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Thermal conductivity of half-Heusler compounds from first-principles calculations
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We demonstrate successful application of first-principles-based thermal conductivity calculation on half-
Heusler compounds that are promising, environmentally friendly thermoelectric materials. Taking the case of a
p-type half-Heusler structure, the harmonic and anharmonic interatomic force constants were obtained from a
set of force-displacement data calculated by the density functional theory. Thermal conductivity was obtained
by two different methods: (1) Boltzmann-Peierls formula with phonon relaxation times calculated by either
Fermi’s golden rule of three-phonon scattering processes or spectral analysis of molecular dynamics phase space
trajectories and (2) Green-Kubo formula for heat current obtained by equilibrium molecular dynamics simulations.
The calculated temperature dependence of thermal conductivity is in reasonable agreement with experiments.
The method was extended to alloy crystals assuming the transferability of interatomic force constants. By having
access to accurate phonon-dependent transport properties, the contribution from an arbitral subset of phonon
modes can be quantified. This helps understanding the influence of nanostructures on thermal conductivity.
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I. INTRODUCTION

Detailed and accurate understanding of phonon transport in
semiconductors and dielectrics enables a better understanding
of heat transfer in microelectronics and more superior thermo-
electric materials.1,2 Use of nanostructures with characteristic
lengths that are smaller than the phonon mean paths has
been shown to be particularly effective in reducing thermal
conductivity.3,4 Thermoelectrics is an application that can
benefit greatly from such an approach, where an ideal material
would have low thermal conductivity relative to the power
factor.5 The merit of nanostructuring lies in their potential not
only to reduce the lattice thermal conductivity but also to do
so without sacrificing or even enhancing the power factor by
taking advantage of the difference in the mean free paths of
phonons and electrons and the carrier filtering and tunneling
at the interface.6–8

Despite the strong demand motivated by the above
applications, accurate calculation of intrinsic lattice heat
conduction, even for bulk monoatomic crystal, has been
challenging due to its anharmonic nature. Despite the par-
tial success of the semiempirical potentials in reproducing
thermal conductivity,9,10 as most of them are not tuned for
anharmonicity, there is no assurance that they would deliver
the correct microscopic picture such as the mode-dependent
phonon transport properties. Challenging this situation, re-
cently, thermal conductivity calculations from first principles
have been performed by extracting anharmonic interatomic
force constants (IFCs) directly from the density functional per-
turbation theory (DFPT) calculations, which have successfully
reproduced the experimentally measured thermal conductivity
of bulk monoatomic crystals, namely silicon, germanium, and
diamond.11,12

The next nontrivial challenge now is to apply the first-
principles-based approach to more complicated structures
such as multiatomic crystals and alloys. Since the full DFPT
calculation of these systems would demand computational
resource that is too large to perform in the material design
routine, we need alternative methods to extract anharmonic

IFCs from first-principles calculations. We overcome this
by adopting the direct method developed by Esfarjani and
Stokes.13,14 In this method, the anharmonic IFCs are extracted
by fitting their general expression to a set of Hellman-Feynman
forces due to various atomic displacements calculated by
density functional theory (DFT). The fitting can be performed,
in theory, for an arbitral number of force-displacement data,
and thus the computational load can be tuned by compromising
between the load and the accuracy of the IFCs, depending on
the target of analysis. The approach has been recently shown
to accurately reproduce experimentally measured bulk silicon
thermal conductivity.14

In this study, we demonstrate application of the direct
method to half-Heusler (HH) compounds. Half-Heusler com-
pounds usually have a small band gap when the total valence
electron count is 18 and exhibit promising thermopower when
properly doped.15,16 With their high thermal stability and
environmental friendliness, HH compounds are attractive for
solid-solid heat to electricity conversion. On the other hand,
among the commonly used thermoelectric materials, they have
relatively high lattice thermal conductivity in bulk form, and
therefore, the reduction of lattice thermal conductivity is a
key issue to further enhance their figure of merit. Recently,
such aspect has been explored by nanostructuring the HH
compounds, which has achieved a nondimensional figure of
merit (ZT) of 1.0 for n-type (600–700 ◦C)17 and 0.8 (700 ◦C)
for p-type18 materials.

