New Venture Valuation
What is Different About New Venture Valuation?

• Higher risks and higher uncertainty?
• Potential rewards higher? Option Values?
• Exit and liquidity more important
• Not just a go-no/go decision; the actual valuations matter
Valuation Approaches

• Discounted Cash Flow/ Adjusted Present Value

• The Venture Capital Method
 → Comparables

• Real Options

Discounted Cash Flow/Adjusted Present Value (APV)

- Use APV not WACC
 - Capital structure involves hybrid securities not easily classified as debt or equity
 - Capital structure changes over time
 - Interest tax shields change over time as company’s tax status changes
- APV is a more flexible method that can accommodate these features of new venture valuation.
APV Approach for New Ventures

- The Standard APV Calculations
 - **Step 1:** Calculate *Free Cash Flows* (FCFs) to an “all-equity” firm for a period of years until company reached a “steady-state.”
 - **Step 2:** Discount these FCFs at the discount rate of an all-equity firm (k).
 - **Step 3:** Calculate a *Terminal Value* as the present value of a growing perpetuity of FCFs assuming some growth rate in FCFs and discounting by k.
 - **Step 4:** Value tax shields of debt financing separately (trD) and discount by a rate that reflects the riskiness of those cash flows.
 - **Step 5:** Steps 1-4 give you the Enterprise Value. To determine the Equity Value subtract the market value of debt (the present value of interest payments).
Cost of Capital for All-Equity Firm (k)

\[k = \text{risk-free rate} + \beta \times \text{market risk premium} \]

- Risk-free rate = Long-term bond rate
- Beta = “unlevered” beta of comparable firms in the industry
 \[\beta_U = \beta_L \times \frac{E_{co}}{E_{co} + D_{co}} \]
- Market risk premium = 8%
Where Can We Find Beta?

• Standard to look at publicly-traded comparable firms in same industry.
• But often there aren’t many that are in similar stage of development.
• Later stage companies will tend to have lower betas (all else equal) than early stage companies because start-up expenses in early stage companies (e.g. R&D) tend to be more fixed than in later stage companies.
Terminal Value Calculation

• Run out Free Cash Flows until they reach a stable pattern
• Assume a growth rate of g% from then on; use conservative growth rates

• The terminal value formula is:

\[TV = \frac{FCF \times [1+g]}{k-g} \]
\[PV(TV) = \frac{TV}{1+k}^n \]
Wrinkles on Standard APV Calculations

• Company may not have taxable income for several years.
 → Tax rate in these years is zero. Tax losses can be carried forward for up to 15 years to lower taxable income in profitable years.

• Interest expense is not deductible in years when the company has tax losses.
 → Carry forward interest expense to years when it can be deducted (up to three years carry forward).

• Explicit modeling of idiosyncratic uncertainty is particularly important. Two equivalent approaches
 → Take expected value of cash flows over various scenarios
 → Take expected value of valuations over various scenarios
APV Example: Medical Diagnostics, Inc.

