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Abstract 

The microstructure of a porous medium and the physical characteristics of the solid and fluid 

phases determine the macroscopic transport properties of the medium. The purpose of this paper 

is to test numerical calculations of the geometrical and transport properties (electrical 

conductivity, permeability, specific surface area, and surface conductivity) of porous, permeable 

rocks, given their 3D digital microtomography (µCT) images. We focus on µCT data for a 23.6% 

porosity sample of Berea Sandstone 500 (BS500) with 2.8 micron resolution. Finite difference 

methods are used to solve the Laplace and Stokes equations for electrical and hydraulic 

conductivities. We show that the permeability and formation factor are well correlated using a 

hydraulic radius computed from the digitized image. Electrical transport in the BS500 sample is 

complicated by the presence of clays.  A three phase conductivity model, which includes the 

double layer length and counter-ion mobility, is developed to compute interface conductivity 
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from the µCT image and measured values of the cation exchange capacity (CEC).  Our 

calculations compare well with the laboratory measurements on cm3 core samples. Finally, we 

examine the influence of image size and image resolution on our numerical results. 

 

Introduction  

    Understanding the interaction between rock matrix, pore space, and pore fluids at 

microscopic scale is crucial to better interpretation of macroscopic geophysical measurements. 

With the development of modern imaging techniques, such as advanced X-ray CT and laser 

confocal microscopy, direct image of the 3D pore structure of sedimentary rock at micrometer 

resolution could be obtained. Accurate representation of porous material in digital space makes it 

possible to compute rock properties according to the physical laws controlling characteristics 

such as fluid flow and electrical currents (Hazlett, 1995; Coles et al., 1996; Pal et al., 2002). 

Computational rock physics has become a significant complement to core-derived laboratory 

measurements and the use of empirical rock physics in the interpretation of logging 

measurements and resulting reservoir description. Effective characterization of complex rock 

microstructure at pore scale enables better prediction of physical properties. It reduces the 

ambiguity of parameters in empirical rock physics models and minimizes the physical and 

chemical changes of core samples during experimental processes (Klinkenberg, 1941; Amaefule 

et al., 1986; Li et al., 1995). Advances in computer hardware and computational algorithms make 

it possible to calculate transport properties on large three dimensional volumes. Increasing the 

pore space image will reduce the fluctuations of computed properties from small sub-fragments 
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and minimize the difference between calculated and measured results. 

    In this study, finite difference (FD) techniques are employed to solve the Laplace equation 

for electrical conductivity and the Stokes equation for single phase fluid flow (Roberts and 

Garboczi, 2000). The 3D microstructure is converted into a network of electrical and hydraulic 

resistors. For the Laplace equation, the boundary conditions (BC) are current and electrical 

potential normal to the fluid-solid interface are continuous. For the Stokes equation, the 

boundary condition (BC) is the no-flow condition. In addition to providing the effective value for 

electrical conductivity and hydraulic permeability, FD techniques could also give the current and 

flow field distribution at each voxel within the 3D structure. Thus, it is possible to solve 

multiphysics coupling, such as electrokinetic problems on a microstructure (Pride et al., 1997). 

Predicting the formation factor of saturated rocks, particularly with high porosity 

Fontanbleau sandstones, from a binary image has been successful (Arns et al., 2001, 2005; Pal et 

al., 2002). The most fundamental empirical relation between brine conductivity and brine 

saturated rock conductivity is Archie’s law (Archie, 1942),  

                            ,                             (1) 

where F is the formation factor, and are fluid and saturated rock conductivities, 

respectively, Φ is porosity, and m is known as the cementation exponent; depending on lithology, 

a≈1 is also a lithological factor. However, this relationship is based on the assumption that the 

electrolyte conductivity is uniform and the mobile ions are uniformly distributed throughout the 

pore space. A fluid saturated rock can therefore be modeled as a two-component medium: solid 
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grains (volume fraction ) and saline water (volume fraction ). This is the basis for 

calculating the formation factor from digitized binary rock CT microtomography previously 

(Auzerais et al., 1996; Arns et al., 2001, 2005). This assumption is satisfied by sedimentary rocks 

such as clay-free sandstones. However, the presence of clay minerals in many rocks puts 

additional charge carriers in the fluid adjacent to solid surfaces, causing additional conduction 

along the surface, which is confined to a thin layer known as electric double layer (EDL). The 

thickness of EDL is defined as the Debye length (Debye and Hückel., 1923; Pride and Morgan, 

1991), extending from 30 to 3000 Ǻ from the mineral surface into the neutral electrolyte. 

