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Abstract

In recent years, interconnects have become an increasingly difficult design challenge as
their relative performance has not improved at the same pace with transistor scaling.
The specifications for complex features, clock frequency, supply current, and number
of I/O resources have added even greater demands for interconnect performance.
Furthermore, the resistivity of copper begins to degrade at smaller line widths due to
increased scattering effects. Graphene has gathered much interest as an interconnect
material due to its high mobility, high current carrying capacity, and high thermal
conductivity. DC characterization of sub-50 nm graphene interconnects has been
reported but very few studies exist on evaluating their performance when integrated
with CMOS. Integrating graphene with CMOS is a critical step in establishing a path
for graphene electronics.

In this thesis, we characterize the performance of integrated graphene intercon-
nects and demonstrate two prototype CMOS chips. A 0.35 prm CMOS chip imple-
ments an array of transmitter/receivers to analyze end-to-end data communication
on graphene wires. Graphene sheets are synthesized by chemical vapor deposition,
which are then subsequently transferred and patterned into narrow wires up to 1 mm
in length. A low-swing signaling technique is applied, which results in a transmitter
energy of 0.3-0.7 pJ/bit/mm, and a total energy of 2.4-5.2 pJ/bit/mm. We demon-
strate a minimum voltage swing of 100 mV and bit error rates below 2x10-. Despite
the high sheet resistivity of graphene, integrated graphene links run at speeds up to
50 Mbps. Finally, a subthreshold FPGA was implemented in 0.18 pm CMOS. We
demonstrate reliable signal routing on 4-layer graphene wires which replaces parts
of the interconnect fabric. The FPGA test chip includes a 5x5 logic array and a
TDC-based tester to monitor the delay of graphene wires. The graphene wires have
2.8x lower capacitance than the reference metal wires, resulting in up to 2.11x faster
speeds and 1.54x lower interconnect energy when driven by a low-swing voltage of 0.4
V. This work presents the first graphene-based system application and demonstrates
the potential of using low capacitance graphene wires for ultra-low power electronics.
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Chapter 1

Introduction

1.1 Interconnect Challenges

The semiconductor industry has advanced at an exponential rate over the last few

decades. In recent years, interconnects have become a major limiting factor on the

performance of very large-scale integrated (VLSI) systems [1-3]. The relative perfor-

mance of interconnects has not improved at the same pace with transistor scaling [2].

Latency, energy dissipation, and signal integrity have all become an increasingly diffi-

cult problem to cope with. With shrinking cross-sectional areas and hence increased

electrical resistance, the interconnect delays have begun to exceed transistor delays

and this trend worsens at advanced technology nodes [2,4]. While the capacitance

of a global wire remains fairly constant under technology scaling, the addition of

more complex features has resulted in higher energy dissipation. Global wires often

dominate the total power consumption in many VLSI systems [5,6]. Furthermore,

the specifications for clock frequency, supply current and voltage, number of I/O re-

sources has added greater demands for higher levels of integration and interconnect

performance [7].

Many solutions have emerged to address these challenges, ranging from new ma-

terials and processes to novel micro-architectures. At the system level, multi-core

systems has emerged as a recent trend, where slower data transfers are managed

across multiple dies and faster local communication is kept on-chip [8,9]. Nonethe-



less, for high bandwidth systems, cross-chip communication can still limit total per-

formance as it increases on-die cache delays and buffer resources. Three dimensional

integration can also benefit certain applications as the length-reduction in wires leads

to lower energy dissipation [10, 11]. Heat removal and I/O resource allocation re-

mains a challenge for such integration schemes. Innovative circuit techniques have

also contributed to more efficient data communication. On-chip transmission lines

have shown near speed-of-light latency and high throughput, but this comes at the

cost of significant wire resources [12-14]. Low-swing signaling methods reduce the

voltage level primarily as a power-reduction technique, but often have higher latency

and reduced noise margins [15-18]. Other solutions have combined CMOS repeaters

with channel equalization techniques.

Furthermore, innovative device structures or new nano-materials have already

found their way into prototype VLSI applications in an effort to reduce power dissi-

pation [19, 20]. Improving fundamental material properties are expected to become

more important in highly scaled technologies. At narrow line widths, surface scatter-

ing of conducting electrons are projected to be a major concern, drastically increasing

the effective resistivity of copper interconnects [21, 22]. This results from a combi-

nation of smaller cross-sectional dimensions and increased liner thicknesses. Heat

management will also be increasingly important, as higher energy dissipation of wires

and poor thermal conductivity of low-K insulators contribute to substantial temper-

ature increases.

Among many materials, carbon-based materials such as graphene or carbon nan-

otubes have received much attention in recent years as a replacement for copper

interconnects. Graphene is a planar sheet composed of carbon atoms. Graphene

exhibits ballistic transport [23,24], high intrinsic mobility [24,25], high thermal con-

ductivity [26,27], and high current carrying capacity [28-30], making it attractive not

only for transistors [31, 32] but also for interconnects [33, 34] and even as a thermal

interface material [35]. Theoretical projections show that at small line widths (<

8nm), graphene will outperform copper with a 1:1 aspect ratio [33].

Carbon nanotubes are formed when a planar sheet of carbon atoms are rolled up in



a cylindrical tube. Graphene and carbon nanotubes share many excellent properties

but graphene is more attractive from a manufacturing standpoint. Carbon nanotubes

are chemically stable but it is extremely difficult to control their size and placement.

Graphene can be grown in large sheets [36,37] and then be subsequently patterned

and etched using standard lithography methods. This results in better control and

higher reproducibility of graphene devices.

Despite these excellent properties, the fabrication process is not well controlled at

the level required for integrated circuits. Befittingly, the majority of graphene research

focuses on methods to improve the material quality or finding innovative device ar-

chitectures. To explore the full potential of graphene-based electronics, the research

focus must extend beyond materials and devices. We need to find new promising

applications and understand their requirements throughout all phases of the design

from material to system. One of the major advantages of graphene over other nano-

materials is that graphene can be lithographically processed. This allows an easy

path toward integration with existing silicon technology. DC characterization of sub-

50nm graphene interconnects has been reported [28, 34], but very few studies exist

on evaluating their performance when integrated with CMOS. Integrating graphene

with CMOS is a critical step in establishing a path for graphene electronics. Chen et

al. have reported the first integrated graphene/CMOS system [38]. They use CMOS

ring oscillators to indirectly measure the performance of short graphene wires. More

importantly, studying the performance of graphene under real workloads is needed

but demonstration of a full system using graphene has not been made. Although sev-

eral reports exist on graphene applications [32,39,40], these are generally prototypes

that have limited functionality and only use a few devices. Developing a complete

graphene-based system not only helps establish graphene as a viable interconnect ma-

terial but also provides a general roadmap for material, circuit, and system design.



1.2 Thesis Contributions

The objectives of this thesis are to characterize the performance of graphene in-

terconnects and demonstrate a complete graphene/CMOS application. This thesis

contributes in the following areas:

(1) Monolithic Integration with CMOS.

Providing a path toward integration is critical in establishing the use of graphene

as interconnects. Here, we demonstrate monolithic integration of graphene with

CMOS on two prototype test chips. The purpose of the first test chip is to

characterize the performance of long graphene wires. Off-chip measurements

have limited scope and often require expensive equipment. The first test chip

provides a platform to directly measure the delay and energy associated with

driving a signal on long graphene wires. The second test chip demonstrates

a complete system application. Large sheets of graphene are synthesized and

then transferred to the CMOS chip. We then use standard lithography steps to

pattern narrow graphene wires and connect them with the underlying CMOS

circuitry. Details of the process flow are outlined in Chapter 3.

(2) Characterization of Multilayer Graphene Interconnects.

In this work, we grow large-area graphene sheets by chemical vapor deposi-

tion [36, 37, 41, 42]. The underlying catalyst film differs among the various

growth methods, but Cu foils are a popular choice since they yield highly uni-

form monolayer graphene sheets [41,42]. However, the monolayer sheet needs

to be transferred multiple times to achieve a lower sheet resistance. In con-

trast, the use of Ni catalyst films generally produces a thick multilayered stack

of graphene sheets and does not require multiple transfers. Both methods are

used throughout this thesis. Here, we apply the term 'multilayer' to indicate

graphene sheets with more than 10 layers. While graphene interconnects us-

ing monolayer and few-layer sheets have been previously characterized [34,43],

no studies exist on using thick multilayer graphene sheets as interconnects. In



this thesis, we conduct both off-chip and on-chip measurement of multilayer

graphene interconnects. We characterize the properties of multilayer graphene

sheets as well as long graphene wires. We implemented a CMOS test chip onto

which 1 mm length graphene wires are monolithically integrated. Unlike Chen's

work [38], this test chip focus on end-to-end data communication on medium

to long multilayer graphene wires. The performance of each graphene wire is

measured in detail, using isolated transmitters and receivers.

(3) Demonstration of Graphene-based Subthreshold System.

The analysis and results from Chapter 2 and Chapter 5 point to the large wire

resistance as a major limitation for using graphene for high-speed communica-

tion. Unless very thick stacks of high quality graphene layers can be fabricated,

the sheet resistance of a multilayer stack cannot match that of a Cu wire. In-

stead, another way to leverage graphene wires is to fabricate ultra-thin wires

which have low wire capacitance. The low capacitance of few-layer graphene

devices offers great opportunities for ultra-low power applications, which of-

ten have moderate frequency requirements. In Chapter 2, we briefly discuss

this trade-off between speed and energy and suggest that ultra-thin graphene

wires can provide significant energy reduction in subthreshold applications. Fur-

thermore, we develop a second CMOS chip that operates in subthreshold and

takes of advantage of few-layer graphene interconnects. This test chip presents

the first experimental demonstration of a system application using graphene de-

vices. Graphene is monolithically integrated as part of the interconnect fabric in

a field-programmable gate array (FPGA). An FPGA has a highly interconnect-

centric architecture making it an ideal test vehicle for graphene integration.

Interconnect delay is a significant portion of the delay due to multiple routing

segments in an FPGA. Furthermore, global interconnects have been shown to

dominate the total power consumption in FPGAs [5,6].

This thesis is organized as follows. Chapter 2 describes a physics-based circuit

model for graphene and compares its performance with Cu interconnects. In Chap-



ter 3, we discuss various graphene synthesis methods and outline the process flow used

in this work. The monolithic integration process is also explained. Next, we describe

the characteristics of multilayer graphene sheets and wires in Chapter 4 and present

the results for integrated graphene data links in Chapter 5. Chapter 6 then explains

the FPGA architecture and measured chip results. Finally, Chapter 7 concludes the

thesis.



Chapter 2

Benchmarking Graphene

Interconnects

Graphene has large conductivity and large current capacity making them attractive

for interconnect applications. Many reports highlight the potential of graphene but

experimental results show that the resistivity of graphene is still quite larger than

that of Cu. This chapter uses a physics-based circuit model to project and compare

the performance of graphene and Cu interconnects.

2.1 Modeling Graphene Interconnects

2.1.1 Physics-Based Circuit Models

An accurate model is needed in order to benchmark the potential performance of

graphene interconnects. Here, we use the well known physics-based model presented

by Naeemi et al. [33,44,45]. Figure 2-1 shows the equivalent circuit model for quan-

tum wires including graphene or carbon nanotubes [46]. The value of the circuit

parameters depend on the electronic band structure of the material.

When a net current exists in a quantum wire, the kinetic energy of the electrons

(1/2L 2 ) manifests itself in the kinetic inductance LK. This can be observed at high

frequencies and in high mobility conductors such as superconductors. For graphene
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Figure 2-1: Equivalent circuit model for a graphene wire.

and carbon nanotube devices, the kinetic inductance is usually much larger than

the magnetic inductance. For most practical dimensions, the frequency at which

the inductive effects begin to be important is usually in the THz range or in some

cases several hundreds of GHz. This is well beyond the practical range for most

applications and hence will not be considered throughout this thesis. In addition, the

wires are assumed to be long enough compared to the mean free path that the contact

resistances can be ignored. Contact resistances as small as a few hundred ohms is

reported [47,48]. Although the contact resistance is expected to rise at smaller line

widths, the exact values also depend on the fabrication process and are difficult to

precisely model.

The quantum resistance, quantum capacitance, and kinetic inductance are deter-

mined by the total number of conduction channels in the device, which is in turn

determined by the chirality and width of the graphene device. The chirality, or con-

figuration, of the graphene ribbon depends on the pattern of the edge which can be

in an armchair or zigzag configuration (Figure 2-2). While all zigzag edged graphene



devices are metallic, an armchair device may be metallic or semiconducting. An arm-

chair device is metallic if the number of carbon atoms across its width is 3p+2, and

semiconducting if the number is 3p or 3p+1, where p is an integer.

Zigzag Armchair
edge edge

Figure 2-2: Diagram of zigzag and armchair configuration for graphene wires.

The electrostatic capacitance CE is determined by the surrounding materials and

geometry. In addition to CE, in a quantum system one must add an electron at an

available quantum state above the Fermi energy due to the Pauli exclusion princi-

ple. This additional extra energy cost can be equated with an effective quantum

capacitance. This quantum capacitance CQ can be expressed as:

4e2

CQ = NeNh ~ (200aF/ym) Nh (2.1)
hvf

where e is electron charge, h is the Plank constant, Vf is the Fermi velocity in graphene

(~ 8 x 10 5m/s), and Neh is the number of conduction channels. Similarly, the quantum

resistance RQ is the resistance of an ideal quantum wire with no scattering and

equals [49]:

RQ h/2e2  12.9kQ(
Nch Neh

In virtually all practical wires, electrons will get scattered by phonons, defects, and

rough edges. The scattered resistance per unit length is rec = RQ/Aeff where Aeff

is the effective mean free path and is modeled in 2.1.3. The total resistance and



capacitance of the wire then becomes:

R =ot = RQ + rsc (2.3)

= RQ 1+ (2.4)
Aef f

C =ot = CQ//CE (2.5)

= CQCE (2.6)
CQ+CE

Both the conductance (or 1/R) and quantum capacitance scale linearly with the

number of conduction channels. The number of conducting channels or modes is a

function of the chirality and width of the device and can be expressed using Fermi-

Dirac statistics as:

Neh = Nch,electron + Nch,hole (2.7)

-z1 -E1
neexp r kB EF1 +) x EF-Enhole~ 28

e iecro / B x kBT +

where En,eectron (En,hole) is the minimum (maximum) energy of the nth conduction

(valence) subband, EF is Fermi energy, kBT is thermal energy, and n is an integer.

Using a tight-binding approximation, the subband energy can be calculated as [44]:

hvf
En = In±+ # (2.9)

2W

where # is 1/3 and 0 for semiconducting and metallic devices respectively. Several

modifications need to be made to this equation especially when the line width be-

comes very small. When graphene is patterned into small ribbons, this geometric

confinement causes the electronic band structure to change. In reality, the carbon

atoms at the edge are spaced slightly closer than the atoms in the middle [50].This

shifts the subbands, but most importantly, this opens up a gap in metallic 3p+2 arm-

chair devices, which was experimentally verified in [51]. For zigzag graphene ribbons,

a small gap also appears due to the staggered sublattice potential from magnetic or-



dering. The simple tight-binding models are accurate unless graphene ribbons that

have a narrow width (< 5 nm) and low Fermi energies. The exact equations are found

in [44].
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C
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Figure 2-3: Number of conduction channels in a graphene nanoribbon.