Here, we present the case of the ZrCoSb HH compound,
which has been shown to be a promising base material for
p-type thermoelectrics.18,19 Based on the anharmonic IFCs
extracted from DFT calculations, thermal conductivity was
calculated via the Boltzmann-Peierls formula with phonon
relaxation time calculated either by Fermi’s golden rule of
three-phonon (normal and umklapp) scattering processes or
by spectral analysis of atomic trajectories obtained from
equilibrium molecular dynamics (EMD) simulations, using
potentials obtained from DFT calculations. Thermal con-
ductivity was also directly calculated by using the
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Green-Kubo formula for heat current from EMD simulations.
The approaches are validated by a comparative study among
the different methods and also with reported experimental data.
EMD simulations further allow us to investigate the mass-
difference scattering effects in alloyed HH compound, which
is demonstrated here by performing thermal conductivity
calculations of various ZrCoSb based alloy materials. The
overall result reveals the mode-dependent phonon relaxation
time and contribution to thermal conductivity, which are useful
for designing thermoelectric materials in forms of alloys and
nanocomposites.

II. METHODOLOGY

A. Interatomic force constants

Accurate anharmonic IFCs are crucial for thermal conduc-
tivity calculations. Particularly for thermoelectric materials,
the demand for accuracy is high since thermal conductivity,
by inverse proportionally influencing the figure of merit,
sensitively impacts the energy conversion efficiency. To this
end, we take nonempirical approach based on first-principles
calculations. The first-principles calculations of cubic IFCs
have become accessible even to nonspecialists through dis-
tributed codes20 that use the DFPT method. The DFPT method
finds IFCs of crystals through the 2n + 1 theorem,21 e.g., cubic
IFCs can be calculated from the linear response of the wave
function. On the other hand, in the current study, for the sake of
applicability to complex thermoelectric materials as discussed
above, we have adopted the direct method.13,14 The direct
method finds IFCs from the variation of Hellmann-Feynman
forces due to the displacements of atoms from their equilibrium
positions.

The ground state energy of a crystal can be expressed in
terms of IFCs by Taylor expanding about the equilibrium
configuration,

V = V0 +
∑
ηlα
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ηlu

α
ηl + 1

2!
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where the indices denote the ηth atom in lth primitive cell.
The subscripts α, β, and γ label the direction of the Cartesian
displacement u from the equilibrium position. � and �

are the harmonic and cubic IFCs, respectively. The residual
force � is zero as V is expanded around the minimum
energy configuration. This can be rewritten in terms of forces
as
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By fitting this to a set of DFT calculations of a supercell with
various atomic displacements, the anharmonic IFC matrix can
be systematically calculated. Although, in the current study,
we have considered only up to the cubic terms, the method
allows us to extend it to higher-order terms, with relatively

FIG. 1. (Color online) The convectional unit cell of HH com-
pound. A primitive cell consists of three atoms A, B, and C. For
ZrCoSb HH compound, A = Zr, B = Co, and C = Sb.

small additional effort and computational load, which is a
merit of the current direct method over the alternative DFPT
method. The ranges of IFCs (number of neighboring shells of
a given atom ηl) were assumed to be smaller than the supercell
length and chosen separately for harmonic and cubic IFCs
to minimize the fitting residual within the computationally
affordable range. In the current work, we have included five
and two neighboring shells for harmonic and cubic IFCs,
respectively.

A set of total energy calculations with different atomic
displacements was performed for a supercell of a ZrCoSb
HH. A HH compound has a cubic structure consisting of
three interpenetrating face-centered-cubic sublattices and one
vacant sublattice.22 As drawn in Fig. 1, the conventional
unit cell of a HH compound contains four primitive cells,
each of which contains three atoms. In this study, we take
a cubic supercell of a 2 × 2 × 2 conventional unit cell,
which consists of 96 atoms in total. The DFT calculations
were performed using the VASP code under the generalized
gradient approximation (GGA) for the electron exchange-
correlation potential, with projector-augmented-wave (PAW)
pseudopotentials.23 The GGA uses the parameterization of
Perdew-Wang (GGA-PW91).24 A 4 × 4 × 4 Monkhorst-
Pack25 mesh was used to sample electronic states in the first
Brillouin zone, and an energy cutoff of 400 eV was used
for the plane-wave expansion, which were confirmed to give
convergence of phonon properties to sufficient extent.

