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The electro-osmotic flow driven by a screen pump, composed of a line array of evenly spaced identical
rectangular solid blocks, is investigated under the Debye-Hückel approximation. The geometry of the screen
pump is determined by the spacing and aspect ratio of the solid blocks. A constant surface zeta potential is
assumed on the block surface. The method of eigenfunction series expansion is applied to solve analytically
for the applied electric field, electric charge potential in the fluid, and flow field. Because of the low Reynolds
number, Stokes equations are applied for the flow. The analytic result is first confirmed by comparing with the
exact solution of the electro-osmotic flow in an infinite channel. Then different geometries of the screen pump
and the effect of the electrokinetic width are computed for their influence on the flow rate. Recirculating eddies
and reversing flow are found even though the applied electric driving field is unidirectional.
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I. INTRODUCTION

Recently, microfluidic devices have been playing important
roles in scientific and engineering research due to their wide
applications in microfluid transport and mixing, microbiolog-
ical sensors, and biomedical instruments [1–10]. One of the
important fluid-driving mechanisms in these laboratory-on-
a-chip (LOC) applications is the electro-osmotic (EO) flow.
It is the result of the interaction between the electric double
layer (EDL) and an applied external electric potential field.
The advantage of this kind of device is that one does not need
to apply large pressure to overcome the viscous resistance
for driving fluid in the microchannels. The fabrication of the
EO devices is in general simpler because no moving parts are
required [11].

The EO pumping mechanism is the result of the interaction
between the applied external electric field and the electric
charge potential in the fluid. The electric charge is caused
by the redistribution of ion concentration in the fluid due to
the surface zeta potential on interfaces against the fluid. This
electrical charged layer is referred to as the EDL. Once applied
with electric field, the electrokinetic body force is formed and
drives the fluid. In common applications, the applied electric
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field is a unidirectional static field, and, subsequently, the
EO force results in a shear layer flow. In the shear layer,
the flow speed increases exponentially and asymptotes to the
free-flow field outside the EDL as increasing the distance to the
interface. This sharp velocity profile may enhance the mixing
or dispersion of sediments in the shear layer [12]. This property
leads to the flow in a straight fluidic channel forming a pluglike
velocity profile rather than a parabolic (Poseuille) shape as
in pressure-driven flows. In contrast, this may reduce some
desired flow motion in the free flow, such as mixing.

Therefore, more sophisticated proposals have been emerg-
ing for special circumstances, such as the AC electro-osmotic
pump for high flow rates [1] or for controlling the flow direction
[13]. Nowadays, multicomponents are often integrated on
LOC devices to perform multistage laboratory functions.
These components include mixers, screen filters, flow splitters,
etc. The interaction of these components with the external
electric field is one of the major concerns in EO devices. In the
present paper, we consider a screen filter, which is composed
of a line array of evenly spaced identical rectangular blocks
(Fig. 1). Because of their surface zeta potential, when applied
with an external electric field, the device component itself
generates electrokinetic pumping forces. Hence, we also refer
to this screen filter as a screen pump. In laboratories, a similar
screen filter is applied to capture suspended particles, such as
cells and vescules in LOC devices [14,15].

To focus solely on the electrokinetic mechanism, we
investigate the EO flow without applying an external driving
pressure across the fluidic channel. In Sec. II we illustrate
the basic theory and the governing equations. The method
of eigenfunction series expansion is applied to solve for the
applied electric potential field, the EDL potential field, as
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FIG. 1. (a) The cross section of the two-dimensional screen pump where the electric-osmotic flow passes through. The half of the channel
width is H , which is used to normalize lengths. The portion between the dash-dotted lines is the unit section of the screen pump. (b) The unit
section of the pump. The lengths have been normalized, given the (half) channel length a and the (half) width of the free-flow field b. Due to
symmetry, we need only to solve for the domain in the first quadrant. The domain is decomposed into two regions such that Region I is inside
the channel between the neighboring blocks and Region II is the semi-infinite free-flow strip.

well as the flow field. The solution of the flow around the
screen pump is introduced [16] to obtain the analytic flow
field for the entire domain of interest. In Sec. III we verify
the the analytic series solution with the exact solution for
an infinite microchannel, a degenerated special case of the
present screen pump. Then the geometry of the filter is varied,
and its relation with the flux and flow field is computed
and the effect of the electrokinetic width is investigated. It
is observed that recirculating eddies can form under some
particular configurations, and they can even lead to reversing
flows even when the external electric field is unidirectional.