<table>
<thead>
<tr>
<th></th>
<th>"Medical Diagnostics, Inc"</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>($000)</td>
<td>2002</td>
<td>2003</td>
<td>2004</td>
<td>2005</td>
</tr>
<tr>
<td>Revenue</td>
<td></td>
<td>734</td>
<td>6,475</td>
<td>22,445</td>
<td>55,960</td>
</tr>
<tr>
<td>Cost of Goods Sold</td>
<td></td>
<td>318</td>
<td>2,406</td>
<td>7,175</td>
<td>16,723</td>
</tr>
<tr>
<td>R&D</td>
<td></td>
<td>1,191</td>
<td>1,343</td>
<td>1,665</td>
<td>3,555</td>
</tr>
<tr>
<td>Sales and Marketing</td>
<td></td>
<td>2,517</td>
<td>4,908</td>
<td>8,805</td>
<td>16,815</td>
</tr>
<tr>
<td>Regulatory and Clinical</td>
<td></td>
<td>704</td>
<td>904</td>
<td>1,199</td>
<td>1,345</td>
</tr>
<tr>
<td>Other Expense</td>
<td></td>
<td>2,137</td>
<td>3,397</td>
<td>4,733</td>
<td>6,740</td>
</tr>
<tr>
<td>Total SG&A</td>
<td></td>
<td>6,549</td>
<td>10,552</td>
<td>16,402</td>
<td>28,455</td>
</tr>
<tr>
<td>EBITDA</td>
<td>(6,133)</td>
<td>(6,483)</td>
<td>(1,132)</td>
<td>10,782</td>
<td>32,474</td>
</tr>
<tr>
<td>Depreciation</td>
<td>184</td>
<td>334</td>
<td>544</td>
<td>579</td>
<td>723</td>
</tr>
<tr>
<td>EBIT</td>
<td>(6,317)</td>
<td>(6,817)</td>
<td>(1,676)</td>
<td>10,203</td>
<td>31,751</td>
</tr>
<tr>
<td>Taxes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,858</td>
</tr>
<tr>
<td>Depreciation Addback</td>
<td></td>
<td>184</td>
<td>334</td>
<td>544</td>
<td>579</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td></td>
<td>543</td>
<td>567</td>
<td>742</td>
<td>880</td>
</tr>
<tr>
<td>NWC</td>
<td>(364)</td>
<td>1,410</td>
<td>6,416</td>
<td>16,316</td>
<td>32,315</td>
</tr>
<tr>
<td>Ch. In NWC</td>
<td>(364)</td>
<td>1,774</td>
<td>5,006</td>
<td>9,900</td>
<td>15,999</td>
</tr>
<tr>
<td>Free Cash Flow</td>
<td>(6,312)</td>
<td>(8,824)</td>
<td>(6,880)</td>
<td>2</td>
<td>4,658</td>
</tr>
<tr>
<td>Discount Rate</td>
<td>13%</td>
<td>3%</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVFCF</td>
<td>(14,735)</td>
<td>(14,735)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVFCF</td>
<td>18,410</td>
<td>17,870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>184,096</td>
<td>297,826</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVTV</td>
<td>99,920</td>
<td>161,648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>85,185</td>
<td>146,913</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notable Features of this Valuation

• **Tax Losses.** No taxes until year 5; use accumulated net tax losses from previous years to offset taxable income in year 5.

• **Equity Value.** To get equity value, in general subtract measure of the market value of debt (MVD) at the time of the initial valuation. In this case, it’s zero so enterprise value equals equity value.

• **Terminal Values and Growth Rates.** Note that we have assumed relatively slow terminal value growth rates: either 3% or 7%. Still, the value of the business in the second case is nearly twice that of the first case. This is because most of the value of this firm comes from the terminal value. This may be reasonable if there is IP protecting profits, but we need to be careful.
The Venture Capital Method

• **Step 1**: Forecast cash flows to equity for a period of years.
• **Step 2**: Estimate the time at which the VC will exit the investment (typically through an IPO or sale to strategic buyer).
• **Step 3**: Value the exit price based on an assumed multiple of earnings or sales or customers, etc. The multiple is typically based on comparable public companies or comparable transactions.
• **Step 4**: Discount interim cash flows and exit value at rates ranging from 25% - 80%.
• **Step 5**: Determine the VC’s stake
Example: Mit.com, Inc.

- **Step 1:** Forecast Free Cash Flows

<table>
<thead>
<tr>
<th>FCF equity</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Step 2:** Assume company exits after 5 years
- **Step 3:** Assume that the company will have earnings of 5 and it will go public at a multiple of 20x earnings for a value of $100M.
- **Step 4:** Valuation at 50% Discount Rate
 → Post-money = $100M/(1.50)^5 = $13.2M
 → Pre-money value = $8.2M
Example: Mit.com (cont.)

- **Step 5: VC share**
 - VC will ask for $5/13.2 = 38.0\%$ equity stake to invest $5M

 - Assume $N_0 = 1M$ shares outstanding prior to financing.
 How many new shares, N_1, does the VC get?

 \[
 \frac{N_1}{(N_0 + N_1)} = s \quad \implies \quad N_1 = \frac{s}{1-s} N_0
 \]

 - $N_1 = 0.612M$ shares
 - Stock price $= \frac{5M}{.612M} = 8.17$
Stock Option Pool

- If the firm needs to reserve 15% of the equity (by the exit date) to recruit management team, then we need to adjust the number of shares. The VC still gets 38% of the equity.

