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Abstract:

The design of an extruder-based continuous tablet forming process of a sample active
pharmaceutical ingredient (API) and ethyl acetate requires a device to form and compress the
tablets. The flow of the wet extrusion is driven by the pressure head generated by the torque of
the screws; the minimum pressure head is dictated by the head loss across the exit die. Since the
API powder blend and ethyl acetate solvent form a highly filled suspension paste, the liquid
phase tends to flow at a different speed than the solid when the driving pressure changes. As
such, the three die geometries, straight, curve, and elbow, resulted in average steady state liquid
mass fraction of 0.179 ± 0.005, 0.249 + 0.01, and 0.200 ± 0.009 respectively, although the
increases in mass fraction do not correspond to increases in pressure drop across the die. This
experiment tests a particular tablet forming process, which involves using the pressure of the
extruder to squeeze out the liquid content of the tablets during forming. The occurrence of liquid
phase migration after this tabletting process is confirmed in each die tested. The extent of
variation in liquid content shows a 30% increase for the straight die, a 50-200% increase for the
curve die, and 50-150% increase for the elbow die. These results suggest that a tablet forming
device should not use the pressure of the extruder, due to the complications of paste flow.
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1. Introduction

In the pharmaceutical industry, tablets allow for standard dosing and delivery of the

active pharmaceutical ingredient (API). As such, the tablets must have a consistent and uniform

weight and active ingredient content, in addition to withstanding a reasonable level of yield and

shear stress. The manufacturing process for a tablet depends on the chemical composition of the

API (Hienstand 2003). APIs are routinely blended with a variety of excipient powders, which

change overall binding, tensile and shear strength, viscosity, and granulation of the blend, in

order to facilitate both the tablet forming and digesting process.

Certain powder blends require a liquid solvent to provide additional binding prior to

dosing and compaction. The liquid-powder material is mixed, dried, and granulated. The aim of

the wet granulation process, including the extra stage of mixing, is to produce pellets of uniform

density, size, and API content to aid in the dosing process (Hienstand 2003). However, as

suggested by Benbow and Bridgwater, the wet granulation process must be done in batches,

which slows down the downstream tablet forming process (Benbow 1993).

In this investigation, we aim to assess the viability of replacing the wet granulation stage

with a continuous process. We propose the use of an extruder to evenly mix the powder blend

and liquid solvent. In order to dose and form the tablets, the extruder is fitted with a die which

forms the wet extrusion into a cylinder. The molding process is directly coupled to the mixing

and extruding process; the extrudate from the die flows into a set of tablet molds, which are filled

using the pressure force generated from the paste flow. The molds also serve to dose the API.

Testing of the device showed that the die geometry affects both the steady state operation

of the extruder and the consistency of the API content of the final tablet. Understanding why and



how these factors change is helpful in future development of a continuous, extruder-based tablet

forming process. The results of this study also provide insight as to the nature of a sample API

blend.

The experiment involves using three dies of varying geometries to mold tablets. Since the

extruder must generate a pressure gradient to press the flow through the die, the flow rate of the

two-phase material is dependent upon the pressure head loss unique to each die. Furthermore, the

changes in pressure that occur during the molding process cause the system to deviate from

steady state, which can result in highly unpredictable mass flow rates and separation of the liquid

and solid phases. A discussion of the interplay between the extruder and the two-phase flow

considered can be found in Chapter 2. In this experiment, the mass flow rate and the fraction of

the API in the flow are both measured before and after the tablet forming process. Chapter 3

outlines the experimental method used to collect the data. Using this data, we can determine the

steady state flow rate and density, or mass fraction, of liquid of the tablets for each of the three

die geometries. The implications of these results are discussed in Chapter 4, along with some

comparison to theoretical explanations from paste flow mechanics and other pharmaceutical

studies. Finally, the die geometry experiments and considerations are summarized in Chapter 5.