The force-displacement data sets were obtained by sys-
tematically displacing one or two atoms at a time about its
equilibrium position along Cartesian coordinates. Note that,
as described in Eq. (2), the extraction of harmonic and cubic
IFCs requires at least displacements of one and two atoms,
respectively. Similarly, for each irreducible degree of freedom,
an atom was displaced by ±	r and ±2	r, where 	r is 0.01 Å.
While the method in theory could work with any number of
force-displacement data due to its fitting nature, in the current
work, displacements in all the irreducible degrees of freedom
were performed taking the symmetry into account. Once
we have a set of force-displacement data, together with the
symmetry properties, translational and rotational invariance
conditions, Eq. (2) can be fitted by using a singular value
decomposition algorithm to obtain harmonic and cubic IFCs.13
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B. Lattice dynamics

Once the harmonic IFCs are obtained, the dynamical matrix
for given wave vector q can be computed straightforwardly by
Fourier transformation.26

D̃
αβ

ηη′ (q) = 1√
MηMη′

∑
l′

�
α,β

η0,η′l′e
iq·Rl′ , (3)

where M and R are atomic mass and position of the primitive
cell, respectively.

HH crystals are polar semiconductors, and the Born
effective charges are expected to influence the eigenvalues
near the 
 point, which would typically result in a redshift
of the longitudinal optical (LO) mode away from the trans-
verse optical (TO) mode (LO-TO splitting). This aspect was
approximated by adding the so called nonanalytical term27 to
the dynamical matrix D̃ obtained from the fit to first-principles
forces,

D
αβ

ηη′ (q) = D̃
αβ

ηη′ (q) + 4π√
MηMη′�0

[q · Z∗
η,α][q · Z∗

η′,β]

qT εq
e
− q2

ρ2 ,

(4)

where Z∗,ε, and �0 are the Born effective charge, dielectric
constant, and primitive cell volume, respectively. The window
parameter ρ (=0.35) was set so that the nonanalytical term
becomes negligible at the zone boundaries. From the dynam-
ical matrix, we are able to calculate the harmonic properties
such as eigenvalues and eigenfunction. Note that the current
framework calculates ground-state properties for simplicity,
although ways to calculate anharmonic phonon spectra based
on first principles have been recently developed.28

Having access to the cubic IFCs allows us to compute the
mode Grüneisen parameters, which is a useful measure of
the anharmonicity of the crystal. Mode Grüneisen parameters,
the change in the phonon-mode frequency with crystal volume,
can be calculated as29

γG(qs) = 1

6ω2
qs

∑
η′l′
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η′′l′′

∑
αβγ

�
α,β,γ

η0,η′l′,η′′l′′
eα
η (q∗s)eβ

η′ (qs)√
MηMη′

× exp(iq · Rl′ )rl′′η′′γ , (5)

where e and r are the polarization vector component and
equilibrium atomic position.

The cubic IFCs also allow us to calculate three-phonon
scattering processes, a dominant source of intrinsic thermal re-
sistance. This is commonly done in the (anharmonic) lattice dy-
namics (ALD) framework applied on cubic Hamiltonian.30–32

By applying Fermi’s golden rule to the cubic Hamiltonian
in a form of phonon generation and annihilation operators,
the rates of three-phonon scattering processes that satisfy the
energy and momentum conservation can be expressed as


qs = πh̄

16N

∑
q′s ′

∑
q′′s ′′

|A(qs,q′s ′,q′′s ′′)|2
ωqsωq′s ′ωq′′s ′′

[(nq′s ′ + nq′′s ′′ + 1)

× δ(ωqs − ωq′s ′ − ωq′′s ′′ ) + (nq′s ′ − nq′′s ′′ )

×{δ(ωqs + ωq′s ′ − ωq′′s ′′ ) − δ(ωqs − ωq′s ′ + ωq′′s ′′ )}],
(6)

where s, ω, and n are the branch index, frequency, and Bose
Einstein distribution of phonons. N and h̄ are the number
of modes in Brillouin zone and Planck’s constant. The delta
function imposes the energy conservation of the three-phonon
scattering processes. The three-phonon matrix element A is
given by

A(qs,q′s ′,q′′s ′′) =
∑
η0

∑
η′l′

∑
η′′l′′

∑
αβγ

�
αβγ

η0,η′l′,η′′l′′

× eαη(qs)eβη′ (q′s ′)eγη′′ (q′′s ′′)√
MηMη′Mη′′

× eiq′ ·Rl′ +iq′′ ·Rl′′ δq+q′+q′′,G. (7)

The delta function describes the momentum conservation
during the normal (G = 0) and umklapp (G �= 0) processes,
where G is the reciprocal lattice vector. The calculation was
performed for a discrete set of q determined by nk × nk × nk

mesh covering the first Brillioun zone. Once 
qs is obtained,
the phonon relaxation time can be found by τqs = (2
qs)−1.

