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Abstract

Acoustic design is a difficult problem, because the human perception of sound depends on
such things as decibel level, direction of propagation, and attenuation over time, none of
which are tangible or visible. The advent of computer simulation and visualization tech-
niques for acoustic design and analysis has yielded a variety of approaches for modeling
acoustic performance. However, current computer-aided design and simulation tools suffer
from two major drawbacks. First, obtaining the desired acoustic effects may require a long,
tedious sequence of modeling and/or simulation steps. Second, current techniques for mod-
eling the propagation of sound in an environment are prohibitively slow and do not support
interactive design.

This thesis presents a new approach to computer-aided acoustic design. It is based on
the inverse problem of determining material and geometric settings for an environment from
a description of the desired performance. The user interactively indicates a range of accept-
able material and geometric modifications for an auditorium or similar space, and specifies
acoustic goals in space and time by choosing target values for a set of acoustic measures.
Given this set of goals and constraints, the system performs an optimization of surface ma-
terial and geometric parameters using a combination of simulated annealing and steepest
descent techniques. Visualization tools extract and present the simulated sound field for
points sampled in space and time. The user manipulates the visualizations to create an in-
tuitive expression of acoustic design goals.

We achieve interactive rates for surface material modifications by preprocessing the ge-
ometric component of the simulation, and accelerate geometric modifications to the audito-
rium by trading accuracy for speed through a number of interactive controls.

We describe an interactive system that allows flexible input and display of the solution
and report results for several performance spaces.

Thesis Supervisor: Julie Dorsey
Title: Associate Professor of Architecture and Computer Science and Engineering
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Chapter 1

Introduction

Acoustic design is a difficult process, because the human perception of sound depends on

such things as decibel level, direction of propagation, and attenuation over time, none of

which are tangible or visible. This makes the acoustic performance of a hall very difficult

to anticipate. Furthermore, the design process is marked by many complex, often conflict-

ing goals and constraints. For instance, financial concerns might dictate a larger hall with

increased seating capacity, which can have negative effects on the hall's acoustics, such

as excessive reverberation and noticeable gaps between direct and reverberant sound; fan

shaped halls bring the audience closer to the stage than other configurations, but they may

fail to make the listener feel surrounded by the sound; the application of highly absorbent

materials may reduce disturbing echoes, but they may also deaden the hall. In many renova-

tions, budgetary, aesthetic, or physical impediments limit modifications, compounding the

difficulties confronting the designer. In addition, a hall might need to accommodate a wide

range of performances, from lectures to symphonic music, each with different acoustic re-

quirements. In short, a concert hall's acoustics depends on the designer's ability to balance

many factors.



In 1922, the renowned acoustic researcher, W. C. Sabine, had the following to say about

the acoustic design task:

The problem is necessarily complex, and each room presents many conditions,

each of which contributes to the result in a greater or less degree according to

circumstances. To take justly into account these varied conditions, the solution

of the problem should be quantitative, not merely qualitative; and to reach its

highest usefulness it should be such that its application can precede, not follow,

the construction of the building. [45]

Various tools exist today to assist designers with the design process. Traditionally, de-

signers have built physical scale models and tested them visually and acoustically. For ex-

ample, by coating the interiors of the models with reflective material and then shining lasers

from various source positions, they try to assess the sight and sound lines of the audience in a

hall. They also might attempt to measure acoustical qualities of a proposed environment by

conducting acoustic tests on a model using sources and receivers scaled in both frequency

and size. Even water models are used sometimes to visualize the acoustic wave propaga-

tion in a design. These traditional methods have proven to be inflexible, costly, and time

consuming to implement, and are particularly troublesome to modify as the design evolves.

They are most effectively used to verify the performance of a completed design, rather than

to aid in the design process.

The advent of computer simulation and visualization techniques for acoustic design and

analysis has yielded a variety of approaches for modeling acoustic performance [12, 22, 34,

39, 13]. While simulation and visualization techniques can be useful in predicting acous-

tic performance, they fail to enhance the design process itself, which still involves a bur-

densome iterative process of trial and error. Today's CAD systems for acoustic design are

based almost exclusively on direct methods-those that compute a solution from a com-

plete description of an environment and relevant parameters. While these systems can be

extremely useful in evaluating the performance of a given 3D environment, they involve a

tedious specify-simulate-evaluate loop in which the user is responsible for specifying input



parameters and for evaluating the results; the computer is responsible only for computing

and displaying the results of these simulations. Because the simulation is a costly part of

the loop, it is difficult for a designer to explore the space of possible designs and to achieve

specific, desired results.

An alternative approach to design is to consider the inverse problem-that is, to allow

the user to create a target and have the algorithm work backward to establish various pa-

rameters. In this division of labor, the user is now responsible for specifying objectives to

be achieved; the computer is responsible for searching the design space, i.e. for selecting

parameters optimally with respect to user-supplied objectives. Several lighting design and

rendering systems have employed inverse design. For example, the user can specify the lo-

cation of highlights and shadows [42], pixel intensities or surface radiance values [47, 43],

or subjective impressions of illumination [28]; the computer then attempts to determine

lighting or reflectance parameters that best match the given objectives using optimization

techniques. Because sound is considerably more complex than light, an inverse approach

appears to have even more potential in assisting acoustic designers.

In this thesis, I present an inverse, interactive acoustic design system. With this ap-

proach, the designer specifies goals for acoustic performance in space and time via high

level acoustic qualities, such as "decay time" and "sound level." Our system allows the de-

signer to constrain changes to the environment by specifying the range of allowable material

as well as geometric modifications for surfaces in the hall. Acoustic targets may be suitable

for one type of performance, or may reflect multiple uses. With this information, the sys-

tem performs a constrained optimization of surface material and geometric parameters for a

subset of elements in the environment, and returns the hall configuration that best matches

performance targets.

Our audioptimization design system has the following components: an acoustic evalu-

ation module that combines acoustic measures calculated from sound field data to produce

a rating for the hall configuration; a visualization toolkit that facilitates an intuitive assess-

ment of the complex time-dependent nature of sound, and provides an interactive means to



express desired acoustic performance; design space specification editors that are used to in-

dicate the allowable range of material and geometry modifications for the hall; an optimiza-

tion module that searches for the best hall configuration in the design space using both sim-

ulated annealing for global searching and steepest descent for local searching; and a more

geometrically accurate acoustic simulation algorithm that quickly calculates the sound field

produced by a given hall configuration.

This system helps a designer produce an architectural configuration that achieves a de-

sired acoustic performance. For a new building, the system may suggest optimal configu-

rations that would not otherwise be considered; for a hall with modifiable components or

for a renovation project, it may assist in optimizing an existing configuration. By using op-

timization routines within an interactive application, our system reveals complex acoustic

properties and steers the design process toward the designer's goals.

1.1 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 provides background in room

acoustics. Chapter 3 presents previous research in acoustic simulation algorithms. I survey

sound characterization measures in Chapter 4 and present visualization tools used to display

these acoustic qualities. Chapter 5 details our new simulation algorithm that addresses both

computation speed and geometric accuracy. Chapter 6 defines the new components intro-

duced by the inverse design approach-the specification of the design space, the definition

of the objective function, and the optimization strategy used to search the design space for

the best configuration. I describe the implementation details of these new components in

the context of our audioptimization design system in Chapter 7. I demonstrate the audiop-

timization system through several case studies of actual buildings in Chapter 8.



Chapter 2

Acoustics

This chapter presents background on the phenomenon of sound, from both a physical and

psychological viewpoint. In addition, room acoustics is introduced, and a short survey of

position independent acoustic measures is presented. Given this background information,

the limitations of the approximations and simplifying assumptions made by the acoustic

evaluation and simulation algorithms presented in the following chapters can be better un-

derstood.

2.1 Physics of Sound

Sound is the result of a disturbance in the ambient pressure, Po, of particles within an elastic

medium that can be heard by a human observer or an instrument [8]. Since my focus is room

acoustics, I will be addressing sinusoidal sources propagating sound waves through air. As

a sound wave travels, its energy is transferred between air particles via collisions. The result

is a longitudinal pressure wave composed of alternating regions of compression and rarefac-

tion propagating away from the source. Although the wave may travel a great distance, the

motion of particles remains local, as particles oscillate about their ambient positions rela-

tive to the wave propagation direction. While each particle will undergo the same motion,

the motion will be delayed, or phase shifted, at different points along the wave. Particle
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Figure 2-1: Wave terminology.

velocity u(t) and sound pressure p(t) are orthogonal, cyclic functions such that when par-

ticle density is greatest, particle velocity is at its ambient level, and when particle velocity

is greatest, particle density is at its ambient level [8].

Sound waves share the same characterization as waves of other types, summarized briefly

as follows [20]. The length of one cycle of a sound wave-the distance between correspond-

ing crest points, for example-is its wavelength, A, shown in Figure 2-1. The time it takes

for the wave to travel one wavelength, is its period, T. Its frequency, v, is the number of

cycles generated by the sound source in one second, measured in Hertz (Hz). The speed of

sound c is independent of A, but depends on environmental conditions such as air tempera-

ture, humidity, and air motion gradients. I assume static conditions for all acoustic modeling

presented in this thesis, setting the speed of sound to 345 meters per second.

When the displacement of air by a disturbance takes place fast enough, that is, so fast

that the heat resulting from compression does not have time to dissipate between wave cy-

cles, the phenomenon is called adiabatic compression, and produces sound waves [8]. The

resulting pressure change is related to the change in volume given by the equation PV" =

constant, where the gas constant -y is 1.4 for air. Under these adiabatic conditions, the rela-

tionship between pressure p, radius r, and time t for spherical propagation can be expressed



by the wave equation

02p 2 ap 1 82p+ - - = t- - (2.1)
ar2 r ogr C2 19t2

with a solution of the form

p(r, t) = V2 p, (2.2)

where p, is the complex root mean square (rms) pressure at a distance r from the source, and

j is defined as v/-T [8]. This solution yields the (rms) pressure, or effective sound pressure,

which monotonically decreases through time, not the instantaneous pressure, which is an

oscillating function.

Intensity, I, is defined as the average rate at which power flows in a given direction

through a unit area perpendicular to that direction. The relation between intensity and ef-

fective sound pressure is given by

I = , (2.3)

where po is the density of air and c is the speed of sound, and the product po c is the charac-

teristic impedance of the medium [8]. For a spherical source, intensity in the radial direction

can also be expressed in terms of source power W, neglecting attenuation due to intervening

media, as follows:

W
I= . (2.4)

4 7rr2

The audible range of sound for the typical human observer encompasses frequencies

between 20 Hz and 20 kHz [20]. The perceptible range of intensity covers fourteen orders

of magnitude [18]. Instead of working with intensity values directly, it is more convenient

to convert these values to various log scale measures. These measures typically use decibel

(dB) units, where a decibel is ten times the log of a ratio of energies. Intensity Level (IL) is

given in decibels and is defined as



IL = 10 log , (2.5)
Iref

where Iref is 10-12,1"1, the weakest sound intensity perceptible to the typical human lis-

tener [8]. A similar measure, Sound Pressure Level (SPL) is also given in decibels and de-

fined as

SPL = 20 log -, (2.6)
Pref

where pref is 2 * 10-5n'2"" [8].

While these measures do not directly map to the human perception of loudness-a dou-

bling of the sound level does not correspond to a doubling of the perception of loudness-a

10 dB increase in level roughly maps to a doubling in loudness. In fact, a doubling of the

intensity of sound, or a 3 dB change in level, is just noticeable to the human observer [18].

Our perception of loudness is frequency dependent as well. A sound of 50 dB SPL will fall

below our threshold of hearing at 50 Hz, while at 1 kHz it will be easily heard. Equal loud-

ness curves have been established that relate frequency and sound level to loudness [31].

Most sound sources produce complex sounds, composed of a rich spectrum of frequen-

cies. As sound propagates throughout an enclosure, sound waves exhibit frequency depen-

dent behavior. In the following sections we will take a look at the interaction of sound with

surfaces in an enclosure, with intervening media, and with other sound waves, and discuss

the role that frequency plays in these situations.

2.1.1 Sound Attenuation

Many aspects of our perception of sound within an enclosure are directly related to its decay

through time. As it propagates, a spherical wave decays in intensity due to distance, air, and

surface attenuation, as follows:

* Distance Attenuation: As can be seen from Equation 2.4, intensity decays with the

square of distance. As the spherical wavefront propagates and expands, its power is



Figure 2-2: Distance attenuation obeys inverse-square law.

distributed over a larger area. Figure 2-2 shows this relationship.

e Air Attenuation: Sound intensity also decays by absorption as the sound wave passes

through air. While this effect is negligible over short distances under normal atmo-

spheric conditions, it is more significant in large acoustic spaces like concert halls and

auditoria. The effect of air absorption on sound intensity is modeled by the following

equation

I = Io * ed, (2.7)

where d is distance traveled in meters, and m is the frequency dependent energy at-

tenuation constant in meters-' [8]. The value of m depends on atmospheric condi-

tions such as relative humidity and temperature. Air attenuation is more pronounced

for higher frequency sound. For example, after traveling a distance of 345 meters,

(one second), the intensity of a 2 kHz wave will decrease roughly 43%, while that

of a 500 Hz wave will decrease only 15% under certain atmospheric conditions. In

this work, we fix the values for temperature at 680F and relative humidity at 50%.

Figure 2-3 shows attenuation curves for three frequencies of sound under these atmo-



Figure 2-3: Air attenuation curves for three frequencies of sound at room temperature and

50% relative humidity.

spheric conditions.

e Surface Attenuation: Surface absorption has the most significant effect on sound de-

cay. Whenever a wave front impinges upon a surface, some portion of its energy is

removed from the reflected wave. This sound energy is transferred to the surface by

setting the surface into motion, which in turn may initiate new waves on the other

side of the surface, accounting for transmission. The extent to which absorption takes

place at a surface depends upon many factors, including the materials that comprise

the surface, the frequency of the impinging wave front, and the angle of incidence of

the wave front.

The absorption behavior of a surface is commonly characterized by a single value, the

absorption coefficient, a, which is the ratio between energy that strikes the surface

and energy reflected from the surface, averaged over all incident angles [8]. While

representing the behavior of sound reflecting from a surface with a single constant

term only loosely approximates the actual behavior, it is a useful indicator of the effect

that the surface will have on the overall acoustics of an enclosure. The non-uniformity

of the reflection curves shown in Figure 2-4 gives an indication of the limitation of
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Figure 2-4: Angle dependent surface reflection plots for three materials with average ab-

sorption coefficients of 0.9 (blue,) 0.5 (green,) and 0.1 (red.)

this approximation method [35].

2.1.2 Wave Properties

If an obstacle is encountered whose surface is much more broad in dimension than the wave-

length of impinging sound, the surface will reflect the sound. The manner in which the

sound is reflected depends upon the scale of surface roughness with respect to the wave-

length of sound. Smooth surfaces will reflect sound geometrically, such that the reflection

angle is equal to the angle of incidence. Surfaces with roughness of comparable or greater

scale than the wavelength of sound will diffuse sound [31].

