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Abstract

This thesis looks at (BiySb-y) 2Te3 nanocomposites as an example of the currently
available nano systems. In this thesis, (BiySb-y) 2 Te3 nanocomposites are character-
ized from ~325K down to ~3K. Advantages of this low temperature regime include
the minimization of lattice vibrations and the decreasing of ie with decreasing tem-
perature. As a result, nano effects on IL could be better observed and characterized
in this low temperature regime.

We are also interested in studying the effect of an applied magnetic field on the
conduction carriers in this low temperature regime. We like to find out whether an
applied magnetic field could impede the carriers' heat conducting ability more than
their current conducting ability. Therefore, a magnetic field effect study is also carried
out to see whether any improvement in ZT could be achieved by the applying of a
magnetic field.

The measurement system used in this thesis is QD PPMS. Only the ACT and TTO
options of the QD PPMS apparatus are used for measurements in this thesis. Under
the ACT option, Hall and 4-pt p measurements on the same sample are performed.
On the other hand, Kti, S, and 2-pt p measurements are performed simultaneously
on the same sample under the TTO option. Both the ACT and TTO options use an
AC current instead of a DC current during p measurement to eliminate any unwanted
Seebeck voltage.

Since the ability to perform correct measurements on thermoelectric samples is
not a trivial task, benchmarking with known results is a must. In this thesis, I
calibrate our QD PPMS against both the manufacturer's results and the published
data, and demonstrate that our measurement system gives accurate results. I also
benchmark our nt, results under a magnetic field using a pyrex sample. Our results
confirm that the QD PPMS apparatus does not introduce artifacts under an applied



magnetic field. Thus, any changes observed under the QD PPMS apparatus mea-
surements in an applied magnetic field would be expected to be solely due to the
sample. Lastly, no measurable difference is found between our 2-pt p (TTO) and 4-pt
p (ACT) measurements.

A total of eight (BiySbl.y) 2Te3 samples are measured in this thesis. The sam-
ple set includes: (a) one bulk ingot sample manufactured by Marlow (Ingot), (b)
four nanocomposite samples (XY21, XY146, XY144, and GJ99) made by collabora-
tors from Boston College (BC) where the letters simply indicate the sample maker's
initials, and (c) three nanocomposite samples (0%, 40%, and 100%) made by col-
laborators from Nanyang Technological University (NTU) in Singapore, where the
% denotes the weight % of the nanoinclusions prepared via melt spinning [1] in the
sample. All the nanocomposite samples in this thesis are made solely for research
uses and are purposely fabricated under conditions different than those used for the
best samples previously reported [2, 1]. Although BC and NTU use different start-
ing materials, different fabrication machines, and different fabrication parameters,
the resulting densities of the nanocomposites from the ball-milled nanopowders alone
(XY21, XY146, XY144, GJ99, and 0%) are almost identical. Moreover, the addi-
tion of nanoinclusions prepared via melt spinning decreases the sample mass density
somewhat.

From the XRD measurement results, we notice that (a) both the NTU and BC
samples have the same XRD peak locations, (b) the NTU samples have a lower
intensity for peaks (1 0 10) and (1 1 0), and (c) the NTU samples have a higher
intensity for peaks (0 0 g) where g is an integer. Comparing the XRD patterns
with the reference database, the difference in peak intensities is a good indication
that the NTU samples are not completely randomized and have internal preferred
orientations. From the SEM images, we notice that the NTU samples and the BC
samples are markedly different. For example, the BC samples are shown to have
grains in the pm range with a small grain size distribution. On the other hand, the
grain sizes of the NTU samples decreases with the addition of nanoinclusions prepared
via melt spinning. Moreover, the NTU samples have a wider grain size distribution
that ranges from nm to pum. This observed difference is believed to arise from the
difference in the fabrication techniques used by the BC and NTJ teams.

Temperature-dependent hta, S, and p measurements, along with the carrier con-
centration measurements, are performed on all samples. All samples are found to be
p-type materials. Transport measurements are performed both // and I to the press
direction for the nanocomposite samples, and only // to the growth direction for the
Ingot sample. Anisotropic behavior is observed in ~th and p for all the nanocomposite
samples investigated, with the anisotropy being always higher in p than in th . On
the other hand, S is found to be isotropic. Thus, care needs be taken during the
fabrication process to ensure that no unwanted anisotropic behavior is introduced.
Common p and S features among all samples include: (a) a dramatic decrease in the
peak value of sth for the nanocomposite samples when compared with the Ingot //'s
value, (b) constant slope &S/&T for T < 20K, (c) constant slope &S/ln(T) of ~
130-140pV/ln(K) for 200K < T < 300K, (d) close-to-zero slope in p for T < 20K,
and (e) p cx T'.1 0 for 200K < T < 300K.



From the measured stl, S, and p data, the mobility pp, hole mean free path e, and
phonon mean free path Eph are computed. It is found that nanocomposite approach
decreases lp, fe, and Eph. Moreover, the pp, fe, and E values are always lower in the

// direction for the nanocomposite samples than in the I direction. Furthermore,
4e in general is in the nm range while eph ranges from pm to nmn as the temperature
increases. Therefore, if one wants to decrease the sl,, a possible solution is to decrease

f further. However, in order not to affect the p too much, the lower limit for f should
be in the nm range. As a result, decreasing f would have the biggest effect on Kth in
the low temperature regime.

Using the Kth and - data, KL is extracted through the intercept method (see
Section 3.5.3). This method only makes sense if all the samples have similar f.
Since pressure is coining from top and bottom during the fabrication process for the
nanocomposite samples, my samples are expected not to behave as the same materials

system along the // direction. However, for the I direction, they can be considered
as a same materials system since no pressure is applied. The 40% and 100% samples

are believed to deviate from the results for the 0% sample because of the presence of
nanoinclusions in them. rlLL is found to be 0.76W/mn-K for the 40% sample at 297K.
When I compare this value with previously determined values for Bi 2Te3 (1.4W/in-K

[3]) and (Bio.3Sbo. 7)2Te3 (0.9W/m-K [4]) alloy at 300K, these results confirm that the
nanocomposite approach does indeed lower the lattice thermal conductivity.

The semi-classical model is then used to interpret the various transport coefficients

(o- = 1/p, S, and t;e) and is based on the Boltzmann Transport Equation (BTE)
under the relaxation time approximation (RTA). Acoustic phonon scattering, ionized

impurity atom scattering, neutral impurity atom scattering, alloy scattering for a
3-atom II"_1II system, point defect scattering, grain boundary scattering, and
polar optical phonon scattering are considered for the electrons. On the other hand,
boundary scattering, point defect / alloy scattering, and Umklapp scattering are
considered for the phonons. We find that for holes, point defect scattering dominates
at low T, while acoustic phonon scattering dominates around 300K. As for phonons,
boundary and point defect scattering mechanisms dominate at low T, while point
defect and Umklapp scattering mechanisms dominate at high T (~300K). We also find
that the nano approach increases the crossover temperature Tcross. For the electron
model, we observe that the deformation potential (DA) seems to be both process
dependent and materials dependent. We see that DA changes from the BC samples
to the NTU samples (process dependent). Moreover, DA changes in the NTU samples
when going from 0% to 100% (materials dependent). From the electron model, the
ionized impurity atom concentration Ni and the neutral impurity atom concentration
No reflect the somewhat anisotropic behavior of all the samples investigated. Lastly,
f seems to play little role in the determination of p.

For the phonon model, we observe that C plays a rather important role in the de-
termination of r1L, especially at low temperatures. The value of C seems to be consis-
tently lower for the BC samples than for the NTU sample (0%) for the nanocomposite
samples made solely from ball-milled nanoparticles. We also see that the Umklapp
scattering contribution (B') has a materials dependent factor, where B' decreases
from 10x101'8s/K for the nanoparticle nanocomposite samples to e 4x1018 s/K for



the nanocomposite sample made using 100% nanoinclusions prepared via melt spin-
ning. Furthermore, we see that the point defect contribution (A') reaches the highest
value when both the nanoparticles and nanoinclusions prepared via melt spinning are
present in the nanocomposite samples (e.g. the 40% sample), similar to the alloying
effect on the thermal conductivity. In general, it is desirable to increase the values of
A' and B', resulting in a decrease in the KL values. However, care needs to be taken
to ensure that the phonon parameters are independent of the electron parameters so
that no adverse effect on ZT would result.

The determination of L is also carried out based on my electron model findings.
We observe that L is isotropic. Moreover, L for each sample investigated reaches
the same value of 2.44x10-8 W-Ohm/K 2 as T -> OK (completely degenerate limit

of _ (+)2). Furthermore, the higher the hole concentration the sample has, the
higher its C value is at a given temperature. Lastly, I find that a lower f leads to
higher ZT values at 297K for the BC nanocomposite samples measured in the _L
direction. On the other hand, a lower f leads to lower ZT values at 297K for the
NTU nanocomposite samples measured in both the // and _L directions.

From the magnetic field studies on the Ingot and on the 40% samples, few im-
portant facts are demonstrated. First, an applied magnetic field can be used to
effectively increase the ZT of (BiySbpy) 2Te3 , especially at temperatures below 200K.
Use of a magnetic field might theoretically extend the effective temperature ranges
over which (BiySb-y) 2Te3 materials can be used for refrigeration. Second, the data
under various applied B fields allow me to confidently calculate the C value below
the temperature ranges where a plateau has occurred. Third, the data under vari-
ous applied B fields serve as an important guideline for both validating any electron
model and extrapolating values for L above the plateau occurrence temperatures. As
a result, this allows me to get some insights into the temperature dependence of L

(see Figure 4-14). Fourth, from the magnetic field dependent transport studies on our
samples, we observe that the applied B field pushes away the holes more effectively
in the Ingot // than the holes in the nanocomposite samples. We also find that the
VvtIplateau values obtained under the magnetic field study serve as a more realistic and
practical limit for KL. Lastly, from the magnetic field-dependent studies, we find that
having point defects as the dominant scattering mechanism for the carriers results in
an increase in ZT under an applied magnetic field. It would be extremely useful if
one can make a sample such that the point defect dominant regime is extended to
higher temperatures, resulting in a shift of the increase in the ZT ratio regime to
a temperature range closer to room temperature (300K). However, care needs to be
taken to ensure that such modifications would result in an increase in the ZT values
under an applied magnetic field.

Thesis Supervisor: Mildred S. Dresselhaus
Title: Institute Professor of Electrical Engineering and Physics
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Chapter 1

Introduction

This thesis starts off with some background information on the topic of thermo-

electrics. It is then followed by the motivation for this thesis work and the outline of

this thesis write-up.

1.1 Background

The thermoelectric effect is the conversion between thermal energy and electrical en-

ergy based on measuring a voltage difference produced by a temperature difference

of a material, or vice versa. The two major thermoelectric applications are (a) re-

frigeration and (b) electricity generation through heat. Advantages of thermoelectric

refrigeration include the absence of moving parts and noise. As for thermoelectric

power generation, it provides a pathway to recover waste heat to increase the overall

system efficiency. More importantly, thermoelectric power generation plays a vital

role in supplying electricity aboard a deep space mission spacecraft or on a submarine.

Thermoelectrics can be dated all the way back to the 19th century. In 1821,

Thomas Seebeck discovered that an electromotive force could be produced by heat-

ing a junction between two different metals. Following Seebeck's discovery, in 1834,

Jean Peltier discovered that passing an electric current through the junction between

two dissimilar conductors could result in a cooling effect. More importantly, in 1855,

William Thomson (later Lord Kelvin) not only predicted a third thermoelectric effect,



but he also derived the relationship between the different thermoelectric effects using

thermodynamic arguments. Resulting from these discoveries, the idea of thermoelec-

tric materials was born. However, it was not until the invention of the transistor in

1949 that researchers started seriously looking into thermoelectric applications [9].

Since the birth of the transistor, interest in the field of thermoelectric materials

has skyrocketed. The field of thernoelectrics was especially active during the 1957-

1965 period. Much improvement in thermoelectric materials was made during this

period, especially after the proposal in 1956 by Abram Ioffe and his co-workers that

doped semiconducting materials were the best candidates for thermoelectric materials

and that alloying could reduce the lattice thermal conductivity in a major way with-

out much deterioration to the other thermoelectric parameters [9]. Unfortunately,

following this very active period, little improvement in thermoelectric performance

was achieved for many years, and the search for good thermoelectric materials con-

sequently became rather inactive for the next thirty year period.

In the 1990s, using low dimensional physics concepts, Hicks and Dresselhaus

predicted that a dramatic enhancement in thermoelectric performance was possible

through the use of quantum wells and quantum wires [10, 11]. In the same time frame,

nano-fabrication technology rapidly improved during the last two decades. With the

advance in technology along with new low dimensional concepts, improvements in

thermoelectric efficiency (ZT = S2 T/(prt1,)) have been demonstrated (where p is the

electrical resistivity, S is the Seebeck coefficient, Kth Ke + riL is the thermal conduc-

tivity, Ke is the electrical thermal conductivity, KT is the lattice thermal conductivity,

and T is the temperature). For example, room temperature (T = 250C) values of

the dimensionless thermoelectric figure of merit ZT - 2.4 have been achieved for

a p-type Bi2Te3/Sb 2Te3 superlattice device [12]. These promising trends have once

again ignited the interest of the research community in the area of thermoelectrics.



1.2 Motivation

Since the proposal by Hicks and Dresselhaus [10, 11], many nano systems have been

fabricated and high ZT values have been reported. Moreover, the new systems are

fabricated using cheaper and less time intensive procedures. Although researchers now

understand that the decrease in /CL has been the key to the dramatic ZT improvement,

the community still lacks a quantitative understanding of the nano effect. Therefore,

we are motivated in gaining a better quantitative understanding of the nano effect.

This thesis looks at (BiySb-y) 2Te3 nanocomposites as an example of the currently

available nano systems. In this thesis, (BiySbiy) 2Te3 nanocomposites are character-

ized from -325K down to ~3K. Advantages of this low temperature regime include

the minimization of lattice vibrations and the decreasing of n, with decreasing tem-

perature. As a result, nano effects on /CL could be better observed and characterized

in this low temperature regime.

We are also interested in studying the effect of an applied magnetic field on the

conduction carriers in this low temperature regime. We like to find out whether an

applied magnetic field could impede the carriers' heat conducting ability more than

their current conducting ability. Therefore, a umagnetic field effect study is also carried

out to see whether any improvement in ZT could be achieved. A detailed analysis

is performed on the experimental results to gain further quantitative understanding.

Conclusions are made and generalized to other nano systems.

1.3 Thesis Outline

In Chapter 2, a brief summary of the measurement system is given. Benchmark

results on known samples, as well as my sample preparation techniques, are also

presented. Chapter 3 presents the measurement results for all my samples. Simple

trends and implications of the results without the need of any models are discussed.

Chapter 4 interprets the measurement results further using my electron and phonon

models that are based on semi-classical transport model. The model findings are then



discussed. Chapter 5 presents the measurements results under an applied magnetic

field along with their interpretations. Finally, Chapter 6 closes with conclusions and

future research directions.



Chapter 2

Measurement System and Sample

Preparation Techniques

This chapter first gives a brief description of our measurement system. It follows

with a comparison of my benchmark results (a) with the results provided by the

apparatus' manufacture and (b) with published data. This chapter then concludes

with my sample preparation techniques.

2.1 Quantum Design Physical Property Measure-

ment System (QD PPMS)

Our main measurement system used for sample characterization is a Quantum De-

sign (QD) Physical Property Measurement System (PPMS) (see Figure 2-1). An

ULVAC Technologies Incorporated ZEM3 system [13] is also used on a few samples

to demonstrate the validity of our QD PPMS apparatus measurement results. Since

a detailed discussion of the QD PPMS apparatus has been given elsewhere [14, 15],

only a brief description of the QD PPMS apparatus is given in this thesis. For the

QD PPMS apparatus in Professor Opeil's laboratory at Boston College (BC), it has

a temperature range of 2K to 400K and a magnetic field range of OT to ±9T. In

this thesis, only the Alternate Current Transport (ACT) and the Thermal Transport



System (TTO) options of the QD PPMS apparatus are used for our measurements.

Figure 2-1: Photo of a Quantum Design (QD)
Physical Property Measurement System (PPMS)
apparatus. For the QD PPMS apparatus in Pro-
fessor Opeil's laboratory at Boston College (BC),
it has a temperature range of 2K to 400K and a

magnetic field range of OT to ±9T. It has the ca-
pability to simultaneously measure the Kth, S, and
p, as well as the RH.

