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This paper discusses the interplay of symmetries and stability in the analysis and control of nonlinear dynamical
systems and networks. Specifically, it combines standard results on symmetries and equivariance with recent
convergence analysis tools based on nonlinear contraction theory and virtual dynamical systems. This synergy
between structural properties (symmetries) and convergence properties (contraction) is illustrated in the contexts
of network motifs arising, for example, in genetic networks, from invariance to environmental symmetries, and
from imposing different patterns of synchrony in a network.
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I. INTRODUCTION

Symmetry is a fundamental topic in many areas of physics
and mathematics [1–3]. Many systems in nature and tech-
nology possess some symmetry, which somehow influences
their functionality. Taking into account such a property may
significantly simplify the study of a system of interest. In
dynamical systems [1], symmetry concepts have been used,
for example, to explain the onset on instability in feedback
systems [4], to design observers [5] and controllers [6,7], and to
analyze synchronization properties and associated symmetry
detection mechanisms [8,9]. Typically, the symmetries of a
physical system are preserved in the mathematical tools used
to model it. This is the case, for instance, of Lagrangian
systems, where it can be easily shown that the symmetries of
the Lagrangian function transfer onto the equations of motion,
making them invariant under the same symmetry (see, e.g.,
Ref. [6] in the context of motion control).

Our goal in this paper is to develop a theoretical framework
to study the rich interplay between symmetries of the system
dynamics and questions of stability and control. We make
use of the well-known fundamental results introduced in
Refs. [1,10–12] and build upon them a theoretical framework
for studying the interplay between symmetries of dynamical
systems and global stability. The above cited papers were
mainly focused on studying symmetry properties of a system of
interest and in determining how the possible final behaviors are
related to these symmetries and to their bifurcations [13]. Our
approach yields global stability and convergence results that
can be used to study a large variety of systems, ranging from
biochemical network motifs to networked systems. Moreover,
these results are further generalized by showing that it is
possible to use virtual systems in place of the real systems for
performing convergence analysis. These more general virtual
systems may have symmetries and convergence properties that
the real systems do not.

Stability and convergence analysis is based on nonlinear
contraction theory [14,15], a viewpoint on incremental stabil-
ity that has emerged as a powerful tool in applications ranging
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from Lagrangian mechanics to network control. Historically,
ideas closely related to contraction can be traced back to
Ref. [16] and even to Ref. [17]. As pointed out in Ref. [14],
contraction is preserved through a large variety of systems
combinations, and in particular it represents a natural tool for
the study and design of synchronization mechanisms [15].
Here the contraction theory framework also shows that, in
fact, for symmetry to play a key role in convergence analysis
and control, it needs not be exhibited by the physical system
itself but only by a much more general virtual system derived
from it. As such, our results provide a systematic framework
extending and generalizing the results of Refs. [8,9] in this
context.

The paper is organized as follows. After reviewing sym-
metries and contraction in Secs. II A and II B, some basic
results linking the two notions are described in Sec. II C. These
results are generalized in Sec. III, where systems with multiple
symmetries are considered. Section III B considerably extends
the basic results by showing that the contraction and symmetry
conditions on the system of interest can be replaced by weaker
conditions on some appropriately constructed virtual system.
In Sec. IV, the approach is applied to the case of systems
with external inputs, with examples detailed in Sec. V. Using
our approach we explain the onset of the so-called fold
change detection behavior, which is important for biochemical
processes. Section VI extends our theoretical framework to the
study of interconnected systems or networks, and shows that it
can be used to analyze and/or control synchronization patterns.
Applications are then provided by showing that symmetries
and contraction can be controlled so as to generate different
synchronization patterns. Quorum sensing networks are also
analyzed. Brief concluding remarks are offered in Sec. VIII.

A. Notation

We denote with |x| any vector norm of the vector x ∈ Rn

and with ‖A‖ the induced matrix norm of the real square matrix
A ∈ Rn×n. When needed, we will point out the particular
norm being used by means of subscripts: |·|i , ‖·‖i . Given a
vector norm on Euclidean space, |·|, with its induced matrix
norm ‖A‖, the associated matrix measure μ is defined as
the directional derivative of the matrix norm, that is, μ(A) =
limh→0+ 1

h
(‖I + hA‖ − 1) . The matrix measure, also known

as logarithmic norm was introduced in Refs. [18] and [19].
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TABLE I. Standard matrix measures for a real n × n matrix, A =
[aij ]. The ith eigenvalue of A is denoted with λi(A).

Vector norm Induced matrix measure
| · | μ(A)

|x|1 = ∑n

j=1 |xj | μ1(A) = maxj (ajj + ∑
i �=j |aij |)

|x|2 = (
∑n

j=1 |xj |2)
1
2 μ2(A) = maxi[λi( A+A∗

2 )]
|x|∞ = max1�j�n |xj | μ∞(A) = maxi(aii + ∑

j �=i |aij|)

When needed, we will point out the particular matrix measure
being used by means of subscripts. Examples of matrix
measures are listed in Table I. More generally, matrix measures
can be induced by weighted vector norms |x|�,i = |�x|i , with
� a constant invertible matrix and i = 1,2,∞. Such measures,
denoted with μ�,i , are linked to the standard measures by
μ�,i(A) = μi(�A�−1) ∀i = 1,2,∞.

II. MATHEMATICAL PRELIMINARIES

A. Contraction theory tools

Consider the m-dimensional deterministic system

ẋ = f (x,t) (1)

where f is a smooth nonlinear function. The following
definition will be used in the rest of the paper:

Definition 1. The dynamical system Eq. (1) is said to be
contracting if there exists some matrix measure, μ, such that
∃λ > 0, ∀x, ∀t � 0, μ( ∂f (x,t)

∂x
) � −λ. The scalar λ defines the

contraction rate of the system.
For convenience, in this paper we will also say that

a function f (x,t) is contracting if the system ẋ = f (x,t)
satisfies the sufficient condition above. Similarly, we will
then say that the corresponding Jacobian matrix ∂f

∂x
(x,t) is

contracting.
The basic result of nonlinear contraction analysis states that,

if a system is contracting, then all of its trajectories converge
toward each other (see Ref. [14]).

Theorem 1: Contraction. Let x̄(t) and x̃(t) be two solutions
of Eq. (1), with initial conditions x̄(t0) = x̄0 and x̃(t0) = x̃0.
Then, for any t � t0, it holds that

|x̄(t) − x̃(t)| � |x̄0 − x̃0|e−λt .

We shall also use the following property of contracting
systems, whose proofs can be found in Refs. [14,20].

Hierarchies of contracting systems. Assume that the Jaco-
bian of Eq. (1) is in the form

∂f

∂x
(x,t) =

[
J11 J12

0 J22

]
(2)

corresponding to a hierarchical dynamic structure. The Jii

may be of different dimensions. Then, a sufficient condition
for the system to be contracting is that (i) the Jacobians J11, J22

are contracting (possibly with different �’s and for different
matrix measures), and (ii) the matrix J12 is bounded.

A simple yet powerful extension to nonlinear contraction
theory is the concept of partial contraction, which was
introduced in Ref. [15].

Theorem 2: Partial contraction. Consider a smooth non-
linear n-dimensional system of the form ẋ = f (x,x,t) and
assume that the auxiliary system ẏ = f (y,x,t) is contracting
with respect to y. If a particular solution of the auxiliary y

system verifies a smooth specific property, then all trajectories
of the original x system verify this property exponentially. The
original system is said to be partially contracting.

Indeed, the virtual y system has two particular solutions,
namely y(t) = x (t) for all t � 0 and the particular solution
with the specific property. Since all trajectories of the y system
converge exponentially to a single trajectory, this implies that
x (t) verifies the specific property exponentially.

Using the Euclidean norm, the results in Ref. [15] are
systematically extended in Ref. [8] to global exponential
convergence toward some flow-invariant linear subspace,
M, allowing in particular multiple groups of synchronized
elements to coexist (so called polydynamics, or polyrhythms).
The dynamics in Eq. (1) is said to be contracting toward M if
all its trajectories converge toward M exponentially. Let p be
the dimension of M and V be a (n − p) × n matrix, whose
rows are an orthonormal basis of M⊥. The following result is
a straightforward generalization of Theorem 1 in Eq. [8].

Theorem 3. If μ(V ∂f

∂x
V T ) is uniformly negative for some

matrix measure μ in Rn−p, then Eq. (1) is contracting toward
M. Note that if the system is contracting, then trivially it is
contracting toward M (since entire trajectories of the system
are contained in M).

