the ball of radius r around L. Then, R = {p#6: p > 0, 3 E B'}

denotes the cone formed by taking the convex combination of the origin and B'. We

now claim that R C R1. Assuming that the claim is true, it immediately follows that

G(R 1 ) > G(R).

In order to prove that R C R1, consider a vector v E RI. By the definition of R,

we can write v = p# for some p > 0 and # E B'. Let M' be the assortment that

defines R 1. Then, for any pair of products f E M' \ {j} and i M', we must have
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(p, xz - xj4 > 0 since p E Ri. It now follows that

(v, xe - xi) = (#, xe - xi) = (I, Xe - xi) + (0 - p, Xe - xj)

= 1(p, xe - xi)+ (# - yx - xi)
(a)
> | y/, xe - xi)I - 11 - |ll l|xe - xi||

(b)

> (yt,xe - xi)| - r||xt - xill

=||xe - x 0 xi-xil - r
|ix, - xi||

(c)
2>0,

where (a) follows from Cauchy-Schwarz inequality, (b) follows from the fact that

# E Br, and (c) follows from the fact that r < (p, xy -xz)/|lxy-xzI|, which follows

from the definition of r. It is now straightforward to conclude that v E R1 and, hence,

R C R1.

Now consider the case when E = or2ID. Let (B')C denote RD \ Br. Then,

G(R) G(B') = 1 G((Br)C) = 1 D(2)D/2 jBr c

Using the transformation t = p, where 0 is a point on the unit sphere SD-1, we

can write

=D ( 2 )D/2 ip>r,OESD-

1 r2

D eD/2 xp

area(SD- 1) exp
OD (2)D/2 p

< area(SD-1)
- D (2)D/2 exp

exp ( 2L2 dpdO

) OESD-1 dO p>r
r2

~2) Jp exp

2) eXp

22 2 p~ eXp

exp

2o
2

(p -r)2r dp

eXp r-2

= C(D) ( .)
r

where C(D) = a2 area(SD-I)/(OD (2r)/ 2). Here the inequality follows from the fact
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that (p - r) (p + r) > (p - r) (2r) for p > r, and the last equality follows from the

fact that fp>r exp (-(p - r)r/o.2) = C2/r. The surface area of SD-i is 2-rD/2/F(D/2),

where r(.) is Euler's Gamma function. Therefore, C(D) = 1/(2(D/2-1)0-2F(D/2)).

The result of theorem now follows.

A.4.3 Proof of Lemma 1

Suppose the underlying choice model is described by the distribution A over permu-

tations. Now, given two assortments M' C M such that j E M', let Ej denote the

set of permutations o- such that -(j) < o-() for all products f E M'. Further, for

any i E M \ M', let Ej denote the set of permutations a such that 0-(i) < o-(j) and

a(j) < o-(f) for all products i E M' U {0}. We can now write

P(j I M'U{0}) - P (j I MU{0})= A ( E6i
iEM\M'

<;E A (Ei)
iEM\M'

= E P(jM'U{})-P(jlM'U{0i})
iEM\M'

=E By (M'; i),
iEM\M'

where the inequality follows from the union bound. The result of the lemma now

follows.
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Appendix B

Appendix: Learning choice models

B.1 Proof of Theorem 7

The proof of Theorem 7 requires us to establish two claims: whenever A satisfies

Condition 1, (i) the sparsest-fit algorithm recovers A from y = AA and (ii) A is the

unique solution to the program in (5.1). We establish these two claims in that order.

The sparsest-fit algorithm works. Let o-1, o-2 , - - -, -K be the permutations in the

support and A1, A2, - - -, AK be their corresponding probabilities. Since we assumed

that A satisfies the "signature" condition, for each 1 < i < K, there exists a d(i)

such that yd(i) = Ai. In addition, the linear independence condition guarantees that

the condition in the if statement of the algorithm is not satisfied whenever d = d(i).

To see why, suppose the condition in the if statement is true; then, we will have

Ad(i) - EiET Aj = 0. Since d(i) V T, this clearly violates the linear independence

condition. Therefore, the algorithm correctly assigns values to each of the Ais. We

now prove that the A(o)s that are returned by the algorithm do indeed correspond to

the ois. For that, note that the condition in the if statement being true implies that

yd is a linear combination of a subset T of the set {A1, A2 , . .. , AK}. Again, the linear

independence condition guarantees that such a subset T, if exists, is unique. Thus,

when the condition in the if statement is true, only the permutations with A(U)d = 1

are in the set T. Similarly, when the condition in the if statement is false, then it
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follows from the signature and linear independence conditions that only for o , we

have A(o-)d(i) = 1. From this, we conclude that the algorithm correctly finds the true

underlying distribution.

Unique solution to eo optimization. Suppose, to arrive at a contradiction, assume

that there exists a distribution y over the permutations such that y = Ap and ||p||1 <

I|l1|o. Let v1, v2 ,..., VK and u1 , u 2 , -.- ,UL denote the values that A and yu take on their

respective supports. It follows from our assumption that L < K. In addition, since

A satisfies the signature condition, there exist 1 < d(i) < m such that Yd(i) = vi, for

all 1 < i < K. Thus, since y = Ay-t, for each 1 < i < K, we can write vi = ZjET(i) uj,

for some T(i) C {1, 2,... , L}. Equivalently, we can write v = Bu, where B is a 0 - 1

matrix of dimensions K x L. Consequently, we can also write E i = E 1

where (j are integers. This now implies that E 1 ug = Ef 1uj since E vi =

Ef4i ng = 1.

Now, there are two possibilities: either all the (js are > 0 or some of them are

equal to zero. In the first case, we prove that p and A are identical, and in the second

case we arrive at a contradiction. In the case when (j > 0 for all 1 < j < L, since

Ej uj = E (juy, it should follow that ( = 1 for all 1 < j < L. Thus, since L < K,

it should be that L = K and (ui, u2 ,... , UL) is some permutation of (v 1 , v 2, ... , VK)-

By relabeling the ujs, if required, without loss of generality, we can say that vi = ui,

for 1 < i < K. We have now proved that the values of A and y are identical.

In order to prove that they have identical supports, note that since vi = ui and

y = AA = Ay, y must satisfy the signature and the linear independence conditions.

Thus, the algorithm we proposed accurately recovers y and A from y. Since the input

to the algorithm is only y, it follows that A = p.

Now, suppose that (j = 0 for some j. Then, it follows that some of the columns

in the B matrix are zeros. Removing those columns of B, we can write v = Bii where

B is B with the zero columns removed and ii is u with ujs such that (j = 0 removed.

