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Summary 
 

In this paper, we present a method to model acoustic wave propagation in the frequency-

domain in the presence of free surface topography using the embedded boundary method. The 

advantage of this method is to solve for the pressure field at each frequency on regular finite 

difference grids but with sub-cell resolution (up to 2nd order accuracy) for the irregular free 

surface. The topographic free surface condition is implemented in 2
nd

 order accuracy, as in the 

regular domain so that global 2
nd

 order accuracy is guaranteed. We use the level set method to 

obtain the projection points and normal directions corresponding to the ghost points in the 

scheme in the irregular domain. The computational cost for solving the modified sparse matrix 

for the pressure field increases very little compared to that for a flat surface. We have 

benchmarked our solver with a 2-D Gaussian hill model and simulated wave propagating in a 

modified Canadian foothills model. This solver can be used as the forward engine in the full 

waveform inversion, and we are working underway to perform full waveform inversions with 

real land survey data with considerable presence of surface topography. 

Introduction 
 

Full waveform inversion is often considered as the latest and greatest technique for the 

sub-surface imaging and velocity analysis. Many authors have made considerable contributions 

in this field (e.g., Tarantola, 1984; Pratt et al., 1998; Pratt, 1999; Shin and Min, 2006). Most of 

these investigations assume a flat surface, as waveform modeling in the presence of free surface 

topography is usually difficult for the finite difference method. Staircase discretization is often 

adopted as an approximation to the tilted free surface (Oprsal and Zahradnik, 1999; Ohminato 

and Chouet, 1997; Robertsson, 1996). However, this approximation generates artificial scattering 

unless the discretization length is small, e.g., 1/60 of the dominant wavelength (Bleibinhaus and 

Rondenay, 2009). 

The finite difference method with conforming grid technique (Hestholm and Ruud, 1998; 

Zhang and Chen, 2006; Appelö and Petersson, 2009) can provide satisfactory results for 

waveform modeling with topographic free surface. The coordinate transformation is involved in 

the method. For easier implementation, the collocation scheme is used which usually causes 

numerical instability in time stepping. Therefore great effort is required to mitigate oscillations 

associated with the collocation scheme. In addition, the Jocobian matrix used for transforming 

the coordinates regionally or globally usually causes additional computational cost. 

The finite element method (e.g., Min et al., 2003) is often used to solve the wave 

propagation with topographic free surface boundary. However, the mesh generation remains a 

challenging issue, and numerical dispersion analysis is much more complicated. 



There has been growing interest in the embedded boundary method (EBM) or similar 

methods in recent years (e.g., Kreiss and Petersson, 2006; Lombard et al., 2008). These authors 

developed EBM schemes in the time-domain that are able to describe an interface cutting 

through a regular finite difference cell at an arbitrary angle. However, collocation grids are 

required for EBM, which usually generates oscillations in time stepping. 

In this paper, we developed a frequency domain finite difference method to model 

acoustic wave propagation in media with a free surface topography. We find that EBM is ideal 

for the frequency-domain finite difference scheme, as there is no oscillation issue as observed in 

time-domain. Compared with the conforming grid technique, the EBM requires modification 

only on the grid points next to the boundary. Considering that a majority of full waveform 

inversion studies are performed in the frequency-domain, our method could be an ideal forward 

engine in waveform inversion. In the following sections, we first introduce the numerical 

implementation of our solver, then benchmark our solver with a 2D Gaussian hill model and 

present results for simulation of wave propagation in a 2D Canadian foothills model. 

Frequency-Domain Method 
 

This section is organized in the following order: 1) discretization in the regular domain; 2) 

implementation of the embedded boundary method in the irregular domain; 3) matrix 

modification for ghost points; and 4) level set method for projection point and normal direction. 

Here, the regular domain refers to the region where the finite difference stencil is not cut through 

by the free surface boundary, i.e., the interior region that is not in contact with the free surface; 

the irregular domain refers to the stencils cut through by the boundary, having at least one point 

across the boundary. An example is shown in Figure 1. 