2.1 Functionality of an Extruder

The extruder used in this experiment consists of a barrel enclosing two co-rotating and

interlocking screws that serve to both mix and transport material axially, by squeezing the

material between the gaps of the screws. The blended powder is added at entrance of the barrel,

while the liquid solvent is added approximately halfway down the length of the barrel. Diagrams

of the functionality of co-rotating extruders are presented in Figures 2.1.1 and 2.1.2.
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Figure 2.1.1: Feed In Mechanism for Co-Rotating Extruder (Benbow 1993)
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At steady state operation, the extruder's screws exert a torque on the material to generate

a pressure gradient that drives flow out of the die. By applying the law of conservation of energy

to the barrel of the extruder, Benbow and Bainbridge determine that the pressure gradient, P, is a

function of the shape of the die, given by:

L
P = 2 * ln-"+4- (1)

D D

where c- is the uniaxial yield stress, Do is the diameter of the barrel, D is the diameter of the die, -u

is the wall stress in the die, and L is the length of the die (Benbow 1993). The first term

represents the entrance loss as the diameter of the extrusion in the barrel must decrease to the

diameter of the die while the second term is a measure of the pressure head loss due to friction. It

is noted that the friction caused by the walls of the barrels is not accounted for by this equation.

For viscous, Newtonian liquids, such as ethyl acetate, yield and wall stress are both proportional

to velocity of the flow.

Furthermore, volumetric flow rate, Q, is determined by the displacement of the screws,

rather than by the input flow rates of powder and liquid. Van Der Goot finds that the volumetric

flow rate is

Q = NVc (2)

where N is the screw rotation speed and Vc is the volume between a set of screw threads and the

barrel wall (Van der Goot 1996). From Equations I and 2, we can see that the screw speed must

be optimized for a specific wet extrusion formulation, given the motor power output and extruder

die geometry. In actual operation, the screw speed is set well below this optimal level, to absorb

increases in pressure and to minimize strain on the material.



2.2 Steady State Operation

Operation of the extruder is contingent on the system reaching steady state. In melt

extrusion or other single polymer input extrusion, this steady state is simply dependent on the

input mass. The wet extrusion system is complicated by the addition of an input liquid stream,

which must combine to form a paste.

Once the volumetric flow rate is set by the screw rotation speed, the input solvent and

solids mix to form an equilibrium output density (Benbow 1993). However, in practice, non-

constant volumetric and mass flow rates are observed, while density still remains constant. In

steady state, energy of the paste system is conserved. Thus, the first law simplifies to:

2 1 2U 1 o~g

'4screws = ?in [Patm + Pin v + Pingz - Ikut Patm + pout + pout gz (3)

where Wscrcws is the work done on the paste control volume, 111 is the mass flow rate of the paste,

Patm is the pressure head, pgz is the gravimetric head, with z being the height difference between

entry and exit, and 0.5pv 2 is the velocity head. The densities, p, of the entering and exiting flows

are different, as the exit density depends on the fraction of liquid in the paste mixture. The mass

flow rate out is dependent on the mass flow in, the density of the exiting flow, and the work done

on the system by the screws. The mass flow out is not equivalent to the sum of the mass flow of

the powder and liquid entering the system; the extruder serves to balance out the input masses

and their densities.

Realistic operation of the extruder must account for unsteady inputs. In this case, the

input of the powder and liquid fluctuate around the level they are set at, while the densities are



constant. As such, the exit mass flow also fluctuates, to continue smoothing the exit density to a

constant value (Benbow 1993).

Furthermore, the torque of the screws varies with the shear stress of the material, which is

indicated by the density of the combined flows. In equilibrium, the work done by the screws,

which is determined by the pressure drop that the extrusion must overcome, then drives a certain

density of flow out. This suggests that different pressure heads (from different die shapes or

otherwise) and screw speeds will cause different equilibrium densities in the exit flow.

Thus, steady state operation of the extruder is only measured by the consistency of the

density of the exit flow. A uniform density means that any sample will have an equal ratio of

liquid to solid. Given the unsteadiness of the input mass flows, dosing the API for each tablet

must involve alternative techniques to time-based filling of molds or granulation of the extrudate.

2.3 Tablet Forming

Using wet extrudate as the material source for the tablet forming process causes some

challenges. First is the liquid content, which must be dried from the formed tablet to keep their

form. Second, the exit mass flow rate is not constant, so the tablet forming process must find an

alternative to filling molds based on time. Finally, the wet granulation process also runs into the

problem of liquid phase migration. During the operation of the extruder, any changes in pressure

or changes in die shape result in a change in the liquid content of the mass flow.

