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The conformal compensator formalism is a convenient and versatile representation of supergravity

(SUGRA) obtained by gauge-fixing conformal SUGRA. Unfortunately, practical calculations often

require cumbersome manipulations of component field terms involving the full gravity multiplet. In

this paper, we derive an alternative gauge fixing for conformal SUGRA which decouples these gravity

complications from SUGRA computations. This yields a simplified tree-level action for the matter fields

in SUGRA which can be expressed compactly in terms of superfields and a modified conformal

compensator. Phenomenologically relevant quantities such as the scalar potential and fermion mass

matrix are then straightforwardly obtained by expanding the action in superspace.

DOI: 10.1103/PhysRevD.84.085012 PACS numbers: 04.65.+e, 12.60.Jv

I. INTRODUCTION

Supersymmetry (SUSY) is a well-studied and highly
motivated extension of the standard model. While some
aspects of SUSY phenomenology may be understood
purely in the limit of global SUSY, others require the
full machinery of supergravity (SUGRA). For example,
SUGRA plays an essential role in the super-Higgs mecha-
nism, whereby the goldstino of spontaneous SUSY break-
ing is eaten to become the longitudinal mode of the
gravitino [1,2]. This induces a nonzero mass for the grav-
itino m3=2, which plays a crucial role in SUSY cosmology

and collider phenomenology [3,4]. Furthermore, the full
SUGRA formalism is required for a proper description of
‘‘no-scale’’ SUSY breaking [1,5,6], which arises when
moduli mix directly with the gravity multiplet.

Despite its clear phenomenological significance, not all
of the SUGRA formalism is actually relevant for practical
calculations. For instance, couplings to the graviton are
more or less unimportant for SUSY phenomenology, and in
any case are fixed by general covariance. Likewise, inter-
actions with the goldstino and the transverse modes of the
gravitino are dictated by supercurrent conservation in the
underlying theory. For the purpose of understanding phe-
nomenology at colliders and in cosmology, one’s main
concern is to ascertain the effects of SUGRA on the
vacuum structure and particle spectrum of a given SUSY
model. In this case, the full machinery of SUGRA can
obfuscate rather than illuminate the physics.

In this paper, we show that SUGRA and its many com-
plications can be dramatically simplified by applying an
appropriately chosen gauge fixing or, equivalently, a pres-
cient Kähler transformation. Our starting point will be the
so-called conformal compensator formalism [7], which is
well-suited to some but not all practical calculations. In the
conformal compensator formalism, one accounts for the
most important SUGRA effects by augmenting the usual

superspace formalism of global SUSY with a conformal
compensator superfield �. In the literature, the standard
gauge fixing yields

� ¼ 1þ �2F�; (1)

where F� is the scalar auxiliary field of SUGRA.1 The
conformal compensator couples to chiral superfields Xi

and vector superfields Va via the SUGRA action

LSUGRA ¼ �3
Z

d4��y�e�K=3 þ
Z

d2��3W þ H:c:

þ 1

4

Z
d2�fabW

a�Wb
� þ H:c:þ . . . ; (2)

where the Kähler potential K is a (Yang-Mills) gauge
invariant function of chiral and vector superfields, and
the superpotential W and gauge kinetic function fab are
holomorphic functions of chiral superfields. Here, the el-
lipsis ( . . . ) denotes terms involving the graviton, gravitino,
and vector auxiliary field, and we work in natural units,
where MPl ¼ 1.
Famously, anomaly mediation [8] is most easily under-

stood via conformal compensator methods. More recently,
this formalism has been applied to the case where multiple
sequestered SUSY breaking sectors give rise to a corre-
sponding multiplicity of goldstini [9,10]. The conformal
compensator offers a simple way of understanding how
goldstini obtain a universal tree-level mass of 2m3=2 [9] in

theories of F-term SUSY breaking, and illuminates mod-
ifications which can arise in certain ‘‘goldstini variations’’
[11] and theories with imperfect sequestering [12].

1Throughout this work, boldface and regular typeface will
denote superfields and component fields, respectively.
Moreover, given a superfield X, we will denote its lowest
component by X.

PHYSICAL REVIEW D 84, 085012 (2011)

1550-7998=2011=84(8)=085012(10) 085012-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.085012


Despite the utility of the conformal compensatormethod,
there are many situations where a naive application of �
from Eq. (1) leads to incorrect answers, in particular, if the
terms denoted by the ellipsis in Eq. (2) are improperly
ignored. For example, the ellipsis contains nonminimal
couplings between matter fields and the graviton, so to
properly calculate the spectrum and couplings for matter
fields, one must first Weyl rescale the metric to canonically
normalize the Einstein-Hilbert action. Likewise, in the
presence of no-scale SUSY breaking, Eq. (2) simply yields
thewrong fermion mass matrix unless kinetic mixing terms
between matter fermions and the gravitino are properly
included. Given these complications, it is perhaps unsur-
prising thatmuch of the SUGRA literature simply abandons
the superfield version of SUGRA in Eq. (2) altogether and
simply works in the component form.

