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Abstract

Trapped cold molecules open the possibility of studying ultracold chemistry and as-
trophysical processes in laboratory settings. Their rich internal structure also makes
them suitable for quantum information manipulation or for tests of fundamental laws
of nature. These experiments require precise control over the molecular internal de-
grees of freedom. There are few present proposals for trapping and cooling molecules.
One proposal is based on confining neutral polar molecules in DC Stark shift traps,
but this approach presents some issues. An attractive alternative is to confine polar
molecular ions in RF Paul ion traps, which is the focus of this thesis.

The objectives here are to develop the theoretical models and to devise the ex-
perimental components and methods to investigate the coupling of polar molecular
ions' rotational states to the microwave radiation. The new approach presented here
is based on co-trapping Sr+ atomic ions together with SrCl+ molecular ions in a cryo-
genic surface electrode RF ion trap and on using the coupling of the molecular ion's
rotational states to an integrated superconducting microwave line or cavity either as
a cooling method or for precise rotational spectroscopy.

The first part of the thesis describes two theoretical methods for observing the
coupling of the microwave radiation to the rotational levels of a molecule. The first
method proposed is based on the enhancement of the molecular rotational transi-
tion rates by the co-trapped molecular-atomic ions Coulomb collisions. The second
method is based on microwave cavity assisted heating or cooling of the molecular
ions. The second part of the thesis presents the development of a cryogenic surface
electrode RF ion trap with an integrated microwave transmission line/resonator. The
ion trap is operated in a 4.2 K closed cycle cryostat.

Thesis Supervisor: Isaac L. Chuang
Title: Professor of Physics and
Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Cold polar molecules

1.1.1 Why polar molecular ions?

Molecules have a rich internal structure which makes them suitable candidates for,

among others, quantum information manipulation [ADD+06, DeM02, RDD+06],

tests of the fundamental laws of nature [DCM+08, ZKY08], or low temperature

chemical reactions [CDKY09, HTS+06]. A key factor in the realization of any of

these experiments is the precise control over the molecular internal degrees of free-

dom, which in most cases requires ultracold molecules in their internal ground state.

One difficulty in producing ultracold molecules is that most molecules do not possess

closed optical transitions and, as such, well established laser cooling techniques are

inapplicable.

Cold polar molecules in their electronic and vibration ground states are par-

ticularly attractive for quantum information manipulation. They posses very long

(100's of days) life time rotational states, that make them suitable candidates as

quantum memory. Their high permanent electric dipole moment (~10 Debye) per-

mits to strongly couple their rotational transitions to microwave fields in general

and to microwave cavities in particular, and opens the possibility to use microwave

circuits as quantum data buses. Present proposals for using the rotational levels



as memory qubits are based on neutral polar molecules confined in DC Stark shift

traps [ADD+06, DeM02, RDD+06]. Confining neutral molecules in DC Stark shift

traps presents a series of issues: a) the traps have low trap depths (~ 10-1 eV) which

requires a source of translationally cold molecules, b) only the low field seeking states

are trapped conducing to a loss of trapped molecules, and c) the trapped states are

dephased by the trapping fields.

The molecular ions present an attractive alternative to neutral molecules, as some

difficulties associated with manipulating neutral molecules are not significant for

molecular ions. Ions in any internal state can be easily trapped in RF Paul traps

with trap depths of the order of 1 eV [KRS07, OZW+06]. Moreover, in RF Paul

traps, the ion internal degrees of freedom are not directly involved in the trapping

process. Since RF Paul traps can trap concomitantly few species of ions, the molecular

ions are sympathetically cooled by Doppler cooled co-trapped atomic ions. Experi-

ments have shown that in cold mixed ion Wigner crystals the molecular ions internal

degrees of freedom decouple from the external motion and reach thermal equilibrium

with the surrounding black body radiation [BJD06, KRS07]. Therefore the internal

cooling must be addressed separately. Trapping in a cryogenic environment is the

most straightforward approach.

