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Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the
MIT-Bates out-of-plane scattering facility are presented. The VCS response functions PLL − PT T /ε and PLT

have been measured at Q2 = 0.057 GeV2/c2. The generalized electric and magnetic polarizabilities, α(Q2) and
β(Q2), and the mean-square electric polarizability radius〈r2

α〉 are obtained from a dispersion analysis of the data.
The results are in good agreement with O(p3) heavy baryon chiral perturbation and indicate the dominance of
mesonic effects in the polarizabilities.
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I. INTRODUCTION

The topic of hadron polarizabilities has generated consid-
erable theoretical and experimental interest [1]. Although the
electric and magnetic polarizabilities of the proton α and
β are known with reasonable accuracy from real Compton
scattering (RCS) [2], very little is known about the distribution
of polarizability density inside the nucleon. The dominant
pion loop diagrams for the proton polarizability and the proton
electromagnetic (EM) form factor are shown in Fig. 1. The
presence of an additional electromagnetic vertex in the polar-
izability diagram relative to the form factor diagram implies
that the proton polarizability distribution will not be identical
to the proton charge distribution. To measure a polarizability
density it is necessary to use the virtual Compton scattering
(VCS) reaction [3], where the incident photon is virtual.

At low Q2 it has long been assumed [4] that the generalized
electric polarizability α(Q2) should decrease monotonically
with increasing Q2 with a length scale given by the pion
range, where Q2 is the four-momentum transfer to the nucleon.
By contrast, most theoretical predictions for the generalized
magnetic polarizability predict that β(Q2) should rise with
increasing Q2 and then decrease. The cancellation of negative
long-range diamagnetism of the proton, due to the pion cloud,
with the positive short-distance paramagnetism of the proton,
due to the quark core, causes the predicted peaked behavior
for β(Q2).

RCS [2] and VCS experiments at Mainz [5] and the
Jefferson Laboratory (JLab) [6] did establish that α(Q2) is

falling off with increasing Q2 and that β(Q2) is relatively flat
at low Q2. However, the Mainz data [5] and more recent data
from Bates [7] at Q2 = 0.057 GeV2 suggest that there is a
peaking of α(Q2) in the region of Q2 = 0.3 GeV2, a trend
confirmed by new data from Mainz [8] at Q2 = 0.33 GeV2.
In this paper the experimental details of a VCS experiment [7]
performed on the proton using the out-of-plane scattering
facility at the MIT-Bates Linear Accelerator are presented.
The data were taken at sufficiently low Q2 = 0.057 GeV2

so that the data have sensitivity to the mean-square electric
polarizability radius of the proton, as well as providing a test
of chiral perturbation theory.

II. THE VCS REACTION

The relationship between VCS cross sections and the
polarizabilities is most easily seen in the low-energy expansion
(LEX) of the unpolarized VCS cross section [3]:

d5σ VCS = d5σ BH+Born + q ′��0(q, ε, θ, φ) + O(q ′2),

(1)

where q (q ′) is the incident (final) photon three-momenta in the
photon-nucleon center-of-mass (c.m.) frame, ε is the photon
polarization, θ (φ) is the c.m. polar (azimuthal) angle for the
outgoing photon, and � is a phase space factor. d5σ BH+Born

is the cross section for the Bethe-Heitler + Born amplitudes
only (i.e., no nucleon structure) and is exactly calculable from
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FIG. 1. Dominant pion loop diagrams for (a) the proton polariz-
ability and (b) the proton electromagnetic form factor.

QED and the nucleon form factors. The Bethe-Heitler and
Born diagrams for the VCS reaction are shown in Fig. 2. The
polarizabilities enter the cross section expansion at order O(q ′)
through the term �0, given by [9]

�0(q, ε, θ, φ) = V1

[
PLL(q) − PT T (q)

ε

]
+ V2PLT (q), (2)