II. BASIC THEORY

The governing equation for a steady electro-osmotic (EO)
flow, driven by an applied electric potential field φ∗

p, at a low
Reynolds number is [11]

−��∗
p∗ + μ�∗2 �u∗ + ρe

��∗
φ∗

p = 0, (1)

where p∗ is the pressure, μ is the fluid viscosity, and �u∗ is
the velocity, respectively. The third term on the left-hand side
is the electrokinetic force, which results from the interaction
between the applied electric field and the charge density
ρe in the fluid. The electric charge density in a simple
two-ion electrolic fluid is described by the nonlinear Possion-
Boltzmann equation

ρe = −ε�∗2
φ∗

e = −2zen0 sinh

(
zeφ∗

e

kBT

)
, (2)

where ε is the dielectric constant, φ∗
e is the EDL potential, e

is the electron charge, n0 is the bulk electrolyte concentration
of a binary electrolyte dissociating into cations and anions
of valence z, kB is the Boltzmann constant, and T is the
temperature. The EDL forming at the flow boundaries provides
the shield for the electric potential such that the applied electric
potential can be described by

�2φ∗
p = 0, (3)

with vanishing normal derivatives of the potential on the solid
boundaries.

Next, let us normalize the governing equations. If the charge
potential is a small quantity compared to the thermal energy of
the ions, i.e., the ratio zeφ∗

e /kBT is much less than one, Eq. (2)
can be approximated by

ρe = −ε�∗2
φ∗

e = −2zen0

(
zeφ∗

e

kBT

)
, (4)

which is referred to as the Debye-Hückel equation. Introducing
φe → φ∗

e /φe0, with the constant zeta potential on the block
boundaries φe0, and choosing the half width of the channel
H as the characteristic length for all of the length scales, as
shown in Fig. 1, we normalize Eq. (4) into

�2φe = K2φe, (5)

where K2 is defined as 2z2e2n0H
2/εkBT . K is called the

Debye-Hückel parameter and is related to the inverse of the
electrokinetic width, or the thickness of the EDL.

Further normalizing each physical parameters by the
substitutions p → εE0φ

∗
e0p

∗/H , �u → εE0φe0 �u∗/μ, φp →
φ∗

p/(E0H ) with E0 being the characteristic value of the applied
external electric field, we obtain the nondimensionalized
equation

−��p + �2 �u − K2φe
��φp = 0 (6)

for the fluid and

�2φp = 0 (7)

for the applied electric field. The fluid pressure in Eq. (6)
can be eliminated by introducing a stream function ψ , such
that �u = (∂ψ/∂y, − ∂ψ/∂x), and by taking the curl ( ��×)
operation on the equation. This yields the resulting governing
equation for the electro-osmotic flow as a biharmonic equation
of the stream function:

�4ψ = K2

(
∂φe

∂y

∂φp

∂x
− ∂φe

∂x

∂φp

∂y

)
. (8)
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Equations (5), (7), and (8) are the equation system for
the EO flow around the screen pump. Because the equations
are linear and because of the symmetry of the screen pump
[Fig. 1(a)], the system is solved in a unit section of the pump,
as shown in Fig. 1(b). The unit section is divided into two
regions: Regions I and II. Continuity conditions are applied
on the joint plane between the two regions to determine the
eigenfunction expansion series. The procedures are discussed
in detail in the following subsections.

A. Applied electric potential field

The flow is purely driven by the applied electric field. As
x → ±∞, the applied electric field is free from the influence
of the pump, and, therefore, the associated electric potential
is a linear function. Normalizing the electric potential by the
field strength E0, we can express the series solution of the
potential [Eq. (7)] in Region II as

φpII(x,y) = −x + B
p

0 +
∞∑

n=1

Bp
n e−β

p
n (x−a) cos

(
βp

n y
)
, (9)

where β
p
n = nπ/b and the solution in Region I as

φpI(x,y) = −A
p

0 x +
∞∑

n=1

Ap
n sinh

(
αp

n x
)

cos
(
αp

n y
)
, (10)

where α
p
n = nπ . Note that the solutions are even, i.e., periodic

in the y direction.
The coefficients A

p
n , B

p
n are the unknowns that have to

be determined by applying the continuity conditions of the
electric potential at x = a:

φpI(a,y) = φpII(a,y), 0 � y � 1,
(11)

∂φpIx

∂x
(a,y) = ∂φpII

∂x
(a,y), 0 � y < 1.

On the vertical downstream-facing surface (x = a,1 � y � b)
of the pump, the normal derivative of the electric potential
vanishes:

∂φpII

∂x
(a,y) = 0, 1 � y � b. (12)

For numerical calculation, we need to truncate the infinite
solution series [Eqs. (9) and (10)] into a finite size. This is
done by discretizing the joining line (x = a,0 � y � b) into
a set of equally spaced points (a,yn). Applying the continuity
and boundary conditions [Eqs. (11) and (12)], we form a
linear algebraic system for the unknown coefficients. Figure 2
sketches the (normalized) electric potential when an electric
field is applied to a screen filter of a = 1.0 and b = 1.5.
The electric field (−�∇φp) is mostly uniform and toward the
positive x direction except in the region near the joining corner
of the fluid channel. In addition, approaching to the screen
block surface, the electric field turns parallel to the block
surface.