Under the ACT option, Hall and 4-pt p measurements on the same sample are

performed. On the other hand, Kth, S, and 2-pt p measurements are performed

simultaneously on the same sample under the TTO option. Both the ACT and

TTO options use an AC current instead of a DC current during measurement to

eliminate any unwanted Seebeck voltage. All data collected under the TTO option

in this thesis use the continuous mode instead of the steady state mode, and details

of the continuous mode technique have been discussed elsewhere [16, 17]. Although

a magnetic field of up to ±9T can theoretically be applied in both the ACT and the

TTO options, 2-pt p measurement results collected under the TTO option become

unreliable with field magnitudes > IT. As a result, magnetoresistance measurements

are only performed under the ACT option. For all the Hall measurements performed

in this thesis, they are either (a) collected with at least six magnetic field values

(three positive and three negative) under one current value for each temperature or

(b) collected under two magnetic field values (one positive and one negative) under

three different current values for each temperature. For the latter case, the magnetic

field misalignment is checked at 300K with eighteen field values (nine positive and

nine negative) prior to measurements at temperatures other than 300K.



2.2 QD PPMS Apparatus Benchmarking

The ability to perform correct measurements on thermoelectric samples is not a trivial

task. Therefore, benchmarking with known results is a must. We first benchmark

our system using a Nickel (Ni) alloys sample provided by QD (see Figure 2-2). Figure

2-3 shows that our temperature-dependent Kth, S, p, and ZT results are in excellent

agreement with the QD results. The results in Figure 2-3 clearly demonstrate the

ability of our experimental set up to give reliable experimental results. However,

typical thermoelectric samples have much lower Kth and higher S than the Ni alloy.

Therefore, Figure 2-3 demonstrates our system's ability to correctly measure p of

typical thermoelectric samples.

Figure 2-2: Photo of
a Ni alloy sample pro-
vided by QD. A US
penny is placed next to
it for size comparison.

To demonstrate our ability to correctly measure low Kth values, we next benchmark

our system using pyrex samples. Figure 2-4 shows that our sth results for pyrex are in

excellent agreement with the QD results (and the constant ratio between the results

simply reflects the error in measuring the dimensions of the sample). Moreover, we

prepare the sample's contacts using two difference epoxies (Epo-Tek H20E and Tra-

Con 816H01), and both give identical results within experimental error. Therefore,

Figures 2-3 and 2-4 demonstrate that our system is working within the manufacturer's

standards. Please note that due to the cracking of Epo-Tek H20E epoxy, measurement

data using Epo-Tek H20E epoxy as the contact material is only available for T >

175K.

Typically, our results described above are sufficient for benchmarking purposes

since the QD PPMS apparatus has benchmarked its measurement capabilities against

the National Institute of Standards and Technology (NIST) pyrex and stainless steel
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Figure 2-3: Plots of sth, S, p, and ZT of sample Ni alloy as a function of temperature.
Also shown are the results from the manufacturer QD. Our results are in excellent
agreement with the QD data. These plots demonstrate that our QD PPMS apparatus
is calibrated properly relative to the manufacturer's standards.
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Figure 2-4: Plots of Ka of sample Pyrex as a function of temperature, with the con-
tacts prepared using both Epo-Tek H20E (left) and Tra-Con 816H01 (right) epoxies.
Also shown are the results from the manufacturer QD. Our results are in excellent
agreement with the QD data. These plots demonstrate that our QD PPMS apparatus
is calibrated properly relative to the manufacturer's specifications. Please note that
due to the cracking of Epo-Tek H20E epoxy, measurement data using Epo-Tek H20E
epoxy as the contact material is only available for T > 175K.

samples previously [16]. Nevertheless, we decided to benchmark our system further

by using known results from different measurement systems to eliminate any doubts

of any measurements presented in this thesis. We first benchmark our Hall coefficient

(RH) measurements using two Copper (Cu) alloys samples, where one is provided by

QD and the other one is cut from a Cu foil (see Figure 2-5). Comparison between

our results with known literature data for typical Cu samples [5] confirms that our

results are in excellent agreement with literature values. We then benchmark our

measurements using Constantan from Alfa Aesar with published Constantan results

from NIST [18]. The S results are shown in Figure 2-6 and clearly demonstrate

that our system is working well within the experimental error of the common results.

Lastly, we benchmark our measurements using a (Bio.2Sbo0s) 2Te3 Ingot from the Mar-

low company against published data [2] (see Figure 2-7). Although overlapping data

is only available in the 300K to 350K range, the values and slope around 300K for

Ka, S, p, and ZT clearly demonstrate that our measurement system gives accurate

results. More importantly, the published sth, S, p. and ZT values for the Marlow



Ingot are measured using the Netzsch Laser Flash Apparatus (LFA) 457 MicroFlash

(Pith) and ULVAC Technologies Incorporated ZEM3 (S and p) systems instead of

the QD PPMS apparatus system, giving additional evidence for the reliability of our

measurements.
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Figure 2-5: Plot of RH of samples QD Cu
and Custom Cu as a function of temper-
ature. Also shown are the published RH
values of annealed Cu and unannealed Cu
[5]. Our results are in excellent agree-
ment with the published data. This plot
demonstrates that our QD PPMS appa-
ratus is calibrated properly.

Figure 2-6: Plot of S of sample Constan-
tan as a function of temperature. Also
shown are the published S values of Con-
stantan [5]. Our results are in excellent
agreement with the published data. This
plot demonstrates that our QD PPMS
apparatus is calibrated properly.

Since we are extremely interested in the sth study under a magnetic field as men-

tioned in Section 1.2, we conclude this section with benchmarking our rti results

under a magnetic field. To accomplish this task, a sample with rth independent of

magnetic field is required. Pyrex is an excellent sample choice for this specific task

since it is an insulator with next-to-no conducting carriers available in the tempera-

ture range below 300K. Thus, no difference between its Kth values under zero applied

magnetic field and under an applied magnetic field is expected. As Figure 2-8 shows,

our results are in line with our expectations. Moreover, it confirms that the QD

PPMS apparatus does not introduce artifacts under an applied magnetic field. As

a result, any changes observed under the QD PPMS apparatus measurements in an

applied magnetic field would be expected to be solely due to the sample.
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Figure 2-8: Plots Of Kth of sample Pyrex as a function of temperature under no applied
magnetic field and under an applied magnetic field strength of 9T, with the contacts
prepared using both epoxies Epo-Tek H20E (left) and Tra-Con 816H0l (right). Also
shown are the zero applied magnetic field results from QD. These plots demonstrate
that our QD PPMS apparatus does not introduce artifacts under an applied magnetic
field.

2.3 Sample Preparation Techniques

Typical (BiSbl) 2Te3 received samples from our collaborators are in a cylindrical

disk shape with a diameter of .5in and a thickness of at least 2mm. Density mea-

surements using the Archimedes Principle and X-ray Powder Diffraction (XRD) mea-

surements using a Bruker D8 instrument with a 2D detector are performed prior to

any sample preparation procedures.

For the ith, S, and 2-pt p measurements under the TTO option, typical sample

dimensions are a rectangular bar of - 2mm by 2mm by 2mm. For contact purposes,

two opposite surfaces of the sample are either plated with Ni or sputtered with Gold

(Au) by Messrs Bo Yu and Kevin Lukas of Boston College. To ensure the accuracy of

our low temperature data, our samples are soldered to the QD PPMS contact leads

with a low melting temperature eutectic Bismuth Tin solder (Bi 5sSn42 ) with the aide

of Johnson Stainless Steel Flux. Lastly, the samples are sonicated in distilled water

for five minutes prior to measurements. Figure 2-9 shows the contact surfaces of a

typical Ni-plated and Au-sputtered TTO sample.



Figure 2-9: Top-view photos of a typical Ni-plated sample (left) and a typical Au-
sputtered sample (right) prepared for measurements under the TTO option.

As for the Hall and 4-pt p measurements under the ACT option, typical sample

dimensions are a rectangular bar of ~ 1mm by 2mm by 10mm. To make electrical

connection to the sample, contacts are prepared by using either: (a) 2 mil (= 0.002in)

Platinum (Pt) wires that are spark-welded to the 10mm by 2mm surfaces or (b) 6

mil (= 0.006in) Cu wires that are soldered to one of the already Au sputtered 10mm

by 2mm surface (see Figure 2-10). Finally, the sample is wired to the sample holder

accordingly.

Figure 2-10: Top-view photos of a typical sample prepared for measurements under
the ACT option. The left side shows a typical sample with Cu wires soldered to
its Au-sputtered surface, and the right side shows a typical sample with Pt wires
spark-welded to its polished surfaces.
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Chapter 3

(BiySbiy) 2Te3 Measurement

Results

This chapter first gives a brief introduction to the (BiySb1_y) 2 Te3 materials system. It

then follows with the measurement results of our (BiySbi-y) 2Te3 bulk and nanocom-

posite samples. The chapter concludes with a discussion of a simple analysis of the

results and leads to a more in-depth discussion of the results in the next chapter.

3.1 (BiySbpy) 2Te3 Introduction

Since detailed reviews of (BiySbpy) 2Te3 have been published previously [3, 19, 4, 20],

only a brief summary of the properties of this materials system is presented here.

(BiySb1 y)2Te3 is an alloys of Bi2Te3 and Sb2 Te3, which can be prepared over the

entire 0 < y < 1 composition range. Both Bi2Te3 and Sb 2Te3 have a rhombohedral

lattice structure that belongs to the space group R3m and contains five atoms along

the trigonal axis in the sequence of Tel-Bi-Te2-Bi-Tel (or Tel-Sb-Te2-Sb-Tel) (see

Figure 3-1) [6, 21, 22]. As a result, (BiySb1 y)2Te3 also possesses the rhombohedral lat-

tice structure, except that the Bi and Sb isoelectronic atoms are randomly distributed.

Bi2Te3 , Sb 2Te3 , and (BiySb-y) 2Tc3 are always found to be p-type materials in their

stoichiometrical balanced form. Other than Sb2Te3 , these materials can become n-

type by doping with excess Te [23, 24] or Iodine [25]. Unlike other well-known ma-



terials systems, such as Silicon, carriers in these V-VI systems are generated through

anti-site substitutions [26]. Depending on the alloying in (BiySbpy) 2Te3 , its indirect

energy gap ranges from 140meV for Bi2Te3 to 290meV for Sb 2Te3 [7, 27, 28, 29].

(BiySbl.y) 2Te3 has six equivalent electron pockets [30, 31, 32] and six equivalent hole

pockets [32, 33, 34]. Unfortunately, satisfactory agreeable results on the locations

of the band extrema are yet to be achieved, except that they lie in the Q- plane.

For instance, one group reported that the conduction band minima and the valence

band maxima of Bi 2Te3 lie along the A' [100] and A [110] directions in the Brillouin

zone, with the conduction band minima located at a distance of 0.1 |FAI from point

A and the valence band maximum located at a distance of (0.3-0.5) |FX| from point

f1 [7]. On the other hand, another group reported (in rhombohedral unit cell coordi-

nates) that the valence band maxima and conduction minima of Bi2Te3 are located

at (0.650, 0.584, 0.584) and at (0.652,0.585,0.585), respectively [33, 34]. This group

also reported that the valence band maxima and conduction minima of Sb 2Te3 are

located at (0.695,0.613,0.613) and at (0.690,0.605,0.605), respectively. Thus, further

study on the electronic structure of alloy (BiySb1 y)2Te3 is needed.
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Bi Figure 3-1: Bi2Te3 's crystal structure inVT2 Bi IcI the hexagonal lattice (color black) and
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a R [6]. Also shown is its first Brillouin zone

R for the rhombohedral cell and the high

re : symmetry points are indicated where F

Te Block denotes the center of the first Brillouin
a) zone [7, 8].a (1)



Since the 1960s, Bi2Te3 and (BiySbiy) 2Te3 have become well-known for their

good thermoelectric performance from 200K to 300K [4]. Therefore, refrigeration is

the primary application for these materials in this temperature range.

3.2 Description of Samples

A total of eight (BiySbiy) 2Te3 samples are measured in this thesis. The sample

set includes: (a) one bulk ingot sample manufactured by Marlow (Ingot), (b) four

nanocomposite samples (XY21, XY146, XY144, and GJ99) made by collaborators

from Boston College (BC) where the letters simply indicate the sample maker's ini-

tials, and (c) three nanocomposite samples (0%, 40%, and 100%) made by collab-

orators from Nanyang Technological University (NTU) in Singapore, where the %

denotes the weight % of the nanoinclusions prepared via melt spinning [1] in the

sample. All the nanocomposite samples in this thesis are made solely for research

uses and are purposely fabricated under conditions different than the best samples

previously reported [2, 1]. All received nanocomposite samples are in a cylindrical

disk shape with a diameter of 0.5in and a thickness of at least 2mm, while the Ingot

is in a cylindrical disk shape with a diameter of lin and a length of at least 12mm.

Relating the sample's shape to its fabrication conditions, the cylindrical disk axis

of any nanocomposite sample is always parallel to its press direction, whereas the

Ingot's cylindrical disk axis is parallel to its growth direction.

3.3 Sample Nomenclature

It is well-known that the (BiySbpy) 2Te3 sample is highly anisotropic and has the best

thermoelectric properties along the growth direction (the cylindrical disk axis) [35].

Therefore all transport measurements on the Ingot sample are only performed parallel

to the growth direction (denoted by //).

As for the nanocomposite samples, an isotropic behavior is expected from the ran-

dom orientation of all the nanoparticles in the nanocomposite sample. Nevertheless,



a small anisotropic behavior is expected to be observed since pressure is applied only

along the cylindrical disk axis during fabrication. Moreover, due to the layer nature

of the melt spinning procedure, samples with nanoinclusions prepared via melt spin-

ning are believed to possess a small anisotropy in them. Therefore, the anisotropy of

the nanocomposite samples is checked. For bookkeeping, // and I denote transport

measurements measured parallel and perpendicular to the cylindrical disk axis (the

press direction), respectively.

As mentioned in Chapter 2, Kth, S, and 2-pt p measurements are carried out

under the TTO option, whereas Hall and 4-pt p measurements are carried out under

the ACT option. Due to the sample size requirement for the ACT option, Hall and

4-pt p measurements cannot be performed in both the // and I directions for all

samples. For selected samples, various strengths of magnetic field up to 9T are also

applied along with the current (I) and heat (Q) transport measurements. B//Q is

used to denote measurements with the applied magnetic field being parallel to the

transport direction, whereas B I Q denotes measurements with the applied magnetic

field being perpendicular to the transport direction. Figure 3-2 schematically shows

examples of measurement conditions for TTO and ACT samples under the B I Q
scenario.

Since there are eight samples investigated in this thesis, along with the various

experimental conditions that are available, a comprehensive and consistent sample

labeling system is necessary. Table 3.3 summarizes the color and symbol of the

sample nomenclature for all temperature-dependent plots used in this thesis. Let us

use an example to better clarify the notations. For sample 40% //, a pink < is used

to represent the B=9T TTO measurements (Vsth, S, and 2-pt p) under the B I Q
condition.

3.4 Non-Transport Measurement Results

All samples studied in this thesis have the composition (Bio. 2 Sbo.s) 2 Te3 . The theoreti-

cal density of a material at this composition at 300K is 6.776g/cm3 . Table 3.2 lists the
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samples under the B I Q scenario.



Table 3.1: Sample nomenclature for all temperature-dependent plots in this thesis.

// and I denote transport data measured parallel and perpendicular to the cylin-
drical disk axis, respectively. B // Q and B I Q denote measurements with the
applied magnetic field being parallel and perpendicular to the transport direction,
respectively. Please see Section 2.1 for the definitions of TTO, ACT, and ZEM3.