An obstacle whose scale is small compared to the wavelength of an approaching sound

wave will have little effect on the wave. The wave will be temporarily disrupted after pass-

ing the obstacle, and reform a short distance beyond it. This behavior occurs because the air

particles that carry the sound energy are moving in all directions, and will spread the wave

energy laterally if unrestricted. This behavior is called diffraction, and accounts for related

behaviors such as sound turning corners, or fanning out as it passes through openings [20].

If one imagines a volume of air space through which many sound waves pass-from



many different directions, covering a spectrum of frequencies-the particles within that air

space respond to all sound waves at once. The human listener is able to separate and discern

the effects on those particles due to different frequencies, imposing some level of order to

the chaos. If waves of the same frequency are traveling in the same direction through that air

space, they will either reenforce each other if they are in phase, or interfere destructively if

they are out of phase. In the following section I begin to discuss the degree to which various

properties of sound are taken into account in the context of room acoustics.

2.2 Room Acoustics

One goal of room acoustics is to predict various characteristics of the sound that would be

produced in an acoustic enclosure, given a description of the room and a sound source. All

the information required to characterize the room's acoustics is generated by computing the

sound field created by such a source within that room. Theoretically the response of the

room could be solved exactly using the wave equation, given the myriad boundary condi-

tions as input. Practically, however, the complexities introduced by any but the simplest

conditions make this calculation intractable. Additionally, even if practical, such a calcula-

tion would yield far more information than necessary to characterize the behavior of sound

in the room to the level of detail that is useful [31].

Fortunately, much insight can be gained by considering various degrees of approxima-

tion of the sound source and the room, and making simplifying assumptions about the be-

havior of sound transport and sound-surface interactions. I summarize a few of the most

simple, yet useful approximations below.

2.2.1 Reverberation: Sabine's Formula

For many years the only measure of the acoustic quality of a space was its reverberance, or

the time it took for a sound to become inaudible after the source was terminated.

The acoustic pioneer, W. C. Sabine, was the first to explore and document the effects



that the material qualities of various surfaces and objects in the room have on the reverber-

ance of the room. While a researcher at Harvard University, Sabine was given the task of

determining why the lecture room of the Fogg Art Museum had such poor acoustics, and to

suggest modifications that would solve the problem.

Sabine observed that, while the room was modeled after its neighbor, the acousticly

successful Sanders Theatre, the materials of the surfaces were very different, with Sanders

faced with wood and the lecture room with tile on plaster. He conducted an experiment in

which he measured the reverberation times for various hall configurations. When empty, the

hall's reverberance measured 5.62 seconds. Sabine gradually added a number of cushions

from Sanders Theatre, arranged throughout the room, taking additional measurements. The

reverberation time was reduced by the addition of cushions, reaching a low of 1.14 seconds.

Sabine then tested and catalogued a number of materials and fixtures (including people,)

calculating the absorption characteristics of each with respect to that of the seat cushions

used previously.

By fitting the data to a smooth curve, Sabine realized that the minor discrepancies would

vanish if reverberation was plotted against the total exposed surface area of the cushions,

instead of the running length of cushions. From these and other experiments, Sabine arrived

at a formula, derived empirically, to predict the reverberation time T of a room given its

volume V in cubic feet and the total room absorption a in sabins within the room. A sabin

is defined as one square foot of perfect absorption. His formula follows:

T = 0.05-, (2.8)
a

where the number of sabins is found by summation, over all surfaces S in the room, of the

product of surface area S, and the absorption coefficient o, [18]. Just as a is frequency

dependent, so too is T. While this formula does not account for the effects of such factors

as the proximity of absorptive materials to the source, for example, Sabine himself noted

that "it would be a mistake to suppose that ... [the position of absorption within the room]

is of no consequence." [45]



2.2.2 Statistical Approximations

The rate of decay of sound density D in a room can be approximated by calculating sta-

tistical averages of the room's geometry and material characteristics [8]. The two values

needed are the mean time between surface reflections, and the average absorption at reflec-

tion. From this data the envelope of decay due to surface absorption is calculated.

The first simplification is introduced by replacing the geometric description of the room

with its meanfree path, d, defined as the average path length that sound can travel between

surface reflections. d is approximated by the formula

4V
d= -, (2.9)

where V is the volume of the room, and S is the total surface area within the room [8]. Given

d, the mean time, t', between reflections is simply t' = d, where c is the speed of sound.

Complex absorption effects at each surface are replaced by the average absorption co-

efficient for the entire enclosure, a, which is the weighted average of surface absorption

defined as

_ a1S+a2 S 2 +--+nSn
a = (2.10)S

Absorption due to the contents of the room is accounted for by appending their absorption

values to the numerator, although their additional surface area is typically neglected in the

denominator [8].

Statistically speaking, the sound energy remaining after the first reflection at time t' is

given by Dt, = Do(1 - a), and at time 2t' by D2 t, = Do(1 - d)2. Beranek shows that

by converting from a discrete into a continuous formulation, the following function gives a

statistical approximation to the energy density remaining at any point in time:

Dt = Do(1 - a) *. (2.11)



He solves for the reverberation time T by rearranging this equation to isolate t, and substi-

tuting 60 dB for the ratio of Do to Dt, arriving at the following formula:

60V
T = 0 (2.12)

1.085ca"

where a' is termed metric absorption units, and is defined as -S ln(1 - a), given in square

meters. The effects of air attenuation may be accounted for as well by replacing a' with a'i.

where a' . = a' + 4mV, and m is the air attenuation constant discussed above [8].

While these tools give us some indication of the character of the sound field created by

a source within an enclosure, they are limited by the simplifying assumptions implicit in

their derivations. Energy density is not uniform throughout the enclosure, due in part to the

irregularity of geometry and the non-uniform distribution of absorptive material. Further,

during the last few decades a number of acoustic measures have been developed, which re-

quire more detailed information about the sound field than these calculations provide. The

values for many of these measures vary for different positions throughout the hall, and re-

quire directional and temporal data along with the intensity of sound for each passing wave-

front. Fortunately, a variety of sophisticated simulation algorithms have been developed in

recent years. In the following chapter I survey these algorithms and discuss their strengths

and weaknesses.



Chapter 3

Survey of Acoustic Simulation

Approaches

In order to evaluate the acoustics of a virtual enclosure it is necessary to simulate the sound

field it produces and extract the data required to calculate various acoustic measures. There

has been a large amount of previous work in acoustic simulation [7, 31]. These approaches

can be divided into five general categories: ray tracing [30], statistical methods [22], radiant

exchange methods [34, 48, 52], image source methods [12], and beam tracing [21, 34, 19].

There are also a variety of hybrid simulation techniques, which typically approximate the

sound field by modeling the early and late sound fields separately and combining the results

[22, 34, 39]. I survey the major simulation algorithms below.

3.1 Ray Tracing

The ray tracing method propagates particles along rays away from the source, which reflect

from the surfaces they strike. Ray information is recorded by the receivers that these rays

encounter within the enclosure. Since the probability is zero that a dimensionless particle

will encounter a dimensionless receiver point in space, receivers are represented as volumes

instead of points. Because of this approximation, receivers may record hits from rays that



could not possibly reach them, as shown in Figure 3-la. Errors in the direction and arrival

time of the sound will also result.

Another shortcoming of this method is the immense number of rays that are necessary

in order to insure that all paths between the source and a receiver are represented. As an

illustration, consider a receiver point represented with a sphere of radius one meter, located

ten meters from the source in any arbitrary direction. At this distance, one must shoot about

600 rays, uniformly distributed, to insure that the receiver sphere is struck. Now consider

the case where we are interested in modeling sound propagation through one full second.

Given that sound will travel 345 meters in that amount of time, one would need about 100

times as many rays to insure that a receiver at that distance would be hit. At this sampling

density, however, our receiver at ten meters would be struck by 100 redundant rays, all repre-

senting the same path to the source. The problem is compounded when considering that the

projected angle of any given surface, not the receiver sphere, may determine the minimum

density of rays. While ray subdivision may address some of these issues, no guarantees can

be made that all paths will be found using ray tracing.

3.2 Statistical Methods

By relaxing the restriction that rays impinging upon a surface must reflect geometrically, and

exchanging the goal of finding all possible paths between sources and receivers for the goal

of capturing the overall character of sound propagation, ray tracing techniques have been

imbued with statistical behavior. Diffusion is modeled with this method by allowing rays

to reflect from surfaces in randomly selected directions based upon probability distribution

functions. Furthermore, instead of continuing to trace rays as their energy decreases, rays

may be terminated at reflection with a probability based on the absorption characteristics of

the reflecting surface. Diffraction effects might also be modeled using statistical methods,

perhaps by perturbing ray propagation directions mid flight between reflections. While the

range of behaviors that can be captured with statistical approaches is quite broad, its appli-
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Figure 3-1: a) Ray tracing: positional errors. b) Image-source: limited scope of image

source. c) Beam tracing with fixed profiles: false and missed hits. d) General beams: cor-

rect hits.

cation might be better suited to modeling later sound, when the direction of propagation is

less critical.

3.3 Radiant Exchange Methods

Recently, the radiant exchange methods used for modeling light transport have begun to be

applied to acoustic modeling. Assuming diffuse reflection, the percent of energy that leaves

one surface and arrives at another is calculated for all pairs of surfaces in a polygonalized

environment. Energy is then radiated into the environment, and a steady state solution is cal-

culated. Two issues emerge when applying this technique to sound transport. First, while

the arrival time can be ignored for light, it is critical for sound. Second, the diffuse reflection

assumption is invalid for modeling most interactions between sound and surfaces. It is par-

ticularly troublesome for modeling early sound, where the directional effects are especially

important. While it is more acceptable to model late sound than the early sound using dif-

fuse reflection assumptions, more cost effective approaches may suffice for modeling late

sound.



3.4 Image Source

The image source method is based on geometric sound transport assumptions. In the ideal

case, the approach works as follows. In a room where the surfaces are covered with per-

fect mirrors, a receiver would be affected by every image of the source, whether direct or

reflected, that is visible at the receiver location. No temporal or directional errors would

result. While this is the ideal outcome, problems arise in the implementation of the method.

Image sources are constructed by mirror reflecting the source across all planar surfaces, as

shown in Figure 3-1c. This process recurses, treating each image source as a source. Each

resulting image source could potentially influence each receiver. Unfortunately, many im-

age sources constructed in this way are not realizable, and the valid ones are often extremely

limited in their scope, as shown in Figure 3-1b. That is, they may only contribute to a frac-

tion of the entire room volume. Recursive validity checking is required to ensure receiver-

source visibility. Unless preemptive culling is performed during the construction of image

sources, a geometric explosion of image sources results.

3.5 Beam Tracing

A variation on the ray tracing method is beam tracing. Here the rays are characterized by cir-

cular cones or polygonal cones of various preset profiles [57]. Receivers are represented as

points. As these beams emanate from the source, receivers that are enclosed within the vol-

ume of the beam are updated. As they propagate, beams reflect geometrically from surfaces

encountered by their central axis. The geometric explosion that characterizes the image

source method is avoided here because the number of beams does not grow during propaga-

tion. However, the method suffers from various shortcomings. If circular beams are packed

such that they touch but do not overlap each other, then gaps result, leaving regions within

the room erroneously uneffected by the sound. Conversely, if the beams are allowed to over-

lap, removing the gaps, then regions are double covered, causing simulation errors [33].

These systematic errors are eliminated for the direct field by using perfectly packed trian-



gular profiles, for example, which attain full spherical coverage of the source. However,

the errors reemerge at reflection since beams are not split when they illuminate multiple

surfaces, striking an edge or a corner. As a consequence, false hits and missed hits result,

as shown in Figure 3-lc [34].

3.6 Hybrid Methods

Many hybrid approaches have emerged that incorporate the best features of these methods.

The image source method is best used for modeling early reflections where directional and

temporal accuracy is critical. The method may be paired with ray tracing, which is used

to establish valid image sources [39, 58]. The image source method is rarely used for later

reflections due to the exponential increase in cost. Lewers models late sound with the radi-

ant exchange method [34]. Others use ray tracing, randomizing the reflection direction to

attain a diffusing effect [39]. Still others use a statistical approach based on the results of an

earlier, or ongoing ray tracing phase [57, 22]. Heinz presents an approach in which surfaces

in the enclosure are assigned a wavelength dependent diffusion coefficient, which is used

to transfer energy from the incoming ray to the diffuse field [22]. Various approaches are

used to combine the early and late response simulations.

3.7 Summary

In the context of acoustic design, it is not necessary that the simulations achieve audio-

realistic results. In fact, such a level of detail would detract from the process. While the

high computation costs required by radiant exchange methods may be worthwhile for ap-

plications requiring high fidelity reproduction, geometric assumptions suffice for our pur-

poses. In Chapter 5 1 describe our new acoustic simulation algorithm, which builds upon the

strengths of the methods just described, making improvements in both geometric accuracy

and computation speed. In addition, I present a more complete set of acoustic performance



evaluation criteria, derived from the sound field data, in Chapter 4.



Chapter 4

Acoustic Evaluation

This chapter presents the set of objective measures used by our system to evaluate the acous-

tic quality of a performance space. I define the measures in the first section and introduce

visualizations of the measures in the second section. These visualizations and associated in-

teractive tools give the user of the system an intuitive way to quickly assess acoustic quality.

4.1 Characterization of Sound

Traditionally, reverberation time and other early decay measurements were considered the

primary evaluation parameters in acoustic design. However, in recent years, researchers

have recognized the inadequacies of using these criteria alone and have introduced a vari-

ety of additional measures aimed at characterizing the subjective impression of human lis-

teners [7]. For example, in 1991 Wu applied fuzzy set theory, noting that the subjective

response of listeners is often ambiguous [63]. In 1995, Ando proposed another approach

showing how to combine a number of orthogonal objective acoustic measures into a sin-

gle quality rating using his subjective preference test results [5]. In 1996, Beranek built

on Ando's work by linearly combining six statistically independent objective acoustic mea-

sures into an evaluation function that gives an overall acoustic rating [10]. In this research,

we employ Beranek's evaluation approach, known as the Objective Rating Method (ORM).



Below I define the six acoustic measures and introduce visualization techniques used to

evaluate them.

Interaural Cross-Correlation Coefficient (IACC). The Interaural Cross-Correlation Co-

efficient is a binaural measure of the correlation between the signal at the two ears of a lis-

tener. It characterizes how surrounded a listener feels by the sound within a hall. If the

sound comes from directly in front of or behind the listener, it will arrive at both ears at

the same time with complete correlation, producing no stereo effect. If it comes from an-

other direction, the two signals will be out of phase and less correlated, giving the listener

the desirable sensation of being enveloped by the sound. I use the following expression to

calculate IACC from computer simulated output [5]:

IACC = ( A2(P) 2j)(P) (4.1)

where I( is the interaural cross correlation of the pth pulse, (D') and i$() are the autocorre-

lation functions at the left and right ear, respectively, and A, is the pressure amplitude of the

pth pulse from the set of P pulses. The correlation values depend on the arrival direction of

the wave with respect to the listener's orientation. The numerator is greater for highly cor-

related frontal signals than for less correlated lateral signals. Since the amplitude of sound

decreases rapidly as it propagates, the sound waves that arrive the earliest generally have

far greater effect on IACC.