Let L be the size of i. Since at least one column was removed L < L < K. The

condition L < K implies that the elements of vector v are not linearly independent

i.e., we can find integers ci such that E=1 civ = 0. This is a contradiction, since this
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condition violates our linear independence assumption. The result of the theorem

now follows.

B.2 Proof of Theorem 8

We prove this theorem by showing that when two permutations, say O-1, 0-2, are chosen

uniformly at random, then with a high probability, the sum of columns of the A matrix

corresponding to the permutations AP(o-1) + AP(a 2) can be decomposed in at least

two ways. For that, note that a permutation can be represented using cycle notation,

e.g. for N = 4, the permutation 1 -+ 2,2 - 1,3 - 4,4 p-+ 3 can be represented as a

composition of two cycles (12) (34). We call two cycles distinct if they have no elements

in common, e.g. the cycles (12) and (34) are distinct. Given two permutations ai

and -2 , let U1,2 = U10-2 be their composition.

Now consider two permutations 0i and o-2 such that they have distinct cycles.

For example, a- = (1, 2) and o2 = (3,4) are permutations with distinct cycles. Then

0-1,2 = U102 = (12)(34). We first prove the theorem for p = (N -1, 1) and then extend

it to a general p; thus, we fix the partition p = (N - 1, 1). Then, we have:

AP(a) + AP(a 2 ) = AP(Ci, 2 ) + AP(id) (B.1)

where a1 and o-2 have distinct cycles and id is the identity permutation. Now, assum-

ing that pi < P2, consider the following:

p1 AP(a) + p2 AP(o 2)

= p1 AP(-1, 2 ) + p 1AP(id) + (P2 - p 1 )AP(o- 2)-

Thus, given MP(A) = p1AP(o-) + p2AP(o 2 ), it can be decomposed in two distinct

ways with both having the same 41 norm. Of course, the same analysis can be

carried out when A has a sparsity K. Thus, we conclude that whenever A has two

permutations with distinct cycles in its support, the fi minimization solution is not

unique. Therefore, to establish claim of Theorem 8, it is sufficient to prove that when
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we choose two permutations uniformly at random, they have distinct cycles with a

high probability.

To this end, let S denote the event that two permutations chosen uniformly at

random have distinct cycles. Since permutations are chosen uniformly at random,

P (S) can be computed by fixing one of the permutations to be id. Then, P (E) is the

probability that a permutation chosen at random has more than one cycle.

Let us evaluate P (C). For that, consider a permutation having exactly one cycle

with the cycle containing L elements. The number of such permutations will be

(N) (L - 1)!. This is because we can choose the 1 elements that form the cycle in (N)
ways and the L numbers can be arranged in the cycle in (L - 1)! ways. Therefore,

1 N N N 1
P(Ec) = -7! E L (L -1)! = E L(N -(B.2)

N!1 _ L L N-)

Now, without loss of generality let's assume that N is even. Then,

N/2 1 N/2 1 1 (B.3)
_ L(N - L)! -E (L =

The other half of the sum becomes

N 1 N/2I 2001 0(1) (B.4)

L=NL(N - L)! k! Nk! N

Putting everything together, we have

P(E) > 1 - P(Ec) > 1- +

-+ 1 as N -+ oo.

Thus, Theorem 8 is true for p = (N - 1, 1).

In order to extend the proof to a general p, we observe that the standard cy-

cle notation for a permutation we discussed above can be extended to a general p

partition. Specifically, for any given p, observe that a permutation can be imagined
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as a perfect matching in a D, x D, bipartite graph, which we call the p-bipartite

graph and denote it by GP = (V{ x Vf, EP); here Vf and V2f respectively denote

the left and right vertex sets with IVfI = |VfI = D with a node for every p parti-

tion of N. Let t 1 , t2 , ... to, denote the D, p-partitions of N; then, the nodes in Vf

and Vf can be labeled by ti, t2, - - -, tD,. Since every perfect matching in a bipartite

graph can be decomposed into its corresponding distinct cycles (the cycles can be

obtained by superposing the bipartite graph corresponding to identity permutation

with the p-bipartite graph of the permutation), every permutation can be written as

a combination of distinct cycles in its p-bipartite graph. The special case of this for

p = (N - 1, 1) is the standard cycle notation we discussed above; for brevity, we call

the p-bipartite graph for p = (N - 1, 1) the standard bipartite graph.

In order to prove the theorem for a general p, using an argument similar to above,

it can be shown that it is sufficient to prove that a randomly chosen permutation

contains at least two distinct cycles in its p-bipartite graph with a high probability.

For that, it is sufficient to prove that a permutation with at least two distinct cycles

in its standard bipartite graph has at least two distinct cycles in its p-bipartite graph

for any general p. The theorem then follows from the result we established above

that a randomly chosen permutation has at least two distinct cycles in its standard

bipartite graph with a high probability.

To that end, consider a permutation, o-, with at least two distinct cycles in the

standard bipartite graph. Let A := (a1, a 2, ... , aet) and B := (bi, b2 ,... , be2) denote

the first two cycles in the standard bipartite graph; clearly, f 1, t 2 > 2 and at least

one of f1, f2 is < N/2. Without loss of generality we assume that f 2 < N/2. Let

p = (pi, P2, ... , p,). Since p1 > P2> ... > p,, we have p, 5 N/2. First, we consider

the case when p, < N/2. Now consider the p-partition, ti, of N constructed as

follows: a1 placed in the sth partition, a2 in the first partition, all the elements of the

second cycle bi, b2, ... , be2 arbitrarily in the first s - 1 partitions and the rest placed

arbitrarily. Note that such a construction is possible by the assumption on p,. Let t,

denote o-(ti); then, t' 4 ti because ti does not contain a 2 in the sth partition while

t' contains -(ai) = a2 in the sth partition. Thus, the partition ti belongs to a cycle
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that has a length of at least 2 partitions. Thus, we have found one cycle, which we

denote by C1. Now consider a second partition t2 constructed as follows: b1 placed

in the sth partition, b2 in the first and the rest placed arbitrarily. Again, note that

07(t 2) # t 2. Thus, t2 belongs to a cycle of length at least 2, which we denote by C2.

Now we have found two cycles C1, C2, and we are left with proving that they are

distinct. In order to establish the cycles are distinct, note that none of the partitions

in cycle C1 can be t2. This is true because, by construction, t 2 contains bi in the sth

partition while none of the partitions in C1 can contain any elements from the cycle

B in the sth partition. This finishes the proof for all p such that p, < N/2.