Sample Color

Reference Black
QD Ni alloy Yellow
Pyrex [Tra-Con] Wine
Pyrex [H20E] Light Magenta

QD Cu Light Blue
Custom Cu Dark Red
Constantan Light Orange

Ingot Magenta
XY21 Red
XY146 Olive
XY144 Blue
GJ99 Dark Yellow
0% Purple
40% Pink
100% Gray

KL extraction Violet

KL extraction without Green
40% and 100%
KL extraction

(BC samples) I

Reference Data

Ingot [Poudel (2008)]
Quantum Design
Annealed Cu [Alderson (1968)]
Unannealed Cu [Alderson (1968)]
Constantan [Lowhorn (2009)]

K L Extraction

Temperature (K)

297K V V
201K
101K 4 4
50K _ 60

26K O ,

allT V

Measurement TTO ACT ZEM3
Conditions

OT 0 IM
IT 0

B //Q 3T O
6T +
9T A

OT V E]
IT X (D
2T 0 0
3T X 4
4T 0 0

B Q 5T A A
6T H
7T
8T
9T K I>

_ ___ all B

IT
B //Q 3T A

6T *
9T O
OT <_I

I T
2T
3T
4T

B _L Q 5T

8T
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all B



300K mass density of all samples studied in this thesis found using Archimedes Princi-

ple. Two interesting observations are noted: (a) although BC and NTU use different

starting materials, different fabrication machines, and different fabrication parame-

ters, the resulting densities of the nanocomposites from the ball-milled nanopowders

alone (XY21, XY146, XY144, GJ99, and 0%) are almost identical. (b) The addi-

tion of nanoinclusions prepared via melt spinning decreases the sample mass density

somewhat.

Table 3.2: Sample's density at 300K. Mass density measurements are performed using
the Archimedes Principle.

Sample Density (g/cm') % of theoretical density
Theoretical (Bio.2Sbo.8 )2Te3  6.776 100

Ingot 6.358 93.83
XY21 6.724 99.23

XY146 6.718 99.14
XY144 6.732 99.35
GJ99 6.565 96.88
0% 6.718 99.14

40% 6.602 97.44
100% 6.444 95.10

Figure 3-3 shows the results of the XR.D measurements taken on all my samples

at 300K. All XRD measurements are performed with the Cu alpha X-rays (40kV and

30mA) hitting the plane perpendicular to the cylindrical disk axis of the sample. A

few distinguishing differences exist between the BC and NTU samples. They are: (a)

both NTU and BC samples have the same peak locations, (b) NTU samples have a

lower intensity for peaks (1 0 10) and (1 1 0), and (c) NTU samples have a higher

intensity for peaks (0 0 s) where s is an integer. Comparing the XRD patterns with

the reference database, the difference in peak intensities is a good indication that the

NTU samples are not completely randomized and have internal prefer orientations.

The surface structure of each sample at 300K is also examined using scanning

electron microscopy (SEM) with a JEOL 6340F instrument (see Figure 3-4). The

plane of examination is either parallel to the press direction for nanocomposite sam-



ples or parallel to the growth direction for the ingot sample. The SEM images show

that the NTU samples and the BC samples are markedly different. For example,

the BC samples are shown to have grains in the ptm range with a small distribution

(Figures 3-4(b)-(d)). On the other hand, the grain size of NTU samples decreases

with the addition of nanoinclusions prepared via melt spinning. Moreover, the SEM

images show that the NTU samples have a wider grain size distribution that ranges

from nm to pum. This observed difference is believed to arise from the difference in

the fabrication techniques incorporated by the BC and NTU teams.

3.5 Transport Measurement Results

This section shows the results of the temperature-dependent tith, S, and p measure-

ments under no applied magnetic field (see Figures 3-5 to 3-7 and A-1 to A-4), along

with the carrier concentration measurement results (see Figure 3-9). Since there are

a total of seven nanocomposite samples and each sample is measured in both the //
and I directions, there are a total of fourteen results for each thermoelectric property.

Thus, it would be extremely confusing to put all the results in one plot, except in rare

specific cases. To display the data in an elegant fashion, each nanocomposite sample's

results are displayed together only with the Ingot // results unless otherwise noted.

Moreover, repeated measurement results under the same conditions are represented

only using one symbol for simplicity purposes. Furthermore, the error bar for each

data point is not shown unless it is larger than the size of the symbol. Additionally, a

data display control is used. This control tool selects up to only one out of every fifty

data points being displayed, depending on the number of measurements performed on

the sample and the density of the collected data. This approach allows the symbols

to be displayed clearly in the data plots. For example, the p results for Ingot //
are composed of results from six measurements on three different Ingot // samples.

The measurements include: (a) three repeated measurements on one TTO Ingot //
sample with data collected for approximately every 2.5K, (b) one measurement on

another TTO Ingot // sample with data collected for approximately every 2.5K, and
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Figure 3-3: XRD results of all samples taken at 300K. All XRD measurements are
performed with the Cu alpha X-rays (40kV and 30mA) hitting the plane perpendicular
to the cylindrical disk axis of the sample. A few distinguishing differences exist
between the BC and NTU samples. They are: (a) both NTU and BC samples have
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3-4: SEM images of samples (a) Ingot, (b) XY21, (c) XY146, (d) XY144,
(e) GJ99, (f) 0%, (g) 40%, and (h) 100%. All SEM images are taken at x3000
magnification. Clear differences in structure is observed among the different samples.



(c) two repeated measurements on one ACT Ingot // sample with data collected for

each 1K. To display the data clearly, a data display control of one out of every ten to

thirty points being displayed is used for the Ingot //'s p results. Lastly, to help ease

the reader's experience, only a few representative results are presented in the chapter

with the rest of the results put in the Appendices for further reference.
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Figure 3-5: Plots of sth, S, p, and ZT of samples XY146 and Ingot // as a function
of temperature. Anisotropic behavior is observed in Kst, and p, but not in S. No
significant difference is observed between results from (a) QD PPMS vs. ZEM3, and
(b) 2-pt p (TTO) vs. 4-pt p (ACT) (see Table 3.3 for the representation of each
symbol and color). A data display control is used for sample XY146 to show only
one out of every two to thirty points, while a data display control is used for sample
Ingot // to show only one out of every five to thirty points.

Carrier concentration data in Figure 3-9 are collected under conditions described

in Section 2.1. Together with Figure 3-8, these data clearly show that all samples are
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Figure 3-6: Plots Of th, S, p, and ZT of samples XY144 -L and Ingot /as a
function of temperature. No significant difference is observed between results from
(a) QD PPMS vs. ZEM3, and (b) 2-pt p (TTO) vs. 4-pt p (ACT) (see Table 3.3
for the representation of each symbol and color). A data display control is used for
sample XY144 to show only one out of every two to fifty points, while a data display
control is used for sample Ingot // to show only one out of every five to thirty points.
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Figure 3-7: Plots Of rth, S, p, and ZT of samples 40% and Ingot 7/ as a function
of temperature. Anisotropic behavior is observed in Kth and p, but not in S. No
significant difference is observed between results from 2-pt p (TTO) vs. 4-pt p (ACT)
(see Table 3.3 for the representation of each symbol and color). A data display control
is used for sample 40% to show only one out of every three to thirty points, while a
data display control is used for samiple Ingot /7 to show only one out of every five to
thirty points.
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p-type and follow a similar trend. We also notice that a higher carrier concentration

leads to a lower Seebeck value, as expected. The observed hole concentration differ-

ence among all samples is believed to arise from the difference in grain size and point

defect concentration among all nanocomposite samples investigated. This observed

difference is in line with the observed difference in the S values among all samples.

More on the relationship between S and carrier concentration will be discussed in

Chapter 4. Due to an unexpected sample cracking during measurement, the data

for sample XY146 I are extrapolated from 1OOK down to 5K. The small difference

between XY21 // and XY21 I is believed to arise from the unavoidable imperfect

rectangular shape of our samples (see Figure 3-10).
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Figure 3-9: Plot of carrier concentration of all samples as a function of temperature
below 300K. The data are collected under conditions described in Section 2.1. This
plot shows that all measured samples follow a similar trend.

Figures 3-5 to 3-7 together with Figures A-1 to A-4 clearly suggest that there is no

measurable difference found between our 2-pt p (TTO) and 4-pt p (ACT) measure-

ments. In fact, any constant ratio difference between our measurements arises mainly
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Figure 3-10: XY21 // (left) and XY21 I (right) samples prepared for the Hall mea-
surements. As can be seen from the photos, the samples are not in a perfect rectan-
gular bar shape as desired. It is believed that this imperfect shape contributes to the
slight difference in the Hall results from samples XY21 // and XY21 I.

from the uncertainty in measuring the dimensions of the samples. As mentioned in

Section 2.3, the contact surfaces of the TTO samples in this thesis are prepared with

either Ni or Au. The XY146 // samples are prepared using both methods to test

whether any difference in the p results exists between the two surface materials used

for the electrical contacts. Figure 3-11 redisplays the p results of Figure 3-5 with the

symbols purposely filled with the contact material's color. As Figure 3-11 suggests,

there is no observable difference in the p results between the cases when Au or Ni are

used as the contact surface material.

0 100 200
T(K)

300

Figure 3-11: Comparison of the temper-
ature dependence of p for sample XY146
// prepared using Ni and Au as the con-
tact surface material. The symbols are
purposely filled with the contact mate-
rial's color. The results clearly suggest
that there is no observable difference in
the p results between using Au and Ni as
the contact surface material.
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A closer look at Figures 3-5 to 3-7 together with Figures A-1 to A-4 reveals

numerous similarities between all nanocomposite samples. These similarities include:

" anisotropic behavior in sth and p

* isotropic behavior in S

" existence of a peak at low temperature in sta

" dramatic decrease in the peak value of Kth for the nanocomposite samples when

compared with the Ingot //'s value

" constant slope OS/&T for T < 20K

" constant slope &S/&ln(T) of ~ 130-140pV/ln(K) for 200K < T < 300K

* close-to-zero slope in p for T < 20K

" p x T' 5 1 0 . for 200K < T < 300K

In fact, if all the S data are plotted together (see Figure 3-8), the results clearly show

that S follows the same physics for all samples. This will be explained further in

Chapter 4. For now, we extract the similarities among all samples investigated and

list these results in Tables 3.3 and 3.4. Please note that the slightly bigger difference

in the S vs. ln(T) slope between the // and I results coming from the NTU samples

is mainly due to the number of data points used for the slope calculation. For the

NTU samples, an average of ten data points are available for the slope calculation,

whereas at least twenty data points are available for the slope calculation of the BC

samples.

Anisotropic behavior is observed in nta, and p for all the nanocomposite samples

investigated, with the anisotropy being always higher in p than in I a. To get a

quantitative sense of the anisotropy, data at 297K are extracted for comparison and

the anisotropy % in this thesis is defined as

am (00%)value 1 - value//|ani % = (100%) vau-- lc/I(3.1)
value1

Table 3.5 gives a good reminder that the fabrication process plays a vital role in the



Table 3.3: p features for all samples investigated in the temperature ranges T < 20K
and 200K < T < 300K. These trends are extracted from the data presented in Figures
3-5 to 3-7 and A-1 to A-4. Two similar trends are observed: (a) for T < 20K, the
nanocomposite samples have p values measured in the I direction that are always
lower than the values in the // direction, except for sample XY146, and (b) for 200K
< T < 300K, p cc T'.5 0 1 for all samples investigated.

Property Temperature range Sample Feature
Ingot /7 ~ 1.02pOhm-m
XY21 /7 ~ 3.50ptOhm-m
XY21 - ~ 2.81pOhm-m
XY146 7/ ~ 2.09pOhm-m
XY146 - ~ 2.09pOhm-m
XY144 - ~ 1.46pOhm-m

T < 20K GJ99 // ~ 1.62pOhm-m
GJ99 I ~ 1.30pOhm-m

0% // 1.40pOhm-n
0% 1L 0.706[tOhm-m
40% // ~ 2.23pOhm-m
40% - ~ 0.940pOhm-m
100% 7/ ~ 3.43pOhm-in
100% 1 ~ 1.69pOhm-m

Ingot /7 oc T.60
XY21 / o T-40
XY21 I oc T' .46

XY146 // cx T'.64
XY146 I oc Ti 62
XY144 I oc T .58

200K <T < 300K GJ99 /7 cT
GJ99 I o Tc 1

0% /7 oc T1.56

0% 1 c .61
40% /7 cT'.
40% 1 c T'-60
100% /7 c .38
100% 1 oc T .2



Table 3.4: S features for all samples investigated in the temperature ranges 200K
< T < 300K. These trends are extracted from the data presented in Figures 3-5 to
3-7 and A-1 to A-4. A similar trend is found among all samples investigated. For
200K < T < 300K, a slope value of 130-140puV/K in S vs. ln(T) is observed for all
samples investigated.

Property Temperature range Sample Feature
Ingot 77 ~ 141.06p.V/ln(K)
XY21 77 ~ 139.72pV/ln(K)
XY21 - ~ 139.30pV/ln(K)
XY146 // ~ 142.66pV/ln(K)
XY146 I ~ 144.57piV/ln(K)
XY144 I ~ 137.40ptV/ln(K)

S vs. ln(T) slope 200K < T < 300K GJ99 7/ e 126.93[tV/ln(K)
GJ99 I ~ 124.60pV/ln(K)

0% // ~ 131.68pV/ln(K)
0% 1 ~ 124.5tV/ln(K)
40% 7/ ~ 135.34pV/ln(K)
40% - ~ 130.35pV/ln(K)
100% /7 ~ 140.08pV/ln(K)
100% 1 ~ 136.58pV/ln(K)

Table 3.5: Kth and p of all nanocomposite samples measured at 297K in both // and
I directions. Anisotropy in each sample is quantitatively determined using Equation
3.1.

Sample tith,// , Ith P// p1 P

(W/m-K) (W/m-K) ani % (p Ohm-m) (p Ohm-m) ani %
XY21 1.069 1.143 6.47 16.95 15.05 12.62

XY146 1.060 1.172 9.56 16.37 15.83 3.41
XY144 1.327 N/A 11.56 N/A

GJ99 1.257 1.469 14.43 10.33 8.625 19.77
0% 1.119 1.634 31.52 11.36 7.187 58.06

40% 1.027 1.715 40.12 14.81 8.486 74.52
100% 1.060 1.428 25.77 16.40 10.80 51.85



anisotropic behavior of a nanocoinposite sample. Thus, care needs be taken during

the fabrication process to ensure that no unwanted anisotropic behavior is introduced.

As mentioned in Section 3.2, all nanocomposite samples measured in this thesis are

made solely for research uses and are purposely fabricated under conditions different

from that of the best samples previously reported [2, 1].

3.5.1 Hole Mobility

Before we delve into the various scattering mechanisms embedded in our stt S, and

p data (see Chapter 4), let us take a step back and look at the quantities that do not

require the knowledge of the scattering times. The hole mobility p, is one of such

quantities where

p = RH/p- (3.2)

Figures 3-12 to 3-15 together with Figures B-I to B-6 show the temperature-dependent

hole mobility results for all samples investigated. A few observations are worth not-

ing. First, the nanocomposite approach decreases the values of the mobility. The

difference is more pronounced as the temperature decreases. Second, the mobility

values are always lower in the // direction for nanocomposite samples than in the I

direction. Finally, the mobility increases with decreasing temperature for both the

Ingot // and the nanocomposite samples.

3
3- Ingot //

I fl
> El XY146 //

2M * XY1461
E "j Figure 3-12: Plot of the hole mobility p,
M 0 E1o of samples XY146 and Ingot // as a func-
O 1 tion of temperature.
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Figure 3-13: Plot of the hole mobility p,
of samples XY144 and Ingot // as a func-
tion of temperature.

Figure 3-14: Plot of the hole mobility pp
of samples 40% and Ingot // as a function
of temperature.
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Figure 3-15: Plot of the hole mobility pu7,
of all samples investigated as a function
of temperature.
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3.5.2 Mean Free Path

Following the hole mobility extraction, we now extract the mean free path for both

the holes and phonons.

