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Abstract

This thesis presents the investigation of resolution limits of electron-beam lithography
(EBL) at the sub-10-nm scale. EBL patterning was investigated at low electron energy
(2 keV) in a converted scanning electron microscope and at high electron energy
(200 keV) in an aberration-corrected scanning transmission electron microscope. Sub-10-
nm structures were fabricated and proximity effects were evaluated in both conditions.
As an application of sub-10-nm EBL, this thesis presents a templated-self-assembly
technique to control the position of individual colloidal quantum dots smaller than 10 nm.
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Chapter 1. Introduction

1.1. Sub-10 nm electron-beam lithography

Electron-beam lithography (EBL) readily enables sub-10 nm resolution' -4. EBL has been

used through many decades5 , but its resolution limits at the sub-10-nm scale were not

thoroughly investigated. Resolution limiting factors to be addressed are spot size,

electron scattering, secondary electron range, resist development, and resist chemical and

mechanical structure. Figure 1-1 illustrates the main limiting factors on the exposure

process. Unfortunately, these limiting factors are not easily separable, leading to a

challenging analysis. Therefore, understanding the effect of these individual limiting

factors and the correlation between them is fundamental to drive EBL to the atomic scale

of resolution.

resist spot size

backscattered

Forward-scattered eeto

electron

secondary
electron

Figure 1-1. Schematic illustration of the resist exposure processes. The electron beam interacts with the

resist generating elastic collisions, producing forward scattering, and inelastic collisions that produce

secondary electrons. The secondary electrons can deposit energy through the resist leading to resist cross-



linking or molecular scission required for exposure. Additionally, electrons can backscatter out of the resist.

The initial electron spot size may limit minimum feature and, if broad enough, affects the minimum pitch

(i.e., periodicity of dense features).

Many approaches have been used to investigate these EBL limiting factors, such as:

investigating different resists 6-, varying electron beam spot size ; varying electron

energy to change electron-matter interaction 0, optimizing resist processing of pre and

post exposure, optimizing resist development2,11 ,12 , and simulating the deposited energy

into resist 13-15. Nevertheless, from a resolution perspective, resist-based lithography was

limited to ~ 4 nim features and ~ 16 nm pitch16 (i.e., periodicity of dense features).

The current EBL resolution limit is further complicated by the reduced length scale.

Since feature size was decreased to below 10 nm, patterning metrology becomes a major

limiting factor for conventional scanning electron microscopy (SEM). To overcome this

limitation, more accurate tools are necessary for metrology, such as the transmission

electron microscope (TEM) and atomic force microscope (AFM)' 6.

Another complication of EBL at the sub-10 nm scale is mass-transport limitations

during development. Resist development of dense features poses a challenge because

chemical reactions and transport of developer species became sensitive to feature

dimension and density3' 4' 16. This problem demands understanding of resist development

at the atomic scale and will require sophisticated development solutions.

This thesis focus on two major resolution limiting factors: (1) electron scattering, and

(2) spot size. The electron scattering will be investigated by varying electron energy of

the electron beam, thus changing electron-matter interactions and the deposited energy

into resist. The electron energy range explored was from 1 to 5 keV in a converted-SEM



(Raithl50) EBL system and 200 keV in an aberration-corrected scanning transmission

electron microscope (STEM). The spot size was ~ 8 nm for the converted SEM 3 and 0.15

nm for the STEM17 . In addition, this thesis presents analysis of proximity effect for low

(sub-5 keV) and high-energy (200 keV) EBL and correspondent applications. The resist

type and developer system were chosen to maximize resolution and minimize their

effects on the previously mentioned limiting factors. The resist used was hydrogen

silsesquioxane due to its high resolution capabilities demonstrated over the past 5 years'

2, 11. The resist development used was salty development because of its high dose

contrast.

1.2. Placement of colloidal quantum dots

Sub-10-nm EBL is key to nanoscience research, such as in emerging fields of

excitonics,' 8 plasmonics,' 9 and nano-optics 20 . One application of sub-10-nm patterning is

in fabricating excitonic and nano-optical devices by using semiconductor colloidal

quantum dots (QDs).

Semiconductor QDs are important building blocks for nanoscience21 . One key aspect

of such system is the fine control of optical transitions in the synthesis process22. Another

QD feature is their atom-like behavior due to discrete energy levels.

For convenience, QDs are predominantly used in a thin-film arrangement, deposited

by spin casting or dip coating. This ensemble configuration of QDs is extensively used to

investigate fundamental properties of this system, such as band gap engineering,22 energy

transfer, and multi-exciton generation26. Important applications are possible in this

ensemble arrangement, such as QD solar cells 26 and QD light-emitting diodes 27.



However, the investigation of single QDs, dimers (two QDs), and trimers (three QDs)

is limited by complex 28 and non-reproducible processes. Therefore, single-QD patterning

is one of the major challenges to both investigate and design a system that takes

advantage of individual properties of QDs20 . Previous reports have demonstrated

placement of sub-100-nm clusters of gold colloidal QDs,12, 29-32 and semiconductor

colloidal QDs 33-36. However, further investigation is necessary for the placement of single

semiconductor QDs smaller than 10 nm.

Applications that may emerge by using this technique are the fabrication of single-

20,37 38-40 41photon emitters, excitonic circuits, and nano-optical devices

This thesis presents a templated-self-assembly technique to control the position of

individual QDs by using sub-10 nm EBL.



Chapter 2. Sub-10 nm electron-beam lithography

Sub-10-nm electron-beam lithography (EBL) is fundamental for the placement of

colloidal quantum dots (QDs) smaller than 10 nm. Important characteristics from EBL

are resolution, pattern uniformity, and throughput.

