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0. Abstract

It is useful for one owning or buying a house to be able to assess its structure and identify

the existence and severity of any damage. No previously existing method appears to make this

assessment easily available. This thesis predicts that architecture will fail in some combination of

eleven predictable ways that a simple robot can observe and distinguish by measuring the slope

of select points on the floor. This prediction was tested on a case study house, and the model

predicted 78.7% of the observed contour. A compact robot was fabricated and measurements of

inclination were compared with those of a standard digital inclinometer. The ratio of the angle

measured with the robot to that measured with the inclinometer was found to be 1.034 t 0.193.

This proof-of-concept study indicates that an inexpensive robot could be developed as a

commercial product capable of assessing the structural safety of common houses.

Thesis Supervisor: Dr. Barbara Hughey
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Definition of terms

Term Units Meaning

E [M] / [TA2] Young's modulus

I [L^4] Area moment of inertia

M [M][LA2] / [TA2] Bending moment

g [L] / [TA2] Gravitational acceleration

r [L] Arbitrary constant vector

x [L] X-position, x-O denoting the wall, x>O denoting the room

x0  [L] X-dimension of an arbitrary room

y [L] Y-position, y=O denoting the wall, y>O denoting the room

yO [L] Y-dimension of an arbitrary room

P {[L]} Set of position vectors in the discrete contour map

5h [L] Deviation of the height of a floor from an arbitrary baseline

p [L] Position vector of an arbitrary location on the floor

o' [M] / [L^2] Density of an arbitrary floor, in mass/area

1. Introduction

This thesis demonstrates how the structural stability of a building can be estimated using

measurements of the slope of its floors. This method for structural analysis is inexpensive and

non-damaging. Section 2 defines the analysis process that makes this possible. Section 3

considers the automation of the floor measurement process process and describes the results of

proof-of-concept measurements using a compact robot.

2. Structural analysis of a house



This section focuses on the structural analysis process. Subsection 2.0 defines the

theoretical model used to represent a building. Subsection 2.1 defines the shape of floors

predicted by that theoretical model. Subsection 2.2 describes the numerical finite element model

used for analysis in practice. Subsection 2.3 briefly summarizes an example use of this analysis.

Subsection 2.4 demonstrates how the reliability of results obtained from theoretical analysis can

be verified and does so for the example use.

2.0 Structural model of a house

Gradient-based structural analysis depends on an assumed model of the underlying

structure. A house could, in principle, be deliberately constructed with uneven floors, heavy

weights hidden in the ceiling, or anything else not anticipated by the author. To avoid application

of this analysis technique in an inappropriate context, it is necessary to define the model around

which this algorithm was developed.

The structural component of a house is considered to have three parts: foundation,

skeleton, and surfaces.

A correctly built foundation provides a level surface. The most likely source of failure of

the foundation is the earth it rests on. If the ground's support fails, the foundation ceases to be

level. Several familiar examples can be found in Pisa, Italy.

A skeleton is composed of straight beams. It is entirely or almost entirely supported by

the foundation. All horizontal beams rest at a height of an integer number of floors. At the end of

every beam there is at least one other beam or at least two other beams' ends. A correctly built

skeleton arranges the beams orthogonally. The most likely failures are deformations due to

gravity: axial strain in the skeleton's vertical beams and transverse strain in the skeleton's

horizontal beams. Figure 1 shows a simple example of a skeleton.
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FIGURE 1: Skeleton model of a house's architectural structure.

The surfaces of a house consist of floors, walls, and ceilings. Because they don't need to

meaningfully contribute to structural stability, surfaces tend to be built very weak relative to the

rest of the skeleton. Surfaces have uniform thickness. The most likely failure in floors, sagging,

is also due to gravity. Deformations in the walls are both negligible and irrelevant to the analysis

discussed here.

2.1 Analysis of structural model of a house

The typical failure modes of the model described in section 2.0 all predict floor shape. To

analyze these shapes, two maps will be used: the gradient map and the contour map. The gradient

map, Vh(x,y), denotes the slope of the floor at (x, y). The gradient map is - as its name implies -

the gradient of the continuous contour map. The contour map, oh(x,y), denotes the difference

between the height of a particular point (x, y) on the floor from a constant height. In practice, the

gradient map is easy to measure but hard to interpret meaningfully. Instead, the gradient map is



used to compute the easier to interpret contour map.

To interpret the contour map computed from the gradient map, it is necessary to know

what contour maps typical failure modes predict. The model of the house's structure predicts five

likely structural failures: weak walls, uneven foundation, sagging floorboards, transverse strain

in a skeleton's horizontal beam, and axial strain in a skeleton's vertical beam. Because the

deformations in the floor are small compared to its size, it is reasonable to assume that the floor's

bending moment does not vary due to curvature in the orthogonal direction. This implies that it is

approximately accurate to use the one-dimensional linear elastic sheet-bending model.

d26h M(
8x2  E,

2 h My (2)
ay2 EI,

where h(x,y) is the height of the floor above some reference point, M, and M, are the floor's

internal bending moments, I, and I, are the floor's area moments of inertia, and E is the

Young's modulus of the material used to construct the floor. Each of the five failure modes listed

above has its own distinctive corresponding contour map, the first's being flat, and thus irrelevant

to the present discussion.

The uneven foundation is the simplest structural failure to detect. If r denotes the

direction in which the foundation is inclined (the "uphill" direction), the contour map it produces

is trivial.

5hfd.(ip) oc p r (3)

where p (x,y) is an arbitrary position on the floor.

A sagging floor produces two contour maps. One is based on the assumption that the

joints connecting the skeleton's beams force them to remain orthogonal; the other is based on the



assumption that the joints impose no such restriction. In reality, all joints fall between these

extremes, so the true result is a superposition of these two cases with variable amplitudes.

In the case of joints that do not mechanically impose orthogonality, the mechanical

analysis is straightforward. A rectangular area of the floor supported at all four corners has less

support in one corner than the others. The floor hangs entirely under its own weight. Assuming

the floor's thickness to be uniform implies both moments are given by

Mxnon -orthogonal = Ogy 0  - (4)
2

M _,non,orthogonal _ gX0 (0 - 2) (5)
2 -

where Y is the surface density (in mass/area) of the floor and x0 and yo are the dimensions of

the floor.

The general solution to equations (1), (2), (4), and (5) is

non orthogonal =2 (2x 0 x -x +2 yy-y+ Ax + By + Cxy + D (6)
24 EI

I = IX /yo = I, /xo, (7)

where A - D are constants dictated by the skeleton. This can be solved for zero displacement at

the corners.

o5h _ OC,,, _X4 +2x x' 3 6x - y'4 + 2yoy' - y(8
sagnon orthogonal en + graphicaly (8)

This solution is presented graphically in Figure 2.
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FIGURE 2: Graphical representation of equation (8): afloor sagging under its own
weight supported by joints that do not impose orthogonality. Note that the horizontal
members are not perpendicular to the vertical axis at the corners. The x and y axis are in
units of xo andyo, respectively, the floor's dimensions. The maximum magnitude of the

vertical deflection is g (x0 +y 0 ), exaggerated here to two to three orders of
3 84E1I

magnitude greater than typical deformations.

In the case of joints that do impose orthogonality, the one-dimensional linear elastic

sheet-bending model remains valid. The internal moment modeled must include arbitrary

moment at each corner.



M ,hgona =' A'xy + B' x + C'y + D'- _ 0 X
2

Myorthogo =E'xy + F'x + G'y + H'- 2

2

The general solution to equations (1), (2), (9), and (10) is

bhsag ,orthogonal = - (24EI X + ) +

Ax 3y+Bxy3 +Cx3 +Dy3 +Ex 2y +Fxy2 +Gx2 +Hy2 +Ix+Jy+Kxy+L

This can be solved for displacements and gradients of zero at the corners.

hsagorthogonal -2 _XX0)2 _ 2 _y 2

This solution is presented graphically in Figure 3.
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FIGURE 3: Graphical representation of equation (12): afloor sagging under its own
weight supported by joints that impose orthogonality. The axes are normalized as
described in the caption to Figure 2. The maximum magnitude of the vertical deflection

here is 5ug (4 + ')
384 EP +I o
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Transverse strain in a skeleton's horizontal beam also generates two contour maps, one

for orthogonality imposing and one for non-orthogonality-imposing joints. In both cases,

however, the beam deforms exactly according to the one-dimensional linear elastic sheet-

bending model; there is no geometric distinction between a floor sagging under its own weight

and a floor resting on horizontal beams that are sagging under their own weight.