Formally, conductivity can be written as the sum of the normal ionic brine conductivity and a 

near surface term due to the double layer. Waxman and Smits (Waxman and Smits, 1968) 

generalized the electrical behavior of shaly sands into an empirical equation by assuming the 

surface conduction to be parallel with the bulk conduction for all values of bulk conductivity. 

The Waxman-Smits model is characterized as the equation 

                            ,                             (2) 

where F* is the formation factor in the low resistivity limit, is the cation concentration per 

unit pore volume (equivalent liter-1or meq ml-1), and B is the average mobility of the counterions 

close to the grain surface (mho cm2 meq-1). B is set to increase exponentially with  at a low 

salinity region and attains a constant maximum at high values of . This empirical model can 

capture the nonlinear (convex-upward) behavior of  versus  for shaly sands. More 

recently, Revil et al. proposed an ionic electrical conductivity model in porous media, with 

particular emphasis given to surface conduction (Revil and Glover, 1997, 1998; Revil and Leroy, 
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2001). Their model is based on the description of surface chemical reactions and electrical 

diffuse layer processes, which gives more depth into the nature of surface conductivity than the 

empirical Waxman-Smits equation. Revil et al.’s model also contains the parameter , which 

signifies the same quantity present in the Waxman-Smits equation.  is related to “Cation 

Exchange Capacity” (CEC) by the equation 

                          ,                           (3) 

where  is grain density (in g cm-3). In shaly sands containing a mixture of clay, the CEC is 

taken as the arithmetic average of the CEC, weighted by the corresponding mass fraction of each 

clay mineral. The surface mobility of the counterions in the EDL is directly introduced in Revil 

et al.’s model, which is determined by the ionic species present in the saturation brine.         

    Surface conductivity can contribute substantially to the effective conductivity of the 

saturated rock, especially in the case of high clay contents and high resistivity brines. In 

laboratory experiments, the EDL at the fluid-grain surface is naturally present. Therefore, surface 

conductivity should be included in numerical modeling to compare well with laboratory 

measurements. Numerical errors should also be considered in order to make an accurate 

estimation of physical properties from a digital image. The impact of calculation size and image 

resolution on various properties will be addressed in this paper.   

   

Sample Description and Laboratory Measurements 

Our sample is a Berea Sandstone 500 (BS500) core sample with 23.6% porosity. A 3D 

microtomography image is obtained from the Australia National University (ANU) Digital Core 
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Lab Consortium. The gray-scale image with brightness corresponding to X-ray attenuation is 

binarized to clearly distinguish the pore space and rock matrix by ANU. The BS500 core sample 

is digitized into a 18403 voxel tomogram with 2.8 micron resolution. This sample contains some 

clay; the mineralogy of BS500 is listed in Table 1. The volume fraction of clay was determined 

by the X-ray attenuation histogram to be 4.03% (very close to mineralogy analysis in Table 1). 

From an imaging standpoint, a clear binary image separating pore from other mineral phase is 

expected. However, the low-density inclusions such as clays and feldspars cause spreading in the 

low density signal, making phase identification more difficult (Knackstedt et al., 2005; Arns et 

al., 2005). Identification and classification of clay types using petrographic analysis is generally 

impossible due to the small clay particle size (Minnis, 1984; Knackstedt et al., 2005). The current 

X-ray µCT imaging technique can recognize clay types in small amounts qualitatively making it 

possible to determine the volume content for clay minerals (Pike, 1981; Minnis, 1984; Arns, 

2005). The ability to determine the spatial relationship of minerals and the size of small particles 

is still limited by the image resolution and image processing techniques, such as accurate 

boundary detection in low-density contrast regions. Given limited image resolution, we need to 

design and interpret our numerical calculations correspondingly.    

Micropores under µCT image resolution could exist within clay particles (Asquith, 1990; 

Wu, 2004). However, the microporosities associated with clays or other fine minerals do not 

contribute to permeability. Additionally, intragranular macropores and micropores associated 

with feldspar, sulfate, and carbonates, which are usually either isolated or small, also do not 

contribute to permeability (Nelson, 2000; Wu, 2004). Thus, as long as the microtomography 
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captures enough effective porosity, corresponding to the interconnected volume or void space 

that contributes to fluid flow, we should still be able to give a reasonable prediction on the 

transport properties.  