wherePLL(q), PT T (q), and PLT (q) are VCS response func-
tions. The response function PLL(q) is proportional to α(Q2),
PLT (q) is proportional to β(Q2) + spin-polarizability terms,
and PT T (q) is proportional to spin-polarizability terms. The
terms V1 and V2 are kinematic functions. The Bates VCS
experiment was designed to make an azimuthal separation
of PLL − PT T /ε and PLT by taking data simultaneously at
θ = 90◦ at the azimuthal angles φ = 90, 180, and 270
degrees. At fixed θ the VCS cross sections at φ = 90◦
and 270◦ are equal and the kinematic function V2 goes to
zero. Therefore, the polarizability effect �0 is proportional
toPLL − PT T /ε. At φ = 180◦ both V1 and V2 are nonzero,
and the polarizability effect is proportional to a weighted
sum of PLL − PT T /ε and missing mass squared (MM2).
All of the data were taken with q ′ MeV/c, and ε = 0.9,
which corresponds to Q2 = 0.057 GeV2. At these kinematics,
the percentage of PLL − PT T /ε that comes from α(Q2)is
estimated [4] to be 92%, with the remainder coming from the
spin polarizabilities. The percentage of PLT that comes from
β(Q2) is estimated [4] at 69%, with the remainder coming
from the spin polarizabilities. Table I lists the incident beam
energies and the corresponding c.m. final photon energies in
the experiment. At q ′ = 43 MeV/c the polarizability effect is
negligible in the cross sections and, at ε = 0.9 MeV/c, the
polarizability effect is approximately 20%.

(a) (b) (c)

FIG. 2. Feynman diagrams for the VCS amplitude. Panel (a)
shows the structure dependent, non-Born term, panel (b) shows the
Bethe-Heitler amplitudes, and panel (c) shows the Born amplitude.

III. THE MIT-BATES VCS EXPERIMENT

This experiment was the first to use the extracted high
duty-factor beam from the MIT-Bates South Hall Ring. The
extracted beams had duty factors of approximately 50%, with
currents up to 7 μA. The target was a closed circulating
loop of liquid hydrogen, where the liquid hydrogen circulated
vertically in a 1.6-cm-diameter tube through the electron beam
spot. The target cell wall was 4.3-μm-thick havar in the region
where the beam passed through the target cell wall.

The full out-of-plane spectrometer (OOPS) system with
gantry was used for proton detection [10]. The OOPS proton
detection system consists of four identical vertically bending
dipole-quadrupole spectrometers. The gantry support system
allows one OOPS to be positioned above the scattering plane
and another OOPS to be positioned below the scattering plane.
An additional OOPS was positioned in the scattering plane
using a satellite support system. The standard drift distance
from the target to the OOPS is 1.4 m. A new OOPS optics
tune using a 2.5 m drift distance was developed for running
at final photon energies q ′ = 43 and q ′ = 65 MeV/c because
the OOPS were at angles so close together that they would
mechanically interfere with each other at the shorter drift
distance. Data taken at higher πN used the standard 1.4 m
drift for the OOPS.

The standard OOPS trigger is a three-fold coincidence of
three plastic scintillators in the OOPS focal plane, where the
scintillators have thicknesses of 0.16, 0.48, and 0.48 cm. Since
the lowest proton kinetic energy in the experiment was 30 MeV,
there was concern that the protons might stop in the first two

TABLE I. VCS kinematics. Ei (Ef ) is the incident (final) electron energy in MeV, θe is the laboratory electron scattering angle in degrees,
and q (q′) is the incident (final) photon c.m. three-momentum in MeV/c. The angle θ is the c.m. polar angle between q′ and q in degrees, and
φ is the azimuthal angle of the outgoing photon in degrees. Angles are shown for the in-plane, below-plane, and above-plane OOPSs.

Electron Scattering Kinematics In Plane Below Plane Above Plane

Ei Ef θe q q ′ θ φ θ φ θ φ

568.3 493.7 25.77 237 43 108.6 180.0 123.9 62.4 123.9 297.6
610.4 510.8 24.52 240 65 90.0 180.0 90.0 90.0 90.0 270.0
632.4 511.6 23.64 240 84 90.0 180.0 90.0 90.0 90.0 270.0
651.2 512.3 22.76 240 100 90.0 180.0 90.0 90.0 90.0 270.0
669.2 513.0 21.82 240 115 90.0 180.0 90.0 90.0 90.0 270.0
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FIG. 3. Panel (a) shows the time-of-flight (TOF) distribution
between the detected electron and proton. Panels (b) and (c) show
the missing-mass squared (MM2) distributions cut on the coincident
peak and the accidental portions of the TOF distribution, respectively.
Panel (d) shows the result of subtracting the distribution in panel (c)
from the distribution in panel (b), where the weighting factor is given
by the timing widths of the accidental and coincident TOF bins. The
curves in panel (d) show peak and background fitting to the subtracted
MM2 distribution, as explained in the text.

trigger scintillators and, for this reason, the OOPS trigger was
modified to a coincidence of the first two scintillators in the
OOPS focal plane. A GEANT simulation of the OOPS trigger
predicts a trigger efficiency of approximately 99%.

