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Abstract

Polynomials have played a fundamental role in the construction of objects with inter-
esting combinatorial properties, such as error correcting codes, pseudorandom gener-
ators and randomness extractors. Somewhat strikingly, polynomials have also been
found to be a powerful tool in the analysis of combinatorial parameters of objects
that have some algebraic structure. This method of analysis has found applications
in works on list-decoding of error correcting codes, constructions of randomness ex-
tractors, and in obtaining strong bounds for the size of Kakeya Sets. Remarkably, all
these applications have relied on very simple and elementary properties of polynomials
such as the sparsity of the zero sets of low degree polynomials.

In this thesis we improve on several of the results mentioned above by a more pow-
erful application of polynomials that takes into account the information contained in
the derivatives of the polynomials. We call this technique the method of multiplicities.
The derivative polynomials encode information about the high multiplicity zeroes of
the original polynomial, and by taking into account this information, we are about to
meaningfully reason about the zero sets of polynomials of degree much higher than
the underlying field size. This freedom of using high degree polynomials allows us to
obtain new and improved constructions of error correcting codes, and qualitatively
improved analyses of Kakeya sets and randomness extractors.
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Chapter 1

Introduction

1.1 Polynomials and their Applications

In the last few decades, algebraic techniques have played a central role in theoretical

computer science. Right from their appearance in property testing and in the design

of proof systems, which eventually led to some of the major recent breakthroughs in

complexity theory such as IP = PSPACE and the PCP theorem, to their use in the

construction of objects with interesting combinatorial and pseudorandom properties,

such as error correcting codes, pseudorandom generators and randomness extractors,

polynomials have played an influential role across a broad spectrum of areas in com-

puter science.

Many of these applications actually rely on very simple and elementary properties

of polynomials. One especially noteworthy property that has found application in

surprisingly versatile situations is that nonzero low degree polynomials can evaluate

to zero on very few points. Equivalently, two distinct low degree polynomials cannot

take the same value at too many points - otherwise, their difference, a nonzero low

degree polynomial, would be zero too often.

In this thesis, we introduce novel algebraic techniques that extend some of the earlier

methods by also effectively utilizing the information contained in the derivatives of



the polynomials. Using these methods, we get improved results for several on the

questions mentioned above, such as the design of efficient error correcting codes,

tight analyses for Kakeya sets, improved randomness mergers and extractors, and

efficient decoding of Reed-Solomon codes.

Before describing the techniques, we first discuss some basic properties of polynomials

and give a flavour of how such properties have been so useful in computer science

through the example of error correcting codes.

As mentioned before, the sparsity of roots of polynomials plays a prominent role in

several of the results that we will be discussing. This bound on the number of roots,

also known as the Schwartz-Zippel Lemma, states that for any finite subset S of the

underlying field, the number of points in S" at which a non-zero degree d polynomial

vanishes is at most d - |Sn-1.

Schwartz-Zippel Lemma: Let F be a field, and let F[X 1 ,... , X,] denote the ring

of n variate polynomials over F. Let S be a finite subset of F. Then if P is a nonzero

polynomial of degree d in F[X 1,... , X,,], Pra.sn[P(a) = 0] < d/|S|.

The univariate version of the Schwartz-Zippel Lemma, which asserts that a nonzero

degree d univariate polynomial can evaluate to zero at at most d locations, is a well

known result. The multivariate analog is a simple (but very useful) generalization.

There are several other simple but important facts about polynomials that are used

often. For instance, the linear relation between coefficients of the monomials of a

polynomial P, and values of P at points in the domain is an extremely useful property.

Given evaluations of a polynomial at a large enough set of points, it is possible to

interpolate and recover the coefficients of the underlying polynomial using simple

linear algebra. The property that evaluations of low degree multivariate polynomials

look like low degree univariate polynomials when viewing them restricted to "lines"

or other low degree curves is another (easily verifiable) property that we use several

times.

Error correcting codes are a great example of how some of these properties of poly-

nomials come together to give some beautiful results. We now briefly describe a few



of these codes. We then go on to discuss a surprising and elegant application of

polynomials for analyzing vector spaces that have some algebraic structure, a method

now known as the "polynomial method" in computer science. These applications are

especially relevant to us. In the rest of the thesis we build upon them, strengthen

some of them and provide extensions.

1.1.1 Application to Error Correcting Codes

Error correcting codes give a method to encode k symbol messages into n symbol

codewords so that any two distinct messages get mapped to codewords that are "far"

in Hamming distance. Thus, even after a small constant fraction of the symbols of

any codeword get corrupted, the corrupted codeword still contains enough information

to recover the original message. The Reed-Solomon codes are an extremely elegant

and important example of such codes that are based on evaluations of univariate

polynomials.

Reed-Solomon Codes Let Fq be a finite field and S be a subset of points in Fq.

Each codeword of the Reed-Solomon code consists of evaluations of some low degree

polynomial in Fq[X] at the points in S, where the degree of the polynomial is much

smaller than the size of S. The univariate Schwartz-Zippel Lemma immediately im-

plies that any two distinct codewords of the Reed-Muller code differ in a large fraction

of the locations. Reed-Solomon codes are one of the simplest examples of efficient

error correcting codes that have found several important applications in theoretical

computer science as well as in data storage and data transmission.

Locally decodable codes are error-correcting codes, that in addition to having all

the properties of regular error correcting codes, also admit extremely efficient de-

coding algorithms. Even after a constant fraction of the bits of the codeword get

corrupted, any symbol of the original message can be recovered by only looking at

q(k) bits of the corrupted codeword for some small sublinear function q. Locally



decodable codes have been implicitly studied in coding theory for a very long time,

starting with Reed's "majority-logic decoder" for binary Reed-Muller codes. In the-

oretical computer science, locally decodable codes (and in particular, locally decod-

able codes based on multivariate polynomials) have played an important part in the

Proof-Checking Revolution of the early 90s as well as in other fundamental results

in complexity theory and cryptography. Locally decodable codes were first formally

defined by Katz and Trevisan [KTOO], and since then, the quest for understanding

locally decodable codes has generated many developments. Most of the early con-

structions of locally decodable codes were based on classical Reed-Muller codes that

we now describe.

Reed-Muller Codes Let Fq be a finite field and S be a subset of points in Fq.

Each codeword of the Reed-Muller code consists of evaluations of some low degree

polynomial in Fq[XI, .. . , Xm] at the points in S, where the degree of the polynomial

is much smaller than the size of S. The Schwartz-Zippel Lemma immediately implies

that any two distinct codewords of the Reed-Muller code differ in a large fraction of

the locations. The decoder recovers the value of the unknown polynomial at a point by

picking a random line/low-dimensional space passing through the point, querying all

the points on that line/low-dimensional space, and decoding it using noisy polynomial

interpolation. This family of codes is remarkably versatile. It yields locally decodable

codes of all possible query complexities, (i.e., one can choose the query-complexity t

to be an arbitrary non-decreasing function of k) that tolerate a constant fraction of

errors (with some tradeoff with the rate of the code).

1.1.2 Applications to the Polynomial Method

In addition to being a useful tool in the construction of objects with interesting

combinatorial properties, in recent years, somewhat strikingly, polynomials have also

been found to be a powerful tool in the analysis of combinatorial parameters of subsets

of vector spaces that are "algebraically nice". This algebraic method of analysis, which



we refer to as as the polynomial method (of combinatorics), proceeds in three steps:

Given the subset K satisfying the algebraic conditions, one first constructs a non-zero

low-degree polynomial that vanishes on K. Next, one uses the algebraic conditions on

K to show that the polynomial vanishes at other points outside K as well. Finally,

one uses the fact that the polynomial is zero too often to derive bounds on the

combinatorial parameters of interest. The polynomial method has seen utility in the

computer science literature in works on "list-decoding" starting with Sudan [Sud97]

and subsequent works. Recently the method has been applied to analyze "extractors"

by Guruswami, Umans, and Vadhan [GUV07]. Most relevant to this thesis are its

applications to lower bound the cardinality of "Kakeya sets" by Dvir [Dvi08], and the

subsequent constructions of "mergers" by Dvir and Wigderson [DW08].

1.1.3 Some Limitations of Previous Techniques

In many of the above applications polynomials play a crucial role, and the property

that a low degree polynomial cannot evaluate to zero too often is used repeatedly.

An important requirement for making the arguments go through is that the domain,

or underlying field on which the polynomials are evaluated, needs to have size much

larger than the degree of the polynomials being used, or else the Schwartz-Zippel

Lemma does not say anything meaningful. Indeed it is possible for high degree poly-

nomials to be zero everywhere. Since only low degree polynomials are hence useful,

this often limits the extent to which polynomials find their utility, and there is much

scope for improvements in various parameters of interest.

For instance, in the earlier mentioned constructions of error correcting codes (and in

particular the Reed-Muller codes), we were limited to using polynomials of degree

smaller than the field size, which in turn resulted in the "rate" (i.e., the ratio k/n) of

the corresponding codes to decay with m, the number of variables in the polynomials

being used. This ends up hurting the tradeoff between the rate and the locality

(number of queries) of the decoding algorithms, and all earlier constructions of codes

that admitted local decoding algorithms with locality kl/c had rate 2-0(c); and no



code with non-trivial locality (q = o(k)) and rate > 1/2 was known. Most earlier

constructions were polynomial-based, and the "low degree" restriction was the main

bottleneck for the low rate.

In this thesis we improve on several of the results mentioned above by a more powerful

application of polynomials that also takes into account the information contained in

the evaluations of the derivatives of the polynomials. This encodes information about

the higher multipicity vanishings of polynomials at points in the domain. We show

that polynomials of not-too-high degree cannot vanish with high multiplicity at a

lot of points. This allows us to break free from the "low degree" constraint, and in

several of the applications we can deal with polynomials of degree independent of the

field size. We call this technique the method of multiplicities, and we elaborate on it

in the next section.

1.2 The Method of Multiplicities

The method of multiplicities is a name we have chosen for the techniques in this thesis

that use evaluations of polynomials along with their derivatives to give strengthened

results for various problems that were earlier tackled using evaluations of polynomials

alone. As in the usual analytic notion of a polynomial having a high multiplicity zero

at a point, we say that a polynomial P vanishes at a point a with multiplicity m, if

the polynomial and all its derivatives up to order m - 1 vanish at a. Similarly we

say that two polynomials agree with multiplicity m at a point a if the values of the

polynomials as well as their derivatives up to order m - 1 agree at a. Thus evaluating

a polynomial and its derivatives at a set of points is like giving high multiplicity

information of the polynomial at those points. We show that in several problems of

interest, this high multiplicity information can be used effectively to improve upon

earlier results.

One of the main reasons we seems to profit from considering high multiplicity infor-

mation is that this information allows us to deal with much higher degree polynomials



than we could before. For instance, the Schwartz-Zippel Lemma implies that two n

variate polynomials of degree d where d is less than the field size cannot have the

same evaluations at all points in F'. However this is not true for d ;> |F; for poly-

nomials of degree larger than the field size, the set of evaluations does not uniquely

identify the polynomial. We extend the Schwartz-Zippel Lemma to show that if one

provides higher multiplicity information of the polynomials, then this however does

suffice to identify the polynomial. We show that two n-variate polynomials of degree

d, where d is less than m x |F, cannot have the same multiplicity m evaluations at all

points in F'. We formally set up notation and make everything precise with proofs

in Chapter 2. Below we more precisely state this extension of the Schwartz-Zippel

Lemma.

Multiplicity enhanced Schwartz-Zippel Lemma: Let F be a field, and let

FIX 1, . . . , X,,] denote the ring of n variate polynomials over F. Let S be a finite

subset of F. Then if P is a nonzero polynomial of degree d in F [Xi, ... , Xn]

EaE Sn [mult(P, (a))] < d/IS|.

The notions of derivative and multiplicity are not new to computer science, and they

have played an important role in several prior works in coding theory and theoretical

computer science. See Section 1.4 for a summary of some of the prior works using such

ideas. The results in this thesis add to this body of work, and strengthen many of the

tools and techniques used in prior works to obtain nearly tight analyses for several

problems. We now discuss some of these applications of the method of multiplicities to

obtain improved constructions of error correcting codes, and a strengthened version of

the polynomial method which lets us obtain qualitatively tighter analyses of Kakeya

sets, error correcting codes and randomness extractors.

1.3 Main Contributions of this Thesis

In this section, we describe the two main incarnations in which we use the method of

multiplicities. Though there are many ideas that are common to both, at a high level,



both applications use polynomials and derivatives in very different ways. In the first

application, derivatives are used to give improved constructions of polynomial based

error correcting codes. In the second application, we use derivatives and multiplicities

to give significantly tighter analyses of certain combinatorial parameters of subsets of

vector spaces, improving upon earlier methods of analysis that used just polynomials.

Multiplicity Codes We apply the method of multiplicities to construct a new and

natural family of locally decodable codes that achieve significantly better tradeoffs

and flexibility in the rate and minimum distance from traditional polynomial based

(Reed-Muller) codes. These codes, which we call multiplicity codes, are based on

evaluating high degree multivariate polynomials and their derivatives. Typically, when

we use polynomial based codes, for the code to have any distance, the degrees of the

polynomials need to be smaller than the field size. This causes the rate of the codes

to degrade exponentially with the number of variables in the polynomials being used.

We manage to work with much higher degree polynomials (and thus get significantly

improved rates), and we compensate for the loss in distance by also evaluating the

derivatives of the polynomials. Thus, for the first time, we are able to construct

codes which achieve very high rates (arbitrarily close to 1) with strong local decoding

properties (q(k) = k for arbitrarily small E), thereby giving new performance tradeoffs

between the rate and locality of decoding.

More formally,

9 We show that for every E > 0, a > 0, and for infinitely many k, there exists

a code which encodes k-bit messages with rate 1 - a, and is locally decodable

from some constant fraction of errors using O(k) time and queries.

Multiplicity enhanced polynomial method We use the method of multiplicities

to extend the polynomial method, and derive tighter bounds on several combinatorial

parameters of interest (that we list below). Recall that the polynomial method is used

to analyze combinatorial parameters of subsets of vector spaces that have some nice



algebraic structure, and it proceeds in three steps: Given the subset K satisfying the

algebraic conditions, one first constructs a non-zero low-degree polynomial that van-

ishes on K. Next, one uses the algebraic conditions on K to show that the polynomial

vanishes at other points outside K as well. Finally, one uses the fact that the polyno-

mial is zero too often to derive bounds on the combinatorial parameters of interest.

In our extension, we construct a polynomial that vanishes with high multiplicity on

every point of K. But then, unlike in previous works, we will augment the second step

and show that under appropriate conditions, the interpolating polynomial vanishes

with high multiplicity outside the set as well. This novelty will lead to significantly

tighter analyses of the following results, which are of interest in combinatorics and

randomness extraction.

* We show that every Kakeya set in F', the n-dimensional vector space over the

finite field on q elements, must be of size at least qn/2". This bound is tight to

within a 2 + o(1) factor for every n as q - oc.

" We give improved "randomness mergers": Mergers are seeded functions that

take as input f (possibly correlated) random variables in {O, I}N and a short

random seed and output a single random variable in {O, I}N that is statistically

close to having entropy (1 - 6)- N when one of the f input variables is distributed

uniformly. The seed we require is only (1/6) - log e-bits long, which significantly

improves upon previous construction of mergers.

" We give improved randomness extractors, based on our improved mergers.

Specifically, we show how to construct randomness extractors that use loga-

rithmic length seeds while extracting 1 - o(1) fraction of the min-entropy of a

weak random source. Previous results could extract only a constant fraction of

the entropy while maintaining logarithmic seed length.

" We re-derive, algebraically, a known bound on the list-size in the list-decoding

of Reed-Solomon codes.



In all the results mentioned above we improve upon earlier applications of polyno-

mials by now instead using the derivatives of polynomials as well (and considering

high multiplicity vanishings of polynomials). The notion of using derivatives and

multiplicities is not new to computer science however. In the next section, we sum-

marize some of the results which utilized such techniques. In this thesis, we add

to this body of work, and introduce several new tools, in particular the multiplicity

enhanced Schwartz-Zippel Lemma, that help us to utilize the power of multiplicities

more effectively.