Hole Mean Free Path

In Drude's model [36], the electrical conductivity 7 is defined as

o = ne 2Te/nc1 *,, (3.3)

where re is the time the conduction carriers travel without collision, n is

concentration, and m* fd is the conduction effective mass for the carriers.

the conducting carriers have a velocity ve (see Equation 4.23), then the

path is
M*

le "condve
pne2

the carrier

Assuming

mean free

(3.4)

Using the m*,Ol and Ve from Chapter 4, Figures 3-16 to 3-18 together with Figures C-I

to C-4 show the results of the temperature-dependent hole mean free path. Similar to

the case for the mobility, the nanocomposite approach decreases the hole mean free

path relative to the bulk ingot. Moreover, fe is found to be lower in the // direction

than in the _L direction for all nanocomposite samples investigated. Finally, fe in

general is 3 orders of magnitude smaller than E, the average diameter of the grain

boundaries (see Section 4.2).
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Figure 3-16: Plot of the hole mean free
path of samples XY146 and Ingot // as a
function of temperature.
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Figure 3-17: Plot of the hole mean free
path of samples XY144 and Ingot // as a
function of temperature.
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Figure 3-18: Plot of the hole mean free
path of samples 40% and Ingot // as a
function of temperature.
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Phonon Mean Free Path

Using simple kinetic theory under the Debye approximation [37], the lattice thermal

conductivity KL is defined as

st = -Cv 5 h, (3.5)3

C, = 9-kB (+T) JOD/T (exp) dx, (3.6)
63 O 0 (expX _ 1)2

(3.7)

where C, is the heat capacity per unit volume, v is the sound velocity, OD is the

Debye temperature, N is the number of atoms in a unit cell, and 6s is the unit cell

volume. Using the 0 D and v, values from Chapter 4, Figures 3-19 to 3-21 together

with Figures D-1 to D-4 show the results of the temperature-dependent phonon mean

free path. Because Eph spans over 2 orders of magnitude, log scale is used in plotting

Eph. Similar to the case of the mobility, the nanocomposite approach decreases the

value of phonon mean free path relative to the bulk ingot. Moreover, Eph is found to

be lower in the // direction than in the J_ direction for all nanocomposite samples

investigated. Furthermore, Eph has the same temperature dependence for all samples

investigated. Finally, Eph in general is 3 orders of magnitude smaller than f (see

Section 4.2), except in the low temperature regime (T < 50K). Therefore, if one

wants to decrease the rth, a possible solution is to decrease e further. However, in

order not to affect the p too much, the lower limit for f should be in the nm ranges.

As a result, decreasing f would have the biggest effect on 'th at the low temperature

regime. Please note that the increase in the plionon mean free path as T decreases is

in general due to the decrease in Umklapp scattering at low T.

3.5.3 Lattice Thermal Conductivity UL

Another quantity of interest is the tj, values of the nanocomposite samples when

p reaches infinity (or = 1/p reaches 0). In this instance, ue -+ 0 and 1 th --
14. Please be advised that this approximation is only valid for samples of the same



Figure 3-19: Plot of phonon mean free
path of samples XY146 and Ingot // as a
function of temperature.
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Figure 3-20: Plot of phonon mean free
path of samples XY144 and Ingot // as a
function of temperature.

Figure 3-21: Plot of phonon mean free
path of samples 40% and Ingot // as a
function of temperature.
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materials system that have similar grain sizes (i.e., a similar grain boundary scattering

contribution). As reported previously, VsL at 300K is 1.4W/m-K and 0.9W/i-K for

bulk Bi2Te3 and bulk (Bio.3Sbo7 )2Te3 , respectively [3, 4]. It is believed that the

alloys (Bio.3Sbo7 )2 Te3 has the lowest 300K KrL values in the (BiySbpy) 2Te3 system.

The following are the general steps used for the IL value extraction:

1. numerous samples from the same materials system are fabricated

2. measurements are carried out to obtain the sth and o values for each sample at

various temperatures

3. a plot of s~th vs. o for all samples is generated for each chosen temperature

4. a best linear fit is applied to the sti, vs. o plot for each chosen temperature

5. the y-intercept (when o-0) of the best linear fit is deemed as the rL value of

the materials system at each chosen temperature

Since different manufacturers build their machines differently, it is likely that the BC

and NTU nanocomposite samples cannot be regarded as the same group of materials

system in the // direction. However, since all of the nanocomposite samples are

fabricated in a 0.5in die with no pressure coming from the side, it is likely that the

samples can be treated as the same group of materials system in the I direction.

Lastly, the addition of nanoinclusions prepared via melt spinning in the 40% and

100% nanocomposite samples probably causes deviations in the rta values from those

for the nanocomposite samples made purely from ball-milled particles. Figures 3-23



and 3-24 show tth as a function of a for all the nanocomposite samples in the I

direction at a few interpolated temperatures (297K, 201K, 101K, 50K, and 26K) with

and without the 40% and 100% NTU nanocomposite samples, respectively. On the

other hand, Figures 3-25 and 3-26 show s as a function of a for all the nanocomposite

samples in the // direction at the same set of interpolated temperatures with and

without the NTU nanocomposite samples, respectively. Please be advised that more

data are needed for Figure 3-26 to further confirm the trend, which is based only

on three samples. Table 3.6 summarizes the KL extracted using the data in Figures

3-24 and 3-26, and Figure 3-27 graphically displays the VIL,I results. Since Umklapp

scattering is known to be the dominate phonon scattering mechanism in the 300K

regime for the (BiySb-y) 2 Te3 materials system [38], thus IL (297K) > IL (300K).

As a result, Figures 3-23 to 3-26 and Table 3.6 show that using the nanocomposite

approach can further decrease the already low alloys KL values. Using the 297K case

as an example, the nanocomposite KL,I of 0.76W/m-K is 0.14W/m-K lower than the

previously reported 0.9W/m-K KL (300K) value for (Bio. 3Sbo7 )2Te3 . And this decrease

in VIL is one of the reasons for the previously reported observations of an improvement

in ZT in nanocomposite systems [2, 39].

Table 3.6: KL values extracted using the data in Figures 3-24 and 3-26. This table
shows that using the nanocomposite approach can further decrease the already low
alloys KL values as seen in the 300K case (going from 0.9W/m-K to 0.76W/m-K).
This table also shows the existence of anisotropy in our nanocomposite samples.

T (K) KL,L of nanoComposite samples fab- KL,/| of BC nanocomposite
ricated using ball-milled nanoparti- samples (W/m-K)
cles (W/m-K)

297 0.76 0.75
201 0.81 0.75
101 1.18 1.06
50 1.53 1.31
26 1.36 1.18
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3.6 Conclusion

In this chapter, I have shown the results for all nanocomposite samples along with the

Ingot sample. Many similarities exist between the samples investigated (see Tables

3.3 and 3.4). The similarities are easily noticed in the carrier concentration plot

and the S plot (see Figures 3-9 and 3-8). Moreover, anisotropic behavior in 1 th and

in p are observed in all nanocomposite samples investigated. We also learn that

nanocomposite approach decreases tp, fe, and tph. We conclude that all the samples

investigated can be regarded as one materials system in the I direction, but not in

the // direction. Under this assumption, KL,I is found to be 0.76W/m-K at 297K

(see Table 3.6). This confirms that using the nanocomposite approach can further

reduce the previously reported (Bio.3Sbo. 7)2 Te3 alloys KL(300K) value of 0.9W/m-K

[4].
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Chapter 4

Interpretation of the

(BiySbipy) 2 Te3 Measurement

Results

A semi-classical model is applied in this chapter to further interpret the zero applied

magnetic field results in Chapter 3. Section 4.1 gives a brief summary of my electron

and phonon models based on semi-classical model. It follows with the numerous

scattering mechanisms considered for both the electrons in Section 4.2.1 and the

phonons in Section 4.2.2. Simple approximation on S and p for T < 20K and 200K <

T < 300K are given in Section 4.3. The fitting approach and the model interpretations

of the measurements results are then presented in Sections 4.4 and 4.5, respectively.

This chapter concludes with a summary of the findings from the electron and phonon

models.

4.1 Semi-Classical Transport Model

We recall from Chapter 1 that the thermoelectric performance of a materials system

depends on its dimensionless thermoelectric figure of merit (ZT)

ZT = S2 -T/(e + {L) S2 T/[pe(K, + KL)I - (4.1)



According to Equation 4.1, ZT depends on the electrical conductivity (a), the Seebeck

coefficient (S), the electrical thermal conductivity (ne), the lattice thermal conduc-

tivity (siL), and the temperature (T). In Section 4.1.1, the treatment of the terms

a, S, and 1e is considered one by one, while in Section 4.1.2, the treatment of tIL is

considered.

4.1.1 Electrons

There are two types of conduction carriers in semiconductors: holes and electrons.

The model I use in this thesis is written with the assumption that electrons are the

conduction carriers. Nevertheless, the model applies readily to the holes because holes

are simply the opposite of electrons. The math is the same for both the holes and

electrons as long as there is only one dominant conduction carriers in the materials

system of interest. As we have seen in Chapter 3 (see Figures 3-8 and 3-9), all of

our samples are p-type. Therefore, the electron model presented in this chapter can

readily applied to our materials system, as long as we remember that the holes carry

a positive charge instead of a negative charge.

The semi-classical model is used to interpret the various transport coefficients

(a 1/p, S, and Ke) and is based on the Boltzmann Transport Equation (BTE). The

generalized BTE under the relaxation time approximation (RTA) [40]

Of 8 1 f (k) - f0 (k)- + - - + - f= -(4.2)at r h k Te (k)

has a distribution function solution

f (t) f 0(t) - j dt'P(t, dt' 0 () (4.3)

where r is the real space coordinates, F is an external force, k is the reciprocal

space coordinates, and T is the electron relaxation time. Equation 4.3 expresses the

distribution function as the local equilibrium distribution f0 (t) plus a correction term,

in which P(t, t') denotes the fraction of electrons that actually survive from time t'



to time t without suffering any further collisions. The BTE under the RTA has been

studied for ID, 2D, and 3D systems previously [41, 10, 11, 42]. For a simple one-band

model in ( dimensions, the carrier density (n), the electrical conductivity (o-), the

Seebeck coefficient (S), and the electrical thermal conductivity (Vse) are derived as

[41, 10, 11]:

n 2 - e(E), (4.4)

o- = 2 ) (4.5)

S = T C (4.6)
eTy 0)'

1 ) 1) (4.7)
e T C (O)

where T is the temperature in degrees Kelvin, and the integral function Y") is given

by

-= 2e2 1E re(E (k))v(k)v(k)(E(k) - Ei)" , (4.8)

where the factor of 2 accounts for the two electron spin states, ( is the dimension of

the system under consideration, &/ = 0, 1, 2, while d is the differential element in

( dimensional k space, E(k) denotes the carrier dispersion relation, re(E(k)) is the

electron relaxation time which in general depends on E(k), Ef is the Fermi energy,

and fe(E) is the Fermi-Dirac distribution function,

1
fe (E) =1 + exp(E-Ef)/(kT)' (49)

The calculation of Equation (4.8) requires knowledge of the electron relaxation time

T(E(k)) for the entire electron distribution. In general, Te(E(k)) is a function of

both temperature T and energy E. Moreover, different scattering mechanisms have

different re(E(k)) terms. To consider the collective contribution of different scattering



mechanisms for practical situations, Matthiessen's rule [40]

- =(4.10)

Te Te, i

is used. In any actual materials system, there are many energy bands that need to be

taken into consideration due to the near degeneracy of the multiple carrier pockets

at the conduction band and valence band extremna. For a multi-band system, the n

and ("')'s in Equations 4.4 to 4.7 needs to be replaced by the sum nittal = Ebnb

and = E (,b) for contributions from each subband b. The quantities n, o,

S, and re then become

utotal nb, (4.11)
b

0-tota = ( (4.12)
b

Stotai = - -,b (4.13)
eTE

12 (Zb Y)b )214

b jotl 2T ,b Y

4.1.2 Phonons

Besides n, (-, S, and ie, the lattice thermal conductivity (KL) is another quantity of

interest for thermoelectric applications. Ki and Ke together sum to yield the total

thermal conductivity hth e,, + KL of the system. Similar to the electron case, the

phonon transport coefficient can also be derived using the BTE under the RTA with

the following force F and distribution function fmonon

F = VT, (4.15)

1
hon exph/(kT) - 1 (4.16)



Using the Debye approximation, KL is derived as [43]

k ;T3  ODIT x4 expX
KL = T- _dx (4.17)

27r2vSh 3 o (expx - 1)2 '

where 0 D is the Debye temperature, T is the phonon relaxation time, v, is the sound

velocity, w is the phonon angular frequency, and x = ho/(kBT) is the dimensionless

phonon energy.

4.2 Scattering Mechanisms

4.2.1 Electron Scattering Mechanisms

Six electron scattering mechanisms are considered in this thesis. They are (a) acoustic

phonon scattering [44], (b) ionized impurity atom scattering [44, 45], (c) neutral

impurity atom scattering [45, 46], (d) alloy scattering for a 3-atom system IpII1 plI

[47, 48], (e) point defect scattering [45], (f) grain boundary scattering [49], and (g)

polar optical phonon scattering [50]. Using the above notations, each of the six

scattering mechanism relaxation time has been derived previously as follows:

27rh4 gv2 kB
(a) raph -2 (4.18)(pocket)D2(2m*kBT)

3/ 2  E '

where m*3/2 = Vm tmt2m

(b) -Fii -(47)2 e2 * ,(kBT) 3/2  (kE ) 3 2  (4.19)
SesN'j Fmp (E ) kBT

where Fimp(E) = Ii(1 + ) -
1 +

8m*O dEr2
2

E27 7 /

m*C2 3nJ
*2 2

(c)meeord , (4.20)
80h 3eN 0 r'



8NAh 4 kBT/E
(d) ra = ,TI (4.21)

(pocket)3v/'2CA(1 - CA) (AE) 2 (mn*) 3 / 2 kBT'

'Th4  kB
(e) TPD,e m * 2mTkBTUONg T (4.22)

(f) Tb,e =(4.23)
Ve

1 ~ 3
where monve = -kBT,

1 1(1 ep
(g) - - - - + ,xp (4.24)

r-PO rTo V - ---

AV/2xcE2 Mece63 (hwi /kB
where ro = Mreduced6

3 he FBT (expz - 1),
(ee*) 2 Vm*Ol-

kBT'
E

kB T'

respectively. In Equations 4.18 to 4.24, E is the carrier energy, kB is the Boltzmann

constant, T is the temperature, h is Planck's constant divided by 27, v, is the sound

velocity, p is the mass density, pocket denotes the number of equivalent carrier pockets,

DA is the acoustic phonon deformation potential, mti, M2, and me are the transverse

and longitudinal effective mass components of an ellipsoidal model for each carrier

pocket, E is the permittivity, meOfa is the conduction effective mass, e is the charge

of an electron, n is the carrier concentration of a particular carrier type, Ni is the

ionized impurity atom concentration, No is the neutral impurity atom concentration,

AE is the effective bandgap offset between alloys IoII1III and I10111 in a 3-atom

system IpIIi_,III (Using (Bio.2 Sbo.s) 2 Te3 as an example, I=Bi, I-I=Sb, III=Te, and

p=0.2), NA is the number of lattice points I in a 3-atom system IpIi-piII unit cell,

CA is equal to p in a 3-atom system IIpIl, Ng is the point defect concentration,

Uo is the volume integral of the point defect potential, f is the average diameter

of the grain boundaries assuming that all grains have a spherical shape, ve is the

carrier velocity, Mredced is the reduced ion mass, 63 is the unit cell volume, we is the

longitudinal optical phonon angular frequency, and e* is the Callen effective charge.



Electron Parameters

For (BiySb-y) 2 Te3 under the rhombohedral unit cell system in reciprocal spaces, i- is

the binary axis, Q is the bisectrix axis which is also in the hexagonal plane and normal

to the binary axis, and is the trigonal axis which is along the main symmetry c axis.

The Q- plane is a reflection plane, Z is the 3-fold rotation axis, and , is the 2-fold

rotation axis. For (Bio. 2Sbo.s) 2Te3 , there are six degenerate hole pockets as mentioned

in Chapter 3. For one of the hole pockets that lies in the Q - / plane (denoted as the

1st hole pocket), one of its major axes makes an angle of 47.90 with the Q axis. The

masses of the hole pocket at 300K are found to be mi = 0.096mo, m 2 2 = 1.73mo,

and m33= 0.170mo [321. The locations of the other five hole pockets can be found

by using the following operations: (a) from the 1st hole pocket, rotate 120' in the

x-y plane; (b) from the 1st hole pocket, rotate 2400 in the z-Q plane; (c) from the 1st

hole pocket, rotate 1800 in the 2-i plane; (d) from the 1st hole pocket, rotate 1800

in the 2-z plane followed by rotating 1200 in the :2-y plane; and (e) from the 1st hole

pocket, rotate 1800 in the z-z plane followed by rotating 2400 in the 2-Q plane.