These challenges dictate a very specific tablet forming process. Even though the density

of the tablets (or ratio of solid to liquid) is constant, the variable mass flow rate makes it difficult

to determine the API content without limiting the mass flow rate. We chose to use volume based

molds, since the tablets are of known density and liquid mass fraction. As the molds are filling,

10



the pressure in the extruder increases, because of the reaction force of the bottom face of the

mold. In this investigation, this pressure change created by filling the mold was unavoidable.

The liquid content of the tablets is due to porous gaps in the solid matter. As the tablets

dry, a network of solid matter remains. If the liquid content of the initial tablet is too high, these

tablets will simply crumble, since the gaps will be too large for the solid matter to remain

cohesive (Benbow 1993). There are two options to overcome this: compressing the tablets either

during the drying process or during the tablet forming process. The advantage to compressing

during the tablet forming process is that the machinery is consolidated and the tablets keep their

form well since they are still in their molds. We chose to use the compression of the extruder

flow in this investigation. In this situation, the continuous flow of the extruder as the molds are

being filled causes the liquid to be squeezed out of the porous gaps in the solid matter, to be

replaced with additional solid matter. This procedure can cause large spikes in the pressure of the

extruder, but higher pressure leads to more compressed pills, which lowers drying time and

increases the tensile and yield strength of the pills.

Thus the tabletting process is inherently not a steady state process, so operation is

somewhat unpredictable and uncertain (Benbow 1993). Theoretical and quantifiable studies on

unsteady operations of an extruder are scarce, and literature only offers operational guidelines

rather than absolutes to adhere to. As seen in Figure 2.3.1, the variable pressure force acting on

the mass flow changes the conservation of energy detailed in Equation 3.
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Figure 2.3.1: Forces acting on Paste Mass Flow in Die Region

The nature of steady state operation is that it is sensitive to outside forces. However, in an

extruder, this has different implications, which can alter the flow rate to an inoperable extent.

Liquid phase migration, discussed in more detail in Section 2.4, is consistently observed using

this method of tablet forming. The pressure changes from the molding process are studied in this

experiment, to determine the limits to compression and to reconcile the advantages to using the

flow of the extruder to compress the tablets. However, a molding process coupled to the

extrusion flow is not necessary so the pressure spikes can be avoided, but the non-constant mass

flow rate must be dealt with in order to achieve consistent dosing and sizing of the tablets.

2.4 Liquid Phase Migration

A key challenge in developing an extruder-reliant process for the solvent-powder flow is

the instability of paste flow. The two phases of the paste flow, liquid and solid, must be

considered separately to understand the dynamics of the system. The driving pressure force

dictates the flow rates of the liquid and solid separately (Benbow 1993). Once these flows reach



steady state, the paste is at its equilibrium mix of liquid and solid. As discussed in previous

sections, changes in pressure will change the liquid content of the mix. This phenomenon of

liquid phase migration is studied separately by both Benbow and Mascia, who suggest that the

difference in viscosities of the two phases causes the liquid to be more influenced by the pressure

changes (Mascia 2006). Benbow states that excessive pressure acting on the paste flow will

cause the liquid to seep through the gaps in the solid matter (Benbow 1993).

In terms of this experiment, liquid phase migration occurs during the molding process,

because of the change in pressure across the die and mold. In fact, the pressure increase in the

molds actually causes an inverse pressure gradient, which leads to the reversal of liquid flow.

While the flow is compressing the tablet, the gaps in the tablet that were once filled with liquid

are replaced by solid, squeezing the liquid back into the extruder region (Benbow 1993).

In terms of the manufacturing process, liquid phase migration can be overcome, for the

paste flow can return to its steady state composition over time. To describe an occurrence of

liquid phase migration, Mascia et al. has studied the severity of variation in liquid content over

the course of higher applied pressure (Mascia 2006). Understanding the extent to which the

liquid changes along with the time it takes for the liquid movement to occur is key to developing

a manufacturing process specific to an API/solvent blend and any tablet forming mold. Drying

the liquid solvent out of the tablets can take up to a week for the solvent used in this experiment.

As such, any tablets formed with higher liquid content will need to be identified. The design of a

device must minimize the change in liquid fraction, as excessive phase migration of the liquid

back into the barrel of the extruder can disrupt the flow rate of the powder.