1.4 Prior Applications of Derivatives and Multi-

plicities:

The notions of derivative and multiplicity are not new to computer science, and they

have played a critical role in several prior works in coding theory and theoretical

computer science. Multiplicities have been used in conjunction with the "polyno-

mial method" in a number of contexts in recent years [GS99, PV05, GR08]; these

ideas are a precursor to our "multiplicity enhanced polynomial method". Rozen-

bloom and Tsfasman [RT97] consider extensions of Reed Solomon codes where the

polynomial is evaluated together with its derivatives (basically, univariate multiplic-

ity codes) to obtain codes for some metrics generalizing the usual Hamming metric.

Xing [Xin03] considers the space of differentials on an algebraic curve to prove the

existence of error-correcting codes above the Tsfasman-Vladut-Zink bound. Woodruff

and Yekhanin [WY05] use evaluations of polynomials and their derivatives to con-

struct private information retrieval schemes with improved communication complex-

ity. Multiplicity codes add to this body of work, which follows the general theme that

wherever polynomials and their zeroes are useful, also considering their derivatives

and high-multiplicity zeroes can be even more useful1 .

We now give a more detailed discussion of how the method of multiplicities leads

1 Some restrictions apply.



to the mentioned results. In Section 1.5 we further elaborate on our contribution

of multiplicity codes and in Section 1.6 we elaborate on our multiplicity enhanced

polynomial method.

1.5 The Method of Multiplicities and Error Cor-

recting Codes

Classical error-correcting codes allow one to encode a k-bit message x into an n-bit

codeword C(x), in such a way that x can still be recovered even if C(x) gets corrupted

in a number of coordinates. The traditional way to recover information about x given

access to a corrupted version of C(x) is to run a decoder for C, which would read and

process the entire corrupted codeword, and then recover the entire original message x.

Suppose that one is only interested in recovering a single bit or a few bits of x. In this

case, codes with more efficient decoding schemes are possible, allowing one to read

only a small number of code positions. Such codes are known as Locally Decodable

Codes (LDCs). Locally decodable codes allow reconstruction of an arbitrary bit xi,

by looking only at t < k randomly chosen coordinates of (a possibly corrupted) C(x).

The main parameters of a locally decodable code that measure its utility are the

codeword length n (as a function of the message length k) and the query complexity

of local decoding. The length measures the amount of redundancy that is introduced

into the message by the encoder. The query complexity counts the number of bits

that need to be read from a (corrupted) codeword in order to recover a single bit of

the message. Ideally, one would like to have both of these parameters as small as

possible. One however cannot minimize the codeword length and the query complex-

ity simultaneously; there is a trade-off. On one end of the spectrum we have LDCs

with the codeword length close to the message length, decodable with somewhat large

query complexity. Such codes are useful for data storage and transmission. On the

other end we have LDCs where the query complexity is a small constant but the code-

word length is large compared to the message length. Such codes find applications



in complexity theory and cryptography. The true shape of the trade-off between the

codeword length and the query complexity of LDCs is not known. Determining it is

a major open problem (see [Yek1O] for a recent survey of the LDC literature).

While most prior work focuses on the low query (and even constant query) regime,

in this work we will look at the other extreme and consider the setting of locally

decodable codes with very low redundancy, which may be of even greater practical

interest. More precisely, we will be interested in minimizing the query complexity of

local decoding for codes of large rate (defined as the ratio k/n, where the code encodes

k bits into n bits). For codes of rate > 1/2, it was unknown how to get any nontrivial

local decoding whatsoever. For smaller rates, it was known how to construct codes

(in fact, the classical Reed-Muller codes based on evaluating multivariate polynomials

have this property) which admit local decoding with O(kE) queries and time, at the

cost of reducing the rate to E0(1). In practical applications of coding theory to data

storage and transmission, the rate of encoding has always been paramount; using

codes of very small rate translates into increasing the storage required or transmission

time manifold, and is unacceptable for most applications.

In this thesis, we introduce a new and natural family of locally decodable codes, which

achieve high rates while admitting local decoding with low query complexity. These

codes, which we call multiplicity codes, are based on evaluating multivariate poly-

nomials and their derivatives. They inherit the local-decodability of the traditional

multivariate polynomial codes, while achieving better tradeoffs and flexibility in the

rate and minimum distance. Using multiplicity codes, we prove (see Theorem 3.1.4)

that it is possible to have codes that simultaneously have (a) rate approaching 1,

and (b) allow for local decoding with arbitrary polynomially-small time and query

complexity.

Main Theorem (informal): For every E > 0, a > 0, and for infinitely many k, there

exists a code which encodes k-bit messages with rate 1 - a, and is locally decodable

from some constant fraction of errors using O(k) time and queries.



1.5.1 Previous Work on Locally Decodable Codes

Locally decodable codes have been implicitly studied in coding theory for a very

long time, starting with Reed's "majority-logic decoder" for binary Reed-Muller

codes [Ree54]. In theoretical computer science, locally decodable codes (and in

particular, locally decodable codes based on multivariate polynomials) have played

an important part (again implicitly) in the Proof-Checking Revolution of the early

90s [BF90, Lip90, LFKN92, Sha92, BFLS91, BFL91, AS98, ALM+98] as well as

in other fundamental results in complexity theory [BFNW93, IW97, AS03, STV99,

SU05].

Locally decodable codes were first formally defined by Katz and Trevisan [KTOO] (see

also [STV99]). Since then, the quest for understanding locally decodable codes has

generated many developments. Most of the previous work on LDCs has focussed on

local decoding with a constant number of queries. For a long time, it was generally

believed that for decoding with constantly many queries, a k bit message must be

encoded into at least exp(k0 ) bits, for constant a > 0. Recently, in a surprising

sequence of works [Yek08, Rag07, Efr09, IS1O, DGY1O, BET1O, CFL+10] this was

shown to be soundly false; today we know constant query locally decodable codes

which encode k bits into as few as exp(exp(log"(k))) bits for constant a > 0.

There has also been considerable work [KTOO, KdW04, GKST02, WdW05, Woo07,

DJK+02, ObaO2] on the problem of proving lower bounds on the length of locally

decodable codes. In particular, it is known [KT00] that for codes of constant rate,

local decoding requires at least Q(log k) queries. For codes locally decodable with

w(log k) queries, no nontrivial lower bound on the length on the code is known.

For error-correction with O(kf) queries, Dvir [DvilO] recently conjectured a lower

bound on the length of some closely related objects called locally self-correctable codes.

Precisely, the conjecture of [DvilO] states that for every field F, there exist positive

constants a and e such that there are no linear codes over F of length n, rate 1 - a

and locally self-correctable with query complexity O(n) from a certain sub-constant

fraction of errors. Dvir [DvilO] then showed that establishing this conjecture would



yield progress on some well-known open questions in arithmetic circuit complexity.

Our results refute Dvir's conjecture over finite fields; using multiplicity codes, we

show that for arbitrary a, c > 0, for every finite field F, for infinitely many n, there is

a linear code over F of length n with rate 1 - a, which is locally self-correctable from

even a constant fraction of errors with O(nE) queries2

1.5.2 Multiplicity codes

We now give a quick introduction to multiplicity codes and demonstrate the principles

on which they are based.

To minimize extraneous factors and for ease of exposition, in this subsection we will

deal with the problem of constructing "locally self-correctable codes" over "large

alphabets", which we now define. We have a set E (the "alphabet"), and we want to

construct a subset C (the "code") of En, of size jEJk (we call k the "message length"),

with the following local self-correction property: given access to any r E E" which is

close to some codeword c C C, and given i E [n], it is possible to make few queries

to the coordinates of r, and with high probability output ci. The goal is to construct

such a subset C with rate k/n large. Note that this differs from the notion of locally

decodable code in that we seek to recover a coordinate of the nearby codeword c, not

of the original message which encodes to c. We also do not require that E has size 2,

which is what the Main Theorem mentioned earlier refers to. Translating from local

self-correctability over large alphabets to local decodability over small alphabets is a

standard transformation.

Our plan is as follows. We will first recall an example of the classical Reed-Muller

codes based on bivariate polynomials and why it is locally self-correctable. We will

then introduce the simplest example of a multiplicity code based on bivariate polyno-

mials, which has improved rate, and see how to locally self-correct it with essentially
2 [DvilO] contains two conjectures; which are called the "strong conjecture" and the "weak con-

jecture". We refute only the strong conjecture. The weak conjecture, which has weaker implications
for questions related to arithmetic circuit complexity, remains open.



the same query complexity. Finally, we mention how general multiplicity codes are

defined and some of the ideas that go into locally self-correcting them.

Bivariate Reed-Muller codes: Let q be a prime power, let 6 > 0 and let d =

(1 - 6)q. The Reed Muller code of degree d bivariate polynomials over Fq (the finite

field of cardinality q) is the code defined as follows. The coordinates of the code are

indexed by elements of F, and so n = q2 . The codewords are indexed by bivariate

polynomials of degree at most d over Fq. The codeword corresponding the polynomial

P(X, Y) is the vector

C(P) = (P(a)) (a) E F .

Because two distinct polynomials of degree at most d can agree on at most d/q-

fraction of the points in F2, this code has distance 6 = 1 - d/q. Any polynomial of

degree at most d is specified by one coefficient for each of the (d) monomials, and

so the message length k = (d+1). Thus the rate of this code is (d+1 )q2 (1 _ 6)2/2.

Notice that this code cannot have rate more than 1/2.

Local Self-Correction of Reed-Muller codes: Given a received word r E (79)q

such that r is close in Hamming distance to the codeword corresponding to P(X, Y),

let us recall how the classical local self-correction algorithm works. Given a coordinate

a C F2, we want to recover the "corrected" symbol at coordinate a, namely P(a).

The algorithm picks a random direction b E F2 and looks at the restriction of r to

coordinates in the line L {a + bt I t E Fq}. With high probability over the choice

of b, r and C(P) will agree on many positions of L. Now C(P)IL is simply the vector

consisting of evaluations of the univariate polynomial Q(T) = P(a + bT) E Fq[T],

which is of degree < d. Thus rIL gives us q "noisy" evaluations of a polynomial Q(T)

of degree < (1 - 6) - q; this enables us to recover Q(T). Evaluating Q(T) at T = 0

gives us P(a), as desired. Notice that this decoding algorithm makes q queries, which

is O(k1/ 2).

Bivariate Multiplicity Codes: We now introduce the simplest example of multi-

plicity codes, which already achieves a better rate than the Reed-Muller code above,

while being locally self-correctable with only a constant factor more queries.



Let q be a prime power, let 6 > 0 and let d = 2(1 - 6)q (which is twice what it

was in the Reed-Muller example). The multiplicity code of order 2 evaluations of

degree d bivariate polynomials over Fq is the code defined as follows. As before, the

coordinates are indexed by F2 (so n = q2 ) and the codewords are indexed by bivariate

polynomials of degree at most d over Fq. However the alphabet will now be FV. The

codeword corresponding the polynomial P(X, Y) is the vector

oP oP2
C (P) = ((P (a),(9 (a), OP(a)))(aGjF E (F )q 2.

In words, the a coordinate consists of the evaluation of P and its partial derivatives

O and - at a. Because two distinct polynomials of degree at most d can agree

with multiplicity 2 on at most d/2q-fraction of the points in F2, this code has distance

6 = 1 - d/2q. Since the alphabet size is now q3 , the message length k equals the

number of q3 -ary symbols required to specify a polynomial of degree at most d; this

is clearly (d+1)/ 3 . Thus the rate of this code is ((dl)/3)/q2 ~ 2(1 - 6)2/3.

Summarizing the differences between this multiplicity code with the Reed-Muller

code described earlier: (a) instead of polynomials of degree (1 - 6)q, we consider

polynomials of degree double of that, (b) instead of evaluating the polynomials, we

take their "order-2" evaluation. This yields a code with the same distance, while the

rate improved from < 1/2 to nearly 2/3.

Local Self-Correction of Multiplicity codes: Given a received word r E F)

such that r is close in Hamming distance to the codeword corresponding to P(X, Y),

we will show how to locally self-correct. Given a point a E F2, we want to recover the

"corrected" symbol at coordinate a, namely (P(a), f(a), 2(a)). Again, the algo-

rithm picks a random direction b = (bi, b2) E F and looks at the restriction of r to

coordinates in the line L = {a + bt I t E Fq}. With high probability over the choice

of b, we will have that rL and C(P)IL agree in many locations. Our intermediate

goal will be to recover the univariate polynomial3 Q(T) = P(a + bT). The impor-

3Unlike in the Reed-Muller case, here there is a distinction between recovering Q(T) and recov-
ering C(P)|L. It turns out that recovering C(P)|L given only rIL is impossible.



tant observation is that for every t E IFq, the a + bt coordinate of C(P) completely

determines both the value and the 1st derivative of the univariate polynomial Q(T)

at the point t; indeed, by the chain rule we have:

(Q(t), (t)) = (P(a + bt), bi (a + bt) + b2 (a + bt)).aT aX aY

Thus our knowledge of r|L gives us access to q "noisy" evaluations of the polynomial

Q(T) and its derivative a(T), where Q(T) is of degree < 2(1 - 6)q. It turns out

that this is enough to recover the polynomial Q(T). Evaluating Q(T) at T = 0 gives

us P(a). Evaluating the derivative (T) at T = 0 gives us the directional derivative

of P at a in the direction b (which equals bi9(a) + b2 p(a)). We have clearly

progressed towards our goal of computing the tuple (P(a), (a), 9 (a)), but we are

not yet there. The final observation is that if we pick another direction b', and repeat

the above process to recover the directional derivative of P at a in direction b', then

the two directional derivatives of P at a in directions b, b' together suffice to recover

" (a) and 2 (a), as desired. This algorithm makes 2q queries, which is O(k/ 2 )

General Multiplicity codes: The basic example of a multiplicity code above al-

ready achieves rate R > 1/2 while allowing local decoding with sublinear query

complexity (which was not known before). To get codes of rate approaching 1, we

modify the above example by considering evaluations of all derivatives of P up to

an even higher order. In order to locally recover the higher-order derivatives of P

at a point a, the decoding algorithm will pick many random lines passing through

a, try to recover the restriction of P to those lines, and combine all these recovered

univariate polynomials in a certain way. To reduce the query complexity to O(kE)

for small c, we modify the above example by considering multivariate polynomials

in a larger number of variables m. The local decoding algorithm for this case, in

order to locally recover at a point a C F', decodes by picking random lines passing

through a; the reduced query complexity occurs because lines (with only q points)

are now much smaller relative to a higher dimensional space F'. Increasing both the

maximum order of derivative taken and the number of variables simultaneously yields



multiplicity codes with the desired rate and local decodability.

In Section 3.3, we present our local self-correction algorithm, which implements the

plan outlined above, along with an extra "robustification" so that the fraction of

errors which can be recovered from is a constant fraction of the distance of the code.

We also show how the algorithm can be made to run in sublinear time (almost as

small as the query complexity).

1.6 The Multiplicity Enhanced Polynomial Method

We use the method of multiplicities to improve on an algebraic method that has

lately been applied, quite effectively, to analyze combinatorial parameters of subsets of

vector spaces that satisfy some given algebraic/geometric conditions. This technique,

which we refer to as as the polynomial method (of combinatorics), proceeds in three

steps: Given a subset K satisfying the algebraic conditions, one first constructs a

non-zero low-degree polynomial that vanishes on K. Next, one uses the algebraic

conditions on K to show that the polynomial vanishes at other points outside K as

well. Finally, one uses the fact that the polynomial is zero too often to derive bounds

on the combinatorial parameters of interest. The polynomial method has seen utility

in the computer science literature in works on "list-decoding" starting with Sudan

[Sud97] and subsequent works. Recently the method has been applied to analyze

"extractors" by Guruswami, Umans, and Vadhan [GUV07]. Most relevant to this

current thesis are its applications to lower bound the cardinality of "Kakeya sets"

by Dvir [Dvi08], and the subsequent constructions of "mergers" and "extractors" by

Dvir and Wigderson [DW08]. (We will elaborate on some of these results shortly.)