The One Hundred Inch Proton Spectometer (OHIPS)
electron spectrometer used a new focal plane [11] that
increased the momentum acceptance of the spectrometer
from 9% to 13%, which served to increase the accep-
tance in q′. Beam-optics studies were performed to mea-
sure OHIPS transport matrix elements over the extended
focal plane instrumentation. A Monte Carlo based on the
program TURTLE [12] was used to calculate acceptance.
The Monte Carlo utilized spectrometer matrix elements
from the beam-optics studies and the multiple scattering
model [13] from GEANT4. Good agreement was achieved
between measured and calculated angular and momentum
distributions.
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FIG. 4. VCS cross sections as a function of average q′. The dotted
curves are Bethe-Heitler + Born and the dashed and solid curves are
fits with LEX and dispersion analyses, respectively.

The final-state photon in the reaction was identified through
missing mass and time-of-flight techniques. Because the duty
factor of the beam was less than 100%, the experimental
time-of-flight (TOF) distribution shown in Fig. 3(a) does not
exhibit the flat accidental distribution typically observed at
high-duty-factor facilities such as the JLab or Mainz Microtron
(MAMI) at Mainz; in this case accidentals peak under the
coincidence peak. The first step in the analysis was to make
an approximate subtraction of accidentals by cutting on the
coincident peak in the TOF distribution. The coincident and
accidental MM2 distributions are shown in Figs. 3(b) and
3(c), respectively. The result of subtracting the accidental
MM2 distribution from the coincident MM2 distribution is
shown in Fig. 3(d), where the subtraction weighting factor is
given by the timing widths of the accidental and coincident
TOF bins. The subtraction of accidentals at this stage is only
approximate because the accidental events are peaked in the
TOF distribution. The peak in the subtracted MM2 distribution,
shown in Fig. 3(d), contains the coincident VCS events, and the
background under this peak contains unsubtracted accidentals
and coincident A(e, e′p)X events on the havar target cell
wall. Empty target runs were not taken because electron
beam heating would have caused damage to the target cell
wall. Photon yields were obtained by fitting the subtracted
MM2 distributions using a radiated, real-photon line shape
calculated with the Monte Carlo and an empirical background
shape that accounts for both the unsubtracted accidentals and
coincident target background events. Polynomial and skewed
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TABLE II. Systematic errors. The first column gives the final photon c.m. momentum. The second and third columns are the percent
uncertainties for the OOPS tracking efficiencies, and the fourth column is the percent uncertainty in luminosity. The last two columns show
the percent uncertainty in the Bethe-Heitler + Born cross section assuming ±0.1% uncertainty in the incident beam energy. The units of φ are
degrees.

q′ (MeV/c) Oops Tracking Efficiency Luminosity Uncertainty (%) d5σ BH+Born(%)

Uncertainty (%)

φ = 180 φ = 90 φ = 270 φ = 180 φ = 90 φ= 270 φ = 180 φ = 90, 270

43 2.2 2.5 3.2 0.14 0.37 0.65 1.6 1.8
65 1.9 1.5 1.4 0.32 0.32 0.32 1.1 1.1
84 2.5 1.9 1.7 0.42 0.42 0.42 1.0 1.1
100 0.9 0.7 0.7 0.23 0.23 0.23 0.9 0.9
115 0.9 1.3 1.3 0.20 0.20 0.20 0.7 0.8

Gaussian shapes for the background gave identical yields,
within errors, to a fit that used the accidental MM2 distribution
[see Fig. 3(c)] for the background shape. For simplicity,
the accidental MM2 distribution was utilized for background
fitting in the subtracted MM2 distribution, and Fig. 3(d) shows
a typical fit. Photon yields are obtained by subtracting the fitted
background distribution from the accidentals subtracted MM2

distribution and then summing counts over the real photon
peak. Radiative corrections were applied to the data [14];
approximately 22% in these kinematics.

The VCS cross sections are shown in Fig. 4 with the
statistical and systematic errors combined in quadrature. The
dominant errors are statistical for all of the VCS cross sections.
The largest systematic errors in the cross sections are the OOPS
tracking efficiency and the luminosity measurement, and these
errors are presented in Table II. The OOPS tracking efficiency
is measured by taking the ratio of events with a good track
in the OOPS drift chambers to the number of OOPS trigger
events. The uncertainty in the tracking efficiency results from
the statistical errors in these numbers. The luminosity mea-
surement was limited primarily by uncertainties in subtracting
pedestal charge from the measured Faraday-cup charge. The
systematic error in the luminosity was estimated by calculating
the ratio of the measured charge to the number of electron
singles events in OHIPS for each data production run of
approximate duration of one hour. The standard distribution of
the mean of these ratios over each VCS data set was taken as the
uncertainty in the luminosity. Uncertainty in the incident beam
energies, estimated at ±0.1% [15], introduces an uncertainty in
the response functions and polarizabilities through the beam
energy dependence of d5σ BH+Born. The fractional variation

in d5σ BH+Born due to the beam energy uncertainty, presented
in Table II, is comparable to the OOPS tracking efficiency
uncertainty. The cross sections with statistical and systematic
errors are presented in Table III.