For describing carrier conduction, the applied electric field is usually given in

the lab coordinates instead of the crystal coordinates. Thus, one needs to transform

between the crystal and the lab coordinates using the following unitary transformation

( 1
lab Rcrystal-lab 1crystal lab-4crystal 1c Ucrystal ci (4.25)

to perform the calculation consistently where R is a matrix that rotates the between

the lab and crystal axes. For the or calculation, this simply means that the masses

need to be rotated to the proper axes before putting them into Equation 4.12 for

calculation. For (BiySb 1 y)2Te3 , the reciprocal masses in the crystal coordinates can

be expressed as

n,- 1/mnt2  (4.26)

where rrtme, mt2, and me are the mass components along the carrier pocket's ellipsoidal



major axes. After representing the reciprocal masses using the lab axes, the sum of

a for all six pockets would be

40.1365 0 0

Rcrystal+lab a Rcrystal--lab,inv = 0 40.1365 0 )
crysta- Iab0 0 20.9893

(4.27)

As we can see from Equation 4.27, the conduction mass m* sn would be mo/20.9893

for transport in the trigonal direction. Since nanocomposite samples are composed

of random particles in various orientations, the conduction mass m*ond should be

isotropic and would be approximated by the average of the masses in all directions.

Thus,
1 (1 1 i1

- + -t+ - /3 (4.28)
cond,nanocomposite mil mt2 Mm

and meondnanocomposite mo/33.75 at 300K. From Equation 4.9, we see that the

electron distribution function is highly temperature-dependent. Since we expect the

energy bands to be parabolic only near the band edge, the mass then should be a

temperature-dependent parameter. Using the S data from Figure 3-8, we find that

the temperature-dependent form m* x -+ m*(0K) ~ 0.6 mn*(300K) works well

with our data (see Section 4.3).

To obtain the rest of the (Bio. 2Sbo.s) 2Te3 parameters needed for Equations 4.18

to 4.24, I use a linear interpolation between values of Bi 2Te3 and Sb 2Te3. Table 4.1

lists all the parameters used in my electron model.

4.2.2 Phonon Scattering Mechanisms

The phonon scattering mechanisms considered in this thesis are (a) boundary scat-

tering, (b) point defect / alloy scattering, and (c) Umklapp scattering. The point

defect scattering and alloy scattering processes are lumped together because they

both possess the same temperature and energy dependences. On the other hand, the

phonon-phonon normal scattering mechanism is not considered because nanocom-

posite samples are far from the ideal defect-free pure crystal sample required for the
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Table 4.1: Parameters for the electron model. A linear interpolation between values

of Bi2Te3 and Sb 2Te3 is used to obtain the values for (Bio.2Sbo.s) 2Te3.

Parameter Bi2 Te3  Sb2 Tes (Bio. 2 Sbo.8)2Tes
energy gap (meV) 140 290 260

[27, 28] [27, 28]

mass density g (g/cm3 ) 7.86 [51] 6.505 [51] 6.776

permittivity E I c 290co [52] 168Eo [51] 192.4EO

permittivity e // c 75Eo [52] 36.5Eo [51] 44.2eo

permittivity E average 118.3eo
NA (cm- 3 ) 2.48x10 21

CA 0.2

Mreduced (kg) 2.68x10- 2 5

mo (kg) 9. 11x10-

unit cell volume 63 (M 3 ) 1.61x10-2s

w (THz) 27rx2.0267 [52]

normal scattering mechanism to play a major role.

Boundary scattering Tb [53], point defect / alloy scattering TPD [54, 55, 56, 57,

58, 59, 60], and Umklapp scattering Tu [61, 62] relaxation times have been derived

previously as

Tb

1

TPD

1 -B' k

ru h)

, 63 F'(kBT) 4
47v3h 4

X2 T
3 -COD/T

(4.29)

(4.30)

(4.31)

respectively, where v, is the sound velocity, f is the average diameter of the grain

boundaries assuming all grains have a spherical shape, 63 is the unit cell volume, 0 D

is the Debye temperature, F' is the scattering parameter, and A', B', and C are the

fitting parameters. For a 3-atom system IqJ III, the scattering parameter F' is as
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Table 4.2: Parameters for the (Bio. 2Sbo.s) 2Te3 phonon model obtained based on the
values of Bi 2Te3 and Sb 2Te3 using an appropriate stoichiometric weighting factor.

Parameter Bi2 Te3  Sb2 Tes (Bio.2Sbo.8)2 Te3
Debye temperature OD 165K at OK 160K at 80K 165K

[63] [51]

sound velocity v, (mn/s) 2.95x10 3 [63] 2.90x10 3 [64] 2.95x103

unit cell volume 63 (M3 ) 1.69x10-28 1.60x10-28 1.61x10-28
[51] [51]

M for alloy scattering (g/mol) 160.15 125.26 132.24
F' N/A N/A 0.0297

follows

1 = q+r+s, (4.32)

= qM 1 + rM 11 + sA 111 ,
M1 2 M1 1 \2  MA111 2

= q(1 - M)2 + r(1-M2 + s(1~ ) 2

Similar to the electron case, Matthiessen's rule

(4.33)
7r T

is used to sum the contribution of different phonon scattering mechanisms. Lastly,

a linear interpolation is applied to obtain the (Bio. 2Sbo.8)2Te3 parameters needed for

Equations 4.29 to 4.31 based on the values of Bi 2Te3 and Sb 2Te3 . Table 4.2 lists all

the parameters used in my phonon model.

4.3 S and p approximation for T < 20K and for

200K < T < 300K

Instead of going directly into solving the BTE under the RTA with all the complicated

relaxation times that we obtained in Section 4.2.1, let us make a few approximations
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to get a better sense of the transport coefficients. Assuming the materials system

of interest has only one spherical carrier pocket and has one dominant scattering

mechanism, Equation 4.8 in 3D becomes

yA)-87re
2  oo

Y(0) = (2m*kBT) 3/2
3m,* h3~

comd fj*h3Eo /(k 1T)

Y = 2kBT(2m*kBT) 3 / 2

3m*h 1r Eo/(k BT)

87C 2 (kBT) 2 (2m*kBT) 3/2
3m*f= d (2m k 3/23

3me*,h fEo /(k 1

Tc(C _ Eo 3/2, ep-?*
-kB3T) e-pA

[exp 6-1* + 1]2

Te(E - -)3/2 exp-*
k"p , (e - 7*)dc,

leXp6-17 + 1]2

T,(C Eo 3/2exp

T) eXp P 1 2 (

where

= E/(kBT),

* =- Ef /(kBT),

(4.37)

(4.38)

and Eo is the band edge energy. From Equations 4.18 to 4.24, the electron relaxation

time Te can be generalized as

Te = aEA(kBT)i3 (4.39)

by considering the dependence of

and 4.35 with 4.39, and applying

Y(O)

Y(1)

T on T and E explicitly. Combining Equations 4.34

the uv substitution formula to the integrals give

oc (kBT)2±A 2 +H+ dc,

2 Jo expE-9 + 1 I

ocx ((kB T)+A ( + A) ~ )~ d) - (k Tti*Y(0)j.

(4.40)

(4.41)

We quickly see that the transport coefficient calculation for o and S now boils down to

simply the computation of the integrals in Equations 4.40 and 4.41. Remember that

the only assumptions made so far are: (a) there is only one spherical carrier pocket for

the materials system of interest and (b) there is only one dominant electron scattering
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mechanism. Using Sommerfeld's definition for the Fermi-Dirac integral of order j [65]

p dFj (TI foexpf -n* + 1 d (j > -1), (4.42)

the result for the high temperature limiting case (r/* < -1) is [66]

F (r/*) F F(j + 1)exp?* (r,* < -1),

where F1(1/2) = T, F(3/2) = #/2, and F(p + 1) = pF(p). Similarly, the result for

the low temperature limiting case (I* > 1) is [66]

r+ 7 (
3 + 1

(n * > 1).- (4.44)

Since experimental data are readily available for S and o-, let us look at what

approximations we can make for the low temperature and high temperature limits

for these quantities.

and 4.6 give

Without any approximations, combining Equations 4.40, 4.41,

k1 A+FAg(r*)

S = _ 2 2

e A + 1 FA (y*
(4.45)

We now proceed to give the dependence of S and p at both the low and high tem-

perature limits.

4.3.1 Seebeck S

At low temperature (r/* > 1), using Equation 4.44, S and n can be approximated to

be

kBT2(4
S ~ , (4.46)

n ~ (pocket) 8
3V V

2-rm*kBT 3/2
h 2
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As a result, S can be rewritten as

kB7r2 (A + 2) 2m*kB (pocket)47 23
S 3 2 [± 2 3 ) T (ry* > 1) (4.48)

Similarly, at high temperature (,7* < -1), assuming that only one carrier type

dominates and using Equation 4.43, S and n can be approximated to be

kB 5 (449)
S ~ -(.9

e 2

n (pocket)2 (2w.*kBT>/2 (4.50)

As a result, S can be rewritten as

kB 5 1 ± I [(pocket)2(2,rk+)3 /2  3kB 3kB
e - 2+ +n ) L/ + ln(m*) + ln(T)e 2 n h3 2e 2e

3k 3kB
= SO,hig h + Blr * B+in(T) (i7* < -1), (4.51)

2e 2e

where So,high is a constant independent of T.

From Equations 4.48 and 4.51, we see that S oc T at low temperature (1* > 1)

and S cx ln(T) at high temperature (27* < -1). Moreover, the only variables in S are

A and the carrier concentration n. We notice that a higher n results in a lower slope

value in S vs. T in the low temperature limit, but not in the S vs. in(T) slope in

the high T limit. Furthermore, from Table 3.4, we also notice that the slope in S vs.

in(T) for 200K < T < 300K is ~ 140pV/K > I = 129pV/K. From Equation 4.51,

we see that m* is the only parameter that can change the value of the slope &S/Oln(T)

given n is temperature independent. As a result, we assume m* Oc To 1 2 and obtain a

slope of 144piV/K, which is much closer to the measured values in the 200K to 300K

range. Lastly, the results of Equations 4.48 and 4.51 confirm the isotropic nature of

S. These relationships can be readily verified using Figure 3-8.
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4.3.2 Resistivity p

At low temperature (7,* > 1), using Equations 4.12, 4.39, and 4.44, o- can be approx-

imated to be
a8w7C2  32 3+\/

(- e 87re2(2m*)2(kBT)++ (4.52)3m*h 3

As a result, p can be rewritten as

(ae2n [( 3n )8r2/3 2n 1 (B)
p = (T--1 ae2n3 / (kBT )1 (Tj* > 1). (4.53)

(m* (pocket) (pocket)8,r ) 2m*

Similarly, at high temperature (iq* < -1), using Equations 4.12, 4.39, and 4.43,

p can be approximated to be

(a8e 2  3 3 *

p = -- I (2m*)3/2(kBT) +A+I(A + -)F(A + -)expf . (4.54)
3m* h3  2 2 /

As a result, p can be rewritten as

3m* /W(pocket) 1
a4e2n(A + !)F(A + })(kB)A+#3 TA+[3 (

From Equations 4.53 and 4.55, we see that p oc T-1 at low temperature (r,* > 1)

and p oc T-A- 3 at high temperature (jj* < -1). Once again, the only variables in

p are A and the carrier concentration n. We also notice that a higher n results in a

lower value in p as expected. This relationship can be readily verified using any of

the p figures in Chapter 3.

One can satisfactorily use Equations 4.53 and 4.55 to get a sense of the dominant

scattering mechanism in the low temperature limit and in the high temperature limit,

respectively. At low temperature, using Figure 3-9 and Table 3.3, we see that both

the carrier concentration and p are relatively constant for T < 20K. Thus, the low

temperature dominant scattering mechanism should have a # value of zero. Assuming

that m* is a function of T in this temperature range, then A < 0, which means the only

possible scattering mechanisms for our samples are (a) point defect scattering and
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(b) alloy scattering. On the other hand, in the high temperature range, all samples

have a functional form of p that is proportional to ~ T3 . As a result, we conclude

that the dominant scattering mechanism for our samples in this temperature range

is acoustic phonon scattering.

4.4 Fitting approaches

Since there are more than one fitting parameter and the fitting functions are rather

complicated, a simple linear least square fitting technique is not appropriate. There-

fore, a non-linear least square fitting approach is used for all data fitting in this thesis.

In particular, the Levenberg-Marquardt Algorithm [67, 68] is used for all parameter

fitting in this thesis.

To obtain a better understanding of our samples, we fit our data using the equa-

tions described in Sections 4.1, 4.2.1, and 4.2.2. For the electron modeling, the Fermi

level is first calculated using Equation 4.11 and the carrier concentration data from

Figure 3-9. The re values from Equations 4.18 to 4.24 are then added together using

Equation 4.10 before substituting them into Equations 4.34 to 4.36 to fit our S and p

data using the adjustable parameters DA, Ni, No, AE, E, and c*. Once a satisfactory

fit is obtained, IL is calculated using both the Ith data and the Ke calculated from

the electron model. For the phonon model, the r values from Equations 4.29 to 4.31

are first summed together using Equation 4.33. The sum is then substituted into

Equations 4.17 and 6L is fitted using adjustable parameters e, A', B', and C. Once

a satisfactory fit is obtained, the f obtained is compared with the e value from the

electron model. If the difference is not within 1%, then the fitting cycle continues

until the f difference reaches below 1%.

4.5 Fitting Results

Figures 4-1 to 4-4 together with Figures F-1 to F-10 show my electron model fitting

results for all samples investigated based on my electron model (see Sections 4.1.1
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and 4.2.1). se based on my model is plotted as a function of temperature against (a)

Kth - Kth(9T), (b) CaT with L=2x10 5W-Ohn/K 2 , and (c) I27T with C=3x10-8W-

Ohm/K 2 . For the electron model fitting, it is found that the dominant scattering

mechanisms are acoustic phonon scattering, point defect / ionized impurity atom

scattering, and neutral impurity atom scattering. As a result, all the fitting results

for p of each sample are plotted with the relative contribution from acoustic phonon

scattering, point defect / ionized impurity atom scattering, and neutral impurity

atom scattering. However, alloy scattering, grain boundary scattering, and polar

optical phonon scattering are also considered in my electron model. The fitting results

confirm the theory mentioned in Section 4.3 that the acoustic phonon scattering

mechanism dominates for T > 200K, and that the point defect scattering mechanism

dominates for T < 20K. Moreover, the crossover temperature Tcross between these

two scattering mechanisms increases from bulk to nanocomposite samples. In general,

Tcross increases as f decreases (see Figure 4-5. From te, the calculations indicate that

L decreases as T increases. More on L will be discussed later.

Using sth and the calculated c, sL is computed and fitted using my phonon model

(see Sections 4.1.2 and 4.2.2). Figures 4-6 to 4-9 together with G-1 to G-10 show the

fitting results of my phonon model for all samples investigated. For my phonon model

fitting results, it is found that the boundary scattering, point defect scattering, and

Umklapp scattering mechanisms play an important role in the determination of KL.

To get a better picture of the breakdown of the relative importance of the various

scattering mechanisms for the different temperature ranges, the boundary scattering

together with the point defect scattering mechanisms (denoted by Boundary & PD),

as well as the Umklapp scattering together with the point defect scattering mecha-

nisms (denoted by Umnklapp & PD), are plotted along with the nL as a function of

temperature. From my phonon model, we observe that as the boundary scattering

mechanism increases its relative contribution, the peak value for KL decreases. As a

result, the crossover temperature between [Boundary & PD] and [Umklapp & PD]

increases from the sample Ingot // to the nanocomposite samples. We also notice

that this crossover temperature is approximately equal to the Tcross from the elec-
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Figure 4-1: Fitting results of sample In-
got // based on the electron model. The
contribution to p from acoustic phonon
scattering, point defect / ionized impu-
rity atom scattering, and neutral impu-
rity atom scattering are plotted as well.
The fitting results confirm that the acous-
tic phonon scattering mechanism domi-
nates for T > 200K and that the point de-
fect scattering mechanism dominates for
T < 20K. From e, L is calculated to de-
crease as T increases.
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Figure 4-2: Fitting results of sample
XY144 _ based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From re, E
is calculated to decrease as T increases.
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Figure 4-3: Fitting results of sample 40%
// based on the electron model. The
contribution to p from acoustic phonon
scattering, point defect / ionized impu-
rity atom scattering, and neutral impu-
rity atom scattering are plotted as well.
The fitting results confirm that the acous-
tic phonon scattering mechanism domi-
nates for T > 200K and that the point de-
fect scattering mechanism dominates for
T < 20K. From re, L is calculated to de-
crease as T increases.
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Figure 4-4: Fitting results of sample 40%
_ based on the electron model. The
contribution to p from acoustic phonon
scattering, point defect / ionized impu-
rity atom scattering, and neutral impu-
rity atom scattering are plotted as well.
The fitting results confirm that the acous-
tic phonon scattering mechanism domi-
nates for T > 200K and that the point de-
fect scattering mechanism dominates for
T < 20K. From Ke, L is calculated to de-
crease as T increases.
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Figure 4-6: Fitting results of sample
Ingot // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with 'L.

tron model. Tables 4.3 and 4.4 summarize

respectively.