Early Decay Time (EDT). The Early Decay Time measures the reverberation or liveliness

of the hall. Musicians characterize a hall as "dead" or "live," depending on whether EDT is

too low or high. The formal definition of EDT is the time it takes for the level of sound to

drop 10 decibels from its initial level, which is then normalized for comparison to traditional

measures of reverberation by multiplying the value by six. As Beranek suggests, I determine

EDT by averaging the values of EDT for 500 Hz and 1000 Hz sound pulses. The best values

of EDT range between 2.0 and 2.3 seconds for concert halls.



Bass Ratio (BR). The Bass Ratio measures how much sound comes from bass, reflecting the

persistence of low frequency energy relative to mid frequency energy. It is what musicians

refer to as the "warmth" of the sound. BR is defined as:

BR = RT125 + RT250  (4.2)
RT500 + RT1000 '

where RT is the frequency dependent reverberation time. RT is the time it takes for the

sound level to drop from 5 dB to 35 dB below the initial level, which is then normalized for

comparison to traditional measures of reverberation by multiplying by two. For example,

for a 100 dB initial sound level, RT would be the time it takes to drop from 95 dB to 65 dB

multiplied by the normalizing factor. The ideal value of BR ranges between 1.1 and 1.4 for

concert halls.

Strength Factor (G). The Strength Factor measures sound level, approximating a general

perception of loudness of the sound in a space. It is defined as follows:

G = 10 log , (4.3)
(foo A (t)dt)

where t is the time in seconds from the instant the sound pulse is initiated, i(t) is the in-

tensity of a sound wave passing at time t, and iA(t) is the free field (direct) intensity ten

meters from the source. The numerator accumulates energy from the pulse as each prop-

agated wave passes a receiver, until it is completely dissipated; the denominator receives

only a single energy contribution. The division cancels the magnitude of the source power

from the equation, allowing easy comparison of measured data across different halls. I av-

erage the values of G at 500 Hz and 1000 Hz. The preferred values for G range between 4.0

dB and 5.5 dB for concert halls. In general, G is higher at locations closer to the source.

It is instructive to see how the sound level changes through time, as well as location. We

perceive a reflected wave front as an echo-perceptibly separable from the initial sound-

if it arrives more than 50 msec. after the direct sound and it is substantially stronger than

its neighbors. The time distribution of sound also affects our perception of clarity. Two



locations in a hall may have the same value of G, but if the energy arrives later with respect

to the direct sound for one location than the other, speech will be less intelligible, and music

less crisp.

Initial-Time-Delay Gap (TI). The Initial-Time-Delay Gap measures how large the hall

sounds, quantifying the perception of intimacy the listener feels in a space. It depends purely

on the geometry of the hall, measuring time delay between the arrival of the direct sound

and the arrival of the first reflected wave to reach the listener. In order to make comparisons

among different halls, only a single value is recorded per hall, measured at a location in the

center of the main seating area. It is best if TI does not exceed 20 msec.

Surface Diffusivity Index (SDI). The Surface Diffusivity Index is a measure of the amount

of sound diffusion caused by gross surface detail, or macroscopic roughness of surfaces

within a hall. SDI is usually determined by inspection, and it correlates to the tonal quality

of the sound in a hall. I compute the SDI index for the entire hall by summing the SDI as-

signed to each surface material, weighted by its area with respect to the total surface area of

the hall. SDI can range between 0.0 and 1.0, with larger values representing more diffusion.

The preferred value of SDI is 1.0. For example, plaster has a lower index than brick, which

has a lower index than corrugated metal.

These six statistically orthogonal acoustic measures form the basis for our analysis and

optimization work. While two of the measures, SDI and TI, are single values representing

the entire hall, I compute the others by averaging the values sampled at multiple spatial po-

sitions, and, in the case of G, multiple points in time. Refer to Appendix A for pseudocode

describing the calculation of each measure.

4.2 Visualization of Acoustic Measures

Work has been done in representing sound field data with both visualizations and aural-

izations. Stettner presented a set of 3D icons to graphically convey the behavior of sound



within an enclosure [50]. He also showed the accumulation of sound energy through time

by animating pseudo-colors applied to enclosure surfaces. The Bose Auditioner system [13]

provides auralizations from simulation data at specific listener positions within a modeled

hall; these auralizations approximate what the hall might sound like. Our system provides

visualizations for both the sound field and a collection of acoustic measures that describe

the character of the sound field as it varies in space and time within an environment. These

visualizations are used both to analyze the behavior of a given design and to interactively

specify desirable performance goals. In this section, I describe these visualizations and as-

sociated interactive tools.
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Figure 4-1: Graphical icons representing (from left to right): IACC, EDT, and BR.

The six acoustic measures used to evaluate the quality of sound fall into three categories.

The first group includes those measures calculated directly from the configuration of the

enclosure, requiring no sound field simulation data. TI and SDI are in this category, and their

values are displayed in a text field. Members of the second group share the characteristic that

their values differ throughout the enclosure. The measures IACC, EDT and BR are of this

type, and are represented using icons, as shown in Figure 4-1. The third type of measure

is derived from data that not only contains a spatially varying component, but a temporal

component as well. Sound Strength G is of this type.

When designing icons for IACC, EDT and BR, we tried to leverage the intuition of the

user whenever possible to help convey meaning. We chose representations that would all be

clear from the same view direction. A cylinder is placed at each listener position, or sample



point, upon which the icons are placed. A description of the visualization tool used for each

measure in the second and third category follows.

" IA CC: IACC is represented as a shell surrounding the listener icon, which illus-

trates the degree to which the listener feels surrounded by the sound. The greater the

degree of encirclement of the icon by the shell, the more desirable the IACC value.

" EDT: EDT is represented graphically as a cone, scaling the radius by decay time

and fixing the height. The slope of the cone gives the viewer an intuition for the rate

of decay of sound. For a value of 2.0, the cone is twice the width of the listener icon.

" BR: Figure 4-1 shows the graphical icon we use for BR, composed of two stacked

concentric cylinders of different widths. The top cylinder represents the mid frequency

energy and the bottom cylinder represents the low frequency energy. The height of

each cylinder represents the relative values in the ratio, with constant combined height.

A listener icon representing a desirable BR value of 1.25 would have the top of the

lower cylinder just above the halfway mark, as depicted in the figure.

" G: The remaining view space real estate is utilized by using color to represent

relative scalar values of sound level data, sampled over selected surfaces within the

enclosure. The user may choose to view G over all surfaces, as shown in Figure 4-

2, or over seating regions only, as in Figure 4-3. In the latter case, we include the

ability to view the accumulation of sound level through time (see Figure 4-4), simply

by moving a slider. The sampling density over the seating regions is user controlled.

This feature gives the user another way to set the balance between the accuracy and

speed of the acoustic simulation, as discussed at length in Chapter 5.

I have presented the set of objective acoustic measures used by our goal-based acoustic

design system to evaluate the acoustic quality of a performance space, and I have described

visualizations used to communicate their values. In the following chapter I will describe the

simulation algorithms that generate the data required for the calculation of these acoustic

measures.



Figure 4-2: Scalar values of sound level data are represented with color over all surfaces of
an enclosure.

Figure 4-3: Visualization showing scalar values of sound level data represented with color
for the seating region along with EDT and BR values, represented with icons at a grid of
sample points within an enclosure.
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Figure 4-4: Color indicates sound strength data at four time steps.



Chapter 5

Acoustic Simulation: A Unified Beam

Tracing and Statistical Approach

In order to evaluate the acoustics of a virtual enclosure it is necessary to simulate the sound

field it produces and extract the data required to calculate various acoustic measures. In

this chapter, I introduce a new hybrid simulation algorithm [37] with two components: a

sound beam generator that generalizes previous beam tracing methods for increased geo-

metric accuracy [16], and a statistical approximation of late sound that leverages the beam

tracing phase for increased speed. As with previous methods, I make a number of simpli-

fying assumptions about sound transport, and replace the description of the enclosure with

a planar representation. In the test models used in this thesis, this representation typically

consists of a few dozen to a few hundred polygons.

I employ the geometric model of sound transport, which assumes that sound travels in

straight lines, and reflects geometrically from surfaces. Wave effects such as diffraction, de-

structive interference, and other phase related effects are not considered. The angle depen-

dent absorption characteristics of surfaces are not modeled, although frequency dependent

characteristics are included.



5.1 Generalized Beams

In beam tracing methods, beam profiles are generally predetermined. Here, beam profiles

are dictated strictly by the geometry of the enclosure. The direct field is bounded radially

from the source by the portions of each surface that can see the source directly. I refer to

these regions as occluders, shown in red in Figure 5-la, c. The source is mirror-reflected

across each occluder as in the image source method, shown in Figure 5-1b, spawning new

beams. If we think of a parent beam's occluder as a window into the enclosure for its child

beam, then a beam is described as the volume within the enclosure that would be directly

illuminated from outside the window by a light located at the point of its image source(see

Figure 5- 1c. The portions of surfaces illuminated by such a light source compose the beam's

mosaic of occluders, which in turn become windows for another generation of beams, as

shown in Figure 5-1d, e. The process continues until some termination criteria are reached.

The profiles of every generation of beams completely and exactly tile an arbitrary sphere

surrounding the source when projected onto it, shown for the first two reflections in Fig-

ure 5-2. Refer to Figure 3-1 d to see that perfect coverage is attained with generalized beams,

unlike fixed profile beam methods.

The consequences of this method are the following. First, a new beam is spawned for

each portion of each surface that is visible from the beam source through its window poly-

gon. Since beams are allowed to subdivide at reflection surfaces, no false hits or missed hits

can occur. The number of beams is no longer predetermined; hence, no virtual sources are

overlooked. Since beam reflection is not approximated using the central axis, the accom-

panying errors are avoided as well. Generalized beams thus retain all of the benefits-but

none of the limitations-of previous methods.

I store the 3D geometric description of each beam in a data structure, along with a 2D

representation of its window and mosaic to accelerate point to beam intersection calcula-

tions [39]. The reflection history is stored as well, along with accumulated surface attenu-

ation from previous reflections.

In order to determine if a receiver is within a beam, it is not sufficient to simply project
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Figure 5-1: Construction series for three generations of beams. Occluders are shown in
red, and windows are shown in green. Dotted lines indicate construction lines for mirrored
image source location.



Figure 5-2: Beam profiles mapped onto a sphere centered at the source. a) First generation.
b) Second generation.

the point onto the beam window. The point may be shadowed by an intervening surface.

The receiver point must lie between the window and the occluder that contains the projec-

tion of the receiver point. Figure 5-3 shows one such beam from various views, and a re-

ceiver point within it. A ray originates at the image source and extends in the direction of

the listener point. The ray pierces the window first, then the listener point, then the occluder.

The occluder would shadow the listener point if the ray intersected the occluder first.

Once the hierarchical beam tree is constructed, each beam's energy is calculated given

absorption characteristics of the surfaces in its reflection history. It is important to note at

this point that even if the absorption characteristics are changed, the beam tree structure

remains valid. Only the energy contained by the beams needs to be updated. If, however,

the geometry of the enclosure is altered, or the position of the source is modified, part or all

of the beam tree structure is invalidated and therefore must be regenerated. Full advantage

is taken of these features in our inverse design system.



Figure 5-3: Receiver point within a beam projects onto the window and an occluder.

5.2 Improved Statistical Tail Approximation

Shortly after a sound begins to propagate within an enclosure, after a small number of re-

flections, the behavior begins to resemble an ideally diffuse field, with wave fronts moving

in all directions. At this point it is reasonable to neglect the directional component of the

sound field, using a statistical model to capture the behavior of the remaining sound. Be-

ranek [8] describes an approximation to the decay of sound in an enclosure as a function

of time based on the volume, surface area, and average absorption coefficient over the sur-

faces. While this serves as a reasonable coarse approximation, it fails to take into account

such factors as proximity and orientation of surfaces to the source. Our beam method allows

us to improve this approximation by accounting for these factors. After the first reflection,

one can determine the remaining sound energy and the statistical distance, and thus the time

of reflection, and use these results as input to the standard approximation. In fact, one could

determine these values for any reflection depth, further improving the approximation.

This claim is realizable as a direct result of the beam method. The sound energy is cal-

culated at the first reflection as follows:

1. For each first generation beam, determine the projected solid angle and projected cen-

ter of gravity for each of its occluders.

2. Map the center of gravity back onto the surface and determine its distance and direc-



Figure 5-4: Improved energy decay calculation based upon projected areas, effective a.

tion to the source.

3. Use the angle between this vector and the occluder face normal to determine the angle

dependent absorption.

4. Accumulate the energy contribution ei and distance og for each occluder i weighted by

projected area ai. If the occluder extent is too large, as in Figure 5-4, approximation

errors will be significant.

5. Recursively subdivide each region to reduce the errors.

The statistical distance A and the statistical time E are given by the following equations:

E(of * ai)

1 1 i

E)1 = ---.
C

The energy E remaining at E1 is given by

E (e * ai)
E ai

Air attenuation is applied to the sound energy as well. For later reflections the energy con-

tribution accounts for the absorption due to previous reflections.

This approximation technique provides the amplitude of the decay curve that is used to

determine the reverberation time. However, it does not address the time distribution of hits



Figure 5-5: Sphere with radius r1 has the same volume V as the enclosure. Sphere with
radius r2 has volume V2, twice the volume of the enclosure. The statistical time when a
typical receiver will have incurred n hits is n.

that is needed to calculate the acoustic measures used to evaluate the hall. Our approxima-

tion is based on the idea that if the total volume of beams propagated through an enclosure

equals n times the volume of the enclosure, then on average a representative point in the

enclosure will be contained by n beams. The approximation of the time distribution of hits

is as follows.

" Determine the radius ri of a sphere whose volume vi is equal to that of the enclosure.

" Convert r1 to time 61 to get the statistical time of the first reflection. Statistically,

the nth hit occurs at a distance equal to the radius rn of a sphere with volume vn =

n * v1 . Likewise, the number of hits hn by time On is (ta) 3 . This approximation can

be improved slightly if the statistical time derived in the amplitude calculation for the

first reflection is used. This is accomplished by shifting the time line by the difference

between the geometrically determined time and the idealized time.

The statistical tail is constructed by combining the hit times with the decay curve infor-

mation. Individual hits are recorded from time E to 0.5 seconds. The interval between 0.5

and 2.5 seconds is partitioned into ten time spans, each 0.2 seconds in duration and assigned



the energy equal to that of the decay curve at its midpoint times the number of hits that occur

during the span. The interval from 2.5 seconds to 5 seconds is handled similarly as a single

time span.