Laboratory measurements are made on a cylindrical BS500 core sample approximately 

~3.7cm and 1 inch in diameter. The formation factor was obtained using an NaCl brine with 

conductivity 0.2S/m at 25 oC. Two permeability measurements are carried out, yielding similar 

results. Gas permeability is measured using Nitrogen (N2); the result, 858 mD, can be converted 

to liquid permeability using the Klinkenberg correction (Klinkenberg, 1941; Tanikawa and 

Shimamoto, 2006). Direct liquid permeability is also measured using NaCl brine with 0.2S/m 

conductivity at 25 oC by the steady state flow method in the pressure range of 0.05atm to 0.2atm. 

The BET surface area measurement is based on the volume of Krypton (Kr) gas adsorbed at a 

sequence of pressure points. Kr provides roughly 300 times greater sensitivity than Nitrogen (N2). 

All the laboratory measurement results are listed in Table 4. 

 

Numerical Calculations 

 

Electrical Conductivity Calculation 

    The effective DC conductivity of a random material can be solved by Ohm’s Law. The 

conductivity value σ of a composite n-phase material is a function of location r. For steady state 

conductivity problems, where the currents are steady in time, the charge conservation equation 

possesses the same form as the Laplace equation. Between phases having different conductivities, 
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the boundary conditions require that the current density normal to the interface and the potential 

are continuous. We can calculate the macroscopic conductivity of the random material by 

applying an electric potential gradient across the sample. The volume averaged current density 

can be used to compute the effective conductivity from Ohms’ law.  

We use a stagger-grid finite difference scheme with 2nd order accuracy in space. The grid 

interval in the x-, y- and z- direction is exactly the same as the CT image resolution, 2.8µm. As 

for the material properties, our modified finite difference electrical conductivity programs can 

handle arbitrary diagonal conductivity tensors. The intrinsic challenge of solving the  Laplace 

equation of high contrast conductivity value for neighboring grids is overcome by adopting a 

gradual relaxation method. For formation factor estimation, we could ideally assign  

and to the pore fluid . The normalized fluid filled rock conductivity  gives the  

formation factor. We can also define the solid matrix to be quartz conductivity, and saturation 

fluid can have a conductivity contrast of 1-15 orders in magnitude. This could provide us with an 

absolute value for the fluid filled rock conductivity. 

 

Permeability Calculation 

    Permeability is a measure of the resistance to fluid flow under a pressure gradient of a 

given porous medium. The mechanism of fluid flow is given by the Navier-Stokes equation. For 

the case of laminar (slow, incompressible) flow, the fluid flow can be conveniently described by 

the linear Stokes equations:            
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                               ,                                (4) 

                                   ,                                (5) 

where u and Ρ are the local velocity vector and pressure fields at position , and η is the 

dynamic viscosity of the fluid. We can calculate the macroscopic permeability of the porous 

medium by applying a potential gradient across the sample. The permeability, κ, of the porous 

medium is calculated by volume averaging the local fluid velocity (in the direction of the flow) 

and applying the Darcy equation: 

                                                                    (6) 

where u is the average fluid velocity in the direction of the flow for the porous media and L is the 

length of the sample porous medium across which there is an applied pressure gradient of .  

To solve the hydraulic problem, we use a modified Stokes solver based on an industry 

standard finite difference (FD) code developed at NIST (National Institute of Standards and 

Technology, Gaithersburg, MD 20899-8621, U.S.A) (Schwartz et al., 1993; Nicos et al., 1994; 

Bentz and Martys, 2007). We also test the applicability of the conductivity-permeability 

relationship on the same structure by solving two different PDEs using a uniform FD scheme. 

The correlation between numerically computed electrical conductivity and permeability will be 

examined using Paterson’s model (Paterson, 1983). 

 

Surface Area Calculation 

We perform all the numerical calculations on the 3D CT microtomography, which is a 

binary image. This binary image has been quantized to two values, 0 denoting the pore space and 
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1 denoting the solid matrix after segmentation and thresholding the original grey level X-ray 

tomography. To quantify the surface area from the binary image, we need to identify pixels at the 

pore-grain interface. Two different image processing methods are adopted. The first method is a 

gradient method, specifically, first order differential methods of edge detection (Canny, 1986; 