C. Molecular dynamics

Once the potential function Eqs. (1) and (2) is obtained,
classical EMD simulations can be performed within Newto-
nian dynamics. Using EMD simulations, thermal conductivity
can be calculated either from the phonon relaxation time by
modal analysis of the phase space trajectories or directly from
the Green-Kubo formula. Thermal conductivity calculations
from EMD simulations do suffer from inherent statistical
uncertainty due to thermal noise and, thus, typically become
more computationally demanding than the ALD method to
achieve the same level of certainty. However, it has some
advantages, depending on the target of analysis. One is the
extendibility to complex systems, for instance, alloy crystals
as will be explored later, where the ALD would need to
deal with complicated eigenmodes. The other is, although not
explored in the current work, the possibility of incorporating
the higher-order events whose implementation is far simpler
than the ALD.

Phonon relaxation times can be computed from (1) mode-
dependent total energy relaxation obtained by projecting the
phase space atom trajectories onto phonon eigenmodes33 or
(2) from the linewidths of the phonon spectral energy density
(SED).34–37 While the two methods deliver the same results
when performed for the modes in the entire Brillouin zone
of a bulk material,38 we have chosen the latter method for its
simplicity as discussed in the following.

The phonon SED is calculated by taking the power spectral
density of atomic velocity34 as

E(ν,q) =
〈∑

αη

Mη

∣∣∣∣∣
∑

l

e−iq·Rl

∫
υα

ηl(t)e
−2πiνt dt

∣∣∣∣∣
2〉

. (8)

With this, one can map the SED in frequency-wave-vector
space. The scattering rate 
 can be then obtained from the
half width half maximum of the Lorenzian profile fitted to
each peak of the SED.34 One can perform this analysis for
the arbitral subgroup of wave vector q, as long as the peaks
are distinguishable. When the supercell is small enough, and
symmetry causes enough degeneration, one could integrate
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Eq. (8) over the entire wave vector domain and reduce it to the
frequency-dependent SED.

E(ν) =
〈∑

αηl

Mη

∣∣∣∣∣
∫

υα
ηl(t)e

−2πiνdt

∣∣∣∣∣
2〉

, (9)

which is essentially the ensemble average of time-domain
power spectral density of the atomic velocity. In this study, the
overlapped multiple Lorentzian peaks were fitted all together
using the Levenberg-Marquardt algorithm.39 The SED also
gives the phonon density of states by taking the area of the
Lorentzian profiles. Note that the density of states here includes
the frequency shifts caused by anharmonic effects at finite
temperature. While this time-domain approach introduces a
source of error by fitting overlapped peaks all together, it
has advantages in its simplicity and in extendibility to more
complex systems such as alloys, where eigenmodes take
complicated forms. For the current ZrCoSb HH system, we
could perform this analysis up to n × n × n = 8 × 8 × 8,
above which the overlap of peaks were too severe for the fitting
algorithm to function reasonably.

III. RESULTS AND DISCUSSION

A. Phonon dispersion relations

Figure 2(a) shows the phonon dispersion relations of
ZrCoSb HH crystal along the representative symmetry lines.
The three atoms in the primitive cell give rise to nine phonon
branches, one longitudinal acoustic (LA), two transverse
acoustic (TA), two LO, and four TO branches. The acoustic
and optical branches do not overlap, but the band gaps between
them are small. The Born effective charge splits the LO
mode from the associated TO mode (LO-TO split) around

. Between the two LO branches, only the one with higher
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FIG. 2. (Color online) (a) The phonon dispersion relations and
(b) the mode Grüneisen parameter of ZrCoSb HH compound.

frequency at 
 point exhibits noticeable LO-TO splitting
of about 50 cm−1. The general features are consistent with
phonon dispersion relations reported for other HH compounds
such as ZrNiSn.40 The dispersion of the highest LO mode
in the off-zone center region depends on the choice of ρ.
Therefore, it was confirmed that the choice of ρ does not
influence the phonon relaxation time and thermal conductivity
in the following calculations. In fact, we find that the inclusion
of the nonanalytical term itself had only negligible effects.

The corresponding mode Grüneisen parameters γ G in
Fig. 2(b) indicate the mode-dependent strength of anharmonic-
ity. The results show that anharmonicity, in general, is weaker
for acoustic modes than for optical modes except around 