1.1.2 Cooling of neutral and ionic molecules

Over the past decade many approaches for preparing cold neutral or charged molecules

have been developed. In the case of the neutral molecules, most cooling techniques

have been concentrated in the following areas: Stark deceleration [BBM99, HBL+04,

SHMvdM09], photoassociation of laser cooled atoms [LHP+93, MCH93, SSBD05],

and buffer gas cooling [DFKP95, WdG+98]. More recently, a laser cooling method

for strontium monofluoride has been demonstrated experimentally [SBD10]. The

Stark deceleration and the laser cooling methods are capable of cooling only the

translational motion of the neutral molecules. The photoassociation is applicable only

when the constituent atoms can be laser cooled individually. The buffer gas cooling

technique has the advantage of being applicable to any molecule, while cooling both



the external and the internal degrees of freedom, although not to the ground state of

a typical molecule.

For cooling the molecular ions, several methods have also been developed and per-

fected. The most successful approach to date, has been the sympathetic cooling of the

molecular ions through the Coulomb interaction with co-trapped laser-cooled atomic

ions. The sympathetic cooling allows for the molecular ions to reach motional tem-

peratures in millikelvin range [MDOO, DMM+04, BRF+05, OZW+06], with the highly

localized co-trapped ions forming Wigner crystals. However, in the sympathetic cool-

ing method, the molecular ion's internal degrees of freedom remain mostly unaffected,

since due to the Coulomb repulsion, the co-trapped atomic ions cannot interact with

molecular ions at sufficiently short range [BJD06, KRS07]. As in the case of neutral

molecules, buffer gas cooling is another method which can be applied to molecular

ions also, yet the final internal and external temperatures that can be reached are

limited to the kelvin range [POHDL95, Ger95]. In order to address the the problem

of cooling the molecular ions to their internal ground states a few schemes based on

direct optical cooling have been proposed [VMD02, VMD04b, VMD04a]. Recently,

two of these optical cooling methods have been demonstrated experimentally. In one

method based on optical pumping with two continuous wave lasers, hydrogen deu-

teride molecular ions trapped in a room temperature system have been cooled to a

rovibrational ground-state population of 78%, corresponding to an internal tempera-

ture of 26 K [SRD+10]. In the other method using a laser cooling scheme based on

excitation of a single rovibrational transition, MgH+ molecular ions sympathetically

cooled by co-trapped Mg+ atomic ions had their rovibrational ground-state popula-

tion increased 15 fold, which corresponds to a drop in their internal temperature from

300 K to 20 K [SHS+10].

1.2 Contributions of this work

The objectives of this thesis are to develop the theoretical models necessary to in-

vestigate the coupling of polar molecular ions rotational states to the microwave



radiation, and to devise the experimental components and methods necessary to ac-

complish these goals. The new approach I present here is based on co-trapping Sr+

atomic ions together with SrCl+ molecular ions in a cryogenic surface electrode RF

ion trap, and to use the coupling of the molecular ion's rotational states to the in-

tegrated superconducting microwave line or cavity either as a cooling method or for

precise rotational spectroscopy.

1.2.1 Theoretical work

In order to observe the microwave coupling, two issues must be addressed first. Since

the polar molecular ions have no closed optical transitions their internal states cannot

be detected directly. The second issue is that the long lived rotational states make any

coupling signal vanishingly small. A method which solves the detection problem is to

couple rotational states to the translational motion of the molecular ions and to use

sympathetic heating spectroscopy [CGD+10, DMM+04] to monitor the translational

temperature of the molecular ions and, implicitly, their internal rotational states. In

sympathetic heating spectroscopy a mixture of co-trapped atomic ions and molecular

ions due to strong Coulomb interactions reaches thermal translational equilibrium

and the temperature of the ion ensemble is monitored with laser induced florescence

(LIF) on the atomic ions.

To address the second detection issue, the molecular rotational transition rates

must be increased to experimentally manageable values for which I envision two

approaches. One method is based on the fact that in a mixed ion cloud the non-

radiative molecular rotational transition rates are enhanced by Coulomb collisions

taking place between the co-trapped molecular and atomic ions. In this approach

a mixed ion cloud of Sr+ and SrCl+ is trapped in a surface electrode ion trap with

integrated microwave transmission line. Due to Coulomb collisions between atomic

and molecular ions, the molecular rotational populations are thermalized to the ion

cloud external degrees of freedom through non-radiative rotational transitions. The

first rotational transition of the molecular ions is excited with microwave radiation

and produces a population inversion among the first two rotational levels, which leads



to the ion cloud heating, while the temperature is monitored through the laser induced

fluorescence on the atomic ions.

In the second method, the molecular ions trapped in the presence of a microwave

cavity have their radiative transition rates enhanced by the cavity Purcell factor.