Figure 2-3 shows the number of conduction channels as a function of graphene

width based on the equations above. We chose an arbitrary Fermi energy value of

0.21 eV. Although the exact number of conduction channels depends heavily on the

Fermi energy, the qualitative results do not change. The effect of varying the Fermi

energy is discussed in the next section. In Figure 2-3, at large widths, the difference

between semi-conducting and metallic devices disappears. As the width decreases, the

band gap opening becomes more pronounced. For armchair graphene wires, semicon-

ducting ribbons have larger quantum conductances compared to metallic wires, which

appears counter intuitive. The reason behind this is that there are smaller gaps be-

tween subbands in semiconducting devices than those in metallic ones. Thus, depend-

ing on the Fermi energy, more subbands may be populated in semiconducting devices.

Graphene nanoribbons with rough edges all become semiconducting [47,52,53], which



may not be problematic for interconnect applications since semiconducting wires con-

duct as well as metallic wires. [47] suggests that the detailed edge structure plays a

more important role than crystallographic direction in determining the properties of

GNR. Theory supports this and predicts the energy gap depends sensitively on the

boundary conditions at the edges.

The difference between work functions of graphene and the substrate causes some

charge to get trapped at the interface [52,54]. This causes the Fermi energy to shift

from zero, where EF of 0.13 eV [55], 0.21 eV [52], and 0.4 eV [54] have been previously

observed. The shift in EF is associated with the surface charges at the interface rather

than the carrier concentration of the substrate. Wang et al. have observed that the

conductance per layer saturates as the number of graphene layers increases which

suggests that the conduction of graphene sheets is limited by the substrate [48]. A

nominal value of EF=0.2 eV is assumed in this chapter.

2.1.2 Multilayer Stacks

The model presented in the previous section assumes a monolayer graphene intercon-

nect. Multilayer graphene wires can offer lower resistance, and ultimately, a thicker

stack is more reliable for large-scale manufacturing. Depending on the stacking or-

der, a multilayer stack of graphene turns in to graphite and the increased intersheet

electron interactions lower the conductivity per layer [56]. Therefore, to take full

advantage of multilayer graphene devices, the adjacent graphene layers must be non-

interacting and electronically decoupled.

To date, the interaction between monolayer and multilayer flakes of graphene

is not well understood. Some groups have provided theoretical and experimental

evidence suggesting that the transition from graphene to graphite occurs around

seven to eight layers of graphene [57,58]. Zhou et al. have suggested that epitaxial

graphene behaves as bulk graphite beyond five layers [54]. In contrast, others have

demonstrated electronically decoupled multilayer graphene films [37,59] which shows

great promise.

Understanding the nature of multilayer stacking has a subtle yet very important



effect on the analysis of graphene wires. Xu et al. assumes that the multilayer

graphene device is neutral (EF=OeV) and extracts the mean free path from conduc-

tivity values of bulk graphite [60]. This results in overly pessimistic projections of

multilayer graphene devices compared to Cu wires. In contrast, Tanachutiwat and

Wang models the Fermi level shift resulting from multilayer stacks of graphene [61]

and conclude more favorable results for multilayer graphene interconnects than Xu

et al.

Throughout this chapter, we assume that each adjacent layer is decoupled [37,59]

and assume each layer has the same parameters (i.e., EF, Psc, Aeff, etc) that is equal

to that of a high quality monolayer graphene device. Although this assumption can

be readily validated for few-layer graphene wires (under -10 layers) [37,57-59], for

high-performance applications, potentially hundreds of layers are needed to match

the resistance of Cu wires.

2.1.3 Mean Free Path and Line-Edge Roughness

Rough edges can backscatter electrons and lower the effective mobility or mean free

path. The detrimental effects of line-edge roughness have become more pronounced

as the width of nano-scale devices continue to shrink. Controlling the edge of a

graphene device is even more important since a rough edge occurs even when a single

atom is displaced on the edge of a graphene wire. Recently, Ni nanoparticles have

demonstrated the cutting and precise patterning of graphene devices [62]. Although

this process achieves the atomic precision necessary to control the edge of a graphene

device, this method lacks the control required for large-scale manufacturing. We must

assume that some degree of backscattering will occur in the device, as smooth edges

are extremely difficult to achieve if not impossible.

Experiments show that the intrinsic mean free path in graphene is in the pm range

[25]. The mean free path of electron-phonon scatterings in graphene nanoribbons is

expected to be extremely large and on the order of tens of pm [63] and hence has

little effect on the overall mean free path. The effective mean free path can then be



modeled as [44]:
1 1 1

= + (2.10)
Aeff AD Aedge

where the AD is the mean free path due to the substrate-induced disorders and defects

and Aedge is the mean free path associated with the edge roughness. Here, AD is as-

sumed to be 1 pm, where a value between 400 nm and 1.2 pm have been demonstrated

experimentally [25,52, 64]. The mean free path associated with the edge roughness

for the nth subband becomes [32,33,52]:

A =W EF 2
Aedge,n ~ - 1 (2.11)

Pc is the backscattering probability and has a value between 0 and 1. A value of

PSc=0 indicates that the device has a smooth edge and no backscattering occurs,

and P8 c=1 indicates that transport along the edges is fully diffusive. The equation

above also indicates that Aedge is proportional to the width of the device. This width

dependence was similarly modeled in [60].

Figure 2-4 shows the calculated mean free path. The graphs shows that the mean

free path decreases at smaller line widths only when Pc 0 (i.e., when backscattering

occurs). The roll off can occur at much smaller line widths depending on the Fermi

energy or backscattering probability. Therefore, the resistance of the graphene wire

can be improved by increasing the Fermi energy or by fabricating graphene devices

with smoother edges. The Fermi energy can be modulated by electrostatic gating or

by means of chemical doping.

Yang and Murali have experimentally demonstrated mobility degradation in graphene

nanoribbons as a function of the device width [43]. The mobility is limited by edge

scattering at smaller line widths as expected. Using the equations in this section and

in 2.1.1, we can extract the mobility of a graphene device as / = 1/engrpgr where ng,

and Pgr are the carrier density and effective resistivity, respectively.

Figure 2-5 plots the data from [43] and the calculated mobility assuming a mono-

layer armchair wire with Pc=0.5 and ngr=5x10 12 cm-2. Typical carrier densities
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Figure 2-4: Calculated mean free path in a graphene nanoribbon. (a) A constant
AD=1Pm is assumed while varying the Fermi level. (b) A constant EF=0.21 eV is
assumed while varying scattering probability.
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Figure 2-5: Mobility of graphene wires vs. wire width. Data points are from [43] and

lines represent calculated mobility.

between 2x10 1 and 9x10 12 cnm2 have been reported [25, 36, 42, 47, 55, 64-66]. Due

to phonon scattering of SiO 2, the room-temperature mobility limit of graphene on

Si0 2 is 40,000 cm 2V-1s-1 [67] and is also plotted in Figure 2-5. The mobility degra-

dation due to line-edge roughness is clearly visible when the width is below 50 nm.

The calculated mobility fits the experimental data well when Pc=0.5, EF=0.1eV

and AD=0.3pm. Throughout Section 2.3 we assume that Pc=0.5, EF=0.2eV and

AD=1.OIpm, which is a reasonable and yet optimistic projection. These values result

in mobilities that are roughly 6x higher than the experimental data found in [43], but

are comparable to those found in [25,65, 66].

2.2 Modeling Copper Interconnects

Developing a closed form model for Cu is essential in projecting the resistivity values

when the physical dimensions extend beyond the roadmap outlined by the Interna-

tional Technology Roadmap for Semiconductors (ITRS) [68]. The effective resistivity

of a metal conductor is a strong function of the scattering processes at the surface



and grain boundaries. Such effects have been studied for a long time and a number

of well-known models exist [22,69-72]. Recently, Lopez et al. have added the effect

of line-edge roughness [72], which has become increasingly more important.

When a Cu wire has an effective width and height of wa, and hc, respectively,

and a bulk resistivity of po, the effective resistivity of Cu is given by [72]:

PCu = P 2 G(a) + 0.45Ac (1 - pc,) +
1-LER 2hCu (LER 2

(2.12)

where G(a) is the grain boundary component defined as [71]:

G(a) = 1 [1 + a2 --a3in 1 + ] (2.13)
3 .3 2 a.

and a is given by:

aE = Acu Ec (2.14)
dcu 1 - Rcu

where LER is the line-edge roughness amplitude, Acu=40 nm is the bulk mean free

path in copper [69], and dcu is the average separation of the grain boundaries and

can be approximated as - wCa. The two primary parameters used to model and fit

experimental data to is Rcu and pCu. Rc is the fraction of electrons scattered at the

grain boundary and pCu is the fraction of electrons elastically scattered. Rcu is the

grain reflectivity, where Rcu=1 indicates that an electron will experience complete

reflection within a grain. pCu is specularity, where a value of 0 indicates diffuse

(inelastic) scattering and electrons completely lose their drift velocity.



2.3 Comparison of Copper and Graphene Inter-

connects

2.3.1 Sheet Resistivity

Recent demonstration of sub-50 nm graphene interconnects show that the best devices

are comparable to copper in terms of their resistivity [34]. Although such reports

show great promise of graphene as an interconnect material, comparing the resistivity

often overlooks one of the most important challenges of graphene. Ultimately, thick

stacks of multilayer graphene are needed to compete with Cu and yet no experimental

demonstration has come close. In commercial CMOS technologies, it is often more

useful to report the two-dimensional sheet resistivity (Rsh) since the height of each

metal layer is fixed. The sheet resistivity is a function of the material properties and

its thickness (Roh=p/thickness).

Figure 2-6 plots the sheet resistance of various graphene samples found in liter-

ature. Sheet resistance as low as 30 Q/sq was produced from HNO 3 -doped 4-layer

graphene sheets fabricated from a 30-inch graphene film [55]. Most commercial CMOS

technologies have sheet resistances less than 0.1 Q/sq for all metal layers [73], although

this number is expected to increase at future technology nodes. The sheet resistance

of graphene devices is generally 3-4 orders of magnitude higher than this limit pri-

marily because the graphene films reported in literature are typically very thin and

composed of 1-10 layers. As discussed in Section 2.1.2, fabricating thick multilayer

graphene stacks that do not turn in to graphite is extremely difficult and has not yet

been demonstrated.

As a result, one of the most promising applications of graphene and certainly the

closest to reaching the market has been transparent electrodes. Transparent elec-

trodes are widely used in displays, touch panels, and solar cells. Due to the limited

supply and high cost of indium tin oxide (ITO), the standard material for transparent

electrodes, graphene has been actively pursued as a low-cost alternative. In addition,

recent demonstration of graphene-based touch-screen panels shows that graphene is
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Figure 2-6: Sheet resistance of various graphene samples.

more tolerant to strain than ITO [55]. The required sheet resistance to replace ITO

is typically between 10 and 100 Q/sq [74]. The inherent requirement for having a

thin and transparent metal conductor results in a sheet resistance for transparent

electrodes that is much higher than what is required for CMOS interconnects. Co-

incidentally, because of this requirement, few-layer graphene devices are a perfect

candidate to replace ITO.

Figure 2-7 shows the sheet resistance of graphene and Cu at the extreme limits. In

the optimistic case (EF=0.2eV, AD=1pm), the effective Reh for graphene is slightly

lower than that of Cu. When the thickness is less than 1 nm, the data from [55]

outperforms Cu at those thicknesses. A single graphene layer is one atom thick and

represents the ultimate limit of a two-dimensional material. While traditional inter-

connects are fabricated by evaporating a bulk metal source, single crystalline graphene

films can be synthesized resulting in superior performance. Although existing fabrica-

tion methods have produced highly uniform few-layer graphene films, thick multilayer

graphene films have not been demonstrated. At the 11 nm node, the effective sheet

resistance is expected to rise to 1 Q/sq. In order to reach 1 Q/sq, roughly 50 layers of

graphene is needed in the optimistic case or 30 layers when the performance is limited

by Si0 2. Reliably fabricating such thick layers remains a challenge.
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Figure 2-7: Sheet resistance of graphene and Cu. Data points are measured results
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2.3.2 Wire Resistance and Capacitance

In this section, we compare the performance of graphene and Cu wires using a typical

wire structure with adjacent ground signals and ground planes (Figure 2-8). The

interlayer dielectric constant is r=2.2 and the aspect ratio is fixed at 2 for Cu wires.

Figure 2-9 shows the resistance of graphene and Cu wires. When graphene is

limited by the SiO 2 substrate, graphene begins to outperform Cu below 14 nm wire

width for 10-layer graphene wires and below 4 nm wire width for monolayer graphene

interconnects. As more layers of graphene are used, the width at which graphene

begins to outperform Cu increases. However, these projections are based on the

upper limit of graphene. ITRS projections also assume high quality Cu wires where

scattering induced by line-edge roughness is limited. In Figure 2-9b, we assume more

realistic values equivalent to those used in Section 2.1.3 and Section 2.2. Under these

assumptions, line-edge roughness severely limits the Cu wires below 14 nm, resulting

in the rapid rise in resistance. Both monolayer and 10-layer graphene wires show

better performance than Cu wires below 14 nm.

The exact point at which graphene begins to outperform Cu is subject to change
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Figure 2-8: Cross section of interconnect and surrounding ground planes. The dielec-
tric constant is K=2.2 and the aspect ratio is 2 for Cu wires. The estimated height H
of the graphene wire is the product of the interlayer spacing 0.34 nm and the number
of layers.

as the modeled parameters change. However, in general, this crossover is not expected

to occur until around 10 nm which is consistent with [33]. In contrast to resistance

values, the capacitance of the graphene wire is known to be significantly less than

that of a Cu wire. Figure 2-10 shows the capacitance per unit length as a function

wire width assuming the geometry outlined in Figure 2-8. The capacitance of the Cu

wire is nearly constant across all wire widths because the geometry scales accordingly.

Recall that the total capacitance of a graphene wire can be expressed as the series

combination of the electrostatic capacitance and quantum capacitance. As the wire

width decreases, the capacitance of the graphene wire slightly increases since we

assume that the graphene wire has constant thickness in contrast to the Cu wire,

which has a constant aspect ratio. The difference between a monolayer and 20-

layer graphene wire is relatively small when W=100 nm. When W=100 nm, the

capacitance of a 20-layer graphene wire is only 7.4 % higher than that of a monolayer

graphene wire. This difference becomes 79.6 % when W=10 nm. Overall, if we use

less than 10 layers, the capacitance of a graphene wire is 2x lower than that of a Cu

wire.

Although more layers are needed to reduce the overall resistance, adding more
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Figure 2-10: Capacitance of graphene and Cu wires. Cu wires assume a constant
aspect ratio=2. Graphene wires are assumed to be zigzag with EF=0.2eV.

layers also increases the capacitance and energy dissipation. Figure 2-11 plots the

wire capacitance at a fixed width of 10 nm. Generally, the quantum capacitance is

much larger than the electrostatic capacitance and thus has very little effect on the

overall capacitance especially for thicker graphene films. As the number of layers

increase, the capacitance also increases. In contrast, the resistance shows a more

pronounced decrease as the number of layers increase (Figure 2-12). If we assume a

smooth edge with no scattering, roughly -16 layers is needed to match the resistance

of a Cu wire. However, more than 60 layers is required when the wire is completely

diffusive. Thus, fabricating multiple graphene layers with very little interlayer and

line-edge scattering is necessary to have resistance values comparable to that of Cu

wires.