This approach is sufficient to provide the data necessary to calculate the measures used

to evaluate the acoustics of an enclosure. In retrospect, instead of using fixed time points,

it might have been preferable to set them relative to the mean free path d of each enclosure.

A representative listener location in a large hall will receive far fewer hits by a given time

than its counterpart in a small space. By using relative time points, the computational detail

and complexity would be much more uniform for spaces of any dimension.

Since this simulation engine is being used in the context of an optimization design sys-

tem, it should be noted that whenever the absorption characteristics of surfaces within the

enclosure are altered, the energy decay envelope is affected, and must be recalculated. Any

geometric change will effect the onset and frequency of hits as well. Hence, the tail is simply

regenerated for any change to the enclosure description.

5.3 Sound Field Point Sampling

In order to sample the sound field at a point within the enclosure both the beam and statis-

tical tail components of the simulation are considered. A hit list is constructed containing

the time, intensity, and direction of every passing beam. Only beam volumes that contain

the sample point are considered. The statistical tail data is then included to produce the

full compliment of data required for the calculation and visualization of objective acoustic

parameters. No directional information is kept for the tail, since its derivation is based on

diffuse field assumptions. Figure 5-6 illustrates this approach.

One might assume that a beam would have an identical effect on all sample points it

contains. However, this is not the case. For a given sample point, the arrival time and di-

rection are determined directly from the vector connecting the virtual source of the beam

and the sample point. The intensity varies throughout the beam as a function of distance



point A resulting echogram A

statistical tail

Ipoint B resulting echogram B

Figure 5-6: Hits from beams are combined with the statistical tail.

from the source. Surface attenuation from previous reflections effects the initial energy of a

beam, and air and distance attenuation further reduce this energy as the beam propagates. It

is also possible to account for a source with a non-uniform directional energy distribution,

angle dependent surface absorption, and phase, by inverse mapping reflections back to the

source. I have implemented angle dependent surface absorption, but found that the increase

in accuracy did not justify the computation cost and subsequent loss of interactivity.

5.4 Multidimensional Sampling

The system supports the use of higher dimension receivers as well. Various spatial subdi-

vision approaches can increase the efficiency of the sampling by representing large near-

uniform regions with a single sample. If the variation in the simulation data within a given

region exceeds a limit, the region is divided into two regions along each dimension, and each

resulting region is processed similarly. I use a three dimensional subdivision scheme, an

octree hit structure for volume receivers, which may be used to aid in positioning diffusers,

reflectors, and balcony seats, or to gain an overall understanding of sound transport within

the enclosure. A two-dimensional quadtree structure is used for area receivers, covering a

seating area, or wall, for example. A row of seats may be represented by a line receiver with

a binary tree structure.

The efficiency of these structures increases as receiver points get closer together and

virtual sources get farther away. In both cases, the effect of a beam's energy contribution



Figure 5-7: Octree representation of a beam intersected with a 3D receiver.

on two adjacent points with respect to their previously accumulated energy is reduced.

The recursive algorithm proceeds as follows:

1. If there is no intersection between the receiver region and the beam, disregard it.

2. If all extrema of the receiver region are not inside the beam, subdivide the receiver

region, and for each piece, go to step 1.

3. If the range of energy levels within the receiver region is large, i.e. greater than a

given tolerance, subdivide the receiver region, and for each subregion, go to step 1.

4. Record a single hit for the entire receiver region.

This algorithm takes great advantage of spatial and temporal coherence. Figure 5-7 shows

the octree representation for the intersection of a beam and a 3D receiver volume.

This acoustic simulation algorithm has several features that work well with the audiop-

timization design system. The sound field for the entire enclosure volume is pre-calculated,

allowing sampling at any location and time without having to reconstruct the beam tree. If



only materials are changed between design iterations, then the only aspect of the hit list for

a given listener position that changes is the intensity of the hits. The time and direction of

the hits are unaffected by these changes. This allows the system to accelerate material op-

timization, saving the expense of reconstructing the beam tree. The user may also trade off

accuracy and speed by specifying the reflection depth, that is, the depth to which beams are

traced. When this depth is reached, sound is modeled with statistical methods. The shal-

lower the reflection depth, the faster the simulation calculation, but the lower the accuracy.

This flexibility allows the designer to receive more timely feedback during early design, and

more accuracy for late or final design.

5.5 Sound Field Visualization

The system provides two very different tools which present the raw sound field data to the

designer: the beam animator, which presents the sound field from a position independent

viewpoint, and a viewer which presents a series of "tempolar plots", visualizations I have

designed and named which present detailed listener position dependent data. Both tools use

the beam tracing data exclusively, which contains useful directional information for each

sound wave.

5.5.1 Beam Animation

In this system the sound field generated by an impulse within an enclosure is represented by

a collection of beams, or wave fronts moving through the space. The user is allowed to view

these beams though time as they propagate within the enclosure. Figure 5-8 shows a series

of snapshots from an animated sequence to illustrate this visualization tool. The tool offers

insight into the directional effects that geometric components have on the sound field.



Figure 5-8: Three snapshots of wave front propagation.

5.5.2 Tempolar Plots

Frequently it is effective to represent the sound field from the perspective of a single loca-

tion, perhaps the location of a listener within the space. The sound field, when point sam-

pled, is represented as a list of hits, one for each wave front that passes the point location.

Such a hit has three components: arrival time, arrival direction, and the intensity of the wave

front as it passes. Standard point sample visualizations represent only two of the three com-

ponents. The echogram conveys level as a function of time. The sound rose presents level

as a function of direction.

I have designed a visualization, which I call the tempolar plot, that combines all three

data components. Each hit is represented as a splotch on a polar plot. The direction of a

passing wave front determines the angle the splotch makes with respect to the plot origin.

The three dimensionality of the data is reduced to 2D by rotational projection about the lat-

eral axis of the listener. That is, the angle of the impinging sound with respect to the lateral

axis is represented, not the actual direction of the wave front. The splotches appear on the

left side of the plot if they arrived from the listener's left. Arrival time determines the dis-

tance from the origin. Shades of gray are used to represent sound level. This plot combines

the advantages of the echogram and sound rose into a single representation.



Figure 5-9: Tempolar plots for three hall locations.

The tempolar plot also represents the total energy integrated over angle and time, com-

posing the peripheral strips shown in Figure 5-9. The plot can be viewed through time. The

contributions of energy are added to the plot at their respective arrival times, and integrated

level indicators are updated through time.

In this chapter I have provided detailed description of the acoustic simulation algorithm

used in the acoustic design system presented in this thesis. While this algorithm offers many

desirable features which can be leveraged an acoustic design context, It could conceivably

be replaced in this design system by an improved algorithm, should one become available.



Chapter 6

Inverse Problem Formulation

In this chapter, I pose the acoustic design task as a constrained, non-linear optimization

problem. I begin with a brief discussion of optimization techniques and then move on to

the problem formulation.

6.1 Optimization

The role of optimization in a design system is to find the configuration in the feasible design

space that best matches desired performance goals. The choice of an optimization technique

depends on the nature of the design space and the types of constraints. The goal of optimiza-

tion is to minimize an objective function of n system parameters while satisfying a set of

constraints [11, 51]. Standard non-linear optimization techniques use the gradient and cur-

vature of the objective function to descend to a minimum, or locally optimal configuration

[11]. The objective functions encountered in the context of audioptimization have multiple

such minima, and therefore require a global strategy. Hence, we first employ a global opti-

mization technique, simulated annealing, to locate a more globally optimal neighborhood

and then use the steepest descent algorithm to descend to the minimum. The existence of

constraints implies that not every target is realizable.

In order to accomplish this, I formalize the problem as follows: given a description of



a set of desired measures for acoustic performance, determine the material properties and

geometric configuration that will most closely match the target. In order to formulate the

acoustic design process as a constrained optimization problem, a specification of 1) the op-

timization variables that express how a hall may be modified, 2) the constraints that must

be satisfied, and 3) the objective function must be specified.

6.2 Optimization Variables

In a typical acoustic simulation system, the goal is to compute the sound field in a scene

assuming a sound source and a description of the geometry and materials. The measures

described in Section 4.1 are the unknowns, which are computed in terms of static material

properties and geometry. In the optimization problem, material and geometric properties

are no longer fixed but are treated as variables.

Sabine writes...

Broadly considered, there are two, and only two, variables in a room - shape

including size, and materials including furnishings. In designing an auditorium

an architect can consider both; in repair work for bad acoustical conditions it is

generally impractical to change the shape, and only variations in materials and

furnishings are allowable. [45]

A hall is comprised of a collection of polygons, subsets of which may be grouped into

geometric components. Components are a convenient and natural way to represent entities

such as balconies, reflectors, etc. Each component can have associated with it a set of allow-

able geometric transformations and a set of acceptable materials. Each translation, rotation,

or scaling of a component represents a geometry variable; a set of possible materials asso-

ciated with a component is a material variable.



6.3 Constraints

There are two types of constraints. Geometry constraints are user-specified upper and lower

bounds placed on each transformation of a component. Each transformation variable rep-

resents a single degree of freedom: translation along a vector, rotation about a vector, or

scaling about a point or along a vector. The allowable range of each transformation con-

straint requires the component to remain within the specified bounds. For example, T 0, <

Ti < Thigh, requires the transformation i to remain within the bounds T10. and Thigh.

Material constraints are user-specified sets of allowable materials that are assigned to

a given component. This subset of materials is selected from a library of materials, which

is provided by the system. For example, {plaster, concrete, fiberglass} is a set of materials

for a component. In addition, the physics of sound propagation imposes physical constraints

that govern the behavior of sound as it passes through air, is reflected, and is diffused from

surfaces within a hall. These constraints require that all materials have absorption coeffi-

cients in the range of 0.0 to 1.0, which prevents the sound energy from becoming negative-

keeping the simulation in the realm of physically meaningful solutions.

6.4 Objective Function

Audioptimization problems typically have infinitely many feasible configurations that sat-

isfy the constraints. An objective function is necessary to select the optimal configuration

from the feasible set. We need to to define a function that produces a single rating for the

hall, based on the effect these measures have on the listener.

A successful objective function will consider the following. First, since one acoustic

measure may have a more detrimental effect on the experience of the listener than another,

each measure must be weighted appropriately. Second, for each measure, different values

must be penalized in proportion to their adverse effects on a listener's experience. These

two considerations are not independent of each other.

We use Beranek's Objective Rating Method (ORM) as our objective function, which is



an application of Ando's Theory of Subjective Preference [5, 10]. Ando found that when

m orthogonal objective acoustic measures are given, the following equation based on the

responses of human listeners provides the scalar rating of a hall:

f(x) = Zwifi (6.1)
i=1

where the multidimensional vector x is the configuration of the hall, the function fi penal-

izes the deviation from the target value of each objective acoustic measure, and the weight

wi normalizes the respective functions.

Beranek uses the six objective acoustic measures mentioned earlier, IACC, EDT, BR,

G, TI, and SDI, and provides the following values for their weights:

WIACC = 1.2

9 if EDT < 2.0

WEDT = 12 if EDT > 2.3

0 otherwise

WBR =10

0.04 if G < 4.0

WG 0.07 if G > 5.0

0 otherwise
WTI = 1.42

WSDI = 1--

The definitions of the penalty functions follow:

fIAcC = IACC (x) - IACCtarget 3/2 (6.2)

(lEDT (x) 3/2
fgr= log E ta t)(6.3)

(EDTtarget)

(BR (x) 3/2
fBR = log B ( (6.4)

BRtargetJ

fG = IG (x) - Gtarget|3/2 (6.5)



Tx) 3/2

fhi = log(;Itx) ) (6.6)

fsDI = log(SDI(x) 3/2 (6.7)
(SDItarget)I

where IACCtarget, EDTtarget, BRtarget, Gtarget, TItarget, and SDItarget are the user-specified

target values; and the functions IACC (x) , EDT (x) , BR (x) , G (x) , TI (x), and SDI (x) are

objective acoustic measures for configuration x.

Finally, the objective function given by Equation 6.1 is minimized to find the hall config-

uration that best matches the target objective acoustic measures. Note that objectives may

be constructed from all or a subset of these terms. Appendix B describes how the objective

function presented above can be modified with performance goals that are appropriate for

various uses of the hall. I follow this with a discussion of how to construct an objective to

handle multiple performance types simultaneously, such as symphonic music and opera.

6.5 Optimization Problem

The optimization problem can now be stated as follows: minimize f(x) subject to x E X,

where the constraint set X is the "design space" spanned by feasible hall configurations. The

existence of constraints implies that not every target is realizable. The optimization process

must identify an optimal point in the design space, i.e. x* E X, such that f (x*) <; f(x),

Vx E X. Simulated annealing and steepest descent techniques are used in combination to

search globally for the "best" hall configuration. I discuss these techniques in detail in the

following chapter.



Chapter 7

Implementation

In this chapter I describe the implementation of an interactive design system based on au-

dioptimization. The framework of our approach is illustrated in Figure 7-1 and summarized

below.

The user provides an initial model that is passed to the simulation algorithm to compute

a baseline sound field solution. Then, to specify desired targets for acoustic measures, the

user manipulates icons and paints desired sound level values onto a subset of hall surfaces

at selected time steps. The user then constrains the design space for the system to search,

by indicating the range of modification for variable material and geometric components.

The user then optimizes over materials and geometry either separately or simultaneously.

Once the optimization process has been initiated, the user can interrupt it to modify goals,

add and/or delete variables and modify their constraints, or adjust optimization parameters.

Once all the design goals and variables are specified, the optimization process is run until

convergence is achieved.



The following pseudo-code describes the process:

Compute baseline sound field solution.
Establish constraints, objectives, and optimization parameters.
repeat

Invoke simulated annealing.
Invoke steepest descent.
Display results.
Modify constraints, objectives, and optimization parameters if desired.

until convergence.

OPTIMIZATION

CONSTRAINTS & DISPLAY RESULTS
OBJECTIE

Figure 7-1: Overview of the interactive design process.

7.1 Simulation

The sound field for the initial model configuration is simulated using the hybrid simulation

algorithm presented in Chapter 5. A standard source-a single omnidirectional full band

spherical impulse-is used, which is simulated and propagated into the environment. The

user can trade simulation quality for speed through a number of interactive controls.

Visualizations described in Chapter 4 display acoustic measures derived from the sim-

ulated sound field at a set of user-specified locations within the hall. A fine mesh of sample



points displays sound level data over time, which is indicated by a color scale as shown in

Figure 4-4.

7.2 Constraints and Objectives

Before initiating the optimization process, the user specifies a range of acceptable modifica-

tions to the hall. This specification involves selecting component modifications to surface

materials and geometric transformations. The user must also set acoustic performance goals

so the system can evaluate different hall configurations.

7.2.1 Constraint Specification

The design space describes all the ways the user will allow the enclosure to be modified,

and is typically composed of a very large number of configurations. It is this design space

that is searched by the optimization process to find the configuration that best meets acoustic

goals. The design space is specified interactively, as the user selects the components within

the enclosure that can be modified, and the range of modification permitted.