In a CPW based superconducting microwave cavity the electromagnetic field can be

confined to a very small volume compared with its physical dimensions (~ 10-6),

which in conjunction with its high quality factor (~ 106), puts the vacuum Rabi

frequency in kHz range. In the mixed ion crystal of Sr+ and SrCl+ trapped in a

surface electrode ion trap with integrated microwave cavity, the rotation levels of the

molecular ions are modulated by the harmonic motion of the ions (side bands). The

molecular ions are pumped with microwave radiation tuned on the first red rotational

side band transition, while the microwave cavity is tuned on the natural rotational

transition frequency the molecular ions. In each such excitation - de-excitation cycle

the molecular ions gain one translational phonon, thus increasing the ion crystal

temperature. Again, the co-trapped atomic ions are used to monitor the Wigner

crystal temperature.

1.2.2 Experimental work

The hardware side of the experiment requires to develop a RF Paul trap with an

integrated microwave transmission line/ resonator. Specifically, for this experiment I

design a surface electrode ion trap with the ground electrode acting as a microwave

coplanar waveguide, a trap which I operate in a 4.2 K closed cycle cryostat [ASA+09].

The planar aspect of this trap has two advantages compared with other geometries:

the ion traps are fabricated in house with lithographic methods, and the good ther-

mal contact to the cryostat cold head allows us to implement high-Q superconducting

microwave cavities. As polar molecular ion I use SrCl+ which has a theoretical per-

manent electric dipole of 9.6 Debye, and the first rotational transition frequency

of 6.52 GHz [Gau]. To sympathetically cool the molecular ions and monitor their

temperature I use Sr+, which can be laser cooled with commercially available diode

lasers [LRB+07. Both the atomic and the molecular ions are produced through the



laser ablation of a SrCl 2 target.

1.3 Thesis outline

The reminder of this thesis explores the experimental and theoretical aspects involved

in the microwave spectroscopy of polar molecular ions confined in cryogenic surface

electrode RF ion traps.

Chapter 2 introduces two of the main experimental components: the RF ion

traps and the microwave cavities. It begins with an overview of various RF ion trap

geometries capable of supporting integrated microwave transmission lines or cavities.

The second part of the chapter reviews the theory of ion confinement in RF quadrupole

traps, and also addresses practical aspect of numerical modeling of the RF ion traps

properties. The chapter concludes with a theoretical description at the classical level

of CPW based microwave resonators.

Chapter 3 presents the theoretical analysis of the two microwave - molecular ion

coupling detection methods proposed anterior. The chapter begins with a review of

the atomic and molecular structures, and the principles of laser cooling and detection.

The reminder of the chapter is dedicated to an in depth study of the trapped polar

molecular ions dynamics in the two cases: in the presence of atom - molecule Coulomb

collisions, and in the presence of a microwave cavity.

Chapter 4 describes the experimental setup built around a closed cycle cryostat

capable of reaching 4.2 K temperatures. The components and the particular require-

ments necessary to build a cryogenic ion trapping system are presented in the first

part of the chapter, while in the second part I describe a cryogenic compatible atomic

and molecular ion source based on a laser ablation method.

Chapter 5 presents in detail the surface electrode ion trap with integrated CPW

microwave resonator. It starts with a review of various ion trap geometries I investi-

gated experimentally before deciding on a surface electrode ion trap design. The main

part of the chapter describes the surface electrode ion trap design and fabrication,

and a number of experimental issues as electrical shorting and charging. The chapter



concludes with the experimental characterization of the surface electrode ion traps.

Chapter 6 concludes the thesis with a summary of the results and with an outlook

on future experiments.

1.4 Co-workers contribution and published results

While most of the work presented in this thesis it is my own contribution, many

colleagues assisted me in this project. The surface electrode ion trap (Bastille), in

which I showed that loading molecular ions by laser ablation is possible, was design

by Robert Clark, a former Ph.D. student in our group. Another two former post-docs

in our group helped with the project along the way: David Schuster developed the

microwave slot line based ion trap, while Stephan Schulz designed the microwave strip

(plate) line based ion trap, both of which are presented in Chapter 5. With very few

exceptions, the niobium surface electrode ion traps were fabricated by Ph.D. students

Adam McCaughan and David Meyer, who are still currently involved in the project.

Towards the end of my work on this project, two more members joined the project.