3. Characterizing Flow of Different Die Geometries

To determine the steady state flow rate of each of the die geometries and the quality of

the resulting tablets, the mass of the extruder flow over discrete time intervals was measured

before, during, and after the tablet forming process. Since the ethyl acetate solvent used as the

liquid phase of the wet extrusion was chosen for its rapid evaporation rate, the mass of the

samples after two days of drying can be used to determine the fraction of liquid of the flow.

3.1 Designing the Extruder Attachment, Dies, and Molds

The device designed for the tablet forming process was specific to the Leistritz Nano

16mm Twin Co-Rotating Screw extruder. A base plate was fixed to the end of the extruder

barrel, to serve as a mounting face for different exit dies and mold plates. The base plate was

fabricated from stainless steel 303. A picture of the setup is shown in Figure 3.1.1.

Figure 3.1.1: Picture of Elbow Die, Molds, and Baseplate



From Equation 1, anything beyond the main barrel of the extruder is considered to be the

die region. Therefore, to isolate the effect of die geometry on the mass flow rate and liquid phase

migration, the experimental dies were designed with equal length and diameter, but with variable

head loss coefficients. The first die used was straight, with L = 1 in. and D = 7/16 in. This die

was fabricated out of stainless steel 303 and is shown in Figure 3.1.2.

Figure 3.1.2: Close Up of Straight Die

The second die had a 900 bend with a radius of curvature of 0.63", giving a curved elbow

shape. By increasing the radius of the bend, the die has a lower head loss coefficient than that of

the elbow (Cravalho 2005). The arc length of the curve was set to be 1 inch, in order to keep die

length consistent across each geometry. To fabricate the curved die, a channel was milled out of

two square blocks of stainless steel 303. The two blocks were then aligned using two dowel pins

and clamped together. One half of the die is shown in Figure 3.1.3, to show the shape of the

curve.



Figure 3.1.3: Inner View of Curve Die

The final die had a sharp 90' bend, with a die length of 1 inch and diameter of 7/16 of an

inch. The die was fabricated out of a block of stainless steel 303. The holes for the die were

drilled from two perpendicular block faces, using a 7/16" ball end mill to round out the

connecting elbow. The elbow die is shown in Figure 3.1.4 below, along with a diagram of its

internal measurements.

I .00

L.0

Figure 3.1.4: Picture of Elbow Die Figure 3.1.5: Cross Cut of Elbow Die

As discussed in Chapter 2, the pressure drop across the die dictates the density and

fraction of liquid in the exiting mass flow. Thus, the steady state gauge pressure was measured in

16
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the section of the extruder at the end of the screws, as shown in Figure 3.1.6. We expect each die

to generate a different steady state pressure at this point, due to variable head loss coefficients.

gauge pressure
sensor

Patm

Figure 3.1.6: Pressure Drop across Die

Several circular molding plates were also fabricated, by waterjetting plates of stainless

steel 303. The molds consisted of a solid bottom plate and a top plate with eight circular holes of

7/16" diameter for the tablets. The molds were fixed to the baseplate with minimal space

between the top surface and the end of the die. Each mold could either be vertical or horizontal,

based on the die used. The molds were rotated around a center pin to fill each cavity. The

pressure in the molds could not be measured reliably, so the pre-die pressure reading was used to

guide the molding process. Figure 3.1.7 shows a diagram of the molds.
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Figure 3.1.7: Diagram of Mold Design

3.2 Specifics of the Wet Extrusion

The design of this experiment is highly specific to the properties of the API and solvent.

The API and binder were pre-blended using low shear methods. The powder blend was then

added to the extruder via the Schenck Accurate DP-4 Gravimetric Feeder at a rate of 40 grams

per hour.

The ethyl acetate solvent was simultaneously added to the extruder at a rate of 1.5

mL/min at the position shown in Figure 2.1.2. The choice of ethyl acetate as a solvent was for its

high volatility and viscosity. Since the tablets must be dried to remove all traces of solvent, the

high volatility ensures a relatively short drying time. The dynamic viscosity of ethyl acetate is

4.26* 104 Pa*s, around three times that of water. The high viscosity ensures a low Reynolds

number flow and also mitigates liquid phase migration (Mascia 2006). The liquid content of the

wet extrusion was determined through experimental testing, by finding the lowest liquid fraction

.0 0.4375" 3.0
s ve3.00"

side view



blend that was still malleable (Benbow 1993). The liquid solvent serves as a transporting agent,

to reduce stress on the powder by the screws.