IV. LOW-ENERGY-EXPANSION ANALYSIS OF THE DATA

An analysis of the data was performed using the low-energy
expansion [see Eq. (1)]. The dotted lines in Fig. 4 are the
Bethe-Heitler + Born (BH + Born) calculations (i.e., no
polarizability effect and using Hoehler form factors [16]). The
agreement between the data and the BH + Born calculation
is good at low q′, while at higher q′ the out-of-plane data fall
significantly below the calculation because of the destructive
interference between the BH + Born and polarizability
amplitudes. The in-plane cross sections show a much smaller
deviation from the BH + Born cross sections at high q′. This
smaller deviation from BH + Born for the in-plane cross
sections results from V1 and V2 in Eq. (2) having the same
sign, and from PLL − PT T /ε being positive and PLT being
negative. Therefore, the charge and magnetic polarizabilities
interfere destructively at O(q ′) for the in-plane cross sections.
Because of this cancellation the LEX analysis of the in-plane
data for PLT will not be reliable, and it will be necessary to
use a dispersive analysis that includes all orders in q′.

The dashed lines in Fig. 4 are fits to the cross-
section data using the LEX analysis [i.e., Eq. (1)].
These fits give PLL − PT T /ε = 54.5 ± 4.8 ± 3.4 GeV−2 and
PLT = −20.4 ± 2.9 ± 1.4 GeV−2, with the first error being
statistical and the second error being systematic. Systematic
errors were propagated into the LEX analysis using a Monte

TABLE III. VCS cross sections in units of nb/(GeV sr2). The errors are statistical and systematic, respectively. The units of φ are degrees.

q′(MeV/c) φ = 180 φ = 90 φ = 270

43 5.73±0.29±0.16 10.68±0.50±0.33 11.48±0.64±0.42
65 2.19±0.18±0.05 5.53±0.18±0.10 5.34±0.21±0.10
84 1.61±0.13±0.04 3.95±0.17±0.09 3.95±0.14±0.08
100 1.16±0.06±0.02 2.86±0.07±0.04 2.87±0.08±0.04
115 0.99±0.05±0.01 2.32±0.16±0.04
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FIG. 5. VCS response functions from this experiment, RCS [2],
Mainz 2000 [5], Mainz 2008 [8], and JLab [6]. The solid curves are
O(p3) HBChPT [4] with ε = 0.9. The dashed curve is a dispersion
model calculation that is fit to the RCS and MIT-Bates data.

Carlo technique, where the parameters in Table II are randomly
varied within their limits, and the incident beam energy at each
q′ setting was varied within an uncertainty of ±0.1%. A LEX
analysis was performed at each variation of parameters, the
parameter variation and data fitting being repeated thousands
of times. The standard deviations of the resulting distributions
for PLL − PT T /ε and PLT were taken as the systematic
errors in the response functions. An LEX analysis using the
Friedrich-Walcher form factors [17] gives identical results,
within errors, to the analysis presented here using the Hoehler
form factors.

The LEX result for PLL − PT T /ε is shown in Fig. 5 along
with results from Mainz and the JLab, where the statistical
and systematic errors have been combined in quadrature. Also
shown in the figure is the parameter-free O(p3) calculation in
heavy-baryon chiral perturbation theory (HBChPT) [4], which
is in good agreement with experiment for PLL − PT T /ε. The
LEX result for PLT is not shown in Fig. 5 because of the
cancellation of the polarizability effect at O(q ′) for the in-plane
cross sections, which makes necessary a dispersive approach
to extracting PLT from the data.
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FIG. 6. Panels (a) and (b) show results for α(Q2) and β(Q2),
respectively. The references are the same as in Fig. 5 except
for Mainz [20]. The solid curves are O(p3) HBChPT [4]. The
dashed curve is the full dispersion calculation that is fit to the
RCS and MIT-Bates data. The dotted and dash-dotted curves are
the πN and asymptotic contributions to the dispersion analysis fit,
respectively.