The post-doc Anders Mortensen helped with the calculations of the cryostat heat

loads, while the Ph.D. student Arolyn Conwill provided some of the experimentally

measured heat loads.
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Chapter 2

Ion traps with integrated

microwave resonators

This chapter starts by introducing a few trap geometries capable of supporting inte-

grated microwave transmission lines or resonators and also gives a theoretical overview

of the two trap components. The second part reviews the principles of ion trapping

in RF quadrupole traps, and addresses the practical problem of numerical modeling

of the ion trap behavior. In the final section, I present the theoretical description of

the microwave resonators based on coplanar waveguides (CPW).

2.1 RF ion traps with integrated microwave res-

onators

There are various designs for microwave resonators, but particularly suitable for in-

tegration with RF ion traps are those based on microwave transmission lines. Three

easy geometries to implement are constructed around the slot line, strip line, and

coplanar waveguide microwave transmission lines [Wad9l, Sim0l, MYJ80]. The slot

line and strip line based RF ion traps are three dimensional structures, while the CPW

based RF ion trap has a two dimensional structure, although all three designs oper-

ate on the principles of the surface electrode ion traps. Unlike the three dimensional



ion traps, the surface electrode ion traps contain all the electrodes in a single plane.

Surface electrode ion traps were first suggested by by Chiaverini et al. [CBB+05] and

subsequently implemented by several groups [PLB+06, SCR+06].

All the RF ion traps with integrated microwave transmission lines presented in

the following, were design and fabricated at MIT. For internal bookkeeping, most of

the trap designs we fabricate in our lab receive names.

2.1.1 Slot line RF ion trap (Azkaban traps)

Figure 2-1: RF ion trap with integrated microwave slot transmission line (Azkaban
trap series).

The slot line ion trap (Figure 2-1) has a two layer structure (Azkaban trap series).

The top layer contains the microwave slot line and the main ion trap electrodes.

The bottom layer acts as ground electrode and aids in ion confinement. The spacing

between the two layers determines the ion position along the normal to the ion trap

plane, and as such the ion position can be adjusted at will. In order to operate the slot

line RF ion trap it is necessary to mix the RF trapping voltage with the microwave

signal, which in practice becomes quite challenging.



2.1.2 Strip line RF ion trap

Figure 2-2: Rf ion trap with integrated microwave strip transmission line. The pinhole
in the microwave electrode allows for ion imaging.

The strip line ion trap is another two layer ion trap design. This geometry elimi-

nates the problem encounter in the slot line ion trap by keeping the ion trap electrodes

separated from the microwave transmission line. The top layer contains only a rect-

angular shaped microwave electrode, while the bottom layer contains the ion trap

(Figure 2-2). In order to allow for the trapped ions imaging the microwave electrode

includes a pinhole, which size is matched to the numerical aperture of the imaging

system. The strip line RF ion trap presents a number of problems with the ion load-

ing and ion imaging. But most important issue with both slot line and strip line RF

ion trap structures is that the microwave electrodes cannot be efficiently thermally

sunk to the cryogenic substrate, thereby making the the superconducting regime very

difficult to achieve.

2.1.3 CPW line RF ion trap (Giants traps)

The CPW RF ion trap is a single layer structure, where all the trap and microwave

electrodes electrodes lay in one single plane as shown in Figure 2-3 (Giants trap

series). In this geometry the central DC electrode together with the two lateral RF

electrodes naturally form a coplanar waveguide structure (CPW), which can be used



Figure 2-3: RF ion trap with integrated microwave coplanar waveguide (Giants trap
series).

for microwave radiation delivery (Figure 2-4). An RF ion trap built around a CPW

alleviates all the problems presented by the previous two structures, with the added

benefit that it can be developed in house with well established lithographic techniques.

All three trap designs will be presented again in more detail in Chapter 4.

Figure 2-4: Microwave electric field distribution above a CPW transmission line.

2.2 Theory of ion trapping in RF quadrupole traps

Earnshaw's theorem forbids the trapping of the ions in a stable configuration with just

static electric fields. With a combination of static and RF electric fields is possible

to form a dynamically stable trap for charged particles. The theory of the RF ion



traps has been covered in depth in many publications before [Gho96, MGW05]. Here

I review only the main mathematical results concerning the ion confinement in RF

ion traps.