Figure 4-5: Plot of Tcros, of all samples
investigated as a function of f.

-J

T (K)

Figure 4-7: Fitting results of sample
XY144 _L based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with 'L.

the electron and phonon fitting results,

For the electron model, from Table 4.3 we observe that the deformation potential

DA seems to be both process dependent and materials dependent. We see that DA

changes from the BC samples to the NTU samples (process dependent). Moreover,

DA changes in the NTU samples when going from 0% to 100% (materials dependent).

From the electron model, the ionized impurity atom concentration Ni and the neutral

impurity atom concentration No reflect the somewhat anisotropic behavior of all the
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Table 4.3: Electron model fitting results. Please refer to Section 4.2.1 for the detailed
explanation for each parameter. For a quick summary, DA denotes the deforma-
tion potential in the acoustic phonon scattering mechanism, Ni denotes the point
defect / ionized impurity atom concentration in the point defect / ionized impurity
atom scattering mechanisms, e* denotes the Callen effective charge in the optical
phonon scattering mechanism, No denotes the neutral impurity atom concentration
in the neutral impurity atom scattering mechanism, AE denotes the difference in the
bandgap in the alloy scattering mechanism, and f denotes the average diameter of
the grain boundaries assuming all grains have a spherical shape.

Sample DA Ni e* No AE f Teross
(eV) (1019 cm- 3 ) (e) (1013 cm-3 ) (eV) (pm) (K)

Ingot // 5 2.35 3 36.78 40

XY21 // 5.2 6.5 8 1.47 100|

XY21 L |4.9 5 6 1.47 90|

XY146//| 5.4 3.3 6 3.28 I 55
XY146 _ I5.3 3.3 6 3.69 551
XY144 L |5.1 3.0 5.0 0 .1 3.69 50 I
GJ99 // 5.41 7 9.1 13.47 1 70 1
GJ99 1 5 6 7 3.93 70|

0% // 5.8 6 5 19.641 60

0% I 4.6 3.5 3 25.80 50|
40% // 6.25 9 8 9.83 751
40% I 4.75 4 3.5 19.64| 65

100% // 6.25 15 12.5 2.27| 100

100% i l5.2 7.0 6.0 2.95|75 |
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Table 4.4: Phonon model fitting results. Please refer to Section 4.2.2 for the detailed
explanation for each parameter. For a quick summary, f denotes the average diameter
of the grain boundaries assuming all grains have a spherical shape, A' denotes the
coefficient of the point defect scattering mechanism, B' denotes the coefficient of the
Umklapp scattering mechanism, and
Unmklapp scattering mechanism.

C denotes the coefficient of the exponent in the

Sample £(pm) A' B'(10-1 8s/K) C
Ingot 7/ 36.78 2.73 9.65

XY21// 1.47 2.89 9.84

XY21 1 1.47 12.65 9.83

XY146 // 3.28 2.76 12.16

XY146 1 3.69 2.51 10.99

XY144 1 3.69 |2.69 9.88 0.13

GJ99 // 3.47 3.17 10.81

GJ99 1 3.93 12.63 9.35

0% // 19.64 6.17 9.35
0% 1 25.80 12.90 9.35

40% // 9.83 18.24 6.53
40% 1 19.64 5.19 4.38

100% // 2.27 15.92 4.43

100% I 2.95 14.19 4.43

113



EJ

100 200
T(K)

300

Figure 4-8: Fitting results of sample
40% // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with rL.

T(K)

Figure 4-9: Fitting results of sample
40% 1 based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with ;L.

samples investigated. Lastly, f seems to play only a small role in the determination

of p.

For the phonon model, from Table 4.4 we observe that f plays a rather important

role in the determination of tL, especially at low temperatures. The value of f seems

to be consistently lower for the BC samples than for the NTU sample (0 %) for the

nanocomposite samples made solely from ball-milled nanoparticles. It could be inter-

esting to see what kind of f values would result by combining the starting materials

from NTU and the fabrication procedures from BC. We also see that the Umklapp

scattering contribution (B') has a materials dependent factor, where B' decreases

from ~10x10-18 s/K for the nanoparticles nanocomposite samples to ~4x10-1 8s/K for

the nanocomposite sample made using 100% nanoinclusions prepared via melt spin-

ning. Furthermore, we see that the point defect contribution (A') reaches the highest

value when both the nanoparticles and nanoinclusions prepared via melt spinning are

present in the nanocomposite samples (e.g. the 40% sample), similar to the alloying

effect on the thermal conductivity.

As we will show in Chapter 5, Kth reaches a plateau for the samples investigated
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under an applied magnetic field of 9T at low temperatures (T < 26K). This implies

that the applied B field has truly pushed the electrons aside and th -4 KL. Thus, we

expect that ne from my electron model should be approximately equal to the values of

/th - Kth(9T) in the low temperature regime where magnetic field saturation occurs.

As Figures 4-1 to 4-4 and F-1 to F-10 show, my Ke results meet this expectation. To

further demonstrate this point, and to get a better sense of the breakdown between

the electronic and lattice contribution to the thermal conductivity, the calculated rL

and calculated re are plotted against rith (and rth(9T) when such data are available)

(see Figures 4-10 to 4-13 and H-1 to H-10). From these figures, the Lorenz Number

C can be extracted. Figure 4-14 shows the L values as a function of temperature for

all samples investigated. There are a few observations regarding these data that are

worth noting. First, C is isotropic. Second, L for all samples follow the same tem-

perature dependence trend. Third, L for each sample investigated reaches the same

value of 2.44x10-W-Ohm/K 2 as T -+ OK (completely degenerate limit of 2 )2).

Lastly, L and the hole carrier concentration (see Figures 3-8 and 3-9) follow the same

trend. In other words, the higher the hole concentration the sample has, the higher

its L value is at a given temperature.

[1 Ingot //
0 Ingot// 9T

3-LI- ice
E

2 Figure 4-10: Plot of the calculated L,
2 calculated Ke, Kth, and rth(9T) of sample

Ingot // as a function of temperature.

0
0 10 200 300

T(K)

We would also like to learn whether the e obtained from my electron and phonon

models has any relationship with any other quantities. To do that, we compare f

with the ZT value at 297K, as well as f with the carrier concentration value at 297K.

Table 4.5 summarizes the results and we note a few interesting observations drawn

from the table. First, the carrier concentration decreases as e decreases for both the
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Figure 4-11: Plot of the
calculated Ke, Kth, and Kth

calculated KL,
(9T) of sample

XY144 I as a function of temperature.

300

Figure 4-12:
calculated ne,

Plot of the calculated KL,

Kta, and sth(9T) of sample
40% // as a function of temperature.

Figure 4-13: Plot of the calculated 1 L,

calculated Ke, Isth, and Kth(9T) of sample
40% 1 as a function of temperature.
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Figure 4-14: Plots of the Lorenz Number C of all samples investigated (left) and of
samples XY21 and GJ99 (right) as a function of temperature. Sample XY21 has the
lowest carrier concentration and sample GJ99 has the highest carrier concentration
among all the measured samples. A few observations are worth noting. First, 12 is
isotropic. Second, L for all samples follow the same temperature dependence trend.
Third, C for each sample investigated reaches the same value of 2.44x1O 8 W-Ohm/K 2

as T --+ OK (completely degenerate limit of 2 ( -) 2 ). Lastly, C and the hole carrier
concentration (see Figures 3-9 and 3-8) follow the same trend. In other words, the
higher the hole concentration the sample has, the higher its 1 value is at a given
temperature.
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Table 4.5: Comparison between the carrier concentration, f, and ZT in both the //
and I directions.

Sample Maker conc.(10 9 cm 3) E I ZT I E /7 ZT //
T = 297K (pn) T = 297K (pn) T = 297K

GJ99 BC 3.520 3.93 0.761 3.47 0.755
0% NTU 3.512 25.8 0.767 19.64 0.723

40% NTU 3.203 19.64 0.695 9.83 0.690
100% NTU 3.006 2.95 0.668 2.27 0.616

XY144 BC 2.616 3.69 0.882
Ingot Marlow 2.316 36.78 0.946

XY146 BC 2.054 3.69 0.888 3.28 0.925
XY21 BC 1.930 1.47 0.910 1.47 0.869

BC samples and the NTU samples. Second, for the BC samples measured in the

I direction, ZT increases as the carrier concentration decreases (or as f decreases).

Lastly, for the NTU samples measured in both the // and I directions, ZT decreases

as the % of nanoinclusions prepared via melt spinning in the nanocomposite sample

increases (or as f decreases).

4.6 Conclusions

In this chapter, the zero applied field experimental results are interpreted using both

the senmi-classical electron model and the semi-classical phonon model. From the elec-

tron model, we see that S depends only on the m*, carrier concentration n, and A, but

not on other factors. Thus, for a materials system, S should be isotropic. Moreover,

it is rather difficult to change S other than by changing its carrier concentration, as

long as the dominant scattering mechanism does not change.

From the electron model fitting results, we observe that the dominant electron

scattering mechanisms are acoustic phonon scattering, point defect / ionized impu-

rity atom scattering, and neutral impurity atom scattering. We also observe that f

does not play a major role in the determination of p. Moreover, we find that the

acoustic phonon scattering is the dominant electron scattering mechanism for T >

118



200K, while the point defect scattering mechanism is the dominant electron scattering

mechanism for T < 20K. Furthermore, the deformation potential DA is found to be

both process dependent and materials dependent. Lastly, the ionized impurity atom

concentration Ni and the neutral impurity atom concentration No both reflect the

somewhat anisotropic behavior in p of all samples investigated.

From the phonon model fitting results, we learn that f plays a rather important

role in the determination of /L, especially at low temperatures. We see that the Umk-

lapp scattering contribution (B') has a materials dependent factor, where B' decreases

from ~10x10-15 s/K for the nanoparticles nanocomposite samples to ~4x10~ 18s/K for

the nanocomposite sample made using 100% nanoinclusions prepared via melt spin-

ning. Furthermore, we see that the point defect contribution (A') reaches the highest

value when both the nanoparticles and nanoinclusions prepared via melt spinning are

present in the nanocomposite samples (e.g. the 40% sample), similar to the alloying

effect on the thermal conductivity. In general, it is desirable to increase the values of

A' and B', resulting in a decrease in the tIL values. However, care needs to be taken

to ensure that the phonon parameters are independent of the electron parameters so

that no adverse effect in ZT would result.

The determination of L is also carried out based on my electron model findings.

We observe that L is isotropic. Moreover, £ for each sample investigated reaches

the same value of 2.44x10- 8 W-Ohm/K 2 as T -+ OK (completely degenerate limit of
T2 ( 2 .). Furthermore, the higher the hole concentration the sample has, the higher

is its C value at a given temperature. Lastly, I find that a lower e leads to higher ZT

values at 297K for the BC nanocomposite samples measured in the _L direction. On

the other hand, a lower t leads to lower ZT values at 297K for NTU nanocomposite

samples measured in both the // and _L directions.
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Chapter 5

(BiySbily) 2Te3 Measurement

Results Under an Applied

Magnetic Field

This chapter examines the magnetic field effect on the (BiySbpy) 2Te3 materials sys-

tem. Measurement results are presented both as a function of temperature and mag-

netic field. The chapter concludes with a discussion of a simple analysis of the results.

5.1 Transport Measurement Results Under an Ap-

plied Magnetic Field

5.1.1 Results Using B - 3, 6, 9T

The transport properties for a few selected samples are studied under an applied

magnetic field. The scenario where the field is applied perpendicular to the transport

direction (denoted by B I Q) is carried out. Figures 5-1 to 5-3 together with Figures

E-i to E-6 show the results of all the measurements taken on all samples under an

applied magnetic field. Please note that due to the limitations in sample size and in

QD PPMS, the p data under an applied B field for samples in the // direction are

not available. From the figures noted above, we clearly see that an applied B field
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affects the conduction carriers by slowing their heat and current conducting ability

(i.e. by decreasing the sth values while increasing the S and p values of the conduction

carriers). The effect is especially pronounced below 200K. As a result, an increase in

ZT at low temperature is observed.
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Figure 5-1: Plots of Kth, S, p, and ZT of sample Ingot // as a function of temperature
under applied magnetic field strengths of 0, 3, 6, and 9T. The plots clearly show that
the applied B field decreases the sample's Kth values, while increasing the sample's S
and p values. As a result, an increase in ZT at low temperature is observed. The
effect is especially pronounced below 200K.

5.1.2 Results Using B = 1, 2, 3, 4, 5, 6, 7, 8, 9T

For the samples to which we apply various magnetic fields, it is interesting to observe

that the hth values below certain temperature ranges do not change with increasing
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Figure 5-2: Plots Of tith, S, p, and ZT of sample XY144 I as a function of temperature
under applied magnetic field strengths of 0 and 9T, along with the effect of 6T and
9T fields on XY144 I's p. Also shown is the plot Of th and S of sample 100%
as a function of temperature under applied magnetic field strengths of 0 and 9T.
The plots clearly show that the applied B field decreases the sample's n~th values,
while increasing the sample's S and p values. As a result, an increase in ZT at low
temperature is observed. The effect is especially pronounced below 200K.
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Figure 5-3: Plots Of Kth, S, p, and ZT of sample 40% 1 as a function of temperature
under applied magnetic field strengths of 0, 3, 6, and 9T. The plots clearly show that
the applied B field decreases the sample's roth values, while increasing the sample's S
and p values. As a result, an increase in ZT at low temperature is observed. The
effect is especially pronounced below 200K.
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magnetic field strength. This piece of information is extremely important as it leads

to the extraction of the actual Lorenz Number (,C) of the sample. To pursue this

research direction further, we study samples Ingot //, 40% //, and 40% L under

six more magnetic field strengths below 100K (see Figures 5-4 to 5-6). Please be

advised that the goals of plotting these three figures in this fashion are simply (a) to

illustrate the vast amount of data collected, (b) to demonstrate that the temperature-

dependenct plots may not necessarily provide the most intuitive approach to looking

at the data, and (c) the magnitude of the error bars for the p measurements typically

increases with increasing applied magnetic field strength.
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Figure 5-4: Plots of sth, S, and p of sample Ingot // as a function of temperature
under applied magnetic field strengths of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9T. This figure
shows that the p's error bar typically increases with increasing applied magnetic field
strength. The goal of showing this figure is to illustrate the vast amount of data
collected.
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Figure 5-5: Plots of Kth and S of sample 40% // as a function of temperature under
applied magnetic field strengths of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9T. The goal of showing
this figure is to illustrate the vast amount of data collected.

To better visualize the effect of the applied magnetic field on nth, S, p, and ZT,

we interpolate the results in T, divide each sth, S, p, and ZT value by its B=0T

counterpart at an interpolated temperature (denoted as the th ratio, S ratio, p ratio,

and ZT ratio), and plot them against B for numerous temperature values (see Figures

5-7 to 5-15). Please note that each interpolated T is represented by one colored

symbol. Let us use an example to better demonstrate my "ratio" definition. At

interpolated T = 26K, Ingot // has the following properties: (a) Kth(OT) = 3.95W/(m-

K), (b) Kth(9T) = 3.27W/(m-K), (c) S(OT) = 23.8OpV/K, (d) S(9T) 37.86pV/K,

(e) p(OT) = 1.083pOhm-m, (f) p(9T) = 2.407pOhm-m, (g) ZT(OT) 0.00344, and

(h) ZT(9T) = 0.00473. As a result, at 26K Ingot //'s 9T rt ratio = 3.27/3.95 =

0.828, 9T S ratio = 37.86/23.80 = 1.591, 9T p ratio = 2.407/1.083 = 2.22, and 9T

ZT ratio = 0.00473/0.00344 = 1.377.
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Figure 5-6: Plots of Kth, S, and p of sample 40% 1 as a function of temperature
under applied magnetic field strengths of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9T. This figure
shows that the p's error bar typically increases with increasing applied magnetic field
strength. The goal of showing this figure is to illustrate the vast amount of data
collected.
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Figure 5-7: Plots of the sth ratio of sample Ingot // as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The Nth ratio value is obtained through
dividing its value by its B=OT counterpart. For example, at interpolated T=26K,
Ingot //'s Kth(OT) = 3.95W/(m-K) and sth(9T) = 3.27W/(m-K). As a result, Ingot
//'s 9T Nth ratio at 26K = 3.27/3.95 = 0.828.
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Figure 5-8: Plot of the S ratio of sample Ingot // as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The S ratio value is obtained through
dividing its value by its B=OT counterpart. For example, at interpolated T=26K,
Ingot //'s S(OT) = 23.8OpV/K and S(9T) = 37.86pV/K. As a result, Ingot //'s 9T
S ratio at 26K = 37.86/23.80 = 1.591.