Similarly, the combined effect of the wire resistance and capacitance is shown in

Figure 2-13. Because the wire capacitance shows a rather weak dependence on the

number of layers, the RC time constant shows a similar form as the wire resistance.

Nonetheless, the small capacitance of graphene does lower the overall RC time con-
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Figure 2-11: Wire capacitance as a function of number of graphene layers. Wire
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Figure 2-13: RC delay as a function of number of graphene layers. Wire width is
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stant and only ~ 8 layers is needed to match the RC time constant of a Cu wire when

a smooth edge is assumed. When the wire is completely diffusive, more than 60 layers

is still required to match the performance of Cu wires. When graphene approaches its

limit on SiO 2, only two layers of graphene is needed to match the RC time constant

of Cu. This suggests that the graphene films needs to be of extremely high quality.

2.3.3 Interconnect Performance for Subthreshold Circuits

Enhancing the quality of the graphene wire and fabricating multilayer stacks is critical

for lowering the delay of graphene wires. Overcoming these challenges may prove

to be too difficult as no known solutions exist yet. One attractive alternative is

to take advantage of the small capacitance of graphene wires. Chip makers will

often produce two different silicon technologies depending on the system needs. For

example, interconnect stacks are often optimized either for RC performance or wire

density [75]. In high-performance applications, thick wires are used to optimize the



resistance and capacitance of the wire. However, the energy of a wire is predominantly

determined by its capacitance. Lowering the capacitance is more advantageous in

low-power applications although this also results in a higher wire resistance.

From earlier discussions of Figure 2-10, roughly 10 layers or less is needed at

small dimensions for graphene wires to have a competitive edge over Cu in terms of

wire capacitance. When 10 or fewer layers are used, the graphene film must have

extremely high quality to have a resistance value comparable to that of Cu. However,

these design margins may be relaxed for subthreshold circuits, where the supply

voltage is less than the threshold voltage of a transistor. Subthreshold applications

often have modest speed requirements. Subthreshold circuits are inherently slow due

to the decreased current levels and can tolerate more resistive wires. The use of low-

capacitance wires is fitting because the primary motivation is to lower the energy

dissipation in such systems.

Naeemi has previously suggested changing the aspect ratio or using carbon-based

devices for subthreshold circuits [761. The analysis presented in the previous section

assumed a fixed aspect ratio of 2 for Cu wires. At a fixed wire width, the aspect

ratio can be decreased by decreasing the height of the bulk Cu wire or by stacking

less layers of graphene.

Figure 2-14 shows the capacitance as a function of the wire aspect ratio. Wire

capacitance decreases as the aspect ratio decreases because the coupling and fringe

capacitance is reduced. Graphene has a slightly smaller wire capacitance than that

of Cu because of the quantum capactiance of graphene. However, except at very

small aspect ratios, the difference in wire capacitance between Cu and graphene is

very small because the wire capacitance is mostly determined by the electrostatic

capcitance. Therefore, graphene wires do not have a significant advantage over Cu

wires in terms of capacitance since capacitance is predominantly determined by the

wire geometry.

However, graphene is an ideal candidate for low-capacitance wires because it is

intrinsically very thin. Graphene sheets are one atom thick and the ability to fabricate

such wires with atomic precision presents a significant manufacturing advantage over
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bulk materials. The back-end process flow in a CMOS technology typically includes

physical deposition of metallic sheets, which result in a polycrystalline film. Therefore,

bulk materials such as Cu suffer at such small thicknesses (Figure 2-7). Figure 2-15

shows the wire resistance as a function of the wire aspect ratio. Wire resistance

increases as the aspect ratio decreases. When we assume smooth line edges for both

graphene and Cu wires, graphene wires are projected to have lower resistance than

Cu wires. In subthreshold circuits, although the wire resistance is often not the

dominant resistance term, this may become problematic for thin Cu wires. The

actual resistance of extremely thin Cu wires is likely significantly higher than what

we project here if edge scattering effects are considered. When fabricating extremely

thin wires for subthreshold circuits, graphene is more reliable and robust and thus a

better candidate for low-capacitance wires.

When a CMOS inverter is driving a distributed RC wire (Figure 2-16), the RC

time constant is given by [77]:

T =RonC + 2 (2.15)
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where Ro, is the equivalent on resistance of the transistor and R" and C, are the

distributed resistance and capacitance respectively. At the nominal supply voltage,

Ro, is typically a few kQ and the wire resistance dominates. However, as the voltage

is scaled below threshold voltage of the transistors, Ro, increases exponentially and

becomes the dominant resistance term as long as the wire resistance does not degrade

significantly at very small thicknesses.

VDD  VDD
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TCW RT,

Figure 2-16: Diagram of CMOS inverter driving a distributed RC wire.

Figure 2-16 shows this effect in detail. We assume a simple buffer driving a

distributed RC line at the 16 nm node [68, 78]. To compare the effect of the metal

thickness, we compare 5-layer graphene wires with Cu wires with a nominal aspect



ratio of 2. The wire is modeled using a r3 distributed RC model (Figure 2-17).

The distributed resistance and capacitance values for the Cu wire are 197.3 kQ and

138 fF respectively. The values for the 5-layer graphene wires are 7.3 MQ and 61.8

fF respectively. The graphene wire has a resistance that is roughly 37x higher and

capacitance that is 2.2x smaller than the Cu wire.
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Figure 2-17: Equivalent r3 RC wire model used for simulating a distributed RC wire
with total resistance R, and total capacitance C,.
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Figure 2-18: Performance of graphene and Cu wire in subthreshold.

For long interconnects, the energy is largely determined by the capacitance of the

wire and favors graphene. At high supply voltages, the high resistance of the graphene

wire negatively affects the RC delay. However, at low supply voltages, the large

resistance of the transistors begins to dominate and the wire capacitance becomes

important, resulting in a lower delay for the graphene wire. Although we demonstrate



this at the 16 nm node, the qualitative results are true regardless of the underlying

CMOS technology because the transistor resistance begins to increase exponentially

when the supply voltage begins to drop below the threshold voltage. In Section 6.3.3,

we experimentally demonstrate that graphene wires outperform similarly sized metal

wires in subthreshold operation.

2.4 Summary

In this chapter, we use a physics-based circuit model to compare the performance

of graphene and Cu wires. Rough edges can backscatter electrons and lower the

effective mobility or mean free path. Controlling the edge of a graphene device is

even more important since a rough edge occurs even when a single atom is displaced

on the edge of a graphene wire. When line-edge roughness is accounted for, we expect

that graphene will begin to outperform Cu in terms of resistance around 10 nm line

widths. However, this requires very thick graphene films or graphene wires with

very smooth edges. Alternatively, we can take advantage of the small capacitance of

graphene wires. Roughly 10 or fewer number of graphene layers are needed to have

2x smaller capacitance than Cu wires. Although this results in large wire resistances,

this is advantageous in subthreshold circuits where the large transistor resistance

dominates. Ultra-thin graphene wires have lower delay and energy dissipation under

such conditions than similarly sized Cu wires.



Chapter 3

Fabricating Graphene Devices

Graphene has shown promise for a large range of applications. Since the introduction

of graphene, many research groups have explored various ways to fabricate graphene

devices. This chapter briefly surveys the existing synthesis methods and then outlines

the process flow for producing graphene wires. The integration process with CMOS

is also discussed here. Being able to leverage the established infrastructure of CMOS

foundries is extremely important as graphene-based electronics gain traction.

3.1 Survey of Existing Methods

The various arrangements of pristine carbon atoms lend itself to many well known

compounds, such as diamond, graphite, or even soot. Graphite has a layered, planar

structure. In each layer, the carbon atoms are arranged in a hexagonal lattice. The

in-plane bonding forces are much stronger than that in the perpendicular direction.

For example, graphite is commonly used as the marking material in pencils. This

weak interlayer bonding force allows the graphite source to be mechanically cleaved,

thus allowing a pencil to easily leave a mark on paper.

The term graphene strictly refers to a single layer sheet of graphite [79,80]. How-

ever, throughout literature the term graphene is often loosely used to indicate mono-

layer, few-layer, and even thick multilayer stacks of graphene sheets.

The widespread interest in the many possible applications of graphene and the



search for large-scale and low-cost manufacturing methods has led to the discovery of

many different fabrication techniques. Traditionally, copper or aluminum intercon-

nects are fabricated by evaporating a bulk metal source and physically depositing the

material onto a substrate. Because graphene is one atom thick and represents the ul-

timate limit of a two-dimensional material, many research groups have attempted to

produce large sheets by chemically synthesizing graphene. This bottom-up approach

presents a stark departure from the conventional approach used in modern CMOS

processes. The ability to manufacture high quality metallic sheets is perhaps one of

the most important advantages of graphene over Cu at such thicknesses.

Monolayer graphene has existed for a long time. However, the first isolation of

high quality monolayer graphene did not occur until 2004, which was achieved by

micromechanical cleaving of a highly-oriented pyroltic graphite (HOPG) source [64].

To date, HOPG graphene still remains as one of the most effective ways to obtain

high-quality devices [28, 34]. This method is assisted by an adhesive tape, which

repeatedly peals off graphite layers from HOPG until monolayer or few-layer regions

are obtained [64]. The graphene flakes are then transferred to a target substrate,

typically a 300 nm SiO 2/Si substrate, by rubbing the adhesive tape.

Mechanical exfoliation of HOPG remains one of the most popular methods due

its relative ease and high sample quality. However, this method is not suitable for

large-scale integration. This technique has poor area coverage and produces small

flakes on the order of tens of pm at best.

Chemical vapor deposition (CVD) was one of the first methods that reliably grew

large areas of graphene sheets [36, 37]. CVD is attractive for large-scale integration

as it enables an arbitrarily large area of graphene to be grown [36, 37, 41], which

can then be subsequently patterned using standard lithography methods to produce

narrow graphene wires. The growth process starts by placing a catalyst film, typically

Ni or Cu, in a thermal furnace. At high temperatures, a carbon-rich gas source fills

the chamber and the carbon atoms begin to diffuse into the catalyst film. As the

temperature decreases, the excess carbon begins to precipitate out forming layers of

graphene. The CVD process is not limited to small substrates as Bae et al. have



recently demonstrated roll-to-roll production of 30-inch graphene films [55].

Graphene sheets produced by CVD are usually transferred to another substrate

after the growth process. Both Si and flexible plastic substrates are commonly used

as target substrates. The main advantage of this aspect is that the high-temperature

CVD process is isolated and independent from the target substrate. However, the

additional transfer step also adds to the manufacturing complexity and introduces

defects (Section 3.3).

Another method of growing epitaxial graphene has been facilitated by thermal de-

composition of single-crystal silicon carbide wafers [81]. The SiC substrate is heated

in vacuum to temperatures above 1250oC [81]. The thickness of the graphene film is

determined by the temperature and the graphene layers are electronically decou-

pled [59, 81]. However, SiC wafers are more expensive than Si wafers and most

graphene applications are processed on Si or plastic substrates.

Rather than synthesizing graphene by carbon precipitation, others research groups

have taken a different route to chemically derive graphene [51,82]. Li et al. have

produced ultra smooth graphene ribbons by suspending graphite in solvents with

polymer functionalization [51]. Although their approach yields narrow ribbons with

well defined edge structures, controlling the device yield and placement is extremely

difficult. In contrast, Yamaguchi et al. demonstrated uniform graphene films on 300

mm Si0 2 /Si wafers by spin coating graphene oxide in a methanol/water solution [51].

The film thickness is uniform and controllable by adjusting the volume of the solution

and spin rate. Nonetheless, because the film is made up of overlapping flakes, the

mobility is an order of magnitude lower than films produced by other methods.

Table 3.1 summarizes the performance of graphene sheets grown by various meth-

ods. The mobility of HOPG graphene is unmatched. Murali et al. have also demon-

strated HOPG graphene devices that have achieved the best experimental resistivity

values and are comparable to that of Cu [34]. Because HOPG graphene devices are

typically isolated, the sheet resistivity or number of layers is not usually reported.

The quality of CVD graphene films vary quite a bit, but the lowest reported sheet

resistance of graphene films is obtained by roll-to-roll CVD [55].



Table 3.1: Summary of graphene performance from various fabrication methods.

Method Mobilities (cm2 V's 1 ) Sheet Resistance (Q/sg)

Ni CVD [37] 100-2000 770-1000

Ni CVD [36] 3750 280-600

Ni/Cu CVD [41] 500-3000 280-510

Ni CVD (AuCl3 doped) [83] - 150

Cu CVD [42] 4050

Cu CVD (HN0 3 doped) [55] 4000 - 12,000 30-125

Chemically derived [82] 10 - 15 600 - 2400

SiC [84] - 170-280

SiC (Temperature=4K) [52] 2700 -

HOPG (suspended) [25] 200,000

HOPG [65] 2000 - 20,000

HOPG [66] 10,000 - 25,000 -

While many synthesis methods exist, CVD is exclusively used throughout this

thesis. A key objective of this thesis is to examine the integration of graphene with

CMOS technology and CVD enables large-scale integration on arbitrarily large areas.

Although the CVD and transfer methods has certain limitations for large-volume

manufacturing, these methods present the best known solution and are quite suitable

for developing a prototype graphene/CMOS solution. The limitations of CVD are

further discussed in Section 3.3.3.

3.2 Fabrication of Graphene Wires

3.2.1 Synthesis of Graphene Sheets

In this work, we grow large graphene sheets by CVD [36,37,41,42]. Two methods are

commonly used in literature. Both methods have limitations that must be overcome.

The first method uses Ni films and a fast cooling rate to produce thick, multilayered

graphene sheets [85]. Although the electrical properties need improvement, multilayer



graphene films produced from Ni-based CVD are more suitable for interconnect ap-

plications. Unlike transistor applications, a thicker graphene layer is generally desired

as it increases performance [86] and manufacturing reliability.

The second method uses Cu foils instead of Ni. Recently, Cu foils have been

used in CVD to produce mono- or bi-layer graphene films [41,42]. The Cu-grown

graphene films have shown superior performance than Ni-grown films due to their

high uniformity (Table 3.1). Because Cu CVD produces monolayer graphene films,

repeating the transfer process is often required to obtain thicker stacks and better

performance [55].

We use both methods in this work. Chapter 4 and Chapter 5 focus on Ni-grown

graphene wires. Devices made from Cu CVD have been widely studied. But inter-

connect properties of Ni-grown multilayer thick graphene have not yet been reported.

In Chapter 6, we use Cu-grown graphene to demonstrate complete CMOS system.

Next, we describe the process flow for Ni CVD (Figure 3-1). The starting material

is a 500 nm Ni film on SiO 2 /Si substrate. First, the substrate is placed in a quartz

tube. The quartz tube is placed in a thermal furnace. The substrate is then annealed

at 900'C for 20 minutes. Then the growth is carried out at 1000'C for 5 minutes,

using 5-30 sccm of methane and 1300 sccm of hydrogen [37]. For Ni CVD, the cooling

rate has an important impact on how carbon precipitates out of the Ni film [37]. This

results in a large-area multi-layered graphene sheet directly on top of the Ni film.