Axial strain in a vertical beam of the skeleton also produces two contour maps. In the

case of joints that do not mechanically impose orthogonality, the general form of the contour

map remains that given in equation (6). This can be solved for the origin's unit displacement.

o5hosag ,non -orthogonal "

(-x' + 2xox 3 - x - y' + 2yoy' - 'y 0 + X0 ~X .O - (13)
24EZ 0 YO I

The first term is the shape of the floor sagging under its own weight; the second term is

the contribution of the origin's unit displacement. It follows that the component of the contour

map generated by axial strain in a vertical beam of the house's skeleton under the assumption

that joints impose no orthogonality between beams is the second term, as one would expect.

x0 -x Y6 ho0,non-orthogonal 0 1 (14)

This solution is presented graphically in Figure 4.
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FIGURE 4: Graphical representation of equation (14): a non-sagging floor supported by
uneven joints that do not impose orthogonality. The axes are normalized as described in
the caption to Figure 2.

The other corners have similar results.

~xo-x y]
6hoy,non-orthogonal O O0 Y (15)

hxo,non -orthogonal x (16)
.X0 Y0



Kit (17)

In the case of joints that do impose orthogonality, the general form of the contour map

remains that given in equation (11). This can be solved for the origin's unit displacement.

ohOO,sag,orthogonal E 2 XX 0) 2 ~

1 - + 2+ ( -2xx0- + Y0 -2yyo-_ (18)
YO . 0 0 . 0 0 Y0 YO /

The first term is the shape of the floor sagging under its own weight; the second term is

the contribution of the origin's unit displacement. It follows that the component of the contour

map generated by axial strain in a vertical beam of the house's skeleton under the assumption

that joints impose orthogonality between beams is the second term.

3x2  3y 2  2x3  2y
1 2 2 3 3

xo yo xo yo
(5hOOorthogonal (190 0 0 .

AY xo-2xxo-x +YO0 -2y yo-y I
__ _ __ _ _+ _ _ _ _ -1

0. 0 X0 YO YO 

This solution is presented graphically in Figure 5.
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FIGURE 5: Graphical representation of equation (19): a non-saggingfloor supported by
uneven joints that impose orthogonality. The axes are normalized as described in the
caption to Figure 2.

The other corners have similar results.

oho,orthogonal 0x

ohxOorthogonal C

ohxy,orthogonal C

3x 2 3( 0 -y) 2  2X3 2(yo-y) 3

1 2 2 + 3+ 3
x0 y0 x0 y0

X(YO-Y) x0-2xxo-x + -0 Y

L 00 xoo X 0 Y0 Y0 ,

2 3(o
3(xo - x) 3y 2 2(xo - X) 2y 3

2 -+1- 2 2 +3 + 3
xo yo x0 YO

(X0 -X)y 0 -x-x0 x Y0-2y yo-y+ 1
070O x0 X0 Y0 Y0O

3(x, - X)2 3(y0 - y2 + 2(x0 - X)3 2(yo -Y)3
1- 2 - 2 + 3 + 3

0 70 30 YO

(xO- x)(10 - ) x- x0 xY 7-Y0+ - 1-

x070 x0 X0 Y0 Y0

(20)

(21)

(22)
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The corresponding discrete contour map and the discrete contour map corresponding to

an uneven foundation are not orthonormal; there is no geometric distinction between the side of a

room getting lower because the vertical beams of a the skeleton supporting it are getting shorter

and the side of the foundation supporting that side of the room sinking into insufficiently

supportive earth. However, because either situation implies an unsafe structure, it is reasonable

to treat any such contour as a skeletal defect.

Because an observed contour map must be decomposed into these components, each

must be orthonormalized with respect to a uniform offset of 6h. After this orthonormalization,

the continuous contour map of a floor predicted by this model is



oh(x,y) =

A. x0 -x YO -Y +Axy +
.x0 Y0 4.

.x y 0 -y I
3 X0 YO 41

A4  X0 O 1+
. xo y0 4]

3 3x 2 3y2 23 2y 3

2 2 3 3

4 0 0  x0  Y0  +
XY xo-2xxo-x +Y 0 - 2 yyo-y 1

Lx0E 0 X0 + O Y0

3 3(x 0 -x) 3(y 0 -y) 2(x -x) 2(yo -y)
42 2 3. 3

4 0 0 X0 YO

(x0 -x)(y 0 -Y)x ~ X + Y-Y 0 Y

xoyO x0 xo yo yo

3 3(xo - X)2 3y2 2(xO - x) 2y3
2 2+ 3 3

A7  0 0 YO +
4xo o yo yo(xo -X)y x -X0 x +YO -2y YO-y

x0.O 0 x0 x0 YO YO

3 3x 2  3(yO -y) 2
2 2

4 X 0 Y0O

2X3 2(yo -y)
3 3

x0 YO

x(yo-Y) x 0 -2xx 0 -x + Y 0 '

xoyo x0 x0 YO YO

A x 0 o+x.Y 4 + 2xx 3 - yx y + 2y07" -hy3 +
5 0

A10 0 30 oYo _ (X2 - xx 0 ) 2 _ (2 S )21 + All

where A,, A2, A3, ..., A,,, are adjustable constants used to fit the measured shape of the floor and

x0 and yo are the dimensions of the floor. A possible value of this solution is presented

graphically in figure 6.

A6 +

(23)

A8

- I
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FIGURE 6: Graphical representation of equation (23): an arbitraryfloorfor randomly
generated values of A1=0.10, A2=0.31, A3=0.42, A4=0.46, A5=0.67, A =017,
A7 =0.37, A8 =0.97, A9 0.42, A10=0.02, A11=2.65

Note that all coefficients except A,1 are assumed positive. Note also that none of the

failure modes can be expressed as a weighted sum of positive multiples of any subset of the other

ten.

2.2 Gradient and Contour Maps

Subsection 2.1 defines the contour map predicted by a theoretical model of the structure

of a typical house. This subsection describes how a contour map can be obtained for a particular

house. Direct measurement is nearly impossible because it would require measuring absolute

height to the tenth of a millimeter. Such precision vastly exceeds that of any altimeter. Thus, a



gradient map measured with an inclinometer is used instead to compute the contour map.

The continuous gradient map, Ch(x,y), denotes the slope of the floor. It must be

approximated with a discrete gradient map: oh[x,y].(X,y) E Pradien,. The author's experience

directly measuring gradient maps indicate that the accuracy of the discrete gradient map does not

substantially improve for more than four samples per square meter.

Once the set of sampling locations of the discrete gradient map has been determined,

measuring the gradient at each location is simple. An acceptable precision is one to two

milliradians, common for low-cost inclinometers, so the gradient can be easily measured on any

clear floor.

The continuous gradient map is - as its name implies - the gradient of the continuous

contour map. The continuous contour map, oh(x,y), denotes the difference between the height of

a particular point on the floor from a constant reference height, where the reference height is a

different constant for each room. The predicted contour components are orthonormal, so the

reference height may be determined arbitrarily. In practice, only a finite number of

measurements exist, so the continuous contour map is approximated with a discrete contour map,

oh[x,y].(x,y) E PCo,,.. Because the discrete gradient map's accuracy does not substantially

improve for more than four samples per square meter and the discrete contour map has twice the

density of locations per area as the discrete gradient map (see discussion below), the accuracy of

the discrete contour map does not substantially improve for more than eight samples per square

meter. It is useful to note that a discrete contour map with n locations is also an n-dimensional

continuous vector space.

The discrete contour map is the minimum squared error solution to an overdetermined

system of linear equations. This system of equations comes from the discrete gradient map. For



each location in the discrete gradient map, there are three equations.

6h((x,y)+ u /2) - oh((x,y) -ui /2) = Vh - ui (24)

5h((x,y)+ u2 /2) -o6h((x,y) -u 2 /2) =V h'u 2  (25)

oh((x,y) + ui /2) + oh((xy) - ui /2) = bh((x,y) + u 2 /2) + 5h((x,y) - u2/2) (26)

Here, Ui and U2 are the discrete gradient map's basis vectors. In addition, there is one

arbitrary location j in the discrete contour map for which oh(p) =0. Methods for computing the

minimum squared error solution to an overdetermined system of linear equations are readily

available from other sources and not included here2 .