We now consider the case when p, = N/2. Since pi > ps, it follows that s = 2

and p = (N/2, N/2). For f2 < N/2, it is still feasible to construct ti and t 2 , and

the theorem follows from the arguments above. Now we consider the case when

l = f2 = N/2; let f := fi = f2. Note that now it is infeasible to construct t1

as described above. Therefore, we consider ti = {a1, b2,..., bf}{bi,a 2 ,..., a} and

t2 = {bi, a2,... , ai} {ai, b2,..., bi}. Clearly, ti 5 t2, c(ti) # ti and o(t2) 0 t 2. Thus,

ti and t2 belong to two cycles, C1 and C2, each with length at least 2. It is easy to see

that these cycles are also distinct because every p-partition in the cycle C1 will have

only one element from cycle A in the first partition and, hence, C1 cannot contain

the p-partition t 2 . This completes the proof of the theorem.

B.3 Proof of Theorem 9

First, we note that, irrespective of the form of observed data, the choice model gen-

erated from random model R(K, W) satisfies the linear independence condition with

probability 1. The reason is as follows: the values A(oi) obtained from the random

model are i.i.d uniformly distributed over the interval [a, b]. Therefore, the vector

(A(oi), A(a2), ... , A(oK)) corresponds to a point drawn uniformly at random from

the hypercube [a, b]K. In addition, the set of points that satisfy % i ciA(oi) = 0 lie

in a lower-dimensional space. Since cis are bounded, there are only finitely many such

sets of points. Thus, it follows that with probability 1, the choice model generated
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satisfies the linear independence condition.

The conditions under which the choice model satisfies the signature condition

depends on the form of observed data. We consider each form separately.

Comparison information. For each permutation o-, we truncate its corresponding

column vector A(o-) to a vector of length N/2 by restricting it to only the disjoint

unordered pairs: {0, 11, {2, 3},... , {N - 2, N - 1}. Denote the truncated binary

vector by A'(o-). Let A denote the matrix A with each column A(o-) truncated to

A'(o-). Clearly, since A is just a truncated form of A, it is sufficient to prove that A

satisfies the "signature" condition.

For brevity, let L denote N/2, and, given K permutations, let B denote the

L x K matrix formed by restricting the matrix A to the K permutations in the

support. Then, it is easy to see that a set of K permutations satisfies the "signature"

condition iff there exist K rows in B such that the K x K matrix formed by the K

rows is a permutation matrix.

Let R 1, R 2, ... , R, denote all the subsets of {1, 2,... ,m} with cardinality K;

clearly, J = (L. In addition, let Bi denote the K x K matrix formed by the

rows of B that are indexed by the elements of Rj. Now, for each 1 < j < J, when

we generate the matrix B by choosing K permutations uniformly at random, let E6i

denote the event that the K x K matrix B' is a permutation matrix and let E denote

the event Uj~j. We want to prove that P(S) -+ 1 as N -+ oo as long as K = o(log N).

Let Xj denote the indicator variable of the event E&, and X denote E' Xj. Then, it

is easy to see that P(X = 0) = P((E)'). Thus, we need to prove that P(X = 0) -+ 0

as N -+ oo whenever K = o(log n). Now, note the following:

Var(X) ;> (0 - E [X]) 2 P(X = 0)

It thus follows that P(X = 0) < Var(X)/(E [X]) 2 . We now evaluate E [X]. Since

Xis are indicator variables, E [Xj] = P(Xj = 1) = P(Ej). In order to evaluate ]P(E6),

we restrict our attention to the K x K matrix B'. When we generate the entries of

matrix B by choosing K permutations uniformly at random, all the elements of B
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will be i.i.d Be(1/2) i.e., uniform Bernoulli random variables. Therefore, there are

2 K2 possible configurations of Bi and each of them occurs with a probability 1 / 2K 2

Moreover, there are K! possible K x K permutation matrices. Thus, P(Ej) = K!/2K2

Thus, we have:
JK!(B5

E [X] = E [X] = EP(E) = K2 (B.5)
j=1 j=1

Since J = (,it follows from Stirling's approximation that J > LK/(eK)K. Simi-

larly, we can write K! > KK /K. It now follows from (B.5) that

LK KK 1 LK
E [X] eKKK eK 2K 2  e2K2K 2  (B.6)

We now evaluate Var(X). Let p denote K!/2K2 . Then, E [X] = p for all 1 < j <

J. We can write,

J J

Var(X) = E [X2] -E [X]2 = E P(Xi = 1, Xj = 1)- J 2p 2.
i=1 j=1

Suppose Ri n Rjl = r. Then, the number of possible configurations of B' and Bi is

2(2K-r)K because, since there is an overlap of r rows, there are 2K - r distinct rows

and, of course, K columns. Since all configurations occur with the same probability,

it follows that each configuration occurs with a probability 1 / 2 (2K-r)K, which can

also be written as 2rKp2/(K!)2. Moreover, the number of configurations in which

both B' and BJ are permutation matrices is equal to K!(K - r)!, since, fixing the

configuration of B' will leave only K - r rows of Bi to be fixed.

For a fixed Ri, we now count the number of subsets Rj such that |Rj n RjI = r.

We construct an Rj by first choosing r rows from R, and then choosing the rest from

{1, 2,..., 1} \ Ri. We can choose r rows from the subset R, of K rows in (K) ways,
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and the remaining K - r rows in _ ) ways. Therefore, we can now write:

i

ZEP(Xi = 1,X3 = 1)
j=1

K /K\ /L-K 2 '-Kp2
- ( K ( - K K !(K - r)!

r \ r K-r (K!)2

PK L 2 rK L-K
< ('r) A Using

(L )K L )2 rK

K) (K r) r!

< P2 P2 K eKr 1
5~~1 Jp --2f.L rr(K -r)K-r

The last inequality follows from Stirling's approximation: (L) <

and r! > (r/e)r; in addition, we have used J = (L). Now consider

(KL)

(L/(K - r))K-r

rr(K - r)K-r = exp {r log r + (K - r) log(K - r)}

= exp {K log K - KH(r/K)}

KK

- 2 K

where H(x) is the Shannon entropy of the random variable distributed as Be(x),

defined as H(x) = -xlog x - (1 - x)log(1 - x) for 0 < x < 1. The last inequality

follows from the fact that H(x) < log 2 for all 0 < x < 1. Putting everything together,

we get

Var(X) SP(Xi = 1,X = 1) -E [X] 2

i=1 r=1

P2 KL K(2K K K r< J[Jp2+p2LKK,. j L -~p

Jp2 2KLK K eK r

KK L)
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We can now write,

Var(X)
P(X =0) < VrX

(E [X|)2

1 Jp22KLK K 2K r

J 2p 2  KK ,. LJ

1 2KLK e2K K-1 e2K r

J JKKL L)

eKKK 2KLK e2K K-1 (e2 Kr L K

LK KK L>, LJ, UsnJ = K) K

(4e)K K-1 e2 Kr

L ,. LJ

It now follows that for K = o(log L/ log(4e)), P(X = 0) -+ 0 as N -+ oo. Since, by

definition, L = N/2, this completes the proof for the case of comparison information.

