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ABSTRACT

Freight vehicle capacity, whether it be road, ocean or air transport, is highly under-
utilized. This under-utilization presents an opportunity for companies to reduce their vehicular
traffic and reduce their carbon footprint through greater supply chain integration. This thesis
describes the impact of ordering guidelines on the transport efficiency of a large firm and how
those guidelines and associated practices can be changed in order to gain better efficiency. To
that end, we present three recommendations on improving the guidelines based on the shipment
data analysis.

First, we discuss the redundancy of one of the company's fill metrics based on a
scatterplot analysis and a chi-square independence test. Second, we explore the impact of using
linear programming to allocate SKUs to different shipment, highlighting the reduction in the
number of shipments through better truck mixing. Finally, we divide the SKUs into three groups:
cube-constrained, neutral, and weight-constrained. Based on this segmentation, we present a
basic model that mixes different SKUs and helps a shipment to achieve a much higher utilization
rate. The application of the last two findings can be further explored to address under-utilization
in freight carriers across different industries.

Thesis Supervisor: Dr. Jarrod Goentzel

Title: Executive Director, Master of Engineering in Logistics Program
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1. INTRODUCTION

According to a study by the World Economic Forum (2009), an astonishing 24% of all

freight vehicles in the European Union (EU) run empty. The average load factor for the

remaining vehicles is only about 57%, resulting in just 43% overall efficiency for European

trucks. While the aggregate trucking statistics for the United States are not readily available, we

assume that they are not much better than Europe. The implication, then, is that a great

opportunity lies in optimally utilizing the trucking capacity available.

This thesis project seeks to improve truckload utilization in the United States for a large

multi-national firm. This company will be referred to as "Shipper." The basis of the project

stems from the sub-optimal vehicle loading statistics reported by Shipper. As such, Shipper

wants to explore the various dimensions of how it can achieve better utilization for its trucking

fleet and significantly reduce the amount of shipments required over a given time frame. Given

the current pressure on companies to have not only innovative supply chains but also green ones,

Shipper can obviously reduce its carbon footprint by decreasing vehicular traffic. Furthermore,

considering its enormous scale of operations, even a marginal improvement in Shipper's

operations, such as saving one truck per week, can lead to huge annual savings.

The scope of this thesis is primarily focused on trucks. However, other modes of goods

transport, such as freight planes and shipping containers, can benefit from this research. Freight

planes, for example, have volume and weight utilization metrics just as trucks do. In that sense,

planes can benefit from a density based mix; but, of course, aircraft would have to take center of

gravity, and other possible variables, into account in order to build on this paper's findings.



The different parameters used to measure truckload fill are: weight fill, cube fill, and

floor fill. They are defined as follows:

Weight Fill = Net weight of the shipment (excluding pallets,fillers/racks)
Maximum legal weight per each specfic lane & vehicle type

Cube Fill = Net volume of the shipment (excluding pallets,f illers/racks) (1.2)
Maximum volume per vehicle type

Floor Fill = Actual number of pallets in the shipment (1.3)
Maximum number of pallets per region

Shipper has set their benchmarks for the above three parameters based on the dimensions of a

standard trailer of a certain length and a given region of operations. Presently, Shipper's overall

statistics for cube fill and weight fill are below the optimal level. Its future vision is to achieve a

much greater utilization rate for both parameters. It is worth mentioning that all three parameters

are given equal weight in Shipper's ordering guidelines. To elaborate, Shipper declares a truck

full if any one of these parameters is met. Our goal is to go beyond an emphasis on any one

metric, and optimize all three simultaneously. While simultaneous optimization is the best

solution, it is, of course, more complex and difficult to achieve.

To improve truckload utilization, three different research areas can be explored: fill

optimization, volume efficiency, and transport, as shown in Figure 1. They can be thought of as

loading, pre-loading, and post-loading, respectively. Fill optimization focuses on achieving better

weight and volume fill for a truck, and has more direct impact on the truck loading decisions.

Volume efficiency focuses on aspects of product design and packaging. These changes are more

fundamental and, in most companies, are more related to marketing than operations. Lastly,

transport includes various aspects of the actual operation of trucks, such as network optimization

and drivers' efficiency. These measures are only applicable to post-loading and are more focused
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on obtaining better driving efficiency. Amongst these three, we have decided to focus on fill

optimization because, more than the other two, it provides us the opportunity of discovering

immediate, as opposed to long-term, improvements.