In this work, we present an alternative gauge fixing in
which Eq. (2) can be employed while entirely ignoring
additional terms involving the gravity multiplet. Hence, the
mixing terms are eliminated, analogous to the R� gauges of

spontaneously broken Yang-Mills theory. In this gauge
fixing, the conformal compensator is written as

� ¼ eZ=3ð1þ �2F�Þ; (3)

Z ¼ hK=2� iArgWi þ hKiiXi; (4)

where hereafter hi will denote a vacuum expectation value
(vev) and i and �i subscripts will denote differentiation with

respect to Xi and X
�iy, respectively. Note that we are work-

ing in a ‘‘zero vev’’ basis in which Xi has been appropri-
ately shifted such that hXii ¼ 0.2

Given this choice of �, one recovers the correct tree-
level spectrum and couplings for matter and gauge fields to
leading order in 1=MPl, including all effects proportional to
m3=2 without needing to perform any component manipu-

lations. Thus, we can effectively decouple any complica-
tions posed by the gravity multiplet from calculations
involving the matter fields alone.

Alternatively, the above gauge choice can be interpreted
as a well-chosen Kähler transformation. In particular, we
use the fact that tree-level supergravity is invariant under

K ! K� Z� Zy; W ! eZW; (5)

where Z is any chiral multiplet. The gauge fixing in Eq. (3)
is equivalent to a prescient choice for Z which simply
cancels the problematic terms in the Kähler potential that

are linear in superfields, allowing one to use the standard
form of � from Eq. (1). Linear terms in the Kähler poten-
tial typically imply no-scale SUSY breaking, so this Kähler
transformation effectively converts no-scale SUSY break-
ing into more familiar F-term breaking. As an added
bonus, in this Kähler basis the tree-level equation of mo-
tion for F� always yields

hF�i ¼ m3=2; (6)

after adjusting the cosmological constant (c.c.) to zero, so
it is straightforward to identify SUGRA effects propor-
tional to m3=2.

Our proposed gauge fixing is related to an ‘‘improved
gauge fixing’’ discussed many years ago by Kugo and
Uehara [13].3 In that context, the improved gauge fixing
was used merely as means to more efficiently calculate the
component SUGRA action. Moreover, the gauge fixing of
Ref. [13] has no simple superfield realization like Eq. (3),
and residual manipulations of the component SUGRA
action were required to obtain the matter spectrum and
couplings. Here, we avoid those complications at the ex-
pense of ignoring higher order 1=MPl suppressed effects.
The remainder of the paper is organized as follows. In

Sec. II, we review the formalism of conformal supergravity
and show why the standard gauge fixing is suboptimal. We
then derive our preferred gauge choice in Sec. III, and
present a number of consistency checks. We conclude in
Sec. IV, leaving further calculational details to the appen-
dices. In a companion paper [15], we will use our novel
gauge fixing to properly calculate the mass spectrum of
goldstini and modulini in general theories of F-term,
D-term, and no-scale SUSY breaking.

II. STRUCTURE OF SUPERGRAVITY

We begin with a brief review of conformal SUGRA,
highlighting the subtleties and deficiencies of the standard
gauge fixing.

A. Conformal Supergravity

As is well known, the SUGRA action can be derived by
reinterpreting minimal SUGRA as a gauge fixing of con-
formal SUGRA [7]. The purpose of the conformal com-
pensator is to realize this gauge fixing in superspace.
The gauge redundancies of minimal SUGRA are diffeo-

morphisms, local Lorentz transformations, and local
supersymmetry. The additional gauge redundancies of con-

formal SUGRA are local dilatations D̂, local Uð1ÞR chiral

transformations Â, conformal supersymmetry Ŝ�, and spe-

cial conformal transformations K̂�. The special conformal

transformations can be fixed by setting the dilatation gauge

2To work in an arbitrary vev basis, on can simply replace Xi

with ðXi � hXiiÞ. The presence of terms in Eq. (3) which depend
explicitly on vevs may be unintuitive. After all, the values of
these vevs are unknown without computing the vacuum structure
of the theory, which is in turn dependent on the vevs. However,
we will show in Sec. III C that one can solve for these vevs self-
consistently.

3For a recent study of SUGRA gauge fixing in the context of
inflation, see Ref. [14].
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field to zero,4 but this leaves two real gauge freedoms, D̂

and Â, and a Weyl spinor gauge freedom, Ŝ�.
In order to fully gauge fix conformal SUGRA to ordi-

nary SUGRA, one introduces the conformal compensator
�, which is a chiral superfield with conformal weight 1.5

Before gauge fixing, the components of � are given by

� ¼ f�;���; �F�g; (7)

where the overall factor of � is unconventional, but con-
venient for later purposes. A description of how to express
these components in superspace is given in Appendix A,
where the main subtlety is that a multiplet with nonzero
conformal weight has additional couplings to the vector
auxiliary field b� in the gravity multiplet. In particular,

Eq. (1) is secretly hiding relevant terms involving b�.

Under the dilatation and chiral transformations parame-
trized by a complex number �, and the superconformal
transformation parametrized by ��, the components of �
transform as:

� ! e��; �� ! �� þ ��: (8)

Thus, the lowest and fermionic components of � are pure
gauge modes, and one can use the remaining extra gauge
freedoms to set

D̂: j�j ¼ 1; Â: Arg� ¼ 0; Ŝ�: �� ¼ 0: (9)

This is the conventional gauge choice which results in
Eq. (1). As we will soon see, the SUGRA action suggests a
more convenient gauge fixing for practical computations.

B. SUGRA Action

To construct a valid SUGRA action, we must know
the conformal weights of all fields in the theory. Besides
the conformal compensator, all other chiral superfields
have conformal weight 0, and we will denote their
components by

X i ¼ fXi; 	i
�; F

ig: (10)

Vector multiplets also have conformal weight 0, but
since SUSY-covariant derivatives D� and �D _� have con-
formal weight 1=2, the gauge field strengths Wa

� have
conformal weight 3/2.