Top-set information. For this type of data, let A' denote the N x N! submatrix

of the matrix A that corresponds to the fraction of customers who have product i

as their top-choice for each i. Note that it is sufficient to prove that AM) satisfies

the signature property with a high probability; therefore, we ignore the comparison

data and focus only on the data corresponding to the fraction of customers that have

product i as their top choice, for every product i. For brevity, we abuse the notation

and denote AM) by A and the corresponding part of the data vector y(1) by y. Clearly,

y is of length N and so is each column vector A(o-). Every permutation o- ranks only

one product in the first position. Hence, for every permutation o, exactly one element

of the column vector A(o-) is 1 and the rest are zeros.

In order to obtain a bound on the support size, we reduce this problem to a

balls-and-bins setup. For that, imagine K balls being thrown uniformly at random

into N bins. In our setup, the K balls correspond to the K permutations in the

support and the N bins correspond to the N products. A ball is thrown into bin

i provided the permutation corresponding to the ball ranks product i to position 1.

Our random model chooses permutations independently; hence, the balls are thrown

independently. In addition, a permutation chosen uniformly at random ranks a given

product i to position 1 with probability 1/N. Therefore, each ball is thrown uniformly
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at random.

In the balls-and-bins setup, the signature condition translates into all K balls

falling into different bins. By "Birthday Paradox" McKinney [1966], the K balls falls

into different bins with a high probability provided K = o(VN). This finishes the

proof for the case of top-set information.

First-order information. Our interest is in recovering a random distribution A from

partial information MP(A) for p = (N - 1, 1). To this end, let

K = IIA1o, supp (A)= { E SN : 1 <k K},

and A(c) =p,1 < k < K.

Here ok and Pk are randomly chosen as per the random model R(K, W) described in

Section 3.2. For p = (N - 1,1), D, = N; thus, MP(A) is an N x N matrix with its

(i, j)th entry being

MP(A)i- = Pk, for 1 i,j < N.
k:o- (j)=i

In order to establish the result for the first-order information, we prove that as

long as K < C1N log N with C1 = 1 - e, A satisfies the signature condition with

probability 1 - o(1) for any fixed e > 0. To this end, let 46 = e so that C1 < 1 - 46.

Let Ek be the event that Ok satisfies the signature condition, for 1 < k < K. Under

the random model R(K, W), since K permutations are chosen from SN independently

and uniformly at random, it follows that P(Ek) is the same for all k. Therefore, by

union bound, it is sufficient to establish that KP(Ef) = o(1). Since we are interested

in K = O(N log N), it is sufficient to establish P(c) = O(1/N 2 ). Finally, once again

due the symmetry, it is sufficient to evaluate P(E1) assuming ai = id, i.e. o-1 (i) = i

for 1 < i < N. Define

9j = {I-k(j) = j, for 2<k<K}, for 1 j<N.
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It then follows that

P(E1) = P (U = ).

Therefore, for any L < N, we have

P(E[) = P (n_ iff)

< P (
= [ ((jc ni g )]. (B.7)

We next show that for the selection L = N 1-8, the RHS of (B.7) is bounded above

by exp(-N) = 0(1/N 2 ). That will complete the proof for this case.

For that, we start by bounding P(9f):

P($f) = 1I - P (1)

=I1- 1IN- (B.8)

The last equality follows because all permutations are chosen uniformly at random.

For j > 2, we now evaluate P n-1 91). Given nfyZ{, for any k, 2 k < K,

c~k(j) will take a value from N - j + 1 values, possibly including j, uniformly at

random. Thus, we obtain the following bound:

P (9c n- 9,jc < 1 - 1 - K. -. (B.9)t=1 -N-j+1)K-

From (B.7)-(B.9), we obtain that

PE[)N< N 1- 1 -

1 N -j +1K]

< 1-Nog] 1-10
N-L
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where we have used K < C1N log N in the last inequality. Since L = N1-5 , N - L =

N(1 - o(1)). Using the standard fact 1 - x = e-x(1+ O(x2 )) for small x E [0, 1), we

have

N L)
= exp ( (B.11)

N L) 1

Finally, observe that

±0 ( 1))CiNog 
N

+NO = E(1).

Therefore, from (B.10) and (B.11), it follows that

P( [) 1 - E (exp (- C1 log N))IL

< [1 -E) (exp (- (C1 + 5) log N))IL

= [1
- e c+

Sexp -_E Nc1+)
= exp (-e(N2+)) , (B.12)

where we have used the fact that 1 -x < e-' for x E [0, 1] and L = N 1 ~5, C1 < 1-46.

From (B.12), it follows that P(E1) = 0(1/N 2). This completes the proof for this case.

The result of the theorem now follows.

B.4 Proof of Theorem 10

Our interest is in recovering the random distribution A from partial information MP(A)

for p = (N - v, v). As in proof of Theorem 9, we use the notation

K = |A1|| 0, supp (A) = {jk E SN : 1 < k < K},

and A(O) = p, 1 < k < K.
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Here ak and pA are randomly chosen as per the random model R(K, W) described in

Section 3.2. For p = (N - v, v), D, = N! ~ N" and MP(A) is an D x D

matrix.

To establish the result of Theorem 10, we shall prove that as long as K <

C1Nvlog N with 0 < C1 < A a constant, A satisfies the signature and linear in-

dependence conditions with probability 1- o(1). As noted in the proof of Theorem 7,

the linear independence is satisfied with probability 1 under R(K, W). Therefore, we

are left with establishing the signature property.

To this end, for the purpose of bounding, without loss of generality, let us assume

that K = 2Nv log N for some 6 > 0. Set L = N 1-6. Following arguments

similar to those in the proof of Theorem 9, it will be sufficient to establish that

P(E = O(1/N 2"); where E1 is the event that permutation o-1 = id satisfies the

signature condition.

To this end, recall that MP(A) is a D, x D, matrix. Each row (and column) of

this matrix corresponds to a distinct p partition of N : ti, 1 < i < D,. Without loss

of generality, let us order the D, p partitions of N so that the ith partition, ti, is

defined as follows: tj ={1,..., N - v}{N - v +1,..., N}, and for 2 < i < L,

ti = {1, ...,7 N - iv, N - (i - 1)v + 1,... N}

{N - iv + 1,..., N - (i -1)v}.

Note that since ai = id, we have o-1(ti) = tj for all 1 < i < D,. Define

9j = {k(tj) 4 tj, for 2 < k < K}, for 1 j < D,.