Pathegama et al., 2004). An odd symmetric filter  will approximate a first derivative, 

and peaks in the convolution output will correspond to edges (surface pixel) in the image. The 

second method is based on tracing phase connectivity to identify a phase change. Binary image is 

classified into two opposite classes: inner pixel and surface (edge) pixel. Checking the 

connectivity of the 0 phase to the 0 phase in its 8 neighbors in 3D, the zero-connectivity pixels 

are inner points or isolated points. Eliminating those inner and isolated points from the original 

image gives the surface (edge) pixel (Zahn, 1971). Given the continuous nature of the binary 

image for rock CT microtomography, these two algorithms should be able to mark as many real 

surface pixels as possible. The surface area is usually expressed as square meters of surface per 

gram of solid. By multiplying by the grain density (2.65g/cm3), we can transfer the numerically 

solved surface area from square meters per cube meters of solid to per gram of solid as expressed 

in the laboratory measurements. Both methods give similar results and we take their average as 

our count of the surface pixels. We take the mean value of surface area computed from two 

different methods, which is listed in Table 3 and 4. 
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Discussions 

 

Comparison of Numerical Computation to Laboratory Measurements 

Five 4003 sub-volumes at different locations are selected in the total 18403 volume as shown 

in Figure 1. We use porosity as the criteria to pick representative sub-sets within the whole 

volume and avoid picking the edges. Sub-volume 3 is in the middle of the total volume. 

Sub-volumes 1, 2, 4, and 5 are located, respectively, northwest, northeast, southwest and 

southeast of sub-volume 3 to capture both vertical and horizontal heterogeneity. The hydraulic 

and electrical flux for one slice in sub-volume 3 are color mapped (on a logarithmic scale) in 

Figure 2. For display purposes, we chose a 2003 sub-volume in the middle of 3 (Fig 2.a); the 

most complex pore geometry was found to be in the X-Y plane (Fig 2.b). The electrical flux 

shows higher amplitude than the hydraulic flux in the thin and narrow pores (Fig 2.c and 2.d). 

The identified surface pixels are shown in red along the pore (blue) – grain (green) boundary in 

Figure 3.  

    We could compute the effective conductivity of the BS500 sample with a different 

saturation phase, such as gas, oil, and brines with different salinities based on our modified 

Laplace solver. For the saturation phase, we use the realistic conductivity value for a different 

fluid instead of 1 as a normalized conductivity, which is the case in previous studies. The grains 

could be given the quartz conductivity of instead of 0. To compute the formation 

factor, we could use either 0 versus 1 or more physically, use a highly conductive brine, 
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 versus system. The saturated rock conductivities, , with different 

saturation phases are listed in Table 2. Similar to Figure 2.c, Figure 4.a and 4.b correspond to the 

electrical flux with oil and gas saturation, respectively. With an increase of the conductivity 

contrast between the saturation phase and host grain phase, the boundary between the pore space 

and grain becomes sharper. These sharper contrasts can better resolve the details of the structure.  

Porosity, formation factor, permeability, and surface area of the five sub-volumes computed 

from the 3D tomography are listed in Table 3. The variation in porosity is within 5% for five 

4003 sub-fragments, which indicates our calculation size is representative. Heterogeneity of the 

geometry at different locations of the core sample is reflected in both formation factor and 

permeability. An isolated or extensive inclusion, small in volume, could block the flow without 

much impact on the porosity (Kameda, 2004). Thus, conducting computations on a large volume 

is always preferred. Here, we also calculate the mean value and variance for these five sets of 

data and compare with the laboratory measurements in Table 4. The numerical computations on 

the mm3 images compares well with the laboratory measurements on the cm3 core sample by 

taking the mean value of different sub-volumes.  

 

Formation Factor and Permeability Correlation 

    Correlating hydraulic permeability to other physical properties of the porous media 

continues to be an issue. The most popular technique is to relate permeability with electrical 

conductivity through pore volume to surface area ( ), based on the assumption that 

electrical and fluid stream lines are identical. Meanwhile, electrical conductivity is usually easier 
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to measure in the laboratory or in situ than permeability. We have numerically calculated 

electrical conductivity, permeability, and surface area on the same structure. We want to test 

whether we can establish the correlation among those computed physical properties from the CT 

image.  

A consistent development of the equivalent channel for both fluid flow and electrical 

conduction in porous media leads to the expression: 

                                    ,                                 (7) 

where k is permeability, F is the formation factor, C is a geometrical factor, and R is the so called 

hydraulic radius (Brace, 1977; Paterson, 1983; Walsh and Brace, 1984). C is in the range of  

for circular pores to  for a slot, which cover the widest range of aspect ratio of most porous 

media (Wyllie and Gregory, 1955). The concept of hydraulic radius was first developed for pipes 

of non-circular section, where it is defined by the ratio of the perimeter to the cross-sectional 

area under the assumption of uniformity along the length. In porous media, hydraulic radius R 

can be determined by the ratio of porosity and surface area ( ). Thus, R represents an 

equivalent (or average) hydraulic radius of the exceedingly complicated flow channels. From this 

empirical relationship, we could see that permeability is inversely proportional to the formation 

factor.  