This chapter describes the investigation of resolution limits, dose requirements, and

proximity effects of low-energy (sub-5 keV) and high-energy (200 keV) EBL. These

EBL techniques would be ultimately applicable in the placement of single QDs smaller

than 10 nm.

2.1. Low-energy EBL

This section is dedicated to the resolution limits and proximity effects of sub-5 keV EBL.

2.1.1. Introduction

Electron-beam lithography at energies 30 keV and above is a well established method of

fabricating sub-20-nm-pitch structures 3,4 . However, EBL at these high energies suffers

from long-range proximity effects. Low-energy (sub-5 keV) EBL exhibits five key

advantages over EBL at higher energies: (1) reduced dwell-time required for exposure

(due to a higher resist sensitivity with only slightly reduced beam current)42-44; (2) lower

system cost and a smaller footprint44' 45; (3) significant reduction in long-range proximity

effects6, 42, 44; (4) lower probability of sample damage and substrate heating; and (5) more

efficient delivery of energy into ultra-thin resists and self-assembled monolayers*6.

Previously, the finest pitch reported for adjacent lines fabricated at beam energies

below 5 keV was 50 nm using calixarene 47, 60 nm using ZEP-7000 47, 50 nm using poly-



methyl-methacrylate (PMMA)48, and 60 nm using hydrogen silsesquioxane (HSQ) 49.

This range of resolution is not sufficient for applications that require high throughput and

high pattern resolution, such as photomask fabrication and multiple-electron-beam

lithography for integrated circuits44. The key challenges to achieving high resolution at

low electron energies are the reduced electron range, the increased broadening of the

incident beam (forward-scattering), and larger minimum spot size. To overcome these

limitations, our experiments were conducted with ultra-thin (~ 15-nm-thick) HSQ in

conjunction with high-contrast development.

Monte-Carlo models of electron scattering at sub-5 keV'4' 15,50 have never been tested

at sub-20 nm length scales. The validity of low-energy exposure models are thus an

important question in the field.

This thesis presents the fabrication of 9 to 30-nm-half-pitch nested-L structures, and

13- and 15-nm-half-pitch dot arrays at electron energy of 2 keV. The dots at the corners

of the 4 pim x 4 pim arrays showed minimal deviation in diameter, indicating minimal

long-range proximity effect. Monte-Carlo simulations of the point-spread function (PSF)

at low electron energies are in agreement with experimental results. To demonstrate the

expected reduced long-range proximity effect, we exposed a 2 pim x 2 prm area in HSQ,

leaving a small central region unexposed. This type of structure would be extremely

difficult to realize (even with proximity-effect correction) at higher energies.

2.1.2. Methods

The resolution of low-energy EBL is expected to be lower than that of high-energy EBL

(e.g. 30 keV to 200 keV) due to increased electron scattering and generally larger spot



size. In addition, the dose required to expose HSQ at low energies should also be much

lower due to more efficient energy-transfer between the incoming electrons and the

resist43

To experimentally determine the resolution limit of low-energy EBL, all samples

were prepared by spin-coating HSQ (1% solids XR-1541, Dow Coming) on silicon

wafers (p-type Boron doped, 10-25 Q.cm) with native silicon dioxide at a spin-speed of

6.5 krpm. The resulting thickness was determined to be 15 nm using an ellipsometer. To

avoid thermally-induced cross-linking of HSQ, which might lead to a loss in resolution,

no pre-exposure bake was performed2 . Unless stated otherwise, all exposures in this

section were carried out at an electron energy of 2 keV on a Raith 150 EBL system with a

thermal-field-emitter source operating at 1800 K (- 0.5 eV energy spread), a 20 pim

aperture, 50 pm field size, a working distance of 6 mm and a beam current of 64 pA.

After exposure, samples were immersed in salty developer2 for 4 min at 24'C, rinsed

under deionized water for 2 min, and blown dry with nitrogen gas. The typical total

processing period from spin coating to development was about 2-3 days. The fabricated

structures were imaged by scanning-electron microscope (SEM) at 10 keV with ~ 6 mm

working distance, and their dimensions were measured by using commercial image

processing software (ImageJ).

In high-energy (e.g., 30 keV to 100 keV) EBL, a large background dose extends over

several micrometers, due to back-scattered electrons. This long-range proximity effect is

expected to be much less severe at low-energies due to the shorter electron range.

However, this expectation had never been verified at length scales smaller than 50 nm,

which is of ever-increasing importance in direct-write lithography.



We measured the point-spread function (PSF) at energies of 1.5, 2, and 3 keV.

Isolated dots were patterned in 15-nm-thick HSQ with single-pixel exposures with doses

ranging from 0.1 fC/dot (6x 103 electrons) to 105 fC/dot (6xl09 electrons), followed by

salty development 2. The radii of the dots were measured from SEM micrographs using

image processing software (ImageJ), as described in Ref. 51 The reciprocal dot dose was

then plotted versus the dot radius, and each PSF was normalized.

To evaluate proximity effect advantages at low-energy EBL, the normalized dose

density (charge per unit area) was calculated. A 2 pm x 2 pm exposed area was divided

into an address grid of 10 nm pitch (i.e., 200 x 200 address points) with 4 x 4 unexposed

points at the center. For each point at position (x, y) in the structure, the distance

d(x, y; n, m) to every exposed point at position (n,m) in the array was calculated:

d(x,y; n,m) = Vix - n12 +|y - m1 2.

52For this calculation we considered radially symmetric PSFs

PSF(r,6) = PSF(r) .