Then it follows that

IP(E1) - IP (UDifj) .
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Therefore,

P(Ef)= P (n_"iye)

< P _(n 1iff)

= P ({f) P ( n 9,c)]. (B.13)

First, we bound P(g(f). Each permutation 0 k, k # 1, maps ti = {1,...,N - v}{N -

v+1,... , N} to { k(1), .. . , Uk(N-v)}{ (N-v+1),... , o(N)}. Therefore, crk(tl) =

ti iff Uk maps set of elements {N-v+1, ... , N} to the same set of elements. Therefore,

1
P (0-k(t) = t1) =

(N)

V!

=-I:(N-f)~

< V! .(B.14)
- (N - Lv)v

Therefore, it follows that

P (Af) = 1 - P (91)

= 1 - P(Uk(tl) $ti, 2 < k < K)
K

= 1- J(1 - P (k(tl) =t))
k=2

< 1V- 1 -N L . (B.15)
- (N - Lv)v)

Next we evaluate P (gjc ni1 fj) for 2 < j < L. Given nj-f y, we have (at

least partial) information about the action of o-k,2 < k < K over elements {N -

(j - 1)v +1... , N}. Conditional on this, we are interested in the action of o-k on

tj, i.e. {N - j +1, ... , N - jv + v}. Specifically, we want to (upper) bound the

probability that these elements are mapped to themselves. Given n - fF each ok

will map {N -jv +1, ... , N - jv +v} to one of the (N-(-1)v) possibilities with equal

probability. Further, {N - jv + 1, ... , N - jv + v} is not a possibility. Therefore, for
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the purpose of upper bound, we obtain that

P (s; n-i F) 1 - I - ( 1)) K-1

5 1 1 -(N - Lv)v) B.6

From (B.13)-(B.16), we obtain that

P(E 11 (N - Lv)KIL

Now Lv = o(N) and hence N - Lv = N(1 - o(1)). Using 1 - x = e-(1 + O(X 2 )) for

small x E [0, 1), we have

S(N- Lv)vJ

= exp ( (N - Lv)v) 1 ±0 (B.18)

Finally, observe that since K = 0(NV log N),

1+0 O 1)K E(_

Thus, from (B.17) and (B.18), it follows that

P(E6) 1 - E exp N v/
- e( - Lv/N)v

< 1 - E (exp ( 1 26) log N L
(1 - N-sv)v

< [1 - E (exp (-(1 - 36/2) log N))]L

< 1 -) 8 N' -4/2

< exp (-Q(LN-1+3/2))
< exp (-Q(NS/2)

=v 0(B.19)
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In above, we have used the fact that 1- x < e-' for x E [0, 1] and choice of L = N 1-6 .

This completes the proof of Theorem 10.

B.5 Proof of Theorem 11

So far we have obtained the sharp result that A satisfies the signature and linear

independence conditions up to sparsity essentially yN' log N for p with p1 = N - v

where v = 0(1). Now we investigate this further when v scales with N, i.e. v = W(1).

Let pi = N - 7 with q < N9-5 for some J > 0. For such p = (p1,...,ps),

N!
-'=1 pi!

N!

P1!
< NN-p = N'7. (B.20)

Our interest is in the case when K (1 - e)D, log log D, for any e > 0. For this, the

structure of arguments will be similar to those used in Theorems 9 and 10. Specifically,

it will be sufficient to establish that P(Ef) = 0(1/D2), where E1 is the event that

permutation o- = id satisfies the signature condition.

To this end, we order the rows (and corresponding columns) of the D, x D, matrix

MP(A) in a specific manner. Specifically, we are interested in the L = 3N9-231lo3 N

rows that we call te, 1 < f < L and they are as follows: the first row, ti corresponds to

a partition where elements {1, ... ,p1} belong to the first partition and {p11, ... , N}

are partitioned into remaining s -I parts of size P2, ... , P, in that order. The partition

t 2 corresponds to the one in which the first part contains the p1 elements {1, ... , N -

27, N-77+1, ... , N}, while the other s -I parts contain {N-2+1, ... , N-,} in that

order. More generally, for 3 < f < L, tj contains 1, ... , N-67, N-(e-1)+1, ... , N}

in the first partition and remaining elements {N - f7 + 1,... , N - (f - 1)7} in the

rest of the s - 1 parts in that order. By our choice of L, L77 = o(N) and, hence, the

above is well defined. Next, we bound P(Ef) using these L rows.
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Now ai = id and hence oi(ti) = tj for all 1< i < D,. Define

gj = {Jk(tj) # t, for 2<k<K}, for 1 <j 5D,.

Then it follows that

P(E1) = P? (UPP1g).

Therefore,

P(Ec) = P (ngi ff)

< P (nf=1gc)
= P n ) ] fj . (B.21)

First, we bound P(sf). Each permutation -k, 1 < k < K maps ti to one of the D,

possible other p partitions with equal probability. Therefore, it follows that

P (Ork(ti) = t1 ) = 1 (B.22)

Thus,

P (9C) = 1 - P (91)

= 1 - P (Ok(ti) # ti, 2 < k < K)
K

= 1- J(1 - P (Ork(t) = t))
k=2

= 1- 1 D,)K. (B.23)

Next we evaluate P ( n f j for 2 < j 5 L. Given n - , we have (at least

partial) information about the action of uk, 2 < k < K over elements {N - (j - 1)r/ +

1,... , N}. Conditional on this, we are interested in the action of ok on tj. Given

the partial information, each of the Ok will map ty to one of at least Dp(j) different

options with equal probability for p(j) = (P1 - (i - 1)r/ P2, ... , P,) - this is because
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the elements 1,..., pi - (j - 1)77 in the first part and all elements in the remaining

r - 1 parts are mapped completely randomly conditional on ntIj. Therefore, it

follows that

P( n_-= ) 1- (1 )K. (B.24)

From (B.21)-(B.24), we obtain that

P(ED < 1 - 1 - pj
=1 D

< 1 - 1 - 1. (B.25)

In above we have used the fact that

D = D,(1) > ... > Dpg)

Consider

DPW_ _ (N - (j - 1)7)! (p' - j7)!

D,(j.1) (N - j )! (p1 - (j -1)!

-' (N - (j - 1)7 )

_-, (p1 ( - 1)'q - f
N 77-1 1 ~-1)7,-f

= - 1 N (B.26)
pi0 1-

Pi

Therefore, it follows that

DM N ~L1i ~ -1--
(N ) 1 N (B.27)

Dg) Pi _I - t ,

Using 1 + x < ex for any x E (-,1, x > e -2x for x E (0, 1/2) and Lq o(N),
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we have that for any f, 0 < e < (L - 1)q

1-P
P1

1 t + -P

1-

< exp -

< exp ±N-1
(Np1

Np1

2e2
P+ /

2e2
+71+ .