The computed physical properties for five 4003 sub-volumes described above are given in 

Table 4. We cross plot the computed permeability and formation factor of five sub-cubes as 

shown in Figure 5. An inverse linear trend could be observed between F and k due to the small 

fluctuation of porosity and surface area in five cubes. There are three ways to calculate the 
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hydraulic radius R. Taking the calculated F and permeability k in Table 3 into Eq. (7), with shape 

factor C preferably chosen to be 0.4 (Paterson, 1983), we could back out the hydraulic radius to 

be 3.38µm. The other two methods are based on the definition of hydraulic radius. We can 

simply take the ratio of porosity and surface area from laboratory measurement and numerical 

computation (Table 4), respectively. The laboratory determined R is 2.39 µm, numerically 

computed R is 2.97 µm. Gratifying agreement among three numbers is obtained. Correlating 

different physical properties that are numerically solved independently allows us to deduce one 

property from others. The characteristic pore size, which is twice the hydraulic radius, is larger 

than the image resolution. A good permeability prediction could be expected with this high 

image resolution. 

 

Surface Conductivity Calculation and Laboratory Measurements 

Another long standing question is how to best model the surface conductivity associated 

with clay in shaly sand (Waxman and Smit, 1968; Clavier et al., 1977; Johnson et al., 1986; Sen 

and Kan, 1987; Lima and Sharma, 1990; Revil et al., 1998; Devarajan, 2006). The authigenic 

clays, the most common type of clay, can be divided into three morphologic groups (Neasham, 

1977). Pore lining, pore bridging, and discrete particle correspond to illite and smectite, chlorite, 

and kaolinite, respectively. The “cation exchange capacity” (CEC), which indicates the 

maximum number of surface exchangeable cations per unit mass of shaly rock, also strongly 

depends on clay mineral type (Patchett, 1975). Given the complexity of morphology, particle size, 

and chemical properties of clay minerals, treating the surface conductivity of clays as an 
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electrically equivalent effective conductivity is always a preferable method. To derive the surface 

conductivity from CT images of microstructure, especially with the limit of accurate 

identification and location of individual clay minerals, the same approach needs to be adopted. 

The clay aggregate with its bounding water – either coating over or dispersed among the sand 

grains – is treated as a highly compacted layer with asymptotic conductivity (Johnson et al., 1986; 

Lima and Sharma, 1990). Also, from the mineralogy report (provided by Schlumberger-Doll 

Research), illite and kaolinite are the two major types of clay existing in our BS500 core sample. 

Thus, the effective conductivity model should be applicable for our specific sample.  

In contrast with previous work, our aim is to numerically compute surface conductivity on 

the 3D microtomography of a Berea Sandstone core sample. First, in most of previous studies, 

solid grains are modeled as spheres to a first order approximation for simplicity (Johnson et al., 

1986; Lima and Sharma, 1990; Devarajan, 2006; Toumelin, 2008). Second, in the previous 

semi-analytic equations or numerical models, some parameters are adjusted to fit certain datasets 

or to simulate certain empirical relationships. Our three-phase conductivity model is built on the 

microtomography of porous rock, which is more complex in structure than sphere packs. Also, 

we have direct laboratory measurements on the CEC value from the core sample to account for 

the contribution from each clay mineral. We can also calculate the CEC value from the clay 

volume fraction, determined by X-ray attenuation histogram. Pore scale computation is carried 

out on 2.8 micron resolution grids. Thickness of the clay bound water layer (EDL) in different 

salinity electrolytes is directly taken from the definition and calculation of Debye length. Pore 

fluid is divided into free water and bound water. Bound water exists along the grain-electrolyte 
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boundary (surface voxel). Effective porosity (pore space voxels) is maintained without any 

structural change. We first validate our three-phase model on synthetic porous medium 

composed of spheres on uniform radius – Finney pack (Finney, 1970) with the analytic 

expression: 

                       ,                        (8) 

where  indicates surface conductance, is a weighted surface to volume ratio, and X is a 

simple additive term in the range of 1-10 depending on rock type (Devarajan, 2006). For a given 

X, we can calculate  as  with the surface to volume ratio obtained from Finney pack 

microstructure. Putting into the three–phase model, which will be described in detail below, 

we can numerically obtain the same effective conductivity value as in the Waxman-Smits 

formula by solving the Laplace equation.  