B. Symmetry of dynamical systems

In this paper, we consider operators acting over the state
space of Eq. (1). Often such operators are linear, with their
effects on the structure of the solutions specified in terms of a
group of transformations (see, e.g., Ref. [1]). We will use the
following standard definitions.

Definition 2. Let � be a group of operators acting on Rn.
We say that γ ∈ � is a symmetry of Eq. (1) if for any solution,
x(t), γ x(t) is also a solution. Furthermore, if γ x = x, we say
that the solution x(t) is γ symmetric.

Definition 3. Let � be a group of operators acting onRn, and
f : Rn × R+ → Rn. The vector field, f , is said to be � equiv-
ariant if f (γ x,t) = γf (x,t), for any γ ∈ � and x ∈ Rn. Thus,
� equivariance in essence means that γ commutes with f .

Definition 4. We say that a solution of Eq. (1) is h

symmetric, if there exists some T > 0 such that x(t) =
γ x(t + T ). The vector field, f , is said to be h equivariant
if f (γ x,t) = γf (x,t + T ).

We will refer to γ and h as actions. We remark here that
forced systems with a nontrivial h symmetry are periodically
forced systems. More precisely, suppose h has order m and

f (hx,t) = hf (x,t + T ).

Then

f (x,t) = f (hmx,t) = hmf (x,t + mT ) = f (x,t + mT ),

which implies that the forcing is indeed periodic. Moreover, if
H is a group of h symmetries, then H/� must be a cyclic
group. The proof is similar to the one for spatiotemporal
symmetries of periodic solutions in Ref. [1].
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1. Symmetries, equivariance, and invariant subspaces

We first review the relationship [1] between symmetries,
equivariance, and the existence of flow-invariant linear
subspace.

If f is � equivariant, then γ is a symmetry of Eq. (1).
Indeed, letting y(t) = γ x(t), we have

ẏ = γ ẋ = γf (x,t) = f (γ x,t) = f (y,t)

so that y(t) is also a solution of Eq. (1).
If the operator γ is linear, this in turn immediately

implies that the subspace Mγ = {x ∈ Rn : γ x = x} is flow
invariant under the dynamics in Eq. (1). Thus, solutions
having symmetric initial conditions, x0 = γ x0, preserve that
symmetry for any t � 0. Note that M �= ∅ since 0 ∈ M.

In this paper we assume γ to be any linear operator and
give some extensions for nonlinear operators. Therefore, our
framework is somewhat broader than that typically considered
in the literature on symmetries of dynamical systems, where it
is generally assumed that γ describes finite groups or compact
Lie groups (see, e.g., Ref. [1] and references therein).

C. Basic results on symmetries and contraction

Next, we review some results from Ref. [9], which this
paper shall generalize. These results can be summarized as
follows: (i) if the dynamical system of interest is contracting,
then γ and h symmetries of the vector fields are transferred
onto symmetries of trajectories; (ii) if f presents a spatial sym-
metry γ , then this property can be transferred to the solutions
x(t) by only requiring contraction towards Mγ , rather than
contraction of the entire system. Note that, although the proofs
in Ref. [9] are presented in the context of Euclidean norms,
they can be generalized straightforwardly to other norms.

Theorem 4. Consider dynamics in Eq. (1), with f �

equivariant. Assume that f is also contracting, or more
generally that f is contracting toward Mγ . Then, any solution
of Eq. (1) converges toward a γ -symmetric solution.

Proof. The proof is immediate, since any system trajectory
tends exponentially toward M, and by definition Mγ is the
subspace x = γ x. �

We remark here that Theorem 4 implies that all nontransient
dynamics lies (e.g., equilibrium points, periodic and chaotic
attractors) in Mγ . One interesting interpretation of the above
theorem is as follows. Assume that f (x,t) in Eq. (1) is �

equivariant. We know (see Sec. II B) that if x(t) is a solution
of Eq. (1), then so is γ x(t), which implies in particular that
the subspace Mγ is flow invariant under Eq. (1). Assume now
that f is contracting toward Mγ . Then, given arbitrary initial
conditions in x(t), both x(t) and γ x(t) will tend to Mγ , and
therefore will tend to the same trajectory, since by definition
Mγ = {x ∈ Rn : x = γ x}. Thus, all trajectories initialized
within a group transformation generated by γ represent an
equivalence class which will converge to the same trajectory
on Mγ .

Furthermore, note that adding to the dynamics in Eq. (1) any
term ẋM(t) ∈ Mγ preserves contraction to Mγ . By choosing
ẋM(t) to represent a multistable attractor, this property could
be used to spread out or separate solutions corresponding to
different equivalence classes, in a fashion reminiscent of recent
work on image classification [21].

A similar transfer of symmetries of the vector field onto
symmetries of x holds for spatiotemporal symmetries. Let ph

be the order of h (i.e., hph = identity). The following result
holds:

Theorem 5. If f is h equivariant and contracting, then x

tends to an h symmetric. Furthermore, all the solutions of the
system tend to a periodic solution of period phT .

Proof. Note first that if x(t) is a solution of Eq. (1), then so
is hx(t − T ), since

dhx(t + T )

dt
= hẋ(t + T ) = f (hx(t + T ),t).

Since Eq. (1) is contracting, this implies that x(t) → hx(t −
T ) exponentially. By recursion, x(t) → hphx(t + phT ) =
x(t + phT ) exponentially. Now exponential convergence of
the above implies implies in turn that for any t ∈ [0,phT ],
x(t + nphT ) is a Cauchy sequence. Since Rn (equipped with
either of the weighted 1, 2, or ∞ norms) is a complete space,
this shows that the limit limn→+∞ x(t + nphT ) does exist,
which completes the proof. �

Note that phT may actually be an integer multiple of the
smallest period of the solutions.

III. MULTIPLE SYMMETRIES AND VIRTUAL SYSTEMS

In this section, we start by extending the results presented
above by considering the case where f presents more than one
symmetry. A further generalization is then given using virtual
systems: In this way, our approach is extended to the study of
systems that present no symmetries.

A. Coexistence of multiple spatial symmetries

In the preceding section, we showed that the symmetries of
the vector field of Eq. (1) are transformed in symmetries of its
solutions, x(t), if the system is contracting (toward some linear
invariant subspace). We now assume that f is equivariant with
respect to a number of s > 1 actions: The aim of this section is
to provide sufficient conditions determining the final behavior
of the system.

Let (i) Mi be the linear subspace defined by γi (i.e., Mi =
{x : x = γix}); (ii) ẋi = f i(xi,t) be the dynamics of Eq. (1)
reduced on Mi ; and (iii) γ1, . . . ,γs be the symmetries showed
by f i .

Theorem 6. Assume thatM1 ⊂ M2 ⊂ · · · ⊂ Ms . Then, all
the solutions of Eq. (1) exhibit the symmetry γj (1 � j � s)
if (i) Eq. (1) contracts toward Ms and (ii) ∀i = j + 1, . . . ,s,
ẋi = f i(xi,t) is contracting toward Mi−1.

Proof. By assumption we know that the sets Mi are all
linear invariant subspaces. Denote with λi the contraction rates
of ẋi = f i(xi,t) towardMi−1. Let ai(t) be solutions of Eq. (1)
such that ai (0) ∈ Mi , and let b(t) be a solution of Eq. (1) such
that b (0) /∈ Ms . We have

|b(t) − aj (t)|

=
∣∣∣∣∣∣b(t) +

s∑
i=j+1

ai(t) −
s∑

i=j+1

ai(t) − aj (t)

∣∣∣∣∣∣
� |b(t) − as(t)| +

s∑
i=j+1

|ai(t) − ai−1(t)|.
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Now, by hypotheses, the dynamics of Eq. (1) reduced on each
of the subspaces Mi (i = j + 1, . . . ,s) [i.e., ẋi = f i(xi,t)]
is contracting toward Mi−1. Thus, there exists some Ki > 0,
i = 1, . . . ,j − 1, such that

|b(t) − as(t)| � Ks+1e
−λs+1t

|ai(t) − ai−1(t)| � Kie
−λi t i = j + 1, . . . ,s

This implies that
∣∣b(t) − aj (t)

∣∣ → 0 exponentially. The theo-
rem is then proved. �

With the following result we address the case where the
invariant subspaces defined by the symmetries are not strictly
contained in each other but intersect.

