
MIT Sloan School of Management
Working Paper 4363-02

April 2002

AUTOMATED DESIGN DATA
AND RATIONALE CAPTURE

Amar Gupta, Satwik Seshasai, Jason Yeung, Tara Sainath

© 2002 by Amar Gupta, Satwik Seshasai, Tara Sainath. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit
permission provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract_id=303173

http://ssrn.com/abstract_id=303173

 1

Automated Design Data and Rationale Capture
Amar Gupta, Satwik Seshasai, Jason Yeung, Tara Sainath

Massachusetts Institute of Technology
77 Massachusetts Avenue, Rm E60-309

Cambridge, MA 02139
{agupta, satwik, jyeung, tsainath}@mit.edu

Abstract

This paper presents a knowledge-based approach for
capturing data and rationale, so that the experience
and insights gained while pursuing a major project
or endeavor can be utilized when pursuing future
endeavors of a similar nature. The proposed
approach, embodied in a concept demonstration
prototype named SSPARCy, focuses on the means for
capturing knowledge about the design process,
including the evolving state of the design as well as
the rationale behind major design decisions made
over time. The system uses a four faceted knowledge-
based approach of knowledge acquisition, discovery,
management and repository to focus on various areas
of functionality to be used in the design process. The
proposed approach enables individuals and
organizations to benefit from the experiences and
lessons learned from previous processes, as well as
facilitates the exchange of such knowledge
throughout the design process.

1. Introduction

The system described in this paper utilizes a four
faceted knowledge-based approach to capture, reuse
and better exploit valuable information assets, with
the objective of mitigating temporal and spatial
barriers in large multi-organizational multi-
disciplinary endeavors. Knowledge Acquisition is
the process of capturing information from various
traditional media into computer accessible media.
Knowledge Discovery involves using emerging
techniques to analyze huge amounts of information
and to get better insights into such information than is
possible using the best human domain experts.
Knowledge Management deals with mitigating
issues relating to heterogeneities in underlying
contexts of information coming from disparate
sources. Knowledge Dissemination is the
automated extraction of the most relevant pieces of
information from a huge computer based information
infrastructure with such extraction being tailored to
the needs of different constituencies of users in an
organization1.

This four-faceted technique allows efficient exchange
of knowledge vital to collaboration. It is especially

relevant and useful for environments where people
perform somewhat repetitive work, but do not have
the time or interest to document their decisions and
the rationale behind those decisions.

This paper uses an example from the domain of space
system design. This research is being conducted as
part of the Space Systems Policy and Architecture
Consortium (SSPARC) at MIT. The purpose of this
group is to examine space system design from a
variety of perspectives, and specifically, produce
optimal methods for choosing between various
choices in space system architectures2. Current
design methods do not provide efficient means for
tracking the state and history of design decisions.
Improving the capture and transfer of knowledge
from one project to another has the potential to
greatly reduce the amount of time spent in the design
process. To move towards making better higher-
level decisions, it becomes especially vital to capture
and process as much knowledge about the systems as
possible.

2. Motivation

In a number of applications ranging from marketing
campaigns of new products to the design of new
systems, each campaign or design process is
frequently done as a new endeavor. Very little
knowledge, if any, is carried over from the previous
episode or campaign. This is also true in the design
of spacecrafts where each spacecraft is frequently
designed as a “piece of art” rather than picked off
from a “manufacturing line.”

Simulation exercises related to the design of
spacecrafts can often be very complex and difficult to
debug. Over time, the large number of system
functions, data structures, and global variables that
become associated with a simulation can lead to a
confusing array of problems that are extremely
tedious to analyze.

3. Traditional method

In a number of cases, the design team relies on
manual entry in Microsoft Excel spreadsheets to keep
track of important information contained in the

 2

satellite simulation files. Although these spreadsheet
files provide a practical view of the vital project
information, they are very tedious to create and
therefore can quickly become outdated3. Due to the
inaccurate data that are often stored in these files, it is
usually necessary for members of the team to review
the latest source code files in order to find the
information they are seeking. Unfortunately, these
files can become very long and difficult to decipher,
especially to those who are unfamiliar with
developing in the particular programming language
of the environment.