Oil stimizgfMg Volume Efficie' Transport

* Cube efficiency * Formula design Mode
eWeight efficiency ePackaging eRoute

eVehicle type

Figure 1: Areas that impact truckload efficiency

To understand fill optimization, one must understand current ordering guidelines and

examine how truckload utilization can be improved by re-modeling those guidelines. Next, our

literature review explores the importance of the order fulfillment process and its link to

transportation operations. In our methods section, we discuss the various statistical and

mathematical tools that we use to analyze the data set provided by Shipper. Our findings

highlight the major insights gained through applying these tools to Shipper's problems. It also

lists an algorithm that we develop in order to better mix SKUs to fill trucks more fully.



2. LITERATURE REVIEW

The literature concerning how companies model their ordering guidelines, in practice, is

limited. Given the competitive nature of business, making such information public may give

advantages to one's competitors. To overcome this barrier, we focus on literature that explains

the foundations of order guidelines, including the order fulfillment process, its design, and a

summary of academic research on how to formulate an ordering strategy. Lastly, it is important

to note that not all of the models explained in this literature review can be implemented by

Shipper due to some key assumptions and restrictions, which will be explained in the findings

section.

2.1 The Order Fulfillment Process

While academic researchers disagree on the contemporary definition of the order

fulfillment process (OFP), they all agree that its core goal should be how to best meet a given

customer service level. For example, Kritchanchai and MacCarthy (1999), and Turner (2002),

recognize OFP, and customer service level, as one of the core business processes in any

organization. And while OFP varies based on unique business requirements, such as make-to-

order or make-to-stock requirements, it always holds two common objectives:

1) To deliver products that meet customers' satisfaction in terms of price, quality, delivery

time, and location. (Zhang, Jiao & Ma, 2010)

2) To obtain greater flexibility in managing uncertainties that originate from internal &

external environments. (Christopher, 1992; Goldman, 1995)

The above steps describe the basics of OFP, but not its contemporary form. OFP has

changed tremendously across different industries over the past few decades. Beginning as a
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simple process of receiving orders and fulfilling them, given a specified customer service level,

OFP has now evolved into a highly specialized field. Indeed, new focus by supply chain experts

has sprung up around the order fulfillment process seeking to integrate supply chains across

multiple echelons and optimize the fulfillment of orders through collaborative channel planning.

The bargaining power in the supply chain appears to have shifted from manufacturers' hands into

retailers' hands. Davis-Sramek, Germain, and Stank (2010) summarize this shift as, "...the

increased ability of retailers to influence consumer purchases, suggesting that manufacturers

should understand not only consumer perceptions of delivery service, but also retailer

perceptions." (np)

2.2 Designing the Order Fulfillment Process

Zhang, Jiao and Ma (2009) described the OFP process as, "...a process that starts with

the receiving of customers' orders and ends with delivering final products," thus including all the

activities involved between these two end points. An and Srethapakdi (2006), in their thesis

report, describe order fulfillment, and the aforementioned activities between end points, as

summarized in Figure 2.

duledelivery k items

Figure 2: Basic Order Fulfillment Process (based on An and Srethapakdi, 2006)
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Figure 2 demonstrates the basic design of the OFP. As one can see, the overall process

influences other supply chain activities, such as warehouse management and transportation. Our

thesis focuses on the beginning step in the order fulfillment process, order promising.

Specifically, we are interested in OFP's influence on transportation, and how these order

promising guidelines can be improved in order to better utilize trucks. In tackling this problem,

we are fortunate to have Shipper, a large multi-national company, to work with due to their wide-

range of products. This greater SKU variety gives us more potential combinations for mixing

trucks, and subsequently, greater latitude in exploring different solutions for optimizing

Shipper's shipping efficiency.

To achieve greater efficiency, we need to understand some common operating heuristics,

since, as mentioned earlier, they influence OFP execution. Olhager (2010) introduces the term

"customer order decoupling point" (COPD), which helps to illuminate operating heuristics.

Olhager defines COPD as, "...the point in the value chain for a product, where the product is

linked to a specific customer order" (p.1). The CODP seeks to define a demarcation line between

the upstream and downstream processes in a supply chain. For example, upstream processes are

generally make-to-stock assembly lines focused on low costs and predictable demand.

Meanwhile, downstream processes are more likely to be make-to-order with higher safety stocks

necessitated by unpredictable demand (Olhager, 2010). Every company has different operating

heuristics depending on whether they choose to be agile or lean. This decision leads to different

COPDs in the supply chain, as shown in Figure 3.