    Using a two–phase model (pore fluid and grain) will underestimate the saturated rock 

conductivity, , with the presence of clays. Thus, we change our model from two-phase to 

three-phase to include the surface conductivity at grain-electrolyte boundary. All the surface 

pixels (as described above) contain an EDL. The thickness of the EDL ( ) is at the nanometer 

scale and image resolution is at micrometer scale. Surface pixels at the pore-grain boundary are 

defined to be the third phase. Numerical representation of the porous rock is changed to a 

three–phase model as illustrated in Figure 6. In the three–phase conductivity model, the first kind 

of grid cell has the conductivity of , equal to the rock matrix conductivity. The second kind of 

grid cell has the conductivity of , equal to the free electrolyte conductivity in the pore space. 
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The third kind of grid cell is the boundary grid containing an EDL at the fluid-solid interface 

with the conductivity . The conductivity model in the third kind of grid is illustrated in Figure 

7. We calculate σ3 by geometrically averaging the larger surface conductivity, , over the 

double layer thickness, , with σ2 in the remainder of the boundary grid ( ). This 

geometric average is physically feasible since surface conductivity in the EDL and the free 

electrolyte in the pore space could be treated as two conductors in parallel.  

    To quantify , we need to determine the surface conductivity, , in the EDL. The 

surface of grains which composes the solid matrix of sandstones is typically charged when in 

contact with an electrolyte. The counterions required to balance the mineral surface charge form 

the EDL (Revil and Glover, 1998). Surface conductivity depends on both physical and chemical 

properties of the electrolyte and the microstructure, as defined by Kan and Sen (Kan and Sen, 

1987),  

             ,  .              (9) 

Here, is grain density (in g cm-3), is the surface mobility of the counterions, is the 

weighted pore surface to volume ratio, and has the same meaning as in Waxman-Smits 

equation (Waxman and Smits, 1968), which is related to “Cation Exchange Capacity” (CEC).  

For sodium chloride electrolyte, the counterions in the electrolyte are  with surface mobility 

of =5.14×10-9 m2 s-1 V-1at 25oC (Waxman and Smits, 1968; Patchett, 1975). could be 

obtained from CEC if available or it could be computed from clay content, , and porosity 

using   
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                            .                              (10)              

We have both measured the CEC value [0.27 meg/100g] and the clay content from the X-ray 

attenuation histogram. Thus, we can calculate surface conductivity, .  

The last parameter to be determined for calculation is the EDL thickness, which is the so 

called Debye length, . Debye length is defined as (Debye and Hückel., 1923; Pride and 

Morgan, 1991; Zhan, 2005)  

                                           (11) 

,where  is the fluid permittivity,  is the Boltzman constant,  is absolute temperature, 

 is the electric charge,  is the ionic valence of the solution, and  is ion concentration, 

defined as . Some typical values of the Debye length as a function of 

ionic strength are given in Table 5(Morgan et al., 1989). 

    Thus, the surface voxel conductivity, , could be calculated as a function of electrolyte 

conductivity, . By solving the Laplace equation with three different conductivity components 

at different locations within the 3D microstructure, we can predict the conductivity of the BS500 

core sample, , in a wide range of salinity environments.  

    Laboratory measurements are carried out to measure the electrical conductivity, , on 

the saturated BS500 core sample. To avoid the chemical changes in the sample, such as clay 

swelling and liberation after the saturation, especially with highly resistive electrolyte saturation, 

we use freshly cut samples. Samples are cut into cylinders of approximately ~2cm length by 

~1inch diameter from the same BS500 block. Ten samples are saturated in NaCl brines of 

conductivity 0.001S/m, 0.003S/m, 0.01S/m, 0.025S/m, 0.05S/m, 0.2S/m, 0.4S/m, 1S/m and 2S/m, 
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respectively. The brine is prepared by adding different amounts of sodium chloride into 

deionized water. Each sample is vacuum-impregnated with brine in order to expel air and then 

fully saturated. Saturated samples are never allowed to dry out during the conductivity 

measurements. Non-polarized Ag/AgCl electrode disks are attached to both sides of the sample 

for resistivity measurements. Laboratory measurements and numerical calculations are shown in 

Figure 8. In the high salinity region, the two-phase model works well to predict the linear 

relationship between the saturated rock conductivity, , and the electrolyte conductivity, , 

(dashed line in Figure 8). The ratio between this two is the formation factor. When the electrolyte 

conductivity is low and the surface conductivity cannot be neglected, the three-phase model is 

needed to capture the convex-upward trend (solid line in Figure 8).  