Theorem 7. Assume that M∩ = ∩Mi �= {0}. Then, all
solutions of Eq. (1) exhibit the symmetry defined by M∩
if one of the two conditions holds: (i) f is contracting toward
each subspace Mi or (ii) f is contracting.

Proof. Let xi , i = 1, . . . ,s, be solutions of Eq. (1), such
that xi(0) ∈ Mi , and a(t) be a solution of the system such
that a(0) /∈ Mi . Now, if f is contracting toward each Mi ,
we have, by definition, that there exists Ki > 0, λi > 0, i =
1, . . . ,s, such that |a(t) − xi | � Kie

−λt . This, in turn, implies
that there exists some K > 0, λ > 0 such that

∣∣xi − xj

∣∣ �
Ke−λi t , ∀i �= j . Now, since Mi are flow invariant, we have
that xi(t) ∈ Mi , for all t � 0. Thus, xi(t) → M∩, as t →
+∞, implying that also a → M∩, as t → +∞. By using
similar arguments, it is possible to prove the result under the
stronger hypothesis of f being contracting. �

We remark here that in the context of networked systems,
Theorems 6 and 7 can be stated by using balance equivalence
relations (see Ref. [11]).

1. Synchronizing networks with chain topologies

As a first application of our results we revisit the problem
of finding sufficient conditions for the synchronization of
networks having chain topologies. Specifically, we show that
Theorem 6 allows to study network synchronization iteratively
reducing the dimensionality of the problem. For the sake of
clarity we now consider a simple network of four nodes. While
developing the example, we will also introduce introduce an
important γ symmetry (i.e., permutations).

Consider the diffusively coupled network represented in
Fig. 1, whose dynamics are described by

ẋ1 = f1(X) = g(x1) + h(x2) − h(x1)

ẋ2 = f2(X) = g(x2) + h(x1) + h(x3) − 2h(x2)
(3)

ẋ3 = f3(X) = g(x4) + h(x2) + h(x4) − 2h(x3)

ẋ4 = f4(X) = g(x4) + h(x3) − h(x4),

where xi ∈ Rn, X = [xT
1 ,xT

2 ,xT
3 ,xT

4 ]T , all the nodes have the
same intrinsic dynamics, g and are coupled by means of the
output function, h. The set of ordinary differential equations
(ODEs) (3) are studied in Ref. [10] as they represent linear
chains with bidirectional diffusive coupling and Neumann
boundary conditions. Moreover, in Ref. [22], an explanation
of the patterns of symmetry for these networks is given. In
this section, we show that a contracting property of vector
fields selects one of the possible synchrony patterns, making
it globally exponentially stable.

FIG. 1. (Color online) Top panel: the chain topology network of
four nodes. Middle panel: polysynchronous subspace identified by
M2. Bottom panel: equivalent network and synchronous subspace
identified by M1. The graphs presented in this figure are linear
chains with bidirectional diffusive coupling and Neumann boundary
conditions (see Ref. [10]).

Now, consider the following action:

γ2 : (x1,x2,x3,x4) → (x4,x3,x2,x1). (4)

That is, γ2 permutes x1 with x4 and x2 with x3. Let F (X) =
[f1(X)T ,f2(X)T ,f3(X)T ,f4(X)T ]T : It is straightforward to
check that γ2F (X) = F (γ2X). That is, F is �2 equivariant.
This, in turn, implies the existence of the flow-invariant
subspace

M2 = {X ∈ R4n : (x1,x2,x3,x4) = (x4,x3,x2,x1)}.
Notice that such a subspace corresponds to the polysyn-
chronous subspace [22], where node 1 is synchronized to node
4 and node 2 is synchronized to node 3 (synchronous nodes
are also pointed out in Fig. 1). Let J2(X) be the Jacobian of
the network, and

V2 = 1√
2

[−1 0 0 1
0 −1 1 0

]

be the matrix spanning the null of M2 (notice that the rows
of M2 are orthonormal). All the trajectories of the network
globally exponentially converge toward M2 if the matrix
V2J2(X)V T

2 is contracting (see Theorem 4). It is straight-
forward to check that such a matrix is contracting if the
function g(·) − h(·) is contracting. Let x1,4,x2,3 ∈ M2, with
x1,4 = x1 = x4 and x2,3 = x2 = x3; the dynamics of Eq. (3)
reduced on M2 is given by

ẋ1,4 = g(x1,4) + h(x2,3) − h(x1,4)
(5)

ẋ2,3 = g(x2,3) + h(x1,4) − h(x2,3),

which corresponds to an equivalent two-node network (see
Fig. 1). It is straightforward to check that the above reduced
dynamics is �1 equivariant with respect to the action

γ1 : (x1,4,x2,3) → (x2,3,x1,4).

Thus, the subspace

M1 = {X ∈ R4n : (x1,4,x2,3) = (x2,3,x1,4)}
is a flow-invariant subspace. Furthermore, the trajectories
of Eq. (5) globally exponentially converge toward M1 if
V1J1(X)V T

1 is contracting, where V1 = 1√
2
[−1,1] and J1(X)
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is the Jacobian of Eq. (5). Now, V1J1V
T

1 = 1
2 ( ∂g

∂x1,4
− 2 ∂h

∂x1,4
+

∂g

∂x2,3
− 2 ∂h

∂x2,3
), which is contracting if g(·) − h(·) is contracting.

Thus, using Theorem 6, we can finally conclude that the
network synchronizes if the function

g(·) − h(·) (6)

is a contracting function. Notice that this also implies that the
synchronization subspace is unique.

We remark the following here:
(i) the dimensionality-reduction methodology presented

above can be also extended to the more generic case of chain
topologies of length 2r , for any integer, r .

(ii) the same methodology can be used to prove synchro-
nization of networks having hypercube topologies, as they
can be seen as chains of chains. Hence, the above approach
can be used to find condition for the synchronization of
lattices. Such a topology typically arises from, for example, the
discretization of partial differential equations. In this view, our
results provide a sufficient condition for the spatially uniform
behavior in reaction diffusion partial differential equations
(PDEs), similarly to Ref. [23].

(iii) the synchronization condition in Eq. (6) is less stringent
than that obtained by proving contraction of Eq. (3) toward
the synchronization subspace M = {X ∈ R4n : x1 = x2 =
x3 = x4}.

B. Generalizations using virtual systems

The results presented in the previous sections link the
symmetries of a dynamical system and contraction. Specif-
ically, they show that if a system presents a set of s > 1
symmetries, then the final behavior is determined by the
contraction properties of the vector field.

In this section, we extend the previous results and show
that in order for the solutions of Eq. (1) to exhibit a
specific symmetry, equivariance and contraction of f are not
necessarily needed. Indeed, such a condition can be replaced
by a weaker condition: namely, an equivariance condition on
the vector field of some auxiliary (or virtual) system, similar
in spirit to Theorem 2.

Theorem 8. Consider the system

ẏ = v(y,x,t) (7)

where x(t) are the solutions of Eq. (1) and v(x,y,t) is some
smooth function such that

v(x,x,t) = f (x,t).

The following statements hold:
(i) if v(y,x,t) is � equivariant and contracting toward Mγ ,

then any solution of Eq. (1) converges toward a γ -symmetric
solution.

(ii) if v(y,x,t) is h equivariant and contracting, then any
solution of Eq. (1) converges toward an h-symmetric solution.

System (7) is termed a virtual system.
Proof. Indeed, by assumption, all the solutions y(t) of the

virtual system globally exponentially converge toward some
h (γ ) symmetric solution, say x(t). Now, notice that any
solution of Eq. (1), say a(t), is a particular solution of Eq. (7),

since v(x,x,t) = f (x,t). This implies that

|a(t) − x(t)| → 0

as t → +∞. The result is then proved. �
A simple example illustrating the key features of Theorem 8

is as follows. Consider the dynamical system

ẋ = −(ex + 1)x,

which can be easily shown to be not contracting and to have
no symmetries. We will show, by means of Theorem 8, that
there exists a symmetric virtual system proving that the final
behavior of the original system is symmetric. Indeed, consider
the virtual system

ẏ = −(ex + 1)y.

Clearly, such a system has the symmetry y → −y. Therefore,
Theorem 8 implies that all the solutions of the original system
converge toward the symmetric solution, explaining the fact
that final behavior of the original system is symmetric.