Customer order
decoupling points Engineer Fabricate Assemble Deliver

Make-to-stock ------------- > COPD

driven
Assemble-to-order --- -- >- COPD

Customer
Make-to-oder -------- > COPD order driven

Engineer-to-order COPD

Figure 3: Different customer order decoupling points (based on Sharman, 1984)

For a flexible supply chain, initiatives should be focused on downstream operations

whereas, for a company striving to be lean, more focus should be upstream of the CODP

(Olhager, 2010). Basically, Olhager is emphasizing that while supply chain integration is

important, it is also imperative to know where and how to draw the line between different supply

chain functions and echelons. Shipper runs a menu of operations ranging from make-to stock to

make-to-order. For its make-to-stock operations, it can achieve greater flexibility in its supply

chain through better control of its downstream operations. This includes the important step of

product delivery. In short, better control of its transportation activities can help Shipper become

more flexible and strengthen its OFP.

2.3 Ordering Strategy

Apart from operating heuristics, supply chains also differ based on the products they

order. Xiao, Jin, Chen, Shi, and Xie (2009) explore the ordering decision for a seasonal or

perishable product in a three-stage supply chain, which consists of one retailer, one

manufacturer, and one subcontractor. Through the use of a game theory model, they explore the



varied impact of demand uncertainty on pricing, lead times, and order quantities. Their findings

suggest that, "higher unit holding cost implies a lower optimal lead-time and order quantity

while [increasing] higher unit-wholesale prices; [thus,] the basic demand uncertainty increases

the optimal lead-time and order quantity while [it] decreases the unit-wholesale prices" (p. 840).

Shipper can definitely incorporate the latter finding for meeting uncertain demand for its

seasonal goods. Knowing Shipper can serve customers through longer lead-times, the firm can

mix its orders better in order to achieve better truckload utilization.

Webster and Weng (2007) develop a model for ordering policy in a two-echelon fashion

products supply chain. They develop two scenarios. One scenario describes a manufacturer-

controlled chain while the other describes a distributor-controlled chain. The manufacturer-

controlled scenario is where the manufacturer controls the supply chain stocking decisions and

bears the risk of overstocking costs. The distributor-controlled scenario works in the opposite

direction. Their paper suggests that the overall profit of the supply chain is maximized when the

process is distributor-controlled, contrary to the popular notion that manufacturer-controlled is

better.

We also reviewed three works concerning supply chain integration and cooperation and

their impact on pricing strategy, rather than ordering strategy. The literature speaks to a well-

known theme among supply chain professionals that cooperation and integration can lead to a

profit sharing situation where both the upstream and downstream suppliers win (Yan & Wang,

2010). This idea involves game theory as it defies the conventional notion that suppliers are

competing with each other for a finite portion of profits. In fact, the idea is that suppliers can

push the boundaries of profitability for both through a collaborative relationship. Yan and Wang

(2010) describe this theory for retailers, stating, "When the giant retailer adopts a non-
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cooperative structure to maximize its own profit, then there exists optimal service level and

pricing strategy for the giant retailer." (p. 63)

Finally, we last order fulfillment process piece of literature we reviewed is the bin

packing problem. The bin packing problem is an important problem in operations research with

extensive applications to logistics decisions. In logistics, the bin packing problem helps in the

loading of freight by primarily packing a finite number of items with the least number of bins

(Liu, Tan, Huang, Goh & Ho, 2007). The bin packing problem is based on the principle of

running various possible combinations until the optimum is reached. There are often conflicting

criteria in this optimization process. In the case of Shipper, these constraints are floor position,

volume, and weight. In our findings, we employ a simple linear program example of the bin

packing problem to optimize the weight of a truck, given various constraints.

Based on our literature review, there is a lack of academic research in practical utilization

guidelines as set by various players in the shipping industry. The focus of our research, then, is to

understand and analyze Shipper's ordering guidelines and benchmarks in order to help the

company improve its fill optimization. To approach this problem, we base our analysis on

developing a basic algorithm that can better mix SKUs and trucks.



3. METHODS

This thesis' data set consists of a sample shipment data of Shipper, which covers a certain

time period, with extensive shipment details such as SKU information, origin-destination,

weight, volume, etc. The data set is substantial, but it is not so large that we cannot analyze it

using Excel. Specifically, we use Excel in conjunction with two main tools: statistical reasoning

and mathematical programming. Statistical reasoning is a broad discipline. With concern to this

thesis, statistical reasoning encompasses data sampling, scatterplots, and chi-square

independence tests. For mathematical programming, we focus specifically on Excel's Solver

add-in in order to formulate linear and integer programming models.

3.1 Statistical Reasoning

At the core of statistical reasoning, and at its most basic form, is summary statistics. We

use summary statistics to obtain an overall picture of the data set before diving into specifics.

Examples include variable averages, percentiles, and graphs. Looking at these numbers, in the

beginning, helps us to fully understand the problem, and gain a sense of intuition about the data.

3.1.1 Scatterplot analysis

One basic technique we employ is the scatterplot. A scatterplot simply diagrams data

points onto a two-axis graph containing one variable on the x-axis and the other on the y-axis. It

is a useful way to display data in order to visually interpret relationships between two variables.