In order to easily manipulate the PSFs for dose distribution calculations, a fitting

function was obtained for each PSF. Typically double Gaussians are used as fitting

functions. However, such fitting functions are not accurate for beam energies from 2 to

30 keV. For the 2 keV PSF, we used three Gaussian functions and achieve a close fit of

the PSF in the measured range. For the 30 keV PSF, we used two Gaussians plus a

hyperbolic function. The physical meaning of the fitted functions is not studied in this

work. Because the hyperbolic function goes to infinity for radii close to zero and we do

not have any data on the 30 keV PSF for distances less than 10 nm, the hyperbolic

function is only applied at 10 nm and above and goes to zero below 10 nm. The fitting



parameters for the functions are provided in 3.

As described by Ref. 52, we used the aforementioned experimentally fitted PSFs to

calculate the contribution to the dose density 6(x, y) from every exposed point (with

charge Q):

S(x,y) = Q PSF(d(x, y; n,m)).

2.1.3. Results

Two designs of nested-L test structures, consisting of either five or seven single-pixel L-

shaped-lines, were patterned in 15-nm-thick HSQ at half-pitches from 9 to 30 nm. Figure

2-1 shows nested L's at half-pitches of 9, 10, 15, 20, and 30 nm (the 15-nm-half-pitch

structure was fabricated in a separate experiment in Ref. 54). Although the 9- and 10-nm-

half-pitch structures could be resolved, residual HSQ was present between the lines, and

the single isolated lines were washed away. On the other hand, structures patterned at 15,

20 and 30 nm half-pitches appeared to be fully developed.
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Figure 2-1. Scanning-electron micrographs of nested L's in 15-nm-thick HSQ exposed at 2 keV. (a) 9 nm

half-pitch with a dose of 0.4 nC/cm (250 electrons/nm); (b) 10 nm half-pitch with a dose of 0.6 nC/cm (370

electrons/nm); (c) 15 nm half-pitch showing a clearly developed structure with a dose of 0.6 nC/cm (560

electrons/nm) (this experiment used cascading nested L's); (d) 20 nm half-pitch with a dose of 0.9 nC/cm

(560 electrons/nm); and (e) 30 nm half-pitch with a dose of 1 nC/cm (620 electrons/nm).

As previously suggested,6 by using the ultra-thin resist we reduced the impact of

forward scattered electrons, leading to higher resolution than seen previously44' . In

addition, the use of HSQ with high-contrast development aided in achieving higher

resolution. The minimum half-pitch observed (9 nm) coincided with the electron beam

spot size (9 nm), which was measured previously in Ref. 3.

To evaluate if we could maintain high resolution over large areas, we exposed

4 pm x 4 pm dot arrays on 15-nm-thick HSQ at 2 keV, with half-pitches of 15 nm and 13



nm (- 1 Teradot/in.2 or ~ 0.15 Teradot/cm 2), as shown in Figures 2-2a and 2-2b,

respectively. A small amount of residual HSQ was present between the 13-nm-half-pitch

dots, and the dots had considerable variation in diameter. In contrast, the dots in the 15-

nm-half-pitch array were uniform and without apparent residual HSQ between the dots.

The dots at the corner of the array showed only minimal size deviation (- 12 %),

demonstrating that the long-range proximity effect was minimal, as expected.

Figure 2-2. Scanning-electron micrographs of a comer of a 4 prn x 4 pm dot array in 15-nm-thick HSQ,

exposed at 2 keV. (a) 15 nm half-pitch with a dose of 2 fC/dot (12,000 electrons/dot) and (b) 13 nm half-

pitch with a dose of 1.5 fC/dot (9,300 electrons/dot). The small deviation (- 12 %) in dot diameter between

the center and the corner of the array indicated minimal proximity effect.

13 nmr-

100 n m 30 nm



Patterning the same structures as shown in Figure 2-1 at 30 keV required 6.4 (4,000

electrons/nm) to 16 nC/cm (9,900 electrons/nm), which is roughly 16 times higher than

what was required at 2 keV. The increased resist sensitivity at low energies may pose

problems for more sensitive resists such as PMMA by causing shot noise and increased

line-edge roughness55 .

The PSF (i.e., spatial distribution of deposited energy into resist) was measured to

evaluate proximity effects. Figure 2-3a compares the experimental PSFs we obtained

with the PSF at 30 keV, determined in Ref. 56 in 30-nm-thick HSQ.
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radius, followed by normalization (the maximum of the PSF was set to unity). (a) PSF for 15-nm-thick

HSQ at 1.5, 2, 3 keV and 30 keV for 30-nm-thick HSQ; (b) PSFs of (a) for sub-60-nm radius. The 1.5 keV

PSF had widest beam spreading at sub-40-nm radius; (c) Experimental and Monte-Carlo-simulated PSFs at

2 keV, showing good agreement.

For PSF comparison in the long-range (radius bigger than 40 nm), we defined an

effective electron range, which is as a point where the dose is 10- smaller than the

incident dose. At this range, the deposited dose is considered negligible for all practical

purposes. As shown in the Fig. 2-3a, this effective range of the electrons at 1.5 and 2 keV

is less than 200 nm. Figure 2-3b is a magnified view of the same PSFs at radii 60nm and

below. The PSFs at 2, 3 and 30 keV are approximately the same for the short range

(radius smaller than 40 nm), presumably due to the use of thin resist. Only the 1.5 keV

PSF has somewhat wider beam-spreading at this short range.

A Monte-Carlo simulation based on Refs. 14, 15, 50 was conducted to determine if

the measurements were in agreement with the modified Bethe energy dissipation law for

low energies. We assume that the high contrast of HSQ with salty development (contrast

value, y = 10) permits a direct comparison between the experimental and simulated PSFs.