Note the following:
(i) Any solution of the virtual system having symmetric

initial conditions [i.e., y(0) = γy(0)] preserves the symmetry
for any t > 0. In particular, if a solution of the real system
has initial conditions verifying the symmetry of the virtual
system [i.e., x0 = γ x0] then it preserves this symmetry [i.e.,
x(t) = γ x(t)] for any t � 0. This is a generalization of the
basic result presented in Sec. II B.

(ii) Theorem 8 can be straightforwardly extended to the
case where the virtual system presents a set of s > 1 spatial
symmetries. Analogous results to Theorems 6 and 7 can be
easily proven.

1. A discussion on symmetries of virtual systems

Let us briefly discuss some of the main features of our
results involving the use of virtual systems.

We showed that a given dynamical system of interest can
exhibit some symmetric final behavior even if the corre-
sponding vector field is not equivariant and/or contracting.
Indeed, a sufficient condition for a system to exhibit a
symmetric final behavior is the symmetry of the vector field
of some appropriately constructed virtual system. Of course,
an interesting general question is that of identifying a virtual
system explaining the final behavior of a real system, an
aspect is reminiscent of the process of identifying a Lyapunov
function in stability analysis.

The idea of relating behaviors of real systems using a
symmetric virtual system, possibly of different dimension,
presents analogies with the concept of supersymmetry in
particle physics (see, e.g., Refs. [24,25] and references
therein). The motivation beyond the concept of supersymmetry
is that nonsymmetric transformations of an object (the real
system in our framework) in a finite dimensional space,
may be explained by a symmetric transformation of another,
possibly higher-dimensional object (the virtual system in our
framework).

Finally, we remark here that all the results presented above
can be straightforwardly extended to address the problem of
designing control strategies guaranteeing convergence of a
system of interest onto some desired trajectory. Intuitively, the
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idea is that the control input has to: (i) generate some desired
symmetry for the vector field (and hence some desired invariant
subspace defining the system’s final behavior) and (ii) drive
all the trajectories toward the invariant subspace imposing
contraction.

IV. SYSTEM WITH INPUTS

In the above sections, we presented some results that can be
used to analyze the final behavior of a system of interest. The
main idea beyond such results is the use of contraction to study
convergence of trajectories toward some invariant subspace. In
turn, such a subspace is defined by some structural property of
the vector field, namely a symmetry.

We now generalize this result further, and show that it is
possible to determine a direct relation between the trajectories
of a system when forced by different classes of inputs. The
results presented in this section are also based on the concept
of virtual system. Indeed, while the forced systems of interest
considered here are not equivariant and/or contracting, we
will show that it is possible to construct a symmetric and
contracting virtual system that allows us to relate the final
behavior of the two systems.

Consider a system described by

ẋ = f (x,u(t),t). (8)

The following result holds:
Theorem 9. Assume that Eq. (8) is contracting with respect

to x, uniformly in u(t), and that there exist some linear
transformations γi , ρi , i � 1, such that: γif (x,u(t),t) =
f (γix,ρiu(t),t). Let xi(t) be a solution of Eq. (8) when
forced by u(t) = ui(t) [i.e. ẋi = f (xi,ui(t),t) xi(t = 0) =
x0,i]. Then, for any ui(t), uj (t) such that ρiui(t) = ρjuj (t)

|γixi − γjxj | → 0

as t → +∞. Moreover, let xk
i and xk

j the kth component of
xi and xj , respectively and γ k

i , (γ k
j ) be the kth component

of γi (γj ). If γ k
i xk

0,i = γ k
j xk

0,j then γ k
i xk

i (t) = γ k
j xk

j (t), for any
t � 0.

The second statement of the above theorem implies that
if the system when forced by two different inputs starts with
certain symmetries, then the symmetries are preserved.

Proof. Indeed, let uv = ρiui = ρjuj and consider the
following virtual system:

ẏ = f (y,uv,t). (9)

Notice that, for any i, j , γixi, and γjxj are particular solutions
of such a system. Indeed:

γi ẋi = γif (xi,ui,t) = f (γixi,ρiui,t) = f (γixi,uv,t)

γj ẋj = γjf (xj ,uj ,t) = f (γjxj ,ρjuj ,t) = f (γjxj ,uv,t).

Now, since f (x,uv,t) is contracting by hypotheses, we have,
for any i, j , there exists some C such that

|γixi − γjxj | � C|γix0,i − γjx0,j |e−λt , λ > 0.

This proves the first part of the result. To conclude the proof it
suffices to notice that exponential convergence of |γixi − γjxj |
to 0 implies that all of its components exponentially converge

to 0. In particular, this implies that there exists some Ck , λk

such that∣∣γ k
i xk

i − γ k
j xk

j

∣∣ � Ck

∣∣γ k
i xk

0,i − γ k
j xk

0,j

∣∣e−λtk , λk > 0.

Since |γ k
i xk

0,i − γ k
j xk

0,j | = 0 by hypotheses, we have that
|γ k

i xk
i (t) − γ k

j xk
j (t)| ∀t � 0. �

Theorem 9 can be extended by replacing the linear operators
γi , ρi by more general nonlinear transformations acting on the
system

ẋ = f (x,u(x,t),t). (10)

The transformations considered are smooth nonlinear func-
tions of the state and of time, γ = γ (x,t), ρ = ρ(u(x,t),x,t).
Following the same arguments as in Theorem 9, it is then
straightforward to show:

Theorem 10. Assume that Eq. (10) is contracting uniformly
in u(x,t) and that there exist some γi(x,t), ρi(u(x,t),x,t),
i � 1, such that

∂γi

∂x
f (x,u(x,t),t) = f (γi(x),ρi(u(x,t),x,t),t)

Let xi(t) be solutions of Eq. (10) when forced by
u(t) = ui(xi,t) [i.e., ẋi = f (xi,ui(xi,t),t), xi(t = 0) = x0,i].
Then, for any ui(xi,t), uj (xj ,t) such that ρi(u(xi,t),xi,t) =
ρj (uj (xj ,t),xj ,t)

|γi(xi) − γj (xj )| → 0

as t → +∞. Moreover, let xk
i and xk

j the kth component of
xi and xj , respectively and γ k

i , (γ k
j ) be the kth component of

γi (γj ). If

γ k
i

(
xk

0,i

) = γ k
j

(
xk

0,j

)
then γ k

i (xi(t)k) = γ k
j (xj (t)k), for any t � 0.

Proof. The proof follows exactly the same steps as those
used to prove Theorem 9, with uv in virtual system Eq. (9) now
being chosen as uv = ρi(u(xi,t),xi,t) = ρj (uj (xj ,t),xj ,t). �

We close this section by pointing out some features of the
above two theorems.

(i) The proofs of both Theorems 9 and 10 are based on
the proof of contraction of some appropriately constructed
virtual system of the form of Eq. (9). We now show that,
if some hypotheses are made on γi , then the contraction
condition can be weakened. Specifically, assume that all the
intersection of the subspaces defined by γi , Mi , is nonempty.
Then, it is straightforward to check that

∣∣γixi − γjxj

∣∣ → 0 if
f is contracting toward each Mi , or contracting toward M∩.
Notice that, since our results make use of symmetries of virtual
systems, they extend those in Ref. [9].

(ii) Analogously, Theorems 9 and 10 can also be extended to
study the case where the input ui selects one specific symmetry
γi . Indeed, let uv = ρiui . In this case, it can be shown that
symmetry γi is shown by the solutions of Eq. (8) if f (x,uv,t)
is contracting toward Mi .

(iii) A particularly interesting case for Theorem 9 is when
some of the components of x0,i and x0,j are the same and the
actions γi and γj leave such components unchanged. That is,
in view of the notations above γ k

i = id = γ k
j and xk

0,i = xk
0,j .

Indeed, in this case Theorem 9 implies that xk
i (t) = xk

j (t),∀t �
0. That is, the kth components of the trajectories of Eq. (8) have
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identical temporal evolutions even if forced by different inputs.
A similar result holds for Theorem 10. This consequence of
the above two results is used in Sec. V.

V. EXAMPLE: INVARIANCE UNDER INPUT SCALING

In a series of recent papers, input-output properties of
some cellular signaling biochemical systems have been an-
alyzed [26–29]. Such studies point out that many sensory
systems show the property of having their output invariant
under input scaling, which can be formally defined as follows.

Definition 5. Let xi(t), xj (t) be solutions of Eq. (8) with
initial conditions x0 = xi(0) = xj (0), when u(t) = χi(t) and
u(t) = χj (t), respectively. System Eq. (8) is invariant under
input scaling if xi(t) = xj (t) for any χi(t), χj (t) such that
χj (t) = F (t)χi(t), with F (t) > 0.