The notion of multiplicities has been used in the past in conjunction with the poly-

nomial method. The way it was used was the following: one constructed polynomials

that vanished with high multiplicity on the subset K. This requirement often forced

one to use polynomials of higher degree than in the polynomial method, but it gained

in the second step by using the high multiplicity of zeroes to conclude "more easily"



that the polynomial was zero at other points. This typically lead to a tighter analysis

of the combinatorial parameters of interest. This use of multiplicities has been applied

widely in list-decoding starting with the work of Guruswami and Sudan [GS99] and

continuing through many subsequent works, most significantly in the works of Par-

varesh and Vardy [PV05] and Guruswami and Rudra [GR08] leading to rate-optimal

list-decodable codes. Very recently this method was also applied to improve the lower

bounds on the size of "Kakeya sets" by Saraf and Sudan [SS08].

In this thesis we provide an extension to this method, that we call the extended

method of multiplicities, which develops this method (hopefully) fully to derive even

tighter bounds on the combinatorial parameters. In our extension, we start as in the

earlier method by constructing a polynomial that vanishes with high multiplicity on

every point of K. But then we extend the second step where we exploit the algebraic

conditions to show that the polynomial vanishes with high multiplicity on some points

outside K as well. Finally we extend the third step to show that this gives better

bounds on the combinatorial parameters of interest.

By these extensions we derive nearly optimal lower bounds on the size of Kakeya sets

and qualitatively improved analysis of mergers leading to new extractor constructions.

We also re-derive algebraically a known bound on the list-size in the list-decoding of

Reed-Solomon codes. We describe these contributions in detail next, before going on

to describe some of the technical observations used to derive the extended method of

multiplicities (which we believe are of independent interest).

1.6.1 Kakeya Sets over Finite Fields

Let Fq denote the finite field of cardinality q. A set K C F" is said to be a Kakeya

set if it "contains a line in every direction". In other words, for every "direction"

b E Fn there should exist an "offset" a E Fn" such that the "line" through a in

direction b, i.e., the set {a + tblt E Fq}, is contained in K. A question of interest in

combinatorics/algebra/geometry, posed originally by Wolff [Wol99], is: "What is the

size of the smallest Kakeya set, for a given choice of q and n?"



The trivial upper bound on the size of a Kakeya set is q" and this can be improved

to roughly I' qfl (precisely the bound is 1 q"+ O(qn-1), see [SS08] for a proof of

this bound due to Dvir). An almost trivial lower bound is qn/ 2 (every Kakeya set

"contains" at least qf lines, but there are at most |K12 lines that intersect K at least

twice). Till recently even the exponent of q was not known precisely (see [DviO8] for

details of work prior to 2008). This changed with the result of [DviO8] (combined

with an observation of Alon and Tao) who showed that for every n, |KI cnq , for

some constant ce depending only on n.

Subsequently the work [SS08] explored the growth of the constant c" as a function

of n. The result of [DviO8] shows that c, > 1/n!, and [SS08] improve this bound to

show that c, > 1/(2.6)". This still leaves a gap between the upper bound and the

lower bound and we effectively close this gap.

Theorem 1.6.1 If K is a Kakeya set in F" then |K| > -q".

Note that our bound is tight to within a 2 + o(1) multiplicative factor as long as

q = w(2") and in particular when n = 0(1) and q -+ oo.

1.6.2 Randomness Mergers and Extractors

A general quest in the computational study of randomness is the search for simple

primitives that manipulate random variables to convert their randomness into more

useful forms. The exact notion of utility varies with applications. The most common

notion is that of "extractors" that produce an output variable that is distributed

statistically close to uniformly on the range. Other notions of interest include "con-

densers", "dispersers" etc. One such object of study (partly because it is useful to

construct extractors) is a "randomness merger". A randomness merger takes as in-

put A random variables A,, ... , AA, which are possibly correlated, along with a short

uniformly random seed B, which is independent of A1,..., AA, and "merges" the ran-

domness of A1,..., AA. Specifically the output of the merger should be statistically



close to a high-entropy-rate source of randomness provided at least one of the input

variables A1 , . . . , AA is uniform.

Mergers were first introduced by Ta-Shma [TS96a] in the context of explicit con-

structions of extractors. A general framework was given in [TS96a] that reduces the

problem of constructing good extractors into that of constructing good mergers. Sub-

sequently, in [LRVW03), mergers were used in a more complicated manner to create

extractors which were optimal to within constant factors. The mergers of [LRVW03]

had a very simple algebraic structure: the output of the merger was a random linear

combination of the blocks over a finite vector space. The [LRVW03] merger analysis

was improved in [DS07] using the connection to the finite field Kakeya problem and

the (then) state of the art results on Kakeya sets.

The new technique in [Dvi08] inspired Dvir and Wigderson [DW08] to give a very

simple, algebraic, construction of a merger which can be viewed as a derandomized

version of the [LRVW03] merger. They associate the domain of each random variable

Ai with a vector space Fn. With the A-tuple of random variables A1,..., AA, they

associate a curve C : Fq -+ Fn of degree < A which 'passes' through all the points

A1, . . . , AA (that is, the image of C contains these points). They then select a random

point u E Fq and output C(u) as the "merged" output. They show that if q >

poly(A - n) then the output of the merger is statistically close to a distribution of

entropy-rate arbitrarily close to 1 on Fn.

While the polynomial (or at least linear) dependence of q on A is essential to the

construction above, the requirement q > poly(n) appears only in the analysis. In our

work we remove this restriction to show:

Informal Theorem [Merger]: For every A, q the output of the Dvir- Wigderson

merger is close to a source of entropy rate 1 - logq A. In particular there exists an

explicit merger for A sources (of arbitrary length) that outputs a source with entropy

rate 1 - 6 and has seed length (1/6) - log(A/c) for any error E.

The above theorem (in its more formal form given in Theorem 5.2.3) allows us to

merge A sources using seed length which is only logarithmic in the number of sources



and has no dependence on the length of each source. Earlier constructions of mergers

required the seed to depend either linearly on the number of blocks [LRVW03, Zuc07]

or to depend also on the length of each block [DW08]. 4

One consequence of our improved merger construction is an improved construction of

extractors. Recall that a (k, E)-extractor E {0, 1}, x {0, I}d - {0, 1}m is a deter-

ministic function that takes any random variable X with min-entropy at least k over

{0, 1}" and an independent uniformly distributed seed Y C {0, 1 }d and converts it to

the random variable E(X, Y) that is c-close in statistical distance to a uniformly dis-

tributed random variable over {0, 1}m. Such an extractor is efficient if E is polynomial

time computable.

A diverse collection of efficient extractors are known in the literature (see the survey

[Sha02] and the more recent [GUV07, DWO8] for references) and many applications

have been found for explicit extractors in various research areas spanning theoretical

computer science. Yet all previous constructions lost a linear fraction of the min-

entropy of the source (i.e., achieved m = (1 - c)k for some constant E > 0) or used

super-logarithmic seed length (d = w(log n)). We show that our merger construction

yields, by combining with several of the prior tools in the arsenal of extractor con-

structions, an extractor which extracts a 1 - 1 fraction of the min-entropy ofpolylog(n)

the source, while still using O(log n)-length seeds. We now state our extractor result

in an informal way (see Theorem 5.3.3 for the formal statement).

Informal Theorem [Extractor]: There exists an explicit (k, e) -extractor for all

min-entropies k with O(logn) seed, entropy loss O(k/polylog(n)) and error E=

1/polylog(n), where the powers in the polylog(n) can be arbitrarily high constants.

As seen in the above theorem, our extractors can handle error which is only poly-

logarithmic. For smaller values of e there are better constructions of extractors (e.g

those of [GUV07]).

4The result we refer to in [Zuc07, Theorem 5.1] is actually a condenser (which is stronger than a
merger).



1.6.3 List-Decoding of Reed-Solomon Codes

The problem of list-decoding Reed-Solomon codes is the following: Given a sequence

of points

(aV1, 01), ... , ,#) E Fq X Fq,

and parameters k and t, find the list of all polynomials pi,.. ,PL of degree at most

k that agree with the given set of points on t locations, i.e., for every j E {1,. . . , L}

the set {iIpj (ai) = # } has at least t elements. The associated combinatorial problem

is: How large can the list size, L, be for a given choice of k, t, n, q (when maximized

over all possible sets of distinct input points)?

A somewhat nonstandard, yet reasonable, interpretation of the list-decoding algo-

rithms of [Sud97, GS99] is that they give algebraic proofs, by the polynomial method

and the method of multiplicities, of known combinatorial upper bounds on the list

size, when t > Vkr. Their proofs happen also to be algorithmic and so lead to

algorithms to find a list of all such polynomials.

However, the bound given on the list size in the above works does not match the

best known combinatorial bound. The best known bound to date seems to be that of

Cassuto and Bruck [CB04] who show that, letting R = k/n and -y = t/n, if -2 > R,

then the list size L is bounded by O( 2_R) (in contrast, the Johnson bound and the

analysis of [GS99] gives a list size bound of O(_ 2'R), which is asymptotically worse

for, say, y = (1 + O(1))viR and R tending to 0). In Theorem 6.1.2 we recover the

bound of [CB04] using our extended method of multiplicities.

1.6.4 Technique: Extended Method of Multiplicities

The common insight to all the above improvements is that the extended method

of multiplicities can be applied to each problem to improve the parameters. Here

we attempt to describe the technical novelties in the development of the extended

method of multiplicities.



For concreteness, let us take the case of the Kakeya set problem. Given a set K C F,

the method first finds a non-zero polynomial P E Fq[X1,... , Xn] that vanishes with

high multiplicity m on each point of K. The next step is to prove that P vanishes

with fairly high multiplicity E at every point in Fn as well. This step turns out to be

somewhat subtle (and is evidenced by the fact that the exact relationship between

m and t is not simple). Our analysis here crucially uses the fact that the (Hasse)

derivatives of the polynomial P, which are the central to the notion of multiplicity of

roots, are themselves polynomials, and also vanish with high multiplicity at points in

K. This fact does not seem to have been needed/used in prior works and is central

to ours.

A second important technical novelty arises in the final step of the method of multi-

plicities, where we need to conclude that if the degree of P is "small", then P must

be identically zero. Unfortunately in our application the degree of P may be much

larger than q (or nq, or even qf). To prove that it is identically zero we need to

use the fact that P vanishes with high multiplicity at every point in Fn, and this

requires some multiplicity-enhanced version of the standard Schwartz-Zippel lemma.

We prove such a strengthening, showing that the expected multiplicity of zeroes of

a degree d polynomial (even when d > q) at a random point in F" is at most d/q

(see Lemma 2.1.7). Using this lemma, we are able to derive much better benefits

from the "polynomial method". Indeed we feel that this allows us to go beyond the

limitations of the function space mapping Fn" to Fq and capitalize on the full power

of the polynomial ring Fq[X].

Putting these ingredients together, the analysis of the Kakeya sets follows easily. The

analysis of the mergers follows a similar path and may be viewed as a "statistical"

extension of the Kakeya set analysis to "curve" based sets, i.e., here we consider sets

S that have the property that for a noticeable fraction points x E Fn there exists

a low-degree curve passing through x that has a noticeable fraction of its points

in S. We prove such sets must also be large and this leads to the analysis of the

Dvir-Wigderson merger.



1.7 Organization of this Thesis

In Chapter 2 we define the notion of the multiplicity of the roots of a polynomial, using

the notion of the Hasse derivative. We present some basic facts about multiplicities

and Hasse derivatives, and also present the multiplicity based version of the Schwartz-

Zippel lemma.

In Chapter 3 we describe the full construction of high rate locally decodable codes us-

ing polynomials and derivatives, extending earlier constructions of polynomial based

Reed-Muller codes. In Section 3.1, we state our main theorems on the existence of

locally decodable/self-correctable codes. In Section 3.2, we formally define multiplic-

ity codes, calculate their rate and distance, state the theorem implying their local

decodability, and show how they imply the main theorems from the previous sec-

tion. In Section 3.3 we give our local self-correction algorithms for multiplicity codes.

Section 3.4 contains some concluding remarks.

In Chapters 4, 5 and 6 we describe how we use the multiplicity enhanced polynomial

method to obtain improved results for a variety of problems. In Chapter 4 we present

our lower bounds for Kakeya sets. In Chapter 5 we extend this analysis for "curves"

and for "statistical" versions of the Kakeya property. This leads to our analysis of

the Dvir-Wigderson merger in Section 5.2. We then show how to use our mergers to

construct the novel extractors in Section 5.3. Finally, in Chapter 6, we include the

algebraic proof of the list-size bounds for the list-decoding of Reed-Solomon codes.
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Chapter 2

Hasse Derivatives and

Multiplicities

2.1 Preliminaries

In this section we formally define the notion of "mutliplicity of zeroes" along with

the companion notion of the "Hasse derivative". We also describe basic properties

of these notions, concluding with the proof of the "multiplicity-enhanced version" of

the Schwartz-Zippel lemma.

2.1.1 Basic Definitions

We start with some notation. We use [n] to denote the set {1, ... , n}. For a vector

i (i,... , in) of non-negative integers, its weight, denoted wt(i), equals Z i.

Let F be any field, and Fq denote the finite field of q elements. For X = (X 1 ,... ,Xn),

let F[X] be the ring of polynomials in X. .. ,X, with coefficients in F. For a poly-

nomial P(X), we let Hp(X) denote the homogeneous part of P(X) of highest total

degree. Specifically, if P(X) is a polynomial of degree d, then Hp(X) is the homoge-

nous degree d polynomial such that P(X) - Hp(X) has degree less than d.



For a vector of non-negative integers i = (ii,... ,in), let X denote the monomial

In X.' E F[X]. Note that the (total) degree of this monomial equals wt(i). For

n-tuples of non-negative integers i and j, we use the notation

k=1

Note that the coefficient of ZiWr-i in the expansion of (Z + W)r equals ( ).

Definition 2.1.1 ((Hasse) Derivative) For P(X) E F[X] and non-negative vector

i, the ith (Hasse) derivative of P, denoted P(i)(X), is the coefficient of Z' in the

polynomial I(X, Z)=P(X + Z) C F[X, Z].

Thus,

P(X + Z) =Z P)(X)Zi. (2.1)

We are now ready to define the notion of the (zero-)multiplicity of a polynomial at

any given point.

Definition 2.1.2 (Multiplicity) For P(X) E F[X] and a E F", the multiplicity of

P at a E F", denoted mult(P, a), is the largest integer M such that for every non-

negative vector i with wt(i) < M, we have P(i) (a) = 0 (if M may be taken arbitrarily

large, we set mult(P, a) = oc).

Note that mult(P, a) 0 for every a. Also, P(a) = 0 if and only if mult(P, a) > 1.

We also note that the condition P(i)(a) = 0 imposes a homogenous linear constraint

on the coefficients of P(X) (for every a E F". A consequence that we will use often

later is the condition mult(P, a) > M imposes at most (M+n-1) homogenous linear

constraints on the coefficients of P(X), one such constraint corresponding to each

vector i of weight less than M.

The above notations and definitions also extend naturally to a tuple



P(X) = (P1 (X),... , Pm(X)) of polynomials with P(i E F[X]m denoting the vector

((P 1) , . ,( m ).

In particular, we define mult(P, a) = minj[m] {mult(P, a)}.

The definition of multiplicity above is similar to the standard (analytic) definition of

multiplicity with the difference that the standard partial derivative has been replaced

by the Hasse derivative. The Hasse derivative is also a reasonably well-studied quan-

tity (see, for example, [HKT08, pages 144-155]) and seems to have first appeared in

the CS literature (without being explicitly referred to by this name) in the work of

Guruswami and Sudan [GS99]. It typically behaves like the standard derivative, but

with some key differences that make it more useful/informative over finite fields. For

completeness we review basic properties of the Hasse derivative and multiplicity in

the following subsections.

2.1.2 Properties of Hasse Derivatives

The following proposition lists basic properties of the Hasse derivatives. Parts (1)-

(3) below are the same as for the usual derivative, while Part (4) is not! Part (4)

considers the derivatives of the derivatives of a polynomial and shows a different

relationship than is standard for the analytic derivative. However it does show that

the jth derivative of the ith derivative is zero if (though not necessarily only if) the

(i + j)-th derivative is zero, and this is critical for our purposes.