point, where acoustic mode Grüneisen parameters exceed 1.5.
The data at this long-wave limit also clarify the directional
dependence of anharmonicity. Along 
-X symmetry line,
γ G of LA mode is much larger than that of TA modes. On
the contrary, along 
-K, γ G of TA modes overwhelms that
of LA modes. Considering the eigenvectors of the acoustic
modes, this indicates that in-phase displacement in [100]
direction experiences much stronger anharmonicity than the
displacement in [110] direction. This is understandable since
atom B (Fig. 1) is displaced towards the vacant site for the
[100] displacement, whereas it is bounded by another atom B
for the [110] displacement. Note that atoms A and C form a
rocksalt structure and are bounded isotropically. With the same
logic, along 
-L line, γ G takes relatively large values for both
LA and TA modes due to the unbounded [111] displacements
of atom B. This confirms the task of vacant sites in HH
compounds on enhancing the anharmonic effects compared
with full Heusler compounds AB2C with vacant sites filled
with atom B. On the other hand, the overall magnitude of γ G

is still limited in a range comparable to Si14 and smaller than
PbTe,41 which together with the relatively high group velocity,
explains the relatively high thermal conductivity of HH among
other thermoelectric materials.

B. Phonon relaxation time

The phonon-scattering rate calculations in Eq. (6) were
done for isotropic nk × nk × nk mesh points uniformly
distributed in the first Brillouin zone. Figure 3 shows the
frequency-dependent phonon relaxation time calculated for
nk = 14 at 300 K. One can evidently see a continuous
profile with respect to frequency despite that the trends
are quite different among the modes, particularly between
acoustic and optical modes. The phonon relaxation time of
the acoustic phonons increases with decreasing frequency
approximately as τ ∝ ν−2, a relation proposed by Klemens
(τ = A0ω

−2T −1),42 which is widely accepted for relaxation of
long-wave phonons caused by the phonon-phonon scattering at
high enough temperature. The curve with A0 = 1 × 10−18 K/s
is indicated in Fig. 3. On the other hand, the optical phonons
in overall have small phonon relaxation times with a peak at
around 5 THz. It is interesting that such a trend with the peak
in high-frequency regime is commonly observed for various
structures.14

Figure 3 also shows the relaxation time calculated from the
SED analysis of the atomistic velocity obtained from EMD
simulations. Here, for the sake of comparison, we present
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FIG. 3. (Color online) Frequency-dependent phonon relaxation
time of ZrCoSb HH compound at room temperature obtained by
EMD and ALD calculations. The ALD data are assigned to TA, LA,
and optical (O) branches.

phonon relaxation times from n = 8 supercell (6144 atoms)
EMD calculations, which have effectively a similar number
of wave vector points as nk = 14 in the ALD calculations.
Although the EMD data are scattered due to the inherent
thermal noise, it clearly shows quantitative agreement with
the lattice dynamics results. Note that the relaxation times
are not assigned to branches in this case, as we adopted the
temporal SED approach. The agreement of the two methods
assures the credibility of the time-domain SED analysis for
phonon relaxation time extraction.

C. Lattice thermal conductivity

By using the phonon relaxation times obtained by ALD,
thermal conductivity was calculated based on the relaxation
time approximation.

κ = 1

3�

∑
qs

C(ωqs)υ
2
qsτqs , (10)

where C = h̄ωqs ∂n(ωqs)/∂T is the mode heat capacity with
Bose-Einstein distribution n, and � is the crystal volume.
Since the finite periodic cell calculation cannot account for
phonons with wavelength longer than the supercell length,
whose mean paths are expected to be long, the size effect
needs to be taken into account. One reasonable assumption
here is that the size effect primarily comes from the missing
thermal conductivity contribution from the long-wave acoustic
phonons. Then if we further assume these phonons have (1)
frequency ω� kBT /h̄, (2) branch-dependent constant group
velocity υ0,s, and (3) branch-dependent quadratic density of
states Ds = D0,sω

2, together with the scaling τ = A0ω
−2 T −1,

the size effect of thermal conductivity at certain temperature

should follow,

κ(T ) = 1

3

∑
s

∫ ωmax ,s

ωmin ,s

C(ω,T )Ds(ω)υ2
s (ω)τs(ω,T )dω

≈ κ0(T ) − 1

3

3∑
s=1

∫ ωmin ,s

0

kBD0,sυ
2
0,sA0,s

T
dω

= κ0(T ) − πkB

3ankT

3∑
s=1

D0,sυ
3
0,sA0,s , (11)

where a is the lattice constant. Hence, in the temperature
regime with dominant phonon-phonon scattering (κ0 ∼ T −1),

κ(T )

κ0(T )
= 1 − c0

nk

, (12)

where c0 is a constant. With this, the thermal conductivities
calculated for nk = 8, 10, 12, and 14 were extrapolated
with respect to nk

−1 for each temperature. As shown in the
subset of Fig. 4, the size effect agrees with the linear trend in
Eq. (12) with negligible fitting residuals. The obtained bulk
thermal conductivity in Fig. 4 confirms κ ∼ T −1 in the current
temperature range (100 K < T < 1000 K), a typical trend in a
crystal dominated by intrinsic phonon-phonon scattering.