B. EDL potential field

Under the Debye-Hückel approximation, the EDL potential
degenerates to the modified Helmholtz equation [Eq. (5)].
The EDL potential on the solid boundary normalized by
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FIG. 2. The potential φp of the applied electric field. The screen
filter geometry is a = 1.0, b = 1.5.

the surface zeta potential is one. Therefore, in Region I,
the EDL potential is easily solved by letting φeI = 1 − χ =
1 − ∑∞

n=1 fn(x) cos(βe
ny), where χ satisfies

�2χ − K2χ = −K2, (13)

with the boundary condition χ = 0 on the solid surface.
Substituting the identity 1 = ∑∞

n=1 an cos(βe
ny) into Eq. (13)

and after some algebra, we can express the EDL potential in
terms of the series expansion

φeI(x,y) = 1 −
∞∑

n=1

[
K2an(

βe
n

)2 + K2
+ Ae

n cosh
(
αe

nx
)]

cos(βe
ny),

(14)

and

φeII(x,y) = Be
0e

−K(x−a) +
∞∑

n=1

Be
ne

−δe
n(x−a) cos

(
γ e

n y
)
, (15)

where βe
n = (n − 1

2 )π , an = 2(−1)n+1/βe
n, αe

n =√
(βe

n)2 + K2, γ e
n = nπ/b, and δe

n = √
(γ e

n )2 + K2. The
Region I solution satisfies the constant value 1 on 0 � x � a,
y = 1, automatically. The Region II solution, in addition,
decays exponentially in the x direction away from the filter.
From the symmetry, the EDL potential is symmetric with
respect to x = 0 and periodic in the y direction.

Similar to the electric potential field, the unknown coef-
ficients Ae

n and Be
n are to be determined by the continuity

conditions at x = a,0 � y � 1:

φeI(a,y) = φeII(a,y), 0 � y < 1,
(16)

∂φeI

∂x
(a,y) = ∂φeII

∂x
(a,y), 0 � y � 1,

and the zeta potential on the vertical downstream-facing
surface

φeII(a,y) = 1, 1 � y � b. (17)

A numerical scheme similar to the one described in Sec. II A
is applied to solve for the EDL potential. The only difference
is that the solution series and the continuity and boundary
conditions are replaced by Eqs. (14), (15), (16), and (17).
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FIG. 3. The EDL potential, φe. The screen filter geometry is a =
1.0, b = 1.5, and the Debye-Hückel parameter is K = 10.

Figure 3 sketches the EDL potential for Debye-Hückel
parameter K = 10. The geometry of the screen filter is a = 1.0
and b = 1.5. For this moderate K , we clearly identify that
the EDL symmetrically surrounds the screen filter block at
a thickness about 0.5 (from the surface to φe = 0.01). As
the Debye-Hückel parameter increases, the EDL thickness
decreases.

C. Flow field solution

The flow field is described by the stream function, which
satisfies Eq. (8). This equation can be solved systematically by
decomposing the stream function into the sum of a particular
solution and a homogeneous solution, i.e., ψ = ψp + ψh. The
particular solution ψp balances the electrokinetic force, and
the homogeneous solution ψh is chosen to make the resultant
solution fulfill the boundary conditions.

The particular solutions for both Regions I and II, though
tedious, can be found straightforwardly by substituting the
potentials, Eqs. (9), (10) (14), and (15) into the right-hand side
of Eq. (8) and, subsequently, integrating the resulting series.
The particular solution ψpI(x,y) of Region I is shown in the
Appendix.

For simplicity, we have chosen the particular solution in
Region I by setting the integration constant zero such that the
solution is symmetric with respect to x = 0 and satisfies the
constant datum, ψIp(x,0) = 0, i.e., no flow cross the center line
of the channel, and the no-slip condition, (∂ψIp/∂y)(x,1) = 0,
on the block surface.

Accordingly, we obtain the particular solution for
Region II:

ψpII(x,y) =
∞∑

n=1

P 1
n e−δe

n(x−a) sin
(
γ e

n y
)

+
∞∑

n=1

P 2
n e−(K+β

p
n )(x−a) sin

(
βp

n y
)

+
∞∑

n,m=1

P 3
mne

−(δe
n+β

p
m)(x−a) sin

[(
δe
n − βp

m

)
y
]

+
∞∑

n,m=1

P 4
mne

−(δe
n+β

p
m)(x−a) sin

[(
δe
n + βp

m

)
y
]
,

(18)

where

P 1
n = K2 Be

nγ
e
n[(

δe
n

)2 − (
γ e

n

)2]2 ,

P 2
n = −K3 Be

0B
p
n β

p
n[(

K + β
p
n

)2 − (
β

p
n

)2]2 ,

(19)

P 3
mn = K2 Be

nB
p
mγ e

n β
p
m + Be

nB
p
mδe

nβ
p
m

2
[(

δe
n + β

p
m

)2 − (
γ e

n − β
p
m

)2]2 ,

P 4
mn = K2 Be

nB
p
mγ e

n β
p
m − Be

nB
p
mδe

nβ
p
m

2
[(

δe
n + β

p
m

)2 − (
γ e

n + β
p
m

)2]2 .