Proposition 2.1.3 (Basic Properties of Derivatives) Let P(X), Q(X) C F[X]

and let i, j be vectors of nonnegative integers. Then:

1. P(')(X) + Q(i)(X) = (P + Q)(')(X).

2. If P(X) is homogeneous of degree d, then either P(')(X) is homogeneous of

degree d - wt(i), or P(M (X) = 0.



3. Either (H)(') (X) = H o>(X), or (Hp)(0 (X) = 0.

4. (P()) ()N = (T+i)P(i+j)(X).

Proof

Item 1 follows immediately from Equation (2.1).

For item 2, observe that if P(X) is homogenous of degree d, so is P(X + Z). Thus

by Equation (2.1), P(')(X)Z' must either be homogenous of degree d or be 0. Hence

P(M(X) is either homogeneous of degree d - wt(i), or 0.

For item 3, let P(X) = Hp(X) + Q(X), where P(X) is of degree d, Hp(X) is

homogenous of degree d, and Q(X) is of degree < d. By item 1, (Hp)(')(X) -

P(M(X) - Q(')(X). By item 2, if (Hp)(')(X) is nonzero, then it must be homogenous

of degree d - wt(i). Hence P(')(X) - Q(0)(X) is homogenous of degree d - wt(i),

implying that P(')(X) - Q(')(X) = Hp() _Q(i)(X). Since by item 2, the degree of Q()

is strictly less than d - wt(i), it must be that Hp(i)Q(i)(X) = Hp(i)(X), and item 3

follows.

For item 4, we expand P(X + Z + W) in two ways. First expand

P(X + (Z + W)) = , p(k)(X)(Z + W)k
k

E Z ~P(k)(X)() ZiWi
k i+j=k

+iZiWi.
= E Pi + (X)

1,j

On the other hand, we may write

P((X + Z) + W) = P(M (X + Z)Wi =55 (P(i))
ij

Comparing coefficients of Z3W' on both sides, we get the result. U

(X)ZjWi.



2.1.3 Properties of Multiplicities

We now translate some of the properties of the Hasse derivative into properties of the

multiplicities.

Lemma 2.1.4 (Basic Properties of multiplicities) If P(X) C F[X] and a E F"

are such that mult(P, a) = m, then mult(P(i), a) > m - wt(i).

Proof By assumption, for any k with wt(k) < m, we have P(k)(a) = 0. Now take

any j such that wt(j) < m - wt(i). By Item 4 of Proposition 2.1.3, (P(i))(j)(a) =

('+j)P(i+j) (a). Since wt(i + j) = wt(i) + wt(j) < m, we deduce that (P('))()(a) = 0.

Thus mult(P(O), a) > m - wt(i). U

We now discuss the behavior of multiplicities under composition of polynomial tu-

ples. Let X = (X 1 ,. .. ,X,,) and Y = (Y 1,... ,Y) be formal variables. Let

P(X) = (P1 (X), . . ,Pm(X)) E F[X]M and Q(Y) (Q 1(Y),... ,Q'(Y)) E F[Y]".

We define the composition polynomial P o Q(Y) E F[Y]m to be the polynomial

P(Q1(Y),... , Q,(Y)). In this situation we have the following proposition.

Proposition 2.1.5 Let P(X), Q(Y) be as above. Then for any a E Fe,

mult(P o Q, a) mult(P, Q(a)) - mult(Q - Q(a), a).

In particular, since mult(Q - Q(a), a) > 1, we have mult(P o Q, a) > mult(P, Q(a)).



Let mi = mult(P, Q(a)) and m 2 = mult(Q - Q(a), a). Clearly m 2 > 0. If

the result is obvious. Now assume mi > 0 (so that P(Q(a)) = 0).

=P Q(a) + Q()(a)Z)

= P Q(a) + w Q(i)(a)Zi)

wt(i)2!m2

= P (Q(a) + h(Z))

= P(Q(a)) + P()(Q(a))h(Z)
j:0

-= P(j)(Q(a))h(Z)j
wtU) mi

since mult(Q - Q(a), a) = m 2 > 0

where h(Z) = EWt(i) M 2 Q(0 (a)Z'

since mult(P, Q(a)) = mi > 0

Thus, since each monomial Z' appearing in h has wt(i) > M 2 , and each occurrence

of h(Z) in P(Q(a + Z)) is raised to the power j, with wt(j) > mi, we conclude that

P(Q(a+ Z)) is of the form Ewt(k) mi'm2 ckZk. This shows that (P o Q)(k)(a) = 0 for

each k with wt(k) < Mi - m 2 , and the result follows. U

Corollary 2.1.6 Let P(X) E F[X] where X = (X 1 ,..., X,). Let a, b E Fn. Let

Pa,b(T) be the polynomial P(a +T -b) E F[T]. Then for any t E F,

mult(Pa,b, t) > mult(P, a + t -b).

Proof Let Q(T) = a + Tb E F[T]". Applying the previous proposition to P(X)

and Q(T), we get the desired claim. U

2.1.4 Strengthening of the Schwartz-Zippel Lemma

We are now ready to state and prove the strengthening of the Schwartz-Zippel lemma.

In the standard form this lemma states that the probability that P(a) = 0 when a

is drawn uniformly at random from S" is at most d/IS|, where P is a non-zero

Proof

m =0

P(Q(a + Z))



degree d polynomial and S C F is

indicator variable that is 1 if P(a)

aEsSnImin{1, mult(P, a)} d - ISI-
by replacing min{1, mult(P, a)} with

a finite set. Using min{1, mult(P, a)} as the

= 0, this lemma can be restated as saying

4. Our version below strengthens this lemma

mult(P, a) in this inequality.

Lemma 2.1.7 Let P E F[X] be an n-variate nonzero polynomial of total degree at

most d. Then for any finite S C F,

mult(P, a) < d - ISK"I.
aE Sn

Proof We prove it by induction on n.

For the base case when n = 1, we first show that if mult(P, a) = m then (X - a)m

divides P(X). To see this, note that by definition of multiplicity, we have that

P(a + Z) = Ej P( M(a)Z' and P()(a) = 0 for all i < m. We conclude that Zm divides

P(a + Z), and thus (X - a)' divides P(X). It follows that Eaes mult(P, a) is at

most the degree of P.

Now suppose n > 1. Let

t

P(X1,. ... , X') = P(X1, . .. , Xn-_1) Xn ,

j=0

where 0 < t < d, P(X1 , Xn_ 1 ) # 0 and deg(P,) d - j.

For any a,... , an1 E S, let mai,...,an_1 = mult(Pt, (ai, ... , an_1)). We will show that

(2.2)E mult(P, (ai,. . . , a)) ma,...,a,_ - |+ t.
an ES

Given this, we may then bound

Y mult(P, (ai,..., an))
a an ES

ma,...,a - -|S|+ |S -
ali,...,an -iE S



By the induction hypothesis applied to Pt, we know that

E
a1,...,a- ES

This implies the result.

ma . ,a._1 < deg(Pt) - ISIn-2 (d - t) - IS| n-
2 .

We now prove Equation (2.2). Fix ai,... , an_1 E S and let i = (ii, ... , in_1) be such

that wt(i) = maj,...,anl and Pt() (X 1 ,..., X 1 ) # 0. Letting (i, 0) denote the vector

(ii, ... , in_, 0), we note that

PUi'0)(X1, . .. , Xn) = P O (X 1, . Xn_1)Xnj,
j=0

and hence P(',o) is a nonzero polynomial.

Now by Lemma 2.1.4 and Corollary 2.1.6 (applied on the line through (a .... , an_1, 0)

in direction (0, .. . , 0, an)), we know that

mult(P(X1, . . ., Xn), (ai,. ... , an)) < wt (i, 0) + mult (P(' )(X1,.., Xn),7 (ai, .... , an))

< ma, . ,an_1 + mult(P("0 ) (ai, ... , an_1 , Xn), an).

Summing this up over all an E S, and applying the n = 1 case of this lemma to the

nonzero univariate degree-t polynomial P' 0)(ai,... , an_1, Xn), we get Equation (2.2).

This completes the proof of the lemma. M

The following corollary simply states the above lemma in contrapositive form, with

S = Fq.

Corollary 2.1.8 Let P E Fq[X] be a polynomial of total degree at most d. If

EacFn mult(P, a) > d - q"l1, then P(X) = 0.



Chapter 3

High Rate Codes with Sublinear

Time Decoding

3.1 Main Results on the Existence of Locally De-

codable Codes

In this section, we state our main results on the existence of locally decodable codes

with rate approaching 1. We begin with some standard definitions.

For a set E and two vectors c, c' E En, we define their relative Hamming distance

A(c, c') to be the fraction of coordinates where they differ: A(c, c') = Prc[t] [ci ' c'].

An error-correcting code of length n over the alphabet E is a subset C C En. The

rate of C is the defined to be .log I The (minimum) distance of C is defined to be

the smallest 6 > 0 such that for every distinct c1 , c2 E C, we have A(ci, c2 ) > 6.

For q a prime power, let Fq denote the finite field on q elements. If E = Fq, then a

code C over the alphabet E is called a linear code if C is a Fe-linear subspace of E".

We now define locally self-correctable codes and locally decodable codes. For an

algorithm A and a string r, we will use A' to represent the situation where A is given

query access to r.



Definition 3.1.1 (Locally Self-correctable Code) A code C C E" is said to be

locally self-correctable from 6'-fraction errors with t queries if there is a randomized

algorithm A, such that:

" Self-correction: Whenever c E C and r E E' are such that A(r, c) < 3', then

for each i C [n],

Pr[A'(i) = cj] > 2/3.

" Query complexity t: A'(i) always makes at most t queries to r.

Definition 3.1.2 (Locally Decodable Code) Let C C En be a code with |C|

|Elk. Let E : Ek - C be a bijection (we refer to E as the encoding map for C; note

that k/n equals the rate of the code C). We say that (C, E) is locally decodable from

o'-fraction errors with t queries if there is a randomized algorithm A, such that:

* Decoding: Whenever x E Ek and r E E' are such that A(r, E(x)) < ', then

for each i E [k],

Pr[A'(i) = xz] > 2/3.

" Query complexity t: Ar(i) always makes at most t queries to r.

Suppose E = ]q, and that C is a linear code over E. By simple linear algebra, it follows

that there is an encoding function E such that for each x C Ek and each i E [k] there is

a j E [n], such that E(z)j = xi. This implies that if C is locally self-correctable (from

some fraction of errors with some query complexity), then (C, E) is locally decodable

(from the same fraction of errors and with the same query complexity). This will

allow us to focus on constructing linear codes which are locally self-correctable.

We now state the two main theorems, which assert the existence of locally self-

correctable codes with improved rate and query complexity. The first theorem, which

does this over a large alphabet (and does not give a linear code), will be a direct

consequence of what we show about multiplicity codes in the next section.



Theorem 3.1.3 (Locally self-correctable codes over large alphabets) For ev-

ery 0 < e, a < 1, for infinitely many n, there is a code C over an alphabet E, with

|| < nG('), such that C has length n, rate at least 1 - a, distance 6 > ea/2, and is

locally self-correctable from 6/10-fraction errors with O(n') queries.

The next theorem is the analogue of theorem 3.1.3 for small alphabets (and gives

linear codes). These codes are obtained by simply concatenating multiplicity codes

with suitable good linear codes over the small alphabet. In particular, this shows the

existence of locally decodable codes with similar parameters.

Theorem 3.1.4 (Locally self-correctable codes over small alphabets) Letp be

a prime power. For every e, a > 0, there exists 6 > 0, such that for infinitely many

n, there is a linear code C over the alphabet E = Fp, such that C has length n, rate at

least 1 - a, distance at least 6, and is locally self-correctable from 6/20-fraction errors

with O(n) queries.

Remark The codes in both the above theorems are efficiently constructible. Fur-

thermore, both the local self-correction algorithms can be made to run in time O(n2e).

The proofs of the theorems above appear in Section 3.2.3.

3.2 Multiplicity Codes

In this section we formally define multiplicity codes, calculate their rate and dis-

tance, and state the main theorem implying their decodability. We then show how

multiplicity codes imply the main theorems of the previous section.

First, we recall some preliminaries on derivatives and multiplicities from Chapter 2

that will be useful for our construction. We will define our codes using the Hasse

derivative, which is a variant of the usual notion of derivative of a polynomial, and is

more suitable for use in fields of small characteristic.



3.2.1 Derivatives and Multiplicities

We start with some notation. We use [m] to denote the set {1,... , m}. For a vector

i = (ii, ... , im) of non-negative integers, its weight, denoted wt(i), equals Emij.

For a field F, let F[X 1,... , Xm] = F[X] be the ring of polynomials in the variables

X1, . . . , Xm with coefficients in F.

For a vector of non-negative integers i = (ii,... ,im), let X' denote the monomial

jm1 X I E F[X]. Note that the (total) degree of this monomial equals wt(i).

Definition 3.2.1 ((Hasse) Derivative) For P(X) E F[X] and non-negative vector

i, the ith (Hasse) derivative of P, denoted PN)(X), is the coefficient of Z' in the
def

polynomial P(X, Z) P(X + Z) E F[X, Z].

Thus,

P(X + Z) =Z P)(X)Zi. (3.1)

Observe that for all P, Q E F[X], and A E F,

(AP)(i)(X) = AP(')(X) and P(i)(X) + Q()(X) = (P + Q)()(X). (3.2)

We are now ready to define the notion of the (zero-)multiplicity of a polynomial at

any given point.

Definition 3.2.2 (Multiplicity) For P(X) E F[X] and a E IFm , the multiplicity of

P at a E Fm , denoted mult(P, a), is the largest integer M such that for every non-

negative vector i with wt(i) < M, we have P(i) (a) = 0 (if M may be taken arbitrarily

large, we set mult(P, a) = oc).

Note that mult(P, a) > 0 for every a.

The multiplicity enhanced Schwartz-Zippel Lemma is the main technical fact we will

need about derivatives and multiplicities. We state this lemma below. The proof

appears in Chapter 2.



Lemma 3.2.3 Let P E F[X] be a nonzero polynomial of total degree at most d. Then

for any finite S C F,

E mult (P, a) < d - |S 1 .
aES m

In particular, for any integer s > 0,

Pr [mult (P, a) > s] < d
aSs- SISI

3.2.2 The Definition of Multiplicity Codes

We now come to the definition of multiplicity codes.

Definition 3.2.4 (Multiplicity code) Let s, d, m be nonnegative integers and let q

be a prime power. Let E = = Fq(*w(i)<s}. For P(X,... ,X )EFq[X1, ... , X],

we define the order s evaluation of P at a, denoted P(<s)(a), to be the vector

( P 0)(a))wt (j) <s E E.

We define the multiplicity code of order s evaluations of degree d polynomials in

m variables over Fq as follows. The code is over the alphabet E, and has length qm

(where the coordinates are indexed by elements of F'). For each polynomial P(X) E

Fq[X1,..., Xm] with deg(P) < d, there is a codeword in C given by:

Encs,d,m,q(P) - (P(<s)(a))aEFm E .

In the next lemma, we calculate the rate and distance of multiplicity codes. The

striking feature of the behavior here is that if we keep the distance o fixed and let

the multiplicity parameter s grow, the rate of these codes improves (and approaches

(1 - 6)M).

Lemma 3.2.5 (Rate and distance of multiplicity codes) Let C be the multiplic-

ity code of order s evaluations of degree d polynomials in m variables over Fq. Then



C has distance 6 = 1 - - and rate -mv) which is at leastsq (s+M-rn

s )m d m > M2)

m +s sq s

Proof The alphabet size equals q(- ). The length equals qm .

To calculate the distance, consider any two codewords c1 = Encs,d,m,q(P1), C2

EncS,d,m,q(P2), where Pi # P2. For any coordinate a E Fm where the codewords

c1 , c2 agree (i.e., (ci)a = (c2)a), we have that P(<s)(a) = p<s)(a). Thus for any such

a, we have (P 1-P2) 0)(a) = 0 for each i with wt(i) < s, and hence mult(Pi-P 2, a) > s.