 

Numerical Error Analysis 

    Two sources of numerical error are considered: the resolution of the image and the size of 

computation volume. Using finite size voxel limits our ability to resolve the smallest features of 

the pore space. To test the importance of this effect we generate a sequence of models with 

successively poorer resolution by doubling the voxel edge length.  Eight high resolution voxels 

form one low resolution voxel with a simple majority rule were used to assign the new voxel to 

be either pore or grain. The five models then vary from the original 4003 with 2.8 µm resolution 

to 253 with 44.8 µm resolution. Four downscaled cubes from the 4003 cubes (sub-set #3 in Figure 

1.a) are shown in Figure 9. The connectivity of pore space is largely reduced with decreasing 

resolution. 
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    Porosity, permeability, formation factor, and surface area were calculated for the five 

models.  The fractional changes in these quantities relative to the original 4003 with 2.8 µm 

resolution are plotted in Figure10. The electrical conductivity is most affected by this process. 

This is expected since using coarser grids to resolve a structure tends to describe the curved grain 

boundaries inaccurately and close narrow pores. Closure of the narrow pores will impact the 

electrical current more severely than hydraulic current (as discussed in Figures 2.c and 2.d). By 

conducting this image resolution analysis, we can quantify the discretization error at each 

resolution level. This is especially important if we want to use coarser grids to resolve physically 

larger volumes at a given level of computational power.   

Finally, we consider the effect of enlarging our model from 4003 to 8003, both with 2.8 µm 

resolution. We optimize the Laplace solver to allow dynamic allocation of memory. Computaion 

demands are heavy: a single conductivity run at 8003 cube scale would require ~10 Gbytes of 

memory and 15 CPU hours to complete on a Intel Quad-Core Xeon 3GHz processor. In the 8003 

model, we get 13.75 for electrical formation factor, which is much closer to the experimental 

value than taking the average of five 4003 sub-volumes. Thus, the choice of representative 

computation cell size is important. Within the capacity of computational power, large sampling 

volume is always preferable. 

 

Conclusions 

In this paper, we present different physical properties of a Berea Sandstone sample with 

23.6% porosity computed using µCT microtomography. The following conclusions are made: 
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1. A uniform finite difference (FD) scheme is applied to solve the Laplace equation for the 

electrical problem and the Stokes equation for the Hydraulic problem. The Laplace solver is 

modified to handle different levels of conductivity contrast. Electrical conductivity of the BS500 

core sample saturated with gas, oil, and brines are computed. Two different image processing 

methods are applied to recognize surface voxel in the digital binary image. Five 4003 

sub-volumes at different locations within the core sample are choosen to compute porosity, 

permeability, electrical conductivity, and specific surface area. All five sub-volumes possess 

similar porosities, which are close to laboratory measurements. We also computationally 

establish the correlation linking permeability to electrical conductivity through geometric 

properties, such as hydraulic radius, which can also be calculated from the 3D microtomography. 

Numerically and experimentally determined hydraulic radius are consistent. Numerically 

computed porosity, permeability, electrical conductivity, and surface area compare well with the 

laboratory data taken on cm-scale core samples. 

2. A three phase model is developed to compute surface conductivity. The CEC value for the 

BS500 core sample is obtained both experimentally and computed from clay content. The length 

of electrical double layer (EDL) is determined by definition and varies with electrolyte salinity. 

Counterion mobility is taken to be the value of the ionic species present in the experiment. 

Laboratory measurements are designed to measure the electrical conductivity of the BS500 core 

sample saturated with NaCl brine in different salinity ranges (fluid conductivity from 0.001S/m 

to 2S/m). Two-phase model works well when the brine conductivity is high, giving an accurate 

prediction of the formation factor. Surface conductivity needs to be taken into account using 



~ 22 ~ 
 

three-phase model in the low salinity regimes.  

3. The effects of image resolution on computed physical properties are investigated using 

majority rule. Decreased resolution leads to decreased permeability and electrical conductivity. 

Optimization of computation algorithm enables us to perform calculations on large 3D volume. 
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Composition Volume Fraction (%) 

Quartz 88.9 

Clay 3.9 

Feldspar 3.4 

Carbonate 2.2 

Evaporite 0.5 

Others 1.1 

Table 1: Mineralogy of Berea Sandstone 500 core sample (provided by Schlumberger Doll 

Research) 
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(a)                                                                (b) 

Figure 1: (a) Z direction view of selected five 4003 sub-volumes at different locations in the total 

18403 BS500 core sample with 2.8 micron resolution. X-ray intensity values are encoded in gray 

shades. Brightness corresponds to increased intensity. #3 sub-volume is in the middle of the total 

volume. (b) The pore cast (shown in red) of #3 sub-volume.   
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(a)                                                               (b)                 

                         

             

                            (c)                                                              (d)       

Figure 2: (a) 3D tilted view of a 2003 cube in #3 sub-volume in Fig 1.b (red indicates pore space, 

grey indicates grain) (b) X-Y plane of the first slice in Fig 2.a. (c) Electrical flux of Fig 2.b in 

logarithm scale. (d) Hydraulic flux of Fig 2.b in logarithm scale.    