V. DISPERSION ANALYSIS OF THE DATA

A dispersion analysis of the data was performed using the
VCS dispersion model [18]. The VCS amplitudes are obtained
from the Mainz unitary isobar model (MAID) γ ∗p → πN

multipoles [19], and unconstrained asymptotic contributions
to two of the twelve VCS amplitudes. For fitting VCS data a
dipole ansatz has traditionally been used [18] to parameterize
the asymptotic contributions:

α(Q2) − απN (Q2) = αexpt − απN

(
1 + Q2/�2

α

)2 , (3)
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with a similar parameterization defined for β(Q2). In this
equation, αexpt is the experimental electric polarizability from
RCS, απN in the calculated πN contribution to the electric
polarizability at Q2 = 0, and απN (Q2)is the calculated πN

contribution to the electric polarizability at the experimental
Q2. The only free parameter in Eq. (3) is �α . It is important to
note that there is no loss of generality by using the dipole
parameterization of Eq. (3), and any Q2 parameterization
can be used. The parameters �α and �β are fit to the
experimental cross sections at one Q2 point, and the solid
curves in Fig. 4 show the best dispersion fits to the VCS
cross sections. Once �α and �β have been fit to the data, the
polarizabilities α(Q2) and β(Q2) are obtained from Eq. (3) and
its generalization for the magnetic polarizability. The response
functions PLL − PT T /ε and PLT are found by summing the
asymptotic terms with calculated πN dispersive contributions.

The best-fit response functions from the dispersion
analysis are PLL − PT T /ε = 46.7 ± 4.9 ± 3.4 GeV−2 and
PLT = −8.9 ± 4.2 ± 1.4 GeV−2, where the first error is statis-
tical and the second is systematic. Since the sensitivities of the
response functions to the systematic errors are approximately
the same for the dispersion and LEX analyses, the systematic
errors for the dispersion analysis are taken from the LEX
Monte Carlo analysis. The fitted values for �α and �β are
given in Table IV, along with results from the JLab dispersion
analysis. The JLab 1-a analysis utilizes data taken below pion
threshold, and the 1-b analysis utilizes data taken between the
one- and two-pion threshold.

An alternate fitting procedure was also applied to obtain
�α and�β , where simulated events are distributed within the
experimental acceptance using event weighting given by the
dispersion analysis cross sections. The number of accepted
simulation events are compared with the experimental number
of counts, and then �α and�β are varied to minimize chi-
squared. The values of �α and�β obtained from the count-
based analysis, 0.53±0.13

0.08 and 0.41±0.22
0.12, respectively, agree

within errors with the cross-section-based analysis.
The dispersion results for PLL − PT T /ε and PLT are shown

in Fig. 5 with the statistical and systematic errors combined
in quadrature. The figure shows that the dispersion result for
PLL − PT T /ε is in near agreement with the LEX analysis and
the HBChPT predictions. The dispersion result for PLT is also
in good agreement with the HBChPT prediction.

The dashed curves in Fig. 5 are the dispersion model
calculations for PLL − PT T /ε and PLT assuming the dipole
choice of Eq. (3) and fit values of �α and �β . By construction,
the dispersion calculations go directly through the RCS and

TABLE IV. Fitted values for �α and �β from VCS dispersion
analyses in units of GeV. The errors shown for this experiment are
statistical only; errors shown for the JLab 1-a and 1-b analyses are
statistical and systematic, respectively.

Experiment �α �β

MIT-Bates 0.60+0.17
−0.11 0.51+0.39

−0.15

JLab 1-a 0.741±0.040±0.175 0.708±0.041±0.114
JLab 1-b 0.702±0.035±0.037 0.632±0.036±0.023

MIT-Bates data points. For PLT , there is relatively good
agreement between the dispersion calculation and the JLab
1-a, 1-b, and Mainz data points. Based on this comparison, the
dipole ansatz of Eq. (3) appears to be a good approximation
for representing β(Q2). Further evidence for this is seen in
the �β fit values shown in Table IV, where the MIT-Bates and
JLab results agree within their statistical and systematic errors.
For PLL − PT T /ε there is also relatively good agreement
between the dispersion calculation and the JLab 1-a and 1-b
data points; the fitted �α values from MIT-Bates and JLab are
in agreement. However, there is a significant gap between the
dispersion calculation for PLL − PT T /ε and the Mainz data
points, indicating that the dipole assumption of Eq. (3) is a
poor approximation in this intermediate-Q2 range.