The selections of sampling locations of the discrete gradient map and the discrete contour

map are neither arbitrary nor independent. For each map, the difference between any two

locations is the sum of integer multiples of two basis vectors. The basis vectors of the gradient

map are always orthogonal. The discrete contour map's basis vectors are half the sum and half

the difference of those of the discrete gradient map. The sum of any location in the discrete

gradient map and half of either of the discrete contour map's basis vectors is a location in the

discrete contour map. Notice that this implies that the contour map has exactly twice the density

of sampling locations per unit area as the gradient map. The relationship between the locations in

the gradient map and the contour map is shown graphically in Figure 7.
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FIGURE 7: Graphical representation of relative positions of a discrete gradient map and
a discrete contour map

2.3 Manual Analysis

In Spring 2010, the author measured the slope of a house in Worcester, MA, constructed

in 1914. The only tool used to measure the discrete gradient map was an inclinometer with 0.1-

degree precision. Measurements were taken at eighteen-inch to twenty-four-inch (0.457 to 0.610

meter) increments in most rooms. Because the ideal measurement density was not known a

priori, one area's measurements were taken at nine-inch (0.229) increments.

The analysis described above, when applied to the measured discrete gradient map,

indicated that a -0.2% strain in a crucial vertical beam of the skeleton was the most substantial

strain. Because the wood used to build this beam can strain roughly -0.5% before yielding3, this

suggests that, barring intervention, this house will collapse under it's own weight around 2154.

The contour map implying this conclusion is shown in figure 8.
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FIGURE 8: Contour map offirst floor of case study house. Although the rooms are

2.4 Validation of model

Once a discrete contour map with n locations has been obtained, it can be considered an

n-dimensional vector for which each component is equal to the relative height of one location.

The theoretical model of a house presented in subsection 2.1 predicts a contour map with eleven

adjustable constants, so the predicted discrete contour map also has eleven adjustable constants.

For any floor large enough to have a discrete contour map with over eleven locations (roughly a

four foot square), the model cannot fit all possible contour maps. A discrete contour map may

easily have over a hundred locations. An arbitrary hundred-dimensional vector cannot be

decomposed into eleven arbitrary basis vectors.

The inability of the model to explain every possible contour map is essential in validating

the model. If eleven basis vectors predict, with high accuracy, a point in an n-dimensional vector

space, then those eleven are likely to be intelligently chosen. If n is high, any arbitrary eleven



basis vectors are very unlikely to predict the contour accurately, so the chosen eleven basis

vectors predicting accurately is strong evidence that the model providing them is valid.

This also implies that every analysis includes self-assessment. After the components of

the discrete contour map in the direction of each basis vector are removed, the remaining

component of the contour is unexplained by the theoretical model. However, if the theoretical

structural model is accurate, then this residual will be very small.

For the house in Worcester, MA', the discrete gradient map had an average of eighty-four

locations for each room, so the average residual of a zero-information model is (84-11)/84, or

roughly 86.9%. On average, the residual actually accounted for 21.3% (standard deviation

9.83%) of the discrete contour map. This confirms that the model is valid for this particular

house.

3. Automated Gradient Map Measurement

The repetitiveness of the measuring process suggests automation. A robot must be

capable of moving, tracking its own position and orientation, and measuring the slope of the

floor it rests on to automatically measure the discrete gradient map. The author constructed a

robot with these capabilities. This section provides an overview of its design. Subsection 3.0 lists

the essential mechanical details of construction and equipment. Subsection 3.1 summarizes the

software algorithms used to control the robot. Subsection 3.2 compares a few gradient

measurements made by a hand inclinometer to those made by the robot itself.

3.0 Hardware

Position control uses some basic form of vision. The type selected as best suited for this

application is a long-range IR distance-measuring sensor.

An inclinometer is used to measure the floor's slope. It is located between the two coaxial
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driven wheels by necessity; if the robot rotates in place, the inclinometer continues measuring

the same location. The inclinometer was constructed by hanging a weight from a position

encoder with 1600 counts / revolution, so it measures in increments of 0.225 degrees. As

mentioned above, the hand inclinometer had a resolution of 0.1 degrees.

FIGURE 9: Photograph of constructed robot. 4

--- --------~

FIGURE 10: Close-up of the robot's inclinometer and the hand inclinometer



3.1 Control algorithms

Because high precision control of position is essential, it is useful to consider two

feedback systems: one to control position and another to control rotation.

Because the robot measures a gradient map whose samples lie on a grid orthogonal to the

walls, iteratively driving until the perceived wall is at the desired distance and rotating ninety

degrees reaches each successive position. This prevents accumulation of dead reckoning errors.

Rotation control requires seeking an orientation in the direction of the discrete gradient

map's basis vectors. These positions directly face walls. Rotating to local minimum visual ranges

reliably counts revolutions but lacks precision. However, assuming any gradient exists, the

measured slope is proportional to the arcsine of the deviation of the robot's angle from the

floor's gradient. To make a precise rotation, the robot seeks a computed slope. This requires that

the robots inclinometer be located directly above the center of the axle of its drive wheels.

With precise driving, the robot simply measures the dimensions of the room and

measures each location of the gradient map in the simple pattern shown in Figure 11.

4-.

4--

4-- _

4- -_H



FIGURE 11 Graphical representation of the robot's path measuring a floor. It stops at
every intersection of two lines to perform the two slope measurements required to record a
gradient.

The high level implementation of common robotic mapmaking was beyond the scope of

this thesis project. However, the core algorithms specific to this robot supporting all higher-level

functions were developed and are included in the appendix.

3.2 Testing

To test the robot's measurement capabilities, it was placed on a variable-slope incline

with a hand inclinometer. In this configuration, both measured exactly the same angle. The

incline was moved to several positions and both measurements were compared. Since the hand

inclinometer is known to be reliable, this tests the precision of the robot's inclinometer. The

results of this testing are plotted in Figure 12.

Robot-Inclinometer Testing

Angle Measured by Inclinometer (degrees)

FIGURE 12: Comparison of inclinometer and robot gradient measurements. The y=x line
and the best fit have been plottedfor reference.

0W
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The robot's measurements are imprecise. Its root-mean-square is 0.4 degrees, only

sufficient to observe substantial damage. With 95% confidence, the slope of the best fit to the

robot's measurements is 1.0334 ± 0.193, statistically indistinguishable from one. A position

encoder with finer precision and less viscous damping would be beneficial.

4. Conclusions

A model was developed predicting failures in a house's structure. This model allows

damage to be assessed based on the contour map computed from the measured gradient map of

the house's floors. The gradient map is measured at specific locations with a density of

approximately four measurements per square meter.

This model was validated with a comparison to previous floor gradient measurements of

a house built in 1914. The model predicted roughly 78.7% of the measurements; the remainder

corresponded roughly to particularly heavy objects and random noise.

A prototype robot was constructed to demonstrate the automatability of measuring a

floor's gradient. Although high-level implementation of common robotic mapmaking was

outside the scope of this project, the on-board inclinometer was tested and found to be accurate

to within a RMS error of 0.4%.

In the future, the prototype could be developed into a simple product and mass-

manufactured, enabling homeowners to easily and affordably assess the safety of their homes.
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Appendix: software

This section includes all programmed code used in this project.