The way in which the simulations are created also
lacks an effective method for analyzing the
modifications that have occurred during the
development of all the previous systems. As these
systems are re-engineered and enhanced over time, it
is critical to keep track of the rationale for major
design decisions and the reasoning for any change.
In order to effectively re-engineer new simulations,
the design team needs to be able to understand why
certain structures and variables have the specific
values they do, and what previous values may have
been tried.

Another major disadvantage of the traditional method
of simulation design is the lack of useful error
checking for the projects. As the code gets passed on
from year to year, some of it becomes redundant and
unnecessary variables and functions continue to stay
hidden inside the code. Unfortunately, this
extraneous information only makes the code more
difficult to read and understand, therefore making the
re-engineering process even more complex.

In order to provide better inspection and analysis of
the future simulation files, a new approach was
developed to provide the following functionality:

• Permit the viewing and storage of important

information (name, value, rationale, author, etc)
relating to the MATLAB functions that are used
in the project

• Enable the viewing and storage of important
information (name, value, rationale, author, etc)

relating to the global constants that are used in
the project

• Facilitate the viewing and storage of important
information (name, value, rationale, author, etc)
relating to the design variables that are used in
the project

• Permit storage of the history of the above data as
it changes over time in order to enable the user to
have information regarding what information has
been updated since the last system design

• Provide for error checking of the current system
design to inform the user as to where possible
errors may exist in the MATLAB files and how
those errors may be fixed.

4. Proposed Architecture

The IT Team, a part of SSPARC, has developed a
software integration support application that can
assist in the re-engineering process for satellite
simulations. SSPARCy is a tool that can facilitate
design and development steps over time by ensuring
that vital design decisions and rationale have been
encapsulated. By providing the user with useful
system analysis, history reviews, and error checking,
SSPARCy attempts to address the void that currently
exists for methods to automatically capture crucial
information with no or little human intervention.

Each simulation exercise can be encapsulated in one
major object, which is referred to as a project. The
Project object contains all the necessary objects and
variables that represent the information stored in the
application, such as functions, constants, design
variables, and errors. The Function objects refer to
actual functions in the simulation source code.
Similarly, the Constant and Design Variable objects
represent each global constant and design variable
that is defined in the system. Lastly, the Error object
refers any possible error in the simulation design that
can lead to redundant, unused, or misrepresented
code in the code files. A graphical view of the
architecture of the data model is shown below in
Figure 1.

 3

Project

ContainsContains
ContainsContains

Constant

*

Function

+

Design Variable

*

Error

*
Causes ??

Causes
??

Uses+ *Calls

+

*

Uses

Causes

*? *+

Figure 1: A graphical representation of SSPARCY Data Model which shows how major system objects can interact
over time4.

Each Function, Constant, Design Variable, and Error
object can be referred to as a general Variable object.
The architecture has been designed so that each
Variable object can contain valuable information
regarding the Variable’s name, value, units, valid
range, author, date of creation, and possible aliases
which can refer to it in the project. Also, each
Variable stores its rationale, so the user can record
design decisions and changes that relate to each
object in the system. The data that are stored in the
object model provide significant possibilities for
greater functionality in the graphical user interface.

5. Concept Demonstration Prototype

Over the summer of 1999, the SSPARC project
progressed from the B-TOS design project and
moved into the C-TOS phase. With increasing
collaborations among the participating universities
(Massachusetts Institute of Technology, Stanford
University, California Institute of Technology, Naval
War College), new tools were introduced to handle
the linkages of various subsystems. For example,
Excel replaced MATLAB as the dominant
environment for design sessions. As a result of these
changes, SSPARCy was modified to accommodate
these new approaches. It was expanded to work with
multiple file types and can now handle both
MATLAB- and Excel-based source files. To ensure
an easy transition for users, we have kept all of
SSPARCy’s original features and maintained
backward compatibility. In addition, the

application’s interface remains similar to its previous
versions, while new features have been added in a
consistent format.