X X 

Y 

X 

Y 



~ 31 ~ 
 

 

(a) 

 
    (b) 

Figure 3: (a) Surface pixel (red) along pore (blue) – grain (green) boundary using gradient based 

image processing method. This is one slice in sub-volume #3. (b) Enlarged view of shadowed 

area (yellow square) in Fig 3.a. Surface pixels are shown in red, pore in blue and grain in green. 
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Saturation Phase Gas Oil Saline Water 

Saturation Fluid 
Conductivity 

(S/m) 
       

 

1 

 

 

10 

 

 

10 

 

Effect Conductivity 

(S/m) 
 

  
 

 

Archie’s Law 

Table 2: The effective conductivity of BS500 saturated with gas, oil and saline water. For highly 

conductive brine in the table, saturated rock conductivity and electrolyte conductivity obeys 

Archie’s law. The ratio between electrolyte conductivity and saturated rock conductivity is a 

constant, formation factor, and provided Table 3 below.  
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(a) 

 79             
(b) 

 

Figure 4: (a) Electrical flux of Fig 2b saturated with gas in logarithm scale. (b) Electrical flux of 

Fig 2b saturated with oil in logarithm scale. 
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 #1 #2 #3 #4 #5 

  Porosity (%) 22.98 23.33 23.81 24.10 23.60 

Formation Factor 22.23 18.69 16.11 11.98 16.31 

Permeability 

(Darcy) 
0.38 0.61 0.75 1.05 0.83 

Surface Area  

(m2/g) 
0.88 0.81 0.78 0.69 0.77 

Table 3: Numerically computed porosity, permeability, formation factor and surface area of the 

five selected sub-volumes in Fig 1a. 
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 Laboratory Numerical 

Porosity (%) 23.56 23.64 ± 0.43 

Formation Factor 13.03 16.40 ± 3.76 

Gas Liquid Permeability 

(Darcy) 0.89 0.45 
0.60 ± 0.23 

Surface Area  

(m2/g) 
0.93 0.77± 0.02 

Table 4: Mean value (bold italicized number in column 3) and variance (second number in 

column 3) of different parameters for five sub-volumes are compared to laboratory 

measurements.   

 

 

 

 



~ 36 ~ 
 

 

 

 

 

Figure 5: Numerically calculated permeability v.s numerically calculated formation factor (green 

dots) for 5 4003 sub-volumes (Fig 1a) in Berea Sandstone 500. Linear relationship between 

formation factor and permeability indicated by Paterson Model (Paterson, 1983). 
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Figure 6: Two-phase representation of the porous rock (left) and three-phase representation of the 

porous rock (right). Both models have the same grid size (L). stands for matrix conductivity, 

is free electrolyte conductivity in the pore space. is the conductivity for the surface grid, 

which contains both free electrolyte and bound water. 
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Figure 7: Conductivity model for the surface grids at grain-electrolyte interface (  in Fig 6). 

Gird size is L and grid conductivity is . An electric double layer (EDL) with length  at 

nanometer scale is included in the grid with surface conductivity, . The remainder of the grid 

( ) has conductivity of , which is the free electrolyte conductivity in the pore space. 
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Ionic Strength (I, M) Debye Length  ( ,Ǻ) 

 3000 

 960 

 300 

 96 

 30 

 9.6 

Table 5: Deby length as a function of electrolyte ionic strength (Morgan et al., 1989).     
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Figure 8: Linear relationship between electrolyte conductivity and saturated BS500 conductivity 

using two phase model (dashed line). Shaly sand behavior prediction using three–phase model 

(solid line). Laboratory measurements are shown as triangles. 
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Figure 9: 3D pore structure of the downscaled cubes from original 4003 cube (Fig 1b) using 

majority rule. Connectivity of the pore space and thin pore throat is getting lost with decreasing 

image resolution.  
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Figure 10: Fractional change in numerically computed porosity, electrical conductivity, 

permeability and surface area from 4003 cube with 2.8 micron resolution to 253 cube with 44.8 

micron resolution. 

                           

 

  