Thermal conductivity was also calculated from EMD
simulations at 300 K using the Green-Kubo formula,

κ = 1

3kB�T 2

〈∫ ∞

0
Jq(0) · Jq(t ′)dt ′

〉
. (13)
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FIG. 4. (Color online) (a) Temperature dependence of bulk ther-
mal conductivity κ0 of ZrCoSb HH compound calculated by ALD.
The results are compared with the EMD at 300 K and experiments
in low-45 and high-46 temperature regimes. SED and GK denote
data from spectral energy density and Green-Kubo approaches. The
parameter B denotes the strength of defect and impurity scattering
in the Rayleigh-type scattering model [Eq. (16)]. The subfigure
(b) shows the extrapolation of finite-nk thermal conductivity to obtain
κ0 at different temperatures, which nearly collapses on top of each
other when normalized by κ0 [Eq. (12)].
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TABLE I. Thermal conductivity of ZrCoSb HH calculated by equilibrium molecular dynamics using Green-Kubo formula.

n × n × n Number of atoms κ (Wm−1K−1) Standard error (Wm−1K−1)

5 × 5 × 5 1,500 22.3 ±1.66
6 × 6 × 6 2,592 22.4 ±2.23
8 × 8 × 8 6,144 18.4 ±1.64
10 × 10 × 10 12,000 23.4 ±2.03

After equilibration for 100 ps, the ensemble-averaged integral
was calculated from heat flux Jq for one million time steps
(1 ns) of 40 simulations with different initial conditions. The
calculations were performed for different system sizes up to
n = 10 supercell (12,000 atoms). As listed in Table I, the
size effect is much weaker for the EMD compared with ALD,
and data converge within the range of the standard error. The
converged value agrees well with the ALD data (Fig. 4).

From EMD simulations, thermal conductivity can also be
calculated using the time-domain SED method. In this case,
the frequency space integration needs to be approximated as

κ = 1

3

∑
s

∫ ωmax ,s

ωmin ,s

kBDs(ω)υ2
s (ω)τs(ω)dω

≈ 1

3

∫ ωmax

0
kBD(ω)υ2

eff(ω)τ (ω)dω. (14)

Density of states D(ω) and τ (ω) were taken directly from
the SED. An alternative way to calculate D(ω) would be to
use Debye approximation and average over the symmetry
lines;10 however, it turned out to be much less accurate
for the current case. To obtain the effective group velocity
υ2

eff , the magnitude of group velocity υqs
2 obtained from

harmonic lattice dynamics calculation was averaged over the
first Brillouin zone and branches as

υ2
eff(ω)=

[
9∑

s=1

fs(ω)

]−1 9∑
s=1

{
fs(ω)

∑
qs υ2

qsδ(ω−ωqs)∑
qs δ(ω − ωqs)

}
(15)

fs(ω) =
⎧⎨
⎩

0 (ω < ωmin ,s)
1 (ωmin ,s � ω � ωmax ,s)
0 (ω > ωmax ,s)

.

The obtained thermal conductivity is in reasonable agree-
ment with both Green-Kubo and the ALD results (Fig. 4).
This gives access to an extremely simple way of probing
the microscopic property of phonon transport. With a proper
approximation of the frequency-dependent group velocity, one
can predict thermal conductivity by looking at the temporal
history without having to deal with spatial information. This
is particularly useful for a lightly alloyed system, where
the change in the eigenstate makes the full-modal analysis
dramatically complex, while modification in the group velocity
in average is expected to be minor.

Despite the agreement between ALD and EMD calcula-
tions, the difference in the size effect implies there might be
more to it. The convergence of EMD thermal conductivity at
small size has been observed by other researchers. For instance,
thermal conductivity calculations from EMD simulations
using Stillinger-Weber potential43 have shown that a 4 × 4 × 4
supercell (512 atoms) is enough to achieve the convergence.44

Despite the reports, it is not clear at this point the reason why
thermal conductivity should converge at such small supercell
sizes despite the potential contribution from phonons with
wavelengths larger than the supercell length. One speculation
is that there might be a counteracting mechanism that weakens
the size effect; as supercell size becomes smaller, discretization
of modes is expected to reduce the phonon-scattering rates due
to less possible scattering process satisfying the momentum
and energy conservation. This will virtually increase the
thermal conductivity, and thus the size effect will have the
opposite trend from the former one. Investigation of these
aspects would require a systematic study on configuration
dependence of thermal conductivity, which is out of scope
of the current study; however, it will be explored in the future.