The acoustic wave equation in frequency-domain is written as: 

                                              ),(),(),( ωωω xsxpxB =                                                   (1) 

where B(x,ω) is the impedance matrix at location x and frequency ω, p(x,ω) is the pressure field 

and s(x,ω) is the Fourier transform of the source term. Note this is a second order differential 

equation for p. For the regular domain, we use the standard 5-point finite difference scheme 

(Pratt and Worthington, 1990; Hustedt et al., 2004) to discretize equation (1) as: 
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where Ki,j is the bulk modulus at (i, j), ∆ is the grid size, bi,j is the buoyancy (inverse of density), 

ξxi and ξzi are attenuation functions for the perfectly matched layered (PML). 



The topographic free surface requires additional treatment in the discretization scheme. 

For a flat free surface, the ghost point method is often used (e.g., Graves, 1996). However, for an 

uneven free surface the ghost point method generates significant artificial scatterings. To 

correctly characterize the topographic free surface, we use the embedded boundary method to 

describe the boundary that may cut through a regular finite difference cell at an arbitrary angle 

(Kreiss and Petersson, 2006), and adapt it from time-domain to frequency-domain. The scheme 

is illustrated in Figure 1. The green dot indicates the central point (��,�) of a 5-point finite 

difference stencil used as an example. Its northern (p1) and western (p2) neighboring points are 

across the free surface and defined as ghost points of the central point ��,� and need to be 

estimated from interior points. We take p1 as an example to show how to estimate these ghost 

points. For the pressure condition on free surface boundary, we have 

                                    0=
Γ=x

p                                                                    (3) 

Using a three-point Lagrangian interpolation, the projection point p1Γ of p1 on free surface 

Γ can be estimated from those points along its local normal direction (Figure 1). The interpolant 

can be written as: 

                                                01312111 =++=Γ iii pppp ααα                                              (4) 

where                                                     
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where lΓ is the distance from p1 to the boundary and lj is the distance from p1 to p1i, or p1i to p1ii. 

By solving equation (4) with the boundary condition in equation (3), p1 can be estimated with 2nd 

order accuracy (Kreiss and Petersson, 2006). To estimate the values for p1i and p1ii, we also use 

Lagrangian interpolation in the horizontal direction as indicated in Figure 1. 



 

Figure 1. Illustration of the embedded boundary method. The green point (��,�) is the center point 

of a five-point stencil. Two of its ghost points (p1, p2) are across the free surface boundary and 

need to be estimated using interior points. 

 

By the 2nd order interpolation in irregular domain, each ghost point now can be estimated 

by six interior points.  For the stencils in the irregular domain, we need to modify the 5-point 

finite difference scheme by substituting for the ghost points the interior points. Take a 5-point 

stencil (��,�,����,� , ����,� , ��,���,��,���) with only one ghost point ��,��� (northern) as an example, 

we have the modified finite difference scheme: 
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where m, n are Lagrangian interpolation coefficients for p1i and p1ii, respectively. Compare 

equation (6) to equation (2), we see here pi,j-1, i.e., the ghost point across the free surface has 

been substituted with six interior points (��,� , ����,� , ����,� , ��,���, ����,���, ����,���). 



To carry out the Lagrangian interpolation, we need to find the normal direction from the 

ghost point to the free surface and the corresponding projection length lΓ. Instead of working on 

the parameterized 1D curve for free surface, we choose level set to represent the free surface as 

an interface between inner and outer domains, and related quantities.  

Benchmarks 

We use a 2D Gaussian hill as the free surface topography to validate our method. The 

“hill” is defined by the Gaussian function with a height of 100 m and standard deviation of 100 

m. The top of the model is the free surface, and on the other three sides are PML boundaries. In 

simulation, a Ricker source wavelet with a central frequency of 10 Hz is excited at (1500, -1000) 

m. By inverse Fourier transforming the wave field solved in frequency-domain, we obtain the 

time-domain wave field shown in Figure 2.  It can be clearly seen that, even a simple 

topographic free surface feature like the Gaussian hill generates a complicated reflection pattern. 

 

Figure 2. Snapshot of the wave field in a model with a Gaussian hill residing on top. The top of 

the model is a free surface, and the other three sides are PMLs. 

