Recitation 3: Regular Expressions and Non-regular Languages

February 17, 2005

Problem 1: Key terms. Regular expression, generalized NFA, pigeon-hole principle, pumping lemma, pumping length, pumping up, pumping down.

Problem 2: True or False?

1. If L_{1} and L_{2} are regular, then $L_{1} \cup L_{2}$ is regular.
2. If L_{1} and L_{2} are non-regular, then $L_{1} \cap L_{2}$ is non-regular.
3. If L_{1} is regular and L_{2} is non-regular, then $L_{1} \cup L_{2}$ is non-regular.
4. If L_{1} is regular, L_{2} is non-regular, and $L_{1} \cap L_{2}$ is regular, than $L_{1} \cup L_{2}$ is non-regular.
5. The following language is regular: The set of strings in $\{0,1\}^{*}$ having the property that the number of 0 's and the number of 1 's differ by no more than 2 .
6. The following language is regular: The set of strings in $\{0,1\}^{*}$ having the property that in every prefix, the number of 0 's and the number of 1 's differ by no more than 2 .

Problem 3: Regular Expressions. Write regular expressions for the following languages. The alphabet is $\{0,1\}^{*}$.

1. $A_{1}=\{w \mid w$ contains at least two 0 's $\}$.
2. $A_{2}=\{w \mid w$ contains an even number of 0 's $\}$.
3. (from Fake HW 2.5) $A_{3}=\{w \mid w$ does not contain 100 as a substring $\}$.

Problem 4: Proving non-regularity: the Pumping Lemma. Prove that the following languages are not regular.

1. $L_{1}=\left\{0^{i} 1^{j} 0^{k} \mid k>i+j\right\}$.
2. $L_{2}=\left\{0^{i} 1^{j} \mid j\right.$ is a multiple of $\left.i\right\}$.
3. $L_{3}=\left\{0^{i} 1^{j} \mid i>j\right\}$.
4. $L_{4}=\left\{0^{i} 1^{j} 2^{k} \mid i, j, k \geq 0\right.$ and if $i=1$ then $\left.j=k\right\}$.

Problem 5: The size of the minimal DFA for a regular language L. Consider the regular language $L=\left\{w \mid w\right.$ contains at least three $\left.1^{\prime} s\right\}$. Prove that any DFA for this language has at least 4 states.