Printing subroutines provided by 6.115's MINMON

stack equ 2fh ; bottom of stack
stack starts at 30h -

errorf equ 0 ; bit 0 is error status

8032 hardware vectors

org 00h ; power up and reset vector
ljmp start
org 03h ; interrupt 0 vector
ljmp start
org Obh ; timer 0 interrupt vector
ljmp start
org 13h ; interrupt 1 vector
ljmp start
org lbh ; timer 1 interrupt vector
ljmp start
org 23h ; serial port interrupt vector
ljmp start
org 2bh ; 8052 extra interrupt vector
ljmp start

begin main program

org 100h
start:

icall init

doneLoop:
mov a, #5
icall driveForwardDistance
icall driveUnitTest
mov R5, #10h
lcall delay

sjmp doneLoop

UNIT TESTS START HERE

; subroutine frontEyeUnitTest
; prints the distance perceived by the front eye, in cm

frontEyeUnitTest:
lcall frontEye
lcall prthex

ret



; subroutine backEyeUnitTest
; prints the distance perceived by the back eye, in cm

backEyeUnitTest:
Icall backEye
Icall prthex

ret

subroutine driveUnitTest
does the hokey-pokey

driveUnitTest:
mov R5, #1
mov R6, #0
mov R7, #0
Icall driveForwardTime ; Step forward
mov R5, #1
mov R6, #0
mov R7, #0
icall driveBackwardTime ; Step back
mov RO, #4
driveUnitTestLoop: ; Shake

mov R5, #1
mov R6, #0
mov R7, #0
icall driveLeftTime
mov R5, #1
mov R6, #0
mov R7, #0
icall driveRightTime
djnz r0, driveUnitTestLoop

mov a, #10
icall driveBackwardDistance
mov a, #10
icall driveForwardDistance

ret

UNIT TESTS END HERE

subroutine init
this routine initializes the hardware
set up serial port with a 11.0592 MHz crystal,
use timer 1 for 9600 baud serial communications

init:

; pg 2-14



set timers 0 and 1 for auto reload - mode 2
mov tmod, #00100010b

1st bit: 0, so timer/counter 1 is run by software
2nd bit: 0, so timer/counter 1 is a timer
3rd and 4th bits: 10, so timer 1 is in mode 2
5th bit: 0, so timer/counter 0 is run by software
6th bit: 0, so timer/counter 0 is a timer
7th to 8th bits: 10, so timer 0 is in mode 2

pg 2-14
run timer/counter 0 and 1
mov tcon, #01000000b ; Turn timer/counter 1 on

1st bit: 0, handled by hardware
2nd bit: 1, so timer/counter 1 is on
3rd bit: 0, handled by hardware
4th bit: 0, so timer/counter 0 is off
5th bit: 0, handled by hardware
6th bit: 0, TA said so, "no interrupts"
7th bit: 0, handled by hardware
8th bit: 0, so interrupt 0 triggered by edge

pg 2-20
set 9600 baud with xtal=11.059mhz
th1 = 256 - (11059000/(12*32*9600)) = 253

mov th1, #11111101b

pg 2-19
set serial control reg for 8 bit data and mode 1

mov scon, #01010000b
1st and 2nd bits: 01, so mode 1 is used
3rd bit: 0, because there is only one processor
4th bit: 1, to enable reception
5th bit: 0, will be overwritten anyway
6th bit: 0, will be overwritten anyway
7th bit: 0, handled by hardware
8th bit: 0, handled by hardware

lcall stopMoving
ret

subroutine sndchr
this routine takes the chr in the acc and sends it out the
serial port.

sndchr:
clr scon.1 ; clear the tx buffer full flag.
mov sbuf,a ; put chr in sbuf

txloop:
jnb scon.1, txloop ; wait till chr is sent
ret

subroutine getchr
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this routine reads in a chr from the serial port and saves it
in the accumulator.

getchr:
jnb ri, getchr ; wait till character received
mov a, sbuf ; get character
anl a, #7fh ; mask off 8th bit
clr ri ; clear serial status bit
ret

; subroutine print
; print takes the string immediately following the call and
sends it out the serial port. the string must be terminated
with a null. this routine will ret to the instruction
immediately following the string.

print:

pop dph put return address in dptr

pop dpl
prtstr:

clr a set offset = 0
movc a, @a+dptr get chr from code memory
cjne a, #Oh, mchrok if termination chr, then return
sjmp prtdone

mchrok:
lcall sndchr send character
inc dptr ; point at next character
sjmp prtstr loop till end of string

prtdone:
mov a, #1h point to instruction after string
jmp @a+dptr return

subroutine crlf
crlf sends a carriage return line feed out the serial port

crlf:
mov a, #Oah ; print f

;call sndchr
cret:

mov a, #Odh ; print cr
lcall sndchr
ret

subroutine prthex
this routine takes the contents of the acc and prints it out
as a 2 digit ascii hex number.

prthex:
push acc
lcall binasc ; convert acc to ascii
lcall sndchr ; print first ascii hex digit
mov a, r2 ; get second ascii hex digit
lcall sndchr ; print it



pop acc
ret

subroutine binasc
binasc takes the contents of the accumulator and converts it
into two ascii hex numbers. the result is returned in the
accumulator and r2.

binasc:
mov r2, a ; save in r2
anl a, #Ofh ; convert least sig digit.
add a, #Of6h ; adjust it
jnc noadj1 ; if a-f then readjust
add a, #07h

noadj1:
add a, #3ah ; make ascii
xch a, r2 ; put result in reg 2
swap a ; convert most sig digit
anl a, #Ofh ; look at least sig half of acc
add a, #Of6h ; adjust it
jnc noadj2 ; if a-f then re-adjust
add a, #07h

noadj2:
add a, #3ah ; make ascii
ret

subroutine ascbin
this routine takes the ascii character passed to it in the
acc and converts it to a 4 bit binary number which is returned
in the acc.

ascbin:
clr errorf
add a, #OdOh ; if chr < 30 then error
jnc notnum
clr c ; check if chr is 0-9
add a, #Of6h ; adjust it
jc hextry ; jmp if chr not 0-9
add a, #Oah ; if it is then adjust it
ret

hextry:
clr acc.5 ; convert to upper
clr c ; check if chr is a-f
add a, #0f9h ; adjust it
jnc notnum ; if not a-f then error
clr c ; see if char is 46 or less.
add a, #Ofah ; adjust acc
jc notnum ; if carry then not hex
anl a, #Ofh ; clear unused bits
ret

notnum:
setb errorf ; if not a valid digit



ljmp start

subroutine delay
wait for time in R5 R6 R7
leaves all 0's in R5, R6, and R7

delay:
inc R5
inc R6
inc R7

delayLoop:
djnz R7, delayLoop
djnz R6, delayLoop
djnz R5, delayLoop

ret

ROBOT ROUTINES START HERE

P3.2 - left wheel back

P3.3 - left wheel forward

P3.4 - right wheel forward

P3.5 - right wheel back

FEOO - back sensor

FE10 - front sensor

FE20 - position encoder

destroys RO, R1, R5, R6, R7
subroutine frontEye
computes the distance from the front IR sensor to the wall
returns the distance, in cm, in the accumulator

frontEye:
mov dptr, #0fe10h ; address of front eye
lcall getEye
lcall eye2distance

ret

destroys RO, R1, R5, R6, R7
; subroutine backEye
; computes the distance from the back IR sensor to the wall
; returns the distance, in cm, in the accumulator

backEye:
mov dptr, #OfeOOh ; address of back eye
lcall getEye
lcall eye2distance

ret



; subroutine eye2distance
; takes as input an eye voltage in the accumulator
; computes the distance, in cm
the result is returned in the accumulator

eye2distance:
inc a
movc a, @a+pc
ret
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,094h,08Fh
db 08Ah,085h,080h,07Bh,077h,073h,06Fh,06Bh
db 068h,065h,061h,05Dh,05Ah,058h,056h,054h
db 052h,050h,04Dh,04Bh,048h,046h,045h,044h
db 042h,041h,040h,03Fh,03Eh,03Dh,03Ch,03Bh
db 03Ah,039h,038h,037h,036h,035h,034h,033h
db 032h,031h,031h,030h,02Fh,02Fh,02Eh,02Dh
db 02Dh,02Ch,02Bh,02Bh,02Ah,02Ah,029h,028h
db 028h,027h,027h,026h,026h,026h,025h,025h
db 024h,024h,023h,023h,023h,022h,022h,021h
db 021h,020h,020h,0lFh,OlFh,OlFh,OlEh,OlEh
db OlEh,0lDh,0lDh,0lDh,0lCh,OlCh,OlCh,OlBh
db OlBh,OlBh,OlAh,OlAh,OlAh,019h,019h,019h
db 019h,018h,018h,018h,017h,017h,017h,016h
db 016h,015h,015h,014h,014h,013h,013h,012h
db 012h,O11h,011h,010h,OOFh,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,0 0h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 0000h,000h0h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h
db 000h,000h,000h,000h,000h,000h,000h,000h

destroys RO, R1, R5, R6, R7
; subroutine getEye
; reads the voltage of the specified eye four times, taking the
; average voltage
the result is returned in the accumulator