The particular solution is chosen to satisfy the constant datum
on the channel center line. The solution automatically vanishes
on y = b.

The continuity and boundary conditions are to be satisfied
by the resulting stream function. This is done by adjusting the
homogeneous solution to Eq. (8), combined with the particular
solutions in the two regions [Eqs. (A1) and (18)]. The boundary
conditions of the flow are given in the following paragraph.

Because the geometric configuration is periodic in the
y direction, there is no flow crossing the solid boundaries
depicted in Fig. 1. On these boundaries, the stream function is
constant. We set the stream function to the datum value on the
center line of the channel:

ψI(x,0) = ψII(x,0) = 0, (20)

and an unknown constant q on the block surface and at y = b

in Region II: {
ψI(x,1) = ψII(x,b) = q,

ψII(a,y) = q, 1 � y � b.
(21)

From the definition of the stream function, we can easily
seen that q is the volume flow rate of the unit section. In
addition, the vorticity, −∇2ψ , is zero on the fluid symmetry
plane (y = 0 and y = b) or, equivalently, ∂u/∂y = 0. This
leads to⎧⎪⎪⎨

⎪⎪⎩
∂2ψI

∂y2
(x,0) = 0, 0 � x � a,

∂2ψII

∂y2
(x,0) = ∂2ψII

∂y2
(x,b) = 0, a � x.

(22)

On the solid boundary, the no-slip condition yields⎧⎪⎨
⎪⎩

∂ψI

∂y
(x,1) = 0, 0 � x � a,

∂ψII

∂x
(a,y) = 0, 1 � y � b.

(23)

The continuity conditions at x = a, 0 � y � 1, are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψI(a,y) = ψII(a,y),
∂ψI

∂x
(a,y) = ∂ψII

∂x
(a,y),

∂2ψI

∂2x
(a,y) = ∂2ψII

∂x2
(a,y),

∂3ψI

∂3x
(a,y) = ∂3ψII

∂x3
(a,y).

(24)

The aforementioned boundary conditions are specified based
on the assumption that the stream function of the flow
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is symmetric with respect to the x = 0 and periodic in
the y direction. In real applications, there may exist flow
irregularities (or instabilities) with length scales larger than
the characteristic lengths of the screen pump that break the
flow symmetry. With these considerations, the flow solution
may be valid in the region near the screen pump and deviate
from the analytical solution because of the growth of the flow
irregularities.

The homogeneous solution of the stream function ψh

satisfies the homogeneous biharmonic equation [16]

�4ψh = 0, (25)

whose general solution can be expressed as eigensolution
series. They are

ψhI =
∞∑

n=1

[
Af

n Qf
n (x) + Bf

n Rf
n (x)

]
sin

(
αf

n y
)

+
∞∑

n=1

Cf
n Sf

n (y) cos
(
βf

n x
)

+C
f

0 (3y − y3) + q

2
(3y − y3), (26)

for Region I and

ψhII =
∞∑

n=1

[
Df

n + Ef
n (x − a)

]
× e−γ

f
n (x−a) sin

(
γ f

n y
) + qy

b
(27)

for Region II. The functions Q
f
n , R

f
n , and S

f
n in Eqs. (26)

and (27) are defined as

Qf
n (x) = eα

f
n (x−a) + e−α

f
n (x+a),

Rf
n (x) = x

(
eα

f
n (x−a) − e−α

f
n (x+a)

)
,

Sf
n (y) = eβ

f
n (y−1) − e−β

f
n (y+1)

−
(

1 − e−2β
f
n

1 + e−2β
f
n

)
y(eβ

f
n (y−1) + e−β

f
n (y+1)) (28)

with α
f
n = nπ , β

f
n = nπ/a, and γ

f
n = nπ/b. Coefficients

A
f
n , B

f
n , C

f

0 , C
f
n , D

f
n , and E

f
n are constants. These gen-

eral solutions with the aforementioned particular solutions,
Eqs. (A1) and (18), automatically fulfill the boundary condi-
tions: Eq. (20), (21)1, and (22). With the remaining boundary
conditions, Eqs. (21)2 and (23), and the continuity conditions,
Eq. (24), the system is completed for the unknown coefficients
at a specified q.