Scatterplots are naturally associated with correlation. We use correlation in this work in order to

examine quantitative relationships between different fill metrics. Correlation is performed on two

variables and produces a rational number ranging between -1 and 1, a negative or positive

correlation, respectively. A negative correlation means that as one variable increases, the other
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decreases. A positive correlation, then, means that both variables vary in the same direction

simultaneously. No correlation, or numbers hovering around 0, asserts little to no relationship

between variables. Variables range between 1 and -1 and are rarely ever perfectly correlated.

Finally, we are able to display correlation in table form in order to look at collinearity among

more than two variables. Collinearity is defined as two or more variables having similar high

correlations.

3.1.2 Chi Square Independence Test

A chi-square independence test is another statistical tool for displaying a relationship

between two variables. Unlike correlation, an independence test attempts to show whether two

variables vary independently of one another. The input to this test is a contingency table. A

contingency table has x rows and x columns. The test then calculates the expected values for

each row and column based on equal probabilities. If the actual values match the expected

values, the variables are dependent. If not, the variables are independent of one another, meaning

they do not affect one another. The chi-square independence test is also very useful because it

computes confidence levels for its output, which enables us to say with assigned confidence

whether the test is conclusive or not.

3.2 Linear Programming

Mathematical programming is also used in this work. Specifically, we utilize linear and

integer programming via Excel's Solver add-in. The Solver can handle up to 200 decision

variables to be used in computing the aforementioned objective function. The Premium version

of Solver extends the number of decision variable up to 1000, which can be used to apply our

linear program to larger problems. Linear programming utilizes powerful algorithms in order to



compute the optimal answer for a given problem. To solve a problem, one must first

mathematically define an objective function. A linear objective function is one that needs to be

maximized, minimized, or set to a specific value. The inputs to the objective function output are

called decision variables. For linear programming to work, both the objective function and

constraints have to be linear functions. A constraint is any bind placed on the decision variables

or the objective function. For example, one constraint forces variables to be non-negative.

Another constraint that has already been mentioned is requiring variables to assume integer

values. These formulas are often quite simple. However, the computation required to complete

all equations simultaneously is very difficult, given that so many constraints and decision

variables figure into it.

Moving forward to our data analysis, we start with basic summary statistics. These

statistics highlight the anomalies in the data set and help us to gauge the importance of each fill

metric. Based on these initial findings, we then conduct an analysis for the floor position metric

using a scatterplot and chi-square test of independence.

Based on the independence test, we explore excluding floor position as a measuring fill

parameter and limiting its use to the exceptional cases or outliers. We develop a more strategic

algorithm that can achieve better truck utilization. We base this strategic approach on two

aspects: trucks and SKUs. First, we implement linear programming, which allocates an example

SKU set to a particular truck, in order to better mix trucks at a tactical level. This example helps

realize greater efficiency both in terms of fill statistics and a reduction in the number of trucks

required for shipping the same SKU set. Secondly, for the efficient mixing of both we apply an

algorithm based on the density of SKUs. This algorithm illuminates opportunities that can be

further explored by applying it to a customer profile or geographic location.
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4. FINDINGS

After analyzing Shipper's guidelines, we propose three solutions to how they can

improve their logistics. First, we explore the redundancy of a particular measuring parameter.

Second, through an example, we propose a linear programming model for mixing trucks and

explain how that model can reduce Shipper's total number of shipments. Third, we explore how

Shipper can mix different categories of SKUs, on the basis of cube and weight, in order to gain

better utilization rates.

4.1 Metrics Evaluation

As previously mentioned, Shipper uses three metrics to determine whether a truck meets

their minimum shipping requirements: volume, floor position, and weight. It is worth mentioning

that Shipper uses a constant for measuring volume, with 0 defining a truck as completely empty,

and 3750 defining a truck as completely full. Once a given metric is reached, the truck can be

shipped. As an operating heuristic, each metric carries equal weight under this framework. After

exploring the data, there is evidence that floor position is not as critical because it is largely

incorporated in the volume metric. If a truck reaches 100% volume, then, obviously, all of that

truck's floor positions are also full; and we observed that it is much less frequent to reach floor

position capacity without reaching volume capacity. To analyze the relationship between volume

and floor position metrics, we first perform a correlation test, build contingency tables, and then

perform a chi square independence test.

4.1.1 Test for collinearity

Before running the chi-square independence test for any table, we first examined the data

visually with a scatterplot, as shown in Figure 4. This scatterplot graphs volume against FP in
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order to examine the relationship between the two for every single shipment in the data set. One

can see a clear upwards-diagonal trend, as well as clustering, in the data points. If the variables

were completely independent of one another, there would be no clustering. Indeed, the

correlation between variables is strongly positive, .69. This result is evidence of collinearity.