- If m is the stock option pool percentage, and N_m is the number of shares issued to the stock option pool, then we know that the shares issued to the VC and the option pool ($N_1 + N_m$) are:

 \[
 \frac{s + m}{1 - s - m} N_0
 \]

- The shares held by the VC investor, N_1, are then:

 \[
 \frac{s}{1 - s - m} N_0
 \]
Stock Option Pool (cont.)

• Thus in our example:

\[
\begin{align*}
N_1 &= \frac{.38}{1-.38-.15} \times 1M = 0.809M \text{ shares} \\
N_m &= \frac{.15}{1-.38-.15} \times 1M = 0.319M \text{ shares.}
\end{align*}
\]

→ Price per share is $6.18.
New Investor in Follow-on Round (with Lower Discount Rate)

- Forecast Cash flows

<table>
<thead>
<tr>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCF equity</td>
<td>-5</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- New investor (discount rate of 30%):
 - Values company at end of year 2 at $100M/1.3^3 = $45.5M
 - Requires share, s_2, $3M/$45.5M = 6.6% of firm in second round.
 - First-round VC still requires 38% of firm at exit, but will start off with more shares and greater percentage (which will then be diluted).

\[
N_1 \frac{s_1}{1 - s_1 - s_2 - m} N_0
\]
New Investor in Follow-on Round (cont.)

• Initial VC:
 \[N_1 = \frac{0.38}{1 - 0.38 - 0.066 - 0.15} \times 1 \text{M} = 0.941 \text{M}; \]
 \[p_1 = \frac{5 \text{M}}{0.941 \text{M}} = 5.33 \]

• Follow-on Investor:
 \[N_2 = \frac{0.066}{1 - 0.38 - 0.066 - 0.15} \times 1 \text{M} = 0.163; \]
 \[p_1 = \frac{3 \text{M}}{0.163 \text{M}} = 18.40 \]

• Option Pool
 \[N_m = \frac{0.15}{1 - 0.38 - 0.066 - 0.15} \times 1 \text{M} = 0.371 \text{M} \]
New Investor (cont.)

• Note that the first round VC investor starts off with a 40.7% equity stake, which then gets diluted to 38% ownership when the second round VC investor comes on board.

• If development time slips by two years then the second round investors require 11.1% equity share, since their valuation at this point is $26.9M = 100/1.3^5$. If we still have to give 15% in option pool, this implies that:

$$N_2 \frac{s_2}{1 - s_2 - m} (N_0 + N_1)$$

which is $$(.111/(1-.111-.15))\times1.940M = 0.291M$$ shares.

• The first-round VC ends up with only 35.8% of the shares at the exit date and the IRR on the investment falls to 32.5% from 50%.
Comparable Multiples For Exit Values

• Find exit values by looking at similar companies
 → just as you value a 4BR house by looking at other 4BR houses
 while correcting for things that are different about the house
• Take multiples of EBITDA, sales, customers, eyeballs etc.

• **Strength:**
 → Tells you what the market thinks about discount/growth rates.

• **Weaknesses:**
 → Tells you what the market thinks about discount/growth rates.
 → May be hard to find real comparable firms at similar stages that
 are already public and for whom data are available.
Caveats About Multiples

• Industry Cycles
 → Young industries might have high multiples for firms that enter the market today, since they have first mover advantage

• Mean Reversion
 → High multiples for firms that enter the market during a “hot” market need not apply for firms that go public in a few years
 → How well can you “market time”?

• Vesting Period
 → IPO multiples overstate gains due to long term under-performance

→ Choose your multiples wisely!!
Why Are Discount Rates so High?

• Such high discount rates cannot be explained as being a reward for systematic risk.

• In most practical cases, CAPM would give discount rates well below 25%, let alone 80%.

• Three (limited) “rationales”:
 → Compensate VC for illiquidity of investment;
 → Compensate VC for adding value;
 → Correct optimistic forecasts.
Rationale I: Investments Are Illiquid

- The VC cannot sell an investment in a private company as easily as it could sell public company stock.