From the bound on the number of high-multiplicity zeroes of multivariate polynomi-

als, Lemma 3.2.3, the fraction of a E FW on which this can happen is at most - -. Theq sq

minimum distance 6 of the multiplicity code is therefore at least 6 = 1 - j.sq

A codeword is specified by giving coefficients to each of the monomials of degree at

most d. Thus the number of codewords equals q m . Thus the rate equals

(M") _ T17L (d + m -j)

(s+m-igm - H7((s + m - j)q)

(l1 )m d)m

S s

The next theorem, which will be the focus of the rest of this chapter, shows that

multiplicity codes are locally self-correctable.

Theorem 3.2.6 (Multiplicity codes are locally self-correctable) Let C be the

multiplicity code of order s evaluations of degree d polynomials in m variables over

IFq. Let 6 = 1 - d/sq be the distance of C. Suppose q > max{10m, d+6, 5(s + 1)}.

Then C is locally self-correctable from 6-fraction errors with O(s)m -q-queries.



The proof of this theorem appears in Section 3.3.2. In Section 3.3.3, we will show that

the local self-corrector can also be made to run very efficiently, in time O(s)m . qo(i)

Multiplicity codes can also be locally decoded with a factor exp(m + s)-increase in the

query complexity, for a suitable choice of encoding function (even though multiplicity

codes are not linear). We omit the details.

3.2.3 Proof of the Main Theorems

We now show how to instantiate multiplicity codes to prove our main theorems on the

existence of locally self-correctable codes with improved rate and query-complexity

(assuming Theorem 3.2.6).

Proof of Theorem 3.1.3: Recall that we are trying to construct, for ever 0 <

C, ae < 1, for infinitely many n, a code over an alphabet of size nO(l), with length n,

rate > 1 - oz, distance 6 > ca/2, and locally self-correctable with O(nE) queries from

6/10-fraction errors.

Pick m = [l/cl. For every large enough prime power q, we will construct such a code

with n = qm . Pick s so that

m2 1
1 - >

s (1-6)m'

(this can be done with s = O(m 2 )). Observe that m and s are constants. Let

d = (1 - 6) - s - q. Observe that for all a,cE, 1 - a < (1 - ca/2) 2 /f < (1 - ea/ 2 )E/cl,

and hence 1 - oz < (1 - 6)m.

Let C be the multiplicity code of order s evaluations of degree d polynomials in

m variables over Fq. Observe that C has length n and is over an alphabet of size

qM = no('). By Lemma 3.2.5, C has distance 6 and rate at least (1- j) - (1-

6)m > 1 - a. By Theorem 3.2.6, C can be locally self-corrected from 6/10-fraction

errors using O(nl/m) = 0(nf) queries. This completes the proof of Theorem 3.1.3. N

Finally, we complete the proof of Theorem 3.1.4, by concatenating suitable multiplic-



ity codes with good linear codes over small alphabets.

Proof of Theorem 3.1.4: Set ai = a/2 and ei = E/2. As in the proof of The-

orem 3.1.3, there are constants m and s such that for every prime power q, there

is a multiplicity code with length ni = qm , rate 1 - a1, distance 61 > eia1/2, over

an alphabet Ei of size q( m ), and locally self-correctable from 61/10 with O(n)

queries. We will take such codes C1 where q = pt for integers t > 0.

We now pick another code C2 of length (m -1) -t that is F,-linear and has rate 1 - a 1

and use it to encode the symbols of C1. The resulting concatenated code C is Fr-linear

(this follows from the linearity of C2 and the "pseudo-linearity" of C1 coming from

Equation (3.2)), and has distance 6 and rate R that are at least the products of the

corresponding parameters of C1 and C2. In particular, if we take C2 to be a code of

constant distance 62 > 0 (C2 can even be taken to be efficiently constructible, and

such that there are efficient error-correction algorithms for decoding upto half the

minimum distance), then C has length n = qm. (m -1) t. 1 _Qrate at least 1 - a

and constant (as n grows) distance 6 > 0.

We now argue that the code C is locally self-correctable. To locally self-correct some

coordinate of a codeword of C given access to a corrupted codeword of C, we first

run the local self-corrector for C1 to decode the coordinate of C1 that contains that

coordinate of C. Whenever this local self-corrector wants to query a certain coordinate

of C1, we recover that symbol by decoding the corresponding codeword of C2 (if we

only care about query complexity, this can be done by brute force; if we are interested

in having sublinear running time, then C2 should be chosen so that this step can be

done in time polynomial in the length of C2 ). The query complexity of the local

self-corrector for C is clearly O(nfl log n) = O(nE). It remains to note that in case the

total fraction of errors is below 6/20, all but 61/10 fraction of the C2 blocks will have

< 62/2-fraction errors, and can be correctly recovered by the decoder for C2 . Thus

the local self-corrector for C1 will run correctly, and this yields the desired corrected

coordinate of C. N



3.3 Local Self-correction of Multiplicity Codes

In this section, we prove that multiplicity codes are locally self-correctable.

Suppose we are dealing with the multiplicity code of order s evaluations of degree

d polynomials in m variables over IFq. Let E be the alphabet for this code. Let

r :F" -+ E be a received word. Suppose P is a polynomial over Fq in m variables

of degree at most d such that A(r, Encs,d,,q(P)) is small. Let a E F'. Let us show

how to locally recover P(<s)(a) given oracle access to r.

As indicated in the introduction, the idea is to pick many random lines containing

a, and to consider the restriction of r to those lines. With high probability over a

random direction b E F' \ {0}, by looking at the restriction of r to the line a + bT

and "decoding" it, we will be able to recover the univariate polynomial P(a + bT).

Knowing this univariate polynomial will tell us a certain linear combination of the

various derivatives of P at a, (P(i) (a))wt(i)<,. Combining this information for various

directions b, we will know a system of various linear combinations of the numbers

(P(')(a))wt(i)<S. Solving this linear system, we get P(')(a) for each i, as desired.

To implement this strategy we need to relate the derivatives of the restriction of a

multivariate polynomial P to a line to the derivatives of P itself. Fix a, b E F', and

consider the polynomial Q(T) = P(a + bT).

" The relationship of Q(T) with the derivatives of P at a: By the definition

of Hasse derivatives,

Q(T) Z P()(a)biTW(i).

Grouping terms, we see that:

E P)(a)b= coefficient of T' in Q(T). (3.3)
ilwt(i)=e

" The relationship of the derivatives of Q at t with the derivatives of

P at a + tb: Let t E Iq. By the definition of Hasse derivatives, we get the



following two identities:

P(a + b(t + R)) = Q(t + R) = Q(j)(t)Rj.

P(a + b(t + R)) = PU(a + bt)(bR).

Thus,

Q(j)(t) = P ± (a+bt)b'. (3.4)

ilwt(i)=j

In particular, Q()(t) is simply a linear combination of the various P(')(a + bt)

(over different i).

We are now in a position to describe our decoding algorithm. Before describing

the main local self-correction algorithm for correcting from Q(6)-fraction errors, we

describe a simpler version of the algorithm which corrects from a much smaller fraction

of errors. The analysis of this algorithm will contain many of the ideas. In the

description of both algorithms, the query-efficiency will be clear, and we do not

comment on how to make them run time-efficiently. In Section 3.3.3, we show how

the various steps of the algorithms can be made to run in a time-efficient manner as

well.

3.3.1 Simplified Error-Correction from Few Errors

Simplified Local Self-correction Algorithm

Input: received word r : F' -+ E, point a E F'. We are trying to recover P(<s)(a),

where P(X) is such that Encs,d,m,q(P) is close to r. Abusing notation, we will write

r(')(a) when we mean the i coordinate of r(a).

1. Pick a set B of directions: Choose B C F' \ {0}, a uniformly random subset

of size w = ( 2-1).



2. Recover P(a + bT) for directions b C B: For each b E B, consider the

function Eb : -+ 1F given by

(E(t))j= r)(a + bt)b.
ilwt(i)=j

Find the polynomial Qb(T) c Fq[T] of degree at most d (if any), such that

A(Encs,d,1,q(Qb), Eb) < 6/2.

3. Solve a linear system to recover P(<s)(a): For each e with 0 < e < s,

consider the following system of equations in the variables (Ui)t(i)=e (with one

equation for each b E B):

3 buin = coefficient of T' in Qb(T). (3.5)
ilwt(i)=e

Find all (ui)wt(i)=e which satisfy at all these equations. If there are 0 or > 1

solutions, output FAIL.

4. Output the vector (n),O)<S.

We will show that the above algorithm is a local self-corrector from a _)

fraction of errors. Fix a received word r : F'" - E and a C F'. Let P(Xi, . . . , Xm)

be a polynomial such that A(Encs,d,m,q(P), r) < 1 We will call the set of
1oo(m+S -)

points where r and Encs,dm,q(P) differ the "errors".

Step 1: All the b E B are "good". For b E F' \ {O}, we will be interested in the

fraction of errors on the line {a + tb I t E IEq \ {0}} through a in direction b. Since

these lines cover F' \ {a} uniformly, we can conclude that at most 1 of the

lines containing a have more than 6/2-fraction error on them. Hence with probability

at least 0.9 over the choice of B, all the b E B will be such that the line through a

in direction b has fewer than 6/2 errors on it.

Step 2: Qb(T) = P(a+bT) for each b C B. Assume that B is such that the above

event occurs. In this case, by Equation (3.4), for each b E B, the corresponding



function Lb will be such that A(Encs,,1,,(P(a+ bT), fb) < 6/2. Thus for each b E B,

the algorithm will find Qb(T) = P(a + bT). (Note that at most one polynomial

Q(T) of degree at most d has the property that A(Encs,d,1,q(Q), Eb) < 6 < 1/2. This

is because for distinct Q(T), Q'(T) of degree at most d, Lemma 3.2.5 implies that

A(Enes,d,1,q(Q), Enes,d,1,q(Q') > .)

Step 3: ui = P(M)(a) for each i. Since Qb(T) = P(a + bT) for each b E B,

Equation (3.3) now implies that for each 0 < e < s, the vector (ui)wt(i)=e with

ni = P(i)(a) will satisfy all the equations in the system (3.5). Finally, we observe

that this solution ui is unique. Indeed, with probability at least 0.9 over the choice

of B, the elements of B will form an interpolating set for polynomials of degree < s

(this holds as long as q is large enough in terms of m and s); in particular, there is

no nonzero polynomial of degree < s that vanishes on all the points of B.

Hence for each e, the vector (ti)wt(i)=e that satisfies all the equations in the sys-

tem (3.5) is unique. If not, then the difference (uj - U')wti)=e of two such vectors

(ui)wt(i)=e, (Uiwt(i)=e will be the vector of coefficients of a polynomial of degree < s

that vanishes on all of B (for every b E B, we have: e(ui - u')(b) = 0),

contradicting the fact that B is an interpolating set for polynomials of degree < s.

Overall, with probability at least 0.8, the algorithm will output P(i)(a), as desired.

3.3.2 Error-Correction from Q(6)-Fraction Errors

We now come to the main local self-correcting algorithm and the proof of Theo-

rem 3.2.6. As above, to decode at a point a, we will pick several lines a+ bT through

a, and try to recover the univariate polynomial P(a + bT). However, unlike the

above algorithm, we will not count on the event that all these lines have less than

6/2-fraction errors. Instead, we will pick a larger number of lines than the bare-

minimum required for the next step, and hope that most (but not necessarily all) of

these lines will have fewer than 6/2-fraction errors. Counting on this weakened event

allows us to self-correct from a significantly larger fraction of errors. To compensate



for the weakening, we will need to make the next step of the algorithm, that of solving

a linear system, more robust; we will have to solve a noisy system of linear equations.

Let us elaborate on the method by which we pick the lines in the new algorithm. In

the previous algorithm, we picked exactly (m -) random lines through a and used

them to decode from Q( _ )-fraction errors. By picking a larger number of lines,

we can decode all the way up to Q(6)-fraction errors. There are several ways of picking

this larger number of lines. One way is to pick 8((m+s1)) independent and uniformly

random lines through the point a. The algorithm we present below picks these lines

differently; the directions of these lines will come from a random affinely transformed

grid. This way of choosing lines admits a simpler analysis, and the noisy system of

linear equations that we end up needing to solve turns becomes an instance of the

noisy polynomial interpolation problem on a grid, for which time-efficient algorithms

are known.

Main Local Self-Correction Algorithm:

Input: received word r : Fm7 - E, point a E 1Fm. Abusing notation again, we will

write r(')(a) when we mean the i coordinate of r(a).

1. Pick a set B of directions: Pick z, y 1, y 2 ,-.. ym E Ym independently and

uniformly at random. Let S C Fq be any set of size 5(s + 1). Let B =

{z + E1 aZyc | a E S}.

2. Recover P(a + bT) for directions b E B: For each b E B, consider the

function b : 1F q- Fs given by

(E (t)) -- r(')(a + bt)b'.
ilwt(i)=j

Find the polynomial Qb(T) E Fq[T] of degree at most d (if any), such that

A(Encs,d,1,q(Qb), Eb) < 6/2.

3. Solve a noisy linear system to recover P(<s)(a): For each e with 0 < e < s,

consider the following system of equations in the variables (Ui)Wt(i=e (with one



equation for each b E B):

b'ui = coeff of Te in Qb(T). (3.6)
ilwt(i)=e

Find all (Ui),t(i)=e which satisfy at least 3/5 of these equations. If there are 0

or > 1 solutions, output FAIL.

4. Output the vector (ui)Wtti)<S.

We now proceed to analyze the above algorithm (and thus complete the proof of

Theorem 3.2.6).

Proof of Theorem 3.2.6: For m = 1 the theorem is trivial, and so we assume

m > 2. Recall that we have q > 10m, q > . (so that q j) and that q > 5(s + 1).

We will show that the above algorithm is a local self-corrector from a i-fraction

of errors. Fix a received word r : F' -+ E and a E F'. Let P(X 1 ,... , Xm) be a

polynomial such that A(Encs,d,m,q(P), r) < 6. We will call the set of points where r

and Encs,d,m,q(P) differ the "errors".

Step 1: Many b E B are "good". For b E F' \ {0}, we will be interested in the

fraction of errors on the line {a + tb | t E lF} through a in direction b. Since these

lines cover F" \ {a} uniformly, we can conclude that at least 2 of b E Fm are such

that the line {a+ tb I t E Fq} has a fraction of errors which is less than + <

We call these directions b good. In the claim below, we show that the set B samples

the set of good directions well.

Claim 3.3.1 Let n be a positive integer, and let S C F, be any set such that iSIM

50. Pick z,Y1,Y 2 ,...Ym E IF"' independently and uniformly at random. Let B =

{z + E oyj | a E S}. Then for every set E C F' of size at least 2q m /3, the

probability that fewer than 3/5 of the points of B lie in E is at most 0.1.

Proof The claim follows from a standard application of Chebyshev's inequality,

using the fact that the collection of random variables (z + Em, oiyj)(ai,...,am)Esm is

pairwise independent. 0



Hence (recall that we have m > 2, and so (5(s + 1))m > 50), with probability at least

0.9 over the choice of B, 3/5-fraction of the b E B will be good.

Step 2: Qb(T) = P(a + bT) for each good b E B. By Equation (3.4), for

each good b E B, the corresponding function Lb will be such that A(Encs,d,1,q(F(a +

bT)), fb) < 6/2. Thus for each good b, the algorithm will find Qb(T) = P(a + bT).

(Note that at most one polynomial Q(T) of degree at most d has the property that

A(Encs,d,1,q(Q), fb) < 6/2. This is because for distinct Q(T), Q'(T) of degree at most

d, Lemma 3.2.5 implies that A(Encs,d,1,q(Q), Encs,d,1,q(Q')) > 6.)

Step 3: ui = P)(a) for each i. Since Qb(T) = P(a + bT) for each good b E

B, Equation (3.3) now implies that with probability 0.9, for each 0 < e < s, the

vector (ui)wtMi=e with ui = P)(a) will satisfy at least 3/5 of the equations in the

system (3.6).

Finally, we observe that this solution ui is unique with probability at least 0.9. Indeed,

with probability at least 0.9 over the choice of B, the elements y1,.. , ym will be

linearly independent over Fm (since q > 10m). In this case, there is an Fq-linear map

which gives a bijection between Sm and B. Via this linear map, we get a degree

preserving correspondence between polynomials evaluated on Sm and polynomials

evaluated on B. Now by Lemma 3.2.3 (and recalling that IS| = 5(s + 1)), there is

no nonzero polynomial of degree < s that vanishes on more that 1/5-fraction of the

points of Sm. Hence no nonzero polynomial of degree < s vanishes on more that

1/5-fraction of the points of B.