In a superconformal theory, the only objects which can
be consistently coupled to conformal gravity are real mul-
tiplets � with conformal weight 2 and chiral multiplets �

with conformal weight 3.6 In general, � and � will be
composite multiplets, and we indicate their components by

� ðw¼2Þ ¼ fC; ��;M; A�; ��;Dg; (11)

� ðw¼3Þ ¼ fz; 	�; Fg: (12)

As argued in Appendix A, once we choose the appropriate
gauge fixing for �, we can regard � and � as ordinary
global superfields (with the corresponding expansion in �
and ��) for any calculations involving matter fields alone.
From � and �, one can construct superconformally

invariant D-term and F-terms, respectively7:

�D ¼ 1

2
eD� 1

2
eð��� �c � � i���
Dc

�c 
 þ H:c:Þ

þ C

3

�
1

2
eR�LRS

�
þ . . . ; (13)

½��F ¼ eðF� i
ffiffiffi
2

p
	�� �c � � z �c � ���
 �c 
Þ; (14)

where e is the determinant of the metric, R is the Ricci
scalar, LRS ¼ ��
�� �c � ���@�c � þ . . . is the massless

Rarita-Schwinger action for the gravitino c �, and Dc
� ¼

@� þ . . . is the SUGRA-covariant derivative. The ellipsis

in ½��D represents terms that are quadratic in the gravitino,
but do not contribute to the gravitino mass or kinetic term.
While it is possible to rewrite these D-term and F-term
invariants as superspace integrals involving the gravity
supermultiplet, it is more convenient to express only the
matter part of the action in (global) superspace, leaving
couplings to the gravity multiplet in component form.
Since ordinary matter multiplets have vanishing confor-

mal weight and � (�) has conformal weight 2 (3), the
conformal compensator � is necessarily present in any
SUGRA action containing matter. Given the Kähler poten-
tial K, superpotential W, and gauge kinetic function fab,
we can construct the following fully superconformally
invariant action at tree-level8:

L SUGRA ¼ ½�3�y�e�K=3�D þ ½�3W�F þ H:c:

þ
�
1

4
fabW

a�Wb
�

�
F
þ H:c: (15)

By expanding out Eq. (15), we recover Eq. (2) as desired.
Note that all interactions with the gravity multiplet, as well
as the graviton and gravitino kinetic terms, come from the

4Given the upcoming discussion in Sec. III A, one might
wonder whether alternative gauge fixings for K̂� might simplify
other aspects of the SUGRA action. We were unable to find any
such simplifications.

5There are of course alternative choices for how to introduce
compensator multiplets. This particular choice is referred to in
the literature as ‘‘n ¼ �1=3.’’

6In some of the SUGRA literature, the w ¼ 2 vector multiplet
� is expressed as a w ¼ 3 chiral multiplet, namely, the object
�D2� from global superspace. We find that using � directly is
more transparent for practical calculations.

7These expressions differ from those in Ref. [13] because we
use the two-component fermion notation of Ref. [1]. In addition,
we employ different minus sign and factor of 2 conventions.

8With radiative corrections, one needs to account for a con-
formally violating regulator, which introduces additional depen-
dence on �.
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covariant forms of the corresponding D- and F-term ex-
pressions in Eqs. (13) and (14). While in general the action
can include additional terms involving SUSY-covariant
derivatives D� and �D _�, we will neglect this complication
in the present work.

C. Problematic Terms

The standard approach in the existing SUGRA literature
is to expand Eq. (15) in components using the definition
of � in Eq. (1). However, one sees immediately from
Eqs. (13) and (14) that this gauge choice yields problem-
atic terms that mix gravity and matter fields and must be
carefully accounted for in any actual calculation. These
problematic terms pertain to:

(i) graviton normalization and kinetic mixing:

C

3

R

2
: (16)

At the very minimum, hC=3i must be set equal to
�M2

Pl in order to canonically normalize the Einstein-

Hilbert actionR. In addition, ifC depends linearly on
the matter multiplets, then there are undesirable
kinetic mixing terms between the matter fields and
the graviton proportional to hCii and hC�ii. Note that
hRi ¼ 0 in the flat-space vacuum, so one need not
worry about mass corrections arising if C depends
quadratically on matter fields. Also note that if the
Einstein-Hilbert term is canonically normalized,
then so is the Rarita-Schwinger action.

(ii) gravitino kinetic mixing:

i���
@�c 
 þ H:c: (17)

A kinetic mixing term between the gravitino and
matter fields implies a noncanonical gravitino
multiplet with the wrong Rarita-Schwinger action.
In contrast, mass mixings of the form �� �c � are

perfectly healthy, since  can be identified as the
goldstino from spontaneous SUSY breaking which
is eaten by the gravitino in unitary gauge. [See
Eq. (35)].

(iii) gravitino mass phase:

� zyc ��
�
c 
 þ H:c: (18)

The usual gravitino mass parameter is defined as a
real number, so Arghzi should be set equal to zero.