Now, we need to specify the last condition for q. For the
present microfluidic channel, the flow rate can be a function
of the applied electric potential and the surface zeta potential
as well as the applied pressure. In order to focus solely on the
EO mechanism in the present paper, we assume there is no
external pressure to drive the fluid. This condition states that
the pressure at x = ±∞ is a constant, and, without the loss
of generality, we set them to zero, i.e., p|x=−∞ = p|∞ = 0.
Furthermore, from the symmetry condition of the EO force,
K2φe

�∇φp, and the velocity field, the pressure gradient [Eq. (6)]
is a symmetric field with respect to x = 0. This leads to that

the pressure is an antisymmetric field with respect to x = 0,

and, hence, we have p = 0 at x = 0.
Before proceeding further, we comment on the benefit

of using the present eigenseries solution instead of other
numerical field solvers, such as finite element or volume
methods, etc. The reason is that applying these field solver
methods to the present EO flow may not be a straightforward
procedure. Because for numerical convergence the boundary
conditions in these field solvers are usually specified by
the volume flow rate or the flow velocity at the channel
inlet and by the constant pressure at the channel exit, the
solved flows in general contain a driving pressure along the
channel in addition to the electrokinetic force. To resolve the
zero pressure at x = ±∞, an interactive procedure has to
be applied. In addition, for large Debye-Hückel parameters,
the EDL becomes thin, and this thin layer leads to a sharp
transition of the flow velocity profile near the surface of the
screen pump. The flow velocity varies exponentially in this
layer, and the field solvers may loose accuracy if the compu-
tational mesh cannot provide a good resolution for the flow
field.

The pressure in the two regions are found by integrating
Eq. (6):

pI(x,y) = 2
∞∑

n=1

Bf
n αf

n

(
eα

f
n (x−a) − e−α

f
n (x+a)

)

× cos
(
αf

n y
) − 2

∞∑
n=1

Cf
n βf

n

(
1 − e−2β

f
n

1 + e−2β
f
n

)

× (
eβ

f
n (y−1) + e−β

f
n (y+1)) sin

(
βf

n x
) − 3x

(
q + 2C

f

0

)
+

∫ x

0
�2

(
∂ψpI

∂y

)
dx −

∫ x

0
K2φeI

∂φpI

∂x
dx (29)

and

pII(x,y) = 2
∞∑

n=1

Ef
n γ f

n e−γ
f
n (x−a) cos

(
γ f

n y
)

+
∫ x

∞
�2

(
∂ψpII

∂y

)
dx −

∫ x

∞
K2φeII

∂φpII

∂x
dx.

(30)

In Eqs. (29) and (30), the first integral terms are contribution
from the particular solutions of the stream function; the second
integral terms are from the electrokinetic forces, and the rest
of the terms arise from the homogeneous stream function.
The pressure is continuous across x = a. To simplify the
calculation, we integrate the pressure from y = 0 to 1 on both
sides of x = a and equate the resultant net forces. This leads
to an additional equation for the volume flux q for the pure EO
driven flow:

2
∞∑

n=1

Ef
n sin γ f

n + 3a
(
q + 2C

f

0

)

+
∫ 1

0

∫ a

∞
�2

(
∂ψpII

∂y

)
dx dy −

∫ 1

0

∫ a

0
�2

(
∂ψpI

∂y

)
dx dy
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+
∫ 1

0

∫ a

0
K2φeI

∂φpI

∂x
dx dy

−
∫ 1

0

∫ a

∞
K2φeII

∂φpII

∂x
dx dy = 0. (31)

To summarize, the equation for the volume flux Eq. (31),
with the boundary conditions on the filter surface [Eqs. (21)
and (23)] and the continuity conditions on the joint plane
[Eq. (24)] complete the system for the unknowns A

f
n , Bf

n , Cf

0 ,
C

f
n , D

f
n , E

f
n , and q. For numerical calculation, we discretize

the boundaries into uniformly distributed computational col-
location points, substitute the coordinates into the equation
system and truncate the infinite series in the solutions into
a sufficiently large but finite system, and form a system of
linear algebraic equations for the aforementioned unknowns.
In the next section, we will first demonstrate the numerical
convergence and verify the asymptote of the solution to a
simple straight channel, for which the exact solution is known.
Then the flow with a range of the Debye-Hückel parameters
and various geometric configurations are investigated.

III. RESULTS AND DISCUSSION

A. Convergence

First, let us compare our model with the analytic solution
of the flow passing through an infinite microchannel with
a constant width. With this simple geometry, the volume
flux q can be solved straightforwardly following the solving
procedures outlined in Sec. II, which reads

q = 1 − sinh(Ky)

K cosh(K)
. (32)

We inspect the asymptotic behavior of two sets of examples.
The first set is to verify the truncation errors with the various
summation terms N at a fixed Debye-Hückel parameter K . We
choose K = 10 and calculate the solutions with the channel
length a from 10 to 100. The number of summation terms
are N = 20,40, and 100. The channel width b is set to 1,
i.e., the pump is a slit array composed of infinitesimally thin
plates. The convergence is shown in Table I. It is obvious
that the numerical results asymptote to the exact solution with
increasing as well as with the increasing length of the filter
channel a.