80

c 60 -- - - --------C 0

' 50

8 40

+ 30

.cL
* 10

0

0 1000 2000 3000 4000 5000

Shipment volume

Figure 4: Scatterplot between volume and floor position

4.1.2 Contingency tables analysis

Next, a contingency table is required. In Figure 5, the variables are volume (Vol.) and

floor position (FP). In each table, the values represent a count of shipments. In the 100% table, a

value "hits Vol." if it is greater than or equal to 3750, the volume maximum. Likewise, a

shipment "hits FP" if it is greater than 29.

Since the real world rarely achieves perfect metrics, we also test the numbers by relaxing

the volume constraints in 1% increments from 100% to 97%. For example, 99% volume is



defined as 3750 * .99 = 3712.5. We hold FP constant at 100%, or greater than 29, because FP

is the variable in question.

Parameters:

790 661 1451

6 521 527
iif 7 1182 1978

Parameters:

779 224 1003
17 958 975

796 1182 1978

1 <37501 <=29
>= 3750 >29

< 3712.5 <= 29

>3712.5 > 29

Parameters :

761 190 951
35 992 1027

796 1182 1978

< 3675 <= 29
>= 3675 > 29

Parameters:

742 178 232
54 1004 1058

ii(7 1182 1978

Figure 5: Contingency Tables

4.1.3 Chi square test of independence analysis

After seeing visual evidence for collinearity in Figure 4, we feel justified in conducting a

chi-square test. Beginning with the 100% table, we can see that many points hit both metrics

together, as well as missing both metrics simultaneously. For the dependence hypothesis to be

true, these points have to be concentrated in the "both volume and FP" and "neither volume nor

FP" corners of the contingency table. We used 1% increments in order to identify the best

relaxation of the constraints. If one adds the bottom-left and top-right corners of each table, one

sees that the "Within 98%" table is most in favor of the dependence hypothesis. It is important to

100%:

Within 99%:

Within 98%:

Within 97%:

S>= 3637.5 1 > 29 1



note that the purpose in identifying this table is to relax the constraints just enough in order to see

the most realistic, or truest, picture of volume versus floor position.

The bottom-left corner of each table is appropriately very low. It is intuitive that if

volume is maximized at 100% full, then the pallets on in the floor positions of the truck should

also be full. The six shipments in the 100% table of Figure 5 are anomalies. Each one of them is

entirely composed of a particular type of product that is stacked, irregularly, in bags, instead of

boxes. Because it is not comprised of boxes, every pallet varies. Since the pallets vary, they

cannot be perfectly slotted into the neat geometrical patterns that Shipper's box-comprised

pallets fit into. As such, the volume of the truck may meet Shipper's maximum, while the pallet

numbers do not match up to a standard 100%.

Continuing with the 100% table, the majority of the values hit in the "neither" or "both"

boxes. This is a good sign in favor of the dependence hypothesis. However, 661 shipments still

comprise one third of the total 1,978 shipments. To begin the independence test, we compute the

expected counts for each value:

Table 1: Expected counts table

Expected Counts Does not hit FP Hits FP

Does not hit Vol.

Hits Vol.

The expected count is computed as the row sum multiplied by the column sum, divided

by the total number of shipments. 584, for example, is calculated as (790+6)*(790+661) = 584.
1978

What the independence test is doing is computing probabilities given the actual numbers. It then



calculates the statistical distance of the expected numbers from the actual numbers. Statistical

distance is computed as follows:

Table 2: Deviation from expected value table

Distance from Expected Does not hit FP Hits FP

Does not hit Vol.

IHits Vol. 74

This is the actual value minus the expected value squared, divided by the expected value.

73, for example, is calculated as sO58442 = 73. This calculation leads to the next step of the

test, being the chi-square statistic. In simplistic terms, the chi-square test is testing the statistical

distance of the expected values from the actual values. The farther the expected value is from the

actual value, the less independent the variables are. It also calculates a p-value, which we use to

conclude dependence or independence. A small p-value is evidence that the row and column

variables are dependent. For the 100% table, the p-value is less than .0001. This means that we

can say with greater than 99% confidence that the variables are not independent. Each of the

other tables, from 99% to 96%, also produce the same less than .0001 p-value and 99%

confidence level that the variables are not independent. Based on this evidence, we conclude that

floor position should be further assessed as a critical metric for determining whether a truck

should ship. Given the statistical evidence that it is not independent of volume, it may be

possible to remove this metric and utilize an ordering policy based on only two capacity metrics,

which would be simpler to implement and manage.