Invariance under input scaling with constant F (t) = F has
been recently studied in transcription networks by Alon and his
coauthors [26,27,29]. In such papers, the authors focus on the
study of transcriptional networks subject to step inputs. In this
case, the invariance under input scaling is called fold-change
detection behavior (FCD), as the output of the system depends
only on fold changes in input and not on its absolute level. For
example, if the input to the system is a step function from 1 to
2, then its output is the same as if the step was increased from
2 to 4.

This section uses this paper’s results to analyze the
associated mathematical models, arising from protein signal-
transduction systems and bacterial chemotaxis, and in par-
ticular it revisits the recent work [27] from this point of
view. It also shows how these results could, for instance,
suggest a mechanism for stable quorum sensing in bacterial
chemotaxis, thus combining symmetries in cell interactions
(quorum sensing) with invariance to input scaling (fold-change
detection).

A. Gene regulation

This first example considers a pattern (network motif)
arising in gene regulation networks, the Type 1 Incoherent
Feed-Forward Loop (I1-FFL) [30,31]. The I1-FFL is one of the
most common network motifs in gene regulation networks (see
also Sec. VII). As shown in Fig. 2, it consists of an activator,
X, which controls a target gene, Z, and activates a repressor
of the same gene, Y (which can be thought of as the output of
the system). It has been recently shown that such a network
motif can generate a temporal pulse of Z response, accelerate
the response time of Z, and act as a band-pass amplitude filter
(see, e.g., [32,33]).

In Ref. [26] it has also been shown by using a dimensionless
analysis that for a certain range of biochemical parameters, the

FIG. 2. A schematic representation of the I1-FFL.

I1-FFL can exhibit invariance under step-input scaling (i.e.,
FCD).

1. A basic model

In Ref. [26], it was shown that a minimal circuit that
achieves FCD is the I1-FFL, with the activator in linear regime
and the repressor saturating the promoter of the target gene,
Z. The model in Ref. [26] is of the form

Ẏ = −α1Y + χ (t)
(11)

Ż = β2
χ (t)

Y
− α2Z

where α1, α2, β2 are biochemical (positive) parameters and
χ (t) is the input to the system (which can be approximated
by the concentration of X). It was also shown that the
dimensionless model

dy

dτ
= F − y

r
dz

dτ
= F

y
− z

with

y = Yα1

β1χmin
Z = Z

β2α1/β1α2

F = χ (t)

χmin
τ = α1t

exhibits invariance under input scaling. In Sec. VII, we
will also analyze other important network motifs under a
slightly different viewpoint (i.e., by considering each of the
species composing the motif as nodes of an interconnected
systems).

In this section, we show invariance under input scaling for
system Eq. (11) for any input, χi(t), χj (t), such that χi (t)

χmin ,i
=

χj (t)
χmin ,j

= F (t). In the above expressions χmin ,i and χmin ,j denote
the basal level of the inputs χi(t) and χj (t) respectively. Such
levels are assumed to be nonzero. Notice that the above class
of inputs is wider that the one used in Definition 5.

Theorem 9 is now used to prove invariance under input
scaling for Eq. (11). That is, we show that invariance under
input scaling is a consequence of the existence of a symmetric
and contracting virtual system in the spirit of Theorem 9.

In what follows, we will denote with xi = (Yi,Zi)T and
xj = (Yj ,Zj )T the solutions of Eq. (11), when χ (t) = χi(t)
and χ (t) = χj (t), respectively. We assume that Zi(0) = Zj (0).
In terms of the notation introduced in Theorem 9, we have
u(t) = χ (t) and

f (x,u(t)) =
(−α1Y + χ (t)

β2
χ(t)
Y

− α2Z

)
.
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Now, define the following actions:

γi =
(

Y

Z

)
→

(
Y

χmin ,i

Z

)
, ρi : χ (t) → χ (t)

χmin ,i

= F (t).

(12)
It is straightforward to check that f (x,u(t)) is contracting
uniformly in u(t) and γif (xi,χi(t)) = f (γixi,ρiχi(t)). Now,
Theorem 9 implies that for any input χi(t), χj (t) such
that ρiχi(t) = ρjχj (t), γixi and γjxj globally exponentially
converge toward each other. That is

|γixi − γjxj | =
∣∣∣∣∣
(

Yi

χmin ,i
− Yj

χmin ,j

Zi − Zj

)∣∣∣∣∣ → 0 (13)

for any χi , χj such that

χi(t)

χmin ,i

= χj (t)

χmin ,j

= F (t). (14)

Now, Eq. (13) implies that |Zi − Zj | → 0 exponentially. Since
the initial conditions of Zi and Zj are the same we have
that Zi(t) = Zj (t) for any t � 0. That is, the system exhibits
invariance under input scaling.

B. A model from chemotaxis

In bacterial chemotaxis, bacteria walk through a chemo-
attractant field, say u(t,r) (r denotes two dimensional space
vector). Along their walk, bacteria sense the concentration of u

at their position and compute the tumbling rate (rate of changes
of the direction) so as to move toward the direction where the
gradient increases (see, e.g., Ref. [34]). Typically, the input
field is provided by means of a source of attractant that diffuses
in the medium with bacteria accumulating in the neighborhood
of the source. In this case, the information on the position of
the source is encoded only in the shape of the field and not in
its strength. Therefore, it is reasonable for bacteria to evolve a
search pattern that is dependent only on the shape of the field
and not on its strength (i.e., a search pattern that is invariant
under input scaling [27]). Specifically, consider the following
model [27] adapted from the chemotaxis model of Ref. [35]:

ẋ = xf (y)
(15)

εẏ = φ
(u

x

)
− y

where u > 0 is an increasing step input to the system,
representing the ligand concentration, and y > 0, the output
of the system, represents the average kinase activity. The
quantity x > 0 is an internal variable. We assume the function
φ to be a decreasing function in x with bounded partial
derivative ∂φ/∂x and an increasing function of u/x, with
derivative φ′ = ∂φ/∂(u/x) � b, b > 0. Note that the above
model becomes the one used in Ref. [27], when φ(u/x) = u/x.
Such a model is obtained assuming x is sufficiently large,
with the term u/x actually a simplification of a term of the
form u/(x + η), with 0 < η � x. The positive constant ε is
typically small, so as to represent a separation of time scales.

Assume as in Ref. [35] that f (1) = 0 and that f (y) is strictly
increasing with y. Obviously, Eq. (15) verifies the symmetry

conditions of Theorem 9 with

γi : (xi,yi) →
(

xi

ūi

,yi

)
, ρi : ui → ui

ūi

(16)

where ūi denotes the initial (lower) value, at time t = 0, of
the step function. As in the preceding section we assume that
yi(0) = yj (0). Now, by means of Theorem 9, we can conclude
that, if the system is contracting, yi(t) = yj (t), ∀t � 0, for any
input such that ui

ūi
= uj

ūj
= F .

Let us derive a condition for Eq. (15) to be contracting,
which will give conditions on the dynamics and inputs of
Eq. (15) ensuring invariance under input scaling. Model
Eq. (15) can be recast as

ÿ + 1

ε
ẏ − 1

ε

∂φ

∂x
xf (y) = 0. (17)

As in Refs. [27,35], choose f (y) = y − 1 for simplicity, so
that Eq. (17) becomes

ÿ + 1

ε
ẏ − 1

ε

∂φ

∂x
x(y − 1) = 0. (18)

The above dynamics is similar to a mechanical mass-spring-
damper system with a time-varying spring, r̈ + 2ηωṙ + ω2r =
0 with 2ηω = 1

ε
and ω2 = − 1

ε

∂φ

∂x
x. Now, as shown in Ref. [36]

such a dynamics is contracting if η > 1√
2
. Thus, it immediately

follows that Eq. (18) is contracting if

∂φ

∂x
x > − 1

2ε
. (19)

Hence, contraction is attained if φ′(− u
x2 )x > − 1

2ε
That is, a

sufficient condition for Eq. (18) to be contracting is

x > 2εub. (20)

Notice that, in the case where φ (u/x) = u/x, Eq. (20)
simply becomes

x > 2εu. (21)

The above inequality implies that, in this case, the system
is contracting (and hence exhibits invariance under input
scaling) if the level of x is sufficiently high (which is true
by hypotheses) and its dynamics is sufficiently slow (ε small)
with respect to the dynamics of y. Also, given ε < 1

2 and a
constant u, if contraction condition Eq. (21) is verified at t = 0
with initial conditions embedded in a ball contained in the
contraction region in Eq. (21), it remains verified for any t � 0.