Through prior tests, the extruder screw speed was set at 125 rotations per minute. Screw

speed should be optimized for die geometry, since the extruder operates at a different pressure

for each die. For the purposes of this experiment, screw speed was kept constant, as changes in

screw speed could negate any differences in flow characteristics between the dies.

In order to maintain a standard molding process, each tablet cavity was filled until the

pre-die pressure measured on the extruder increased to 10 psi above the average steady state

pressure. This was set in order to achieve some compression of the tablets. By pressurizing each

tablet mold to the same level while holding the volume of each mold constant, we ensure an

equal amount of powder blend in each formed tablet as the new pressure gradient dictates.

3.3 Measuring Mass Fraction of Liquid and Mass Flow Rate

In order to measure the effect of each die on the flow rate of the extruder, we ran the

extruder with the same powder blend, flow rates, and screw speed with each die attached to the

same base plate shown in Figure 3.1.1.

To measure the mass flow rate, we took two 15 second samples every minute by cutting

the extrusion as it came out of the die. This procedure was conducted for 10 minutes. Once the

exit flow reaches steady state, we formed 24 tablets using the tablet forming process described in

Section 2.3. After this, samples were taken for an additional 15 to 20 minutes, to allow the

system to return to steady state. The tablet forming process was repeated for another 24 tablets.

Samples were taken again as the system returned to steady state. This five-stage process was run



for each of the three dies. To verify the steady state time for the curve and elbow dies, the first

three stages were repeated, extending collection time post-tablet forming.

The tablets were massed immediately after collection and two days after collection, using

a Metter Toledo AX10S Delta Range scale. Each sample was weight using a precision of 102

milligrams. To compare liquid content, we measured liquid mass fraction of the pills, X, over

time. This was calculated by determining the mass lost from the pills over a two day drying

period, as follows:

X = -m(4)

where mi is the mass of the sample initially and mf is the mass of the sample after two days of

drying at atmospheric pressure and room temperature. We expect the liquid content of the dies

with higher head loss coefficients to be higher, since the increased pressure drop will drive the

liquid through the solid at a faster rate.

Furthermore, liquid phase migration should occur sooner or be more pronounced in the

dies with higher head loss coefficients, like the elbow and curve die. The occurrence of LPM will

be indicated by sudden increases in liquid mass fraction after the tablet forming process. This is

expected to occur for every die, but will be more extreme in the 90' bend dies.

In this experiment, we are interested in determining the steady state density of the mass

flow. However, there are no consistently reliable methods to measure the volume of the samples,

since the solid is a compressible, particulate matrix; therefore, density is difficult to calculate.

Instead, we use the mass fraction of the samples as a substitute for the density, from the

understanding that equilibrium flow will be consistent in its liquid content. Furthermore, we are



interested in observing liquid phase migration, which is indicated by an increase in liquid content

over a certain segment of samples. The discrete mass flow rate and change in mass fraction over

time are the flow characteristics we are interested in, for each die throughout the steady state and

molding processes discussed above.



4. 1 Data and Discussion

The results of these experiments are presented in Table 4.1.1 below. The equilibrium

mass fraction varies between the different dies, although it is not correlated with the head loss

coefficient or the experimentally measured pressure drop across the die. Notably, the curve die,

which has the median pressure drop, also has the highest liquid mass fraction and the highest

mass flow rate. This suggests that the pressure drop across the die affects the liquid mass

fraction, but not in a predictable way.

The steady state mass flow rate is measured here in milligrams per second. The

confidence interval is a significant fraction of the average mass flow rate, and such variance is

not acceptable for pharmaceutical standards, which have small tolerances on product content.

This necessitates the use of molds to produce tablets of consistent solid content, which is shown

in Table 4.1.2.