The spatial dependence of the induced polarization in an
external electromagnetic field has recently been calculated
in the light-front frame [20]. By adding a Gaussian to the
asymptotic term in Eq. (3) for α(Q2), the authors of [20]
were able to obtain a good fit to the experimental data for
PLL − PT T /ε. The calculation of the induced polarization in a
proton with definite light-cone helicity shows that, without the
Gaussian asymptotic term, the induced polarization becomes
small at distances beyond 0.5 fm, whereas with the Gaussian
term there is a pronounced structure in the induced polarization
at transverse distances of 0.5 to 1 fm.

The dispersion model fit of the MIT-Bates data
gives α = (7.85 ± 0.87 ± 0.60) × 10−4 fm3, and
β = (2.69 ± 1.48 ± 0.49) × 10−4 fm3. These results are
shown in Figs. 6(a) and 6(b) with the statistical and systematic
errors combined in quadrature, along with previous results
from RCS [2], Mainz [21], and JLab [6]. The MIT-Bates
results for α and β are in near agreement with the HBChPT
prediction, shown as the solid curves in Figs. 6(a) and 6(b).
The theoretical errors for the HBChPT calculation of α(Q2)
and β(Q2) at Q2 = 0.06 GeV2 are estimated [22] to be
comparable to the errors for an O(p4) calculation [23] of α

and β, approximately ±2.0 and ±3.6 in units of 10−4 fm3,
respectively.

A fully dispersive analysis of the Mainz data [5,8] for
α and β is in progress, but not published [21], and the
“Mainz 2000” points shown in Figs. 6(a) and 6(b) are
actually derived from an LEX analysis of the first Mainz
VCS experiment [5]. In that analysis, the proton spin po-
larizabilities were calculated using dispersion theory, and
the spin-polarizability contributions were subtracted from the
LEX response functions [21]. We performed a similar analysis
using the new Mainz response functions [8], and the polariz-
abilities obtained are α = 8.22 ± 0.62 ± 0.98 × 10−4 fm3 and
β = 3.55 ± 0.37 ± 1.15 × 10−4 fm3. These results are shown
in Figs. 6(a) and 6(b) as the “Mainz 2008” data points.

The dashed curve in Figs. 6(a) and 6(b) is a dispersion
model calculation using the same �α and �β parameters
as the calculation shown in Fig. 5. The dotted and dash-
dotted curves are the πN and asymptotic contributions to the
polarizabilities, respectively. Figure 6(b) shows that the πN

term from the (1232) resonance is paramagnetic (positive),
whereas the asymptotic contribution is diamagnetic (negative).
The dispersion calculation for α falls significantly below the
Mainz data points at Q2 = 0.33 GeV2/c2, while the dispersion
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TABLE V. Electric and magnetic mean-square radii. The radii
have unit of fm2. The errors are statistical only.

〈r2
α〉 〈r2

β〉
Full Dispersion 2.02+0.39

−0.59 −4.67+5.36
−13.04

Asymptotic 1.03+0.38
−0.58 −8.42+6.17

−13.40

πN 0.99±0.05 3.76±1.65

calculation for β is in relatively good agreement with the Mainz
and JLab 1-a data points.

VI. MEAN-SQUARE POLARIZABILITY RADII

The mean-square electric polarizability radius 〈r2
α〉 is given

by

〈
r2
α

〉 = −6h̄2

αexpt

d

dQ2
α(Q2)

∣∣∣∣
Q2=0

. (4)

〈r2
α〉 was determined using the dispersion analysis fit to the ex-

perimental data, where α(Q2) is given by Eq. (3), with �αfixed
by the fit to the experimental data and απN (Q2) given by the
dispersion calculation. Evaluating Eq. (4) using the functional
form of α(Q2)given by Eq. (3) gives 〈r2

α〉 = 2.02+0.39
−0.59 fm2,

which is in good agreement with the HBChPT prediction [24]
of 1.7 fm2. The error is statistical only. The experimental value
is significantly larger than the proton mean-square charge
radius [25] of 0.757 ± .014 fm2, showing that mesonic effects
are the dominant effect in describing the electric polarizability.
It is interesting to note that the experimental mean-square
radius is in good agreement with an uncertainty principle
estimate for the size of the pion cloud, 〈r2〉 ≈ (h̄c/mπ )2 =
2 fm2. The dominant pion loop diagrams for the proton form
factor and the proton polarizability are shown in Fig. 1. The
additional electromagnetic vertex in the polarizability diagram
relative to the form factor diagram serves to increase the range
of the interaction by approximately 70% as compared with the
charge form factor.