In the standard approach, these three problem terms are
eliminated by (i) performing a field-dependent Weyl re-
scaling of the metric, (ii) applying a shift to the gravitino
which is distinct from going to unitary gauge, and
(iii) performing a chiral rotation of the fermions. While
these manipulations are perfectly well-defined in terms of
component fields, no simple interpretation exists in terms
of superfields. That is to say, the terms in the ellipsis of

Eq. (2) hide relevant mixing terms between the gravity
multiplet and the matter multiplets.
In addition to the above three complications, there is a

less apparent fourth one—a marginal operator mixing the
vector auxiliary field b� with scalars

b�@
��: (19)

This term is not readily visible in Eq. (13), and arises
because the conformal compensator has conformal
weight 1. (See Appendix A). Because of the quadratic
pieces in this interaction, integrating out the vector aux-
iliary field generates additional scalar kinetic terms,
again mixing the gravity and matter multiplets.

III. A NOVEL GAUGE FIXING

Next, let us demonstrate how complications from
mixing with gravitational modes can be straightforwardly
removed by an appropriate choice of gauge.

A. Exploiting Gauge Freedoms

From Eq. (8), we see that the D̂, Â, and Ŝ� gauge
freedoms can be spent to fix the components � and �� in
� equal to any desired values. In particular, we can even
set � and �� to field-dependent functions of the matter
fields, and we will exploit this freedom to manifestly
resolve the three complications discussed in Sec. II C.
In Wess-Zumino gauge for the gauge fields, but not yet

gauge fixing �, Eq. (15) implies that

C ¼ �3�y�e�K=3; (20)

�� ¼ 3i
ffiffiffi
2

p
�y�e�K=3

�
�� � Ki

3
	i
�

�
; (21)

Arg ½z� ¼ Arg½�3W�: (22)

Thus, we see that there is sufficient freedom in � and �� to
set C ¼ �3, �� ¼ 0, and Argz ¼ 0 to all orders in the
fields. This is essentially equivalent to the gauge choice
advocated in Ref. [13], which is reviewed in Appendix B.
However, in this gauge, one is forced to integrate out the
vector auxiliary field of SUGRA in components, which is
at odds with our aim to describe SUGRA solely in the
language of superfields.
For the purposes of calculating the spectrum and cou-

plings of matter fields, it is actually more convenient to
impose a less stringent gauge choice where we only impose
the conditions C ¼ �3, �� ¼ 0, and Argz ¼ 0 to leading
order in field fluctuations:

� ¼ exp

�
1

3
ðhK=2� iArgWi þ hKiiXiÞ

�
; (23)

�� ¼ 1

3
hKii	i

�; (24)
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where again we are working in a ‘‘zero vev’’ basis where
hXii ¼ 0. This gauge fixing is sufficient to ensure that there
are no linear mixing terms between matter field fluctua-
tions and the graviton/gravitino. In addition, as long as one
is working in flat space, one can ignore additional scalar
mass terms from the remaining quadratic nonminimal
couplings to the Einstein-Hilbert term.

B. Going to Superspace

While the gauge choice in Eq. (24) successfully decou-
ples the matter fields from the gravity multiplet, it is
rather inconveniently written in terms of components.
Fortunately, modulo a field redefinition of the auxiliary
field F�, this gauge choice can be rewritten compactly in
terms of superfields as Eqs. (3) and (4), repeated here for
convenience:

� ¼ eZ=3ð1þ �2F�Þ;

Z ¼ hK=2� iArgWi þ hKiiXi:

Were � an ordinary superfield, then the mapping from
Eq. (24) to Eq. (3) would occur without complication, but
since � has conformal weight 1, there is an additional
subtlety.

Recall that matter fields participate in additional inter-
actions with the gravity multiplet beyond those explicitly
shown in Eqs. (13) and (14). These couplings are dictated
by the full SUGRA invariance of the theory. For example,
when expanding the composite multiplets � and �,
one encounters SUGRA-covariant derivatives Dc

� contain-

ing additional couplings to the graviton and gravitino.
However, for calculations involving these matter fields
alone, these additional terms are irrelevant.9 Similarly,
for matter fields of conformal weight 0, integrating out
the vector auxiliary field only generates 1=M2

Pl suppressed

dimension six operators, which can also be ignored.
Nevertheless, a complication still arises because the

conformal compensator has conformal weight 1, and as
shown in Appendix A, it couples nonminimally to the
vector auxiliary field. A SUGRA-covariant derivative act-
ing on � yields

Dc
�� ¼ @��� i

2
b��þ . . . ; (25)

and since h�i � 0, linear terms involving the vector aux-
iliary field b� appear in the action.

Fortunately, one can prove via explicit computation (see
Appendix C) that in our gauge fixing in Eq. (24), b� ¼ 0 to

leading order in MPl and can thus be ignored. As adver-
tised, our gauge fixing can indeed be written in the form of
Eq. (3) up to irrelevant 1=MPl-suppressed operators.

It is instructive to understand why b� can be completely

ignored in our gauge but in contrast must be carefully
included in the gauge proposed by the authors of
Ref. [13]. In Ref. [13], � was chosen to give C ¼ �3 to
all orders in the field expansion, which implied that � was
a function of both chiral and antichiral fields. However, �
itself is the lowest component of a chiral multiplet, soDc

��

should also be a chiral object. Since spacetime derivatives
on � give derivatives on both chiral and antichiral fields,
the b� equation of motions must cancel off the derivatives

on the antichiral fields in order to preserve the known
holomorphic structure of SUSY. In our gauge fixing, � is
only dependent on chiral fields since vevs are just constant
complex numbers—thus, holomorphicity is manifest, and
b� can be set to 0 at leading order.