The other cases are simulated with a fixed N = 100 but
with a set of distinct values of the Debye-Hückel parameters:
K = 0.5, K = 2, and K = 10, and the pump length a from 10

TABLE I. The volume flux with various channel lengths a and
various number of summation terms. The channel width b is set to 1,
and the Debye-Hückel parameter is K = 10. The results asymptote
to the exact solution of the infinite long microchannel.

a N = 20 N = 40 N = 100 Exact

10 0.897 0.896 0.895 0.900
20 0.900 0.899 0.898 0.900
40 0.900 0.900 0.899 0.900
80 0.900 0.900 0.900 0.900
100 0.900 0.900 0.900 0.900

2

2

2

0

0

0

0

0

0

4

4

4

0

0

0

0

0

0

6

6

6

0

0

0

0

0

0

8

8

8

0

0

0

0

0

0

0.07

0.075

0.08

0.085

0.09

K

K

K

=

=

=

0

2

10

.5

0.5

0.51

0.52

0.53

0.54

a

q

a

q

a

q

0.89

0.895

0.9

0.905

0.91

(a)

(b)

(c)

FIG. 4. The asymptotic behavior (dashed lines with distinct
symbols) approaching to the exact flux (solid lines) of infinitely long
(continuous) channels for (a) K = 0.5, (b) K = 2, and (c) K = 10.
The results of the screen pump approach to the theoretical values of
the continuous channels when the channel length a increases.

to 100. The simulated results of the volume flux together with
the exact solution are shown in Fig. 4. The flat horizontal
solid lines represent the volume flux of the flow in the
infinite channel, and the dashed lines with symbols denote
the dependence of the volume fluxes on the pump length as
predicted by the present theory. It is interesting to notice that
the asymptotic behaviors can be divided in two ways. For
the cases with the smaller K (0.5 and 2), the volume fluxes
approach those of the infinite channel from the side with larger
flux, but for K = 10, the volume flux asymptotes to the long
channel solution from the lower flux side.

The reason causing the alternation of the asymptotic
behaviors can be explained by the alternation of the net
effective driving force as the channel length varies. The
electrokinetic force is a body force produced by the interaction
between the charge density in the fluid and the applied electric
field, and the fluid viscous force is produced by the fluid strain
rate generated by the flow field. Because the thickness of the
charged layer is reversely proportional to the Debye-Hückel
parameter K , the electric charge is distributed farther into
the fluid column, as well as the nonvanishing strain rate
field when K becomes smaller. This provides extra driving
capability from the regions near the entrance and exit of the
slit array for small channel length a, and, hence, the volume
flux increases. On the other hand, when K is large, the charge
remains confined in a thin layer against the solid boundary as
well as the strain field. As a becomes small, the driving force,
restricted in the thin region adjacent to the boundary, also
becomes proportionally small and can no longer effectively
propel the fluid column as the long channels can and, hence,
reduces the volume flux.
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TABLE II. The volume flux with various channel lengths (a, b)
and various number of summation terms. The Debye-Hückel param-
eter is K = 0.1.

(a, b) N = 20 N = 40 N = 60 N = 80 N = 100

(0.1, 1.05) 0.0613 0.0614 0.0616 0.0617 0.0617
(1.0, 1.15) 0.0238 0.0238 0.0239 0.0239 0.0239
(5.0, 1.30) 0.0097 0.0097 0.0097 0.0097 0.0097

B. The volume flux versus different geometries
and Debye-Hückel parameter

We now investigate the geometric effect of the screen pump
and the Debye-Hückel parameter K on the flow. Six distinct
values of K are selected, and, for each value, the volume
fluxes of a range of channel lengths and widths are calculated.
Because of the discretization and truncation of the series,
Gibbs oscillations exist on the joining plane (x = a) between
Regions I and II. Larger offset of the Gibbs oscillations is
found near the corner of the screen pump block, x = a,y = 1,
which is a singular point of the flow field. Similar phenomena
are described in Ref. [17] for Stokes flows in cavities. The
convergence versus the number of terms of the eigensolutions
for a set of filter parameters is summarized in Table II. From
as few as 20 terms, the resultant series produce errors within
a thousandth. The fast convergence has been seen in similar
applications [16,18].