In order to specify a material constraint the user chooses a set of allowable materials with

the Material Editor (Figure 7-2) for a component. An array of absorption coefficients corre-

sponding to the frequencies ranging from 31 Hz to 16 kHz, and an SDI value describe each

material. Table C. 1 lists a subset of the material library. During optimization the compo-

nent may be assigned any of the selected set of materials. The set is ordered based upon the

absorption characteristics of each material. This ordering allows the optimization to utilize

a 'difference' metric when selecting from material choices.

The user interactively imposes constraints on the transformation of geometric compo-

nents using the Geometry Editor. After selecting a component and transformation type, the

user indicates the component's positional degree of freedom by placing and orienting a coor-

dinate system axis icon (Figure 7-3a). The user sets boundary constraints by positioning the

component at the desired range limits. This range is discretized into a user-specified num-



Figure 7-2: Material and geometry editors.

ber of configurations. A rotation constraint is specified by orienting and selecting a rotation

axis, then interactively reorienting a component to both minimum and maximum configu-

rations, shown graphically in Figure 7-3b. Figure 7-3c shows the possible states resulting

from translation constraint specification for a set of ceiling panels. Figure 7-3d shows a

scale constraint specified by indicating a point and direction of scale. Each transformation

specified by the user becomes a design variable, and may be set to any of the discretized

values during optimization. Conflicting constraints are resolved in the order that they were

defined. For example, if the user first scales one wall, then rotates an adjoining wall, the

scale operation precedes the rotation operation in constructing the resultant configuration.

During the design of this system the idea of allowing the system to determine the ideal

material characteristics for a component was considered, thus removing the constraint that

the material must be selected from the constraint set. This approach has merit, and should

pursued in the future. However, it seemed more practical to select from a set of real-world



Figure 7-3: Geometry constraint specification. a) Coordinate system axis icon used for
transformation specification. b) Rotation constraint specified by orienting and selecting a
rotation axis. c) Possible configurations resulting from translation constraint specification
for a set of ceiling panels. d) Scale constraint specified by indicating a point and direction
of scale. The constraints are discretized according to user specified divisions.

material choices. A reasonable variation might be to let the system determine the ideal ma-

terial characteristics, then locate the best match from the real-world set of materials.

The definition of a search neighborhood surrounding a geometry variable configura-

tion comes naturally from this discretization process. The distance between configurations

is simply the absolute difference between their configuration indices. The definition of a

neighborhood surrounding a material variable configuration is less straightforward. Mate-

rials are ordered by the system based on their average absorption coefficients. The distance

between configurations is then given by the absolute difference between their ordering in-



Target
value

Figure 7-4: Graphical difference icons representing (from left to right) IACC, EDTand BR.

dices. Because the ranges of materials and geometric transformations are discrete, combi-

natorial optimization is feasible.

7.2.2 Acoustic Performance Target Specification

The targets for IACC, EDT and BR for point samples can be set interactively by manip-

ulating the point sample icon. The geometric representations of targets are selected, then

dragged into positions that represent desired values. Textual feedback is displayed aside

the icons during manipulation.

The system provides three viewing modes for iconic representation. The first mode dis-

plays the actual value of the three acoustic measures. The second mode displays the target

value for the measures. The third shows the difference between the actual and target val-

ues. It is easiest to see the positional subtleties of the sound field using this difference mode.

Figure 7-4 shows positional difference icons. IACC difference is represented as the region

not covered by the actual value. Under ideal conditions the IACC difference shell is absent

since it represents directions not covered by incoming sound. EDT difference is character-

ized as a solid cone whose radius indicates absolute difference and whose color indicates

whether the actual value is higher than (red), or lower than (blue) its target. BR difference

is represented as a ring between the actual and target values, similarly color coded.

The acoustic measure G has both a positional and temporal component. One sets scalar

values for sound level targets by selecting a paint color from the color palette and painting



Figure 7-5: Sound strength target specification.

sound level or a change in level directly onto the seating regions. Unlike other measures,

sound level may be specified at various time points during the simulation. While the final

sound level is important, the time distribution of sound is critical to our perception. Figure 7-

5 illustrates three painted time slices. Various brush shapes and sizes are provided.

A scrollable viewer indicates sound level with a column of three thumbnail images for

each time slice (Figure 7-6). The top row shows the color coded visualization for the actual

sound level. The middle row shows target values specified for a given time slice. At the

bottom is a red-blue signed difference image between the actual and target values, where

difference is defined as the actual value minus the target value. The user defines the map-

ping by specifying the range limits represented. Maximum positive difference is mapped to

red, maximum negative difference is mapped to blue, and minimum difference is mapped

to black, with intermediate values mapped to interpolated colors. This tool provides an easy

way to assess and specify desired performance through time.

Discussion

There is a degree of subtlety to specifying sound level targets, particularly for the early time

points. One could simply paint the desired sound distribution exactly as desired. However,

one might also wish to manipulate these targets as one would manipulate knots on a spline

curve. One could think of these painted targets as spline curve knots, that is, control points

that influence the shape of a curve without necessarily residing on the path of the curve it-

self. In this case, the painted targets influence the sound level 'curve'. One can control the



Figure 7-6: Sound level specification editor.

influence of these painted targets by exaggerating their values, pulling them away from the

curve, and relying on the optimization process to modify the curve to approach these points.

In order for the early targets to exert any influence on the optimization process, the target

must be specified at a time on or after the first reflected sound wave arrives at a point. An

earlier target will always produce the same penalty, since the direct sound is all that has

arrived by that time, and it is not effected by any modification to the enclosure. If a target

is specified too long after the reflected sound starts to arrive, then its influence in tugging

at the temporal distribution of sound is lessened. Ideally, the target will be set for a time

closely following the onset of reflected sound.

Alternative target setting techniques include textual specification, and preset performance

goal selection. Predefined target values are provided for symphonic music, operatic music



Figure 7-7: These illustrations show ideal values for two different types of hall uses. left:
symphonic music. right: speech.

and speech, or combinations of these. Table B.1 summarizes the target values for the preset

goals. Figure 7-7 shows preset target values for two cases.

7.3 Optimization

Having specified the evaluation function and the design space in previous sections, it re-

mains to define the final component required by inverse design: the design space search

strategy. The role of optimization in a design system is to find the configuration in the de-

sign space that best matches desired performance goals.

In general, the audioptimization objective function contains many local minima. There-

fore, we first apply a global optimization step using simulated annealing to locate the neigh-

borhood of a good solution and then follow with the steepest descent algorithm, which is

more efficient in finding the local minimum.

7.3.1 Global Optimization: Simulated Annealing

Simulated annealing is a combinatorial optimization algorithm that produces a series of tran-

sitions between configurations in the design space based on three components: a generation

mechanism, a cost function, and an acceptance function [29]. The generation mechanism

randomly selects a new configuration x,, from within a neighborhood around the current

configuration Xcurrent, where the neighborhood size is determined by E. The cost function f

- - -)
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evaluates xnew as defined in the previous section. The acceptance function accepts or rejects

Xnew by comparing the current cost f (Xcurrent) to the new cost f (Xnew). If Xnew is accepted,

a transition results and Xnew replaces Xcurrent. Unlike local optimization methods, which ac-

cept only lower cost transitions terminating at the local minimum, the simulated annealing

method uses the Metropolis algorithm where the probability of accepting a higher cost con-

figuration is non-zero [1, 41]. This feature allows the search to proceed uphill, away from

a local minimum, in search of a more global minimum.

A transition from Xcurrent to Xne, is made with probability M, where:

exp " if f(Xnew) > f(Xcurrent) (7.1)
1.0 if f(Xnew) <; f(Xcurrent).

r is a temperature control parameter that slowly drops or "cools" throughout the anneal-

ing process, gradually decreasing the probability of accepting a higher cost configuration.

A user-defined annealing schedule determines the value of both temperature and the neigh-

borhood parameter E used in the generation mechanism. The user specifies the initial values

ro and Eo, as well as the initial number of configurations Yo to sample, before changing these

annealing control parameters. Finally, to complete the annealing schedule, the user specifies

the percentage by which each value is changed after sampling y configurations.

Once the annealing process is initiated, it terminates when satisfying one of two stop

criteria: either the process reaches a user-specified limit on the number of configurations to

evaluate; or the process converges, which occurs when an exhaustive evaluation and rejec-

tion of each configuration in the current neighborhood is achieved.

Once the stop criteria are met, the user may assess the current state of the sound field.

The user may then conclude the optimization process by invoking the steepest descent step.

Alternatively, acoustic performance goals may be altered, optimization variables may be

added or deleted, or their constraints modified, optimization parameters may be modified,

then the optimization may be restarted. If the user has chosen not to make any modifications

and the optimization process has not yet converged, the optimization may be resumed.



The simulated annealing algorithm is expressed in pseudo-code as follows:

procedure SimulatedAnnealing()
k <-- 0
AnnealingSchedule-InitParams(k, ek, Y)

Xcurrent +- InitialRandomConfiguration()
repeat

for (i +- 0; i < yk; i +- i + 1)

xne, +- GenerateNeighborConfiguration(ek, Xcurret)

if (M(Xnew, Xcurrent, rk) > random[O,1))

Xcurrent +~ xnew

end if
end for
k +- k + 1
AnnealingScheduleUpdateParams(rk, ek, 1k)

until Stop Criteria
end procedure

7.3.2 Local Optimization: Steepest Descent

Simulated annealing is followed by steepest descent if convergence has not been attained.

Starting at Xcurrent, successive steps are taken between neighboring configurations with de-

creasing cost. The algorithm terminates when no neighboring configuration has a lower cost

than the current configuration.

A descent direction is determined as follows. An n-dimensional direction vector d is

computed, where n is the number of optimization variables. Each vector component di,

where i = 0, ... , n - 1, may assume the value -1, 0, or 1, depending on which neighboring

configuration has the lowest cost. The most suitable neighbor is located by defining a unit

direction vector e, setting its ith component to 1, adding e to and subtracting e from Xcurrent

in turn, and comparing the cost of the resulting configurations. This discrete version of the

steepest descent algorithm is shown in the pseudo-code below.



procedure SteepestDescent()
repeat

ed +- 1

if ((f (Xcurrent - e) < f (Xcurrent)) and (f (Xcurrent - e) < f (Xcurrent + e)))

d, +- -1

else if ((f (Xcurrent + e) < f (Xcurrent)) and (f (Xcurrent + e) < f (Xcurrent - e)))
di 1

else
di +- 0

end if
end for
if f (Xcurrent + d) < f(current)

Xcurrent <~ Xcurrent + d
end if

until Xcurrent is optimal
end procedure

7.3.3 Discussion

When both materials and geometry are free to change, the optimization algorithm is altered

to take advantage of the fact that material modifications execute up to 50 times faster than

geometry modifications. Therefore, a full material optimization is run after testing a new

geometry configuration and the resulting cost is used in the acceptance test for the geometry

optimization. The second example in Chapter 8 uses this approach.

Simulated annealing has both advantages and disadvantages. On the positive side it has

a statistical guarantee of locating an optimal solution, and the objective function may be

discontinuous and non-differentiable. This approach is well suited to searching discretized

design spaces such as ours. On the negative side the control parameters (T, e, -y) need tuning

for each new application to obtain the best results. In our case the cooling schedule required

to guarantee statistically locating an optimal solution is impractically slow. As with many

applications of simulated annealing, we relax this condition, and decrease r faster than the



formal definition of simulated annealing allows. This variation is called simulated quench-

ing [24], and it provides an acceptable solution within a reasonable time frame.

I have presented the implementation details of a real acoustic design system build on

inverse design principles. In the following chapter I will present case studies of existing

performances spaces which illustrate the application of this system in the context of real

world design.



Chapter 8

Case Studies

To demonstrate the techniques introduced in this thesis, I show results based on three real

architectural spaces in which acoustic considerations play a prominent role. A large per-

centage of acoustic designs involve the renovation of existing spaces to correct acoustic

problems; these examples illustrate such scenarios.

The system described in the preceding chapters has been implemented in C++ and run

on a Silicon Graphics Onyx Reality Engine 2 workstation with 256MB of memory using a

single 195MHz MIPs R10000 processor.

8.1 Oakridge Bible Chapel

The first example is Oakridge Bible Chapel in Toronto, Canada, whose initial design exhib-

ited a fundamental acoustic flaw (see Figure 8-2). The walls and ceiling were faced with

highly reflective plaster, which produced excessive reverberation, causing the sound from

one spoken syllable to linger and mask the following syllable. Even when sufficiently loud,

speech became almost unintelligible.

By simulating the existing environment, we were able to confirm the speech intelligi-

bility problem. Plates 1-3 show the results of the simulation. The width of the cones and

height of the bass cylinders indicate that both EDT and BR are too high (see Plate la). The

.74



Figure 8-1: Interior photograph of Oakridge Chapel (courtesy of Dale Chote.)

sound strength visualization shown in Plate 3 demonstrates that the total sound level is also

too high and that much of the distribution arrives late. The time distribution of sound energy

has a significant effect on speech intelligibility; the earlier the sound arrives, the better.

We set out to improve speech intelligibility by reducing the initially high values of EDT

and BR while maintaining adequate sound levels. We built the objective function using

EDT, BR, and G, which are the three measures relevant for speech. Their respective tar-

get values are shown in Table 8.1. Note that these values differ from those used to evaluate

symphonic music[7]. Plate lb shows the target values and Plate Id shows a difference im-

age relative to the initial configuration. In order to improve speech intelligibility, we painted

sound level target distributions on the seating plane for three time slices: 0.08 seconds, 0.16

seconds and total level, as shown in Plate 2. These particular times slices were chosen in

order to include reflected sound.

Having set the acoustic goals, we selected modifiable components and specified the range

of the modifications. Oakridge is typical of buildings that are constrained by their exist-

ing geometry, limiting redesign options. With this in mind, we restricted the optimization

to include only changes to materials. We considered two design scenarios: one involving

the ceiling surfaces-the most easily modifiable surfaces covering the largest contiguous



(a) Plan (b) Cross section (c) Longitudinal section

Figure 8-2: Computer model of Oakridge Chapel.

EDT (sec) BR G (dB) f(x) Improvement

Target 0.700 1.000 > 0.0 0.0 NA
Initial Configuration 1.899 1.631 12.141 4.835 NA
Final (Ceiling Only) 0.784 1.002 7.760 0.120 97.5 %
Final (Walls and Ceiling) 0.651 1.026 6.779 0.098 98.0 %

Table 8.1: Acoustic measure readings for Oakridge Chapel.

area-and the second involving both the ceiling surfaces and walls.

In the first scenario, the system assigned highly absorptive materials to cover the reflec-

tive ceiling surfaces. The resulting configuration yielded an objective value 97.5% closer

to the goal than the initial configuration. As desired, EDT dropped greatly to a fraction of

the original value, and BR dropped significantly as well. Speech would be much more in-

telligible to the congregation with the resulting configuration.