Table 4.1.1: Steady State Flow Characteristics

Equilib. Liquid Steady State Mass Estimation of
Die Geometry APss (psi) Mass Fraction Flow Rate (mg/sec) Steady State Time

Straight Die 15.2 0.5 0.179 0.005 14.7 3 - 10 min

Curve Die 16.5 ± 0.4 0.249 0.01 20.70 + 2 ~ 25 min

Elbow Die 19.6 t 0.4 0.200 0.009 13.68 2 Disturbed by LPM

Figures 4.1.1 through 4.1.3 show that mass flow rate for each die is indeed unsteady,

even before tablet forming, while mass fraction of liquid does reach an equilibrium level over

time. The data points were calculated by dividing the sample mass by the time they were

collected; the time for tablet forming was recorded directly from the extrusion.
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Figure 4.1.3: Elbow Die Mass Flow Rate

Generally, the samples taken prior to any tablet forming are more concentrated around an

average; this is where the estimation of steady state mass flow rate in Table 4.1.1 is calculated

from. However, after tablet forming, the system behaves erratically, showing no time based

trends or a definitive return to steady state. We can conclude that mass flow rate fluctuates even

in steady state and is highly susceptible to outside forces.

As discussed in Chapter 2, the extruder should generate consistent density paste in steady

state. The equilibrium mass fraction is found to be 0.179 ± 0.005 for the straight die, 0.249 ±

0.01 for the curved die, and 0.200 ± 0.009 for the elbow die. The variance in liquid mass fraction

of the samples is small, suggesting the extruder has reached steady state. This idea is echoed in

Figures 4.1.4 through 4.1.8, which show relatively consistent mass fraction measurements prior



to tablet forming. The time the system takes to return to steady state after tablet forming is

estimated using this data.
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Figure 4.1.4: Straight Die Liquid Mass
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Fraction during the Tablet Forming Process

The time to steady state is estimated by finding the start of a section of samples with

minimal variance. With the curve and elbow dies, the time between two tablet forming stages

was too short to conclusively show a return to steady state flow rate as shown in Figures 4.1.5

and 4.1.7. Thus, the experiment was repeated, shown in Figures 4.1.6 and 4.1.8. However, we

found that the liquid phase migration that occurred after these tablet forming processes was so

extreme that the liquid had travelled back to the feeder region of the screws. This suggests either

that the pressure during the molding process was too high or was applied for too long.

Liquid Phase
Migration

A



As expected, the pressure measured in the pre-die area does spike during the tablet

forming process. We captured the average peak pressure measured on the extruder during the

molding process; since the pressure within the die is unknown, we cannot determine the pressure

drop across the die during tablet forming. These results are represented in Table 4.1.2. The

molding pressure of the two 90' bend dies is much higher than that of the straight die.
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Figure 4.1.5: Curve Die Liquid Mass Fraction during the Tablet Forming Process
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Figure 4.1.6: Curve Die Liquid Mass Fraction - repeated to determine steady state settling time
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Figure 4.1.7: Elbow Die Liquid Mass Fraction during the Tablet Forming Process
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Figures 4.1.4 through 4.1.8 and calculations represented in Table 4.1.2 do show that each

die produces tablets that have consistent masses and low liquid content, at least compared to the

steady state samples. This was the aim of designing a tablet forming process that included

compression. However, issues arise with the flow of the extruder post-tablet forming. It is highly

inconsistent and sometimes even unstable. As with Mascia study on ram and barrel extrusion,

liquid phase migration is identified when liquid content goes beyond the variation of steady state

liquid content (Mascia 2006). Liquid phase migration has always occurred after the tablet

forming process, although it is sometimes not extreme or pronounced, so the disruption of flow

is avoided. This is especially the case with the straight die: the lower molding pressure forms

satisfactory tablets while still allowing the system to settle back to steady state.

This higher pressure and time of tablet molding leads to much lower liquid mass fraction

of the tablets than in the steady state scenario. In the case of the elbow die, even though the

molding pressure is not as high as that of the curved die, the low liquid content and large mass of

the tablets suggest that the liquid in the tablet cavities is being displaced back into the extruder

barrel while the tablets are being formed, causing liquid phase migration to appear later in the

process. This accounts for the quick onset of liquid phase migration, which is measured as the

time the tablet molding pressure acts as an external force on the system.