The CVD process is fundamentally identical for both Ni and Cu catalysts except

that Cu replaces the Ni film. For the Cu CVD process, a free standing Cu foil is

generally used instead of depositing Cu on a Si substrate. The other difference is that

the Ni process is done at atmospheric pressure and Cu process is done in the tens of

millitorr range.

3.2.2 Substrate Transfer and Graphene Patterning

Once the growth process is complete, the graphene sheet can be transferred to any

substrate. Figure 3-2 shows this process. A layer of poly(methyl methacrylate)

(PMMA) is spun on top of the graphene/Ni or graphene/Cu substrate. A wet etchant



Figure 3-1: Diagram of CVD process. Substrate is placed in a thermal furnace where
a mixture of hydrogen and methane flow at 10000C.

is used to detach the PMMA/graphene layer from the underlying substrate. Here, we

use a 10% HCl aqueous solution for the Ni process and a Cu etchant and HCl for the

Cu process. This PMMA/graphene film can then be placed on an arbitrary target

substrate, where after the PMMA layer is rinsed off with acetone [37].

After CVD

K Ik

(Old substrate) Spin-coat PMMA Use wet etchant (HCI) to
detach PMMA/graphene

i

Rinse away PMMA (acetone) Place on new substrate

Figure 3-2: Process flow for transferring graphene film on to an arbitrary target
substrate.

For off-chip measurements in Chapter 4, the graphene sheet is transferred to a

blank 300 nm SiO 2/Si substrate [37]. When integrating with CMOS, the graphene

sheet is directly transferred to the CMOS test chip (Section 3.3).

Once the graphene film is on the target substrate, the graphene sheet is patterned

into graphene wires. Figure 3-3 shows the process flow for fabricating graphene wires

on a blank substrate. First, we use a negative resist in an electron-beam lithography



process to define the wire patterns. Then oxygen or argon plasma is used to etch

away the unwanted graphene leaving the wires patterns intact. The etch time needs

to be monitored since the oxygen plasma also etches the electron-beam resist. The

graphene wires are generally less than 20 nm. Thus, under nominal conditions, a

short etch time less than 30 seconds is usually sufficient to fully etch the unwanted

graphene regions. However, very thick regions often form on Ni CVD graphene films

and these spots do not get removed even after prolonged plasma etch steps. Other

limitations are discussed in Section 3.3.3. Finally, a second lithography step is used

to define the metal contact region. The process is complete after depositing a Ti/Au

or Cr/Au films and lifting off the remaining metal films.

Graphene on substrate Deposit resist and Ar/0 2 plasma etch Remove resist
define wire patterns

Liftoff resist Deposit metal contacts Deposit resist and
define contact patterns

Figure 3-3: Process flow for fabricating graphene wires.

3.3 Monolithic Integration with CMOS

The previous section explained the fabrication process of graphene wires on a blank

substrate. Here, we describe the process flow for integrating graphene on CMOS chips.

Although both test chips follow a similar process flow, each test chip was optimized

for different functions. The implementation details of the two CMOS prototype chips

are described in Chapter 5 and Chapter 6.

Before graphene was discovered and gained widespread interest, carbon nanotubes

were considered a promising material for many electronic applications [87-891. Since

its initial discovery, a number of successful commercial applications have emerged [90-



93]. However, most of these applications only leverage the extreme lightweight and

strength of carbon nanotubes or its chemical sensing properties. It is extremely diffi-

cult if not impossible to precisely control the placement and type of carbon nanotubes

at the level that is required for integrated circuits. A number of research projects

have successfully integrated carbon nanotubes with CMOS [94] but the device yield

is typically very low.

Graphene on the other hand retains many of the properties that made carbon

nanotubes widely popular and attractive. In addition, the planar nature of graphene

allows it to be processed using conventional lithography steps. This feature makes

graphene more easy to integrate with CMOS and opens new opportunities for many

electronic applications [95,96].

3.3.1 A 0.35 pm CMOS Prototype

The first test chip was implemented in a standard 0.35pm CMOS process. As the

integrated graphene/CMOS chip serves primarily as a technology demonstrator, a

more advanced CMOS technology was not needed and not used here. The test chip

implements a low-swing driver and receiver to characterize the performance of long

graphene wires. We use Ni CVD to produce thick multilayer graphene sheets. All

remaining integration steps are CMOS compatible and follow a similar flow as in [38].

First, we expose the CMOS chip in a CF 4-based plasma etch process to partially

thin down the silicon nitride passivation layer. Electron-beam resists typically have

very poor etch selectivity. Therefore, we perform this blanket exposure to thin down

the passivation layer to make it easier for later process steps. Next, we use the same

process outlined in Section 3.2.2 to transfer the Ni-grown graphene sheets to the

CMOS chip. Fig. 3-4 shows both a drawing and an optical image of the CMOS chip

at one end of the graphene wire.

After the graphene sheet is transferred to the CMOS chip, a lithography step then

defines the wire patterns. The unwanted graphene regions are exposed and etched

away using oxygen plasma. A second lithography step defines the top metal contacts.

After Ti/Pt contacts are deposited, a third lithography step defines the via openings.
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Figure 3-4: Process flow for graphene and CMOS integration. A
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A CF 4/Ar etch process etches through the passivation layer and exposes the top

metal layer of the CMOS chip. A fourth lithography step defines the final via plug

patterns. The chip is placed in a sputterer and a brief Ar plasma is used to clean the

native oxide formed on the exposed Al wires. Lastly, without breaking vacuum, Ti is

sputtered to make the via plugs between the graphene contacts and the CMOS metal

layer.

In this test chip, the graphene wires are 4 pm wide and 0.5 or 1 mm long. The

total yield of working devices was about 60 % for 0.5 mm wires, and about 3 % for 1

mm wires. Unlike test devices fabricated on flat SiO 2 /Si wafers, the device yield for

the longer wires has been affected by the topology of the CMOS passivation layer and

the increased number of processing steps. Graphene wires that did not function were

mainly a result of lithography alignment errors or tears/voids along the graphene

channel. After each step, we visually inspected the chip and observed that graphene

tore apart mostly during lithography/etch steps. Handling small CMOS chips also

contributed to lithography challenges.

3.3.2 A 0.18 pm CMOS Prototype

The second test chip implements a field-programmable gate array (FPGA) in a

0.18 pm CMOS process. The underlying circuit was designed with missing wires,

onto which graphene wires were subsequently integrated. The second test chip was

designed for ultra-low power operation and thus we decided to use thin few-layer

graphene sheets to obtain lower wire capacitance. We follow a similar flow as in the

first test chip, but the order of the steps has changed.

Fig. 3-5 shows the process flow for integration. We first perform a blanket expo-

sure on the CMOS test chip to thin down the silicon nitride passivation layer. The

passivation layer did not etch uniformly across the chip. The relevant via patterns

are placed at the center of the chip but the passivation layer in these regions is etched

the least. This non-uniform etching is likely due to the dense patterns and different

nitride composition in this test chip. Therefore, unlike the first test chip, we then

lithographically define the via holes. A CF 4/Ar plasma step etches through the pas-



sivation layer and exposes the top CMOS metal layer. This allows us to over-etch the

via holes while protecting the perimeter of the chip.

monolayer graphene

Cu foil CVD growth Spin coat PMMA Wet etch Cu Deposit contacts

repeat 4x

CMOS Chip Etch passivation Deposit via plug Transfer graphene Etch graphene
layer and remove PMMA

Figure 3-5: Process flow for synthesizing/transferring graphene sheets and integrating
graphene wires with the CMOS test chip.

After forming the via holes, a second lithography step defines the via plug patterns.

Ti/Au is then deposited to fill the via holes. Next, we use the Cu CVD process to

grow the monolayer graphene sheets. The growth is carried out at 1000'C and 10

mT, with 20 scem and 10 sccm flow of CH 4 and H2, respectively. Using 4 separate

graphene sheets, we repeat the transfer process 4 times to achieve a thicker graphene

stack and lower sheet resistivity. For clarity, the transfer process is also depicted in

Figure 3-5. The resulting sheet resistance from the 4-layer stack is roughly -270

Q/sq.

After all 4 layers have been transferred, the graphene sheet is patterned into wires

using electron-beam lithography and an Ar/0 2 plasma etch step. Finally, Ti/Au

contacts are deposited on top of the wires/vias. Although the order is different,

the same four lithography steps are performed on this chip as on the first test chip.

Figure 3-6 shows images of the the integrated graphene wires. Roughly 40 % of

the integrated graphene wires worked. Visual inspection of the chip shows that the

device yield is largely impacted by the transfer process. Parts of the graphene sheet

get wrinkled or tear apart, resulting in either holes or non-uniform multilayer regions.

We discuss this further in the following section.
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Figure 3-6: Image of graphene wires on top of the CMOS chip. We observe areas of
(a) uniform 4-layer wires, as well as (b) non-uniform and non-continuous regions due
to wrinkling and tearing that occurs during the transfer process.

3.3.3 Optimizing Process Flow

In the previous sections, we have described the process flow for integrating graphene

with CMOS. The planar nature of graphene allows conventional lithography methods

to be used. This integration process is fully CMOS compatible but also accentuates

several limitations that must be overcome.

Several groups have demonstrated wafer-scale fabrication of graphene devices [41,

82,97,98]. In their work, graphene devices are fabricated on flat substrates and only

require one or two lithography steps. The actual device yield is seldom reported.

In our work, the graphene wires are narrow and up to 1 mm in length and involve

more processing steps. The device yield is significantly impacted by the topology

of the CMOS passivation layer and the increased number of processing steps. For

example, the longest graphene wires (1 mm) had the lowest device yield of only 3

%. Visual inspection of the chip after each step revealed that graphene tore apart

during various lithography/etch steps. This affects the longer wires more than the

shorter wires. The shorter wires (0.3 - 0.5 mm) generally had between 40 to 75 %



of the wires functioning properly. This may be attributed to the weak bonding force

between graphene and the substrate. Although most wires appear robust and adhere

well to the surface, the graphene wires are extremely delicate and are often knocked

out of their place during resist liftoff or sonication.

One aspect that contributed to these challenges was the small chip size. In this

work, both test chips were only 5 mm x 5 mm. Although this is generally considered

very large for a typical integrated circuit, this is rather difficult to handle in a clean-

room environment. When spin coating the electron-beam resist, the small chip size

necessitates a higher spin speed to reduce the amount of electron-beam resist that

builds up on the perimeter of the chip. The uneven thickness of the resist affects not

only the lithography and development stage but also the subsequent etch and depo-

sition steps. Nonetheless, these problems can be optimized by tweaking the process

conditions or by processing an entire wafer rather than a single chip.

Perhaps a more difficult and important issue is transferring the graphene sheet

to the CMOS chip. As shown in Figure 3-6, parts of the graphene sheet tear apart

or get folded during the transfer process. This appears to be more problematic for

Cu-grown graphene sheets which are only one atom thick. Ni-grown graphene sheets

are generally between 10 and 20 nm and more rigid than Cu-grown graphene sheets.

Achieving nearly 100 % coverage is absolutely critical for interconnect applications.

Recently, Bae et al. have demonstrated production of 30-inch monolayer graphene

sheets [55]. They use graphene for a touch-screen panel which has less stringent

requirements. For example, a 10 pm long tear in the graphene sheet will likely

not prevent the touch-screen panel from functioning but creates major issues for

integrated circuits. The transfer process must be significantly improved to meet the

manufacturing reliability needed for microelectronics. In this regard, Ni CVD appears

more promising but must overcome the non-uniform growth of graphene layers.



3.4 Summary

In this chapter, we have described the process flow for fabricating graphene wires.

We grow large graphene sheets by CVD using Ni and Cu catalysts. Ni CVD is

performed in atmospheric pressure and produces thick multilayered graphene sheets.

Unlike transistor applications, a thicker graphene layer is desired for interconnects

as it decreases wire resistance. In contrast, Cu CVD produces monolayer graphene

sheets. Because of the extremely high uniformity, Cu-grown graphene sheets generally

have superior performance than Ni-grown graphene sheets. However, Cu CVD only

produces a single sheet and thus multiple transfers are often required. The Cu-

grown sheets are extremely delicate and seem to break more easily than the thick

Ni-grown graphene sheets. Both methods are important for interconnect applications

and we designed two CMOS test chips to characterize the performance of either Ni

or Cu-grown graphene. Because CVD produces an arbitrarily large area of graphene,

conventional lithography methods were used to monolithically integrate graphene

wires with CMOS. Ultimately, since the graphene sheets are very delicate, the transfer

process needs to be optimized to increase device yield and improve performance.



Chapter 4

Characterizing Multilayer

Graphene Devices

CVD enables growth of large-area graphene sheets. Using Cu catalyst produces high

quality monolayer graphene sheets but requires multiple transfers. Ni catalyst yields

thick multilayer graphene sheets and is more suitable for interconnection applications.

While the property of monolayer or few-layer graphene interconnects have been widely

studied, few reports exist on characterization of multilayer graphene interconnects.

This chapter explores the fabrication of thick multilayer graphene sheets and its

properties.

4.1 Sheet Properties

The graphene sheets grown here are produced from a Ni catalyst using CVD in ambi-

ent pressure. Thick multilayer graphene sheets are grown by utilizing the fast-cooling

method [85].One precursory way of increasing the amount of carbon precipitation is

to increase the concentration of methane. Figure 4-1 shows optical images of the

graphene sheet as the methane concentration is increased. Generally, the number of

thick layers increases with the methane concentration.

The number of graphene layers can be readily identified from the optical im-

ages [85, 99-102]. Even a single layer of graphene creates an amplitude shift of the
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Figure 4-1: Optical image of graphene sheets on Si substrate with 300 nm SiO 2

(SiO 2/Si). Dark colored regions represent thicker graphene layers. Scalebars are

l0pm.

light that is reflected from the surface. This results in a color contrast that depends

on the number of graphene layers. A digital image has three components, red, green,

and blue. Graphene on 300 nm SiO 2/Si creates an enhanced absorption at wave-

lengths around 500 nm [103,104], which corresponds to the green component in the

RGB color space. Using a similar method found in [85], we can estimate how many

graphene layers exist at each pixel.

From Figure 4-1, we observe that the percentage of thicker layers increases with

methane concentration.In Figure 4-5, we quantify the estimated area coverage of 1-

3 layer graphene regions. The area coverage of 1-3 graphene layers decreased as

methane concentration increased up to roughly CH 4=0.6 %(vol). For larger methane

concentrations the area coverage stayed relatively constant around 10 %. This sat-

uration point could indicate that the solubility limit of carbon diffusion into the Ni

film during CVD growth.

In other words, at low methane concentrations, the graphene film has predomi-

nantly 1-3 layers with small regions of very thick graphene layers. At higher methane

concentrations, the film is generally much thicker with a more even distribution of

thin and thick regions. Figure 4-3 also supports this and shows that the average

surface roughness Ra decreases as methane concentration increases.

Figure 4-4 shows the measured sheet resistance as a function of Ra obtained from

AFM measurements. Sheet resistance is extracted from both the large sheet, using

a 4-point probe method, and from each batch of graphene wires. Measured results
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of the graphene wires are explained in the following section. First, 4-point probe

measurements are conducted on the large graphene sheets. A second method plots

the resistance of each fabricated wire against the length/width ratio. The slope of

this curve also yields the effective graphene sheet resistance.
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Figure 4-4: Measured sheet resistance.