Therefore, we obtain

N ( L2E ± 2L3?3))DP(1)
Dp(L)

Now

( N 
LDP~i

< exp - .
Pi

It can be checked that for given choice of L, q, we have Lq 2 = o(pi)

and L 2 73 = o(Npi). Therefore, in summary we have that

D,(1)

Dp(L)
= 1 + o(1).

(B.30)

, L/3= o(p2)

(B.31)

Using similar approximations to evaluate the bound on RHS of (B.25) along with
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(B.20) yields,

P(E9) exp -L exp -D ))

= exp (-L exp (-(1 - e) log log D,(1 + o(1))))

< exp (-L exp (- log log D,))

= exp ( o fD

3N1-2 log3 N
= exp . log D,

< exp (-2 log D,)
I 1 

(B.32)
P

This completes the proof of Theorem 11.

B.6 Proof of Theorem 12

For a general p, we establish a bound on the sparsity of A for which A satisfies

the signature and linear independence conditions with a high probability. Let p =

(pi,.. ., p), s 2 with pi - - p, 1. As before, let

K=IIAIIO, supp(A)={okESN:1<k K},

and A(O) = pA, 1 < k K.

Here Ok and pA are randomly chosen as per the random model R(K, W) described in

Section 3.2. And, we are given partial information MP(A) which is a D, x D, matrix

with

N!
D, - .i N

i=1 Pil

Finally, recall the definitions a = (ai)1<<s with cai = pi/n, 1 < i < s, and

8 S

H(c)=-Eailogaii, and H'(a)=-Eajlogaj.
i=1 i=2
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As usual, it is sufficient to establish that A satisfies the signature condition because

the linear independence condition with a high probability since values pAs are drawn

at random from a finite interval.

For the ease of exposition, we introduce the notion of a p-bipartite graph: it

is a complete bipartite graph GP = (V[ x V2', EP) with vertices Vf, V having a

node each for a distinct p partition of N and thus |V| = |Vf| = D,. Action of a

permutation a- E SN, represented by a 0/1 valued D, x D, matrix, is equivalent to

a perfect matching in GP. In this notation, a permutation a- satisfies the signature

condition with respect to a collection of permutations, if and only if there is an edge

in the matching corresponding to o- that is not present in any other permutation's

matching.

Let EL denote the event that L > 2 permutations chosen uniformly at random

satisfy the signature condition. In order to establish the result of Theorem 12, we

need to show that P(j) = o(1) as long as K < K*(p) where K*(p) is as defined

in (5.3). For that, we bound P(Eg EL) for L > 1. Now consider the bipartite graph,

GPL, which is subgraph of GP, formed by the superimposition of the perfect matchings

corresponding to the L random permutations, oaj, 1 < i < L. Now, the probability of

EL+1 given that EL has happened is equal to the probability that a new permutation,

generated uniformly at random, has its perfect matching so that all its edges end

up overlapping with those of GP. Therefore, in order to evaluate this probability we

count the number such permutations.

In order to simplify the exposition, we first count the number of such permutations

for the cases when p = (N - 1, 1) and p = (N - 2,2). Later, we extend the analysis

to a general p. As mentioned before, for p = (N - 1, 1), the corresponding GP is

a complete bipartite graph with N nodes on left and right. With a bit of abuse of

notation, the left and right vertices be labeled 1,2, ... , N. Now each permutation,

say o- E SN, corresponds to a perfect matching in GP with an edge from left i to right

j if and only if u(i) = j. Now, consider GP, the superimposition of all the perfect

matching of the given L permutations. We want to count (or obtain an upper bound

on) the number of permutations such that all the edges in their corresponding perfect
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matchings overlap with the edges of GP. Now, each permutation maps a vertex on

left to a vertex on right. In the graph GP, each vertex i on the left has degree of at

most L. Therefore, if we wish to choose a permutation so that all the edges of its

corresponding perfect matching overlap with those of GL, it has at most L choices for

each vertex on left. There are N vertices in total on left. Therefore, the total number

of choices is bounded above by LN. From this, we conclude that for p = (N - 1, 1),

L N

In a similar manner, when p = (N - 2,2), the complete bipartite graph GP has

D = () nodes on the left and right; each permutation corresponds to a perfect

matching in this graph. We label each vertex, on left and right, in GP by unordered

pairs {i,j}, for 1 < i < j < N. Again, we wish to bound given P(S(E+I|EL).

For this, let GP, a subgraph of GP, be obtained by the union of edges that be-

long to the perfect matchings of given L permutations. We would like to count the

number possible permutations such that all the edges in their corresponding per-

fect matchings overlap with the edges of GPL. For this, we consider the Ln/2] pairs

{1, 2} , {3, 4} , ... , {2[n/2J - 1, 2[N/2]}. Now if N is even then they end up covering

all N elements. If not, we consider the last, Nth element, {N} as an additional set.

Now, using a similar argument as before, we conclude that there are at most LLN/ 2J

ways of mapping each of these LN/2] pairs such that all of these edges overlap with

the edges of GP. Note that this mapping fixes what each of these FN/21 unordered

pairs get mapped to. Given this mapping, there are 2! ways of fixing the order in each

unordered pair. For example, if an unordered pair {i, j} maps to unordered pair {k, l}

there there are 2! = 2 options: i - k, j -+ 1 or i '-+ 1, j -+ k. Thus, once we fix the

mapping of each of the [N/21 disjoint unordered pairs, there can be at most (2!) FN/21

permutations with the given mapping of unordered pairs. Finally, note that once the

mapping of these [N/2J pairs is decided, if N is even that there is no element that

is left to be mapped. For N odd, since mapping of the N - 1 elements is decided, so

is that of {N}. Therefore, in summary in both even N or odd N case, there are at
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most L LN/2J (2!) [N/21 permutations that have all of the edge of corresponding perfect

matching in GP overlapping with the edges of GP. Therefore,

LLN/21 (2!)LN/2)
P(E+1|eL) I N!