129

0 17 * 20 A 23 26
2.2- 2.2



A 5 V 8 * 11 4 14 0 32 . 35 A 38 y 41
17 * 20 *23 26 *44 4 47 1 50 0 53

0 29 56 59 o 62 65
X 68 71 -74

O0 1 77 U 80 83
*2~ A 86 y 89

*L92 95
0 98

0. * * 1.. 0tI i
0 3 6 9 0 3 6 9

B(T) B(T)

Figure 5-9: Plot of the p ratio of sample Ingot /7 as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The p ratio value is obtained through
dividing its value by its B=0T counterpart. For example, at interpolated T-26K,
Ingot //'s p(OT) = 1.083pOhm-m and p(9T) - 2.407pOhm-m. As a result, Ingot
//'s 9T p ratio at 26K = 2.407/1.083 = 2.22.

5.2 Discussions

5.2.1 Magnetic Field Dependent Behaviors

Figures 5-7 to 5-16 show that a plateau in Ith is reached below a certain temper-

ature with B approaching 9T for all samples investigated. This information allows

one to extract L experimentally in this temperature range. Moreover, this serves as

an important guideline to confidentially extend the L calculation beyond this tem-

perature range as we have seen in Section 4.5. Furthermore, the Kth data show that

the applied magnetic field pushes the holes away in Ingot // more effectively than

in the nanocomposite samples for measurements carried out at the same tempera-

ture. We also observe that both S and p of all samples investigated increase with

magnetic field below 100K, with p increasing linearly with the magnetic field. The

only exception is that S for Ingot // reaches a plateau above a certain magnetic field

strength. The overall effect is that the ZT ratio always increases with increasing B

field, especially for the 40% _L nanocomposite sample. We also notice that the ZT
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Figure 5-10: Plot of the ZT ratio of sample Ingot // as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each plot
represent the interpolated temperatures. The ZT ratio value is obtained through
dividing its value by its B=0T counterpart. For example, at interpolated T=26K,
Ingot //'s ZT(OT) = 0.00344 and ZT(9T) = 0.00473. As a result, Ingot //'s 9T ZT
ratio at 26K - 0.00473/0.00344 = 1.377.
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Figure 5-11: Plots of the sth ratio of sample 40% // as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The sth ratio value is obtained through
dividing its value by its B=0T counterpart. For example, at interpolated T=26K,
Ingot //'s sth(OT) = 3.95W/(m-K) and sth(9T) = 3.27W/(m-K). As a result, Ingot
//'s 9T sth ratio at 26K = 3.27/3.95 = 0.828.
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Figure 5-12: Plot of the S ratio of sample 40% // as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The S ratio value is obtained through
dividing its value by its B=OT counterpart. For example, at interpolated T-26K,
Ingot //'s S(OT) - 23.80pV/K and S(9T) = 37.86pV/K. As a result, Ingot //'s 9T
S ratio at 26K = 37.86/23.80 - 1.591.
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Figure 5-13: Plots of the sth ratio of sample 40% 1 as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The Kth ratio value is obtained through
dividing its value by its B=OT counterpart. For example, at interpolated T=26K,
Ingot //'s sth(OT) = 3.95W/(m-K) and sth(9T) = 3.27W/(m-K). As a result, Ingot
//'s 9T Nth ratio at 26K = 3.27/3.95 = 0.828.
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field at numerous interpolated temperatures for T < 100K. The numbers in each
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dividing its value by its B=0T counterpart. For example, at interpolated T=26K,
Ingot //'s S(OT) - 23.80tV/K and S(9T) = 37.86pV/K. As a result, Ingot //'s 9T
S ratio at 26K = 37.86/23.80 = 1.591.
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Figure 5-15: Plot of the p ratio of sample 40% 1 as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each
plot represent the interpolated temperatures. The p ratio value is obtained through
dividing its value by its B=OT counterpart. For example, at interpolated T=26K,
Ingot //'s p(OT) = 1.083pOhm-m and p(9T) = 2.407pOhm-m. As a result, Ingot
//'s 9T p ratio at 26K = 2.407/1.083 = 2.22.

ratio behavior follows closely with the S ratio behavior (i.e. a plateau is observed in

ZT ratio if a plateau is observed in S ratio). It seems that S ratio plays a bigger role

in determining the ZT ratio. This finding suggests that applying a magnetic field is

one of the low-hanging fruit ways of increasing the performance of a thermoelectric

material. Table 5.1 summaries the observations from Figures 5-7 to 5-15.

The S ratio data under an applied magnetic field look rather noisy at a first

glance. This noisy S ratio behavior at low T is believed to be due to the fact that

S -+ OpV/K as T -4 OK. As a result, the S signal-to-noise ratio decreases as T

decreases. However, upon closer examination on the sth and S data, there seem to

exist an oscillatory pattern in the low temperature data, especially for the NTU 40%

sample. More studies need to be carried out to confirm this interesting phenomenon.

5.2.2 Comparison between IL and Pth,plateau

Although the 40% sample is not fabricated using solely ball-milled nanoparticles, it

is still interesting to compare the sth plateau value (hlth,piateau) found in the 40% 1
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Figure 5-16: Plot of the ZT ratio of sample 40% 1 as a function of applied magnetic
field at numerous interpolated temperatures for T < 100K. The numbers in each plot
represent the interpolated temperatures. The ZT ratio value is obtained through
dividing its value by its B=0T counterpart. For example, at interpolated T=26K,
Ingot //'s ZT(OT) = 0.00344 and ZT(9T) = 0.00473. As a result, Ingot /7's 9T ZT
ratio at 26K = 0.00473/0.00344 = 1.377.
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Table 5.1: The applied magnetic field dependence of various features in the 1th ratio,
the S ratio, and the p ratio for samples Ingot //, 40% //, and 40% L samples for
T < 100K. The features are extracted from Figures 5-7 to Figures 5-16, and the
temperature ranges for different behaviors are described.

Sample Property T (K) Feature
5-14 Plateau is quickly reached ~ 2T

. 17-26 Plateau is reached - 6T
t a ratio 29-53 Plateau is reached - 8T

56-98 Plateau is not reached by 9T

5-14 too noisy to conclude
Ingot / ratio 17-26 Plateau is reached ~ 4T

29-53 Plateau is reached - 8T
56-98 Plateau is reached ~ 8T, but the rate of the ratio

increase I as T t
p ratio 5-29 ratio t linearly

32-98 ratio t linearly, but the rate of the ratio increase
4 as T T

. 5-26 too noisy to conclude
29-98 Plateau is reached ~ 6T
4-15 Plateau is quickly reached 3T

. 16-26 Plateau is reached 8-9T
sth ratio 29-53 Plateau is not reached by 9T

40% 56-98 Plateau is not reached by 9T

4-15 too noisy to conclude
ratio 16-26 ratio

29-53 ratio
56-98 ratio 4,but the rate of the ratio increase 4.as T 4
4-15 Plateau is quickly reached ~ 3T
16-26 Plateau is reached - 8-9T
29-53 Plateau is not reached by 9T
56-98 Plateau is not reached by 9T

4-15 too noisy to conclude
Sratio 16-26 ratio t

29-53 ratio t
56-98 ratio t, but the rate of the ratio increase 4 as T t

p ratio 4-29 ratio 4. linearly
32-98 ratio linearly, but the rate of the p ratio increase

4as T 4
4-26 too noisy to conclude

ZT ratio 29-53 Plateau is reached 8T
56-98 ratio T, but the rate of the ratio increase 4 as T t
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sample with the NLI from Table 3.6 (see Table 5.2). We notice that the (Kth,plateau)

values obtained are much higher than the KL values extracted in Chapter 3. This

finding is indeed expected since it is almost impossible to increase any sample's p

to infinity without breaking it. As a result, we should always treat the 1 L values

extracted under the method described in Section 3.5 as the theoretical limit, whereas

the ktIe,piateau values obtained under the method described in this section should be

considered as the realistic values for &L in the practical limit.

Table 5.2: Comparison between nt, from Table 3.6 and the plateau s th (/th,plateau)
from Figures 5-6 and 5-13. The difference between the two values suggests that the KL
values extracted under the method described in Section 3.5 should be treated as the
theoretical limit, whereas the 6th,piateau values obtained under the method described
in this section should be considered as the realistic values in the practical limit.

T L,_I from Table 3.6 Ith,plateau from Figures 5-6 and 5-13
(K) (W/m-K) (W/m-K)
50 1.53 2.20
26 1.36 2.34

5.2.3 9T Ratio as a Function of Temperature

From Figures 5-7 to 5-16, we observe that some of the ratio quantities seem to be

temperature independent. To further examine the ratio temperature-dependent be-

havior, the 9T ratio of all quantities of various samples are plotted together (see

Figure 5-17).

Figure 5-17 shows numerous interesting phenomena for both the Ingot // and

the nanocomposite samples under an 9T applied magnetic field. First, the p ratio is

found to be constant up to a certain temperature Tjiat for nanocomposite samples.

From Section 4.5, we know that the dominant scattering mechanism for carriers for

T < Tflat is point defect scattering. Moreover, we see that our results obey Kohler's

rule [69]. In other words, a higher B field is needed for samples with higher point defect

concentration to give the same magnetoresistance results. Second, the minimum

of the V1 th ratio occurs at a temperature Tmin > Tflat. Third, the peak of the S
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ratio and ZT ratio occur at a temperature Teak > Tflat. And not surprisingly,

Tmin ~Tpeak Tcross. Thus, the temperature at which various scattering mechanisms

switch their role of dominance is an important temperature from a physics perspective.

Lastly, we observe that the S ratio increases the most for the 40% sample. From

these observations, we conclude that, an applied magnetic field has a greater effect on

carriers when the point defect scattering is the dominant carrier scattering mechanism.

It is interesting to wonder what would happen to the ZT ratio if the point defect

scattering dominant region is extended to higher temperatures. Will the ZT peak

shift to a higher T?

5.3 Conclusions

From the magnetic field studies on the Ingot and on the 40% samples, a few important

facts are demonstrated. First, an applied magnetic field can be used to effectively

increase the ZT of (BiySbmy) 2Te3 , especially at temperatures below 200K. Use of

a magnetic field might theoretically extend the effective temperature ranges over

which (BiySbmy) 2Te3 materials can be used for refrigeration. Second, the data under

various applied B fields allow me to confidently calculate the C value below the

temperature ranges where a plateau has occurred. Third, the data under various

applied B fields serve as an important guideline for both validating any electron

model and extrapolating values for L above the plateau occurrence temperatures. As

a result, this allows me to get some insights into the temperature dependence of L

(see Figure 4-14). Fourth, from the magnetic field dependent transport studies on our

sapilles, we observe that the applied B field pushes away the holes more effectively in

the Ingot // than the holes in the nanocomposite samples. Moreover, an oscillatory

pattern seems to exist in the low temperature data, especially for the NTU 40%

samiiple. More studies need to be carried out to confirm this interesting phenomenon.

Furthermore, we also find that the Kth,piateau values obtained under the magnetic field

study serve as a more realistic and practical limit for KL. Lastly, from the magnetic

field dependent studies, we find that having point defects as the dominant scattering
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mechanism for the carriers results in an increase in ZT under an applied magnetic

field. It would be extremely useful if one could make a sample such that the point

defect dominant regime is extended to higher temperatures, resulting in a shift of the

increase in the ZT ratio regime under an applied magnetic field to a temperature

range closer to room temperature (300K). However, care needs to be taken to ensure

that such modifications would result in an increase in the ZT values under an applied

magnetic field.
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Chapter 6

Conclusions and Future Directions

This thesis concludes with a brief summary of the findings and some thoughts for

future research studies. These are summarized in the following sections.

6.1 Conclusions

In this thesis, I demonstrate that our QD PPMS apparatus is well calibrated and

can produce accurate data through numerous benchmark efforts. The mass density,

XRD, SEM, Kth, S, p, and carrier concentration measurements are carried out on

eight (Bio. 2Sbo.s) 2Te3 samples. The sample set includes: (a) a bulk ingot from Marlow

(Ingot), (b) four nanocomposite samples (XY21, XY146, XY144, and GJ99) made by

collaborators from Boston College (BC) where the letters simply indicate the sample

maker's initials, and (c) three nanocomposite samples (0%, 40%, and 100%) made by

collaborators from Nanyang Technological University (NTU) in Singapore where the

% denotes the weight % of the nanoinclusions prepared via melt spinning [1] in the

sample.

From our results, we observe that the addition of nanoinclusions prepared via

melt sinning decreases the mass density of a sample. We also find that the carrier

concentration varies among the samples investigated (see Figure 3-9), leading us to

believe that the carrier concentration is an extremely fabrication process dependent

parameter. Moreover, we observe that i ;th and p are somewhat anisotropic, while S is
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isotropic in all of the nanocoinposite samples investigated. Furthermore, we observe

that the nanocomposite approach decreases the values of the carrier mobility, the

values of fe, and the values of eph, especially for T < 200K. Nevertheless, f, and

41, are still a few orders of magnitude smaller than the average size of the grain

boundaries f estimated from my electron and phonon models. Due to the uniaxial

pressing nature of the fabrication process of a nanocomposite sample, samples with the

same composition made using machines from different manufacturers probably cannot

be regarded as one materials system in the // press direction. However, since there

is no pressure coming from the sides during the nanocomposite fabrication, samples

with the same composition made using machines from different manufacturers can

indeed be considered as one materials system in the I press direction (see Figures 3-

24). This assumption is only valid if all the samples under investigation have similar e

values. Additionally, the nanocomposite approach is found to be able to further lower

the KL value (see Section 3.5 for the VL extraction procedures). Using the 297K case

as an example, the nanocomposite KLI of 0.76W/n-K is 0.14W/m-K lower than the

previously reported 0.9W/m-K VIL(300K) value for (Bio. 3Sbo.7)2Te3 [4]. In this quick

comparison, (Bio. 3Sbo. 7)2Te3 is assumed to have the lowest hIL(300K) values among

all the (BiySbpy) 2Te3 alloys.

An electron model and a phonon model based on the semi-classical transport

model are used to interpret the zero applied B field results. Using my models, the

hole masses are found to be temperature-dependent (m* oc To 12 ). We also find

that the acoustic phonon scattering mechanism dominates for T > 200K and the

point defect scattering mechanism dominates for T < 20K for the holes. On the

other hand, the boundary scattering, point defect / alloy scattering, and Umklapp

scattering mechanisms all play a role for the phonon transport. Moreover, we find that

the calculated f values (which are in the pm ranges) play a major role in the phonon

transport, but not in the carrier transport. Comparing the magnitudes between

re, eh, and f, it is believed that the values of f could be lowered even further to

further reduce st, without affecting the electrical carriers too much. The Lorenz

Number L is found to be isotropic, to decrease with increasing temperature, and to
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have a correlation with the carrier concentration (the higher the hole concentration

the sample has, the higher its C value is at a given temperature). Furthermore, C

reaches the same value of 2.44x10-8W-Ohm/K 2 as T -+ OK (which is the completely

degenerate limit of ( (-)2). We also find that the carrier concentration decreases

as f decreases, and that ZT increases as the carrier concentration decreases (or as

[ decreases) for all the samples investigated. Nevertheless, the carrier concentration

cannot be decreased indefinitely since carriers are needed for the thermoelectric device

itself.