4.2 How to Mix Trucks Better

When deciding what products to put on a truck, one must account for several capacity

constraints of weight, cube, and floor position. One must ensure that the products' aggregate

weight, including pallets, is not higher than 45,000 pounds; and, that its aggregate volume does

not exceed the volume capacity of the truck. One must also stack individual products into mixes

that make good pallets. A useful tool for maximizing the ratio of volume to weight, while

working with numerous variables and constraints, is linear programming.

4.2.1 Designing the Linear Program Problem

To utilize the resourcefulness of linear programming, we pick a particular customer that

has enough shipments in the sample data to actually highlight the saving of this process. The

chosen customer has had four shipments sent to them in the defined time period. To design the

model, we first define the decision variables, constraints, and objective function below. We have

considered a decreasing-weighted objective function to maximize the weight in each shipment,

so when the program is run more weight is allocated to the first shipments and linearly

decreasing weight to the following shipments:

Objective function: To maximize the weight of each truck in progressive sequence:

4 (YTruck 1 Xi * weight) + 3(ETruck 2 Xi * weight) + 2 (ETruck 3 Xi * weight) + (ETruck 4 Xi *

weight) (4.1)

Note: Xiare SKU decision variables and Xiis binary with 1 representing that a SKU has

been selected for a shipment, or 0 representing that that SKU has not been selected for a

shipment



Constraints:

Weight of each shipment: Z Wi * Xi 45,000lbs

Volume of each shipment: Z Cubei * Xi 3750

Floor position of each shipment: Z FPi * Xi 30

Each SKU is allocated to only one shipment: Z X; = 1

(4.2)

(4.3)

(4.4)

(4.5)

Note: j is the number of shipments (four in this example), and Cube and FPi are volume

and floor position, respectively, for Xi

Using this model, the objective function is interchangeable. One can maximize weight,

volume, or floor position as one desires. We discovered that it is best to maximize weight due to

the fact that Shipper's products are, for the most part, volume heavy. Given our linear program's

formulation, volume is also maximized in the process of maximizing weight. The spreadsheet

model is listed in Table 3.

Table 3: Screenshot of the Model

1 610.20 20.88 0.17 0 0 1 0
2 348.00 15.40 0.12 1 0 0 0
3 42.56 4.48 0.04 0 0 1 0
4 58.80 10.40 0.08 0 0 1 0
5 48.80 6.24 0.05 0 0 1 0
6 28.60 5.72 0.05 0 0 1 0
7 532.98 20.21 0.16 0 0 1 0
8 26.55 4.68 0.04 0 0 1 0
9 81.12 5.07 0.04 1 0 0 0
10 386.10 68.64 0.55 1 0 0 0



4.2.2 Findings of the Model

The results of the aforementioned model are listed below in Table 4. Shipper's original

configuration consists of four shipments. The linear program, on the other hand, suggests a

configuration of only three shipments. One can see that the volume parameter is also maximized.

As a result of this model, the SKUs are more efficiently mixed and the fourth shipment is no

longer required.

Table 4: Findings of the Model

Actual Configuration: Utilization of each parameter for the four shipments

85%
100%
100%

35%
99%
99%

35%
18%
18%

99%
81%
81%

Suggested Configuration: Utilization of each parameter for the four shipments

100% 85% 69% 0%
98% 100% 100% 0%
98% 100% 100% 0%

4.3 Mixing of SKUs

Based on our initial data analysis, by product category and customer, it is easy to

conclude that most shipments are not optimally mixed. For example, many shipments are

entirely dedicated to one volume-heavy product line, causing Shipper to reach "cube fill" while

I

I



being very inefficient on "weight fill". To achieve better truck fill, we build a model that mixes

SKUs through a comprehensive segmentation of weight and volume into different categories.

4.3.1 Categorization of data

The first step of this model is categorizing data. The pallet density, for every SKU listed

in the shipment data sample, is calculated using the equation below:

Pallet Density of SKU = Pallet weight of SKU (43)
Pallet cube of SKU

The maximum weight that can be loaded onto a truck, minus the sum of all pallets'

weight, is 41,040 pounds. The maximum cube, or volume, is 3750. Thus, the optimal density is

10.944 lbs/cube. To gauge the spread of data around the optimal density, we examine the data

visually as shown in Table 5 and Figure 6. As evident in Figure 6, the SKUs above the red

optimal level line are weight-constrained, whereas the SKUs below the optimal level line are

cube constrained. Based on this spread of data, we divide data into three different categories

namely cube-constrained, neutral, and weight-constrained as shown in Table 6.