6. The Knowledge Based Approach

6.1 Knowledge Acquisition

The graphical user interface has been designed to
assist in knowledge acquisition during intelligent
capture of simulation exercises. For example, the
history table feature visually conveys the degree of
stability of parameters in the system. Users can
easily identify the volatilities of different parameters
across iterative design sessions. Also, by storing
Error objects in the data model, the user can analyze
potential system problems that are currently very
difficult to analyze or even recognize.

Even though the functionality of the system is
continuously evolving, several of the major
components can be seen through the graphical user
interface. Currently, SSPARCy is compatible with
both MATLAB and Excel based simulation files.
SSPARCy facilitates project management by
allowing multiple projects of different formats to be
opened, viewed, and saved simultaneously. The
system also enables the user to view any Variable
object in the current project, and to see all the vital
information fields that are stored along with that
Variable. As the system design evolves over time,
variables may be added, removed, or changed from

 4

the current status. The graphical user interface
provides a way for the user to view the way in which
the project has changed over time, in terms of the
variables that represent the project. Finally, the
current system provides functionality for useful error
checking so users can see what possible errors might
exist in the project and where those errors might have
occurred.

6.2 Knowledge Management

6.2.1 Current Variable Data

As mentioned before, it is essential that the user is
provided with an easy and effective way to view the
current state of any Variable object in the system.
Whether the user wants to see the value and the
rationale of a global constant in the project or just the
author of a specific design variable, SSPARCy
provides appropriate display options. By using tables
to display a collection of Variable objects, the
application allows for quick review of essential data
in the source files and the rationale behind their
existence and their respective values.

A typical variable data table would show the name of
each constant in the project listed in the first column
in alphabetical order. Next to the name, the second
column lists the subsystems in which these
parameters belong to, followed by the current values
of these parameters. This setup represents the display
at the default situation. Note that only the parameters
in use are kept in this table. If a parameter had been
removed in the latest design sessions, it would not
show up on this list but would appear on the history
table instead.

6.2.2 Variable History Review

Just as it is important to review the current state of
specific Variable objects in the system, it is also
important to see how they have changed over time.
For every Variable object in the system, the user is
able to quickly review how that variable has changed
over time and what variables have been added or
removed from the current project. As seen below in
Figure 2, a table is once again used to display such
information.

In this example, the history of the project’s design
variables is presented to the user. The first column of
the table lists the names of every design variable that
has existed in the project since it was created. The
rest of the columns in the table represent the state of
the project over time. Each column gives the value
of the design variables at that time, or leaves the cell
blank if that design variable was not present in the
project at that point in time.

By adding color codes to the table, the graphical user
interface gives the user an easy-to-read look at how
the history has changed. As seen below, the coloring
of a cell in a specific row x and column y means that
something has changed for the design variable in row
x at time y. If the background of the cell is colored
green, it indicates that the design variable was added
to the project at this time. In the same manner, a
dark gray cell indicates that the specific design
variable in row x was removed from the project at
time y. Finally, a red background notifies the user
that the design variable has been neither added nor
removed, just that its value has changed from time y-
1 to time y.

Figure 2: The history of Variable values over time can be viewed in a color-coded table

 5

By allowing the user to view the history of any
Variable object in the system, SSPARCy provides an
extensible tool for comprehensive analysis of
successive simulation exercises.

6.3 Knowledge Discovery

As the design rationale capture should require
minimal amount of work from the designers,
SSPARCy automatically parses parameters’ values,
units, comments, and timestamps from their source
files. However, if a designer wishes to enter
additional details regarding a parameter, he or she
can do so by selecting the parameter from the table
and then clicking the button “Edit Info.” New pop-

up windows will appear, and the user can enter
supplementary information such as rationale and
URL references (see figure 3 below). Other users
can later access these information by choosing the
button “View Rationale” or “View URL.”

A table can be generated for any of the Variable
objects in the system. Therefore, with just one
selection from the menu bars at the top of the screen,
the user can be presented with a table that displays all
the MATLAB functions used in the simulation, the
global constants that exist, and the design variables
that are used throughout the project.

Figure 3: Rationale Dialog Windows allow users to input additional details regarding specific parameters.