The bulk thermal conductivity was compared with the
reported experiments that are available for low-45 and high-46

temperature regimes. The two sets of experimental data exhibit
mismatches in the value and slope at 300 K, presumably
reflecting the difference in purity and/or crystallinity of the
measured samples. Note that, although experiments measured
the total thermal conductivity, the contribution of electrons
is expected to be small for the undoped ZrCoSb HH material
with low electrical conductivity.46 The calculated bulk thermal
conductivity falls closely above the two experimental data,
with better agreement to the high-temperature measurements
of Sekimoto et al.46 Overestimation by the calculation is
reasonable since the calculations are done for pure crystal,
whereas the samples in experiments are expected to contain
some impurities and defects. It is also reasonable that the
agreement between the calculation and experiments becomes
better as temperature increases since the dominancy of the
phonon-phonon scattering becomes stronger in comparison
with impurity scattering. Taking these points into account, it
should be fair to state that the calculated thermal conductivity
is in a reasonable agreement with the experiments.

The possible cause of the moderate discrepancies between
calculation and experiments and between the low- and high-
temperature experiments were investigated by assuming the
influence of impurity scattering. To this end, effect of impurity
scattering on the phonon relaxation time was expressed as
the Rayleigh-type scattering model and added following the
Matthiessen’s rule as

1

τ ′ = 1

τ
+ Bω4, (16)

where B reflects the strength of impurity scattering.47 The
calculation can be fitted separately to the temperature depen-
dences of low- and high-temperature experiments with B =
3.6 × 10−43 s3 and 9.1 × 10−44 s3, respectively. Although this
part of the analysis is no longer first principles, it demonstrates
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that the pure crystal data obtained from first principles can
be combined with a model to probe the extent of impurity
scattering in the measurements.

D. Mode dependent thermal conductivity

The strong frequency dependence of phonon relaxation
time (Fig. 3) gives rise to strongly multiscale nature of
phonon transport. This is even more evident in phonon mean
free path �ks(=|vks|τks), which varies by several orders of
magnitude with respect to the phonon frequency in the current
frequency range. Let us now discuss the implication this has to
nanostructured materials.6,17,18 If we consider nanostructures
with characteristic length scale L, the phonons with mean free
path �� L are transported diffusively between the interfaces
behaving similarly to those in bulk material. On the other hand,
phonons with � > L are transported ballistically between the
interfaces and thus can be strongly influenced by the interface
scattering. In other words, mean free paths, in a rough sense,
gives a sense of the potential for the phonon transport to be
affected by the nanostructures.

In this course, an important measure is the amount of
contribution from phonons with various mean free paths.
This can be explored by calculating the cumulative thermal
conductivity with respect to the phonon mean free path48

described as

κc(�0) = 1

3�

�qs<�0∑
qs

C(ωqs)υqs�qs . (17)

The cumulative thermal conductivity at 300 K was calcu-
lated from ALD with nk = 14 mesh. Now, extrapolation to
the bulk value needs to be carried out in a similar manner as
Eq. (11). By expressing Eq. (11) in terms of �, we obtain

κc(�0) ≈ κ0 − kB

6T 3/2

3∑
s=1

D0,sυ
5/2
0,s A

3/2
0,s

∫ ∞

�0

�−3/2d�

= κ0 − kB�
−1/2
0

3T 3/2

3∑
s=1

D0,sυ
5/2
0,s A

3/2
0,s . (18)

Hence, the values calculated with finite mesh sizes can be
extrapolated with the function κc = κ0−c1�0

−1/2, where c1

is a constant. As shown in Fig. 5, the cumulative thermal
conductivity profile reveals that the phonons with extremely
wide range (from 10 nm to 10 μm) of mean free paths have
noticeable contribution to thermal conductivity.