getEye:
lcall getRawEyeVoltage
mov RO, acc



lcall getRawEyeVoltage
addc a, RO
rrc a
mov RO, acc
clr c

icall getRawEyeVoltage
mov R1, acc
icall getRawEyeVoltage
addc a, R1
rrc a
clr c
addc a, RO
rrc a

ret

destroys R5, R6, R7
; subroutine getRawEyeVoltage
; reads the voltage of the specified eye
the result is returned in the accumulator

getRawEyeVoltage:
movx @dptr, a ; poke it
mov R5, #Oh
mov R6, #Oh
mov R7, #20h
lcall delay ; wait for it
movx a, @dptr ; read it

ret

destroys RO, R1, R2, R3, R4, and R5
; subroutine setLeftWheelDutyCycle
; takes as input 256*(duty cycle)-1 in the accumulator
; sets the left wheel's duty cycle to the input duty cycle

setLeftWheelDutyCycle:
lcall setWheelDutyCycle
lcall stepSizeFromDutyCycle
mov R2, a ; record step size
mov R3, #2 ; record wheel selection, "ON"
mov R4, #0FEh ; record wheel selection, "OFF"
lcall setWheelDutyCycle

ret

destroys RO, R1, R2, R3, R4, and R5
; subroutine setRightWheelDutyCycle
; takes as input 256*(duty cycle)-1 in the accumulator
; sets the right wheel's duty cycle to the input duty cycle

setRightWheelDutyCycle:



icall setWheelDutyCycle
icall stepSizeFromDutyCycle
mov R2, a ; record step size
mov R3, #1 ; record wheel selection, "ON"
mov R4, #OFFh ; record wheel selection, "OFF"
lcall setWheelDutyCycle

ret

destroys RO, R1, R2, R3, R4, and R5
; subroutine setWheelsDutyCycle
; takes as input 256*(duty cycle)-1 in the accumulator
; sets both wheels' duty cycles to the input duty cycle

setWheelsDutyCycle:
lcall setWheelDutyCycle
lcall stepSizeFromDutyCycle
mov R2, a ; record step size
mov R3, #3 ; record wheel selection, "ON"
mov R4, #OFDh ; record wheel selection, "OFF"
lcall setWheelDutyCycle

ret

destroys RO, R1, R2, R3, R4, and R5
subroutine setWheelDutyCycle

setWheelDutyCycle:
mov RO, #0 ; speed control table iterator
mov R1, #0 ; speed control pre-table iterator
setWheelDutyCycleLoop:

; Get pre-table value
mov dph, #21h ; read from the pre-table

determine where to look in pre-table
mov R1, a
add a, R2
mov R1, a

mov dpl, R1 ; select pre-table value
movx a, @dptr ; read pre-table value

anl a, R3 ; only apply to wheel being controlled
mov R5, a ; save new data in R5

; Update table value
mov dph, #20h ; read from the table
mov dpl, RO ; select table value
movx a, @dptr ; read table value
anl a, R4 ; remove old data
orl a, R5 ; update bit (wheel) being modified, but

don't change any other data
movx @dptr, a ; save new value

djnz RO, setWheelDutyCycleLoop ; Next value
ret
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; subroutine setWheelDutyCycle
; takes as input 256*(duty cycle)-1 in the accumulator
; fills the speed control pretable (OA100h-OA1FFh) with that
; many highs
; leaves accumulator unchanged

setWheelDutyCycle:
push acc
inc acc
mov RO, a
mov a, #OFFh
mov dph, #21h
setWheelDutyCycleLoop:

mov dpl, R0
movx @dptr, a
djnz RO, setWheelDutyCycleLoop

pop acc
ret

; subroutine stepSizeFromDutyCycle
; takes as input 256*(duty cycle)-1 in the accumulator
; computes step size of 1's for writing the speed control table
returns the result in the accumulator

stepSizeFromDutyCycle:
inc a
movc a, @a+pc
ret
db 001h,003h,003h,005h,005h,007h,007h,009h
db 009h,00Bh,0OBh,00Dh,0ODh,OOFh,O0Fh,Ollh
db Ollh,013h,013h,015h,015h,017h,017h,019h
db 019h,0lBh,OlBh,OlDh,OlDh,0lFh,0lFh,021h
db 021h,023h,023h,025h,025h,027h,027h,029h
db 029h,02Bh,02Bh,02Dh,02Dh,02Fh,02Fh,031h
db 031h,033h,033h,035h,035h,037h,037h,039h
db 039h,03Bh,03Bh,03Dh,03Dh,03Fh,03Fh,041h
db 041h,043h,043h,045h,045h,047h,047h,049h
db 049h,04Bh,04Bh,04Dh,04Dh,04Fh,04Fh,051h
db 051h,053h,053h,055h,055h,057h,057h,059h
db 059h,05Bh,05Bh,05Dh,05Dh,05Fh,05Fh,061h
db 061h,063h,063h,065h,065h,067h,067h,069h
db 069h,06Bh,06Bh,06Dh,06Dh,06Fh,06Fh,071h
db 071h,073h,073h,075h,075h,077h,077h,079h
db 079h,07Bh,07Bh,07Dh,07Dh,07Fh,07Fh,07Fh
db 07Fh,07Fh,07Dh,07Dh,07Bh,07Bh,079h,079h
db 077h,077h,075h,075h,073h,073h,071h,071h
db 06Fh,06Fh,06Dh,06Dh,06Bh,06Bh,069h,069h
db 067h,067h,065h,065h,063h,063h,061h,061h
db 05Fh,05Fh,05Dh,05Dh,05Bh,05Bh,059h,059h
db 057h,057h,055h,055h,053h,053h,051h,051h



db 04Fh,04Fh,04Dh,04Dh,04Bh,04Bh,049h,049h
db 047h,047h,045h,045h,043h,043h,041h,041h
db 03Fh,03Fh,03Dh,03Dh,03Bh,03Bh,039h,039h
db 037h,037h,035h,035h,033h,033h,031h,031h
db 02Fh,02Fh,02Dh,02Dh,02Bh,02Bh,029h,029h
db 027h,027h,025h,025h,023h,023h,021h,021h
db OlFh,OlFh,OlDh,OlDh,OlBh,OlBh,019h,019h
db 017h,017h,015h,015h,013h,013h,Ollh,Ollh
db OOFh,O0Fh,OODh,0ODh,OOBh,OOBh,009h,009h
db 007h,007h,005h,005h,003h,003h,001h,000h

stopMoving:
clr P3.2
clr P3.3
clr P3.4
clr P3.5

ret

destroys RO, R1, R2, R3, R5, R6, and R7
subroutine driveForwardDistance
drive forward the distance in the accumulator, in cm
if sensors do not indicate this is possible, do nothing
a successful drive leaves 0 in the accumulator
a failed drive leaves 1 in the accumulator

driveForwardDistance:
lcall stopMoving

mov R2, a
lcall frontEye
mov R3, a

make sure there's roo
clr c
subb a, R2
jc failedToDriveFor
subb a, #20
jc failedToDriveFor

addc a, #20

save the distance to travel
get distance to wall ahead
save distance to wall ahead

m to drive

ward

ward

; compute the desired sensor distance

make sure the robot isn't up against the wall
setb P3.3 ; move forward
setb P3.4
mov R5,#1 ; for a brief time
mov R6,#0
mov R7,#0
lcall delay
clr P3.3 ; stop
clr P3.4
lcall frontEye ; get distance to wall ahead

; it should be less

;

;

;
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subb a, R3
jnc failedToDriveForward ; if not, the robot is less than