For the second scenario, we also altered the materials on the walls. The system assigned

highly absorptive materials to most surfaces, which improved the objective value by 98.0%.

Plate 3 shows the accumulation of sound energy on the seating plane at four time steps for

both the initial and final configurations. Note that in the final configuration, the majority of

the sound arrives early, resulting in improved speech intelligibility. The system has in effect

improved the temporal distribution of sound by increasing the percentage of the early sound

and decreasing the percentage of late sound. The results are summarized in Table 8.1. Each

source position
*
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(a) Initial simulation

Plate 1: EDT, BR, and G values for initial,
target, and optimized configurations of Oakridge
Bible Chapel. Material variables include the
walls and ceiling.

(b) Target

(c) Final simulation

(d) Initial difference

(e) Final difference
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Initial difference

Initial simulation

Final simulation

Final difference

Plate 2: Sound strength shown on the seating areas of Oakridge Bible Chapel at three time steps
for initial, target, and optimized configurations. Material variables include the walls and ceiling.
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Plate 3: Sound strength shown on interior surfaces of Oakridge Bible
optimized configurations. Material variables include the walls and ceiling.
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Figure 8-3: Computer model of Kresge Auditorium.

scenario ran in under three minutes.

8.2 Kresge Auditorium

The second example, Kresge Auditorium, is a multi-purpose auditorium at MIT, which is

currently undergoing acoustic reevaluation (see Figure 8-3). The Institute utilizes Kresge

for everything from conferences to concerts. The hall does not possess reconfigurable ele-

ments that would help accommodate such disparate acoustic requirements. Consequently,

the auditorium suffers from too much reverberation for speech, although the reverberation is

adequate for music, shown graphically in Plate 4 by the EDT cones. Another shortcoming is

that the audience does not feel surrounded by the sound, indicated by the IACC shells, which

fail to encircle the icons. The average sound level G is 7.18 dB (see Table 8.2). However,

the temporal distribution of energy is poor for speech intelligibility with too much energy

arriving late.

While the acoustics of the hall will never satisfy all uses without introducing reconfig-

urable geometry or material elements, our intent was to consider modifications that would

improve the acoustics as a whole. In order to reflect this, we modified the objective function

to include two sets of targets, one each for speech and symphonic music, equally weighted

(see Section B.2). We painted sound level targets for both speech and symphonic music for

time slices at 0.08 seconds, 0.16 seconds and total level, as shown in Plate 5. The other



IACC EDT (sec) BR G (dB) SDI TI (sec) f(x) Improvement
Speech and Symphonic Music

Target 0.000 0.850 1.000 4.750 1.000 0.020 0.830 NA
Initial Config 0.620 2.126 0.952 7.184 0.202 0.039 3.142 NA
Materials Only Config 0.723 1.372 1.058 3.012 0.219 0.039 2.292 36.8 %
Geometry Only Config 0.539 2.047 0.958 7.227 0.202 0.028 2.890 10.9 %
Materials & Geometry 0.594 1.462 1.094 4.908 0.211 0.028 2.178 41.7 %
Speech
Target NA 0.700 1.000 > 0.000 NA NA 0.000 NA
Initial Config NA 2.216 0.952 7.184 NA NA 4.419 NA
Final Config NA 0.785 1.025 0.150 NA NA 0.295 93.3 %

Symphonic Music
Target 0.000 2.150 1.175 4.750 1.000 0.020 0.000 NA
Initial Config 0.620 2.126 0.952 7.184 0.202 0.039 1.866 NA
Final Config 0.590 1.882 1.025 4.365 0.209 0.028 1.543 17.3 %

Table 8.2: Acoustic measure readings for Kresge Auditorium.

targets are given in Table 8.2.

Unlike the optimization of Oakridge Chapel, which we restricted exclusively to material

changes, here we allowed geometry optimizations as well. Since construction costs for geo-

metric changes generally exceed costs for material changes, we separated the optimization

into three passes, modifying only materials, only geometry, then materials and geometry

combined, to compare the effectiveness of each.

Using the visualization tools, we observed the pattern of sound level accumulation as a

function of time for the initial hall configuration, noting that the direct sound and the ear-

liest reflections have the greatest effect. As variables for the first example, we selected the

materials for the seats, the wall at the back of the hall, and the walls of the stage shell, since

reflected sound from these surfaces reaches much of the seating area.

The optimization over materials took 72 seconds to converge, sampling 200 configura-

tions. The system assigned absorptive material to the seats and stage floor, and it assigned

reflective materials to the rear wall and remaining surfaces near the stage. The Materials

Only entry in Table 8.2 shows that EDT improved substantially. While SDI improved, we

did not include surface treatments that would raise SDI much beyond 0.3. TI remained un-



(c) Material and geometry

Figure 8-4: Variable positions for the rear and forward bank of reflectors and the back stage
wall in Kresge Auditorium for the initial (red) configuration, the geometry only (green) con-
figuration, and the combined materials and geometry (blue) configuration.

changed since it is only affected by geometric changes.

In the second example, the geometry modifications included the depth of the center stage

wall and the rotation of the two sets of suspended reflector groups above the stage area, il-

lustrated in Figure 8-4. Each component could assume one of five positions, with the initial

configuration indicated in red. These geometric components share the characteristic that

the ratio between their size and the solid angle they span with respect to the sound source

location is small. Further, these modifications would not require expensive alterations to

the external shell of the auditorium. In the optimization over geometry, the system left the

orientation of the rear reflector group unchanged, but lowered the forward reflector group,

and moved the rear stage wall to the position closest to the source, as shown in green in Fig-

ure 8-4b. These modifications improved TI by 58%. The optimization took approximately

20 minutes to converge while sampling 100 geometric configurations.

The combined optimization-involving both materials and geometry-altered materi-

als as before, but selected a new configuration for the banks of reflectors, raising the rear

reflector group, lowering the forward reflector group, and again moving the rear stage wall

to the position closest to the source, as shown in blue in Figure 8-4c. This configuration pro-

duced the lowest cost by maintaining the improvements to TI from geometry modifications

and improvements to EDT from material modifications. The sound level G dropped to 4.9

dB, and the temporal distribution improved, with a higher percentage of the energy arriving

earlier than in the initial configuration. IACC improved somewhat, but remained far from

optimal, which is expected for fan shaped halls such as this one. The optimization took

(a) Initial (b) Geometry



(a) Initial simulation

Plate 4: IACC, EDT, BR, and G values for
initial, target, and optimized configurations of
Kresge Auditorium using the combined
objective for speech and symphonic music.
Material variables include the seats, stage walls,
and far wall. Geometry variables include the
rotation of the stage ceiling reflectors and the
translation of the rear stage wall.

(b) Target

(c) Final simulation

(d) Initial difference

(e) Final difference
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Plate 5: Sound strength shown on the seating areas of Kresge Auditorium at three time steps for initial and optimized configurations using separate speech and
symphonic music objectives. Material variables include the seats, stage walls, and far wall. Geometry variables include the rotation of the stage ceiling reflectors
and the translation of the rear stage wall.
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Plate 6: Sound strength shown on the interior surfaces of Kresge Auditorium at four time steps for initial and optimized configurations using
speech and symphonic music objectives separately. Material variables include the seats, stage walls, and far wall. Geometry variables include
the rotation of the stage ceiling reflectors and the translation of the rear stage wall.
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17 minutes to converge while sampling 80 geometric configurations, improving the over-

all acoustic rating by 41.7%. The results in Table 8.2 and Plate 4 show that performance

improved for both uses.

Finally, we examined speech and music objectives separately. we restricted the study to

materials for the stage surfaces and the back wall of the auditorium, and used only materials

that could be changed between speech and symphonic music performances, such as curtains

that could be drawn, or rugs that could be taken up. The geometry configuration remained

unchanged for these optimizations, as did the seat material, both set to the result from the

previous optimization which combined music and speech objectives. The system assigned

highly absorptive materials for the speech configuration, and materials with mid to low ab-

sorption for the music configuration. Table 8.2 and Plates 5 and 6 show the improvements

for speech and music respectively at 93.3% and at 17.3%.

8.3 Jones Hall for the Performing Arts

Our third example is Jones Hall in Houston, Texas, which is a multi-purpose auditorium

(see Figure 8-6). This hall is designed to accommodate different uses by modifying the po-

sition of ceiling panels. Figure 8-5 shows two possible ceiling configurations. Like many

multi-purpose halls, the quality of the acoustics is less than optimal for any single use (see

Table 8.3). Plate 8 shows the results of the simulation for the initial configuration of the

hall using the combined objective for symphonic and operatic music. The reverberation is

too strong for the combined target, as shown by the EDT cones. IACC exceeds the optimal

value, shown by the narrow IACC shells. G is too low for the symphonic use. The temporal

distribution of sound is good, but the quantity is too low. Of the global measures, TI is too

high and SDI is too low.

We wanted to explore two directions with this case study. First, we wanted to find changes

in the existing structure or materials that would improve the acoustics for both uses simul-

taneously. Second, we wanted to determine the effectiveness of the reconfigurable ceiling



Figure 8-5: Jones Hall: illustration of hall configuration with movable ceiling panels (top)
in raised position, and (bottom) in lowered position. Source of figures: [25]
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(a) Plan (b) Longitudinal Section

Figure 8-6: Computer model of Jones Hall. The left illustration shows the variable positions
for the rear stage wall, and the right illustration shows the variable positions for the ceiling
panels. The initial positions are indicated in red.

panels for two disparate target conditions, opera and symphonic music. We built two single-

use objectives for these acoustic requirements, which we then combined to create a multi-

use objective, as discussed in Section B.2, using the targets shown in Table B. 1. Notice how

opera targets differ from symphonic music targets, with the target for EDT dropping to 1.3

seconds. The BR target has a lower proportion of bass, and sound strength of 0.0 dB or

greater is acceptable, with as much of the energy arriving as early as possible for increased

clarity. We painted sound level targets for both symphonic music and opera for time slices at

0.16 seconds, 0.32 seconds, and total level, as shown in Plate 7. The similarity between the

early and late painted targets for opera is present to increase intelligibility by maximizing

early sound energy.

Optimization Using Combined Symphonic and Operatic Objective

In order to improve the overall acoustics we optimized for both symphonic and operatic

uses simultaneously, keeping the ceiling panels fixed in the neutral configuration shown in

Figure 8-6b. The variables we selected for this scenario were components that could be

modified with the least expense, and have the greatest influence on the seating area, via the

early reflections. We included one geometry modification, allowing the rear stage wall to



IACC EDT (sec) BR G (dB) SDI TI (sec) f(x) Improvement

Opera and Symphonic Music
Target 0.000 1.450 1.000 4.750 1.000 0.020 0.411 NA

Initial Config 0.336 1.661 0.977 1.315 0.267 0.023 1.210 NA

Combined Objective 0.194 1.602 0.953 1.773 0.399 0.019 0.968 30.1 %

Operatic Music
Target 0.000 1.300 1.000 > 0.000 1.000 0.020 0.0 NA

Initial Config 0.336 1.661 0.977 1.315 0.267 0.023 0.980 NA

Modified Config 0.194 1.602 0.953 1.773 0.399 0.019 0.669 31.7 %

Final Config 10.187 1.314 0.942 1.726 0.399 0.019 0.363 63.0 %

Symphonic Music
Target 0.000 2.150 1.175 4.750 1.000 0.020 0.0 NA

Initial Config 0.336 1.661 0.977 1.315 0.267 0.023 1.440 NA

Modified Config 0.194 1.602 0.953 1.773 0.399 0.019 1.267 12.0%

Final Config 0.198 1.899 1 0.957 1 1.899 0.399 0.019 0.885 38.5 %

Table 8.3: Acoustic measure readings for Jones Hall. The modified configuration entries

give the individual objective ratings for the configuration resulting from the optimization

using the combined objective.

translate. Material modifications included the seats, walls, and the stage surfaces.

The system repositioned the back stage wall closer to the audience (from position B to

position D in Figure 8-6a,) forcing the side stage walls to reflect more sound out to the audi-

ence. The system assigned highly reflective materials to the surfaces surrounding the stage,

and a less absorptive material to the seats. These adjustments significantly reduced TI and

IACC. Table 8.3 shows an overall improvement of 30.1% for the combined objective. The

optimization took under ten minutes.

Optimization Using Individual Symphonic and Operatic Objectives

We then optimized the ceiling panel positions for each use separately. Starting from the

best configuration resulting from the simultaneous optimization, we selected only the ceil-

ing panels as variables, allowing them to translate vertically.

Figure 8-7 shows the best solution found by our system for each objective. Given the

symphonic objective, the system raised the panels from their neutral positions to the con-

figuration shown in Figure 8-7a. Table 8.3 shows that both EDT and G improved, although



(a) Symphonic Music (b) Operatic Music

Figure 8-7: Resulting ceiling panel configurations for Jones Hall: left: symphony configu-

ration (green,) right: opera configuration (blue.)

G remained quite weak, at only 1.9 dB. The system achieved an additional 26.5% improve-

ment for the symphonic objective. Using the operatic objective, the system assigned pan-

els to the positions shown in Figure 8-7b. EDT was the most improved measure, dropping

0.3 seconds, very close to the desired target. IACC improved slightly as well. The sys-

tem achieved further improvements of 31.3% with these modifications. These optimizations

took under 10 minutes each.



(d) Initial difference

Plate 7: IACC, EDT, BR, and G values for
initial, target, and optimized configurations of
Jones Hall using the combined objective for
opera and symphonic music. Material variables
include the seats, stage walls, and side walls.
Geometry variable includes the translation of the
rear stage wall.
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Plate 8: Sound strength shown on the seating areas of Jones Hall at three time steps for initial and optimized configurations using separate opera and symphonic
music objectives. Material variables include the seats, stage walls, and side walls. Geometry variables include the translation of the ceiling panels and the
translation of the rear stage wall.
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Chapter 9

Discussion and Future Work

We have developed an interactive acoustic design system which addresses the major limi-

tations present in today's computer-aided design systems. The tedious sequence of model-

ing/simulation steps required by the user of a direct design system is replaced by the auto-

mated design-optimization approach characterized by inverse design, shifting much of the

burden of design space searching from the designer to the computer. In our design system

the user interactively specifies desired acoustic performance goals and describes material

and geometric variations and constraints for a collection of architectural components in the

scene. The system then searches the feasible space for the configuration that "best" meets

the specification, using a combination of simulated annealing and steepest descent tech-

niques. Our new acoustic simulation algorithm features increased geometric accuracy and

decreased computation time, enhancing the overall performance and usability of our design

system. We present the resulting configuration and its time dependent sound field charac-

teristics using visualization tools; these tools are also used to express design goals. This

approach can be easier and more intuitive to use than the usual direct edit-simulate cycle.

Our experiences with the system suggest a number of theoretical and practical exten-

sions that might be investigated to enhance the system, and support the design process.