Now consider the case of general p = (p1, P2,..., p,). Let T = [N/(N - pi)J and

J = N - T(N - pi). Clearly, 0 < J < N - p1. Now we partition the set {1, 2, .. . ,N}

into T+ 1 partitions covering all the elements: {1, ... , N -p}, ... , {(N - pi)(T- 1) +

1,..., (N - p1)T} and {(N - pi)T + 1, ... , N}. As before, for the purpose of upper

bounding the number of permutations that have corresponding perfect matchings in

GP overlapping with edges of GP, each of the first T partitions can be mapped in L

different ways; in total at most LT ways. For each of these mappings, we have options

at the most

(P2!p3! .. ps!)T-

Given the mapping of the first T partitions, the mapping of the J elements of the

T + 1st partition is determined (without ordering). Therefore, the additional choice

is at most J!. In summary, the total number of permutations can be at most

LT ( p!J!.
i=2

Using this bound, we obtain

1T(s PjT

P (EZc+1|EL) N! L 11 pi J!. (B.33)
i=2

Let,

XL = L lp!)J!.
Note that Ek+1 c Ek for k > 1. Therefore, it follows that

P (EK) = P(K n K-1)

= P(EKIEK-1)P(SK-1). (B.34)
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Recursive application of argument behind (B.34) and fact that P(E1 ) = 1, we have

K-1

P (EK) = P(E1 ) 1 P (EL+1 EL)
L=1

K-1

= I (1 - P (Z+1|EL))
L=1
K-1

= f(1 - xL)
L=1

K-1

> 1 - XL). (B.35)
L=1

Using (B.33), it follows that Xk+1 > xk for k > 1. Therefore,

K

>ZXL < KXK
L=2

1 K .)J!
(i=2)

hKT+1 N!) J!
N! p1!Dp )

KT+1 N!)T J!
D T p1! N!

KT+1 N! T J!((N - p1 )!)T
. (B.36)DT pi!(N - p1 )! N!

Since N = J + T(N - p1), we have a binomial and a multinomial coefficient in

RHS of (B.36). We simplify this expression by obtaining an approximation for a

multinomial coefficient through Stirling's approximation. For that, first consider a

general multinomial coefficient v!/(ki!k 2!... ke!) with v = Ei ki. Then, using the
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Stirling's approximation log n! = n log n - n + 0.5 log n + 0(1), for any n, we obtain

log V!
(k1!k2!.. k -!M

= vlogv-v+0.5logv+0(1)-

(ki log ki - ki + 0. 5 log ki + O (1))

=1

= m E-log + 0.510g 0y
_v ki kjk2 ... kt

Thus, we can write

N!
T log N

pi!(N - pi)!
1 1

= TNai log -+ TN(1 - ai) log 1 (B.37)

1
+ 0.5 log 1 - O(T)

NT {{ - a1)T

where ai = p1/N. Similarly, we can write

N!
log J!((N - pi)!)T

SNJ log + TN(1 - ai) log (B.38)

+ NT6(1 - ai)T O(T)

where 6 = J/N. It now follows from (B.37) and (B.38) that

N! N!
pi!(N - p)! J!((N - p)!)T

- TNai log ai +N log 6 (B.39)

6
+ 0.5 log - + O(T)

a1
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Since J < 1, JN log J < 0 and log(5/aT) < -T log a1. Thus, we can write

N! N!
T log p!(N - p)! logJ!((N - pi)!)T

< TNai log(1/ai) + O(T log(1/ai))

= O(TNai log(1/ai)) (B.40)

It now follows from (B.36), (B.39) and (B.40) that

K

log ( XL)
(L=2)

<(T + 1) log K - T log D, + O(TNai log(1/ai)) (B.41)

Therefore, for P(EK) = 1 - o(1), a sufficient condition is

log K + c log N
T + 1

T T
<-T+_ log DP T + 1(Nai log(1/ai)) (B.42)

for some c > 0. We now claim that log N = 0 (TNai log(1/ai)). The claim is clearly

true for a1 -+ 0 for some 0 < 0 < 1. Now suppose ai -+ 1. Then, T > 1/(1-ai)-1 =

a1/(1 - ai) = x, say. This implies that Tai log(1/ai) > aix log(1 + 1/x) -+ 1 as

ai -+ 1. Thus, TNai log(1/ai) = N(1 + o(1)) for ai -+ 1 as N -+ 00. Hence, the

claim is true for a1 -+ 1 as N -+ 00. Finally, consider ai -+ 0 as N -+ cc. Note that

the function h(x) = x log(1/x) is increasing on (0, E) for some 0 < c < 1. Thus, for

N large enough, Nai log(1/ai) > log N since ai > 1/N. Since T > 1, it now follows

that TNai log(1/ai) > log N for N large enough and ai -+ 0. This establishes the

claim.

Since log N = O(TNai log(1/ai)), it now follows that (B.42) is implied by

T T
logK < T 1log DP - T 0(Nai log(1/ai))

-T log D, 1 - O(Nai log(1/ai))~ (B.43)
T + 1 log D,
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Now consider D, = N!/(p1!p2!... p,!). Then, we claim that for large N

log DP > 0.5NH(a). (B.44)

In order to see why the claim is true, note that Stirling's approximation suggests,

log N!

log pi!

= NlogN-N+0.5logN+O(1),

= pjlogp -pj+0.5logp +O(1).

Therefore,

logD, > NH(a) + 0.5 log(N/p1 ) - E 0.5(0(1) +log pi).
i=2

Now consider,

pi log(N/pi) - log pi - 0(1)

-og N log(N/pi) - 0(1)
log(N/pi))

(B.45)

Since pi < N/2 for i > 2, log(N/pi) > log 2. Thus, the first term in the RHS of

(B.45) is non-negative for any pi > 1. In addition, for every pi, either pi - log pi -+

oo or log(N/pi) -+ oo as N -+ 00. Therefore, the term on the RHS of (B.45) is

asymptotically non-negative. Hence,

logD, > 0.5NH(a).

Thus, it now follows from (B.44) that (B.43) is implied by

log K < T log DP 1
-T + 1

- O(ai log(1/ai))
H(a)

That is, we have the signature condition satisfied as long as

K = 0(D ,
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= p( t



where

(a T=iT I _,H(a)-H'(c) 1 (B.48)
T + 1 H(a) _'

and C' is some constant. This completes the proof of theorem.

B.7 Proof of Theorem 13: Limitation on Recovery

In order to make a statement about the inability of any algorithm to recover A from

MP(A), we rely on the formalism of classical information theory. In particular, we

establish a bound on the sparsity of A beyond which recovery is not asymptotically

reliable (precise definition of asymptotic reliability is provided below).

B.7.1 Information theory preliminaries

Here we recall some necessary Information Theory preliminaries. Further details can

be found in the book by Cover and Thomas Cover and Thomas [2006].

Consider a discrete random variable X that is uniformly distributed over a finite

set X. Let X be transmitted over a noisy channel to a receiver; suppose the receiver

receives a random variable Y, which takes values in a finite set 0. Essentially, such

"transmission over noisy channel" setup describes any two random variables X, Y

defined through a joint probability distribution over a common probability space.