Hence for each e, the vector (ui)wt(i)=e that satisfies 3/5 of the equations in the

system (3.6) is unique; if not, then the difference (ui - U')wti)=e of two such vectors

(Ui)wt(i)=e, u')wt(ie)= will be the coefficients of a polynomial of degree < s that vanishes

on at least 1/5 fraction of B; for any b E B such that both (ui)wt(i)=e and (Lt)wttiye

satisfy the equation (3.6), we have: Zilwt(j)=e(ui - un)(b') = 0, contradicting the

fact that there is no nonzero polynomial of degree < s that vanishes on more that

1/5-fraction of the points of B.

Overall, with probability at least 0.8, the algorithm will output Pi)(a), as desired.



This completes the proof of Theorem 3.2.6. U

3.3.3 Running Time

In this section, we will see how the above local self-correction algorithms can be made

to run efficiently, in time polynomial in the query complexity.

There are two key steps which we need to elaborate on. The first step is the search

for the univariate polynomial Qb(T). Here the problem boils down to the problem

of decoding univariate multiplicity codes up to half their minimum distance. The

second step we will elaborate on is solving the noisy linear system of equations. This

will reduce to an instance of decoding Reed-Muller codes.

Decoding univariate multiplicity codes. We deal with the first step first, that

of decoding univariate multiplicity codes. Explicitly, let E = F, we have a function

f : Fq -+ E, and we want to find the univariate polynomial Q(T) E Fq[T] of degree at

most d such that A(f, Encs,d,1,q(Q)) < (1 - d/sq)/2 = 6/2. Abusing notation again,

we let f() : Fq -+ Fq be the function which equals the i-coordinate of e, for 0 < i < S.

Univariate multiplicity codes are instances of "ideal error-correcting codes" [GSSOO,

Sud01]. Formally defining ideal error-correcting codes will take us too far afield; we

will content ourselves with instantiating the known algorithm for decoding ideal error-

correcting codes in this case, and explicitly writing out the resulting efficient algorithm

for decoding univariate multiplicity codes. All these algorithms are extensions of the

beautiful Berlekamp-Welch algorithm for decoding Reed-Solomon codes.

Let Q(T) be a polynomial of degree at most d such that A(f, Enc,,d,1,q(Q)) < 6/2.

Our underlying goal is to search for polynomials E(T), N(T) such that N(T) =

E(T)Q(T) (and so we obtain Q(T) as N(T)/E(T)). By the product rule for Hasse

derivatives (which states that (P1 -P2)(')(T) - j P (T)P (T), see [HKT08]),



such polynomials E(T), N(T) will also satisfy the equalities

N( 1 )(T) = (E - Q)F)(T) = E(T)Q(1 )(T) + E )(T)Q(T),

N( 2)(T) = (E- = E(T)Q(2 )(T) + E(1)(T)Q(1 )(T) + E()(T)Q(T),

(3.7)
s-i

N("- 1)(T) = (E -Q)("-1)(T) = EC (T)Q(S-1-)(T)
i=O

This motivates the following algorithm.

" Search for nonzero polynomials E(T), N(T) of degrees at most (sq - d)/2,

(sq+d)/2 respectively such that for each x E Fq, we have the following equations:

N(z) = E(x)1( 0)(x)

N(1)(x) = E(x)()(x) + E(1)(x)f( 0)(x)

s- 
1I

N(S-1)(z =E E() ("~(1-0 ()
i=0

This is a collection of sq homogeneous linear equations in (sq - d)/2 + 1 + (sq +

d)/2 + 1 > sq unknowns (the coefficients of E and N). Thus a nonzero solution

E(T), N(T) exists. Take any such nonzero solution.

" Given E, N as above, output N/E.

To see correctness, take any Q such that A(f, Encs,d,m,q(Q)) < 6/2. Observe that

for any x where f(x) = Encs,d,m,q(Q)(X), the system of equations (3.7) is satisfied at

T = x, and hence the polynomial N(T) - E(T)Q(T) has a root with multiplicity s at

x. Thus ExEFq mult(N - EQ, x) > (1 - 6/2)sq = (sq + d)/2. Since deg(N - EQ) <

(sq + d)/2, we conclude that the polynomial N - EQ must be identically 0, and

hence Q(T) = N(T)/E(T), as desired (here we used the fact that E, N are not both

identically 0). In particular E N, and N/E is a polynomial.



Solving the noisy system. We now show how to solve the noisy system of linear

equations efficiently. For m and s constant, this is a system of constantly many

(O(s)m) linear equations over Fq, and hence by running over all subsystems consisting

of 3/5-fraction of these equations, and solving that subsystem of linear equations

exactly, we can solve the noisy system in time exp(sm) -poly log q.

This is somewhat unsatisfactory. We point out some special situations where solving

these noisy linear equations can be done in (optimal) time poly(sm, log q). Observe

that our task is of the form: "Given a function r : B -+ Fq, find all polynomials

R(X 1 ,... ,Xm) E Fq[X1,..., Xm] of degree < s such that R(b) = r(b) for at least

a-fraction of the b C B". Thus, this is a problem of noisy polynomial interpolation.

As observed in Step 3 of the analysis of the main local self-correction algorithm,

there is a linear map which puts Sm and B in bijection. This linear map gives rise

to a degree-preserving correspondence between polynomials evaluated on Sm and

polynomials evaluated on B. Thus, our task of doing noisy polynomial interpolation

(for polynomials of degree < s) on B reduces to noisy polynomial interpolation (for

polynomials of degree < s) on Sm. This brings us into familiar territory. For certain

fields Fq, and certain choices of the set S, there are known efficient algorithms for

doing this. In particular, if q is a power of p, and S is an F,-subspace of Fq, given a

function r : Sm -+ Fq, one can recover the unique degree < s polynomial R that agrees

with r in at least (1 + s/q)/2-fraction of the points of Sm in time poly(ISim, log q). If

q > 4s, then this fraction is at most 3/5, and this suffices for application to the local

self-correcting algorithm of the previous section.

3.4 Discussion

Multiplicity codes are a natural and basic family of codes. Their similarity to mul-

tivariate polynomial codes endows them with a useful geometric structure, and their

better rate/distance tradeoff allows them to carry that usefulness into new combina-

torial regimes.



There are a number of questions related to multiplicity codes that invite further

exploration.

e Because of their high rate, multiplicity codes seem to have potential for use in

practice. It will be very interesting to further explore the practicality of these

codes. Below we give few examples of concrete (rounded) code parameters.

Rate Length Queries Alphabet Code parameters

0.75 28,000 500 250 q=167, m=2, s=3, dz= 497

0.75 100,000 1000 250 q=331, m=2, s=3, dz=989

0.70 20,000,000 10,000 21000 q=277, m=3, s=8, d=2207

0.83 400,000,000 100,000 2200 q=19,997, m=2, s=5, d=99,979

e For every c > 0 multiplicity codes yield positive-rate O(n')-query LDCs toler-

ating a constant fraction of errors. It is very interesting to see if one can reduce

the query complexity of positive rate LDCs even further. The only lower bound

we currently have in this regime is Q (log n).

If we are willing to relax the requirement of recovering from a constant fraction

of errors, and consider a smaller (but nontrivial) fraction of errors, then one can

get multiplicity codes of positive rate which can be locally self-corrected with

exp (/log n log log n) queries.'

e Finally, it would be interesting to see if multiplicity codes can be useful in the

various other settings where multivariate polynomial codes have proven useful.

'Discrepancies between local decodability and smoothness have been observed in the past, e.g.,
in [IKOSO4] it is noted that m-variate binary Reed Muller codes of degree d > m/2 are smooth codes
with non-trivial locality and rate close to 1. These codes however have poor distance, and thus are
not locally decodable from a constant fraction of errors.
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Chapter 4

Kakeya Sets

4.1 A Lower Bound on the Size of Kakeya Sets

Let Fq denote the finite field of cardinality q. A set K C F" is said to be a Kakeya

set if it "contains a line in every direction". In other words, for every "direction"

b E Fq" there should exist an "offset" a E Fq such that the "line" through a in

direction b, i.e., the set {a + tbt E IFq}, is contained in K. A question of interest in

combinatorics/algebra/geometry, posed originally by Wolff [Wol99], is: "What is the

size of the smallest Kakeya set, for a given choice of q and n?"

The trivial upper bound on the size of a Kakeya set is qf and this can be improved

to roughly g' q" (precisely the bound is 2' q + O(qn-1), see [SS08] for a proof of

this bound due to Dvir). An almost trivial lower bound is qn/ 2 (every Kakeya set

"contains" at least qf lines, but there are at most IK12 lines that intersect K at least

twice). Till recently even the exponent of q was not known precisely (see [DviO8]

for details of work prior to 2008). This changed with the breakthrough result of

[Dvi08] (combined with an observation of Alon and Tao) who showed that for every

n, |K ;> cq , for some constant cn depending only on n.

Subsequently the work [SS08] explored the growth of the constant c, as a function

of n. The result of [DviO8] shows that c,, > 1/n!, and [SS08] improve this bound to



show that c,, > 1/(2.6)". This still leaves a gap between the upper bound and the

lower bound and we effectively close this gap.

Theorem 4.1.1 If K is a Kakeya set in F' then |K> q.

Note that our bound is tight to within a 2 + o(1) multiplicative factor as long as

q = w(2") and in particular when n = 0(1) and q -+ oc.

4.2 A Nearly Optimal Lower Bound on Kakeya

Sets

We now give a lower bound on the size of Kakeya sets in F". We implement the plan

described in Section 1.6. Specifically, in Proposition 4.2.1 we show that we can find a

somewhat low degree non-zero polynomial that vanishes with high multiplicity on any

given Kakeya set, where the degree of the polynomial grows with the size of the set.

Next, in Claim 4.2.3 we show that the homogenous part of this polynomial vanishes

with fairly high multiplicity everywhere in Fn. Using the strengthened Schwartz-

Zippel lemma, we conclude that the homogenous polynomial is identically zero if the

Kakeya set is too small, leading to the desired contradiction. The resulting lower

bound (slightly stronger than Theorem 4.1.1) is given in Theorem 4.2.2.

Proposition 4.2.1 Given a set K C '" and non-negative integers m, d such that

(r-In-1) K (d~n)m + n -|K\ <d+n
n (n

there exists a non-zero polynomial P =mK P IF[X] of total degree at most d such

that mult(P, a) > m for every a E K.

Proof The number of possible monomials in P is (d "). Hence there are (dn)

degrees of freedom in the choice for the coefficients for these monomials. For a given



point a, the condition that mult(P, a) > m imposes (m+n- 1) homogeneous linear

constraints on the coefficients of P. Since the total number of (homogeneous) linear

constraints is (±n1) KI, which is strictly less than the number of unknowns, there

is a nontrivial solution.

U

Theorem 4.2.2 If K C F" is a Kakeya set, then |K (2-/g)n.

Proof Let f be a large multiple of q and let

m = 2f - flq

d =q- 1.

These three parameters (f, m and d) will be used as follows: d will be the bound on

the degree of a polynomial P which vanishes on K, m will be the multiplicity of the

zeros of P on K and f will be the multiplicity of the zeros of the homogenous part of

P which we will deduce by restricting P to lines passing through K.

Note that by the choices above we have d < Eq and (m - E)q > d - f. A particular

form we will use later is that (m - w)q > d - w for every w < f (using q > 1). We

prove below that

(m+n-1)

where a-Z 2-q/, as e -+ oo.

Assume for contradiction that IKI < (" 9). Then, by Proposition 4.2.1 there exists

d* < d and a non-zero polynomial P(X) E F[X] of total degree exactly d* such that

mult(P, x) > m for every x E K. Note that d* > f since d* > m (since P is nonzero

and vanishes to multiplicity > m at some point), and m > f by our choice of m. Let

Hp(X) be the homogeneous part of P(X) of degree d*. Note that Hp(X) is nonzero.

The following claim shows that Hp vanishes to multiplicity f at each point of F'4.



Claim 4.2.3 For each b E F'.

mult(Hp, b) > f.

Proof Fix i with wt(i) = w < e - 1. Let Q(X) = P(')(X). Let d' be the degree of

the polynomial Q(X), and note that d' < d* - w.

Let a = a(b) be such that {a+tblt E Fq} C K. Then for all t E Fq, by Lemma 2.1.4,

mult(Q,a+tb) > m-w. Sincew < i-1 and (m-i?).q > d*-E, weget that

(m - w) - q > d* - w > d'.

Let Qa,b(T) be the polynomial Q(a + Tb) C Fq[T]. Then Qa,b(T) is a univariate

polynomial of degree at most d', and by Corollary 2.1.6, it vanishes at each point of

Fq with multiplicity m - w. Since

(m - w) - q > d* - w > deg(Qab(T)),

we conclude that Qa,b(T) = 0. Hence the coefficient of Td' in Qa,b(T) is 0. Let HQ

be the homogenous component of Q of highest degree. Observe that the coefficient

of Td' in Qa,b(T) is HQ(b). Hence HQ(b) = 0.

Now, if (Hp)(W(X) = 0, then (Hp)(')(b) = 0. Else HQ(X) = (Hg)(')(X) (by Item 3

of Proposition 2.1.3), and hence as before (Hp)(')(b) = HQ(b) = 0. Since this is true

for all i of weight at most f - 1, we have that mult(Hp, b) > f. 0

Applying Corollary 2.1.8, and noting that Eq" > d*q-l, we conclude that Hp(X) 0.

This contradicts the fact that P(X) is a nonzero polynomial.

Hence,
d+n

(m+n-1)

Now, by our choice of d and m,

(d+n) - (q-+n) _ H= 1(Eq - 1 + i)
(m+n-1) (2f-e/q+n-1) H" (2C - - 1+ i)



Since this is true for all f such that f is a multiple of q, we get that

KI ! --1/l + i/l q )
S 2- 1/q - 1/l + i/l 2 - 1/q

4.3 An Upper Bound on the Size of Kakeya Sets

We include here Dvir's proof giving a non-trivial upper bound on the size of Kakeya

sets in fields of odd characteristic. For the case of even characteristic we complement

their results by using a variation of their construction.

Theorem 4.3.1 For every n > 2, and field F, there exists a Kakeya set in Fn of

cardinality at most 2-(n-1) - q" + O(q -1).

Proof We consider two cases depending on whether F is of odd or even character-

istic.

Odd characteristic: Let Dn = {(a 1, ... ,, _,#)|Icj, # E IF, ai + #2 is a square}.

Now let K = Dn U (Fn-1 x {0}) where F"- 1 x {0} denotes the set {(a, 0)ja E F-1}.

We claim that Kn is a Kakeya set of the appropriate size.

Consider a direction b = (bi,. . .,bn). If bn = 0, for a = (0,... ,0) we have that

a + tb E Fn- 1 x {0} C Kn. The more interesting case is when bn # 0. In this

case let a = ((bi/(2bn)) 2 ,...,(bn_1 /(2bn)) 2,)O. The point a + tb has coordinates

(cr1 ,... ,an_1,#) where ai = (bi/(2b,)) 2 + tbi and # = tbn. We have a, + #2 =

(bi/(2bn) + tbn) 2 which is a square for every i and so a + tb E Dn C Kn. This proves

that Kn is indeed a Kakeya set.

Finally we verify that the size of K is as claimed. First note that the size of Dn is

exactly q - ((q + 1)/2)n-1 = 2-(n-1)q" + O(qn-1) (q choices for # and (q + 1)/2 choices



for each ai + #2). The size of K, is at most IDn|+ qn-1 = 2-(- 1 )q + O(q"-1) as

claimed.

Even characteristic: This case is handled similarly with minor variations in the

definition of Kn. Specifically, we let K, = =(ai, ... , an-, ) |a1, #3 E F, lY E F

such that ai = 72 + -y#}. (As we see below En contains Fn- 1 x {0} and so there is

no need to set Kn = En U Fn-1 x {0}.)