We also assume that the dose distribution of the Monte-Carlo simulation represents a

close approximation to the cross-linking distribution. The experimentally determined and

simulated PSFs are in good agreement for energies 1.5, 2, and 3 keV. Figure 2-3c is a plot

of the simulated and experimental PSFs at 2 keV.

There are several possible hypotheses that could explain the small observed mismatch

between simulated and experimental PSFs, seen in Figure 2-3c. The high but finite

contrast of the salty developer causes a broadening in the PSF, as observed at large



radius. Mass-transport limitation during development'6 is a possible source of

experimental deviation at the sub-20 nm scale. SEM metrology is also imperfect,

particularly for dots with small radius, i.e. sub-20 nm dots are expected to have

proportionally larger errors in the PSF measurement.

To demonstrate the reduced scattering range at low energies, we simulated the pattern

in Figure 2-4a and exposed the pattern shown in Figure 2-5a. These patterns are

illustrative of and sensitive to long-range proximity effects. If the background dose in the

unexposed area is less than the threshold required for HSQ to cross-link, then a hole will

be present. However, if the proximity effect is substantial, the hole will be exposed by the

scattered electrons.
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Figure 2-4. (a) Design of 2 jim x 2 im patterned area with 40 nm x 40 nm unpatterned window at the

center. (b) Normalized dose density (or aerial dose) calculated at the center of the unpatterned area, for low

energy (2 keV) and high energy (30 keV). The exposure contrast at 2 keV is 5.5 times higher than at 30

keV.(c) Calculated process latitude (diameter variation versus hole diameter) of the pattern shown in (a),



considering a 5% dose fluctuation. The process latitude is higher and the diameter variation is lower for 2

keV than at 30 keV.

Figure 2-4b shows the normalized doses density (charge per unit area) calculated at

the center of the pattern shown in Figure 2-4a for electron energies of 30 keV and 2 keV.

Exposure contrast K was used to quantify the proximity effects at the center of the

pattern. K was defined as (Dosemax - Dosemin)/(Dosemax + Dosemin), where Dosemax

was the maximum dose in the entire pattern and Dosemin was the minimum dose in the

unexposed central region of the pattern. As shown in Figure 2-4b, the background dose at

2 keV is much lower than that at 30 keV. K = 0.06 for 30 keV and 0.33 for 2 keV.

We also calculated the process latitude for this pattern at 2 and 30 keV, shown in

Figure 2-4c. For holes from 0 to 40 nm diameter, a dose variation of 5% was considered.

Such dose variation translates into a variation in hole diameter. Figure 2-4c shows a

better process latitude for 2 keV exposures than at 30 keV exposures due to the reduced

long-range proximity effect. For a hole with 30 nm diameter, the 2 keV exposure has ~

10% diameter variation while the 30 keV exposure has ~ 50% diameter variation.

To experimentally confirm the dose simulation we exposed the pattern in Figure 2-5a.

Figure 2-5b is a SEM micrograph of the fabricated pattern in the HSQ. The holes were 30

nm in diameter. A more complex pattern, spelling the letters 'EFRC', was also fabricated

(Fig. 2-5c) with features at the 20 nm length scale.



Figure 2-5. Holes and trenches patterned in 15-nm-thick HSQ at 2 keV. (a) Pattern consisting of 2 pm x 2

pm exposed area with 40 nm x 40 nm unexposed windows at the center. (b) Scanning-electron micrograph

of close-packed 30-nm-diameter holes in HSQ, using 10 nm step size and 0.3 fC/dot (1,860 electrons/dot).

(c) Scanning-electron micrograph of 'EFRC' letters with a minimum feature size of 15 nm and minimal

edge roughness.

A drawback of using low-energy EBL is the difficulty in patterning thick resists. The

finite penetration depth of low-energy electrons limit the maximum resist thickness

possible, and forward scattering reduces resolution as the resist thickness increases6 . The

use of bi-layer or tri-layer stacks becomes necessary. Transferring high resolution

patterns from resist to an underlying material is a concern due to the thinness of the

electron-beam resist. Fortunately, HSQ provides better etch resistance compared to

organic resists, such as poly(methylmethacrylate) (PMMA).

2.2. STEM lithography



This subsection focuses on the resolution limits and short-range proximity effects of 200

keV EBL, which was carried out with an aberration-corrected scanning transmission

electron microscope (STEM) as the exposure system.

2.2.1. Introduction

The known resolution limiting factors of EBL are3 : primary-electron scattering, spot size,

secondary electron range, development process, and resist structure. We decided to

minimize the influence of electron scattering and spot size to facilitate the resolution limit

analysis. To minimize primary-electron scattering, we chose an exposure with 200 keV

electrons. To minimize the spot size, we chose an aberration-corrected STEM as the

exposure system, featuring a 0.15 nm spot size with beam current of 150 pA'.

STEM exposures have been done before in conventional resists, such as poly(methyl

methacrylate) (PMMA)57and calixarene 58, and in low-molecular-weight resists, such as

NaCl59 . The minimum feature in PMMA was 3-5 nm and 30 nm pitch. The minimum

feature in NaCl was 1.5 nm and 4.5 nm pitch, but with the drawback of 500 times smaller

sensitivity than PMMA. Nevertheless, the resolution-limiting factors were not

systematically explored in these studies.

This thesis present an analysis of the resolution limits at sub-10 nm scale by using

recently developed processing2 and metrology method16 .