Table 5: SKU spread around the optimal density

<=10.944 46%
> 10.944 54%
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Figure 6: Pallet density spread around the optimal density

Table 6: Categorization of pallet density data

Cube-constrained 0.7-9.0 1649 39%
Neutral 9.1-12.5 826 19%

Weight-constrained 12.6-37.1 1770 42%

1__1___Total 4245 100%

4.3.2 Utilization Calculation

Next, we calculate the number of pallets required for each SKU to meet the optimal cube

and weight level for filling a truck. Naturally, some SKUs, when combined into homogeneous

pallets, weigh out the truck before reaching 60 pallets, while others cube-out the truck. As such,

we choose the minimum of the cube and weight quantities but we are always cognizant of the

fact that the number of pallets is constrained by the 60 pallet maximum. We then aggregate the

SKU statistics into each of our three categories, calculating the weight and cube utilization that
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each category would cause if it were loaded onto just one truck. These statistics are shown in

Table 7.

Table 7: Utilization summary statistics for each density category

Cube-constrained 46% 83% 6%6 96% 100%/ 27%

Neutral 95% 100%/ 34%/ 93% 100%/ 40%

Weight-constrained 98% 100%1 63% 65% 87% 29%

As one can see, the range for weight as well as cube utilization for each category varies

greatly. To combat this variance, for the cube-constrained segment we remove SKUs that have

cube utilization of less than 90%. For neutral and weight-constrained segments, we discard

SKUs that have weight utilization of less than 90%. For neutral category, we chose weight

utilization since most of the SKUs have higher weight rather than cube utilization. This leads to

elimination of 235 outliers that skewed the distribution, reducing the sample size from 4245 to

4010 observations. The new category segmentation is shown below in Table 8.

Table 8: Revised frequency of pallet density

Cube-constrained 1470 37%
Neutral 780 19%

Weight-constrained 1760 44%
Total 4010 100%

With this new truncated sample, we again compute the weight and cube utilization

statistics as shown in Table 9. The variance in the data has been reduced significantly with the

truncation and is now easier to work with. Removing the outliers also helps us to now see a



pattern in the data, which is highlighted in Figure 7. This pattern shows that, for cube-

constrained categories the SKUs meet the cube target. However, these same SKUs are unable to

meet the weight limit by a high margin. The trend is opposite for the weight-constrained SKUs

where weight is much better utilized than cube. For neutral categories, the SKUs fulfill both

criteria simultaneously, making this category naturally optimal.

Table 9: Revised statistics for utilization of truckload category-wise

Cube-constrained 48% 83% 6% 99% 100% 97%
Neutral 97% 100% 81% 94% 100% 80%

Weight-constrained 98% 100% 92% 65% 87% 29%

100%

80%

60%

40%

20%

0%
Cube-constrained Neutral

- By Weight

Weight-Constrained

-By Cube

Figure 7: Average truck utilization for different types of SKUs



4.3.3 SKU Mixing Algorithm

Based on the findings discussed in section 4.3.2, we suggest a rudimentary mixing

algorithm for Shipper. Obviously, the cube-constrained SKUs should be mixed with the weight-

constrained SKUs in order to balance high weight utilization with low cube utilization. The

neutral SKUs should be mixed with one another as they are already helping Shipper to achieve

their target utilization. To illustrate the algorithm, some simple calculations follow.

First, assume that a truck is half-full (30 pallets) of SKUs of one particular category,

which we shall refer to as, "primary category." The remaining half of the truck needs to be filled

with a one of the other two categories, referred to as, "mixing category," which helps the primary

category to achieve an optimal truckload density. As described earlier, the optimal density of a

truck is 10.944. Now, the number of mixing category pallets can be less than 30 if the total

combined density of both categories exceeds the optimal level. Our analysis spans three major

product lines. Table 10 shows the best mix of SKUs for each line to achieve the optimal density

for a truck. The best solutions have been highlighted in blue for each category combination. It is

interesting to note that for weight-constrained category, the average density is so high that it

forces a truck to contain less than 30 pallets. Therefore, we worked with just 20 pallets for that

particular category. This category not only mixes well with cube-constrained category as

expected but also with the neutral category. For the sake of simplicity, we work with discrete

pallet numbers. For more encapsulating analysis, continuous numbers should be used in building

pallets.



