Recitation 3: Regular Expressions and Non-regular Languages

February 17, 2005

Problem 1: **Key terms.** Regular expression, generalized NFA, pigeon-hole principle, pumping lemma, pumping length, pumping up, pumping down.

Problem 2: True or False?

- 1. If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.
- 2. If L_1 and L_2 are non-regular, then $L_1 \cap L_2$ is non-regular.
- 3. If L_1 is regular and L_2 is non-regular, then $L_1 \cup L_2$ is non-regular.
- 4. If L_1 is regular, L_2 is non-regular, and $L_1 \cap L_2$ is regular, than $L_1 \cup L_2$ is non-regular.
- 5. The following language is regular: The set of strings in $\{0,1\}^*$ having the property that the number of 0's and the number of 1's differ by no more than 2.
- 6. The following language is regular: The set of strings in $\{0,1\}^*$ having the property that in every prefix, the number of 0's and the number of 1's differ by no more than 2.

Problem 3: **Regular Expressions.** Write regular expressions for the following languages. The alphabet is $\{0,1\}^*$.

- 1. $A_1 = \{w | w \text{ contains at least two 0's} \}.$
- 2. $A_2 = \{w | w \text{ contains an even number of 0's} \}.$
- 3. (from Fake HW 2.5) $A_3 = \{w | w \text{ does not contain } 100 \text{ as a substring}\}.$

Problem 4: **Proving non-regularity: the Pumping Lemma.** Prove that the following languages are not regular.

- 1. $L_1 = \{0^i 1^j 0^k | k > i + j\}.$
- 2. $L_2 = \{0^i 1^j | j \text{ is a multiple of } i\}.$
- 3. $L_3 = \{0^i 1^j \mid i > j\}.$
- 4. $L_4 = \{0^i 1^j 2^k \mid i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}.$

Problem 5: The size of the minimal DFA for a regular language L. Consider the regular language $L = \{w \mid w \text{ contains at least three } 1's\}$. Prove that any DFA for this language has at least 4 states.