The trends of the fluxes with distinct pump geometries
are shown in Fig. 5. In each panel, the horizontal axis is the
free-flow field width b; the vertical axis is the volume flux,
and the lines represent the volume fluxes for three different
channel lengths a. Drawing our attention to the volume
fluxes at b = 1, we immediately see that the volume fluxes
increase as a decreases for small K (K = 0.1,1.0), and the
trend reverses for K = 10. The alternation takes place at
about K = 2. This agrees with the findings in the previous
section. The surface areas of the screen pump at x = ±a are
perpendicular to the direction of the volume flow rate, and
they are controlled by parameter b. These areas play two
different roles. When K is small, the electrokinetic force is
weak, the surface area blocks the flow, and the volume fluxes
decrease. On the other hand, when K is large (K = 1,10),
the electrokinetic force increases with increasing b, and this
proportionality leads to an increase in the volume fluxes as b

is increased in the computed domain (1 � b � 1.4).
The flow fields at K = 1,10,100, and 200 with geometric

parameters a = 4 and b = 1.5 are plotted in Fig. 6. They
are presented by the contour lines, streamlines, of the stream
function whose values are equally incremental. The stream-
lines are in parallel to the solid or slip boundaries apart
from the joint area, near x = a, where the flows expand
smoothly around the corner. For small K [Fig. 6(a)] a thick
shear layer is found near the block surface. For larger K ,
e.g., comparing K = 100 and 200 with the same set of
streamline values, the streamlines are more evenly distributed,
indicating that the flow velocity becomes uniform across the
channel width direction. In addition, the streamlines around
the corner are shifted further toward the boundary because the
electrokinetic force is confined closer to the solid surface. We

1 1.1 1.2 1.3 1.4
0

0.02

0.04

0.06

0.08 K = 0.1

1a=

a=5

a=0.1

(a)

b

q

1 1.1 1.2 1.3 1.4
0.25

0.3

0.35

0.4
K =1

1a=

a=0.1

a=5

b

(b)

q

1 1.1 1.2 1.3 1.4
0 4

0.6

0.8

1

1.2 K =10

a=5

1a=

a=0.1

b

q

(c)

FIG. 5. The volume flux versus the geometry of the screen pump
and the Debye-Hückel parameter K . From top, (a) K = 0.1, (b)
K = 1, and (c) K = 10. The horizontal axes are the free-flow field
width b. Three channel lengths a = 0.1,1, and 5 are depicted by lines
in each panel.

must notice that, for fulfilling the no-slip boundary condition
and the uniform flow in the channel, there exists a thin shear
layer against the solid surface and the electrokinetic force
concentrates within the layer. We refer to this layer as the
boundary layer although it is rooted on a different mechanism
from the classical boundary layer theory. This leads to an
interesting finding that is described in the next section.

C. Generation of recirculating eddies

For high values of K , the boundary layer becomes very thin,
and the electrokinetic force is confined in the thin layer against
the filter surface. As the result, the fluid is pulled by the layer
and then driven by the diffusive fluid viscosity. The interplay
between the two effects lead to an unexpected alternation of
the flow direction.

This phenomenon is found in a thin screen pump whose
geometric parameters are a = 0.1, a = 0.01, and b = 1.5.
The flow fields of three values of K are sketched in Figs. 7
and 8. In K = 1, the flow is driven smoothly around the filter
corner and expands into the parallel free stream away from
the filter. On the other hand, a recirculation eddy is formed
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FIG. 6. The flow fields with the screen pump geometry a = 4 and b = 1.5. Four values of K are plotted: (a) K = 1, (b) K = 10,
(c) K = 100, and (d) K = 200.

when K is larger. This is because the electrokinetic force is
constrained near the surface but the viscosity is not strong
enough in bringing the fluid to overcome the static pressure far
downstream. The eddy occupies the central of the flow channel
and results in a dramatic drop in the transported volume flux.
The effective flow channel reduces to the layer along the
field boundary. As K increases, the eddy is further attracted
toward the filter and completely blocks the flow channel, which
provides the positive volume flux. Interestingly, a new central
flow stream with a reversed flow direction is created by the
eddy.

IV. CONCLUDING REMARKS

In this study we proposed a screen pump for electro-osmotic
flow and have successfully estimated the flux driven by the
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FIG. 7. The flow fields with the screen pump geometry a = 0.1
and b = 1.5. Four values of K are plotted: (a) K = 1, (b) K = 10,
(c) K = 100, and (d) K = 200.

pump without an external driving pressure. Under the Debye-
Hückel approximation, the analytic solutions for the applied
potential, EDL field, flow stream function, and pumping rate
were obtained in the form of series expansions.