Lastly, from our magnetic field dependence studies, we find that S and p increase

under an applied B field, while sth decreases. The overall effect is an increase in

the ZT values under an applied B field, especially for T < 200K. Moreover, we also

find that the applied B field pushes away the holes in the Ingot // more effectively

than the holes in the nanocomposite samples. At low enough temperatures (T <

26K), a plateau in hth is observed with an applied B field greater than 6T for the

Ingot // sample and for a B field greater than 8T for the 40% nanocomposite samples,

respectively. The existence of a plateau in sth under an applied B field is a great way to

compute the C values experimentally. The plateau can also be used for validating any

electron models and serves as a guidance for extrapolating C to temperatures outside

the plateau existence regions. Using the 40% L sample to compare the lta,piateau with

the KLI extracted (see Section 3.5), we found that the Kth,piateaiu values are much

higher than the VL, I extracted values (see Table 5.2). The difference between the two

values suggests that the KL values extracted under the method described in Section

3.5 should be treated as the theoretical limit, whereas the tith,plateau values obtained

under the method described in Section 5.1 should be considered as the realistic values

in the practical limit.

Finally, from the magnetic field dependent studies, we find that having point de-

fects as the dominant scattering mechanism for the carriers results in an increase in

ZT under an applied magnetic field. It would be extremely useful if one could make

a sample such that the point defect dominant regime is extended to higher temper-

atures, resulting in a shift of the increase in the ZT ratio regime to a temperature
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range closer to room temperature (300K). However, care needs to be taken to ensure

that such modifications would result in an increase in the ZT values under an applied

magnetic field.

6.2 Future Directions

In this thesis, I have shown many interesting findings, especially under the variations

of temperature and applied magnetic field. It would be interesting to further study

my observed phenomena under an applied magnetic field greater than 9T. From my

findings, it is concluded that the magnetic field has the most pronounced effect on

increasing ZT values when the point defect scattering mechanism is the dominat-

ing carrier scattering mechanism. It would be interesting to test this concept on a

materials system that has a relatively large point defect scattering contribution. As

Professor Dresselhaus suggested, an ion implanted sample with controlled fluences

would be an ideal candidate for this experiment. Moreover, we observe that the de-

crease in E through the nanocomposite approach results in an improvement in ZT,

mainly due to the increase in scattering of phonons without too much increase in

the scattering of the carriers. It would be interesting to test whether this belief is

the ultimate correct approach. The reason is that the improvement in ZT values

under an applied B field is mainly due to the increase in the S values. Therefore, it

would be interesting to test whether some degree of carrier scattering is beneficial.

As suggested by Professor Hagelstein, materials system such as Indium Antimonide

(InSb) that is known to have long mean free path would be a good candidate for

this test. Similarly, one could also study nanocomposite samples with f omthe order

of nm instead of pm. Furthermore, we should confirm whether the electrons behave

similarly to the holes regarding the behaviors found in this thesis. In addition, it

would be ideal that others can confirm my findings with a different nanocomposite

samples set, especially about the relationship between the ZT, f, and carrier concen-

tration. Finally, it would also be valuable to understand the fabrication parameters

that lead to the anisotropic behavior observed in the thermoelectric properties of the
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nanocomposite samples.
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Appendix A

Additional Transport

Measurement Results

Appendix A shows the results of the temperature-dependent Kth, S, and p mea-

surenents under no applied magnetic field for samples for which my results are not

displayed in Section 3.5. Please refer back to Section 3.4 for the complete sample's

description and to Section 3.5 for the detailed discussion of these results.

149



3-o . r" XY2I-

2- 10E E

50

0-
0 100 200 300

T(K)
2.0 El Ingot 1.0 v Ingot/

n Ingot / XY2 I
E 1.6 ui XY21I 0.8 XY2I
E I XY210

_ 1.2 * XY211 -E0
0 -<VXY21 -L B

1,> 0.8- m XY211 EL 4 p N04Cg) N0 4M

0.2

0.0
0 10 260 300 100 200 300

T (K) T (K)

Figure A-i: Plots of , S, p, and ZT of samples XY21 and Ingot // as a function
of temperature. Anisotropic behavior is observed in roth and p, but not in S. No
significant difference is observed between results from (a) QD PPMS vs. ZEM3, and
(b) 2-pt p (TTO) vs. 4-pt p (ACT) (see Table 3.3 for the representation of each
symbol and color). A data display control is used for sample XY21 to show only one
out of every five to ten points, while a data display control is used for sample Ingot
// to show only one out of every five to thirty points.
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Figure A-2: Plots Of tKth, S, p, and ZT of samples GJ99 and Ingot // as a function
of temperature. Anisotropic behavior is observed in K~th and p, but not in S. No
significant difference is observed between results from 2-pt p (TTO) vs. 4-pt p (ACT)
(see Table 3.3 for the representation of each symbol and color). A data display control
is used for sample GJ99 to show only one out of every three to thirty points, while a
data display control is used for sample Ingot // to show only one out of every five to
thirty points.
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Figure A-3: Plots Of roth, S, p, and ZT of samples 0% and Ingot // as a function
of temperature. Anisotropic behavior is observed in 'Kth and p, but not in S. No
significant difference is observed between results from 2-pt p (TTO) vs. 4-pt p (ACT)
(see Table 3.3 for the representation of each symbol and color). A data display control
is used for sample 0% to show only one out of every three to thirty points, while a
data display control is used for sample Ingot // to show only one out of every five to
thirty points.
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of temperature. Anisotropic behavior is observed in sth and p, but not in S. No
significant difference is observed between results from 2-pt p (TTO) vs. 4-pt p (ACT)
(see Table 3.3 for the representation of each symbol and color). A data display control
is used for sample 100% to show only one out of every three to thirty points, while a
data display control is used for sample Ingot // to show only one out of every five to
thirty points.
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Appendix B

Additional Hole Mobility Results

Appendix B shows the results of the temperature-dependent hole mobility results for

samples for which my results are not displayed in Section 3.5.1. Please refer back to

Section 3.4 for the complete sample's description and to Section 3.5.1 for the detailed

discussion of these results.
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2 U
CE - Li Figure B-i: Plot of the hole mobility pp~ of
Cn Q El samples XY21 and Ingot // as a function
C>Fl of temperature.
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Figure B-2: Plot of the hole mobility p, of
samples GJ99 and Ingot // as a function
of temperature.
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Figure B-3: Plot of the hole mobility p.
of samples 0% and Ingot // as a function
of temperature.
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Figure B-4: Plot of the hole mobility pp of
samples 100% and Ingot // as a function
of temperature.
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Figure B-5: Plot of the hole mobility p,
of all nanocomposite samples measured
in the // direction and sample Ingot //
as a function of temperature.
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Figure B-6: Plot of the hole mobility p,
of all nanocomposite samples measured
in the I direction and sample Ingot /7
as a function of temperature.
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Appendix C

Additional Hole Mean Free Path

Results

Appendix C shows the results of the temperature-dependent hole mean free path

results for samples for which my results are not displayed in Section 3.5.2. Please

refer back to Section 3.4 for the complete sample's description and to Section 3.5.2

for the detailed discussion of these results.

10.

E
.%ha

0
0() 100

T(K)
200

Figure C-1: Plot of the hole mean free
path of samples XY21 and Ingot // as a
function of temperature.
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Figure C-2: Plot of the hole mean free
path of samples GJ99 and Ingot // as a
function of temperature.
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Figure C-3: Plot of the hole mean free
path of samples 0% and Ingot // as a
function of temperature.

Figure C-4: Plot of the hole mean free
path of samples 100% and Ingot // as a
function of temperature.
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Appendix D

Additional Phonon Mean Free

Path Results

Appendix D shows the results of the temperature-dependent phonon mean free path

results for samples for which my results are not displayed in Section 3.5.2. Please

refer back to Section 3.4 for the complete sample's description and to Section 3.5.2

for the detailed discussion of these results.
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Figure D- 1: Plot of phonon mean free
path of samples XY21 and Ingot // as
a function of temperature.
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Figure D-2: Plot of phonon mean free
path of samples GJ99 and Ingot // as a
function of temperature.

300

Figure D-3: Plot of phonon mean free
path of samples 0% and Ingot // as a
function of temperature.

300

Figure D-4: Plot of phonon mean free
path of samples 100% and Ingot // as a
function of temperature.
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Figure D-5: Plot of phonon mean free
path of all nanocomposite samples mea-
sured in the // direction and sample In-
got // as a function of temperature.

300

Figure D-6: Plot of phonon mean free
path of all nanocomposite samples mea-
sured in the I direction and sample Ingot

// as a function of temperature.
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Appendix E

Additional Transport

Measurement Results Under an

Applied Magnetic Field

Appendix E shows the results of Nth, S, p measurements results for samples for which

my results are not displayed in Section 5.1. Please refer back to Section 3.4 for the

complete sample's description and to Section 5.1 for the detailed discussion of these

results.
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Figure E-1: Plots of Kth and S of sample XY146 // as a function of temperature
under applied magnetic field strengths of 0, 3, 6, and 9T. The plots clearly show that
the applied B field decreases the sample's {th values, while increasing the sample's S.
The effect is especially pronounced below 200K.
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o 1 . XY1461
E 1.2- 01 XY1461i Figure E-2: Plot of p of sample XY146
E D XY14613T las a function of temperature under* XY146 _ 6T
0 0.8 D XY146 1 9T applied magnetic field strengths of 0, 3,

L? 6, and 9T. The plots clearly show that

0.4 the applied B field increases its p values.
CL AwlThe effect is especially pronounced below

0.0 1_1 200K.
0 16o 200 300

T (K)
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Figure E-3: Plots of Kth and S of sample GJ99 // as a function of temperature under
applied magnetic field strengths of 0, 3, 6, and 9T. The plots clearly show that the

applied B field decreases the sample's Kth values, while increasing the sample's S.
The effect is especially pronounced below 200K.

i GJ991
<fl GJ99 1E 0.8~ ai GJ991-L9T <r Figure E-4: Plot of p of sample GJ99 I as

a function of temperature under applied
0 magnetic field strengths of 0 and 9T. The
'o 0.4 plots clearly show that the applied B field

increases its p values. The effect is espe-
cially pronounced below 200K.

0.04-
0 100 200

T(K)
300

167



2 250 l 40%/H
* 40% // 3T

200- R 40% // 6T7 0 40% /9T

1 KD150
X L100

Lo 40%//
* 40% / 3T )
R 40% / 6T
. 40%//9T

0 100 200 300 3 10 100
T (K) T(K)

Figure E-5: Plots of Kth and S of sample 40% // as a function of temperature under
applied magnetic field strengths of 0, 3, 6, and 9T. The plots clearly show that the
applied B field decreases the sample's Kth values, while increasing the sample's S.
The effect is especially pronounced below 200K.
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Figure E-6: Plots of Kth, S, p, and ZT of samples 0% 1 and 100% 1 as a function
of temperature under applied magnetic field strengths of 0 and 9T. The plots clearly
show that the applied B field decreases the sample's 'th values, while increasing
the sample's S and p values. As a result, an increase in ZT at low temperature is
observed. The effect is especially pronounced below 200K.
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Appendix F

Additional Electron Model Fitting

Results

Appendix F shows my electron model fitting results for samples for which my results

are not displayed in Section 4.5. Please refer back to Section 3.4 for the complete

sample's description, Sections 4.1.1 and 4.2.1 for the description of my electron model,

and Section 4.5 for the detailed discussion of these results.
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Figure F-1: Fitting results of sample
XY21 // based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From ,, C
is calculated to decrease as T increases.
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Figure F-2: Fitting results of sample
XY21 I based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From ve, L
is calculated to decrease as T increases.
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Figure F-3: Fitting results of sample
XY146 // based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From Ke, E
is calculated to decrease as T increases.
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Figure F-4: Fitting results of sample
XY146 I based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From ,, E
is calculated to decrease as T increases.
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Figure F-5: Fitting results of sample
GJ99 // based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From ,, L
is calculated to decrease as T increases.
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Figure F-6: Fitting results of sample
GJ99 I based on the electron model. The
contribution to p from acoustic phonon
scattering, point defect / ionized impu-
rity atom scattering, and neutral impu-
rity atom scattering are plotted as well.
The fitting results confirm that the acous-
tic phonon scattering mechanism domi-
nates for T > 200K and that the point de-
fect scattering mechanism dominates for
T < 20K. From ,, 1 is calculated to de-
crease as T increases.
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Figure F-7: Fitting results of sample 0%
// based on the electron model. The
contribution to p from acoustic phonon
scattering, point defect / ionized impu-
rity atom scattering, and neutral impu-
rity atom scattering are plotted as well.
The fitting results confirm that the acous-
tic phonon scattering mechanism domi-
nates for T > 200K and that the point de-
fect scattering mechanism dominates for
T < 20K. From ne, E is calculated to de-
crease as T increases.
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Figure F-8: Fitting results of sample 0%
I based on the electron model. The
contribution to p from acoustic phonon
scattering, point defect / ionized impu-
rity atom scattering, and neutral impu-
rity atom scattering are plotted as well.
The fitting results confirm that the acous-
tic phonon scattering mechanism domi-
nates for T > 200K and that the point de-
fect scattering mechanism dominates for
T < 20K. From ,, C is calculated to de-
crease as T increases.
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Figure F-9: Fitting results of sample
100% // based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From ne, L
is calculated to decrease as T increases.
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Figure F-10: Fitting results of sample
100% 1 based on the electron model.
The contribution to p from acoustic
phonon scattering, point defect / ion-
ized impurity atom scattering, and neu-
tral impurity atom scattering are plot-
ted as well. The fitting results con-
firm that the acoustic phonon scattering
mechanism dominates for T > 200K and
that the point defect scattering mecha-
nism dominates for T < 20K. From re, L
is calculated to decrease as T increases.
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Appendix G

Additional Phonon Model Fitting

Results

Appendix G shows my phonon model fitting results for samples for which my results

are not displayed in Section 4.5. Please refer back to Section 3.4 for the complete

sample's description, Sections 4.1.2 and 4.2.2 for the description of my phonon model,

and Section 4.5 for the detailed discussion of these results.
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Figure G-1: Fitting results of sample
XY21 // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with lL-

Figure G-2: Fitting results of sample
XY21 I based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with IL -

T (K) T (K)

Figure G-3: Fitting results of sample
XY146 // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with KL-

Figure G-4: Fitting results of sample
XY146 I based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with KL.
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Figure G-5: Fitting results of sample
GJ99 // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Uniklapp
& PD), are plotted along with tL.
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Figure G-7: Fitting results of sample
0% // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with IL.
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Figure G-6: Fitting results of sample
GJ99 I based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with KL-

T (K)

Figure G-8: Fitting results of sam-
ple 0% 1 based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with KL.
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Figure G-9: Fitting results of sample
100% // based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with KL.
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Figure G-10: Fitting results of sample
100% ± based on the phonon model.
The boundary scattering together with
the point defect scattering mechanisms
(Boundary & PD), as well as the Umk-
lapp scattering together with the point
defect scattering mechanisms (Umklapp
& PD), are plotted along with KL-
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Appendix H

Additional Kth, I th( 9 T), calculated

Results

Appendix H shows the calculated KL, calculated Ke, Kt h, and Ith(9T) for samples for

which my results are not displayed in Section 4.5. Please refer back to Section 3.4

for the complete sample's description and to Section 4.5 for the detailed discussion

of these results.

T (K)

Figure H-1: Plot of the calculated KL,
calculated ne, 'th, and rth(9T) of sample
XY21 // as a function of temperature.
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Figure H-2: Plot of the calculated KL,
calculated Ke, Kth, and sth(9T) of sample
XY21 I as a function of temperature.

Figure H-3: Plot of the calculated KL,
calculated te, Kth, and Kth(9T) of sample
XY146 // as a function of temperature.
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Figure H-4: Plot of the calculated KL,
calculated Ke, Kth, and sth(9T) of sample
XY146 I as a function of temperature.

T (K)

E

100
T (K)

182



T (K)
E

3E

0 100 200
T(K)

Figure H-5: Plot of the calculated XL,

calculated me, Kth, and sth(9T) of sample

GJ99 // as a function of temperature.

Figure H-6: Plot of the calculated K.,
calculated Ke, Kth, and st', (9T) of sample
GJ99 I as a function of temperature.

Figure H-7: Plot of the calculated tbL, cal-

culated .e, tInt, and sth(9T) of sample 0%

// as a function of temperature.
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Figure H-8: Plot of the calculated 'CL, cal-
culated re, Kth, and sIth (9T) of sample 0%
I as a function of temperature.
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Figure H-10: Plot of the calculated KL,
calculated ne, Kth, and sth(9T) of sample
100% 1 as a function of temperature.

Figure H-9: Plot of the calculated KL,

calculated re, Kth, and sth(9T) of sample
100% // as a function of temperature.
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