Table 4.1.2: Key Characteristics of Tablets and Tablet Forming Process

Average Molding Average Average Liquid
Die Geometry Pressure (psi) Mass (mg) Mass Fraction Onset of LPM

Straight Die 25 3 181.9 ±7 0.164 ±0.02 20 min

Curve Die 40 ±5 228.8 ±6 0.188 ±0.01 < 11 min

Elbow Die 32 ±0.5 219.0 ±20 0.135 ±0.03 7 min



Quantifying the change in liquid content shows a 30% increase for the straight die, a 50-

200% increase for the curve die, and 50-150% increase for the elbow die in liquid post-tablet

forming samples. It is certain that liquid phase migration will occur, since the liquid in the tablets

is being squeezed out and the higher pressure during tablet forming is causing the liquid to move

faster or reverse. However, the onset and extent of liquid phase migration is not consistent, even

in repeated experiments for the curve and elbow die. Thus, any characterization of liquid phase

migration seen in this experiment is only qualitative. It seems that the extremity of liquid

movement within the barrel of the extruder builds up, which makes sense through the mass

continuity equation. Figure 4.1.7 shows that the second stage of tablet molding produces more

compressed tablets, followed by a sharp increase in liquid content. Indeed, liquid content of

samples post-tablet forming is much higher for tablets with low liquid content; this conclusion

can also be deduced from conservation of mass.

The two repeated experiments confirm liquid phase migration in the elbow and curve

dies. The mass fraction of liquid is 0.187 ±0.007 for the curve die and 0.30 1 ± 0.01 for the

elbow die. With the curve die, the liquid phase travelled back to the feeder region, mixing with

the powder entering and causing bridging, which stopped additional powder from entering the

extruder barrel and essentially halted the extrusion. The bridging and stopping of the extrusion

also occurred with the elbow die, although the liquid fraction is much higher, which does not

provide insight as to why the bridging or liquid migration occurred.

It is clear that, while the extruder's behavior is mostly understood and expected, some of

these results cannot be well explained. For example, the figures of mass fraction show the

entirety of the extruder's operation, once paste began to flow from the exit. The samples start

with 10 minutes (at the minimum) to allow the flow to reach steady state. Once liquid fraction
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was determined, the data showed the flow took anywhere from one minute to the entire 10

minutes to settle to a steady state liquid fraction. This might be that the realistic liquid content is

not as steady as theory suggests. There might be additional factors, like the feed rate of powder,

which fluctuates, and changes in shear forces along the barrel. Indeed, the shear force depends on

the instantaneous liquid content of the mixture, as shear is much higher on the powder than on

the liquid, so this could be a plausible explanation for the lack of a clear connection between

liquid content and die geometry.

Additionally, the liquid content may not be ideally measured, as the ethyl acetate dries

immediately after leaving the extruder. The data points can then be compared to each other, as

each of them are exposed to the environment for the same amount of time. However, this makes

it impossible to conclude whether the mass flow rates are conserved in the system; applying

conservation of mass to the system, Equation 3, gives us a theoretical mass flow rate that is much

higher than what is observed.

5. Concluion

The results of this experiment suggest that a tablet forming process that uses the pressure

of the flow to create low liquid content, densely packed tablets is not ideal. First, even a slight

change in pressure will cause the liquid to flow faster, changing the liquid content of any

samples. The use of different dies results in different pressure drops, which also changes the

velocity of the flow and the liquid fraction. As such, any die or process that imposes a change in

pressure on the flow will cause the system to deviate from steady state. Furthermore, the goal of

this process is to generate consistent, compressed tablets with minimal liquid content. The nature

of compression is that it acts to collapse the gaps in a solid particulate matrix; in this case, the

gaps are voided of liquid, which then reverses flow direction to return back into the extruder
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barrel. Thus, causing any liquid phase migration could potentially create tablets with inconsistent

liquid content or could even disrupt the flow of the extruder, as seen in some cases of this

experiment.

However, the unsteady mass flow rate of the extruder makes cutting equal doses of API

unreasonable. The experiment shows that using a volume based mold limits the powder content

of the tablet. To avoid this unsteady mass flow rate, the paste should be granulated, to form

granules of known volume and API content. These granules could then be injection molded or

simply compression formed. The use of an injection molding machine rather than an extruder

would allow for the molding process to be directly coupled to the compression of the tablets.

This avoids excess drying time prior to compression, which can cause the tablets to become

brittle rather than cohesive.

Future studies of an extrusion based tablet forming process should focus on

characterizing liquid phase migration in more depth and specification. The theory of paste flow

is well understood; however, the particular application of tablet forming adds a layer of

complication, as the liquid not only flows faster but reverses direction when squeezed out of the

tablet. Design of a device for tablet forming must take into account these changes in liquid

content, as they have a pronounced effect on the final tablets.
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