C. Understanding VEVs

Equation (3) is the primary result of this paper, and it is
worth understanding why explicit vevs are appearing in our
gauge choice.
Two of the three problematic terms in Sec. II C are

associated with linear terms in the Kähler potential. In
particular, if Ki were equal to zero, then there would be
no quadratic mixing terms in Eq. (16) or Eq. (17). In
addition, as shown in Appendix C, the problematic mixing
with b� in Eq. (19) would vanish if Ki ¼ 0. For a general

theory, Ki will not equal zero everywhere in field space, so
the best we can hope for is that hKii ¼ 0 at the minimum of
the potential. Interpreting our gauge fixing as the Kähler
transformation in Eq. (5), we can indeed remove such
linear terms by the appropriate choice of Z, but that choice
will explicitly depend on hKii. In this sense, the appearance
of vevs in our gauge fixing is unavoidable.
Crucially, classical equations of motion are not affected

by the appearance of vevs. For a general function fðxÞ, the
solution to h@f=@xi ¼ 0 is the same for f as it is for the
first-order Taylor expansion

~fðxÞ ¼ hfðxÞi þ hf0ðxÞiðx� hxiÞ; (26)

or evenany linear combination off and ~f. Thus, one can self-
consistently solve for the hKii terms in Eq. (3) by treating
hKii as numbers whose values are determined by the scalar

equations of motion. Of course, f and ~f have different
quadratic terms, and we will verify in the next subsection
that scalar masses take on the expected SUGRAvalues.
Finally, the appearance of vevs in the gauge fixing

means that Eq. (3) is not manifestly (Yang-Mills) gauge
invariant if there is a charged fieldXi that gets a vev.10 This
is not really an issue, of course, since a charged field
getting a vev implies spontaneous gauge symmetry break-
ing. However, one should remember that calculations using

9One might worry about additional contributions to the prob-
lematic terms in Eq. (16) and (17), or Eq. (18), but these are
absent.

10In addition, Eq. (3) is expressed in a ‘‘zero vev’’ basis where
hXii ¼ 0, further obscuring (Yang-Mills) gauge invariance.
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Eq. (3) are only correct up to 1=M2
Pl suppressed dimension

six operators, so there will in general be (Yang-Mills)
noninvariance in the dimension six interactions. Note that
the form of Eq. (3) already assumed Wess-Zumino gauge
for the gauge multiplets, and one would need to redo the
analysis of Sec. III A to find the best SUGRA gauge fixing
if one wanted to use, say, unitary gauge for the massive
vector multiplets.

D. Consistency Checks

To finish our discussion, we wish to show that our gauge
choice satisfies a number of consistency checks. For sim-
plicity, we will ignore the contributions from vector mul-
tiplets for this discussion, but one can verify that gauge
interactions also turn out as expected. Since SUGRA is
known to be Kähler invariant, the final results should be
written in terms of the invariant Kähler potential

G � K þ logW þ logW�: (27)

Note, however, that Kähler invariance is not manifest in
our gauge choice, since the gauge fixing is equivalent to
picking a preferred Kähler basis where gravity can be
decoupled. (See Appendix B for a gauge choice with
manifest Kähler invariance but other complications).

From Eqs. (14) and (15), we see that the gravitino mass
is given by

m3=2 ¼ h�3Wj�0i ¼ ehGi=2: (28)

This is the familiar Kähler invariant form of the gravitino
mass, as desired.

If one ignores the ellipsis in Eq. (2), then familiar global
SUSY techniques can be used to derive the spectrum and
couplings of matter fields. As derived in Appendix D, the
scalar and fermion kinetic terms are proportional to the
Kähler metric hGi �ji, leading to

� hGi �ji@�Xi@�Xy �j; (29)

and

� hGi �ji �	 �ji ���@�	
i; (30)

for the scalars and the fermions, respectively. Note the
appearance of vevs in these expressions, as higher-order
field couplings to the kinetic terms differ from the exact
SUGRA results at order 1=M2

Pl.

The scalar potential is derived in Appendix E. After
solving the F� and Fi equations of motion, we find

V ¼ eGðGiGi � 3Þe�2Kquad=3; (31)

which depends on the Kähler potential starting at quadratic
order in the fields

Kquad � K � hKi � hKiiXi � hK �jiXy �j: (32)

In Eq. (31), indices are raised and lowered with the inverse

metric Gi �j (without a vev), such that Gi � Gi �jG �j.

We see that the condition for vanishing c.c. is the same
as in exact SUGRA

hGiG
ii ¼ 3; (33)

so the vacuum structure is maintained. After tuning the c.c.
to zero, the equation of motion for F� yields

hF�i ¼ m3=2; (34)

as advertised in Eq. (6). Note that Eq. (31) matches the
SUGRA scalar potential to leading order in 1=MPl, and
includes all the effects proportional to m3=2. In particular,

the Kquad term would appear to give corrections at qua-

dratic order in fields, but these vanish once the c.c. is tuned
to zero.
Most important for our companion paper [15], we re-

cover the SUGRA results for the fermion spectrum. Before
going to unitary gauge for the gravitino, the (normalized)
goldstino mode eaten couples the gravitino as

� i
m3=2

ffiffiffi
3

p
ffiffiffi
2

p eaten�
� �c � þ H:c: (35)

From Eqs. (13)–(15), and using the Fi equation of motion,
we can identify the goldstino mode as

eaten ¼ 1ffiffiffi
3

p hGii	i: (36)

As shown in Appendix F, the complete fermion spectrum
(including the goldstino) is

�1

2
mij	

i	jþH:c:; mij¼m3=2hriGjþGiGji; (37)

where riGj � @iGj � �k
ijGj depends on the Christoffel

symbol �k
ij derived from the Kähler metric. This mass

matrix is not particularly illuminating in and of itself, but
the fact that it can be derived entirely within the superspace
formalism will allow us to easily compute the spectrum of
fermion masses in a companion paper [15] on goldstini
from F-term, D-term, and no-scale SUSY breaking.