Finally, note that the results of this section, and indeed
of the original [26,27], are closely related to the idea, first
introduced in Ref. [8] and further studied in Ref. [9], of
detecting a symmetry (here, in the environment) by using a
dynamic system having the same symmetry.

VI. ANALYSIS AND CONTROL OF
INTERCONNECTED SYSTEMS

The results presented in the preceding section indicate that
there exists a direct link between symmetries of a (virtual)
vector field and of its solutions, if the system is contracting (or
it is made contracting by some control input).

The aim of this section is that of using the above results
to analyze and control the (poly)synchronous behavior of
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N > 1 (possibly heterogeneous) interconnected systems (also
termed as networks in what follows). Such a behavior
has been recently reported in ecological systems, networks
characterized by strong community structure and in bipartite
networks consisting of two groups (see, e.g., [37–39]). For
interconnected systems, symmetries are essentially defined
by the nodes’ dynamics, the topology of the network, and
by the particular choice of the coupling functions. The
definitions and and framework introduced in what follows
were introduced by Golubitsky and Stewart in a number of
works (see Refs. [10–12]).

A. Definitions

In our framework the phase space of the ith node (or cell, or
neuron) is denoted with Pi , while its state at time t is denoted
with xi(t). Notice that Pi could in general be a manifold. Each
node has an intrinsic dynamics, which is affected by the state
of some other nodes (i.e., the neighbors of i) by means of some
coupling function. Those interactions will be represented by
means of directed graphs. In such a graph the nodes having
the same internal dynamics will be represented with the same
symbol. Analogously, heterogeneous coupling functions can
be taken into account: Identical functions will be denoted by
the same symbol. This is formalized with the following.

Definition 6. An interconnected system consists of: (i) a set
of nodes N = {1, . . . ,N}; (ii) an equivalence relation, ∼N on
N ; (iii) a finite set, E , of edges (arrows); (iv) an equivalence
relation, ∼E on E ; (v) the maps H : E → N and T : E → N
such that: for e ∈ E , we have H(e) is the head of the arrow
and T (e) the tail of the arrow; (vi) equivalent arrows have
equivalent tails and heads. That is, if e1,e2 ∈ E and e1 ∼E e2,
then H(e1) ∼N H(e2) and T (e1) ∼N T (e2).

We say that an edge e ∈ E is an input edge to a node, say i,
if H (e) = i. The set of input edges to node i is termed as input
set and denoted by I (i). We also say that two nodes, say c and
d, are input equivalent if there exists an arrow type preserving
bijection, β : I(c) → I(d).

Finally, our setup is completed by defining the dynamics of
an interconnected system as follows.

Definition 7. The dynamical system

Ẋ = F (X,t) (22)

defines an interconnected system if its phase space is defined
as P = P1 × · · ·PN × R+ where Pi denotes the phase space
of the ith network node. Furthermore, let πi : P → Pi be
projections of Eq. (22), then it must hold that πi(X(t)) = xi(t).

In Ref. [10], all the possible invariant polydiagonals,
defining a specific synchronization pattern, for networks of
ODEs are classified by using the notion of balanced colorings.
In the next section, we show that a contracting property on
network dynamics selects a specific pattern of symmetry,
determining, among all the possible final behaviors, the one
that is shown by the network.

B. Analysis and control

Let: P1 ⊆ Rn1 , P2 ⊆ Rn2 , . . ., PN ⊆ RnN be convex sub-
sets, P = P1 × · · · × PN , X = [xT

1 , . . . ,xT
N ]T , xi ∈ Pi , φi :

P × R+ → Pi be smooth functions. In what follows, we
consider systems of the form

ẋi = φi(X,t) = fi(xi,t) + h̃i(X,t) (23)

with i = 1, . . . ,N . Notice that Eq. (23) represents an inter-
connected system (Definition 7). Specifically, in Eq. (23)
the function fi : Pi × R+ → Pi is the intrinsic dynamics
of the ith node, while the function h̃i : P × R+ → Pi describes
the interaction of the ith node with the other nodes composing
the interconnected system.

Notice that the above formalization allows us to consider
within a unique framework directed and undirected networks,
self loops, and multiple interactions. We will also consider
networks with (smoothly) changing topology.

The main idea of this section for the study of the collective
polysynchronous behavior emerging in network Eq. (23) can
be stated as follows: Study symmetries of Eq. (23) to determine
the possible patterns of synchrony and determine among
the possible patterns, the one exhibited by Eq. (23) using
contraction properties.

Consider a partition of the N nodes of a network into k

groups, G1, . . . ,Gk , characterized by the same intrinsic dynam-
ics. We define the following invariant subspaces associated to
each group of nodes:

Mp,s = {xi = xj , ∀i,j ∈ Gs}, s = 1, . . . ,k

Notice that all the nodes of the ith group are synchronous if and
only if network dynamics evolve onto the associated subspace
Mp,i . The polysynchronous subspace, sayMp , is then defined
as the intersection of all Mp,s (i.e., Mp = ∩sMp,s) or
equivalently

Mp = {xi = xj , ∀i,j ∈ Gm,1 � m � k}.
We say that a pattern of synchrony is possible for the network
of interest if its corresponding polysynchronous subspace is
flow invariant. In this view, a useful result is the following.

Theorem 11. The set Mp is invariant for network Eq. (22)
if the nodes belonging to group Gp have the same uncoupled
dynamics and are input equivalent.

Specifically, Theorem 11 is indeed a consequence of the
fact that input equivalence is always a balanced equivalence
relation (see Refs. [1,11]). In terms of network synchroniza-
tion, intuitively such a result implies that a specific pattern of
synchrony is possible if the aspiring synchronous nodes have
synchronous input sets.

The following result is a straightforward consequence of
the results of the preceding section on spatial symmetries.

Corollary 1. Assume that for network Eq. (23) the setsMp,s

exist. Then, the synchrony pattern exhibited by the network is
given by: (i) Mp, if the network is contracting, or contracting
toward each Mp,s ; (ii) Mp,s , if the network is contracting
toward Mp,s .

One of the applications where the above results can be
used is that of designing networks performing specific tasks.
For example, in Ref. [8] it was shown that a network with a
specific symmetry can be used to detect symmetries of images,
for example. Our results can be used to extend this framework.
Indeed, each network node in Eq. (23) may be used to process
some exogenous input, U (t) = [u1, . . . ,uN ], i.e.,

ẋi = φi(X,t) = fi(xi,t) + h̃i(X,t) + ui(t).

Now, while ui denotes the information that has to be processed
by node i, the couplings h̃i may be seen as an input (typically,
sparse) acting on the couplings between nodes, so as to activate
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FIG. 3. A schematic representation of a network used to process
information. In our framework, the network is subject to two kinds
of inputs: Ū (t) and Ũ (X). In particular, Ū (t) can be seen as the
information processed by the network: Such input can activate some
intrinsic symmetries of the network. On the other hand, Ũ (X) is a
typically sparse input that acts on the coupling functions so as to
force the activation of some desired symmetry of the interconnected
system.

a desired, arbitrary symmetry. The output of the network is
then some desired synchronous pattern that arises from the
intersection of the symmetries activated by Ū (t) and those
activated by Ũ (X). Figure 3 schematically illustrates this
principle.

For instance, assume that the system consists of a large
number of synchronized oscillators. Then we know [15] that
with an adequate choice of coupling gains adding a single
inhibitory connection between any two nodes will make
the entire system contracting and therefore will stop the
oscillations and adding a leader oscillator (i.e., an oscillator
with only feed-forward connections to the rest of the network,
its neighbors for instance) will make the entire system get in
phase with the leader. Thus very sparse feedback inputs can
completely change the symmetries of the system, and therefore
its symmetry detection specifications.

1. Chain topologies revisited

Consider, again, the network topology in Fig. 1. Recall
that in Sec. III A we proved network synchronization in
two subsequent steps. Specifically, we first proved that all
network trajectories are globally exponentially convergent
toward the polysynchronous subspace where x1 = x4, x2 = x3.
We then showed that network dynamics reduced on such a
subspace were globally exponentially convergent toward the
synchronous subspace.