From the cumulative thermal conductivity, one can gain in-
sight into heat conduction in nanostructured materials. Recent
experiments have shown that it is possible to nanostructure HH
compounds with average grain sizes of the order of 100 nm,
which has significantly enhanced the figure of merit.18 Our
calculations show that phonons with � > 100 nm have potential
to carry 25% of the heat in a bulk material. In other words,
if the interface backscattered all the ballistic phonons, the
nanostructuring with length scale 100 nm would have potential
to reduce thermal conductivity by quarter, which supports the
large effect seen in the experiments. Of course, in reality,
the effect of nanostructure would depend on the interface
properties such as phonon transmission function, and thus,
this analysis only gives us the upper limit of such effects. In
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κ c
 (W

m-
1 K

-1
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κc=κ0-c1Λ0
-1/2

κ0

FIG. 5. (Color online) The cumulative thermal conductivity κc of
ZrCoSb HH compound calculated by ALD and EMD calculations at
room temperature. The cumulative thermal conductivity is obtained
by accumulating contribution from phonons with mean free path of �0

or less [Eq. (17)]. The finite size results with nk = 14 are extrapolated
using Eq. (18). The dash-dotted line indicates the calculated bulk
thermal conductivity κ0.

this sense, more valuable indication from this analysis might
be that there is plenty of room for further reduction of thermal
conductivity by nanostructuring HH compounds.

E. Extension to alloy systems

In practical situations, thermoelectric materials are often
alloyed to reduce thermal conductivity and to control carrier
concentration. For HH materials, thermal conductivity reduc-
tion is often realized by forming HfyZrzTi1-y-zBC.18,19,49 Here,
using EMD simulations, the alloy effects of HfxZr1-xCoSb,
ZrxTi1-xCoSb, and Hf1-xTixCoSb are investigated by randomly
alloying Hf, Zr, and Ti with fraction x based on the mass
approximation concept,50 where only the atomic masses are
varied by keeping the IFCs the same. Such transferability of
IFCs has been empirically shown to work between GaAs and
AlAs, which have practically the same lattice parameter.50

The lattice constant for HfCoSb, ZrCoSb, and TiCoSb are
6.06, 6.10, and 5.94 Å; therefore, we expect calculations of
HfxZr1-xCoSb to be more accurate than the others. While
lattice dynamics would be able to model the alloy effect based
on the perturbation theory,51–54 the EMD simulation allows us
to directly calculate the thermal conductivity.

Thermal conductivity of HH alloys was calculated by
Green-Kubo method for various x. The calculations were
performed for two different supercell size n = 5 and 8, where
the size effect was as small as that in the pure crystal case.
For each configuration, the thermal conductivity was averaged
over three different random configurations (eight simula-
tions with different initial conductions per configuration).
As shown in Fig. 6, thermal conductivity of Zr0.5Ti0.5CoSb,
Hf0.5Zr0.5CoSb, and Hf0.5Ti0.5CoSb were calculated to be 6.4,
3.3, and 1.8 W/mK, respectively. The value of Hf0.5Zr0.5CoSb
is in reasonable agreement with the lattice thermal conductivity
of Hf0.5Zr0.5CoSb0.8Sn0.2 measured by Yan et al.18 Note
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FIG. 6. (Color online) Thermal conductivity of alloyed HH com-
pounds with various alloy fraction x. (Hf, Zr, Ti)CoSb HH alloys were
modeled by assuming transferability of IFCs. The calculated values
are compared an experimentally value for Hf0.5Zr0.5CoSb0.8Sn0.2.18

that mass difference scattering due to Sb-Sn substitution is
expected to be minute due to their small mass difference.
Figure 6 also shows thermal conductivity of HfxZr1-xCoSb
and Hf1-xTixCoSb alloys with respect to the alloy fraction x.
The result shows that thermal conductivity rapidly decreases
for small x and becomes modest as x increases. Such data quan-
titatively clarifies the sensitivity of the thermal conductivity to
the alloy fraction and are useful for optimization of the alloy
components.

IV. CONCLUSIONS

We have demonstrated application of first-principles-
based thermal conductivity calculation on p-type half-Heusler

compounds, promising next-generation thermoelectric ma-
terials. Harmonic and cubic force constants were obtained
based on a set of force-displacement calculations by DFT.
With the nonempirical force constants, harmonic and anhar-
monic phonon properties were characterized through phonon
dispersion relations and mode Gruneissen parameters. Mode
relaxation times were calculated by ALD and spectral density
analysis of molecular dynamics phase space trajectories. They
quantitatively agree with each other exhibiting key phonon
transport characteristics such as inverse quadratic frequency
dependence. Thermal conductivity was then calculated under
the relaxation time approximation, which agrees with direct
calculation using molecular dynamics and the Green-Kubo
formula. By having access to accurate phonon-dependent
transport properties, the contribution to heat conduction from
an arbitral subset of phonon modes can be quantified, which
helps understanding the influence of nanostructures on thermal
conductivity. Finally, the possibility to extend the method to
alloy systems has been demonstrated, showing that the current
framework can be useful to characterize complicated crystal
structures that often appear in thermoelectric applications
and to optimize the material composition or to design new
phonon-engineered crystals.
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