IV. CONCLUSIONS

In this paper, we have derived a novel gauge choice for
conformal SUGRAwhich results in a simplified version of
the tree-level SUGRA Lagrangian. Our improved gauge is
manifestly better suited for phenomenological applica-
tions, and moreover is an improvement over the gauge
choice of Ref. [13] since it decouples matter modes not
only from the graviton and gravitino but also from the
vector auxiliary field. Hence, SUGRA calculations involv-
ing matter fields alone can be performed directly in
(global) superspace, including effects proportional tom3=2.

This gauge fixing can also be understood as the presci-
ently chosen Kähler transformation in Eq. (5). This is not
surprising, since a Kähler transformation
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K ! K� Z� Zy; W ! eZW

has the same effect as a gauge transformation on the
conformal compensator (plus a field redefinition of F�)

� ! eZ=3�: (38)

In this paper, we have exploited this Kähler redundancy to
simplify SUGRA calculations.

This formulation makes certain aspects of SUGRA
manifest while obscuring others. By expanding Eq. (15)
as Eq. (2), we have emphasized the spectrum and couplings
of matter fields but have hidden gravitational interactions.
On the other hand, the couplings of the graviton and
gravitino are given at leading order by the well-known
stress-energy tensor and supercurrent, respectively, so little
is lost by hiding them. Crucially, Eq. (2) still includes all
couplings to the goldstino degree of freedom identified in
Eq. (36), which is phenomenologically more relevant
than the transverse gravitino modes in the goldstino
equivalence limit.

In a companion paper [15], we will use this novel gauge
fixing to calculate the spectrum of goldstini in general
theories of F-term, D-term, and ‘‘almost no-scale’’
SUSY breaking. With standard component SUGRA meth-
ods, such calculations would be tedious and obscure, but in
superspace, they become straightforward and transparent.
Obviously, one would like to generalize this gauge-fixing
procedure beyond minimal SUGRA models, by properly
including radiative corrections and SUSY-covariant deriva-
tives in the action. Ultimately, one hopes that this alter-
native gauge fixing will shed light on the more general
properties of SUGRA beyond phenomenology.
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APPENDIX A: SUPERFIELDS IN SUGRA

In order to describe matter multiplets in terms of the
ordinary global superspace variables � and ��, we need to
know how to package the components of a multiplet into
�-dependent superfields, including any relevant SUGRA
effects. Here, we follow the logic of Ref. [13,16], though
we use two-component fermion notation.

For a chiral multiplet X with components

X ¼ fX; 	�; Fg; (A1)

we can construct a familiar looking superfield in terms of
the usual global superspace variables as

X ¼ X þ ffiffiffi
2

p
�	þ �2Fþ i��� ��Dc

�X

� iffiffiffi
2

p ��Dc
�	�

� ��þ 1

4
�4Dc

�D
c�X: (A2)

Compared to the expressions from global SUSY, we have
simply replaced the ordinary derivative @� with the

SUGRA-covariant derivative Dc
�.

The SUGRA-covariant derivative depends on the gravi-
ton, gravitino, and vector auxiliary field, with full expres-
sions given in Ref. [16]. For our purposes, we are mainly
interested in anomalous couplings to the vector auxiliary
field b�, which arise because the conformal compensator

has conformal weight 1. The SUGRA-covariant derivative
for a chiral multiplet of conformal weight w is

Dc
�X ¼

�
@� � i

w

2
b�

�
Xþ . . . ; (A3)

Dc
�	� ¼

�
@� � i

�
3

4
� w

2

�
b�

�
	� þ . . . ; (A4)

where the ellipsis indicates additional terms involving the
graviton and gravitino.
Immediately, we see that the expression in Eq. (1) for the

naı̈ve conformal compensator is incomplete. Since the
conformal compensator has conformal weight 1, there
should be additional terms involving b� in the � �� and �4

components. As discussed more in Appendix C, we can
avoid that complication by ensuring that the equations of
motion fix b� ¼ 0 to leading order in 1=MPl.

We also see that for ordinary chiral multiplets with
w ¼ 0, there are no complications posed by Dc

�. While

there are residual couplings of b� to fermions, they only

generate 1=M2
Pl suppressed dimension six operators.

Similarly, it is straightforward to show that the graviton
and gravitino terms elided in Eq. (A4) do not introduce any
of the problematic mixing terms discussed in Sec. II C. A
similar analysis holds for vector multiplets, with the same
conclusions.
Thus, for calculations involving matter fields alone, we

are free to use ordinary global superfields for calculational
purposes, as long as we ensure that b� ¼ 0 to leading order

in 1=MPl. The condition b� ¼ 0 is a key feature of the

gauge choice in Eq. (3), a feature not present in Ref. [13],
as discussed in the next appendix.