Mean-square electric and magnetic polarizability radii are
presented in Table V. Also shown in the table are mean-
square radii for the πN and asymptotic contributions to the
polarizabilities. Because the error on the MIT-Bates β(Q2)
is large compared with βexpt, the data do not place a useful

TABLE VI. VCS response functions, polarizabilities, and electric
polarizability mean-square radius. The response functions have
units of GeV−2, polarizabilities have units of 10−4 fm3, and the
mean-square radius has units of fm2. The errors are statistical and
systematic, respectively.

Observable LEX Analysis Dispersion Analysis HBChPT [4]

PLL − PT T /ε 54.5±4.8±3.4 46.7±4.9±3.4 56.9
PLT −8.9±4.2 ±1.4 −6.5
α(Q2 = 0.06) 7.85±0.87±0.60 9.27
β(Q2 = 0.06) 2.69±1.48±0.49 1.59
〈r2

α〉 2.02+0.39
−0.59 1.7

constraint on 〈r2
β〉. The mean-square radii for the asymptotic

and πN contributions to α(Q2) are approximately equal and
are close to 1.0 fm2. Although errors in the mean-square
radii for the asymptotic (diamagnetic) and πN (paramagnetic)
contributions to β(Q2) are relatively large, there is a suggestion
in the data that the diamagnetic mean-square radius are larger
than the paramagnetic mean-square radius, which supports a
conceptual view of the proton as having long-range diamag-
netism due to the pion cloud and short-distance paramagnetism
due to the quark core.

VII. SUMMARY AND CONCLUSIONS

The experimental results are summarized in Table VI.
Because of the cancellation of the polarizability effect at O(q ′)
for the in-plane cross sections, the LEX result for PLT is not
shown in Table VI. The MIT-Bates VCS experiment supports
two strongly held concepts about the proton polarizability.
The first is that the electric polarizability is dominated by
mesonic effects. This is confirmed by the large size of
〈r2

α〉 relative to the proton charge radius. The second is the
cancellation of paramagnetism by diamagnetism in the proton,
which is a conjecture that is critical in all explanations of
the small size of β relative to α since, in HBChPT, the
sizes of the polarizabilities are predicted to be of the same
order. Because paramagnetism from the (1232) resonance is
predicted to be nearly independent of Q2 in this low-Q2 range,
the predicted paramagnetic-diamagnetic interference will also
have a relatively flat dependence on Q2. The data do indicate
that β(Q2) is relatively flat as a function of Q2, in agreement
with the HBChPT prediction.

The data for PLL − PT T /ε and α(Q2) show that α(Q2)
does not have a monotonic, dipole-like dependence over the
Q2 interval from 0.05 to 1 GeV2. This is a wholly unanticipated
discovery, at odds with what has long been known about the Q2

behavior of the proton charge and magnetic form factors. A fit
to the data for PLL − PT T /ε using a light-front calculation [20]
indicates that there is pronounced structure in the induced
polarization at transverse distances of 0.5 to 1 fm, whereas
the traditional dipole ansatz of Eq. (3) gives no structure at
transverse distances beyond 0.5 fm.

With the closing of the MIT-Bates Linear Accelerator for
experimental nuclear physics, the Mainz accelerator is the
only remaining facility world wide that is suitable for VCS
studies at low-to-medium Q2. A new program of studies at
Mainz to measure the unpolarized VCS response functions
PLL − PT T /ε and PLT over the interval from Q2 = 0.1 to
0.5 GeV2 will be essential to pin down the behavior of α(Q2)
and β(Q2) in this interesting region.

ACKNOWLEDGMENTS

The authors acknowledge and thank T. Hemmert,
B. Holstein, B. Pasquini, and M. Vanderhaeghen for their
comments and for communicating the results of their calcu-
lations. The authors also thank the staff of the MIT-Bates
linear accelerator facility for their efforts on this experiment.
This work was supported in part by the D.O.E. Grant No.
DE-FG02-88ER40415.

035206-7



P. BOURGEOIS et al. PHYSICAL REVIEW C 84, 035206 (2011)

[1] B. Holstein, Comm. Nuc. Part. Phys. 19, 221 (1990).
[2] M. Schumacher, Prog. Part. and Nucl. Phys. 55, 567 (2005).
[3] P. A. M. Guichon et al., Nucl. Phys. A 591, 606 (1995).
[4] T. R. Hemmert et al., Phys. Rev. Lett. 79, 22 (1997); Phys. Rev.