 

We also benchmark our embedded boundary solver (EB) with a boundary conforming 

solver (BC) in time domain (Zhang and Chen, 2006). The BC solver has 4
th

 order accuracy both 

in space and time, while our EB solver is 2
nd

 order accuracy in space. In Figure 3, we compare 

the traces recorded at receiver placed at (1500, -700) m. We can see when we refine the grid 

spacing dx (from 10 m to 1.25m), the reflected waveforms computed from EB solver converge to 

the waveform from BC solver, which is taken as the most accurate result in this comparison.  



We then study the convergence of our solver so as to validate it is 2
nd

 order accuracy 

globally. We use the result at dx=1.25 m as the reference, and calculate the L2 and infinite norm 

of the “error” in reflected waveforms between the results with larger dx and the reference one. 

The convergence is plotted in a log-log scale in Figure 4, in which a 2
nd

 order convergence line is 

also plotted as a reference (black dashed line). From Figure 4, we can see that numerical results 

computed from our solver demonstrate a 2
nd

 order convergence both in L2 and infinite norms, 

therefore we conclude that our solver has 2nd order accuracy globally. 

 

Figure 3. Comparison between Embedded Boundary (EB) method and Boundary Conforming 

(BC) method. Here EB is in frequency-domain and of 2nd order accuracy, and BC is in time-

domain and of 4
th

 order accuracy. Inset is an enlarged part of the waves in the dashed box. 

 



 

Figure 4. Convergence of the embedded boundary solver. A standard 2nd order convergence line 

(black dashed line) is plotted as a reference. 

Examples 

 To demonstrate the capability of the EB solver on handling a more complicated case, we 

modeled wave propagating in Canadian foothills model shown in Figure 5. The velocity ranges 

from 3500 m/s to 6000 m/s.  Complicated structures such as faults and domes are in the model. 

The surface elevation varies by amount of more than 1 km, and the whole model is discretized 

with 25 m grid spacing. Two cases in terms of different source locations are simulated.  In the 

first case, the source is placed at x=15.75 km but on the surface, while in the second case we 

move the source down to -1.5 km. A Ricker source wavelet with a central frequency of 6 Hz is 

used. As shown in Figure 5 and 6, the wave field is complicated due to both the free surface 

topography and subsurface reflections. When the source is buried underground (Figure 6), we 

can clearly see how the reflected waves from free surface are distorted by the topography. Figure 

7 shows the common shot gathers corresponding to these two cases, respectively.  

 

Conclusions 
 

In this study, we present a novel finite difference method to model the acoustic wave 

propagation in the frequency-domain in the presence of free surface topography with the 

embedded boundary method. The topographic free surface condition is implemented with 2nd 

order accuracy, as in the regular domain, such that global 2
nd

 order accuracy is guaranteed. 

Although we used a standard 5-point stencil to discretize the wave equation in our study, the 

extension to the 9-point mixed-grid low dispersion stencil (Hustedt et al., 2004) should be 

straight forward, as the embedded boundary method can also be easily used in this discretization. 

We use the level set method to obtain the projection points and normal directions corresponding 



to the ghost points in the scheme in irregular domain. The computation of surface normal 

directions and projections needs to be done only once, and its computational cost is negligible. 

The computation cost for solving the modified sparse matrix for the pressure field barely 

increases when compared to that of a flat surface case. We are working underway to apply our 

method in full waveform inversion for real field data with considerable surface topography. 

 
Figure 5. The Canadian foothills velocity model (a) and snapshots of the wave fields (b-d). The 

snapshots are taken at 0.78 s, 1.56 s and 2.34 s, respectively. The source is placed at x=15.75 km 

on the surface. 

 

d 

c 

b 

a 



 
Figure 6. The Canadian foothills velocity model (a) and snapshots of the wave fields (b-d). The 

snapshots are taken at 0.78 s, 1.56 s and 2.34 s, respectively. The source is placed at (15.75 km, -

1.5 km). The reflected waves from the free surface are clearly distorted by the topography. 
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Figure 7. Common shot gathers calculated for the Canadian foothills model with source (a) at the 

surface and (b) buried at 1.5 km depth. 
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