2.2.2. Methods

To experimentally determine the resolution limit of 200 keV EBL, all samples were

prepared by spin-coating HSQ (1% solids XR-1541, Dow Coming) on 50-nm-thick Si3N4



membranes at a spin-speed of 6 krpm. The resulting thickness was -20 nm, measured by

fallen over structures on TEM. To avoid thermally-induced cross-linking of HSQ, which

might lead to a loss in resolution, no pre-exposure bake was performed 2. The exposures

were carried on a Hitachi HD 2700C aberration-corrected STEM (at Brookhaven

National Laboratory) with a cold-field-emitter source (- 0.3 eV energy spread) and a

beam current of 100-150 pA. After exposure, samples were immersed in salty developer 2

for 4 min at 24'C, rinsed under deionized water for 2 min, rinsed in isopropyl alcohol for

15 s, and blown dry with nitrogen gas. The typical total processing period from spin

coating to development was about 4 days. The fabricated structures were imaged using a

JEOL 2010F transmission electron microscope (TEM) at 200 keV, and their dimensions

were measured by image processing software (ImageJ).

The point-spread function (PSF) of this 200 keV EBL system was measured to

analyze the resolution limits and proximity effect at the sub-60 nm length scale. To

measure the PSF at 200 keV, isolated dots were patterned in 20-nm-thick HSQ with

single-pixel exposures with doses ranging from 1 fC/dot (6xl04 electrons/dot) to 103

fC/dot (6x 107 electrons/dot), followed by salty development 2. The radii of the dots were

measured from TEM micrographs using commercial image processing software (ImageJ).

The reciprocal dot dose was then plotted versus the dot radius, as described in Ref.

51 .The PSF was normalized and compared to a 30 keV PSF measured in Ref. 16.

2.2.3. Results

Figure 2-6 shows a HSQ dot array with 5 nm half-pitch, which was the minimum half-

pitch achieved. There was no observed resist residue between the dots after development.
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This result represents a significant improvement over previous reports at 30 keV2 ". To

understand this improvement, the point-spread function (PSF) was measured at 200 keV.

Figure 2-7 shows the measured PSF at 200 keV and the PSF at 30 keV from Ref. 16.

It is clear that the 200 keV PSF is sharper than at 30 keV. The functional model of these

PSFs is shown on the inset of Figure 2-7. The range of forward scattered electrons is

represented by the a parameter in the fitted PSFs. The a30 keV was 7.8 nm and a200 keV was

4.3 nm, which is 1.8 times smaller. In addition, the difference in the proximity effect

within this sub-60 nm range was quantified. The volumetric distributed dose (charge per

volume) at 200 keV was 37% smaller than at 30 keV, representing a significant reduction

in short-range proximity effect.

Figure 2-6. Bright field transmission electron micrograph of 5-nm-half-pitch dot array of HSQ, exposed at

200 keV. The HSQ thickness was 20 nm and it was on top of a 50-nm-thick Si 3N4 membrane. The dose was

9 fC/dot (54,000 electrons/dot).
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We considered the following limiting factors to pattern this 5-nm-half pitch structure:

spot size; mass-transport limitation during development; and proximity effect (i.e.,

electron scattering). The spot size was not a limiting factor for the minimum pitch

because it is significantly smaller than the minimum half-pitch. In addition, the

development process was sufficient to fully develop the structure. Thus, the reduced

short-range proximity effect was the main factor that resulted in higher resolution than

the previous report at 30 keV.
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Figure 2-7. The point-spread function (PSF) for 20-nm-thick HSQ at 30 keV 16 and 200 keV. The PSF was

obtained by plotting reciprocal dot dose versus the dot radius. The inset shows the fitting model for both

PSFs. The fitting parameters were: C3O keV 7.8 nim; a200 keV 4.3 nm; 730 keV = 1.8; and Y200 keV = 1.1.

The electron dot dose to expose the structure in Figure 2-6 was 9 fC. This dot dose is

the same for 30 keV exposures, which is counterintuitive according to the Bethe
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equation. One hypothesis for this dose mismatch is a resist heating effect. The current

density in the used STEM was ~ 600 times higher than in a conventional 30 keV EBL

system. Therefore, more joule heating is expected with STEM exposure which could shift

the resist sensitivity. Nevertheless, more experiments are necessary to validate this

hypothesis, such as verifying the sensitivity at different current densities.

The minimum feature size attainable with HSQ at 200 keV was also investigated. A

dot array was fabricated with 15 nm pitch, but slightly overdosed. Figure 2-8 shows the

resultant array with HSQ structures down to 1 nm. This preliminary result gave the

smallest resist structure ever written by EBL in conventional resists. This result was only

achieved by the combined use of sub-nm spot size, proper STEM stability (high electron

beam current for STEM - 150 pA - and small sample drift - ~1 nm/min), high-contrast

development (contrast value, y = 10), high-resolution capabilities of HSQ, and sub-nm

metrology obtained with TEM.



Figure 2-8. Bright field transmission electron micrograph of HSQ structures exposed by the STEM at 200

keV. The HSQ thickness was 20 nm and it was on top of a 50-nm-thick Si3N4 membrane. The lines had a

pitch of 15 nm, with feature size variation from 1 to 6 nm. The feature variation was due to different dwell

times (electron dose) between dot and inter-dot exposures of the scanning beam (a beam blanker was not

available). The HSQ structures appear to be fully developed, with some fallen-over posts indicated by

slightly darker areas than the background.

Aberration-corrected STEM lithography has also a throughput advantage. Such a

microscope provides high electron-beam current (up to 200 pA in existing tools) with

sub-Angstrom spot size. Such features are not available in standard EBL tools. For

instance, the beam current of an electron optics column (e.g., scanning electron

microscope) is proportional to the square power of spot diameter6. Considering this

assumption to be valid for our STEM system (0.15 nm spot at 200 pA), one could obtain



a 2 nm spot size with beam current of 35 nA. Thus, the use of aberration corrector might

lead to ~ 10 times higher throughput than existing EBL tools for sub-5 nm patterning.