The sheet resistance shows a strong correlation (r=0.79) with Ra, which is partly

related to the methane concentration and cooling rate during the CVD process. This

plot indicates that achieving good uniformity is critical in obtaining lower sheet re-

sistance. Generally, high-quality devices made from HOPG have uniform graphene

flakes and the best devices have resistivities that are comparable to Cu [34]. This

result is also consistent with recent work, where sheet resistance as low as 30 Q/sq

was obtained from a highly uniform p-doped 4-layer graphene sheet grown by Cu

CVD [55]. However, such methods require performing multiple transfers of mono--

layer graphene sheets. The devices here have higher sheet resistance (500-1000 Q/sq)

than recent reports of Cu CVD (30-280 a/sg) [55] and high temperature decompo-

sition of SiC (170-280 p2/sg) [84]. Nonetheless, directly growing multilayer sheets

significantly increases manufacturing throughput.



4.2 Wire Properties

For off-chip electrical characterization, the graphene film is placed on a blank SiO2 /Si

substrate. Figure 4-5 shows the height distribution measured from a graphene sam-

ple. The average height of the Ni-grown graphene sheets ranges from 10 to 20 nm.

Once the graphene sheet is transferred to a SiO/Si substrate, the wires are defined

lithographically using the procedure outlined in Section 3.2.
0
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Figure 4-5: Height distribution of graphene (CH 4=1.7%)
Inset shows optical images of fabricated graphene wires.

30 35 4

from AFM measurements.

The 4-point probe measurements yield an approximate sheet resistance between

500-1000Q/sq. We have fabricated graphene wires with widths of 1 and 10 pm and

lengths from 2-1000 pm. Either Ti/Au, Cr/Au, or Ti/Pt metal pads have been

deposited to make contacts for probing. The choice of metal does not affect the

measurements. A set of I-V measurements confirm that graphene wires have near-

ohmic contact.

Figure 4-6 shows the resistance of graphene wires as a function of length/width

ratio. The wire resistance scale linearly with length, indicating diffusive transport [38].

For this particular batch of devices, the extracted sheet resistance from the slope was

roughly 790 Q/sq, which is close to the value of 740 Q/sq obtained from the 4-point

probe measurements.
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Figure 4-6: Resistance of graphene wires fabricated on SiO 2/Si test wafers.

4.3 Breakdown Current Density

The high mobility, ballistic transport, high current carrying capacity, and high ther-

mal conductivity are all important factors that show promise for use of graphene

as the interconnect channel material [23-28]. In particular, a high current carrying

capacity is important for reliability and meeting the power density requirements. Re-

cently, HOPG graphene has been reported to have current densities on the order of 108

A/cm 2 [28]. We have also characterized the current capacity of Ni-grown multilayer

graphene.

Figure 4-7 shows the I-V curve of a graphene wire that is undergoing electrical

breakdown. All measurements were taken in ambient air. The breakage occurs in

the middle of the wire, indicating resistive heating. Unlike [28], the current does

not saturate prior to breakdown. The graphene wires fabricated in this work are

much larger and induce less self-heating. The maximum current density (JMAX) and

resistivity (p) are calculated using the width and average height of the wire.



Before After

4-

2-

0
0 2 4 6 8 10

Electric Field (kV/cm)

Figure 4-7: Measured I-V curve of a 50 prn long graphene wire undergoing electrical
breakdown. Insets show an optical image of the graphene wire before and after the
measurement.

Similarly, Figure 4-8 shows the I-V curve of a shorter (L=10 pm) graphene wire

undergoing electrical breakdown. Unlike the longer (L=50 pm) wire shown in Fig-

ure 4-7, the slope of I-V curve increases possibly suggesting thermal annealing or

increased electrical contact to the underlying graphene layers. In addition, the break-

age of the shorter wire occurs over a much larger area and suggests that both the

thin and thick graphene flakes were conducting current.

Figure 4-9 plots JMAX and includes devices made from different CVD conditions

and wire widths, but these do not have a noticeable effect. The plot shows that,

at the same current density, high resistivity wires have a lower JMAX and are more

likely to breakdown. Defects and impurities increase the effective resistivity and also

contribute to wire failure. Most of the data points are in the range from 2x10 6 to

4x10 7 A/cm 2. A power law relation in the form of JMAX oc 1/\/p has been previously

proposed [28,105]. In this work, a fit to JMAX = Ap-" yields an exponent of n=0.86

(L=2 pm), 0.94 (L=10 pm), and 0.79 (L=50-200 pm).

These results suggest instead that JMAX oc 1/p, which is consistent with hav-

ing a constant breakdown electric field. Figure 4-10 shows the measured electrical

field, which is roughly constant here for each length of devices (5-34 kV/cm). A
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constant breakdown field has been previously observed for wall-by-wall breakdown of

multiwalled carbon nanotubes [106] and graphene nanoribbons (33 kV/cm) [281.
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Figure 4-10: Measured electrical field at the point of current breakdown.

Furthermore, from Figure 4-9 and Figure 4-11, we see that JMAx is generally

higher for shorter wires. Although a similar length dependence has been observed in

carbon nanofibers [107], the size of graphene flakes with uniform thickness appears

to be a dominant factor in this work. The flake size with uniform thickness of CVD-

grown graphene presented in this work is roughly -5 pm. The graphene channel

appears more uniform for shorter wires while longer wires show a large variation in

the number of layers. The inset of Figure 4-7 also shows that the breakage tends to

be centered on thinner layers, which may not necessarily be in the middle of the wire.

Thus, increasing the uniformity of the multilayer graphene sheets is critical for both

reducing sheet resistance and further increasing JMAX.

Figure 4-12 shows the JMAX of our data alongside the HOPG data found in [28].

The best HOPG devices approach the resistivity of Cu, and exceed the current ca-

pacity of Cu (~106 A/cm 2) [108] by 100x [28,29]. Due to layer non-uniformity, our

CVD samples have higher resistivities than HOPG but nonetheless achieve JMAX up

to at least an order of magnitude higher than that of Cu. Although this work presents

results for large wire widths, at the same resistivity, our samples exhibit similar JMAX
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As the CVD process improves, we expect the quality and performance of the

graphene to improve, which will be especially important at smaller dimensions where

edge scattering effects are expected to be more pronounced. Reliably growing uniform

multiple graphene layers remains a critical challenge. Although chemical doping can

decrease the effective resistivity, the fundamental growth conditions need to be further
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optimized. Recently, the use of Cu-Ni alloy [97], interface engineering [109], and

optimizing the cooling rate [85,98] have proven to be effective methods in increasing

the film quality and reliability.

4.4 Summary

In this chapter, we have characterized the properties of thick multilayer graphene

wires, fabricated from large-area sheets grown by CVD. The CVD process results

in an average thickness of 10-20 nm with a sheet resistance between 500-1000 Q/sq.

Maximum current densities up to 4x10 7 A/cm 2 have been measured in ambient air.

This exceeds the current capacity of Cu by an order of magnitude but falls short of the

measured current capacity of HOPG graphene samples. The variation in the number

of graphene layers directly affects the sheet resistance and current carrying capac-

ity. Further process optimization is required to produce cleaner and more uniform

graphene sheets, which can lead to lower resistance and higher current densities.
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Chapter 5

Graphene Data Links

DC characterization of sub-50nm graphene interconnects has been previously reported

[28, 34], but very few studies exist on evaluating their performance when integrated

with CMOS. Off-chip measurements have limited scope and often require expensive

equipment. Here, we characterize the performance of medium to long graphene wires

integrated on a CMOS chip. The test chip implements an array of transmitters and

receivers. Graphene sheets are grown by Ni CVD and then transferred to the test

chip.

5.1 Overview

We present a CMOS test chip that characterizes the performance of integrated graphene

wires. Chen et al. have recently reported the first integrated graphene/CMOS sys-

tem [38], where CMOS ring oscillators are used to indirectly measure the performance

of short graphene wires. In contrast, this work focuses on end-to-end data communi-

cation on medium to long graphene wires as shown in Figure 5-1. The performance

of each graphene wire is measured in detail, using isolated transmitters and receivers.

Wire lengths range from 0.5 mm to 1 mm for ease of delay measurements and for

demonstrating reliable fabrication and signal transmission over longer length scales.
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Figure 5-1: Overview of chip. Graphene wires are monolithically integrated and
electrically connected to a transmitter and receiver. The low-swing topology uses a
sense-amplifier (SA) at the receiver.

5.1.1 Implementation of Low-Swing Data Links

The CMOS chip includes an array of drivers/receivers to test signal transmission on

integrated graphene wires. A full-swing and low-swing design is included. The full-

swing topology uses a simple inverter chain to drive the signal and is unrepeated. The

energy for signal transmission on a wire is roughly CV',, where C, is the capacitance

of the wire and V. is the voltage swing on the wire. Thus by reducing the voltage

swing, the energy used to transmit a signal can be significantly reduced.

Figure 5-2a shows the diagram of the low-swing design. While many low-swing

topologies exist [15,17,18,110], this chip implements an NMOS push-pull driver and

a secondary reference voltage source (VREF) to generate a low-swing signal on the

graphene wire. The receiver is a single-ended pseudo-differential latch-based sense

amplifier [18].

The graphene wire was simulated using a 7r3 distributed RC wire model. The

distributed resistance (RGR) was estimated from experimental values of the graphene

sheet resistance. The capacitance (CGR) of the wire was estimated from a field solver

using the dimensions of the CMOS metal stack and the passivation layer. The para-

sitic capacitance due to integration (CINTEG) was also estimated as 2-5fF.
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5.1.2 Experimental Setup

The measurement setup is shown in Figure 5-3 and Figure 5-4. The transmitter

and receiver are independently clocked with a programmable delay. The balanced

clock tree for the transmitter and receiver are matched to provide minimal skew.

Furthermore, the worst-case delay of the transmitter and receivers are 0.59 ns, which

is at least an order of magnitude smaller than the delay of the wire. The data input

for each channel can either be an alternating 0101 pattern or a 2-311 pseudo-random

binary sequence (PRBS).

Figure 5-3: Diagram of experimental setup.

Figure 5-4: Photo of experimental setup.



5.2 Measured Results

The test chip was implemented in a standard 0.35 pm CMOS process. Since the

test chip serves primarily as a technology demonstrator, a more advanced CMOS

technology was not needed and not used here. The fabrication details were previously

outlined in Section 3.3.1. Fig. 5-5 shows the CMOS die and the graphene wires. The

graphene wires are integrated and electrically connected to the underlying CMOS

drivers and receivers.

Via Top graphene
A/Contact N

CMOS metal 4
1 . OkU_ 228 10 m 1 58 Sj EI

Figure 5-5: SEM image of CMOS die and integrated graphene wire.

The graphene wire widths are relatively large (4 pm) for ease of fabrication, but the

results are expected to scale as line widths are reduced. The lengths of the wires are

0.5 and 1 mm. All measurements have used data rates between 1-50 Mbps. Figure 5-

6 shows the transient waveforms for the low-swing design. A similar waveform is

obtained for the full-swing topology. The data output (DouT) signal shows that

it follows the input (DIN) pattern and confirms connectivity of the graphene data

channel.

The total yield of working devices was about 60% for 0.5 mm wires, and about

3% for 1 mm wires. Unlike test devices fabricated on flat Si0 2/Si wafers, the device

yield for the longer wires has been affected by the topology of the CMOS passivation

layer and the increased number of processing steps. However, similar to [38], the

integration process did not appear to alter the graphene quality. The extracted RGR

values from measurements are close to the expected values. Graphene wires that did

not function were mainly a result of lithography alignment errors or tears/voids along
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Figure 5-6: Transient waveform of digital signals for the low-swing design with a 21
PRBS input pattern (VDD=3.3V, VREF=O.5V).

the graphene channel.

Overall, the measurements were repeatable and did not show any signs of degra-

dation over the period of a month. Figure 5-7 shows the measured bit error rates

(BER) using a 231-1 PRBS. The transmitter/receiver clocks are fixed at a relative

skew of roughly 12.8 ns. As VREF decreases, the delay of the channel increases. A

sufficient timing margin is guaranteed when the channel delay is much smaller than

the preset clock skew, resulting in a very small BER. This timing margin becomes

more difficult to meet as the channel delay approaches and exceeds the preset skew,

which is reflected in the increase in BER. For nominal measurements, the graphene

wires show BERs less than 2x1010 at data rates between 10-25 Mbps. This shows

reliable operation and that the properties of graphene wires do not drastically change

under operating conditions.

For the low-swing topology, VREF sets the voltage swing on the wire. Figure 5-8

plots the minimum voltage swing. Simulation results are in good agreement with

measured results. The minimum VREF is limited by the noise margin and sensitivity
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Figure 5-7: Measured delay (top) and bit error rates (bottom) of a low-swing graphene
channel. The clock delay (Aclk) is fixed at 12.8 ns. The BER is measured using a
231-1 PRBS at VDD=3.3V.



of the sense amplifier at the receiver.
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Figure 5-8: Minimum operable VREF-

5.2.1 Delay Performance

The distribution of the measured channel delay is shown in Figure 5-9. In Figure 5-10,

the delay of the full-swing design slightly increases at lower supply voltages. For the

low-swing topology, VREF sets the voltage swing on the wire. As VREF is reduced, the

delay of the channel also increases (Figure 5-11). This appears to be mainly limited

by the noise margin and sensitivity of the sense amplifier at the receiver. For lower

supply voltages (VDD), the kickback voltage at the receiver input node is reduced

and thus allows the low-swing design to operate at lower voltage levels. The data in

Figure 5-11 could be further improved with better amplifier design but nonetheless

illustrates an advantage of the low-swing design. At VDD= 1 .5 V, the delay of a full-

swing design increases, whereas the low-swing design maintains a smaller delay by

tuning VREF.

A minimum width M4 aluminum wire (L=1 mm) is included as a reference wire.

For the low-swing topology, the measured delay on the M4 wire is 0.497 ns, and the

delay on the graphene wire with L=1 mm is 13.915 ns. The actual M4 wire delay is

likely smaller than 0.497 ns as the measurement is dominated by the transmitter and

receiver delay. The graphene wire width is 6x that of the M4 wire but 58x smaller



Low-swing
(VREF=lV)

~~FTThT1n
6 8 10

Delay (ns)
12 14 16

Figure 5-9: Histogram
swing design, the data

20

15

10.

of delay measurements (L=0.5 mm) at VDD= 3 .3V. For the low-
plotted is at VREF=1 V, where the channel delay is minimized.

--- L= 1mm
-A- L = 0.5mm

1.5 2 2.5 3
Supply Voltage VD (V)
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Figure 5-11: Measured channel delay of graphene wire in a low-swing topology (L=0.5
mm).

in thickness. The resulting cross-sectional area of the M4 wire is roughly 9x larger

than that of the graphene wire. While a fair comparison may be difficult, the (per

width) delay performance of the graphene wire clearly underperforms the M4 Al wire.

The performance of the graphene wire is limited by its high sheet resistance (600-

900Q/sq). Ultimately, better control over the growth process is needed to grow highly

uniform multi-layer graphene films.