By letting a → ∞, the analytic solutions converge to the
exact solution of the electro-osmotic flow in an infinitely
long microchannel (continuous channel). The approaches the
exact solution of the continuous channel are different with
different values of the Debye-Hückel parameter K . For small
K , because of the thick EDL, the volume flux approaches
decreasingly the exact solution of the continuous channel with
increasing the channel length a. On the other hand, for large
K , the volume flux approaches increasingly the exact solution
of the continuous channel.
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FIG. 8. The flow fields with the screen pump geometry a = 0.01
and b = 1.5. Four values of K are plotted: (a) K = 1, (b) K = 10,
(c) K = 100, and (d) K = 200. Note that in this thin screen pump,
recirculating eddies appear, and they lead to reversing flow at large
K , K = 200, for example.
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It is obvious that the electro-osmotic flow rate of the screen
pump is a function of the geometric parameters a, b and
the Debye-Hückel parameter K . In general, when a � 1 the
electrokinetic volume flow rate increases with increasing b.
This trend is because the total electric-kinetic driving force
increases as these parameters increase. However, there are
more delicate influences by these parameters on the flow
field. It happens when a is small (a < 1): The screen pump
blocks the flow because the viscous drag force outperforms
the electrokinetic driving force, and the total resultant force
becomes reversely dependent on b.

One intriguing reverse flow is also found when the ratio a/b

is small and the Debyue-Hückel parameter K is large. This
screen pump is composed of thin vertically aligned screen
blocks. The thin EDL, large K , indicates the electrokinetic
force propels the flow in the thin boundary layer against
the block surface, and the diffusive viscous force induces

recirculating eddies attached to the screen block. Then these
recirculating eddies induce a reverse flow. It is therefore
possible to design the direction of the flow in microfluids
using this screen pump device.
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APPENDIX A: THE PARTICULAR SOLUTION IN REGION I

Here we display the solution form and corresponding
coefficients we chose for the particular solution in Region
I, that is,

ψpI(x,y) =
∞∑

n=1

Q1
n

[
sin

(
βe

ny
) + A1

ny + B1
ny

3] +
∞∑

n=1

Q2
n

[
sin

(
βe

ny
) + A2

n sin
(
αe

ny
) + B2

ny cos
(
αe

ny
)]

+
∞∑

m,n=1

Q3
mn

{
sin

[(
βe

n − αp
m

)
y
] + A3

mn sin
(
αp

my
) + B3

mny cos
(
αp

my
)}

+
∞∑

m,n=1

Q4
mn

{
sin

[(
βe

n + αp
m

)
y
] + A4

mn sin
(
αp

my
) + B4

mny cos
(
αp

my
)}

+
∞∑

m,n=1

Q5
mn

{
sin

[(
βe

n − αp
m

)
y
] + A5

mn sin
[(

αe
n + αp

m

)
y
] + B5

mny cos
[(

αe
n + αp

m

)
y
]}

+
∞∑

m,n=1

Q6
mn

{
sin

[(
βe

n − αp
m

)
y
] + A6

mn sin
[(

αe
n − αp

m

)
y
] + B6

mny cos
[(

αe
n − αp

m

)
y
]}

+
∞∑

m,n=1

Q7
mn

{
sin

[(
βe

n + αp
m

)
y
] + A7

mn sin
[(

αe
n + αp

m

)
y
] + B7

mny cos
[(

αe
n + αp

m

)
y
]}

+
∞∑

m,n=1

Q8
mn

{
sin

[(
βe

n + αp
m

)
y
] + A8

mn sin
[(

αe
n − αp

m

)
y
] + B8

mny cos
[(

αe
n − αp

m

)
y
]}

, (A1)

where the coefficients are known functions in terms of the
coefficients and parameters of the electric and EDL potentials:

Q1
n = − K4anA

p

0(
βe

n

)3((
βe

n

)2 + k2
) , (A2)

Q2
n = − cosh

(
αe

nx
) K2βe

nA
e
nA

p

0[(
αe

n

)2 − (
βe

n

)2]2 , (A3)

Q3
mn = cosh

(
αp

mx
)

× K4βe
nα

p
manA

p
m

2
[(

βe
n

)2 + K2
][(

α
p
m

)2 − (
βe

n − α
p
m

)2]2 , (A4)

Q4
mn = cosh

(
αp

mx
)

× K4βe
nα

p
manA

p
m

2
[(

βe
n

)2 + K2
][(

α
p
m

)2 − (
βe

n + α
p
m

)2]2 , (A5)

Q5
mn = cosh

[(
αe

n + αp
m

)
x
]

× K2
(
βe

n + αe
n

)
α

p
mAe

nA
p
m

4
[(

αe
n + α

p
m

)2 − (
βe

n − α
p
m

)2]2 , (A6)

Q6
mn = cosh

[(
αe

n − αp
m

)
x
]

× K2
(
βe

n − αe
n

)
α

p
mAe

nA
p
m

4
[(

αe
n − α

p
m

)2 − (
βe

n − α
p
m

)2]2 , (A7)
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Q7
mn = cosh

[(
αe

n + αp
m

)
x
]

× K2
(
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n

)
α
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m
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n = 3(−1)n

2
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2
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n
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e
n

)
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)
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The auxiliary functions F and G are

F (α,β) = − cos α sin β + α sin α sin β + β cos α cos β

sin α cos α − α
,

(A24)

G(α,β) = α cos α sin β − β sin α cos β

sin α cos α − α
. (A25)
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