2.3. Summary

We have shown that low-energy EBL is capable of patterning with high resolution and a

significantly reduced exposure dose. A resolution limit of 15-nm-half-pitch for nested L's

and large-area dot array in HSQ was achieved at 2 keV. We also fabricated 9-nm-half-

pitch nested L's and 13-nm-half-pitch large-area dot array, but resist residues were

observed. The required dose at 2 keV was about one order of magnitude lower compared

to that required at 30 keV. PSFs at low energies were experimentally determined and

were in good agreement with Monte-Carlo simulations. From the experimental PSFs, the

effective scattering range of electrons at energies 1.5 and 2 keV was less than 200 nm.

The long-range proximity effects at sub-5-keV are much lower than at 30 keV, as

demonstrated in the 'hole-in-HSQ' structures and the minimal dot diameter deviation at

the corners of the large dot arrays.

We have also shown that 200 keV EBL is capable of patterning HSQ structures with

5 nm half-pitch and 1 nm minimum feature size. In addition, the smaller short-range

proximity effect at 200 keV was the main reason for achieving higher resolution than at

30 keV.



Chapter 3. Quantum dot placement

This chapter describes a templated-self-assembly technique developed to control the

position of individual colloidal quantum dots (QDs) through sub-10-nm electron-beam

lithography (EBL).

The lithographically placement of individual QDs is one step towards the fabrication

of excitonic circuits38-40 and nano-optical devices4 1 at the sub-10 nm scale. Furthermore,

this technique enables the investigation of fundamental properties of QDs, such as energy

transfer between lithographically-placed QDs.

3.1. Fabrication process

The fabrication process for QD placement is illustrated in Figure 3-la. A

poly(methylmethacrylate) (PMMA) resist was spin cast on a silicon substrate, and then

the templating mask was fabricated by using the Raith150 EBL system at 30 keV. After

defining the PMMA templates, a solution of QDs (6-nm-diameter CdSe) was spin casted

and the remaining resist was removed by dissolution in acetone. This process resulted in

QD clusters attached on the substrate. Figure 3-lb shows the PMMA patterning, which

was optimized for minimum template (i.e., hole) size of 8 nm. The placed QDs were

analyzed in a Zeiss scanning electron microscope (SEM) at 10 keV and 6 mm working

distance.

In order to minimize the number of QDs in each cluster and increase pattern

uniformity, the QD solution concentration, resist thickness, and feature size were

optimized. In addition, the effect of QD ligand concentration in the fabrication process

was investigated.
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Figure 3-1. (a) Fabrication process of templated QDs. PMMA was spin coated to a thickness of 40 nm on

Si, followed by EBL. Then, 6-nm-diameter CdSe QDs were spin coated. The PMMA lift off was done with

acetone, leaving small clusters of CdSe QDs. (b) Scanning-electron micrographs of optimized PMMA

templates with a minimum feature size of 8 nm for development at 7'C.

3.2. Process optimization

First, the concentration of colloidal QDs in solution was varied to investigate its effect on

pattering resolution and pattern yield. Here the pattern yield was defined as the ratio of

yielded QD clusters to designed QD clusters. Figure 3-2 shows QD patterning using 0.5

and 2 pM QD solutions. The solution with lower concentration provided small clusters

(less than 10 QDs), but the pattern yield was only 25%. The solution with higher

concentration provided 80% pattern yield, but with larger QD clusters than the ones

obtained with the diluted solution. Therefore, the 2pM solution was chosen for the best

yield performance and other parameters, such as template size and resist thickness, were

optimized to decrease the number of QDs in each cluster.
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Figure 3-2. Scanning-electron micrographs of templated 6-nm-diameter CdSe QDs generated by a solution

with low (0.5 pM) (a)-(b) and high (2 pM) (c)-(d) concentration of QDs. The PMMA mask used was 40

nm thick. In (a) the QD clusters have from one to 10 QDs, with 25% pattern yield. (b) shows a cluster with

two QDs from the sample shown in (a). (c) has from three to 15 QDs in each cluster, with 80% pattern

yield. (d) is a sub-10 QD cluster from the sample shown in (c).

To achieve the smallest QD clusters, the EBL process was optimized to decrease the

size of templates. One technique to improve the resist contrast and decrease the minimum

feature of PMMA is by carrying out the development at low temperature12, ".The

samples were developed in IPA:MIBK (3:1) for 30 s and blown dry with nitrogen. The

development temperature was varied from 00 C to 15'C, as shown in Figure 3-3.

Minimum feature achieved at 0 and 7'C was 8 nm and at 15'C was 10 nm. Therefore, the

temperature of 7'C was chosen to provide minimum template size for the QD placement

process.

(b)

12 nm

(d)

25 nm



Figure 3-3. Scanning-electron micrographs of sub-10 nm holes in PMMA exposed by EBL at 30 keV, and

developed for 30 s at: (a) 00C; (b) 70C; and (c) 15*C. (a) shows 8-9 nm holes. (b) has equal resolution than

(a), and (c) shows larger features, i.e., 10-12 nm holes.

After the optimization of both solution concentration and development temperature,

the resist thickness was varied to obtain the smallest QD clusters. Figure 3-2 shows

patterning by using 40 nm thick PMMA as mask. The relatively thick resist creates a

template with higher volume that accommodates and attracts more QDs per template.