Now consider direction b = (bi,... , bn). If bn = 0, then let a = 0. We note that

a+tb= (tbi ... , tbn_1 , 0) = (12+1i, . .. 7y_1+#37n_1,#) for= 0 and 7i = v /t=

(tbi)q/ 2 . We conclude that a + tb E En for every t E F in this case. Now consider

the case where bn # 0. Let a = ((bi/bn)2 ,.. ., (b_1/bn )2, 0). The point a + tb has

coordinates (0, ... , a #I) where ai = (bi/bn)2 + tbi and # = tbn. For 7y = (bi/bn),

-y2 + -y7# = (bi/bn)2 + tbi = a2 . Hence a + tb E En = Kn.

It remains to compute the size of En. The number of points of the form (ai,.... , an_1, 0)

E E. is exactly q"-. We now determine the size of (a1,... , an1,#} En for fixed

3 # 0. We first claim that the set {7y2 + /37y7 E F} has size exactly q/2. This is so

since for every y E F, we have -y2 + #7 = T2 + OT for T = -Y + /3 -y, and so the

map -y _ _Y2 + #3y is a 2-to-1 map on its image. Thus, for / # 0, the number of

points of the form (a1,..., an_1, } in En is exactly (q/2)"-4. We conclude that E,

has cardinality (q - 1) - (q/2)"- 1 + q-1 = 2-("-1 q" + O(qn-1). m

We remark that for the case of odd characteristic, one can also use a recursive con-

struction, replacing the set F-- 1 x {0} by K,_ 1 x {0}. This would reduce the constant

in the O(q"-) term, but not alter the leading term. Also we note that the construction

used in the even case essentially also works in the odd characteristic case. Specifically

the set En U F"- 1 x {0} is a Kakeya set also for odd characteristic. Its size can also

be argued to be 2-(n-1) - q"n + O(qn-1).



Chapter 5

Mergers and Extractors with

Sublinear Entropy Loss

5.1 Statistical Kakeya for Curves

Next we extend the results of the previous section to a form conducive to analyze

the mergers of Dvir and Wigderson [DW08]. The extension changes two aspects of

the consideration in Kakeya sets, that we refer to as "statistical" and "curves". We

describe these terms below.

In the setting of Kakeya sets we were given a set K such that for every direction,

there was a line in that direction such that every point on the line was contained in

K. In the statistical setting we replace both occurrences of the "every" quantifier

with a weaker "for many" quantifier. So we consider sets that satisfy the condition

that for many directions, there exists a line in that direction intersecting K in many

points.

A second change we make is that we now consider curves of higher degree and not

just lines. We also do not consider curves in various directions, but rather curves

passing through a given set of special points. We start with formalizing the terms

"curves", "degree" and "passing through a given point".



A curve of degree A in F' is a tuple of polynomials C(X) = (Ci(X),... , C1,(X)) E

Fq[X]" such that maxiC[fl] deg(Ci(X)) = A. A curve C naturally defines a map from

Fq to F'. For x E F', we say that a curve C passes through x if there is a t E Fq such

that C(t) = x.

We now state and prove our statistical version of the Kakeya theorem for curves.

Theorem 5.1.1 (Statistical Kakeya for curves) Let A > 0, rj > 0. Let A > 0 be

an integer such that 7q > A. Let S C F,' be an arbitrary set satisfying |SI = Aqu. Let

K C F," be such that for each x E S, there exists a curve C, of degree at most A that

passes through x, and intersects K in at least r/q points. Then,

IKI Aq

(A (q)+ 1

In particular, if A > rn we get that IKI > ( )".

Observe that when A = r/ = 1, and A = 1, we get the same bound as that for Kakeya

sets as obtained in Theorem 4.2.2.

Proof Let E be a large integer and let

d = Aeq - 1

m= Af + f .
r/q

By our choice of m and d, we have r/q(m - (f - 1)) > A(d - (f - 1)). Since r/q > A,

we have that for all w such that 0 < w < f - 1, rq(m - w) > A(d - w). Just as in

the proof of Theorem 4.2.2, we will prove that

IKI w ( n ) -

where a- Aq as -oc.
A(-\- )+



Assume for contradiction that |KI < 7,_- Then, as before, by Proposition 4.2.1
(mn

there exists a non-zero polynomial P(X) E Fq[X] of total degree d*, where d* < d,

such that mult(P, a) > m for every a E K. We will deduce that in fact P must vanish

on all points in S with multiplicity f. We will then get the desired contradiction from

Corollary 2.1.8.

Claim 5.1.2 For each xo E S,

mult(P, xo) > f

Proof Fix any i with wt(i) = w < f - 1. Let Q(X) = P()(X). Note that Q(X)

is a polynomial of degree at most d* - w. By Lemma 2.1.4, for all points a E K,

mult(Q, a) > m - w.

Let Cx, be the curve of degree A through xo, that intersects K in at least 7q points.

Let to E Fq be such that CO(to) = xo. Let Qx,(T) be the polynomial Q o CO(T) E

Fq[T]. Then Q,.O(T) is a univariate polynomial of degree at most A(d* - w). By

Corollary 2.1.6, for all points t E Fq such that C.0 (t) E K, Qx 0(T) vanishes at t with

multiplicity m - w. Since the number of such points t is at least r7q, we get that

QXO(T) has at least rlq(m - w) zeros (counted with multiplicity). However, by our

choice of parameters, we know that

rq(m - w) > A(d - w) > A(d* - w) > deg(Qx.(T)).

Since the degree of Qx. (T) is strictly less than the number of its zeros, QxO (T) must be

identically zero. Thus we get Qx0 (to) = Q(Cx0 (to)) = Q(xo) = 0 Hence P(')(xo) = 0.

Since this is true for all i with wt(i) < f - 1, we conclude that mult(P, xo) > ?. U

Thus P vanishes at every point in S with multiplicity f. As P(X) is a non-zero

polynomial, Corollary 2.1.8 implies that f|S| d*q"-. Hence fAq" < dq"-1, which

contradicts the choice of d.



Thus |K| > (%n) By choice of d and m,

(mMq-i1n

KI

Pl

Picking f arbitrarily large, we conclude that

|K > lim (C n1±n) =lim
f-+oo (A Af (l) +f+n-1) f -oc

5.2 Improved Mergers

n n

fAq - ( Aq
A - +f) (A-1) + 1

( ?q ) yq

In this section we state and prove our main result on randomness mergers.

5.2.1 Definitions and Theorem Statement

We start by recalling some basic quantities associated with random variables. The

statistical distance between two random variables X and Y taking values from a finite

domain Q is defined as

max Pr[X E S] - Pr[Y E S]I.
SCQ

We say that X is c-close to Y if the statistical distance between X and Y is at most C,

otherwise we say that X and Y are c-far. The min-entropy of a random variable X is

defined as

Hoo(X) min log 2  -
xEsupp(X) Pr[X = x]

Note that the notion of having high min-entropy is closed under convex combinations:

Specifically, if 0 < a < 1 and Y and Z are random variables supported on Q with



min-entropy at least m and X is the random variable satisfying Pr[X = x] = aPr[Y =

x] + (1 - a)Pr[Z = x], then X also has min-entropy at least m.

We say that a random variable X is c-close to having min-entropy m if there exists a

random variable Y of min-entropy m such that X is e-close to Y.

A "merger" of randomness takes a A-tuple of random variables and "merges" their

randomness to produce a high-entropy random variable, provided the A-tuple is

"somewhere-random" as defined below.

Definition 5.2.1 (Somewhere-random source) For integers A and N a simple

(N, A)-somewhere-random source is a random variable A = (A1 , ... ,AA) taking values

in SA, where S is some finite set of cardinality 2N, such that for some io C [A], the

distribution of Aj0 is uniform over S. A (N, A)-somewhere-random source is a convex

combination of simple (N, A)-somewhere-random sources. (When N and A are clear

from context we refer to the source as simply a "somewhere-random source".)

We are now ready to define a merger.

Definition 5.2.2 (Merger) For positive integer A and set S of size 2N, a func-

tion f : Sx {O,1}d -+ S is called an (m, e)-merger (of (N, A)-somewhere-random

sources), if for every (N, A) somewhere-random source A = (A1 ,... , AA) taking val-

ues in S^, and for B being uniformly distributed over {0,1}", the distribution of

f((A1,... AA), B) is e-close to having min-entropy m.

A merger thus has five parameters associated with it: N, A, m, e and d. The general

goal is to give explicit constructions of mergers of (N, A)-somewhere-random sources

for every choice of N and A, for as large an m as possible, and with e and d being as

small as possible. Known mergers attain m = (1 - 6) - N for arbitrarily small 6 and

our goal will be to achieve 6 = o(1) as a function of N, while e is an arbitrarily small

positive real number. Thus our main concern is the growth of d as a function of N and

A. Prior to this work, the best known bounds required either d = Q(log N + log A)

[DW08] or d = Q(A) [LRVW03]. We only require d = Q(log A).



Theorem 5.2.3 For every e, 6 > 0 and integers N, A, there exists a ((1 - 6) -N, e)-

merger of (N, A)-somewhere-random sources, computable in polynomial time, with

seed length
19 2A)

d=z -- log 2 (-)

5.2.2 The Curve Merger of [DW08] and its Analysis

The merger that we consider is a very simple one proposed by Dvir and Wigder-

son [DW08], and we improve their analysis using our extended method of multiplici-

ties. We note that they used the polynomial method in their analysis; and the basic

method of multiplicities doesn't seem to improve their analysis.

The curve merger of [DW08], denoted fDw, is obtained as follows. Let q > A be a

prime power, and let n be any integer. Fix some A distinct elements of Fq and let

these be denoted 71, ... , YA. Let ci(T) E Fq[T] be the unique degree A - 1 polynomial

with cj(ys) = 1 and for all j # i, ci(jy) = 0. Then the curve merger fDw maps

(F'4)A x Fq to F7" as follows:

A

fDW ((X,.. . , XA), U) = Ci(U)Xi,
i=1

where x = (xI,... ,XA) E (Fn)A and u E Fq. In other words, fDW((Xi,... ,XA),u)

picks the (canonical) curve passing through x 1, ... , XA and outputs the uth point on

the curve..

Theorem 5.2.4 Let q > A and A be a somewhere-random source taking values in

(F")A. Let B be distributed uniformly over Fq, with A, B independent. Let C =

fDW(A, B). Then for

q> (2A),

C is E-close to having min-entropy (1 - 6) -n - log 2 q.

Theorem 5.2.3 easily follows from the above. We note that [DW08] proved a similar



theorem assuming q poly(n, A), forcing their seed length to grow logarithmically

with n as well. We should also note at this point that a representation of a finite field

Fq with q a power of 2 can be found efficiently (in time polynomial in log(q)) by the

results in [Sho88]. This makes our construction explicit even for small C and 6.

Proof of Theorem 5.2.3: Let q = 2d, so that q > (A)., and let n = N/d. Then

we may identify Fq with {O, I}d and F' with {O, I}N. Take f to be the function fDW

given earlier. Clearly f is computable in the claimed time. Theorem 5.2.4 shows that

f has the required merger property. U

We now prove Theorem 5.2.4.

Proof of Theorem 5.2.4: We first note that it suffices to prove the theorem for the

case that A is a simple somewhere-random source. Once this is done, to handle the

general case when A is a convex combination of simple somewhere-random sources,

we can simply use the fact that fDW(A, B) will be a convex combination of random

variables that are c-close to having high min-entropy and this notion is closed under

convex combinations.

Let A be a simple somewhere-random source. Let m = (1 - 6) -n -log 2 q. We wish to

show that fDw(A, B) is c-close to having min-entropy m.

Suppose not. Then there is a set K C F" with I K < 2" = qa-)" ( -) such that

Pr[f(A, B) E K] > e.
A,B

To see why, consider the set K of the 2 ' most 'popular' values in the distribution

(i.e. those that have the highest probabilities). If this set is 'hit' w.p at most c then

the distribution is clearly c close to having min-entropy at least m.

Suppose Ai0 is uniformly distributed over Fn". Let A-io denote the random variable

(A1 ,... , Ajo_ 1, Ajo+ 1, ... , AA).

By an averaging argument, with probability at least A = c/2 over the choice of A%0,



we have

Pr [f(A, B) E K] 7 ,
A-goB

where r /2. .Since Ai0 is uniformly distributed over F', we conclude that there is

a set S of cardinality at least Aq" such that for any x E S,

Pr[f(A, B) C K I A20 = x] > r/.
A,B

By fixing the values of A-i( to preserve the above probability, we conclude that for

each x E S, there is a y = y(x) = (yi,... , YA) with y 0 = x such that PrB[f(y, B) E

K] > r/. Define the degree A - 1 curve C,(T) = f(y(x), T) =ZE yycy(T). Recall

that the cj's come from the definition of fDw. Then C, passes through x, since

Cx (_o) = E I yjc](yij) = yi0 = x, and PrBEFq [Cx(B) E K] > r/ by definition of C,.

Thus S and K satisfy the hypothesis of Theorem 5.1.1. We now conclude that

JKJAq eq/2 "n >(eq n.

(A - 1) (,4-1) + 1 (A - (A - 1)/r/q 2A

This is a contradiction, and the proof of the theorem is complete. U

The Somewhere-High-Entropy case: It is possible to extend the merger analysis

given above also to the case of somewhere-high-entropy sources. In this scenario the

source is comprised of blocks, one of which has min entropy at least r. One can then

prove an analog of Theorem 5.2.4 saying that the output of fDw will be close to

having min entropy (1- 6) -r under essentially the same conditions on q. The proof is

done by hashing the source using a random linear function into a smaller dimensional

space and then applying Theorem 5.2.4 (in a black box manner). The reason why

this works is that the merger commutes with the linear map (for details see [DW08]).

We do not give the details here since they are exactly the same as in [DW08]. We

will not make use of this case in any of our other results.



5.3 Extractors with Sub-linear Entropy Loss

In this section we use our improved analysis of the Curve Merger to show the existence

of an explicit extractor with logarithmic seed and sub linear entropy loss.

We will call a random variable X distributed over {0, 1}" with min-entropy k an

(n, k)-source.

Definition 5.3.1 (Extractor) A function E {0, 1}' x {0, 1}d {0, 1}m is a (k, e)-

extractor if for every (n, k)-source X, the distribution of E(X, Ud) is c-close to uniform,

where Ud is a random variable distributed uniformly over {0,1}d and X, U are inde-

pendent. An extractor is called explicit if it can be computed in polynomial time.

It is common to refer to the quantity k - m in the above definition as the entropy

loss of the extractor. The next theorem asserts the existence of an explicit extractor

with logarithmic seed and sub-linear entropy loss.

Theorem 5.3.2 (Basic extractor with sub-linear entropy loss) For every c1 >

1, for all positive integers k < n with k > log 2 (n), there exists an explicit (k, e)-

extractor E {O, 1} x {O, I}d _ {O, 1}m with

d = O(ci - log(n)),

The extractor of this theorem is constructed by composing several known explicit con-

structions of pseudorandom objects with the merger of Theorem 5.2.3. In Section 5.3.1

we describe the construction of our basic extractor. We then show, in Section 5.3.2

how to use the 'repeated extraction' technique of Wigderson and Zuckerman [WZ99]

to boost this extractor and reduce the entropy loss to k - m = O(k/ logg n) for



any constant c (while keeping the seed logarithmic). The end result is the following

theorem:

Theorem 5.3.3 (Final extractor with sub-linear entropy loss) For every

c1 , c2 > 1, for all positive integers k < n, there exists an explicit (k, e)-extractor

E : {0, 1}" x {0, 1}d H-> {0, I}" with

d = O(cic 2 log(n)),

k - m = 0 O
log"2(n)'

= _0 (logc (n)

5.3.1 Proof of Theorem 5.3.2

Note that we may equivalently view an extractor E: {0, 1} x {0, 1}d - {O, 1}m as

a randomized algorithm E : {0, 1}" _, {0, 1}" which is allowed to use d uniformly

random bits. We will present the extractor E as such an algorithm which takes 5

major steps.