- All else equal, this lack of marketability makes private equity investments less valuable than easily-traded public investments.

- The question is, how much less valuable?

- Practitioners in private equity investments often use liquidity discounts of 20%-30%, i.e., they estimate the value to be 20% to 30% less than an equivalent stake in a publicly traded company.
Rationale II: VC Adds Value

• VCs are active investors and bring more to the deal than just money:
 → spend a large amount of time,
 → reputation capital,
 → access to skilled managers,
 → industry contacts, network,
 → and other resources.

• A large discount rate is a crude way to compensate the VC for this investment of time and resources.

• Caveat: Why not compensate the VC explicitly for services?
Rationale III: Optimistic Forecasts

- Forecasts tend not to be expected cash flows (i.e., an average over many scenarios).
- VC method typically assumes that the firm hits its targets.
- A higher discount rate is a crude way to correct forecasts that the VC judges optimistic.
 → If the “right” discount rate is 25% but the VC uses 50%, one can think of this as discounting the sale by \(1/1.25^4\) and multiplying this by a probability \(1.25^4/1.5^4\) (or 48%).
- Caveat:
 → Why not build uncertainty into the cash flow estimates?
 → 80% of 0 is still 0
Rationale IV: VC Market Power

• Valuations are influenced by the distribution of bargaining power between VC and entrepreneur
 → Affects the rent distribution between VC and entrepreneur

• Factors that influence bargaining power:
 → Supply and demand for capital; when a lot of capital flows into the VC market, valuations are higher
 → Valuations increase with the number of active VC firms in the market
 → Reputation and track record of VC / entrepreneur; repeat entrepreneurs get better valuations
Scenario Analysis: An Alternative to High Discount Rates

• Though VCs will certainly use this method --- and you need to know how to do it --- it does not preclude you from taking a more sophisticated approach to the problem.

• Rather than use high discount rates --- explicitly model sources of uncertainty. There are two advantages:
 → Allows you to better understand the sources of risk and their implications for value
 → Allows you to value an investment’s “real options” --- the ability to change operating plans as new information arrives
Appendix

Some Useful Calculations
Free Cash Flows to an All-Equity Firm

• Equivalent Approach 1

\[FCF = EBIT \times (1-t) + DEPR - CAPX - \Delta NWC \]

• Equivalent Approach 2

\[FCF = EBITD \times (1-t) + t \times DEPR - CAPX - \Delta NWC \]

• Equivalent Approach 3

\[FCF = EBIT \times (1-t) - \Delta Net \text{ Assets} \]

• Note:

\[EBIT = \text{Earnings before interest and taxes} \]
\[EBITD = \text{Earnings before interest, taxes and depreciation} \]
Example of Free Cash Flow Calculation (2000)

<table>
<thead>
<tr>
<th>Item</th>
<th>('99)</th>
<th>('00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>Cost of Goods Sold</td>
<td>700</td>
<td>850</td>
</tr>
<tr>
<td>Depreciation</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Interest Expense</td>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Inventories</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Accounts Payable</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>tax rate=40%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[FCF = EBIT(1-t) + \text{Depr.} - \text{CAPX} - \text{Ch. NWC} \]

\[EBIT = 1200 - 850 - 35 = 315 \]

\[\text{Ch. NWC} = (60+60-25) - (50+50-20) = 15 \]

\[FCF = 315 (1-.40) + 35 - 40 - 15 = 169 \]
Example of A Tax Loss Carry Forward

- $\text{FCF}_1 = 270 \times (1 - 0.4) + 30 - 40 + 0 = 152$
- $\text{ITS}_1 = \min(0.4 \times 270, 0.4 \times 300) = 108$
- $\text{CCF}_1 = \text{FCF}_1 + \text{ITS}_1 = 260$
- cannot use 30 of our interest expenses = 12 interest tax shield

- $\text{FCF}_2 = 315 \times (1 - 0.4) + 35 - 40 - 15 = 169$
- $\text{ITS}_2 = \min(0.4 \times 315, 0.4 \times 200 + 12) = 92$
- $\text{CCF}_2 = 261$
- If interest expenses + tax shield were greater than tax expense (125.6), tax shield would be carried forward again