; eight centimeters from crashing

compute the desired position
mov a, R3 ; where you are
subb a, R2 ; minus distance to go
inc a ; add 1, so stop when distance to wall

is less than this
mov R3, a ; save the desired position

clr c

; start driving forward
setb P3.3
setb P3.4

driveForwardDistanceLoop:
lcall frontEye ; see where you are
subb a, R3 ; subtract where you want to be
jnc driveForwardDistanceLoop ; stop when you get there

stop
clr P3.3
clr P3.4

; signal success
mov a, #0

ret

failedToDriveForward:
mov a, #1
lcall stopMoving

ret

destroys RO, R1, R2, R3, R5, R6, and R7
subroutine driveBackwardDistance
drive backward the distance in the accumulator, in cm
if sensors do not indicate this is possible, do nothing
a successful drive leaves 0 in the accumulator
a failed drive leaves 1 in the accumulator

driveBackwardDistance:
lcall stopMoving

mov R2, a ; save the distance to travel
lcall backEye ; get distance to wall behind
mov R3, a ; save distance to wall behind

make sure there's room to drive
clr c
subb a, R2



jc failedToDrive
subb a, #20
jc failedToDrive

addc a, #20 ; compute the desired sensor distance

; make sure the robot isn't up against the wall
setb P3.2 ; move backward
setb P3.5
mov R5,#1 ; for a brief time
mov R6,#0
mov R7,#0
icall delay
clr P3.3 ; stop
clr P3.4
lcall backEye ; get distance to wall behind

it should be less
subb a, R3
jnc failedToDrive ; if not, the robot is less than

; eight centimeters from crashing

; compute the desired position
mov a, R3 ; where you are
subb a, R2 ; minus distance to go
inc a ; add 1, so stop when distance to wall

is less than this
mov R3, a ; save the desired position

clr c

; start driving backward
setb P3.2
setb P3.5

driveBackwardDistanceLoop:
lcall frontEye ; see where you are
subb a, R3 ; subtract where you want to be
jnc driveBackwardDistanceLoop ; stop when you get there

stop
clr P3.2
clr P3.5

; signal success
mov a, #0

ret

failedToDrive:
mov a, #1
lcall stopMoving

ret

destroys R5, R6, and R7
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subroutine driveForwardTime
drives both wheels forward for duration R5 R6 R7

driveForwardTime:
mov dph, #20h ; point to the speed control table
inc R5
inc R6
inc R7

driveForwardTimeLoop:
inc dpl ; point to the next drive instruction
movx a, @dptr ; get the next drive instruction
; Replacement of what should be "mov P3.3, acc.1"

jb acc.1, driveForwardTimeLoopl
clr P3.3
sjmp driveForwardTimeLoop2

driveForwardTimeLoop1:
setb P3.3

driveForwardTimeLoop2:

; Replacement of what should be "mov P3.4, acc.0"
jb acc.0, driveForwardTimeLoop3

clr P3.4
sjmp driveForwardTimeLoop4

driveForwardTimeLoop3:
setb P3.4

driveForwardTimeLoop4:

djnz R7, driveForwardTimeLoop
djnz R6, driveForwardTimeLoop
djnz R5, driveForwardTimeLoop
lcall stopMoving

ret

destroys R5, R6, and R7
subroutine driveBackwardTime
drives both wheels backward for duration R5 R6 R7

driveBackwardTime:
mov dph, #20h point to the speed control table
inc R5
inc R6
inc R7

driveBackwardTimeLoop:
inc dpl point to the next drive instruction
movx a, @dptr ; get the next drive instruction

Replacement of what should be "mov P3.2, acc.1"
jb acc.1, driveBackwardTimeLoopl

clr P3.2
sjmp driveBackwardTimeLoop2

driveBackwardTimeLoopl:
setb P3.2
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driveBackwardTimeLoop2:

Replacement of what should be "mov P3.5, acc.O"
jb acc.0, driveBackwardTimeLoop3

clr P3.5
sjmp driveBackwardTimeLoop4

driveBackwardTimeLoop3:
setb P3.5

driveBackwardTimeLoop4:

djnz R7, driveBackwardTimeLoop
djnz R6, driveBackwardTimeLoop
djnz R5, driveBackwardTimeLoop
lcall stopMoving

ret

destroys R5, R6, and R7
subroutine driveLeftTime
drives left wheel backward, right wheel forward
for duration R5 R6 R7

driveLeftTime:
mov dph, #20h ; point to the speed control table
inc R5
inc R6
inc R7

driveLeftTimeLoop:
inc dpl ; point to the next drive instruction
movx a, @dptr ; get the next drive instruction

; Replacement of what should be "mov P3.2, acc.1"
jb acc.1, driveLeftTimeLoopl

clr P3.2
sjmp driveLeftTimeLoop2

driveLeftTimeLoopl:
setb P3.2

driveLeftTimeLoop2:

; Replacement of what should be "mov P3.4, acc.0"
jb acc.0, driveLeftTimeLoop3

clr P3.4
sjmp driveLeftTimeLoop4

driveLeftTimeLoop3:
setb P3.4

driveLeftTimeLoop4:

djnz R7, driveLeftTimeLoop
djnz R6, driveLeftTimeLoop
djnz R5, driveLeftTimeLoop
lcall stopMoving

ret



destroys R5, R6, and R7
subroutine driveRightTime
drives left wheel forward, right wheel backward
for duration R5 R6 R7

driveRightTime:
mov dph, #20h ; point to the speed control table
inc R5
inc R6
inc R7

driveRightTimeLoop:
inc dpl ; point to the next drive instruction
movx a, @dptr ; get the next drive instruction

; Replacement of what should be "mov P3.3, acc.1"
jb acc.1, driveRightTimeLoopl

clr P3.3
sjmp driveRightTimeLoop2

driveRightTimeLoopl:
setb P3.3

driveRightTimeLoop2:

; Replacement of what should be "mov P3.5, acc.0"
jb acc.0, driveRightTimeLoop3

clr P3.5
sjmp driveRightTimeLoop4

driveRightTimeLoop3:
setb P3.5

driveRightTimeLoop4:

djnz R7, driveRightTimeLoop
djnz R6, driveRightTimeLoop
djnz R5, driveRightTimeLoop
lcall stopMoving

ret

; subroutine angle
; measures the angle of the encoder
saves the value in the accumulator

angle:
mov dptr, #0fe20h
movx a, @dptr

ret

ROBOT ROUTINES END HERE



Speed control table

; The table at 02000h to 020FFh is used for finely-controlled
; pulse width modulation. The final two bits of each entry are
; set if and only if that wheel is turning for an instant

; While driving, dpl cycles through the table. At steps where a
; wheel's entry is zero, that wheel is not driven

The 2's bit corresponds to the left wheel, the 1's bit
corresponds to the right wheel

org 2000h
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
db 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3

; The table at 02100h to 021FFh is used in the process of
; generating the preceding table

org 2100h
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
db 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0



import math
import random

class floorMap:
# Defines a rectangular grid corresponding to gradient samples
# x and y are coordinates used in two seperate coordinated
# systems: global and local
# Global coordinate system:
# This coordinate system is defined relative to the house
# ALL floorMaps use the same global coordinate system
# Recommended convention:
# +x = east, -x = west,

# +y = north, -y = south
# x and y are both measured in inches
# If this convention is changed, it must be changed for
# ALL floorMaps
# Local coordinate system:
# Each floormap stores samples taken from a rectangular
# grid nx points by ny points.
# x and y coordinates are integers

def __init__(self, globalx0, global-yO, dx, dy, nx, ny):
# global _x0 and _y0 store the x and y location in the global
# coordinate system cooresponding to (0,0) in the local
# coordinate system
self.globalx0, self.global-y0 = global.x0, global.y0

# dx and dy store the gap between successive local
# coordinate system locations using global coordinate
# system dimensions
self.dx, self.dy = float(dx), float(dy)

# nx and ny store the dimensions of the local coordinate
# system. The floorMap stores measurements taken from
# nx*ny locations on the floor
self.nx, self.ny = nx, ny

# equations stores all constraints on the floor's contour map
# in the form (pl,p2,dh)
# p1 and p2 are points (xl,yl) and (x2,y2) in the global
# coordinate system
# dh is the value of h2-hl implied by the slope
# Mandatory convention:
# slope is measured in tenths of a degree
self.equations = []

def localToGlobal(self, localPoint):
(nx, ny) = localPoint

# Linear coordinate transformation
x = self.global-x0 + self.dx*nx
y = self.global-yO + self.dy*ny



globalPoint = (x, y)
return globalPoint

def globalToLocal(self, globalPoint):
(x, y) = globalPoint

# Linear coordinate transformation
nx = (x - self.global-x0) / self.dx
ny = (y - self.global-yO) / self.dy

# Local coordinated must be in integers (locations are on a
# rectangular grid)
# Round local coordinated to the nearest integer
nx,ny = int(nx+.5), int(ny+.5)

localPoint = (nx, ny)

return localPoint

def recordReading(self, nx, ny, dzdx, dzdy):
# Note: A dzdx or dzdy value outside +-90 degrees (+- 900)
# indicates no data
if abs(dzdx) < 900:

# Record x-component of gradient
p1 = self.localToGlobal( (nx-.5,ny) )
p2 = self.localToGlobal( (nx+.5,ny) )
slope = dzdx
self.equations.append((pl,p2,slope*self.dx))

if abs(dzdy) < 900:
# Record y-component of gradient
p1 = self.localToGlobal( (nx,ny-.5) )
p2 = self.localToGlobal( (nx,ny+.5) )
slope = dzdy
self.equations.append((pl,p2,slope*self.dy))

class floorPlan:
# A floorPlan is a collection of floorMaps. Each floorMap is a
# rectangle, and the floorPlan assembles these
# together. A floorPlan represents an entire story of a
# building. Each floorPlan has its own coordinatae
# system that each of it's floorMaps treat as the
# global coordinate system.
def __init__(self):

# locations stores the list of all locations whose heights
# are included in any equations
# locations are in the form (x,y), in inches
self.locations = [1

# self.equations stores all constraints on the heights of
# floor locations
# Each equation is a (terms, sum) tuple
# terms is a list of (locationIndex, coefficient) tuples
# location index is the index (in self.locations) of



# the location whose height is used in this
# equation
# coefficient is multiplied by said height
# sum is the desired sum of all height*coefficient products
# The reason for this format is that the number of
# locations whose height is used in this
# equation is very small compared with the
# number of locations
self.equations = []

# All slope equations indicate only relative floor heights.
# To create a unique optimal solution, let the
# height of the first location be 0
self.equations.append( ([(0,1.)],0.) )

# floorMaps is a list of all the floorMaps from which this
# floorPlan was composed
self.floorMaps = []

# rooms is a list of the physical rooms in the house
# They are stored as (min_X, max_X, minY, maxY) tuples
self.rooms = []

def locationIndex(self, location):
# Locations are stored as their (x,y) coordinates, in inches.
# Two locations are treated as identical in they
# are within one inch of each other
# Returns -1 if the location is in any equation
(x,y) = location
for i in range(len(self.locations)):

loc = self.locations[i]
if abs(x-loc[0]) < 1 and abs(y-loc[l]) < 1:

return i
return -1

def addPoint(self, p):
# Adds a new location to the list (if it isn't already there)
if self.locationIndex(p) == -1:

self.locations.append(p)

def addMap(self, floorMap):
# Record all the data from a new map
for x in range(floorMap.nx):

for y in range(floorMap.ny):
# For each point, record the equation stating the
# height is locally linear
p, i = [0]*4, [0]*4
p[0] = floorMap.localToGlobal((x+.5,y))
p[l] = floorMap.localToGlobal((x-.5,y))
p[2] = floorMap.localToGlobal((x,y+.5))
p[3] = floorMap.localToGlobal((x,y-.5))
for n in range(4):

self.addPoint(p[n])



i~n] = self.locationIndex(p[n])
eqn = ([(i[0],1.),(i[1],1),(i[2],-1),(i[3],-1)],0.)
self.equations.append(eqn)

borderPoints = []
for xn in [O,floorMap.nx-1]:

for yn in range(floorMap.ny):
borderPoints.append((xn,yn))

for xn in range(1,floorMap.nx-1):
for yn in [0,floorMap.ny-1]:

borderPoints.append((xn,yn))
for (xn,yn) in borderPoints:

# For each point on the edge of this floorMap, see if
# it's near another floorMap and require it to
# be continuous.
p = floorMap.localToGlobal((xn,yn))
for FM2 in self.floorMaps:

(x2,y2) = FM2.globalToLocal(p)
p2 = FM2.localToGlobal((x2,y2))
if 1<=x2 and x2<=FM2.nx and 1<=y2 and y2<=FM2.ny:

# p is the new point, p2 is the nearest point on
# the previously existing grid
i1 = self.locationIndex(p)
2 = self.locationIndex(p2)

if i1 != i2:
# Require that two point very near each other
# be of similar height
eqn = ((11)(2-.]0
self.equations.append(eqn)

for eqn in floorMap.equations:
# Record all explicitly stated dzdx and dzdy equations
(pl,p2,dh) = eqn
i1 = self.locationIndex(pl)
i2 = self.locationIndex(p2)
C = (math.pi/180.)*.1
eqn = ([(i1,-1.),(i2,1.)],dh*C)
self.equations.append(eqn)

self.floorMaps.append(floorMap)

def equationsForMatlab(self):
# The height equations can be written in the form Ax=b
# A is an m-by-n matrix
# m is the number of equations
# n is the number of heights
# x is a matrix of the heights
# Returns (A,b)
# Matricies here are represented as arrays in which each
# element is a row
m = len(self.equations)
n = len(self.locations)

A = []
b = [0]*m



for i in range(m):
A. append( [01 *n)

for i in range(len(self.equations)):
eqn = self.equations[i]
terms, val = eqn
b[i] = val
for term in terms:

j, coeff = term
A[i][j] = coeff

return (A, b)

def addRoom(self, room):
# Records a room location
# Format: (x-min, x-max, y-min, y-max) tuple
self.rooms.append(room)

def removeFloor(self, contourMap):
# Identifies sagging floor shapes and removes them, leaving
# only the effects of a damaged skeletal structure
# contourMap is a list of (x,y,z) tuples
def inRoom(loc, room):

x,y,z = loc
xmin, x-max, y-min, y-max = room
return (x-min<x and x<x-max and y-min<y and y<y-max)

def unitRoomHeight(loc, room):
x,y,x = loc
x-min, x-max, y-min, y-max = room
X = float(x-x-min)/float(x-max-x-min)
Y = float(y-y-min)/float(y-max-y-min)
return (X**4-2*X**3+X)*(Y**4-2*Y**3+Y)

contourMapUsed = []
for loc in contourMap:

# Only use data points in rooms
ValidPoint = False
for room in self.rooms:

if inRoom(loc, room):
ValidPoint = True

if ValidPoint:
contourMapUsed.append(loc)

mean = float(sum([z for x,y,z in contourMapUsed]))/len(contourMapUsed)
contourMapUsed = [(x,y,z-mean) for x,y,z in contourMapUsed]
for room in self.rooms:

# Correlation is the n-space dot product of a unit floor
# sag with a contour map
# True: based on contour map
# Perfect: based on copy of unit floor sag
True-correlation = 0
Perfect-correlation = 0
for loc in contourMapUsed:

if inRoom(loc, room):
h = unitRoomHeight(loc, room)



True-correlation += h*loc[2]
Perfect-correlation += h*h

sag-factor = True-correlation/Perfect-correlation
print sag-factor
for i in range(len(contourMapUsed)):

loc = contourMapUsed~i]
if inRoom(loc, room):

h = unitRoomHeight(loc, room)
x,y,z = loc
z -= h*sag-factor

contourMapUsed~i] = (x,y,z)

self.contourMap = contourMapUsed

def preliminaryResultso:
FP = floorPlan()

FM = floorMap(0,0,18,18,5,4)
FM.recordReading(0,3,2,-5)
FM.recordReading(1,3,27,8)
FM.recordReading(2,3,29,19)
FM.recordReading(3,3,33,19)
FM.recordReading(4,3,37,15)
FM.recordReading(0,2,-2,3)
FM.recordReading(1,2,-2,16)
FM.recordReading(2,2,20,16)
FM.recordReading(3,2,32,16)
FM.recordReading(4,2,35,17)
FM.recordReading(0,1,0,-5)
FM.recordReading(1,1,3,-2)
FM.recordReading(2,1,8,-8)
FM.recordReading(3,1,35,22)
FM.recordReading(4,1,27,19)
FM.recordReading(0,0,-7,-2)
FM.recordReading(1,0,-5,1)
FM.recordReading(2,0,19,-1)
FM.recordReading(3,0,8,1)
FM.recordReading(4,0,19,17)
FP.addMap(FM)