The subspaces M2 and M1 toward which convergence
was proved were, in turn, determined by equivariance of
network dynamics with respect to some permutation action.
Notice that this equivariance property is a direct consequence
of the fact that node 1 of the network is input equivalent to
node 4 and node 2 is input equivalent to node 3. Moreover,
the equivalent nodes of the two-nodes reduced network are
also input equivalent.

VII. APPLICATIONS

A. Synchrony patterns for distributed computing

We now turn our attention to the problem of imposing
some polysynchronous behavior for a network of interest.
Specifically, we will impose different patterns of synchrony
for a network composed of Hopfield models. The motivation
that we have in mind here is that of multipurpose networks
(i.e., networks that can be reused to perform different tasks).
For example, this may be the case of sensor networks [40,41]
where each polysynchronous steady state is associated to a
specific set of inputs. A further notable example is the brain,
where different polysynchronous behaviors are believed to
play a key role in learning processes, for example (see, e.g.,
Ref. [42]).

We consider here a network of Hopfield models [43,44]

ẋi = −xi +
∑
j∈Ni

aij (t)hij (xi,xj ,t) + ui (24)

where aij (t) is the ith element of the time-varying interconnec-
tion matrix A(t), hij represents the interconnection function
from node j to node i, and ui is an exogenous input to the ith
node.

We start with the network in Fig. 4. Nodes denoted by
the same shape are forced by the same exogenous input.
Specifically: (i) ui(t) = 1 + sin(0.7t) for the circle nodes;
(ii) ui(t) = 5 + 3 sin(0.5t) for the square nodes; and
(iii) ui(t) = 0 for node 13.

Analogously, identical arrows denote identical coupling
functions.

(i) the coupling between circle nodes is diffusive, bidirec-
tional and linear: hij (xi,xj ,t) = aij (t)(xj − xi).

(ii) the coupling between square nodes is diffusive, unidi-
rectional and linear.

(iii) the coupling between circle and square nodes
is diffusive, bidirectional and nonlinear: hij (xi,xj ,t) =
aij (t)[arctan(xj ) − arctan(xj )].

(iv) the square nodes affect the dynamics of node 13
unidirectionally. Specifically, the dynamics of x13 is given by

ẋ13 = −x13 + (1 − b(t))
12∑

j=9

xj

1 + xj

+ b(t)
12∑

j=9

1

1 + xj

(25)

where b(t) is a parameter that is smoothly increased between
0 and 1. Notice that b(t) can be used to switch between two
different coupling functions.

We remark here that the input to node 13 is a well-known
coupling mechanism in the literature on neural networks, and
is termed as excitatory-only coupling (see, e.g., Ref. [45]).

It is straightforward to check that network dynamics are
contracting (using, e.g., the matrix measure induced by the
one-norm).

In Fig. 4 (right panel) the input-equivalent nodes are pointed
out by means of colors: The associated linear polysynchronous
subspace is

M1 = {xi = xj ,i,j = 1, . . . ,8}
⋂

⋂
{xi = xj ,i,j = 9, . . . ,12}
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FIG. 4. (Color online) Network of Hopfield models used in
Sec. VII A (top panel). The input-equivalent nodes are pointed out in
the bottom panel.

Furthermore, it is easy to check thatM1 is flow invariant. Now,
since network dynamics are contracting, all of its trajectories
converge toward a unique solution embedded into M1. That
is, at steady state all the nodes having the same color in
Fig. 4 are synchronized. Figure 5 (left panel) clearly confirms
the theoretical analysis, showing the presence of the three
synchronized clusters, when b(t) = 0.

The same synchronized behavior is kept even when b(t)
smoothly varies from 0 to 1. Indeed, network dynamics is still
contracting and the input-equivalence property defining M1 is
preserved. In Fig. 5 (right panel) the behavior of the network
is shown when at t = 50, b(t) is set to 1.

Notice that the variation of b(t) from 0 to 1 causes an
inhibitory effect of the level of x13. This is due to the fact
that when b(t) = 0, x13 is forced by the sum of increasing

Time
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FIG. 5. (Color online) Network of Hopfield models Eq. (24) when
(top panel) b(t) in Eq. (25) is equal to 0. Notice the presence of three
synchronized groups of nodes, corresponding the three classes of
input-equivalent nodes pointed out in Fig. 4. The same synchronized
groups are present when b(t) in is switched to 0 (bottom panel). Notice
that, in this case, the change of the coupling modifies the temporal
behavior of node 13.

sigmoidal functions. Conversely, when b(t) = 1, x13 is forced
by the sum decreasing sigmoidal functions.

Now, assume that we need to create a synchronized cluster
consisting of nodes 2, 4, 6, 8, for example. A way to achieve
this task is that of modifying the input-equivalence property
defining M1 and to impose an input-equivalence defining the
subspace

M2 = {xi = xj ,i,j = 1,3,5,7}
⋂

⋂
{xi = xj ,i,j = 2,4,6,8,}

⋂
⋂

{xi = xj ,i,j = 9, . . . ,12}.
In turn, this can be done by smoothly varying the topology of
the network (e.g., by diffusively coupling node 13 to the nodes
2, 4, 6, 8). The coupling function used to this aim, which
preserves the contracting property, is

hi(xi,xj ) = h(xj ) − h(xi), h(x) = 1 − e−x

1 + e−x
.

In Fig. 6 (left panel) this topology is shown, together with
the class of input equivalence. The same figure (right panel)

041929-11
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FIG. 6. (Color online) Network of Hopfield models used in
Sec. VII A. Top panel: two links are activated by node 13, creating a
class of input-equivalent nodes (in yellow). Bottom panel: temporal
evolution of network nodes’ dynamics. Notice the presence of a group
of synchronized nodes, corresponding to the input-equivalence class.

shows the behavior of the network, pointing out that a cluster
of synchronized nodes arises.

B. Chemotaxis with quorum

In the above examples, we assumed that each node of
the network communicates directly with its neighbors. This
assumption on the communication mode is often made in the
literature on synchronization (see, e.g., [46–48] and references
therein). In many natural systems, however, network nodes do
not communicate directly, but rather by means of the environ-
ment. This mechanism, known as quorum sensing [49–51] is
believed to play a key role in bacterial infection, as well as in
bioluminescence and biofilm formation, for example [52,53].
Although to our knowledge this has not yet been studied
experimentally, plausibly quorum sensing may also play a
role in bacterial chemotaxis. Indeed, such a mechanism would
enhance the robustness of the chemotactic response [54],
with respect both to noise (including Brownian noise) and
to the large variations in gene expressions between individual
cells [55].

From a network dynamics viewpoint, a detailed model of
such a mechanism would need to keep track of the temporal
evolution of the environmental (shared) quantity, resulting in
an additional set of ordinary differential equations [51,56]

ẋi = f (xi,z) i = 1, . . . ,N
(26)

ż = g(z,�(X),t).

In the above equation, N is the number of nodes sharing the
same environment (medium). The set of state variables of
the nodes is xi , X = [xT

1 , . . . ,xT
N ]T , while the set of the state

variables of the common medium dynamics is z. Notice that the
medium dynamics can be of different dimensions (e.g., xi ∈
Rn, z ∈ Rd ). The dynamics of the nodes affect the dynamics
of the common medium by means of some coupling (or input)
function, � : RNn → Rd . We assume that ∂f/∂z is bounded
(that is, all of its elements are bounded).

In Ref. [51] it is shown that synchronization of Eq. (26) is
attained if the reduced order virtual system

ẏ = f (y,yz) (27)

is contracting. Notice that the choice of such a reduced order
virtual system is made possible by the fact that network
Eq. (26) are symmetric with respect to any permutation of
nodes state variables, xi .

Consider, again, the chemotaxis model in Eq. (15) coupled
by means of a quorum-sensing mechanism, with φ(u/x) =
u/x

ẋi = xi(yi − 1) + h(yi,z)

εẏi = u

xi

− yi (28)

ż = g(z,�(Y ),t).

In the above model subscript i is used to denote the state
variables of the ith node and Y = [yT

1 , . . . ,yT
N ]T . The ith node

affects the dynamics of the shared variable, z, by means of yi .
Node-to-node communication is implemented by means of the
input function h.

Notice that the presence of the coupling term and of the
medium dynamics destroys the symmetry responsible of the
invariance under input scaling. We are now interested in
checking under what conditions invariance under input scaling
is kept for a population the chemotaxis models in Eq. (28).
We are motivated by the fact that, intuitively, bacteria go up
a nutrient gradient toward the nutrient’s source, with little
interest for the absolute nutrient concentration.