* Application to preliminary design. While I have tested the system extensively on ex-

isting halls, I am eager to explore the system's utility as a tool in the design of a brand



new hall. Because the acoustic design problem is so difficult, designers often feel

compelled to use a familiar or proven geometric configuration in order to avoid a po-

tentially costly mistake. Our system seems amenable to assisting in the preliminary

design phase-perhaps enabling a designer to not only consider a wide range of pos-

sible designs but also to gain new insight into the intricacies of sound propagation.

" Acoustic evaluation. Currently the sound field is sampled at a uniform grid of points,

each contributing equally to the evaluation of the hall. There may be better ways of

combining the sample data, perhaps giving more weight to central seating area loca-

tions. Also, acoustic measures could be explored that better reflect the overall quality

of the acoustics. For example, an echo metric might be used to automate the search

for poor time distributions of energy. It might be interesting to produce a scalar field

over the seating areas that represents objective function values. This would indicate

the best and worst audience seating areas with respect to acoustics. The acoustic ob-

jective could be augmented with viewing objectives as well, producing a "best value"

scalar field.

" Acoustic simulation and visualization. The area of accurate acoustic simulation is an

important one, with a variety of challenges remaining, such as diffraction and other

wave effects. Funkhouser has described a method for extending the geometric beam

tracing algorithm to model diffraction [19]. Modal analysis might prove useful for

locating dead spots caused by the destructive interference of sound waves. Volumetric

representations of the sound field might also improve the user's understanding of the

space but would require a voxel representation of the 3D scene. In order to increase

simulation speed, the model of the space might be represented at various levels of

detail, corresponding to the frequencies of simulated sound. With this approach, far

fewer beams would be generated for low frequency sound.

" Auralization. Some systems play back a prerecorded anechoic sound sample con-

volved with the sound field signature at a specific location within the hall, permit-



ting the listener to hear what a hall might sound like at that location. This approach

could be utilized and extended in our system as follows. The listener could set acous-

tic targets by modifying the sound field signature interactively while listening to the

resulting signal, using graphical tools like sliders or dials hooked to specific sound

field characteristics. While one can only listen to the sound produced at a single loca-

tion in the hall at a time, user-specified targets could be allowed to influence regions

of any size. Variable weights could be applied to a region of influence, allowing a

feathering effect between targets, or interpolation between them.

A related target specification tool might allow the user to select two predefined sound

samples, then adjust a slider that interpolates the samples, selecting an intermediate

point with the best sound. The characteristics of the selected sound would then be

used as performance goals. This technique could focus on specific characteristics of

sound, or consider all characteristics at once.

Optimization and design. While the advent of computer-aided design systems has

brought designers tools that assist in predicting and visualizing complex phenomena

such as light and sound, it is clear that the computer could play a more significant role

in the design process. One intriguing area for future work is in visualizing the op-

timization process itself-providing the designer with an intuitive representation of

the multidimensional search space and the ability to steer the optimization process.

Perhaps the greatest shortcoming of the current system is that it cannot directly iden-

tify the components that have the strongest adverse effect on acoustic performance.

Such variable sensitivity analysis, in addition to boundary analysis and application-

specific heuristics based on the insights of experienced acoustical engineers, might

be beneficial. Hierarchical grouping of components might allow for faster optimiza-

tion approaches based on progressive refinement techniques. Finally, the Design Gal-

leries [36] approach and our optimization approach might be combined.such that the

dispersion phase of DG selects configurations that meet not only a difference criteria,

but that also satisfy evaluation requirements as well.



Appendix A

Acoustic Measure Calculations

The following pseudo-code segments illustrate our implementation for each acoustic mea-

sure calculation. The input data used in these calculations are gathered from two simula-

tion algorithms, over the five frequency bands: 125 Hz, 250 Hz, 500 Hz, 1 kHz, and 2 kHz.

The beam tree provides data for the early sound, recording the time, intensity, and direction

of each passing wavefront in a hit list unique to each listener point in the hall. The rever-

berant tail provides non-directional data for the later sound. The same data is used for all

points in the hall. The functions that calculate acoustic measures have access to the beam

tree data via the helper functions first(list), last(Iist), next(hit) and prev(hit), which return

the appropriate hit from the list. Tail energy contributions are accessed using the functions

get-taiLenergy, which returns total energy, and get-tail-energyinterval, which returns the

energy contribution during a specified interval of time, for a given frequency. In addition,

the surface diffusivity calculation has access to the absorption characteristics and surface

area data for each surface in the enclosure.

. Interaural Cross-Correlation Coefficient (IACC). The function getIACC considers

the wavefronts that pass the listener in the first 80 msec interval after the arrival of the

direct sound. The angle of impact is defined as the angle between the direction of the

incoming wave and the angle perpendicular to the view direction on the horizontal

plane. Notice that the contribution of each wave to this measure is proportional to the



square of the intensity of the wave, which means that early waves have much greater

impact than later waves. In fact, this measure can be reasonably approximated by con-

sidering only the earliest waves. Due to the directional dependence of this measure,

only the beam data is used.

function getIACC ()
for each frequency(500 Hz, 1000 Hz, 2000 Hz) do

initialize llSum, rrSum, and IrSum to 0.0
for each hit within 80 msec. of direct hit do

determine angle of incoming sound
use lookup to set correlation fractions 11, rr, lr based on angle
increment llSum by intensity2 1 1g

increment rrSum by intensity2 * rr
increment lrSum by intensity2 * 1r

end do
set IACC(frequency) to lrSum / v'llSum * rrSum

end do
set IACC to the average of IACC(500 Hz, IACC(1000 Hz), and IACC(2000 Hz)

end

* Early Decay Time (EDT). The function get-EDT calculates the time required for the

sound to decay 10 dB. The standard method used to calculate decay is the follow-

ing. First, calculate the total energy arriving at a listener position, and convert it to

sound level. Next, determine the target level, which in this case is 10 dB below the

total level. Finally, integrate the sound energy in reverse order, stopping when the ac-

cumulated energy attains the target level. The interval between the arrival of the di-

rect sound and the time when the target level is reached is used to calculate the decay

measure. By integrating in this way, the sound level increases monotonically, which

guarantees that the target level is attained at exactly one point in time.

One alternate method, which I rejected, does not offer this guarantee, and would pro-

ceed as follows. Compare the energy of each reverberant wave in the order of arrival

to that of the direct sound, stopping when the difference in level exceeds 10 dB. The

problem with this approach is illustrated by considering the early arrival of a very

weak wave, reflected from a highly absorbent surface. If its sound level was at least



10 dB below that of the direct sound, the algorithm would terminate, and the result-

ing interval of time would be uncharacteristically short. Instead, by integrating en-

ergy in reverse order, the effects of large variance in the intensity of passing waves is

removed, providing a more stable result.more stable result.

The helper function get-decay-time takes as input the target level at the frequency of

interest, and returns the time that the target level is attained. The early time interval

is modeled by beam tracing and the later time interval is modeled by the tail approx-

imation. Due to the statistical nature of the tail, these intervals may overlap. Since

the sound energy needs to be integrated in reverse order, the algorithm must alternate

between these two data sources during an overlapping interval. The reverberant tail

is stored as an array, where the accumulated energy from each successive hit consti-

tutes an entry. By accumulating energy in this way, the contribution of tail energy

can be determined in constant time for any interval, by simply taking the difference

of energy at the end points of the interval. An internal function takes a point in time

as input and calculates the corresponding tail array index.

The integration algorithm works as follows. Determine the energy from the part of the

tail that extends beyond the last beam tree hit, if any. If the beam hit list and tail over-

lap, alternate between them, successively adding tail energy and beam energy. Once

the tail interval is passed, continue adding beam energy, if any, until the target level

is attained. If the target level is exceeded within a tail interval, then recursively sub-

divide the interval until the target level is attained. Otherwise, return the time when

a beam energy pushes the level to or above the target level.

function get-EDT
for each frequency(500 Hz, 1000 Hz) do

set total-energy to get-total-energy (frequency)
set actual-level to convert.energy-toilevel (total-energy)
set target-level to actual-level - 10.0 dB
set EDT(frequency) to get-decay-time (target-level, frequency)

end for
set EDT to the average of EDT(500 Hz) and EDT(1000 Hz)

end



function get-decay-time (target-level, frequency)
initialize accumulated-level to 0.0
set hit to last(hit-list)
set hit-time to time-of-hit (hit)
initialize hit-energy to 0.0
initialize tail-energy to 0.0
while (accumulated-level < target-level) do

Integrate energy in reverse order
set tail-energy to get-tail-energy-interval (hit-time, frequency)
set accumulated-level to getilevel(tail-energy + hit-energy)
if (accumulated-level > target-level)
then return find-intermediate-time ()
increment hit-energy by energy(hit, frequency)
set accumulated-level to get-level(tail-energy + hit-energy)
if (accumulated-level > target-level)
then return hit-time
set hit to prev (hit)
set hit-time to time-of-hit (hit)

end while
return hit-time

end

function get-total-energy (frequency)
set energy to get-tail-energy (frequency)
for each hit in hit-list do

increment energy by energy (hit, frequency)
return energy

end

* Bass Ratio (BR). The function getBR requires the calculation of RT at four frequency

bands: 125 Hz, 250 Hz, 500 Hz, and 1000 Hz, where RT is defined as the difference

between 35 dB and 5 dB decay times. The function returns the ratio of low to mid

frequency decay measures. As with EDT, the helper function get-decayiime is used.



function getBR
for each frequency(125 Hz, 250 Hz, 500 Hz, 1000 Hz) do

set total-energy to get-total-energy (frequency)
set actual-level to convert-energy-to-level (total-energy)
set target-level to actuaLlevel - 5.0 dB
set T5(frequency) to get-decay-time (target-level, frequency)
set actual-level to convert-energy-to-level (total-energy)
set target-level to actual-level - 35.0 dB
set T35(frequency) to get-decay-time (target-level, frequency)
set T30(frequency) to T35(frequency) - T5(frequency)

end for
set BR to (T30(125) + T30(250)) / (T30(500) + T30(1000))

end

Strength Factor (G). The function getGmid converts the total accumulated energy

at a receiver point to a strength level for the frequency bands of 500 Hz and 1000 Hz,

and returns the average strength level. However, in this system the designer is allowed

to specify strength targets through time. Strength levels are calculated at each target

time point.

function getGmid
for each frequency(500 Hz, 1000 Hz) do

set total-energy to get-total-energy (frequency)
set G(frequency) to convert-energy-to-strength (total-energy)

end for
set Gmid to the average of G(500 Hz) and G(1000 Hz)

end

function convert-energy-to-strength (total-energy)
level of ratio of total energy to energy at 10 meters from source
set energy-at_10_meters to initial-energy / 100.0
return 10.0 * log (total -energy/energy-at_10_meters)

end

* Initial-Time-Delay Gap (TI). While this measure could be calculated for any point

in the enclosure, standard practice dictates that a single representative point be used.

The function getTI returns the time between the arrival of the direct sound and that

of the first reverberant wave in the hit list.
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function getTI
uses representative point in audience
set hit to first (hit-list)
set To to time (hit)
set hit to next (hit)
set Ti to time (hit)
return (Ti - TO)

end

* Surface Diffusivity Index (SDI). The function get-SDI returns the average of diffu-

sion for all surfaces in the enclosure, weighted by surface area. Each material in the

material library has an average diffusion coefficient associated with it, which is used

in this calculation.

function getSDI
set total-area to 0.0
set total-diffusion to 0.0
for each surface in enclosure do

increment total-area by area(surface)
increment total-diffusion by area(surface) * diffusion-index(surface)

end for
set SDI to total-diffusion / total-area

end

101



Appendix B

Objective Function Construction

This section describes how the objective function presented in Section 6.4 specifically de-

signed for symphonic music can be modified with performance goals that are appropriate

for various other uses of the hall. I follow this with a discussion of how to construct an ob-

jective to handle multiple performance types simultaneously, such as symphonic music and

opera.

B.1 Single Use Objectives

The target values of certain acoustic measures for opera and speech differ from those of

symphonic music, as shown in Table B. 1 [8, 7]. In the general case, new objective function

terms are produced simply by providing the appropriate target value for a given use. For

example, to construct the term for BR in the case of a speech objective, one simply inserts

1.0 for BRtarget, as shown in the table. In some cases, however, the nature of the objective

curve differs between uses. In the case of symphonic music, Gtarget is a single value of 4.5

dB, whereas Gtarget for speech covers a range of values, with no cost imposed for values

above 0.0 dB.
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IACC EDT (sec) I BR G (dB) TI (sec) SDI
Symphonic Music (SM) 0.0 2.125 1.175 4.75 0.02 1.0
Operatic Music (OM) 0.0 1.300 1.000 > 0.0 0.02 1.0
Speech (S) NA 0.700 1.000 > 0.0 NA NA
SM & S 0.0 0.850 1.000 4.75 0.02 1.0
SM & OM 0.0 1.450 1.000 4.75 0.02 1.0

Table B. 1: Acoustic measure targets for predefined objectives.

B.2 Multiple Use Objectives

A single hall must often accommodate a number of disparate uses, each of which has its

own set of acoustic requirements. I have extended the single use objective, described in

Chapter 4, to account for a number of uses simultaneously. Multiple use objective functions

are constructed by linearly combining individual objective functions as follows:

fcombined(X) -- a1 * fuse(x) + a 2 * fuse (jx) + - + a, * fuse,(X), (B.1)

where an is the weighting factor of the nth individual objective function, and the sum of the

weighting factors is 1.0.

When functions are combined, the target for an acoustic measure may be found by lin-

early combining the like terms of each individual objective function, and locating the min-

imum point or range in the resulting curve. This minimum value will be greater than zero

unless there is an acoustic value for which each objective curve is zero. EDT and BR have

non-zero minimum costs. These minimum costs are lower bounds on the objective function

for the individual measures. The lower bound for the entire objective function is the sum of

lower bounds for each term.

In each of the examples of simultaneous optimization presented in this thesis the objec-

tive function combines two individual use functions, equally weighted. When combining

syniphonic music and speech, the targets for BR and EDT differ from individual targets, at

1.0 and 0.85 seconds respectively. The costs associated with these values are computed as

follows:
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lower bound COStBR

lower bound costEDT

lower bound f (x)

= log (.) 3/2 * 10.0 * 0.5 = 0.093,
(1.175) 

/
lo 0.85 3/

= lg /2.15 * 9.0 * 0.5 = 1.151,

= 0.093 + 1.151 = 1.244.

When combining symphonic music and speech, the targets for BR and EDT differ from

individual targets, at 1.0 and 1.45 seconds respectively. The costs associated with these val-

ues are computed as follows:

lower bound COStBR

lower bound costEDT

lower bound f (x)

10 3/2
= log 1.17) * 10.0 * 0.5 = 0.093,

lo 1.45 )3/2
= log 32.1 * 9.0 * 0.5 = 0.318,

= 0.093 + 0.318 0.411.