D 62, 014013 (2000).
[5] J. Roche et al., Phys. Rev. Lett. 85, 708 (2000).
[6] G. Laveissiere et al., Phys. Rev. Lett. 93, 122001 (2004).
[7] P. Bourgeois et al., Phys. Rev. Lett. 97, 212001 (2006).
[8] P. Janssens et al., Eur. Phys. J. A 37, 1 (2008).
[9] P. A. M. Guichon and M. Vanderhaeghen, Prog. Part. Nucl. Phys.

41, 125 (1998).
[10] S. Dolfini et al., Nucl. Instum. Methods Phys. Res. Sect. A 344,

571 (1994); J. Mandeville et al., ibid. 344, 583 (1994); Z. Zhou
et al., ibid. 487, 365 (2002).

[11] X. Jiang, Ph.D. thesis, University of Massachusetts, 1998.
[12] Fermi National Accelerator Laboratory report, NAL-64

(1978).
[13] H. W. Lewis, Phys. Rev. 78, 526 (1950).
[14] M. Vanderhaeghen et al., Phys. Rev. C 62, 025501 (2000).

[15] T. Zwart et. al., Nucl. Instrum. Methods Phys. Res. Sect. A 384,
299 (1997).

[16] G. Hoehler, E. Pietarinen, and I. Sabba-Stefanescu, Nuc. Phys.
B 114, 505 (1976).

[17] J. Friedrich and Th. Walcher, Eur. Phys. J. A 17, 607 (2003).
[18] B. Pasquini et. al., Eur. Phys. J. A 11, 185 (2001); D. Drechsel,

B. Pasquini, and M. Vanderhaeghen, Phys. Rep. 378, 99 (2003).
[19] D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator, Nucl.

Phys A 645, 145 (1999).
[20] M. Gorchtein, C. Lorce, B. Pasquini, and M. Vanderhaeghen,

Phys. Rev. Lett. 104, 112001 (2010).
[21] H. Fonvieille (private communication).
[22] B. Holstein (private communication).
[23] V. Bernard, N. Kaiser, A. Schmidt, and Ulf-G. Meibner, Phys.

Lett. B 319, 269 (1993); V. Bernard, N. Kaiser, Ulf-G. Meibner,
and A. Schmidt, Z. Phys. A 348, 317 (1994).

[24] T. R. Hemmert, B. R. Holstein, G. Knochlein, and S. Scherer,
Phys. Rev. D 55, 2630 (1997).

[25] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

035206-8

http://dx.doi.org/10.1016/j.ppnp.2005.01.033
http://dx.doi.org/10.1016/0375-9474(95)00217-O
http://dx.doi.org/10.1103/PhysRevLett.79.22
http://dx.doi.org/10.1103/PhysRevD.62.014013
http://dx.doi.org/10.1103/PhysRevD.62.014013
http://dx.doi.org/10.1103/PhysRevLett.85.708
http://dx.doi.org/10.1103/PhysRevLett.93.122001
http://dx.doi.org/10.1103/PhysRevLett.97.212001
http://dx.doi.org/10.1140/epja/i2008-10609-3
http://dx.doi.org/10.1016/S0146-6410(98)00056-8
http://dx.doi.org/10.1016/S0146-6410(98)00056-8
http://dx.doi.org/10.1016/0168-9002(94)90877-X
http://dx.doi.org/10.1016/0168-9002(94)90877-X
http://dx.doi.org/10.1016/0168-9002(94)90878-8
http://dx.doi.org/10.1016/S0168-9002(02)00395-9
http://dx.doi.org/10.1103/PhysRev.78.526
http://dx.doi.org/10.1103/PhysRevC.62.025501
http://dx.doi.org/10.1016/S0168-9002(96)00723-1
http://dx.doi.org/10.1016/S0168-9002(96)00723-1
http://dx.doi.org/10.1140/epja/i2003-10025-3
http://dx.doi.org/10.1007/s100500170084
http://dx.doi.org/10.1016/S0370-1573(02)00636-1
http://dx.doi.org/10.1016/S0375-9474(98)00572-7
http://dx.doi.org/10.1016/S0375-9474(98)00572-7
http://dx.doi.org/10.1103/PhysRevLett.104.112001
http://dx.doi.org/10.1016/0370-2693(93)90813-W
http://dx.doi.org/10.1016/0370-2693(93)90813-W
http://dx.doi.org/10.1007/BF01305891
http://dx.doi.org/10.1103/PhysRevD.55.2630
http://dx.doi.org/10.1016/j.physletb.2004.06.001