We model the interaction between bacteria and the environ-
ment with a dimerization process

h(yi,z) = K(yi − 1)z.

Dimerization is a fundamental reaction in biochemical net-
works where two species combine to form a complex,
as in the case of enzymes binding with substrates, for
example [57].

In what follows, we use our results to show that a possible
environmental model that ensures invariance under input
scaling is

ż = −z − 1/N

N∑
i=1

xiz.
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That is, the model analyzed in the rest of this section is

ẋi = xi(yi − 1) + K(yi − 1)z

εẏi = φ(u/xi) − yi (29)

ż = −z − 1/N

N∑
i=1

xiz.

We show that such a network preserves invariance under
input scaling (i.e., such a behavior is not lost when nodes are
coupled through the medium dynamics, z).

Since our aim is to explain the onset of a symmetric
synchronous behavior for the network, we will consider a
virtual system that embeds the dynamics of the common
medium

ẏx = yx(yy − 1) + K(yy − 1)yz

εẏy = φ(u/yx) − yy (30)

ẏz = −yz − 1/N

N∑
i=1

(xiyz).

Notice that the above system represents a hierarchy (see
Sec. II A) consisting of two subsystems: the (virtual) nodes
dynamics [yx(t),yy(t)], and the (virtual) medium dynamics,
z(t). Therefore, Eq. (30) is contracting if each of the subsys-
tems is contracting (even in different metrics).

Now, it is straightforward to check that the dynamic of yz is
contracting. Thus, to complete the analysis, we have to check
if the y dynamics is contracting. Similarly to the analysis of
Sec. V B, we have

ÿ∗
y + ẏ∗

y

ε
+ 1

ε

(
u

yx

+ uKyz

y2
x

)
y∗

y = 0, (31)

where y∗
y = yy − 1. That is, following exactly the same steps

as those used in Sec. V B, we have that the above dynamics is
contracting if

u

yx

+ uKyz

y2
x

<
1

2ε
. (32)

Notice that the above condition is satisfied if: (i) the con-
centration of yx (and hence of xi) is sufficiently high with
respect to the concentration of yz (and hence of z); (ii) its
dynamics is sufficiently slow (ε small); and (iii) K is properly
tuned. Recall from Sec. V B that both (i) and (ii) are true by
hypotheses.

Thus, under the above conditions we have that the virtual
system is contracting, and hence synchronization of network
nodes is attained. Moreover, it is straightforward to check
that the particular choice of the coupling function and of the
medium dynamics ensures that all the hypotheses of Theorem 9
are satisfied with the actions

γi(yx,i ,yy,i ,yz) → (yx,i/umin ,i ,yy,i ,yz/umin ,i)
(33)

ρiui → ui/umin ,i

where the subscripts i denote the system state variables and the
actions associated to the input ui(t) (see Sec. V B for further
details). This, in turn implies that the virtual system exhibits
the invariance under input scaling. Now, recall that network
nodes are particular solutions of the virtual system. Thus,

all network nodes globally exponentially converge toward
each other (since the virtual system is contracting), while
exhibiting the invariance under input scaling (by virtue of
Theorem 9).

C. Quorum with periodic inputs or communication delays

Quorum-sensing mechanisms exploit the symmetry of a
dynamic system under permutation of individual elements.
From a contraction point of view, this allows one to use a
virtual system of the same dimension as individual elements,
and such that each individual trajectory represents a particular
solution of the virtual system.

This principle extends straightforwardly to two cases of
practical interest. The first is the case when the environment or
the entire system is also subject to an external periodic input,
thus yielding a spatiotemporal symmetry. The second case is
when communications between nodes and the environment
exhibit significant delays. This case may model actual delays
in information transmission (e.g., in a natural or robotic
swarm application) and signal processing, or for instance the
effect of diffusion or of nonhomogeneous concentrations in a
biochemical context.

We now show that the combined use of symmetries and
contraction analysis can be used to provide a sufficient
condition to control the periodicity of the synchronous final
behavior of a quorum sensing of interest. The idea is to force
a network of interest by means of a periodic input, r(t), and
then to provide conditions ensuring that the network becomes
synchronized onto a periodic orbit having the same period as
r(t). See the companion paper [51] for further details. Our
main result is as follows.

Theorem 12. Consider the following network

ẋi = f̃ (xi,z) i = 1, . . . ,N
(34)

ż = g̃(z,�(x1, . . . ,xN )) + r (t)

where r (t) is a T -periodic signal. All the nodes of the network
synchronize onto a periodic orbit of period T , say xT (t), if:
(i) f (xi,v(t)) is a contracting function; (ii) the reduced order
system (xc(t) ∈ Rn)

ẋc = f (xc,z)

ż = g(z,� (xc, . . . ,xc)) + r (t)

is contracting. Note that the dynamics f̃ and g̃ include the
coupling terms between nodes and environment.

Proof. Consider the virtual system

ẏ1 = f (y1,z) . (35)

By hypotheses Eq. (35) is contracting and hence the nodes state
variables will converge toward each other (i.e., |xi − xj | → 0
as t → +∞). That is, all the network trajectories converge
toward a unique common solution, say xc(t). This in turn
implies that, after transient, network dynamics are described
by the reduced order system

ẋc = f (xc,z)

ż = g(z,�(xc, . . . ,xc)) + r(t).
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Now, the above system is contracting by hypotheses and r(t) is
a T -periodic signal. In turn, this implies that all of its solutions
will converge toward a unique T -periodic solution, i.e.,

|xc(t) − xT (t)| → 0, t → +∞.

This proves the result. �
Notice that the proof of the above result is based on the

combined use of symmetries and contraction. Specifically,
the use of a reduced order virtual system is made possible
by the fact that the network is symmetric with respect to
any permutation of the nodes’ state variables. Moreover,
contraction analysis provides sufficient conditions guarantee-
ing that all the solutions of the virtual system converge to
a periodic trajectory having the same period as the input,
r(t). Since the nodes’ state variables are particular solutions
of the virtual system, this implies that network nodes are
synchronized onto a periodic orbit having the same period
of r(t).

The case when some form of delay occurs in the commu-
nication can be treated similarly, by using results on the effect
of delays in contracting systems [58]. Consider for instance a
network of linearly diffusively coupled nodes xi coupled by
means of a quorum-sensing mechanism

ẋi = f (xi) + Kiz[z(t − Tzx) − xi(t)]
(36)

ż = g(z) + 1

N

∑
Kzi[xi(t − Txz) − z(t)],

where f (·) and g(·) (denoting the intrinsic dynamics of the
network nodes and of the common medium) are contracting
within the same metric, the constant Tzx � 0 represents a
communication or computation delay from the medium to the
nodes, and similarly the constant Txz � 0 represents a delay
from the nodes to the medium.

Notice that network Eq. (36) is symmetric with respect
to any permutation of the nodes’ state variables. As discussed
above, this symmetry implies that the network can be analyzed

by using the reduced order virtual system

ẏx = f (yx) + Kiz[yz(t − Tzx) − yx(t)]
(37)

ẏz = g(yz) + 1

N

∑
Kzi[yx(t − Txz) − yz(t)].

As proven in Ref. [58], all the trajectories of the above system
converge toward each other if f (·) and g(·) are contracting
within the same metric. Since the nodes’ state variables are
particular solutions of the virtual system Eq. (37), it follows
that all the solutions of the network converge toward a fixed
point in the network phase space. Now, as shown in Ref. [58],
if Kiz = 1

N
Kzi , then z(t) tends to the fixed value z̄ and all nodes

tend to the common equilibrium value xi = xj = x̄, ∀i,j .
Moreover, x̄ and ȳ are such that

f (x̄) + kiz (z̄ − x̄) = 0

g(z̄) + kiz (x̄ − z̄) = 0.

VIII. CONCLUSION

We presented a framework for analyzing and/or controlling
stability of dynamical systems by using a combination of
structural properties of the system’s vector field (symmetries)
and convergence properties (contraction). We first showed that
the symmetries of a contracting vector field are transferred to
its solutions, and then generalized this result by using virtual
systems. In turn, those results were used to describe invariance
under input scaling in transcriptional systems, a property
believed to play a key role in many sensory systems. The case
of a quorum-sensing network with delays was also considered.
Finally, we showed how our results could suggest a mechanism
for quorum sensing in bacterial chemotaxis, thus combining
symmetries in cell interactions with invariance to input scaling.
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