A,b = FP.equationsForMatlab(
def display(L):

res = ""

for i in L:
res += str(i)+"

return res

for row in A:
print display(row)

print ""
print display(b)
print ""
fubar = [[a,b] for a,b in FP.locations]
for row in fubar:



print display(row)

def display(L):
res =

for i in L:
res += str(i)+"

return res

def floorl(getA = True, getb = True, getLocs = True, getSkeletonMap = True):

na = 999
Gmapl =
Gmap2 =
Hmap =
Imap =
Fl = floorPlano
G1 = floorMap(14, 175, 18, 18, 6, 8)
G2 = floorMap(122, 283, 18, 18, 4, 2)
H = floorMap(14, 21, 24, 18, 6, 8)
I = floorMap(158, 21, 24, 18, 6, 12)
for grad, FM in [(Gmapl,G1),(Gmap2,G2),(Hmap,H),(Imap,I)]:

for x in range(len(grad[0])):
for y in range(len(grad)):

p = grad[len(grad)-y-1][x]
FM.recordReading(x,y,p[0],p[1])

Fl.addMap(G1)
Fl.addMap(G2)
Fl.addMap(H)
Fl.addMap(I)
F1.addRoom((0,108,160,304))
F1.addRoom((108,180,268,304))
Fl.addRoom((0,146,0,154))
Fl.addRoom((146,278,0,228))

return Fl

A,b = F1.equationsForMatlab()
if getA:

for row in A:
print display(row)

if getb:
print display(b)

if getLocs:
fubar = [[a,b] for a,b in F1.locations]
for row in fubar:

print display(row)
if getSkeletonMap:

floorlcontourMap = [...]
Fl.removeFloor(floorlcontourMap)
for x,y,z in F1.contourMap:

print display([x,y,z])

def floor2(getA = True, getb = True, getLocs = True, getSkeletonMap = True):

na = 999



Amap = [...]
Bmap = [...]
Cimap = [...]
C2map = [...]
C3map = [...]
Dmap = [...]
Emap = [...]
F2 = floorPlan()
A = floorMap(14, 216, 24, 24, 3, 4)
B = floorMap(14, 0, 24, 18, 5, 8)
Cl = floorMap(81, 142, 9, 24, 4, 7)
C2 = floorMap(81, 214, 9, 24, 5, 1)
C3 = floorMap(117, 142, 9, 24, 5, 2)
D = floorMap(126, 0, 24, 18, 6, 8)
E = floorMap(168, 151, 24, 18, 6, 9)
for grad, FM in

[(Amap,A),(Bmap,B),(Clmap,C1),(C2map,C2),(C3mapC3),(DmapD),(EmapE)]:
for x in range(len(grad[0])):

for y in range(len(grad)):
p = grad[len(grad)-y-1][x]
FM.recordReading(x,y,p[0],p[1])

F2.addMap(A)
F2.addMap(B)

F2.addMap(C1)

F2.addMap(C2)

F2.addMap(C3)
F2.addMap(D)

F2.addMap(E)

F2.addRoom((0,72,216,294))
F2.addRoom((0,114,0,138))
F2.addRoom((72,150,140,294))

F2.addRoom((120,276,0,138))
F2.addRoom((162,294,150,294))

return F2

A,b = F2.equationsForMatlab(
if getA:

for row in A:
print display(row)

if getb:
print display(b)

if getLocs:
fubar = [[O,b] for a,b in F2.locations]
for row in fubar:

print display(row)
if getSkeletonMap:

floor2_contourMap = ... ]
F2.removeFloor(floor2_contourMap)
for x,y,z in F2.contourMap:

print display([x,y,z])



if False: preliminaryResults(

Floor1ContourMap = [...]
Floor2ContourMap = [...]

Floor1Rooms = floorl().rooms
Floor2Rooms = floor2().rooms

def floatRange(start, end = None, step = 1):
# floatRange replaces range, but inputs don't have to
# >>> floatRange(1.1, 2.2, .3) # count from 1.1 to
# [1.1,1.4,1.7,2.0]
if end == None:

# range(n) implies range(0,n), so floatRange also
# this feature
return floatRange(0, start, step)

if step == 0:
raise "Error: Step cannot be 0"

def done(val):
if step > 0:

be integers
2.2 by .3's

implements

# If the step is positive, the range is done when it's
# high enough. The "-.1*step" helps avoid round-off
# error. If python's arithmetic was perfect, it would
# be unnecessary
return value > end -.1*step

return value < end -.1*step

result = []
value = start
while not done(value):

result.append(value)
value += step

return result

def integral(f, a, b, dx = .1**3):
# Requires floatRange
# Returns definite integral of f(x) between x = a and x = b
# >>> def f(x): return x**2

>>> integral(f,0,3)

# 9
if b < a:

return -integral(f, b, a, dx)
if dx*100 > b-a and not(a==b):

return integral(f, a, b, .01*(b-a))
result = 0
for x in floatRange(a, b, dx):

result += dx * ( f(x) + 4*f(x+.5*dx) + f(x+dx) ) / 6.0
return result

def doubleIntegral(f, x1, x2, yl, y2, dx = .1):
# Requires floatRange, integral
# Returns definite integral of f(x,y) between xl,x2,yl, and y2
# >>> def f(x,y): return x*x + y*y



# >>> doubleIntegral(f, -.5,.5,-.5,.5)
# 0.166666666667
def row(y):

return integral(lambda x:f(x,y), xl,x2, dx)

return integral(lambda y:row(y), yl,y2, dx)

# The eleven floor contours
def fl(x,y):

return (1-x)*(1-y)-0.25

def f2(x,y): return x*y-0.25
def f3(x,y): return x*(1-y)-0.25
def f4(x,y): return (1-x)*y-0.25
def f5(x,y): return 0.75-x*x*(3-x-x)-y*y*(3-y-y)-x*y*((1-x-x)*(1-x)+(1-y-y)*(1-y)-1)
def f6(x,y): return f5(1-x,1-y)
def f7(x,y): return f5(1-x,y)
def f8(x,y): return f5(x,1-y)
def f9(x,y): return 0.4-( x**4-2*x**3+x+y**4-2*y**3+y )
def f10(x,y): return 1./15-( (x*(x-1))**2+(y*(y-1))**2 )
def fll(x,y): return 1.

deformationList = [f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,fll]

for f in deformationList[:-1]:
assert( abs(doubleIntegral(f,0,1,0,1,0.01)) < .1**6)

viewContours = False
if viewContours:

for f in deformationList:
for y in floatRange(0,1.2,0.2):

print f(0.0,y), f(0.2,y), f(0.4,y), f(0.6,y), f(0.8,y), f(1.0,y)
print ""

#assert(False)
def computeCoeff(floorData, fit):

# returns A s.t (data - a*fit) dot fit = 0
fitDOTfit = 0
floorDataDOTfit = 0
for x,y,z in floorData:

fitZ = fit(x,y)
fitDOTfit += fitZ*fitZ

floorDataDOTfit += fitZ*z

return float(floorDataDOTfit)/fitDOTfit

ModelTest = []
sufficientlyCloseToInfinity = 10

for ContourMap, Rooms in [ (FloorlContourMap,floorl().rooms),
(Floor2ContourMap,floor2().rooms) ]:

for minX, maxX, minY, maxY in Rooms:
XYZlist = []



for x,y,z in ContourMap:
if minX <= x and x <= maxX and minY <= y and y <= maxY:

xNorm = float(x-minX)/(maxX-minX)
yNorm = float(y-minY)/(maxY-minY)
XYZlist.append((xNorm,yNorm,z))

# XYZlist now only includes the room

# Decompose into components
componentList = [0]*len(deformationList)
for k in range(sufficientlyCloseToInfinity):

for j in range(len(componentList)):
deformation = deformationList[j]
component = computeCoeff(XYZlist,deformation)
if component + componentListEji > 0 or j == 1:

componentList[j] += component
for i in range(len(XYZlist)):

x,y,z = XYZlist[i]
z -= component*deformation(x,y)
XYZlist[i] = (x,y,z)

# print componentList
Predicted = sum([ abs(componentList[jl)*sum([ abs(deformationList[j](x,y)) for

x,y,z in XYZlist ]) for j in range(len(componentList))])
Unpredicted = sum([abs(z) for x,y,z in XYZlist])
ModelTest.append(Predicted/Unpredicted)

print ModelTest
print sum(ModelTest)/len(ModelTest)
ModelTest = [1/(n+1) for n in ModelTest]
print ModelTest
mean = sum(ModelTest)/len(ModelTest)
print mean
print math.sqrt(sum([(n-mean)**2 for n in ModelTest])/len(ModelTest))