5.2.2 Energy Performance

While the total energy of the low-swing design shows modest improvement (1.4-

2.1x) over the full-swing design, this is limited by the receivers in this work. In

comparison, the transmitter energy of the low-swing design is 4-4.7x lower than that

of the full-swing design. Figure 5-12 shows the energy profile of two graphene wires.

For both design topologies, only 10-40 Yo of the total energy is dissipated through

the transmitters. While the transmitter energy scales with wire length, the receivers

are clocked and require relatively constant conversion energy. For longer wire lengths

and higher density interconnect fabrics, the transmitter energy, and hence the overall

energy improvements, is projected to increase.

Although the main advantage of the low-swing design comes from reducing VREF
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Figure 5-12: Measured energy profile of graphene wire.

and the energy dissipation on the wire, this energy only accounted for a small portion

of the total energy. The energy dissipated from the (low-swing) NMOS drivers is less

than 22 % of the transmitter energy and less than 4 % of the total energy as shown in

Figure 5-13). Nonetheless, the solid lines in Figure 5-13 are from simulation results

using values of RGR=90 kQ, CGR=115 fF, and CINTEG= 3 fF, which shows excellent

agreement with measured results.

To compare the capacitive load of the wires, another reference wire was included on

top of the passivation layer. A 40 nm Ti/Pt wire with the same width as the graphene

wire was fabricated. At VREF=1 V, the measured energy dissipation of the NMOS

transistors to drive the wire load is 103.23 fJ and 212.73 fJ for the graphene and

Ti/Pt wires, respectively. The Ti/Pt wire is roughly 2.5x thicker than the graphene

layer, and this is reflected in the larger energy dissipation from the NMOS drivers.
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5.2.3 Limitations

A summary of the on-chip measurements is shown in Table 5.1. The delay and energy

performance show good agreement with expected values of RGR and CGR.

Most importantly, the graphene quality needs to be improved to be competitive

with copper interconnects. The graphene sheet resistance is orders of magnitude

higher than the CMOS aluminum wires. Despite the smaller wire capacitance, the

resulting graphene data link delay is at least an order of magnitude higher than that

of the CMOS wires. Recently, sheet resistances as low as 30 Q/sq from 4-layers have

been reported from p-doped graphene films [55]. Chemical doping of AuCl3 has also

been proven to be very effective on 1-2 layer graphene films, reducing their sheet

resistance up to 77 % [83]. Ultimately, multilayer stacking and doping is necessary to

achieve comparable numbers to copper. Despite this large performance gap, this chip

demonstrates reliable signal transmission over long graphene wires which has not been

demonstrated before. Except for the fabrication problems outlined in Section 3.3.3,

o Measured
- Simulated

0 Measured
- Simulated



Table 5.1: Summary of measurements

Technology 0.35 pm, 3.3V CMOS

Graphene Wires W=4 pm, L=0.5, 1 mm

~ 800 Q/sq

Full-Swing Low-Swing

Delay (L=0.5mm) 4.7 - 9.6 ns 5.2 - 15.2 ns

(avg. 6.2 ns) (avg. 9.5 ns)

Transmitter Energy 2.6-2.8 pJ/bit/mm 0.3-0.7 pJ/bit/mm

Total Energy 6.2-8.2 pJ/bit/mm 2.4-5.2 pJ/bit/mm

Energy-Delay-Product (low-swing vs. full-swing)

up to 3.3x improvement

Bit error rates less than 2x10-10

Minimum voltage swing 100 mV (0 VDD=1.5 V)

500 mV (Q VDD= 3 .3 V)

Data rates 1 - 50 Mbps

the graphene sheet itself does not deteriorate throughout the integration and testing

process. The measured results also show excellent agreement with expected values.

This gives us a baseline for projecting future enhancements in both graphene quality

and circuit designs. We expect the performance to improve as the film becomes

more uniform, although finding a reliable method that grows multiple layers while

suppressing the interlayer and edge scattering effects remains a future step.

5.3 Summary

This chapter characterizes the performance of low-swing signaling on monolithically

integrated graphene wires. CVD-grown graphene was fabricated into wires up to 1

mm in length on a 0.35 pm CMOS chip. This work primarily focuses on technology

demonstration, and thus a more advanced CMOS process was not needed and not

used here. Reliable operation of end-to-end data communication on these graphene

wires was demonstrated, achieving bit error rates below 2x10-0 . A low-swing sig-



naling technique was used to achieve a transmitter energy of 0.3-0.7 pJ/bit/mm and

a total energy efficiency of 2.4-5.2 pJ/bit/mm. Despite the high sheet resistivity of

as-grown graphene (> 600Q/sq), integrated graphene links running at 50 Mbps was

demonstrated. On-chip measurements were in good agreement with the simulated

results, and recent work shows promise as the reported sheet resistivity is an or-

der of magnitude smaller than the graphene devices used in this work. Ultimately,

cleaner processing steps and optimized CVD growth conditions are necessary to pro-

duce higher quality graphene films. Other unique electrical and thermal properties

of graphene may also play an important role in establishing graphene as a viable

replacement for copper interconnects.



Chapter 6

Field-Programmable Gate Array

using Graphene Wires

In Chapter 2, we suggested that using few-layer graphene films can be advantageous

for subthreshold circuits. Graphene wires have small wire capacitance and thus can

have a large impact on lowering the energy dissipation. In this chapter, we demon-

strate a subthreshold field-programmable gate array (FPGA) using graphene wires

as parts of the interconnect fabric.

6.1 Designing a FPGA

FPGAs are a common form of reconfigurable logic. FPGAs are often used for rapid

prototyping or in systems that require flexibility. Building such flexibility comes at

the cost of slower speeds and higher energy dissipation. The trade-off between flexi-

bility and performance in different hardware paradigms is well known and has been

previously documented [111-113]. Dedicated hardware units achieve the best perfor-

mance but are limited to executing a single task albeit very efficiently. On the other

hand, general-purpose processors exhibit the most flexibility but have poor efficiency

due to instruction fetching and decoding. Field programmable gate arrays (FPGA)

bridge this gap between flexibility and performance. By allowing the hardware to be

reconfigured, FPGAs have greater flexibility than dedicated hardware units. Since the



hardware configuration is fixed at runtime, FPGAs also achieve better performance

than general-purpose processors [5, 111,112].

With the rising cost of designing custom circuits, using a flexible and energy-

efficient FPGA has become a more attractive solution in many IC systems. In this

chapter, we describe the implementation of a low-power FPGA that uses graphene in-

terconnects. Demonstrating a FPGA is a perfect candidate to implement a graphene-

based CMOS platform. FPGAs inherently have an interconnect-centric architecture

that is highly regular which also makes it an attractive and easy platform to integrate

graphene wires. Furthermore, because the overhead of an FPGA lies in its reconfig-

urable interconnect structure, the importance of replacing metal wires with graphene

has increased. Furthermore, global interconnects have been reported to dominate the

total delay and energy of FPGAs [5,6,114].

6.1.1 Chip Architecture

A conventional FPGA includes an array of configurable logic blocks (CLB) that are

connected by programmable switch matrices. The CLB is designed to implement an

arbitrary logic function and typically uses lookup tables (LUT) to accomplish this.

The content of the LUTs can be programmed to map the inputs to the desired out-

put values. As several interconnect buses run throughout the logic array, the switch

matrix at each junction directs the traffic by enabling and disabling the appropri-

ate switches in the interconnect fabric. The FPGA is reconfigured by streaming in

a set of bits that programs the LUTs, switch matrices, and other related logic ele-

ments. Because of the extra routing structure, FPGAs are typically larger, slower,

and consumes more power than a dedicated hardware unit [113].

Various approaches have been taken to reduce this overhead. In [19], a nano-

electromechanical relay replaced the NMOS pass transistors in a switch matrix. More

conventional approaches have tried to optimize the interconnect architecture since

their performance dominates the delay and energy of the FPGA [5,6,114]. Our ap-

proach is to replace the metal wires with low-capacitance graphene wires and demon-

strate better energy efficiencies. Figure 6-1 shows a diagram of the test chip which



implements a typical LUT-based FPGA. The CLBs are configured in a 5x5 array.
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Figure 6-1: Overview of FPGA test chip. Graphene wires are integrated on top of
the CMOS chip and interface to the switch matrices (SW).

The most simple logic block structure is a LUT connected to a flip-flop. Since

the LUT can be programme nd the flip-flop can be bypassed by a multiplexer, any

arbitrary combinational and sequential logic function can be realized. More advanced

FPGAs often include dedicated hardware such as memory blocks or arithmetic units

to improve the performance [115, 116]. Heterogeneous FPGAs structures are not

considered in this work. Figur nctiows the CLB structure where each logic block

includes a cluster of two 4-input LUTs and two flip-flops, totaling 50 LUTs in the

chip. The number of the inputs to the CLB that results in the most efficient resource

utilization is given as i'nputs = L UT/2 x (cluster + 1) = 4/2 x (2 +1) = 6 [117-119].

In recent years, many circuit designs have achieved very high energy efficiencies by

operating in the subthreshold regime [120-124], where the supply voltage is smaller

than the transistor threshold voltage. Despite the extreme robustness and scalability

of CMOS logic, in subthreshold operation, the on current of a transistor and the

on/off current ratio are significantly reduced. This results in slower operating speeds

and in some cases may lead to functional failure as the supply voltage is decreased.

One of the primary disadvantages of subthreshold circuits is the increased sensitivity
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Figure 6-2: Implementation of Configurable Logic Blocks (CLB). Each CLB contains
two clusters of LUT/FFs.

to variations. Therefore, strict design rules and statistical timing analysis are often

used to ensure reliable operation of a subthreshold circuit [122,125].

Ryan and Calhoun have recently demonstrated an energy-efficient subthreshold

FPGA with low-swing dual-supply interconnects [114]. Their result highlights the

potential of subthreshold FPGAs which can provide both design flexibility and low

energy dissipation. In this work, the majority of the FPGA core blocks were synthe-

sized using a standard cell library. We applied similar design rules that were found

in [5, 120-123, 125]. The synthesis was optimized for subthreshold operation by: (1)

limiting the fan-in to 3; (2) only using static CMOS logic; (3) using logic gates with

short stacks of less than 4 stacked transistors; (4) re-mapping large multiplexers in to

2-1 multiplexers; and (5) upsizing critical clock and data buffers to ensure rail-to-rail

outputs.

6.1.2 Interconnect Architecture

Figure 6-3 shows the most simple and conventional implementation of a switch matrix,

where each connection point uses six NMOS transistors to connect the adjacent wires.

This structure allows the wire to be driven in any direction and requires very little

area. Despite this simplicity, NMOS pass transistors degrade the signals and a level-

restoring buffer is required for every two or three switch matrices. A variant of this



structure uses back-to-back tri-state buffers instead of a single NMOS pass transistor.

This bi-directional structure provides the same connectivity as before and provides

stable output levels. However, since only one direction is enabled on each wire at any

given time, the system always utilizes less than 50 % of the tri-state buffers.

NORTH

T I I

SOUTH

Figure 6-3: Diagram of a conventional switch matrix. At each intersection, six NMOS
pass transistors are used.

In contrast, a uni-directional scheme allows each wire to be driven in only one

direction and thus the tri-state buffers can be replaced with buffers which reduce

area and improves the drive strength. One potential drawback is that the number of

wires must be doubled to match the routing flexibility of the bi-directional scheme.

However, the actual number of wires needed for each direction is less than expected

because not all wires have the same directionality in a bi-directional scheme. Routing

flexibility can be added by using multiplexers at the input of each driver [126]. In

general, although more wires are needed in a uni-directional scheme, each wire has a

lower critical path delay and thus the system is more tolerant of routing stress and

allows smaller channel widths to be used to achieve a given performance level. From

an architectural standpoint, recent examples show that uni-directional wires have

better overall performance than the bi-directional approach since it provides better

performance with less area [126,127].



Many advanced commercial FPGAs have a combination of bi-directional and uni-

directional wires to optimize the performance and flexibility in routing wires [115,116].

In addition, the interconnect hierarchy commonly includes double lines, hex lines, and

long global lines [115,1161. The length of the line indicates the number of segments

in between a switch matrix. A single line connects adjacent switch matrices and only

travels one wire segment. Similarly, a double line will skip one switch matrix and

connect every other switch matrix which is equivalent to traveling two wire segments.

Global lines often span across the entire row or column and therefore have longer

delays than a shorter line. However, routing a signal on a global line is often much

more efficient than routing it through many single lines due to the overhead of each

switch matrix. Commercial compilers maximize these resources and distribute the

signal routing on all levels of wires to achieve the optimal performance.

Here, we implement a 10-bit uni-directional bus that runs throughout the logic

array, and the programmable switch matrices provide connection points at each inter-

section. In addition, we have chosen a Wilton switch topology [128] which has better

routability than the conventional switch matrix shown in Figure 6-3. For example, in

the conventional switch matrix, the bottom wire on the west side can only connect to

the bottom wire on the east side and the leftmost wire on the north and south side.

To overcome this limitation, a Wilton switch box alternates the order in which each

wire connects to its neighboring direction. Figure 6-4a shows the connections between

the north and west side. Figure 6-4b shows the connections between all wires.

All single-length wires are implemented using the CMOS metal layers. The small

size of the array precluded us from implementing long global lines and instead we

designed double-length (L=2) wires. A total of 16 wire segments exist for double-

length wires, which connect every other switch matrix. Figure 6-5 shows a diagram

of the interface between the graphene wires and the switch matrices. At each L=2

segment, in addition to a reference (M5) wire, 3 redundant graphene wires are added

for increased reliability. In addition, a local tester is added at each wire segment to

monitor the quality of each graphene wire. The tester uses a low-overhead 3-bit time-

to-digital converter (TDC) to measure the delay of the graphene data link (between
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Figure 6-4: Implementation of programmable switch matrix (SW). (a) Only the
North-West connections are shown. (b) All connections are shown.



A-B in Figure 6-5). Details of the TDC are described in Section 6.1.3.

VDD VREF,(variable low-swing)
(supply voltage) Graphene wires RX

TXX
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IIIII i L=1 wires _LL
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Figure 6-5: Diagram of graphene interface. We ipleet a e the horizontal
double-length (L=2) wires. Each L=2 segment includes 3 redundant graphene wires
and one reference (M5) wire. A TDC-based tester measures the delay (between A-B)
for each wire.

We use a low-swing topology for energy reduction. The voltage swing on the

graphene wire is set by VREF, which also powers parts of the driver/receiver. The

rest of the chip is powered by a single supply voltage (VDD). Figure 6-6 shows the

schematic of the low-swing driver and receiver. We implement a dual-supply tri-state

buffer as the driver. This topology is robust and scalable.

Unlike the CMOS chip presented in Chapter 5, the receiver should be asyn-

chronous in this test chip. Synchronous receivers like the pseudo-differential sense-

amplifier implemented in Chapter 5 are robust, fast, and highly scalable. However,

these advantages do not outweigh the cost of extra energy and complexity of routing

a separate clock signal in an FPGA. Previously, level-converters have been used as

a receiver to improve the energy efficiency of FPGAs [129]. However, conventional

level-converters become too slow and power-hungry in the subthreshold regime. Sev-

eral techniques have been explored to design a suitable subthreshold level-converter

with a large dynamic range and low delay [130-132]. Here, we implement a level-

converter with diode-connected PMOS devices [132. This topology has low delay

and large operating range and only uses a single voltage conversion stage unlike the
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Figure 6-6: Implementation of low-swing driver and receiver.

design presented in [131].