APPENDIX B: THE KUGO-UEHARA GAUGE

The gauge choice in this paper is closely related to a
gauge choice presented by Kugo and Uehara in Ref. [13],
which we review in this appendix. The Kugo-Uehara gauge
choice starts with essentially the same logic as in
Sec. III A, but differs from our gauge fixing by setting
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C ¼ �3; �� ¼ 0; Argz ¼ 0; (B1)

to all orders in the fields. This results in the conformal
compensator having components

� ¼ exp

�
1

3
ðK=2� iArgWÞ

�
�

�
1;
Ki	

i

3
; F�

�
; (B2)

where K and W include their full field dependence. By
doing a field redefinition of F�, this is more conveniently
expressed in term of the superpotential W and invariant
Kähler potential G from Eq. (27) as11

� ¼ W�1=3 ~�; ~� ¼ eG=6 �
�
1;
Gi	

i

3
; F�

�
: (B3)

Here, W is a full chiral superfield, but G is only a function
of the scalar fields.

This gauge choice has a number of nice features. First,
this gauge choice makes Kähler invariance manifest.

Looking at Eq. (2), we see that the W�1=3 term in �
precisely cancels against the superpotential W in the ac-

tion, and the very same W�1=3 term combines with e�K=3

to yield

ðWW�Þ�1=3e�K=3 � �3e�G=3: (B4)

Thus, the SUGRA action depends only on G, which can be
thought of as the invariant Kähler potential lifted into
superspace. Second, this gauge choice eliminates the prob-
lematic mixing terms everywhere in moduli space, such
that no matter what the field vevs are, none of the three
terms from Sec. II C ever arise. Finally, the fermionic

component of ~� is proportional to the eaten goldstino

Gi	
i=

ffiffiffi
3

p
, and setting this component to zero automatically

results in unitary gauge for the gravitino.
Despite the apparent simplicity of this Kugo-Uehara

gauge, it suffers from a hidden problem, namely, problem-
atic mixing with the vector auxiliary field b� described in

Eq. (19). This means that � cannot simply be lifted into
global superspace, since its components have residual
dependence on the SUGRA-covariant derivatives from
Eq. (A4). Integrating out b� gives additional terms in the

action which spoil the simplicity of Eq. (2). In addition,�
does not have the expected holomorphy properties of a

usual chiral multiplet, since ~� depends on the full Kähler
potential G, which is a function of both chiral and anti-
chiral fields.

Thus, we prefer Eq. (3) for practical calculations. That
said, the gauge choice in Eq. (B3) is convenient for

zero-momentum calculations where the problematic term
in Eq. (19) is irrelevant. Alternatively, if one wanted to
keep track of the most important effects of b� using a

superfield language, one could introduce a new auxiliary
field multiplet

B ¼ � 1

2
��� ��b�; (B5)

and make the replacement

� y�!�yeB� (B6)

in Eq. (2). Interpreting b� as the gauge field for localUð1ÞR
chiral transformations, we see that� indeed has conformal
weight 1.12

APPENDIX C: THE VECTOR AUXILIARY FIELD

As described in Appendix A, in order to convert global
superfields into SUGRA superfields, all spacetime deriva-
tives @� must be replaced by covariant derivatives Dc

�

which are covariant under the complete set of conformal
SUGRA gauge redundancies. This covariant derivativeDc

�

contains couplings to the gravity multiplet, which are
largely irrelevant for our phenomenological purposes.
The one exception is covariant derivatives acting on the
conformal compensator itself, since the compensator has
conformal weight 1.
Since we have parametrized� in Eq. (7) with an overall

factor of �, we can treat � as the only field with conformal
weight 1, with �� and F� having the usual conformal
weight 0. Thus, the only nontrivial covariant derivative is

Dc
�� ¼ @��� i

2
wb��þ . . . ; (C1)

where the conformal weight w ¼ 1 for �, b� is the vector

auxiliary field, and we have elided the graviton and grav-
itino terms for simplicity.
We can expand out Eq. (2) to isolate terms depending on

the vector auxiliary field:

3�y�e�K=3

�
b�b�

4
þ b�Im

�
1

3
Ki@�x

i � @��

�

��
; (C2)

where we have elided additional terms that are quadratic in
fermion fields. Using the gauge fixing from Eq. (23), we
see that

@��

�
¼ 1

3
hKii@�xi; (C3)

so there are no kinetic mixing terms of the form of Eq. (19),
only higher order terms in the scalar field expansion. Since

11The derivation in Ref. [13] is slightly different from the one
presented in this appendix. There, the conformal compensator
was first rescaled by the superpotential � ¼ W�1=3 ~� and then
the gauge fixing was applied to ~� itself. Obviously, the two
methods differ only by a Kähler transformation, and the two final
results are the same. The practical difference is that Ref. [13] did
not have to impose the condition from Eq. (18).

12More precisely, a chiral multiplet with conformal weight w
has charge fw;wg under D̂ and Â, while an antichiral multiplet
with weight w has charge fw;�wg. Recall, though, that we have
used the K̂� gauge freedom to eliminate the dilatation gauge
field.
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b� has a mass of orderM2
Pl, the only effect of the auxiliary

fields is to generate 1=M2
Pl suppressed dimension six op-

erators involving matter fields, which are irrelevant for our
phenomenological purposes. Therefore we are free to set
b� ¼ 0 to leading order for this gauge choice.

It is now clear why the Kugo-Uehara gauge choice in
Eq. (B2) has residual dependence on the vector auxiliary
field. In that gauge, � is a function of both chiral and
antichiral fields, so the leading order cancellation seen in
Eq. (C3) does not persist. In this sense, our gauge choice is
unique, since it is the minimal (local) gauge fixing that
eliminates Eq. (19).