In order to reduce the number of QDs in each cluster, a 12 nm thick PMMA was used

instead. Figure 3-4 shows the results of the optimized process, by using 12-nm-thick

PMMA as the mask, development temperature of 7*C, and 2ptM of QD concentration.

The QD clusters were successfully patterned at the desired position. Figure 3-4c shows

the smallest QD clusters, were single QD, dimers and trimers were placed.
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Figure 3-4. Scanning-electron micrographs of templated 6-nm-diameter CdSe QDs. The solution

concentration was 2 gM. (a) shows an overview of the sample. There are a few QDs present outside the

patterned area. These QDs were presumably re-deposited during the lift-off process. (b) and (c) are higher

magnification of the middle and bottom rows of QDs shown in (a). Clusters with one QD were achieved.

Although Figure 3-4 shows small clusters of QDs, there is an evident statistical

variation in the fabricated structure. Section 3.3 presents a statistical characterization of

the placed QD clusters.

3.3. Statistical analysis

(a)

200 nm

(b)

25 nm

(c)

25 nm



In the previous section, placement of QD was demonstrated with possibility to achieve

single-QD placement. In order to quantify the statistical distribution of this process, a

histogram of the fabricated structures is shown in figure 3-5.

16

t 12

8-

E
c4.

0
1 2 3 4 5 other

(36%)
number of quantum dots in each cluster

Figure 3-5. Histogram of the number of QDs (6-nm-diameter CdSe) in each cluster. The total number of

analyzed clusters was 54. The QDs were counted visually by using high resolution SEM micrographs,

obtained at 10 keV in a Zeiss SEM (Gemini column). Above every histogram bar is presented a typical

SEM image used to count the QDs in a cluster.

The pattern yield, or the percentage of yielded structures, was 87%. The average

number of QDs in each cluster was three. For this average value, only clusters with an

identifiable number of QDs (64% of total) were considered. QD clusters with

undetermined number of QDs were 36%. From these undetermined clusters, 24% (8% of

total) had area smaller than 12x 12 nm (2x2 dots), so they were expected to have less than

5 QDs in each cluster. 76% of the undetermined clusters (27% of total) had area bigger

than 12x 12 nm; so, they were expected to have more than 5 QDs in each cluster. The



difficulty in counting QDs lies in the SEM resolution limits and residues from PMMA

and solvents (i.e., acetone, hexane) in the fabrication process.

3.4. Surface chemistry

For application of the templated QDs in excitonic or nano-optical devices, one would

have to characterize its optical properties, such as the photoluminescence (PL) intensity

and exciton lifetime. The CdSe QDs (or core QDs) are not optimized for PL experiments

because they present dark surface states that do not emit, leading to decreased PL signal.

Then, there is a need to investigate placement of core/shell dots, such as CdSe/CdZnS, to

maximize QD PL and take advantage of its optical properties. The shell isolates the core

from recombination centers that decrease exciton lifetime and the PL intensity22. One

problem that arises by using different QDs is their distinct ligand composition62

The concentration of ligands on the QD surface was varied to investigate their effects

on the placement process. The majority of the ligands were synthesized as phosphonic

acid62 . Quantifying the exact composition of ligands on a QD surface is still a challenge

in the field, so its concentration is rather qualitative than a quantitative measure.

Nevertheless, the ligand concentration was decreased by performing multiple purification

processes in the QD solution therefore decreasing the phosphonic acid concentration.

Figure 3-6 shows an experiment to verify the QD attachment on 300 nm SiO 2 on top

of Si. The SiO 2 layer was used to isolate the QDs from the bulk Si, avoiding PL

quenching due to exciton energy transfer from the higher band gap (CdSe ~1.8 eV) to the

lower band gap (Si -1.1 eV) material. This substrate is also suitable for SEM metrology

because the Si is conductive. Figure 3-6a and 3-6b present a sample with QDs that



received one purification 62 of the solution. Figure 3-6c and 3-6d present a sample with

QDs that received three purification steps of the solution, therefore, had a lower

concentration of the phosphonic acid ligand. The sample that received three purifications

had no QD attachment problem after the acetone lift-off process, as shown in Figure 3-

6d. Therefore, the reduced concentration of ligands promoted QD adhesion, which

enables high pattern uniformity for placing CdSe/CdZnS QDs.

Figure 3-6. Scanning electron micrographs of 4-nm-diameter CdSe/CdZnS spun on SiO2 substrates. (a)

shows QDs purified one time6 2 without further processing. (b) shows QDs as prepared in (a) followed by

acetone dipping for 3 min to simulate the lift-off conditions of the QD-patterning process. (c) consists of

QDs purified three times without further processing. (d) consists of QDs as prepared in (c) followed by

acetone dipping for 3 min. The insets of all figures show higher magnification of the darker areas, which

are QD agglomerations. The QD attachment after acetone processing is clearly improved with three
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purification steps, which indicate the smaller concentration of ligands on QD surface favors its adhesion on

the substrate.

The next step on this project is to template core/shell CdSe/CdZnS QDs to achieve

placement of QDs with significant PL signal.

3.5. Summary

This chapter described a templated self-assembly technique to control the position of

individual QDs through EBL. This QD-placement process allowed fabricating QD

clusters with 1 to 5 QDs. The process was developed by optimizing QD solution

concentration, resist thickness, and template size. One figure of merit in this process is

the pattern yield, which is the ratio of yielded structures to the patterned templates. A

pattern yield of 87% was achieved with an average of 3 QDs in each cluster. This

optimized top-down lithographic process is a step towards the integration of individual

QDs in optoelectronic systems.