One limitation of this low-swing implementation is that the the input node of

the receiver inverter floats when the driver is disabled or when a graphene wire is

not connected. An inverter can be added to the input of the receiver to prevent the

voltage from floating in such cases, but this feature was mistakenly omitted in the

final revision of the chip design. Although this results in static power dissipation

in the receiver inverter, the measured static current through these inverters was less

than half of the estimated worst case scenario. Overall, although the current levels

were not negligible, the static power dissipation was not high enough to significantly

alter the measurements.

6.1.3 Graphene Tester

The fabrication and integration process of graphene is not yet fully optimized and

results in variations in the performance of graphene wires. Furthermore, some L=2

wires may be disconnected due to holes in the graphene wire. We have designed a

local tester at each L=2 wire segment to monitor the quality of each graphene wire

(Figure 6-5). The tester uses a TDC to convert the delay of the graphene data link

into a 3-bit digital code. This measure of reliability is necessary for the test chip to

function properly. The measured delay of each L=2 wire indicates not only how fast



the data link is but also whether graphene is properly connected or not.

In most integrated circuits, the analog information begins in the form of a voltage

or current level. In contrast, a time variable or time difference can be chosen as the

mode of information. Time-based signal processing has a wide range of applications,

such as digital oscilloscopes, various CMOS sensors, and radio-frequency transmitters

for digital phase-locked loops [133,134]. TDCs are important building blocks used

for time-based signal processing. A TDC converts a time interval between two signal

edges into a digital code [133-136]. TDCs are frequently implemented with tunable

delay lines where each buffer produces an equal delay. TDCs often require a temporal

resolution in the picoseconds range and the main drawback of this topology is that

the temporal resolution is limited by the delay of a single gate. Furthermore, the

number of buffers increases exponentially with the resolution or the number of bits

in the digital code. However, the objective of our test chip is to have distributed

low-resolution TDCs rather than a single high-resolution TDC. Thus, each TDC only

requires a modest number of bits and the delay of each buffer needs to be rather large

to cover the entire dynamic range.

Figure 6-7 shows the circuit implementation of a single delay unit. Each buffer

has a delay equal to r. An NMOS footer device is added to the first inverter. This

device is biased by a control voltage VCTL which effectively modulates the delay of

the buffer. Figure 6-8 shows that the delay of the buffer has a wide tunable range.

When the NMOS device is biased in the subthreshold regime, the delay of the buffer

increases exponentially.

VDD

in out in out

VonI

Figure 6-7: Schematic of delay unit in TDC.

Figure 6-9 and Figure 6-10 show histograms of the simulated buffer delay after
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Figure 6-8: Simulated resolution of delay unit in TDC.

running Monte Carlo simulations. As expected, T has much larger variations at low

values of VDD or VCTL. However, r is more sensitive to VCTL than the power supply.

The variation in T increases rapidly as VCTL decreases below the threshold voltage.

Therefore, using a higher VCTL and smaller r guarantees better uniformity across

all TDCs but has a limited delay range. If the graphene data links have excessive

delays, one can increase the temporal resolution by lowering VCTL at the cost of larger

variations within a TDC and throughout the chip.

Figure 6-11 shows the diagram of the entire TDC. A reference signal is generated

from the TDC controller (Figure 6-5) and travels through the driver, graphene (or

M5) wire, receiver, and finally reaches the TDC. The reference signal is also directly

fed into the TDC and this signal propagates through the delay line. Each buffer has

an equal delay and provides the sampling clock edge to a register. Thus, each register

will sequentially sample the data line at fixed time intervals.

Because of the time delay between the graphene data link signal and the reference

signal, each register will sample a different value. Based on the encoded value of
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Figure 6-11: Schematic diagram of TDC. Each buffer has a delay equal to T.

the registers, we can infer when the graphene data link signal arrived in comparison

to the reference signal. Figure 6-12 shows this sequence in detail. The reference

signal triggers the internal clock signals. The inverted graphene signal transitions to

a binary one right after the third clock edge resulting in a digital code of 2. The TDC

essentially converts the delay of the data link into a 3-bit digital code. The actual

delay is between codex LSB and (code+1)x LSB.

This relationship is shown in Figure 6-13. Because the registers are sequentially

triggered, only 8 different possibilities exist for Q[6 : 0]. These values are then encoded

in to a 3-bit digital code. Similarly, each digital code, or unique value of Q[6 : 0],

indicates a possible range for the actual delay. For example, a digital code of 2 means

that the delay is between 2r and 3r, where T is determined by VDD and VCTL as shown

in Figure 6-8. In this example, we can estimate the delay to be 2.5r. Therefore, the

absolute delay of each wire segment can be estimated by obtaining the 3-bit code at

a given operating condition for VDD and VCTL.

6.2 Testing Methodology

Section 6.1 described the implementation details of the FPGA test chip. Since the

FPGA chip serves as a platform rather than an isolated system, the test chip by itself
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does not perform anything interesting. The FPGA test chip needs to be configured

to perform a specific task, for example, a 8-bit multiplier. This section describes the

methodology to configure and test the FPGA chip.

6.2.1 Hardware Setup

The user must first define the function or application for which the FPGA will be

used. This can range from simple arithmetic functions, such as binary addition or

multiplication, to very complex digital control systems. The FPGA must then be

configured to realize this function. FPGAs are a type of reconfigurable logic and thus

the ability to program the internal core of the design is built into the chip. Each

CLB, switch matrix, or other connection boxes have configuration data bits that can

be programmed but are static when the test chip is running. The configuration bits

typically provide the LUT contents or the select bits for multiplexers. The bitstream

or bitfile is made up of all the configuration data bits.

In our design, the core of the FPGA design has roughly 300,000 transistors and

3,300 configuration data bits. A register scan chain is implemented so that the bit-

stream can be serially shifted in one bit at a time. Generating the bitstream is an

important task and this process is described in Section 6.2.2. After the bitstream

is assembled and uploaded to the FPGA, the test chip now behaves as a hardwired

instantiation of the pre-defined function.

We have added an additional feature in our FPGA test chip. Before the FPGA

is configured to run a benchmark, the test chip is programmed to assess the quality

(delay) of each L=2 wire. Thus, the FPGA test chip has three primary functions:

(1) run the graphene testers and retrieve the results; (2) upload the bitstream; and

(3) run a benchmark application. Figure 6-14 and Figure 6-15 show the experimental

setup.

A commercial Xilinx FPGA was connected to the test chip and serves as a master

device to: (1) scan the tester results; (2) load the bitstream; and (3) apply the

appropriate benchmark inputs to the test chip. The test chip is packaged and placed

in a pin-grid array socket. Although the core of the test chip runs at voltage levels
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array package.
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down to 300 mV, the voltage supply of the I/O ring was set between 0.8 V and

1.2 V. Multiple level-shifters were placed on the printed circuit board to interface

to the Xilinx FPGA which operates on 3.3 V I/O. A digital-analog converter and

programmable delay unit were added for calibrating the test structures on the FPGA

chip.

The Xilinx FPGA board also provides serial communication to a computer. The

user interface was designed using LabView. The results of the graphene testers are

scanned from the test chip to the Xilinx FPGA which then get transmitted and are

displayed on the LabView interface. Similarly, the bitstream is first loaded on the

LabView interface and then gets transmitted to th Xilinx FPGA. The Xilinx FPGA

then initiates the programming sequence and serially shifts in the bitstream to the

FPGA test chip. The user may also select the clock speed and type of benchmark

application through the LabView interface. The maximum clock speed that is allowed

for the FPGA test chip is 100 MHz. The typical clock speed is in the kHz range under

most operation conditions of interest.

6.2.2 Software Flow

The description of each benchmark application is written in Verilog, which is a type

of hardware description language (HDL) that is widely used in the electronic design

industry. Among many other uses, source codes written in Verilog are used in the

development, verification, synthesis, and testing of digital designs [137]. In a typical

computer-aided design (CAD) flow, the compiler takes a HDL source and generates a

bitstream by synthesizing the design and mapping the configuration bits for a specific

FPGA architecture. However, we adopt a different CAD flow since our FPGA is small

in size and has various parts that must be customized. Figure 6-16 shows the CAD

flow we use.

We use a set of tools that are frequently used in conjunction with Versatile Place

and Route (VPR) [138-140]. VPR is used for FPGA placement and routing and

is commonly used for FPGA research. First, Odin converts the Verilog source to

a flat netlist of logic gates [141]. Then, ABC optimizes the logic structures and
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Verilog source

module counter (clk, cntr);
input clk;
output [15:0] cntr;

reg [15:0] cntr;
always @(posedge clk)

cntr <- cntr + 1;

endmodule

Architecture description
... ...... =..

................... == %

Array size: 5x5

Cluster size: 2
Inputs: 6

Switch topology: Wilton
Interconnect:

uni-directional
single-driver

( V * * Modified

Pack l VPR* original program

g t Existing
) t U tool flow

Bitstream
(-3300 bits)

Figure 6-16: CAD flow for generating a bitstream from a Verilog source.
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maps them into 4-input LUTs and flip-flops [142,143]. T- VPack further packs these

LUTs and flip-flops into clusters [140,144,145]. Finally, VPR places each cluster and

finds the most efficient signal routing between all logic blocks [138-140,146,147]. In

addition to the Verilog source file, a description of the FPGA architecture must be

supplied. The source code of VPR was modified so that the final structure of the

VPR-generated switch matrices would more closely resemble our FPGA design. The

output files from Odin, ABC, T- VPack, and VPR describe the names of all signals,

logic function of each LUT, connection between each wire and switch matrix, and

placement of each logic cell. A number of perl scripts were written to parse these files

and extract the configuration of each block in our FPGA design. The final bitstream

is a long sequence of binary digits which can then be uploaded to the FPGA through

the LabView interface.

Commercial FPGAs have hundreds of thousands of logic cells and can be config-

ured to perform very complex digital systems. Although the test chip implemented

in this work has only 50 LUTs, we have created a suite of 11 benchmark applica-

tions that include arithmetic, memory, and logic functions. Both combinational and

sequential logic structures are considered. Table 6.1 provides a brief description for

each benchmark.

Figure 6-17 shows the amount of resources each benchmark uses. The test chip has

a total of 50 LUTs and 25 CLBs. The percentage of logic resources used, or resource

utilization, for LUTs and CLBs do not necessarily match since a CLB may have only

one active LUT. The 3-stage pipelined multiplier used the most number of resources;

48 out of 50 LUTs were occupied. The non-clocked multiplier implements the same

function (4-bit multiplication) but uses only 32 LUTs. In general, applications that

are clocked use more FPGA resources. Figure 6-18 shows a screen capture of running

two different benchmark applications.
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Table 6.1: Summary of benchmark applications.

Identifier clocked? Description

mult (3-st) Yes 4-bit multiplication, 3-stage pipelined

mult - 4-bit multiplication

mac Yes 3-bit multiply-accumulate, 2-stage pipelined

adder - 8-bit addition

comparator - 8-bit comparison (<,>,==, =0)

decoder - 4-to-16 decoding

counter Yes up/down 16-bit counter

filter Yes 4-bit 4-tap moving average

freq divider Yes 1-256 frequency divider

fifo Yes synchronous 3-bit first-in first-out buffer

mux - 1-to-16 multiplexer

C
.2 0.8

N

5 0.6

8 0.4
U:

Benchmarks

Figure 6-17: Resource utilzation of various benchmarks.
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We have successfully demonstrated reliable system operation using graphene inter-

connects.

6.3.1 TDC and Graphene Tester

Before we configure the FPGA, we run the graphene testers and retrieve the results

for all the L=2 wires. Figure 6-20 shows the measured delay from the testers for

both the graphene and reference M5 wires. The delay increases as the supply voltage

scales down due to lower current levels. In general, the graphene wires have a larger

variation than the reference M5 wires. The material non-uniformity contributes to

this large variation in device performance. Nonetheless, as also seen in Figure 6-21,
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delay) from the TDC-based tester for (a)

We have also estimated the delay of the low-swing data link. Using a commercially

available field-solver, QuickCap, we have estimated the capacitance of the graphene

wires using the known dimensions and material properties of the interlayer dielectrics.

Nominally, the estimated capacitance of the graphene and M5 wire is 18.7fF and

52.5fF, respectively. The sheet resistance RsH of the graphene wire is estimated to

be roughly 270 Q/sq, although the effective RSH may have a large range between 100

and 1000 Q/sq. Even if we assume an extremely large range of RSH=100-1000 Q/sq
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Figure 6-21: Histogram of L=2 wire delay measured from testers at various supply
voltages.

and CGR= 1 0 - 1 0 0 fF, the simulated data lines do not adequately explain the wide

variation in the measured results especially at low supply voltages.

Note that the measured delay is a combination of the wire and the transistors

from the driver/receiver. Since the delay of the M5 wires (Figure 6-20(b)) show

significantly less variation, we can rule out the driver/receiver as the main source for

this variation. Furthermore, at low supply voltages, the resistance of the wire has

almost negligible effect on the wire delay as the transistor resistance dominates. We

suspect that the contact resistance or variation in the TDC (when VCTL is small) is

mainly responsible for the large variation in Figure 6-20.

Figure 6-22 shows the measured transfer curve of the TDC. Before the TDC is

activated, the internal registers are reset to one. Thus, the total energy of the TDC

depends on the delay of the graphene signal which triggers the internal registers to

sample a zero or one. Figure 6-23 shows the measured TDC energy as a function of

the digital code. When the code (or delay) is small, more registers are triggered to

sample a value of one and thus the total energy is higher.

The minimum TDC energy is shown in Figure 6-24. The TDC achieves a minimum
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Figure 6-22: Measured TDC transfer curve.
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Figure 6-23: Measured TDC energy per conversion.
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energy of 67.8 fJ/conversion around 350 mV supply.
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Figure 6-24: Measured TDC energy as a function of supply voltage.

6.3.2 System Energy

After the TDC-based tester characterizes each graphene wire, we re-generate the

bitstream to activate only the desired graphene or M5 wires. The following figures

show measured results while running a representative benchmark (3-stage pipelined

multiplier). The impact of using graphene wires is discussed in detail in the following

section.

Figure 6-25 shows the power consumption of the test chip. Running a benchmark

consumes the most amount of power since the majority of the chip becomes active.

A large part of this power appears to be related to the clock signal. Although clock

gating is applied aggressively throughout the design, all core units have local clock

buffers and become active regardless of the data signals.

Figure 6-25a shows the total power consumption of the system. Decreasing the

supply voltage has a large impact on the energy efficiency since the total energy of the

system is proportional to Cej 1Vj where Ceff is the effective switching capacitance.
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Figure 6-25: Measured power consumption of chip (a) at various run modes and when
(b) system is idle.
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We have verified that the test chip operates down to VDD=0.3 V, well below the

threshold voltage. However, the system achieves minimum energy operation around

VDD=0.45 V. When VDD <0.45 V, the leakage energy begins dominate and increases

the total energy.

Minimum Energy Point

10

A4

10

S10 7LU4

-A- Leakage
- -Active

--13 = Total * A
10

0.3 0.4 0.5 0.6 0.7 0.8
Supply Voltage, VD (V)

Figure 6-26: Measured total energy of FPGA chip.

