Readings: Sections 7.1, 7.2, 7.3

Problem 1: Let's review the following new terms and concepts.

1. Time complexity. The complexity classes $T I M E(f(n))$.
2. Asymptotic, worst-case analysis
3. Polynomial vs exponential bounds
4. The class P : the class of languages where membership can be decided in polynomial time.
5. The class $N P$: the class of languages where membership can be verified in polynomial time.

Problem 2: Let's get some practice with asymptotic bounds. Roughly, you can think of these notations as follows (see Section 7.1 for precise definitions):

1. Big-O: $a(n)=O(f(n))$ means that $a(n)$ is less than or equal to a constant multiple of $f(n)$ for every n, once n is sufficiently large (i.e., an "upper bound").
2. Big- Ω : $c(n)=\Omega(f(n))$ means that $c(n)$ is greater than or equal to a constant multiple of $f(n)$ for every n, once n is sufficently large (i.e., a "lower bound").
3. $\Theta: d(n)=\Theta(f(n))$ means that $d(n)=O(f(n))$ and $d(n)=\Omega(f(n))$.
4. Small-o: $b(n)=o(f(n))$ means that $b(n)=O(f(n))$ and $b(n) \neq \Omega(f(n))$.

Now, answer TRUE or FALSE for each of the following.

1. $n^{2}=O\left(n^{2}+n\right)$.
2. $2^{n}=5^{O(n)}$.
3. $n^{1000000}=o\left(1.0000001^{n}\right)$.
4. For $c_{1}<c_{2}, n^{c_{1}}=o\left(n^{c_{2}}\right)$.

Problem 3: Prove that $N P$ is closed under the star operation.
Problem 4:(NP) Let $M A X C U T=\{\langle G, k\rangle \mid G=(V, E)$ is an undirected graph and V can be partitioned into disjoint sets V_{L} and V_{R} such that the number of edges in E with one endpoint in V_{L} and the other in V_{R} is at least $k\}$. Prove that $M A X C U T$ is in $N P$.

Problem 5: Describe the error in the following fallacious proof that $P \neq N P$. Consider an algorithm for the problem $3 C O L O R=\{\langle G\rangle \mid \mathrm{G}$ is a graph that can be colored "properly" with at most 3 colors $\}$: "On input a graph G, try all possible colorings of the nodes with 3 colors. If any of these colorings is proper, accept. Else, reject." Clearly, this algorithm requires exponential time. Thus $3 C O L O R$ has exponential time complexity. Therefore $3 C O L O R$ is not in P. Because $3 C O L O R$ is in $N P$, it must be true that $P \neq N P$. (Aha, thats it !! where is my million-dollar prize ?) ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ http://www.claymath.org/millennium/P_vs_NP/