Now let X = g(Y) be an estimation of the transmitted information that the

receiver produces based on the observation Y using some function g : -+ .

Define probability of error as Perr = P(X #A X). Since X is uniformly distributed over

X, it follows that
__1

Perr - Z P(g(Y) $ xlx). (B.49)

Recovery of X is called asymptotically reliable if perr -+ 0 as |XI -+ oo. Therefore,

in order to show that recovery is not asymptotically reliable, it is sufficient to prove

that Perr is bounded away from 0 as I X-+ oo. In order to obtain a lower bound on
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Perr, we use Fano's inequality:

H(XjX) < 1+perlog|&l.

Using (B.50), we can write

H(X) = I(X;Z)

< I(X; Z)
(a)
< I(X; Y)

= H(Y)-

H(Y) +

+ H(XIX)

+Perr log| Xl + 1

+perrlog|. l + 1

H(YIX)+ perr log|X + 1

Perr log|Xl + 1,

where we used H(YIX) > 0 for a discrete' valued random variable. The inequality (a)

follows from the data processing inequality: if we have Markov chain X -+ Y --+ Z
then I(X; Z) < I(X; Y). Since H(X) = logj.X|, from (B.51) we obtain

H(Y) + 1
Perr > 1 - log XI (B.52)

Therefore, to establish that

sufficient to show that

probability of error is bounded away from zero, it is

H(Y) + 1 1-J

log|X| -
(B.53)

for any fixed constant 6 > 0.

B.7.2 Proof of theorem 13.

Our goal is to show that when K is large enough (in particular, as claimed in the

statement of Theorem 13), the probability of error of any recovery algorithm is uni-

formly bounded away from 0. For that, we first fix a recovery algorithm, and then

'The counterpart of this inequality for a continuous valued random variable is not true. This led
us to study the limitation of recovery algorithm over model R(K, L) rather than R(K, ').

252

(B.50)

(B.51)



utilize the above setup to show that recovery is not asymptotically reliable when K

is large. Specifically, we use (B.53), for which we need to identify random variables

X and Y.

To this end, for a given K and L, let A be generated as per the random model

R(K, L). Let random variable X represent the support of function A i.e., X takes

values in X = SK . Given p, let MP(A) be the partial information that the recovery

algorithm uses to recover A. Let random variable Y represent MP(A), the D, x D,

matrix. Let h = h(Y) denote the estimate of A, and g = g(Y) = supp (h) denote the

estimate of the support of A produced by the given recovery algorithm. Then,

P (h # A) > P (supp (h) # supp (A))

= P (g(Y) # X) . (B.54)

Therefore, in order to uniformly lower bound the probability of error of the recov-

ery algorithm, it is sufficient to lower bound its probability of making an error in

recovering the support of A. Therefore, we focus on

Perr = P (g(Y) # X).

It follows from the discussion in Section B.7.1 that in order to show that Perr is

uniformly bounded away from 0, it is sufficient to show that for some constant 6 > 0

H(Y) < 1-6. (B.55)
log|KI -

Observe that |I = (N!)K. Therefore, using Stirling's approximation, it follows that

log|j| = (1+o(1))KNlogN. (B.56)

Now Y = MP(A) is a D, x D, matrix. Let Y = [Yij] with Yj, 1 < ij < D,, taking

values in {1, ... , KL}; it is easy to see that H(Yig) < log(KL). Therefore, it follows
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that

Dp

H(Y) < ( H(Yij)
i,j=1

D log (KL) = D (logK+log L). (B.57)

For small enough constant 6 > 0, it is easy to see that the condition of (B.55) will

follow if K satisfies the following two inequalities:

D log K 1 K 3(1 - 6/2)D2
KNlogN (1+) < logK NlogN (B.58)

D log L 13(1 - 6/2)D2 log L

KN log N 3 N logN (B.59)

In order to obtain a bound on K from (B.58), consider the following: for large

numbers x, y, let y = (c + e)x log x, for some constants c, e > 0. Then, logy =

log x + log log x + log(c + e) which is (1 + o(1)) log x. Therefore,

oy +E x > cx (B.60)log y 1 +0(1) ~

for x -+ oo and constants c, e > 0. Also, observe that y/ log y is a non-decreasing

function; hence, it follows that for y > (c + e)x log x, y/ log y > cx for large x. Now

take x = N N c = 3,=1 andy = K. Note that D, ;> N for all p of interest;

therefore, x -+ 00 as N -+ 00. Hence, (B.58) is satisfied for the choice of

K > NDN logN * (B.61)
-Nlog N (N logN)

From (B.55), (B.58), (B.59), and (B.61) it follows that the probability of error of any

algorithm is at least 6 > 0 for N large enough and any p if

4D 2

K > log VL)1 . (B.62)
- Nlog N NlogN

This completes the proof of the theorem.
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B.8 Proof of Lemma 3

Here we present the proof of Lemma 3. For that, first consider the limit a1 t 1.

Specifically, let ai = 1-E, for a very small positive E. Then, Z.- 2 ai = 1- ai = e. By

definition, we have H'(a)/H(a) < 1; therefore, in order to prove that H'(a)/H(a) -+

1 as ai f 1, it is sufficient to prove that H'(a)/H(a) 1 - o(1) as a1 f 1. For that,

consider

H'(a) H'(a)

H(a) a1 log(1/ai) + H'(a)
- 1- ailog(1/ai) (B.63)

a1 log(1/ai) + H'(a)(

In order to obtain a lower bound, we minimize H'(a)/H(a) over a > 0. It follows

from (B.63) that, for a given a1 = 1 - E, H'(a)/H(a) is minimized for the choice of

ai, i > 2 that minimizes H'(a). Thus, we maximize i=2 ai log ai subject to ai 2 0

and E- 2 ai = 1 - ai = E. Here we are maximizing a convex function over a convex

set. Therefore, maximization is achieved on the boundary of the convex set. That

is, the maximum is Elog E; consequently, the minimum value of H'(a) = E log(1/c).

Therefore, it follows that for ai = 1 - E,

> H'(a) > -(1 - E) log(1 - E)

-H(a) -- -elog(1/)' (1 - 6) log (1 - E)

Elog(1/E) +
1

1- +log(1/c)

(B.64)

To prove a similar claim for ai , 0, let ai = E for a small, positive E. Then, it

follows that r = Q(1/E) since E1 ai = 1 and ai ai for all i, 2 < i < s. Using

a convex maximization based argument similar to the one we used above, it can be

checked that H'(a) = Q(log(1/c)). Therefore, it follows that ai log(1/ai)/H'(a) -+ 0

as a1 4 0. That is, H'(a)/H(a) -+ 1 as a1 4 0. This completes the proof of Lemma 3.
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