Although we have chosen a representative benchmark, the actual frequency and

energy profile will be slightly different for each benchmark application. The 3-stage

pipelined multiplier uses the most number of resources in the FPGA. Other bench-

marks use less resources and some are combinational logic functions that do not

require a clock signal (Figure 6-17). Figure 6-27 shows the energy and frequency of

various benchmark applications.
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Figure 6-27: Performance of various benchmarks at VDD=0. 4 5 V.
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6.3.3 Comparison of Graphene and Metal Wires

The test chip can be programmed to route the signals on one of the 4 wires for each

L=2 segment. To understand the effect of using graphene wires, we generated two

sets of bitstreams that either activated the graphene or M5 wires. We enabled the

M5 wire if a particular segment did not have any working graphene devices. The

following figures are measured results of the test chip while enabling the graphene

wires and running a representative benchmark (3-stage pipelined multiplier).

Figure 6-28 shows the maximum operating frequency and (L=2 wire) energy of

the test chip while enabling the graphene wires. Rather than plotting the total system

energy, we only plot the energy dissipated from the secondary supply VREF which is

the only source that directly affects the graphene or M5 wire. Furthermore, the total

system energy is dominated by all other logic blocks and thus comparing the L=2

wire energy gives us a more accurate picture of the performance difference between

graphene and M5 wires. The delay of the L=2 wire, however, affects the critical path

delay and has a direct impact on the frequency of the system. Figure 6-29 plots the

same data as in Figure 6-28 except that the data points are normalized to the case

when the M5 wires are enabled.

(a) (b)
10 200

VEF=Vo - VREF DD
-. VREF=0.4V = VREF=.4V

10 - .150
>

NL 104 E100-

1030
0.3 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8

Supply Voltage, a) (V) Supply Voltage, (

Figure 6-28: Measured (a) maximum operating frequency and (b) L=2 wire energy
(from VREF) while running a representative benchmark (3-stage pipelined multiplier)

and enabling the graphene wires. Labels indicate relative system performance when
M5 wires are enabled (not shown in figure).
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Figure 6-29: Measured (normalized) (a) maximum operating frequency and (b) L=2
wire energy of the system when graphene wires are enabled. The data points are
normalized to the case when M5 wires are enabled.

We can scale VDD while maintaining a constant VREF(=0.4 V) or while VREF=VDD-

Each plot in Figure 6-28 and Figure 6-29 show both cases. Since VREF set the voltage

swing on the L=2 wires, the frequency and L=2 energy is roughly constant when

VREF is constant. As expected, when VDD approaches VREF=0.4 V, the data lines

quickly converge to the case when VREF=VDD-

On the other hand, when VREF (or equivalently VDD) scales down, the energy also
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decreases and reaches a minimum energy of approximately 74 fJ/cycle at 0.5 V supply.

As the supply voltage is further decreased, leakage energy begins to dominate and

increases the overall energy. At the minimum energy point, the L=2 wires dissipate

2.5x less energy than when VREF=VDD=0.8 V. If we consider the fact that the nominal

supply voltage is 1.8 V in this process technology, the actual energy savings is likely

much higher. Transistors have much lower current drives in subthreshold operation

and this manifests in the slower frequency as VDD decreases.

From Figure 6-29, when VREF=0.4 V, we observe that the system performs up to

2.1 1x faster and consumes 1.54x less (L=2 wire) energy when using the graphene wires

over the M5 wires. The optimal design point is around VREF=0.4 V and VDD=0.5-0. 6

V. Few-layer graphene wires are extremely thin and thus have low capacitance but

very high resistances compared to similarly sized metal wires. When the graphene

wires are driven by a lower voltage swing, the delay and the energy can be improved

because the wire performance is dominated by the large resistances of the transistors

and the wire capacitance [76]. This result was previously explained in detail in Sec-

tion 2.3.3. At high supply voltages, the wire RC dominates the total delay and thus

graphene wires have much slower delays. However, at low supply voltages, the large

resistance of the transistors begins to dominate and the wire capacitance becomes

important, resulting in a lower delay and energy for the graphene wire. We have

demonstrated the potential of using few-layer graphene wires to increase performance

in subthreshold circuits. The following section discusses the limitations of this work.

6.3.4 Limitations

Previously, we compared the frequency and L=2 energy of the system when graphene

or M5 wires were enabled. A summary of the measured results is presented in Ta-

ble 6.2. In subthreshold operation, graphene wires have many advantages over metal

wires. However, this work serves as a technology demonstrator and the overall impact

of using graphene is somewhat limited here.

When the system is actively running a benchmark, Figure 6-30 shows that slightly

more than half the power is used for interconnects, including the clock network. The
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Table 6.2: Summary of FPGA test chip.

Chip Summary

Technology 0.18 pm CMOS

Active Area 2.55 mm2

Graphene Wires W=2 pm, L=300 pm

4-layers (- 270 Q/sq)

TDC / Tester INL +0.59/-0.36 LSB

DNL +0.77/-0.52 LSB

Energy 67.8 fJ/conv (Q 0.35V)

Min. Functional Point 300 mV

Min. Energy Point 450 mV

VDD Energy/cycle Frequency

450 mV 8.7 pJ 53 kHz

500 mV 10.0 pJ 156 kHz

600 mV 13.8 pJ 800 kHz

Performance Improvement

(graphene vs. reference M5) @ VREF=0. 4 V

Operating Frequency 2.11x faster

(L=2 wire) Energy 1.54x lower
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L=2 wires only comprise a small portion (< 3%) of the total energy. Therefore,

although the graphene wires may have lower energy, the overall impact of that on

the total energy is limited in this work. Furthermore, only half of the L=2 segments

had working graphene devices in the example discussed in Section 6.3.3. Therefore,

if the device yield improves and all active L=2 wires only use graphene, we expect

the amount of energy savings to increase. In addition, the physical length of the

L=2 wires was limited to 300 pm. If the wire length is prolonged, the capacitance

difference between the graphene and M5 wires increases and thus the energy difference

also increases. More importantly, we need to use graphene wires more extensively

throughout the FPGA to have a big system-wide impact. In larger and more complex

FPGAs, the global interconnect has been shown to dominate the delay and energy of

the system [5,6,114]. Replacing the clock mesh or global wires with graphene presents

an opportunity for future designs.

lOB Tester OB
(2%) (3%) (3%)

PPPP__ CLK

CL~ (1%))
(41( AB%%)2(

REF

(%1 (4(8%)

(a) (b)

Figure 6-30: Breakdown of measured power consumption when system is (a) running
a benchmark or (b) idle. VDD=0.4 5 V.

6.4 Summary

We have demonstrated reliable signal routing on 4-layer graphene wires integrated on

a custom-designed FPGA. Graphene sheets are synthesized using Cu foils and then

integrated on top of the CMOS chip. The FPGA test chip implements a 5x5 logic

array and includes a local tester at each L=2 wire segment to monitor the delay of each
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graphene wire. The graphene wires have a (2.8x) lower capacitance than the metal

wires, resulting in up to 2.11x faster speeds and 1.54x lower (L=2 wire) energy when

driven by a low-swing voltage at O.4V. This work demonstrates the potential of using

low capacitance graphene wires for ultra-low power electronics. As larger systems are

designed, we must use longer graphene wires and use such wires more extensively to

achieve acceptable energy savings and justify the complexity of integrating graphene

with CMOS.
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Chapter 7

Conclusions

7.1 Summary of Results

In summary, this thesis characterized the performance of both multilayer and few-

layer graphene interconnects and presented two prototype graphene/CMOS test chips.

First, a physics-based circuit model was used to compare the performance of

graphene and Cu wires. When line-edge roughness is accounted for, graphene is

expected to outperform Cu in terms of resistance when the line width falls below

10 nm. However, this requires very thick graphene films or graphene wires with

very smooth edges. Alternatively, we can take advantage of the small capacitance of

graphene wires. Roughly 10 or fewer number of graphene layers is needed to have 2x

smaller capacitance than Cu wires. Although this results in large wire resistances,

this is advantageous in subthreshold circuits where the large transistor resistance

dominates.

We also investigated the growth of multilayer graphene wires fabricated from

sheets grown by Ni CVD. The Ni CVD process results in an average thickness of

10-20 nm with a sheet resistance between 500-1000 Q/sq. Maximum current densities

up to 4x10 7 A/cm 2 have been measured in ambient air. The variation in the number

of graphene layers directly affects the sheet resistance and current carrying capacity.

This limits the performance and use of Ni-grown graphene sheets although they yield

better manufacturing throughput than Cu CVD.
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Next, we characterized the performance of these multilayer graphene wires when

integrated with CMOS..Multilayer graphene sheets were integrated on a 0.35 pm

CMOS chip and were fabricated into wires up to 1 mm in length. Reliable opera-

tion of end-to-end data communication on these graphene wires was demonstrated,

achieving bit error rates below 2x10- 0 . A low-swing signaling technique was used to

achieve a transmitter energy of 0.3-0.7 pJ/bit/mm and a total energy efficiency of 2.4-

5.2 pJ/bit/mm. Despite the high sheet resistivity of as-grown graphene (> 600Q/sq),

integrated graphene links running at 50 Mbps was demonstrated. On-chip measure-

ments were in good agreement with simulated results, and recent work shows promise

as the reported sheet resistivity is an order of magnitude smaller than the graphene

devices used in this work. Ultimately, cleaner processing steps and optimized CVD

growth conditions are necessary to produce higher quality graphene films.

Finally, we demonstrated reliable signal routing on 4-layer graphene wires inte-

grated on a custom-designed FPGA. Graphene sheets are synthesized using Cu foils

and then integrated on top of a 0.18 pm CMOS chip. The FPGA test chip implements

a 5x5 logic array and includes a local tester at each double-length (L=2) wire segment

to monitor the delay of each graphene wire. The graphene wires have a 2.8x lower

capacitance than the metal wires, resulting in up to 2.11x faster speeds and 1.54x

lower (L=2 wire) energy when driven by a low-swing voltage at 0.4 V. This work

presents the first graphene-based system application and demonstrates the potential

of using low capacitance graphene wires for ultra-low power electronics.

7.2 Concluding Thoughts

Despite the concern of many, CMOS scaling has advanced far beyond the predicted

barriers. Innovative solutions such as strain enhancers and high-K metal gates were

developed to extend the transistor scaling roadmap. However, transistor dimensions

are now approaching the atomic limit which poses an even greater threat. Similarly,

copper resistivity increases at smaller line widths due to increased scattering effects.

The problem is exacerbated as heat dissipation, leakage current, and thermal noise
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become more difficult to cope with.

Nonetheless, CMOS technology is not likely to fade away any time soon. Many

chip makers continue to make major investments in the next transistor generations

and CMOS remains one of the most robust and scalable technologies. Most technolo-

gies that look beyond CMOS are premature and manufacturability is a big concern

that is not adequately addressed. This is especially true for most nano-materials.

While a more gradual transition towards nanotechnology is expected, this thesis has

demonstrated that the merge between graphene and CMOS is not only feasible but

can compete with CMOS in the near future for subthreshold systems.

To date, the most successful commercial applications of carbon-based materials

have taken advantage of their mechanical or material properties. For example, car-

bon nanotubes are extremely strong and lightweight and have been widely used in

sporting equipment such as hockey sticks, baseball bats, and bicycle frames [90].

While these applications are facilitated by bulk growth of carbon-based materials,

integrated circuits require a much higher level of performance and reliability over

millions of devices.

Thus, improving the manufacturing reliability is a very important area for future

research. Although CVD methods generally yield large graphene sheets with excellent

area coverage, preserving this throughout the integration process is a big challenge

that deserves more attention especially for integrated circuit applications. Today,

highly uniform graphene sheets can be grown in virtually any shape or size. However,

the process of transferring graphene sheets to another substrate can cause the sheets

to fold up or tear apart. Furthermore, the extremely small thickness of the film

makes it very vulnerable throughout the subsequent fabrication steps. One way to

improve this process is to reduce the number of transfers or completely eliminate the

transfer step. Directly growing graphene on the CMOS chip is more desirable but

back-end processes have lower thermal budgets. A possible solution is to develop a

low-temperature process that uses Cu or Ni seed layers to directly grow graphene on

the CMOS chip. Although this would result in a hybrid Cu/graphene or Ni/graphene

stack, this method may improve both the performance and manufacturing reliability.
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More importantly, a dielectric capping layer may be needed to physically protect the

graphene sheets during the various process steps.

Another aspect that is not well understood is the issue of multilayer stacking.

Growing more than 10 layers with high uniformity and performance is very diffi-

cult to demonstrate. Growing high-quality monolayer graphene films has already

been demonstrated but extreme care is required when transferring to another sub-

strate. Multilayer graphene films are more robust but no clear path exists to grow

high-quality multilayer films. Furthermore, unless the stacking order can be pre-

cisely controlled, it will be difficult to prevent thick multilayer graphene from turning

in to graphite. Understanding the exact nature of multilayer graphene sheets and

synthesizing them is an important problem especially if one is interested in low resis-

tance graphene wires at the local level. An alternative solution is to use insulating

2D sheets, such as boron nitride (BN), inserted in between high-quality few-layer

graphene sheets. BN has a similar lattice structure as graphene. Experimental work

has shown that graphene devices on BN have superior performance to graphene de-

vices on SiO 2 [148]. Inserting BN not only increases the performance of graphene

but allows an alternate route for fabricating high-quality and electrically decoupled

multilayer graphene stacks.

Graphene also has other remarkable properties, namely high current capacity and

thermal conductivity, which may prove to be another compelling reason for adopting

graphene. Graphene and carbon nanotubes are known to be extremely stable and

robust. Reliability concerns such as process variations and aging effects in silicon

technology continues to be an increasing problem. Investigating the reliability limit

of graphene in terms of current capacity and heat dissipation is an interesting topic

for future research.

In addition to material innovation, identifying and developing graphene-based ap-

plications is also very important. The most important contribution of this thesis is

that we have demonstrated a complete system using multiple graphene devices as

low-capacitance wires. Even though the 4-layer graphene films presented here have

a relatively high sheet resistance (-300 p/sq), we have demonstrated that using
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few-layer graphene wires have smaller capacitance than metal wires and can be ad-

vantageous in energy-constrained systems. The FPGA test chip also includes local

testers to monitor the quality of graphene wires. One limitation is that the process

of determining the delay of each graphene wire and selecting one wire is performed

off-chip and only once right before the bitstream is uploaded to the FPGA test chip.

In future designs, this selection algorithm can be included in the chip to provide

real-time device monitoring and adaptive switching based on the system workload.

Given the wide variation of graphene devices when integrated on CMOS, developing

adaptive control and monitoring methods is very important for such systems. Further-

more, another area of future research is to develop larger and more complex systems

that rely more heavily on low-capacitance graphene wires at the global level. FPGAs

are ideal because of their regular array structure and inherently interconnect-centric

architecture. Other examples include processor/memory architectures or on-chip net-

works that require dense interconnect structures for cross-chip communication. This

work demonstrated a prototype FPGA using 48 graphene devices. Developing larger

systems is necessary to understand the full impact and benefits of using graphene

devices for long global wires.

Ultimately, the focus of graphene research needs to extend beyond material syn-

thesis and device performance in order to establish graphene as a viable interconnect

technology. This work establishes a platform to evaluate graphene wires and provides

an important step towards realizing a truly integrated graphene/CMOS system.
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