Chapter 4. Future Work

This chapter describes future work planned to complement this thesis. First, this chapter

describes preliminary optical characterization of placed colloidal quantum dots (QDs).

Second, this chapter discusses the challenges of sub-5 nm patterning with an aberration-

corrected scanning transmission electron microscope (STEM).

4.1. Quantum dot optical characterization

For application of the templated QDs in excitonic or nano-optical devices, one would

have to characterize its optical properties. Key optical properties to be investigated are

photoluminescence (PL) intensity, spectrum emission, and exciton lifetime.

Two different samples were prepared as described in chapter 3. Type-I sample

contained patterned CdSe (6-nm diameter) core QDs. Type-II sample contained patterned

CdSe/CdZnS core/shell (9-nm diameter) QDs. The substrates used for these samples were

300 nm Si0 2 on silicon. The main function of the silicon dioxide is isolating the QDs

from the bulk Si, avoiding PL quenching due to exciton energy transfer from the higher

band gap (CdSe -1.8 eV) to the lower band gap (Si -1.1 eV) material.

These samples of QDs were observed by confocal scanning microscopy using an air

microscope objective (60x, 0.7 NA) and a 514 nm pulsed diode laser for excitation (2.5

MHz, ~30 ps pulse width). The collected emission was detected by an avalanche

photodiode-based single-photon detector.

The confocal PL of sample type-I is presented in Figure 4-1. The PL of the ensemble

of QDs (depicted as the number '5') was resilient after the fabrication process. However,

single-CdSe QD did not emit light. This assumption was verified because the CdSe QDs



were visible only in SEM and not in the PL setup. Therefore, there is a need for core/shell

QDs to avoid exciton recombination centers from the surface, leading to higher

luminescent QDs.

Figure 4-1. Confocal photoluminescence (PL) of CdSe QDs with 6 nm diameter. The peak of emission

wavelength was 540 nm. This large area pattern maintained its PL even two weeks after the fabrication

process, in ambient atmosphere. However, the sub-20-nm clusters of QDs did not presented PL.

The confocal PL of sample type-IL is presented on Figure 4-2. Single CdSe/CdZnS (9-

nm diameter) presented PL after the fabrication process. However, the QD attachment on

the substrate was poorer than with core QDs. In addition, significant re-deposition of

QDs during the lift-off in the fabrication process (described in chapter 3) lead to

unwanted QDs in the unpatterned area. Nevertheless, these small clusters of QDs

maintained PL, i.e., they were optically active after the fabrication process.



Figure 4-2. Confocal photoluminescence of CdSe/CdZnS QDs (core/shell with 4nm core) with 9 nm

diameter. The peak of emission wavelength was 610 nm. These QDs were templated, but there was

significant re-deposition of QDs.

Further work is still necessary to optimize the QD placement and maintaining optical

quality, such as placing QDs with the chemical processing described in chapter 3, section

3.4.

4.2. Sub-5 nm STEM lithography

Chapter 2, at section 2.2, described electron-beam lithography using an aberration

corrected scanning transmission electron microscope (STEM), i.e., STEM lithography.

One key result was the achieved minimum feature size of 1 nm. However, further

investigation is still necessary to achieve uniform 1-nm patterning. Figure 4-3 shows one

attempt to increase feature size control, but new challenges need to be addressed.

Challenges associated with 1-nm patterning are resist collapse, resist adhesion and

metrology. A 1-nm-diameter post or 1-nm-wide line, with 15 nm thick resist, does not

have sufficient mechanical stability and tends to collapse during resist development. The

2 pr



adhesion problem is intuitive since 1-nm features have small surface contact with the

substrate and could be easily removed during development. The metrology challenge is

due to small dimensions, only accessible with transmission electron microscope (TEM)

or atomic force microscope (AFM).

(a) (b)

2 5 nm

4 -7 n ni

(c)

Figure 4-3. Bright field transmission electron micrograph of HSQ lines, exposed at 200 keV. The HSQ

thickness was 20 nm and it was on top of a 50-nm-thick Si3N4 membrane. (a)-(c) had linear-dose of 16

nC/cm (10,000 electrons/nm), 28 nC/cm (17,000 electrons/nm), and 46 nC/cm (28,000 electrons/nm),

respectively. The exposure step size was 2 nm. (a) did not receive enough dose in the entire line and

collapsed. In addition, there is significant proximity effect generated by the exposed pads connected to the

lines, indicated by the larger width at the beginning and end. (b) had non-uniform line-width, with 2.5 nm

as minimum width at the center, presumably due to proximity effect. (c) had sufficient dose and better

uniformity than (a) and (b).
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One strategy to fabricate 1-nm features is by using collapsed structures . Collapsed

features (lines or posts) with 1 nm dimension pose a challenge for TEM metrology,

because of poor signal-to-noise ratio between the structure and the supportive membrane.

AFM metrology is also an option, but could suffer from membrane roughness and

curvature. To overcome the TEM metrology problem, sub-10-nm thick Si 3N4 membrane

could be used to increase signal-to-noise ratio.

Another strategy for 1-nm patterning is attaching supportive structures on the features

to avoid the structure collapse, as indicated in Figure 2-8 and schematically in Figure 4-4.

Figure 4-4 presents large area pads to anchor the high-resolution grating. In addition, the

grating interception (or corners) has larger area and stability to hold the lines. The

structure should also be symmetric to suppress net-capillary forces during evaporation of

the developer.

unpattemned
area @@se

Figure 4-4. Schematic top-view of a structure to avoid collapse during development. Blue area represents

the fabricate structure and the white background is the substrate. The large area pads and reinforced

interconnects in this grating are designed to give mechanical stability to the thin lines that compose the

square grating.
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