Before giving the formal proof we give a high level description of our extractor. Our

first step is to apply the lossless condenser of [GUV07] to output a string of length

2k with min entropy k (thus reducing our problem to the case k = Q(n)). The

construction continues along the lines of [DW08]. In the second step, we partition

our source (now of length n' = 2k) into A = log(n) consecutive blocks X 1, . . . , XA E

{0, i}n'/A of equal length. We then consider the A possible ways of partitioning the

source into a prefix of j blocks and suffix of A - j blocks for j between 1 and A.

By a result of Ta-Shma [TS96b], after passing to a convex combination, one of these

partitions is a (k', k2) block source with k' being at least k - O(k/A) and k2 being

at least poly-logarithmic in k. In the third step we use a block source extractor

(from [RRSOO]) on each one of the possible A partitions (using the same seed for each

partition) to obtain a somewhere random source with block length k'. The fourth



step is to merge this somewhere random source into a single block of length k' and

entropy k' - (1 - 6) with 6 sub-constant. In view of our new merger parameters,

and the fact that A (the number of blocks) is small enough, we can get away with

choosing 6 = log log(n)/ log(n) and keeping the seed logarithmic and the error poly-

logarithmic. To finish the construction (the fifth step) we need to extract almost all

the entropy from a source of length k' and entropy k' - (1 - 6). This can be done

(using techniques from [RRSOO]) with logarithmic seed and an additional entropy loss

of 0(36 k').

Proof of [:Theorem 5.3.2] We now formally prove Theorem 5.3.2. It would be conve-

nient for us to assume during the proof that k is not too small. This is accomplished

by noticing that for small k, there already exist very good extractors. Formally, using

Theorem 5.3.14 below, we can assume that

k > 2 Vgn.

We begin by reducing to the case where n = 0(k) using the lossless condensers of

[GUV07].

Theorem 5.3.4 (Lossless condenser [GUV07]) For all positive integers k < n

with k = w(log(n)), there exists an explicit function CGUV : {0, 1} X {O, i1d' s

{0, 1}"' with n' = 2k, d' = 0(log(n)), such that for every (n, k)-source X, C(X, Ud') is

(1/n)-close to an (n', k)-source, where Ud' is distributed uniformly over {0,1}', and

X, Ud, are independent.

Step 1: Pick Ud' uniformly from {0, 1}d'. Compute X'= CGUV(X, Ud').

By the above theorem, X' is (1/n)-close to an (n', k)-source, where n' = 2k. Our next

goal is to produce a somewhere-block source. We now define these formally.

Definition 5.3.5 (Block Source) Let X = (X1, X2 ) be a random source over

{0, 1}"1 x {0, 1}n2. We say that X is a (ki, k2)-block source if Xi is an (ni, ki)-source



and for each x1 E {0, 1}" the conditional random variable X21X1 = x 1 is an (n2 , k 2 )-

source.

Definition 5.3.6 (Somewhere-block source) Let X = (X 1 ,..., XA) be a random

variable such that each Xi is distributed over {0, 1}ni1 x {O, 1}ni2. We say that X

is a simple somewhere-(ki,k 2)-block source if there exists i E [A] such that Xi is a

(ki, k2)-block source. We say that X is a somewhere-(ki, k2)-block source if X is a

convex combination of simple somewhere random sources.

We now state a result of Ta-Shma [TS96b] which converts an arbitrary source into a

somewhere-block source. This is the first step in the proof of Theorem 1 on Page 44

of [TS96b] (Theorem 1 shows how convert any arbitrary source to a somewhere-block

source, and then does more by showing how one could extract from such a source).

Let A be an integer and assume for simplicity of notation that n' is divisible by A.

Let

X= (XI, . . ,X') {0, 1}n/A)A

denote the partition of X' into A blocks. For every 1 < j < A we denote

Yj = (XI,..., XI),

Z, = (X+1,..., X's,

Consider the function BAs {0, 1}"' - ({O, l}n')A-1, where

BTs (X') = ((Yi, Z1), (Y2, Z2), . .. , (YA-1, ZA-1)).

The next theorem shows that the source ((Yj, Zj))jC[A-1] is close to a somewhere-block

source.

Theorem 5.3.7 ([TS96b]) Let A be an integer. Let k = k1 + k2 + s. Then the

function Bs {0, 1}"' _- ({0, 1}n')A1 is such that for any (n', k)-source X', letting



" s(X'), we have that X" is O(n'. 2-')-close to a somewhere-(ki - O(n'/A), k2 )-

block source.

Step 2: Set A = log(n). Compute X" = (X', X', . .X') = BAS(X

Plugging k2 = O(log 4 (n')) = O(log 4 (k)), s = O(logn) and k1 = k - k2 - s in the

above theorem, we conclude that X" is n'--(')-close to a somewhere-(k', k2)-block

source, where

k' = k1 - O(n'/ log(n)) = k - k2 - s - O(k/ log(n)) = k - O(k/ log(n)),

where for the last inequality we use the fact that k >

are bounded by O(k/log(n)).

We next use the block source extractor from [RRSOO] to

block source to a somewhere-random source.

log 2 (n) and so both s and k2

convert the above somewhere-

Theorem 5.3.8 ([RRSOO]) Let n' = n1 +n 2 and let k', k2 be such that k2 > log4 (n1 ).

Then there exists an explicit function ERSw : {0, 11nl X {O, 1}n2 X {0, ld" _ {o1 i}lm"

with m" = k', d" = O(log(n')), such that for any (k', k2)-block source X, ERsw(X, Ud")

is (ni)--(1)-close to the uniform distribution over {O, 1}"", where Ud" is distributed

uniformly over {0, I}d", and X, Ud" are independent.

Set d" = O(log(n')) as in Theorem 5.3.8.

Step 3: Pick Ud" uniformly from {0, I}d".

For each j E [A], compute X" =

ERsw(X'', Ud").

By the above theorem, X.' is n'-"21 -close to a somewhere-random source. We are

now ready to use the merger M from Theorem 5.2.3. We invoke that theorem with

entropy-loss 6 = log log(n)/log(n) and error e = 1, and hence M has a seed



length of

d"' = 0 log) = O(c1 log (n)).

Step 4: Pick Ud" uniformly from {0, 1}d"'.

Compute X"" = M(X'", Ud").

By Theorem 5.2.3, X"" is O(l ')-close to a (k', (1 - 6)k')-source, where k'

k - O(k/ log k). Note that 6 = o(1), and thus X"" has nearly full entropy. We

now apply an extractor for sources with extremely-high entropy rate, given by the

following lemma.

Lemma 5.3.9 For any k' and 6 > 0, there exists an explicit (k'(1 - 6), k"(1)-

extractor EHIGH :{0, ilk' X {0, 1Id"" " f { 1 (1-36)k' with d"" = O(log(k')).

Proof The proof of this lemma will follow from Theorem 5.3.8. Initially, the input is

partitioned into two blocks of length k'(1 -6) - 2 log4 k' and 6k'+2 log 4 k'. Intuitively,

this partition should be a block source, since fixing the first block cannot 'kill' all of

the entropy of the source. Formally, using Lemma 6.2 from [RVWOO], one knows that

this partition is 1/k'-close to a (k'(1 - 26) - 2 log 4 k', log 4 k')-block source. This block

source is then passed through the block-source extractor of Theorem 5.3.8 which can

extract k'(1 - 26) - 2 log 4 k' > k'(1 - 36) bits with polynomially small error. U

Step 5: Pick Ud"" uniformly

from {0, 1}d"". Compute X."'"

EHIGH (X"", Ud..). Output X".

This completes the description of the extractor E. It remains to note that d, the total

number of random bits used, is at most d'+ d"+ d'+ d"" O(ci log n), The output

X"' is c-close to uniformly distributed over

{0, 1}(1-36)k' = 0,1k-0(k- lo lo ),
e f eo log

where c can be bounded by the sum of all the errors in all of the above steps. The errors



introduced in all steps, other than the merger step (step 3), were polynomially small

in k. Since k > 2v'n, this is negligible compared the (log" (n)) 1 error introduced

in the merger step. Thus, the final error of the construction is dominated by this last

quantity and so the error is as required. This completes the proof of Theorem 5.3.2.

0



We summarize the transformations in the following diagram:

5.3.2 Improving the Output Length by Repeated Extraction

We now use some ideas from [RRSOO] and [WZ99] to extract an even larger fraction

of the min-entropy out of the source. This will prove Theorem 5.3.3. We first prove a

variant of the theorem with a restriction on k. This restriction will be later removed

using known constructions of extractors for low min-entropy.

Theorem 5.3.10 (Explicit extractor with improved sub-linear entropy loss)

For every c1 , c2 > 1, for all positive integers k < n with k = log'(')(n), there exists

an explicit (k, e)-extractor E : {0, 1}" x {0, 1}d _ {0, 1}" with

d = O(cic 2 - log(n)),

k -rm =O ( k())I
logc2 (n)



0 log I(n)) ~

We first transform the extractor given in Theorem 5.3.2 into a strong extractor (de-

fined below) via [RRSOO, Theorem 8.2] (which gives a generic way of getting a strong

extractor from any extractor). We then use a trick from [WZ99] that repeatedy uses

the same extractor with independent seeds to extract the 'remaining entropy' from

the source, thus improving the entropy loss.

Definition 5.3.11 A (k, e)-extractor E :{, 1} x {0, 1}d + {0, 1}m  is strong if

for every (n, k)-source X, the distribution of (E(X, Ud), Ud) is c-close to the uniform

distribution over {0, 1}m+d, where Ud is distributed uniformly over {0, 1}d, and X, Ud

are independent.

Theorem 5.3.12 ([RRSOO, Theorem 8.2]) Any explicit (k, e)-extractor

E : {O, 1} x {O, I}d + {O, 1}m can be transformed into an explicit strong (k, O(fi))-

extractor E' : {0, 1} x {0, 1 }0(d) {0, 1}m-d-21og(1/)-0(1).

Theorem 5.3.13 ([WZ99, Lemma 2.4]) Let E1 : {0, 1}" x {0, 1}di 4 {0, 1}" be

an explicit strong (k, ei)-extractor, and let E 2 : {0, 1} x {0, 1}d 2 H-> {O, 1}M2 be an

explicit strong (k - (M1 + r), e2)-extractor. Then the function

E 3 : {0, 1}" x ({0, 1 }di x {0, 1}d 2) H-> {0, 1}ln+n2

defined by

E3(X, y1, y2) = E1(x, yi) o E2 (X, Y2)

is a strong (k, 61+ 62+ 2-r)-extractor.

Proof [Theorem 5.3.10] Let E be the (k, e)-extractor with seed O(ci log n) of The-

orem 5.3.2. By Theorem 5.3.12, we get an explicit strong (k, V/-)-extractor E' with

entropy loss O(klo g"). We now iteratively apply Theorem 5.3.13 as follows. Let

E(-) = E'. For each 1 < i < O(c2 ), let E(M : {0, 1}" x {0, I}di -> {0, 1}"i be the



strong (k, ei)-extractor produced by Theorem 5.3.13 when we take E1= E('- 1) and E2

to be the strong (k -mi_1- ci log n, 1/ logC1(n))-extractor with seed length O(ci log n)

given by Theorem 5.3.2 and Theorem 5.3.12. Thus,

di = O(ici log n).

i ~ (logci(n)
/( ( o lg

mi = mi_ 1 + (k - mi_1 - ci log n) 1- 0 og.
log n

Thus the entropy loss of EM is given by:

k-m = (k -mi_1) 1 -- og -0 +0(ci log n) = 0 k log log(n)'
logn ogn) \ log'(n)}

E(O(C2)) is the desired extractor. *

Remark In fact [GUV07] and [RRV99] show how to extract all the min-entropy

with polylogarithmic seed length. Combined with the lossless condenser of [GUV07]

this gives an extractor that uses logarithmic seed to extract all the min-entropy from

sources that have min-entropy rate at most 20( ).

Theorem 5.3.14 (Corollary of [GUV07, Theorem 4.21]) For all positive in-

tegers n > k such that k = 20W on), and for all e > 0 there exists an explicit

(k, e)-extractor E : {0, 1} x {0, 1}d _ {0, 1}m with d = O(log(n)) and m = k + d -

2log(1/e) - 0(1).

This result combined with Theorem 5.3.10 gives an extractor with improved sub-

linear entropy loss that works for sources of all entropy rates, thus completing the

proof of Theorem 5.3.3.



Chapter 6

Reed-Solomon Decoding

6.1 Bounds on the List Size for List-Decoding Reed-

Solomon Codes

In this section, we give a simple algebraic proof of an upper bound on the list size for

list-decoding Reed-Solomon codes within the Johnson radius.

Before stating and proving the theorem, we need some definitions. For a bivariate

polynomial P(X, Y) E F[X, Y], we define its (a, b)-degree to be the maximum of

ai + bj over all (i, J) such that the monomial X'Yj appears in P(X, Y) with a nonzero

coefficient. Let N(k, d, 0) be the number of monomials X'Yj which have (1, k)-degree

at most d and j < Od/k. We have the following simple fact.

Fact 6.1.1 For anyk < d and6 E [0,1], N(k,d,6) >0. (2-0) . d

Proof Letting t = [Od/k], note that

N(k,d,O) = 1(d+ 1- kj) = (ti+ 1)(d+ 1) - k t

Using t < Od/k < t +1, we get N(k,d,0) ;> (Od/k)(d +1 -Od/2) > 0 -(2 -9) - 2. M

= (t + 1) (d + 1 - kt/2).



Now we prove the main theorem of this section. The proof is an enhancement of the

original analysis of the Guruswami-Sudan algorithm using the extended method of

multiplicities.

Theorem 6.1.2 (List size bound for Reed-Solomon codes) Let

(ai, #1), . . . , (aZ, # ) (E F2

Let R,-y e [0,1] with -y2 > R. Let k = Rn. Let f 1 (X), ... , fL(X) E F[X] be poly-

nomials of degree at most k, such that for each j E [L] we have I{i E [n] : f(ai) =

#} > yn. Then L < 2_y

Proof Let e > 0 be a parameter. Let = -. Let m be a large integer (to

be chosen later), and let d = (1 + e) - m - . We first interpolate a nonzero

polynomial P(X, Y) E F[X, Y] of (1, k)-degree at most d and Y-degree at most Od/k,

that vanishes with multiplicity at least m at each of the points (a, #3). Such a

polynomial exists if N(k, d, 0), the number of monomials available, is larger than the

number of homogeneous linear constraints imposed by the vanishing conditions:

m(m + 1) n < N(k, d, 0). (6.1)
2

This can be made to hold by picking m sufficiently large, since by Fact 6.1.1,

N(k, d, 0) > 0 - (2 - 0) d _I (+ E) m n.
2k 2

Having obtained the polynomial P(X, Y), we also view it as a univariate polynomial

Q(Y) E F(X)[Y] with coefficients in F(X), the field of rational functions in X.

Now let f(X) be any polynomial of degree at most k such that, letting I = {i C

[in] : f(c) = #i3}, |Il > A. We claim that the polynomial Q(Y) vanishes at f(X)

with multiplicity at least m - d/A. Indeed, fix an integer j < m - d/A, and let

Rj(X) = Q()(f(X)) = P(0 ,)(X, f(X)). Notice that the degree of R 3 (X) is at most



d. By Proposition 2.1.5 and Lemma 2.1.4,

mult(Rj, a) mult(PN0 'l), (ai, i)) 2 mult(P, (ai, i)) - j.

Thus

iEI
By Lemma 2.1.7, we conclude that Rj (X) = 0. Since this holds for every j < m- d/A,

we conclude that mult(Q, f(X)) > m - d/A.

We now complete the proof of the theorem. By the above discussion, for each j E [L],

we know that mult(Qfi(X)) > m - d. Thus, by Lemma 2.1.7 (applied to the

nonzero polynomial Q(Y) C F(X)[Y] and the set of evaluation points S = {ff(X)

j E [L]})

deg(Q) > E mult(Q, f(X))
jE[L]

Since deg(Q) ; Od/k, we get,

Od/k > m - -d
-yn

Lm -

- L.

-L.

Using d= (1+ 6) - m - k and 6 2  ,we get,(2-_9) 7

k - - k

- - 6~ - (2 -0) - k

11

Letting c -+ 0, we get L < , as desired. *

mult(Rj, as) > |IIl -(m - J) > A - (m - j) > d.
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