The lower bound on the objective for G remains 0.0 in both cases, since no cost is levied

for values above 0.0 dB for speech or opera, nor between 4.0 dB and 5.0 dB for symphonic

music. Therefore the combined target spans the range between 4.0 dB and 5.0 dB.
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Appendix C

Material Library

Absorption Coefficients
Material 125.0 Hz. [ 250.0 Hz. [ 500.0 Hz. 1000.0 Hz. | 2000.0 Hz.
Seats, Heavy 0.72 0.79 0.83 0.84 0.83
Seats, Medium 0.56 0.64 0.70 0.72 0.68
Seats, Light 0.35 0.45 0.57 0.61 0.59
Carpet on Concrete 0.02 0.06 0.14 0.37 0.60
Carpet, Heavy, on Foam 0.08 0.24 0.57 0.69 0.71
Wood Parquet 0.04 0.04 0.07 0.06 0.06
Linoleum 0.02 0.03 0.03 0.03 0.03
Concrete Block, Unpainted 0.10 0.01 0.02 0.02 0.02
Concrete, Painted 0.10 0.05 0.06 0.07 0.09
Cork on Brick or Concrete 0.02 0.03 0.03 0.03 0.02
Plaster 0.01 0.01 0.02 0.03 0.04
Gypsum over 2x4, 16 o.c. 0.29 0.10 0.05 0.02 0.02
Plywood Paneling 0.28 0.22 0.17 0.09 0.10
Brick, Unglazed 0.03 0.03 0.03 0.04 0.05
Soundblox 6 in. Type A 0.61 0.83 0.36 0.43 0.27
Soundblox 6 in. Type R 0.38 0.99 0.64 0.57 0.43
1 in. Decoustic Panel, Type 4 Mt 0.14 0.36 0.83 0.99 0.99
2 in. Decoustic Panel, Type 4 Mt 0.44 0.80 0.99 0.99 0.96
1 in. Tectum, Type 4 Mt 0.07 0.11 0.23 0.43 0.70
2 in. Tectum, Type 4 Mt 0.11 0.20 0.47 0.80 0.61
3 in. Tectum, Type 4 Mt 0.18 0.34 0.81 0.76 0.75
K-13 .625 in. Spray On 0.05 0.15 0.43 0.79 0.90
K-13 1.0 in. Spray On 0.08 0.28 0.75 0.98 0.93
K-13 1.5 in. Spray On 0.25 0.44 0.86 0.99 0.98
K-13 2.0 in. Spray On 0.40 0.61 0.93 0.99 0.95
Fiberglass 703, 1 in. 0.06 0.20 0.64 0.90 0.95
Fiberglass 703, 3 in. 0.52 0.99 0.99 0.99 0.99
Fiberglass 703, 4 in. 0.99 0.99 0.99 0.99 0.99
Velour, 18 oz, Half Fullness 0.14 0.35 0.55 0.72 0.70
Drapery, Light 0.03 0.04 0.11 0.17 0.24
Drapery, Medium 0.07 0.31 0.49 0.75 0.70
Partition, Accordian 0.33 0.20 0.15 0.10 0.05

Table C. 1: An example of a Material Library.
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Appendix D

Objective Function Values for Case

Studies

This chapter contains specific information about the variables selected for each scenario of

the three case studies, including the set of materials assigned to each material variable, the

resulting acoustic measures, and the individual and total objective values associated with

each solution. In each scenario, the initial temperature variable used in the simulated an-

nealing algorithm was initially set to 0.5, and was scheduled to decrease by 20% after testing

each set of 20 configurations. The neighborhood variable was initially set to equal the max-

imum number of items assigned to any optimization variable. The neighborhood variable

was also scheduled to decrease by 20% after testing each set of 20 configurations.

D.1 Oakridge Bible Chapel

In this section I list the materials for the surfaces within the Oakridge Bible Chapel, includ-

ing the initial materials as well as those materials assigned by the design system during op-

timization. Initially all walls within the Chapel are plaster, and the seats are composed of a

lightly absorptive material. Each surface that is selected as a variable during optimization

is assigned one material from the following set: { Plaster, Gypsum over 2x4: 16 o.c., Fiber-
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Ceiling Surface Variable Material

far left Soundblox 6 in. Type A
near left Soundblox 6 in. Type A
near right Fiberglass 703, 4 in.
far right Soundblox 6 in. Type A

Table D. 1: Ceiling variable assignments for Oakridge Bible Chapel.

glass 703: 4 in., Velour: 18 oz. Half Fullness, Soundblox 6 in. Type A, Soundblox 6 in.

Type R, 2 in. Decoustic Panel: Type 4 Mt, K-13 2.0 in. Spray On, 2 in. Tectum, Type 4

Mt}.

The first optimization for Oakridge Bible Chapel included four ceiling surfaces as mate-

rial variables. The system selected the materials shown in Table D. 1. Orientation informa-

tion is given for the viewer standing at the altar, facing the rear of the room. The final opti-

mization for Oakridge Bible Chapel included four ceiling surfaces and 13 wall surfaces as

material variables. The system selected the materials shown in Table D.2. Table D.3 shows

the acoustic measures and associated objective function values for each measure under each

condition.

D.2 Kresge Auditorium

I ran a total of five scenarios for Kresge Auditorium. In the first three scenarios, I used an

objective that combined music and speech, using only material variables in the first scenario,

followed by just geometry variables, then finishing the set by combining material and ge-

ometry variables into a single optimization. The final two scenarios I optimized for music

and speech separately, using a selected set of material variables only.

The initial materials for Kresge Auditorium are shown in Table D.4. Orientation infor-

mation is given for the viewer standing on stage, facing the rear of the auditorium. The set

of materials for all variables except the seats includes the following: { Carpet'on Concrete,

Carpet: Heavy: on Foam, Wood Parquet, Concrete Block: Unpainted, Concrete: Painted,
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Ceiling Surface Variable Material

far left Gypsum over 2x4, 16 o.c.
near left Soundblox 6 in. Type A
near right Gypsum over 2x4, 16 o.c.
far right Gypsum over 2x4, 16 o.c.

Wall Surface Variable (Material
side left Fiberglass 703, 4 in.
side right Velour, 18 oz, Half Fullness
rear far left 2 in. Decoustic Panel
rear far right Fiberglass 703, 4 in.
rear near left Velour, 18 oz, Half Fullness
rear near right Gypsum over 2x4, 16 o.c.
rear center 2 in. Tectum, Type 4 Mt
front far left Soundblox 6 in. Type A
front far right Soundblox 6 in. Type A
front mid left 2 in. Tectum, Type 4 Mt
front mid right Fiberglass 703, 4 in.
front near left Soundblox 6 in. Type R
front near right Soundblox 6 in. Type A

Table D.2: Wall and ceiling variable assignments for Oakridge Bible Chapel.

EDT (sec) BR G (dB) f(x)

Initial Configuration
Target 0.700 1.000 > 0.0 0.000
Acoustic Measures 1.899 1.631 12.141
Objective Values 3.422 0.979 0.434 4.835
Ceiling Variables
Acoustic Measures 0.784 1.002 7.760
Objective Values 0.000 0.002 0.118 0.120

Wall and Ceiling Variables
Acoustic Measures 0.651 1.026 6.779
Objective Values 0.003 0.011 0.083 0.098

Table D.3: Acoustic measure readings and objective function values for
Chapel.

Oakridge Bible
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Surface Variable Material

stage walls Plywood Paneling
stage floor Wood Parquet
seats Seats, Medium
main rear wall Concrete Block, Unpainted

Table D.4: Initial materials for Kresge Auditorium.

Surface Variable Material

left stage wall Cork on Brick or Concrete
right stage wall K-13 2.0 in. Spray On
rear stage wall Soundblox 6 in. Type R
stage floor Concrete Block, Unpainted
seats Seats, Heavy
main rear wall K-13 2.0 in. Spray On

Table D.5: Variable assignments for the 'Material Only' optimization of Kresge Audito-
rium.

Cork on Brick or Concrete, Plywood Paneling, Brick: Unglazed, Partition: Accordian, Fiber-

glass 703: 1 in., Fiberglass 703: 4 in., Velour: 18 oz: Half Fullness, Soundblox 6 in. Type

A, Soundblox 6 in. Type R, 1 in. Decoustic Panel: Type 4 Mt, 2 in. Tectum: Type 4 Mt,

K-13 .625 in. Spray On, K-13 1.0 in. Spray On, K-13 2.0 in. Spray On, Drapery: Light }.

The 'Materials Only' optimization for Kresge Auditorium included six surfaces as mate-

rial variables. The system selected the materials shown in Table D.5. The 'Geometry Only'

optimization did not include material variables, so no tabular information is included here.

The 'Materials and Geometry' optimization for Kresge Auditorium included six surfaces as

material variables. The system selected the materials shown in Table D.6.

Information for the final two scenarios using individual music and speech objectives fol-

low. The 'Music' optimization for Kresge Auditorium included five surfaces as material

variables. The system selected the materials shown in Table D.6. The 'Speech' optimiza-

tiori for Kresge Auditorium included five surfaces as material variables. The system selected

the materials shown in Table D.8.
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Surface Variable Material

left stage wall Fiberglass 703, 1 in.
right stage wall Velour, 18 oz, Half Fullness
rear stage wall Carpet on Concrete
stage floor Concrete, Painted
seats Seats, Heavy
main rear wall K-13 2.0 in. Spray On

Table D.6: Variable assignments for the
Auditorium.

'Material and Geometry' optimization of Kresge

Surface Variable Material

left stage wall Drapery, Light
right stage wall K-13 1.0 in. Spray On
rear stage wall Partition, Accordian
stage floor Soundblox 6 in. Type A
main rear wall Brick, Unglazed

Table D.7: Variable assignments for the 'Music' optimization of Kresge Auditorium.

Surface Variable Material
left stage wall Fiberglass 703, 4 in.
right stage wall 2 in. Tectum, Type 4 Mt
rear stage wall K-13 .625 in. Spray On
stage floor Fiberglass 703, 1 in.
main rear wall 1 in. Decoustic Panel, Type 4 Mt

Table D.8: Variable assignments for the 'Speech' optimization of Kresge Auditorium.
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IACC I EDT (sec) BR I G (dB) SDI I TI (sec) f(x)
Combined Speech and Symphonic Music

Target 0.000 0.850 1.000 4.750 1.000 0.020 0.830
Initial Configuration 0.620 2.126 0.952 7.184 0.202 0.039
Objective Values 0.293 2.010 0.154 0.285 0.289 0.111 3.142
Materials Only 0.723 1.372 1.058 3.012 0.219 0.039
Objective Values 0.369 1.333 0.068 0.143 0.267 0.111 2.292
Geometry Only 0.539 2.047 0.958 7.227 0.202 0.028
Objective Values 0.238 1.912 0.145 0.275 0.289 0.039 2.890
Materials and Geometry 0.594 1.462 1.094 4.908 0.211 0.028
Objective Values 0.274 1.393 0.066 0.128 0.277 0.039 2.178
Speech

Target NA 0.700 1.000 > 0.000 NA NA 0.000
Initial Configuration NA 2.216 0.952 7.184 NA NA
Objective Values NA 4.020 0.031 0.368 NA NA 4.419
Final Configuration NA 0.753 1.033 0.079 NA NA
Objective Values NA 0.175 0.018 0.103 NA NA 0.295
Symphonic Music

Target 0.000 2.150 1.175 4.750 1.000 0.020 0.000
Initial Configuration 0.620 2.126 0.952 7.184 0.202 0.039
Objective Values 0.586 0.000 0.277 0.203 0.222 0.578 1.866
Final Configuration 0.590 1.882 1.025 4.365 0.209 0.028
Objective Values 0.544 0.104 0.144 0.112 0.560 0.080 1.543

Table D.9: Acoustic measure readings and objective function values for Kresge Auditorium.
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Surface Variable Material

walls Plywood Paneling
stage floor Wood Parquet
seats Seats, Heavy

Table D. 10: Initial materials for Jones Hall.

Surface Variable Material

main room walls Partition, Accordian
stage side walls Gypsum over 2x4, 16 o.c.
stage floor Cork on Brick or Concrete
stage ceiling Partition, Accordian
rear stage wall Partition, Accordian
seats Seats, Heavy

Table D. 11: Variable assignments for the combined objective for Jones Hall.

D.3 Jones Hall

This section provides information about the optimization of Jones Hall. I ran three scenar-

ios, first using an objective that combined symphonic music and opera, followed by individ-

ual objectives for each use. I included both material and geometry variables in first scenario,

but restricted the last two scenarios to geometry only.

Table D. 10 shows the initial materials for Jones Hall. The material variables for the com-

bined objective included the walls {Plaster, Plywood Paneling, Brick: Unglazed, Gypsum

over 2x4: 16 o.c., Partition: Accordian, Fiberglass 703: 3 in., 3 in. Tectum: Type 4 Mt, K-

13 1.5 in. Spray On, Drapery, Medium }, stage floor { Carpet on Concrete, Linoleum, Wood

Parquet, Cork on Brick or Concrete, Concrete: Painted, Carpet: Heavy: on Foam }, and the

seats { Seats: Heavy, Seats: Medium, Seats: Light }. From these, the system selected the

materials shown in Table D. 11. The last two scenarios contained no material variables, and

consequently no tabular information is provided.
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IACC I EDT (sec) BR G (dB) SDI TI (sec) f(x)

Combined Opera and Symphonic Music

Target 0.000 1.450 1.000 4.750 1.000 0.020 0.411
Initial Configuration 0.336 1.661 0.977 1.315 0.267 0.023
Objective Values 0.161 0.377 0.119 0.102 0.433 0.017 1.210
Final Configuration 0.194 1.602 0.953 1.773 0.399 0.019
Objective Values 0.083 0.360 0.153 0.118 0.252 0.002 0.968

Operatic Music
Target 0.000 1.300 1.000 > 0.000 1.000 0.020 0.0
Initial Configuration 0.336 1.661 0.977 1.315 0.267 0.023
Objective Values 0.080 0.412 0.010 0.026 0.433 0.017 0.980
Final (Sim. Opt) 0.194 1.602 0.953 1.773 0.399 0.019

Objective Values 0.042 0.303 0.031 0.040 0.252 0.002 0.669
Final (+Ceiling Panels) 0.187 1.314 0.942 1.726 0.399 0.019

Objective Values 0.039 0.003 0.041 0.027 0.252 0.002 0.363

Symphonic Music

Target 0.000 2.150 1.175 4.750 1.000 0.020 0.0
Initial Configuration 0.336 1.661 0.977 1.315 0.267 0.023
Objective Values 0.241 0.341 0.228 0.179 0.433 0.017 1.440
Final (Sim. Opt) 0.194 1.602 0.953 1.773 0.399 0.019
Objective Values 0.125 0.417 0.275 0.196 0.252 0.002 1.267
Final (+Ceiling Panels) 0.198 1.899 0.957 1.899 0.399 0.019

Objective Values 0.126 0.083 0.270 0.156 0.252 0.002 0.885

Table D. 12: Acoustic measure readings and objective function values for Jones Hall.
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