7. Related Work

WAVE is an algorithm to learn information
extraction rules5. Since it is intended to be an
algorithm, it does not offer the broad functionality
that is available in SSPARCy. However, the
incorporation of the WAVE algorithm into
SSPARCy would augment the latter’s flexibility and
ability to adapt to changes in the syntax of the
designer code. Further, this could potentially enable
the application to analyze other programming
language by allowing SSPARCy to learn the
information extraction rules for a new language over
time.

The existing field of design rationale capture tools
spans the spectrum from fully unstructured rationale
to completely modeled rationale. Meeting minutes
represent an unstructured, time delineated capture.
QuestMap6 and DRAMA7 are examples of the next
step – they provide basic structural elements and

enable the user to devise a useful structure. At the
other end of the spectrum from meeting minutes is
DRIM8, which is a completely specified model for
the rationale underlying the design process. As a
design rationale capture tool, SSPARCy lies
somewhere on the spectrum between QuestMap and
DRIM. SSPARCy creates a simple structure for
design rationale by associating rationale with each
simulation entity. Additionally, SSPARCy captures
this rationale over time. Since this rationale can
evolve at any level from project to variable over time,
a minimal logical structure is provided for the user to
specify rationale in the manner and the level he or
she perceives as being most beneficial. SSPARCy
does not impose the rigid conceptual structure that
DRIM proposes. Therefore, SSPARCy is a
compromise in terms of design rationale capture
between inflexible structure and amorphous disorder.
Furthermore, the basic structure it provides is most
appropriate for the domain-specific design process it
endeavors to capture.

 6

5. Conclusion

Large scale periodic endeavors are generally
performed on an ab initio basis. Whether one is
desgining a spacecraft or a dam, or launching a sales
campaign, each endeavor tends to have a life of its
own. In virtually all cases, the effort requires more
effort than was originally envisaged. As delays
occur, one tends to focus on the main deliverable,
with the understanding that one will come back to do
the documentation later. In practice, the latter rarely
happens. Accordingly, there is either no
documentation or there is some unstructured text
which is very difficult to use by individuals
performing the same or similar endeavor months or
years later. SSPARCy represents a new approach in
which the raw information is captured from the
keystrokes entered by the user while performing the
primary activity. Such information is distilled to
produce knowledge for later use, without imposing
additional burden on human users involved in the
first endeavor or the succeeding endeavors.

6. Acknowledgements

This work has benefited from fellow team members
of the Space Systems, Policy and Architecture
Research Consortium. Professors Daniel Hastings,
Hugh McManus and Joyce Warmkessel have
provided guidance and feedback as these approaches
have been developed. Quincy Scott, Shane Cruz and
Presley Canady assisted in developing the software
for the SSPARCy approach.

7. References

1 Gupta, Amar. “A Four-Faceted Knowledge-Based
Approach for Surmounting Borders”, Journal of
Knowledge Management, Vol. 5, No. 4, December
2001.
2 McManus, Hugh and J. Warmkessel. “Creating
Advanced Architectures for Space Systems: Product
and Process”, August 2001.
3 Scott, Quincy R. “SSPARCy: A Software
Integration Support and Design Rationale Capture
System.” Master’s thesis, MIT, July 11, 2001.
4 Cruz, Shane. “SSPARCY: A Software Integration
Support System for Satellite Simulation” Advanced
Undergraduate Project, MIT, May 21, 2000.
5 J. Aseltine. “WAVE: An Incremental Algorithm
for Information Extraction.” In Proceedings of the
AAAI 1999 Workshop on Machine Learning for
Information Extraction. 1999.
6 QuestMap v3.12. The Soft Bicycle Company,
2000.

7 A. Brice and B. Johns. “Improving Process Design
by Improving the Design Process.” A DRAMA white
paper. QuantiSci, Oct. 1998.
8 F. Pena-Mora, R. Sriram, and R. Logcher.
“Conflict Mitigation System for Collaborative
Engineering.” Artificial Intelligence in Engineering
Design, Analysis and Manufacturing. pp. 101-124,
1995.