APPENDIX D: SCALAR AND FERMION
KINETIC TERMS

Using Eq. (2), it is straightforward to check that our
gauge fixing results in the expected scalar and fermion
kinetic terms in SUGRA. In particular, Eq. (2) can be
expanded using standard superspace methods, up to cor-
rections at order 1=MPl.

The kinetic operators can only come from the first term
in Eq. (2), and we parameterize the chiral supermultiplets
as in Eq. (10). To simplify the notation, it is convenient to
introduce the superfield

T ¼ �3�y�e�K=3; (D1)

resulting immediately in the kinetic terms

� Ti �j@�X
i@�Xy �j; (D2)

and

� Ti �j �	
�ji ���@�	

i; (D3)

for the scalars and the fermions, respectively.
Using the gauge fixing for � in Eq. (3), it is straightfor-

ward to find Ti �j from Eq. (D1). Since � is itself expressed

as a function of the chiral multiplets, there is no compli-
cations in taking field derivatives. We find

T ¼ �3e�Kquad=3; (D4)

Ti ¼ �Kie
�Kquad=3; (D5)

Ti �j ¼
�
Gi �j �

�Ki�K �j

3

�
e�Kquad=3; (D6)

where �Ki � Ki � hKii and Kquad is defined in Eq. (32).

Because of the relationship between the vevs

hTi �ji ¼ hGi �ji; (D7)

we indeed recover the correct SUGRA kinetic terms. At
higher orders in the field expansion of Eqs. (D2) and (D3),
there will be deviations from the SUGRA predictions at
order 1=M2

Pl.

APPENDIX E: SCALAR POTENTIAL
AND AUXILIARY VEVS

Another check of the gauge fixing is to make sure that
the vacuum structure of the theory matches the exact
results from SUGRA. Again, we can use superspace
methods to analyze Eq. (2). It is convenient to define
the superfield

P ¼ �3W; (E1)

and we will continue to use the notation T from Eq. (D1).
The scalar potential derived from Eq. (2) is

�V ¼ Ti �jF
iFy �j þ TiF

iFy
� þ T �jF

y �jF� þ TF�F
y
�

þ PiF
i þ 3F�Pþ Py

�j
Fy �j þ 3Fy

�P
y: (E2)

The expression for F� is obtained from its equation of
motion

F� ¼ �TiF
i þ 3Py

T
: (E3)

Our gauge choice has hTii ¼ 0 and hTi ¼ �3 by construc-
tion, and hPi ¼ m3=2 from Eq. (28), so

hF�i ¼ m3=2 (E4)

as advertised.
Substituting F� back into Eq. (E2), we have

�V ¼
�
Ti �j �

TiT �j

T

�
FiFy �j þ

�
Pi � 3P

Ti

T

�
Fi

þ
�
Py

�j
� 3Py T �j

T

�
Fy �j � 9

PPy

T
: (E5)

Using the fact that

Ti �j �
TiT �j

T
¼ Gi �je

�Kquad=3; (E6)

Pi � 3P
Ti

T
¼ GiP; (E7)

PPy ¼ eGe�Kquad ; (E8)

we can simplify the potential and solve for Fi

Fi ¼ �PyGieKquad=3: (E9)

Here, Gi � Gi �jG �j is defined in terms of the inverse Kähler

metric. The final expression for the scalar potential is

V ¼ eGðGiGi � 3Þe�2Kquad=3; (E10)

which agrees with the SUGRA scalar potential at leading
order in 1=M2

Pl when expanded around flat space.
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APPENDIX F: GOLDSTINO MODE AND
FERMION SPECTRUM

The final check of our gauge fixing is to verify that the
fermion structure matches the SUGRA expectation. For
simplicity, we will ignore gauginos for this discussion, and
we will again use the notation of T from Eq. (D1) and P
from Eq. (E1).

The goldstino mode couples to the gravitino as in
Eq. (35). Using Eqs. (13) and (14), we can identify the
goldstino direction eaten as

eaten ¼
ffiffiffi
2

p
ffiffiffi
3

p
m3=2

�
1

2
Tj �� �� � þ Pj�

�
: (F1)

Focusing only on the minimum of the scalar potential, and
using the auxiliary field equations of motion, we find

eaten ¼ 1ffiffiffi
3

p
m3=2

hðFy
�Ti þ Ti �jF

y �jÞ þ 2Pii	i

¼ 1ffiffiffi
3

p hGii	i; (F2)

as desired. With D-terms turned on, eaten will pick up an
additional contribution from the gaugino in Tj �� �� � as well
as W�W�j�.
To check the fermion masses, we expand out Eq. (2),

looking for the operators 	i	j in the Lagrangian:

� 1

2
hTij �kF

y �k þ TijF
y
� þ Piji	i	j þ H:c:; (F3)

where again we have only considered the vevs of these
expressions. Using the definitions of T and P, we can
extract

hTij �kF
y �ki ¼ �m3=2hGij �kG

�ki; (F4)

hPij þ TijF
y
�i ¼ m3=2hGij þGiGji: (F5)

Thus, the fermion mass matrix is

L mass ¼ � 1

2
m3=2hriGj þGiGji	i	j þ H:c:; (F6)

where riGj � @iGj � �k
ijGk, and the Christoffel symbol

�k
ij is derived from the Kähler metric Gij �k ¼ Gm �k�

m
ij. This

is the expected SUGRA result.
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