Table 10: Mixing table for different SKU categories

Cube-constrained 4.85 30 Weight-constrained 24.85 20 10.71 -0.24

Cube-constrained 4.85 30 Neutral 10.8 30 7.83 -3.12

Neutral 10.8 30 Neutral 10.8 30 10.80 -0.14

Neutral 10.8 30 Weight-constrained 24.85 13 10.78 -0.16

Weight-constrained 24.85 20 Cube-constrained 4.85 30 10.71 -0.24

Weight-constrained 24.85 20 Neutral 10.8 14 10.80 -0.14

Another approach to develop a SKU mixing algorithm is to look at a specific customer's

ordering pattern and study their average SKU portfolio. To do this, we first arrange the demand

data by the customer's locations and the density category statistics for those locations. One

example is shown in Table 11 where we show the demand for two locations, Region 1 and

Region 2. This data set is categorized by customer demand, in terms of number of pallets ordered

for each category. For Region 1, we notice that most of the customers, A through M, order from

just one category. This product is cube-constrained and will never achieve an optimal weight

utilization level by itself. Thus, we recommend that its shipment be combined with a shipment

for customer N that falls into weight-constrained density categories. For Region 2, the evident

gains lie in mixing the weight intensive orders of customer W with the cube intensive orders of

customer Z. It would thus be very beneficial to Shipper if the company treats customers W and Z

as shipment partners. Meanwhile, customers X and Y, for example, have a wide portfolio of

categories, which demonstrates that they could benefit greatly from simply mixing internally.



Table 11: Demand by density category (no of pallets)

Location: Region 1

A 1.0 1.0

B 1.0 1.0

C 2.0 2.0

D 1.0 1.0

E 2.0 2.0
F 1.0 1.0
G 1.0 1.0
H 1.0 1.0
1 1.0 1.0

J 2.0 2.0
K 1.0 1.0

L 1.0 1.0
M 1.0 1.0
N 9.9 4.2 19.7 33.7

Total 25.9 4.2 19.7 49.7

Location: Region 2

W 0.0 2.5 22.0 24.5
X 2.6 5.1 2.5 10.2
Y 73.8 65.7 32.7 172.2
Z 165.0 0.0 0.0 165.0

Total 282.2 81.5 96.5 460.3

Our proposed algorithm is based on the assumption that Shipper's data sample is

representative of its annual demand. We do realize that the actual pattern may be far deviant

from this assumption. However, Shipper can implement this same methodology by simply

analyzing annual demand, as we have analyzed sample demand, in order to identify shipment

partners based on customer location and ordering pattern. The important criteria would be to
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determine how many days of data would have to be accumulated before the opportunity for

matching is explored by Shipper. For customers with wide ordering portfolio, Shipper can try to

incentivize them into ordering the complimentary SKUs through ordering pattern-based

discounts. This approach would help Shipper to obtain better truck utilization while

simultaneously fulfilling the same demand with a given service level.

Of course, our algorithm is constrained due to the skewness of the demand data towards

cube-constrained SKUs. The sample data reports that 68% of the orders fall in this category, as

shown in Table 12. This highly skewed sample limits the implementation of the algorithm and

restricts achievement of maximum efficiency. Again, the sample might not be a true

representation of annual demand; and, analyzing the annual demand could give a different

picture. We also recommend that Shipper further explore the density categorization based on the

number of pallets ordered, rather than on the number of SKUs.

Table 12: Demand by pallet category-wise

Cube-constrained 57045.0 68%
Neutral 8533.8 10%

Weight-Constrained 17845.2 21%
Total 83424.0 100%



5. CONCLUSION

Based on our analysis, we arrive at three recommendations. First, Shipper should re-

examine whether to use floor position as a criterion for declaring when to ship a truck. As shown

in our analysis, there is evidence that the calculation of cube fill already encompasses floor

positions for the majority of Shipper's shipments. Eliminating the floor position metric as an

operating heuristic makes the implementation of order guidelines easier.

Second, Shipper should implement linear programming to better mix their orders at a

tactical level. As the number of decision variables becomes larger, it becomes impossible to use

linear programming at a large strategic level. As such, we propose that Shipper use linear

programming only for mid-size customers. In order to implement this, tactical personnel at the

operations level would have to be trained in the usage of this tool.

Shipper can explore the opportunities presented by mixing SKUs that belong to different

density categories. This would help Shipper to obtain much better average truckload utilization

rates. There are a few SKUs that are outliers, and would have to be treated on a case-by-case-

basis, but they are part of a minority. For a more robust order-mixing model, Shipper should

explore the ordering pattern of their high volume customers. Shipper can then use those

customers as a jumping off point for extending cross-mixing opportunities to other customers in

the same geographic vicinity. Overall, these steps should help Shipper to achieve significantly

better truckload utilization rates, while also reducing their carbon footprint.

Finally, the applicability of these methods extends beyond Shipper to other companies

and other modes of freight transport. The usage of linear programming at an operations level can

help achieve a greater mix of trucks; but, its applicability is restricted by the scale and scope of



operations due to a ceiling on the number of decision variables. Strategic mixing, through a

segmentation algorithm, should be further explored for a firm's most important customers, as it

can help one to achieve much better utilization. It also provides greater value proposition to a

company as it increases channel integration with its partners.
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