2.2.1 Mathieu equations and the adiabatic approximation

Consider a charged particle of mass m and charge Q interacting with a set of DC and

RF electric quadrupole fields (Figure 2-5). Assuming that the particle trajectory is

confined around the saddle points of the two fields, the corresponding electric poten-

tials can be approximated by series expansion up to the second order in coordinates

around the saddle points:

Figure 2-5: RF electric field distribution in a surface electrode ion trap. The ions are
trapped at the RF field null (red dot).

3 3

DC (1) ~ Uo 1 + acXi + b Dcz+ , (2.1a)
i=1 i,j=1

3 3

<b F , o1+ aRF RF4PRF (Xi t) VO 1( + a. aFXi + > bj, ±..)+ cos(Qt), (2.l1b)
i=1 i,j=1

where Q is the RF field angular frequency. If the saddle points of the two fields coincide

(experimentally known as compensation) and taking them as the coordinates system

origin, the linear terms in the series expansions become zero (Bi<D () |,=o = 0, Vij):



3

(IDC (I) ~ Uo I + >ib CX+X . , (2.2a)
i,j=1

3

RF(t) VO 1±+ F + ... cos(Qt). (2.2b)
ij=1

We note that, without loss of generality, the coefficients b can be taken to be sym-

metric under the permutation of their indices, and thus forming two real symmetric

traceless matrices (traceless because V2 (z) = 0). With the above expressions for

the potentials (2.2) the motion of the charged particle is described by the Lagrangian:

3 3 3

L (QUO 1 + b FXiX +... cos(Qt),
i=1 ij=1 i,j=1

(2.3)

from which the equations of motion are readily determined:

3 3

mzj + 2QUOE b DCX + 2QVO Y, b RFXj cOS(Qt) = 0, i = 1, 2,3. (2.4)
j=1 j=1

The system of differential equations (2.4) can be decoupled only if the two matrices

{bPc} and {bF} commute, i.e the DC and RF potentials bilinear expansions have

the same principal axes. Assuming that the commutation condition is satisfied, after

the diagonalization of b matrices the equations of motion (2.4) become:

mXi + 2QUeb CX, + 2QVOb FX, cos(Qt) = 0,i = 1, 2,3, (2.5)

where X are the principal axes and bC,RF are the corresponding eigenvalues. By

introducing the notations:

8QUeb pC 4QVob F I
aT= ,2  T 2  -Qt, (2.6)

the equations of motion (2.5) take the form of the standard homogenous Mathieu's

differential equations:



d2 X
dr 2 + [ai - 2qi cos(27)] X% = 0. (2.7)

According to Floquet's theorem (or Bloch's theorem), the solutions to the Mathieu's

equation have the form:

ui(r) = e"'f(7), U2(r) = e~4'f(-T), (2.8)
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Figure 2-6: Stability map of Mathieu's equation (stable regions are shaded).

where f is a periodic function of period 7r and the characteristic exponent pL = a + i#

is a complex function of the parameters a, q. If a # 0, or a = 0 A # Z the two

solutions (2.8) are linear independent, but only the case a = 0 A# Z provides stable

solutions as T -+ 00 (Fig. 2-6). For the case in which a = 0 A 3 E Z (but q / 0)

the two solutions (2.8) become linear dependent and it can be shown that the second

linear independent solution is unstable as r -+ oo. If the condition Z # Z is satisfied

then the general solutions to the equation (2.7) can be written as:

-2-

-4.



DO00

X(TF) =Cieplr 13 cne2nir + C 2e7Itv Z cne -2ni-r (2.9)
n=-co n=-00G

where the constants C must be determined from initial conditions. Substitution of the

solution (2.9) back into the differential equation (2.7) gives the following recurrence

relation for the coefficients cn:

'Yn(A)cn- 2 + cn + 'Yn(p)cn+2 = 0, (2.10)

with

7n(P) = q (2.11)
(2n - ipt)

2 - a

The characteristic exponent p is determined from the equation:

A(p) = 0, (2.12)

where A (p) is the determinant of the system of equations (2.10). Equation (2.12) can

be reduced to a simpler form:

cosh(7ry) = 1 - 2A(0) sin 2 (r Va). (2.13)

In the stable domain p is purely imaginary and the solution (2.9) can be written as

a real Fourier series:

00 00D

X(T) = C 1  cn cos[(2n + #)r] + C2 cn sin[(2n + #)r]. (2.14)
n=-OO n=-oC

For the case in which the variation of the applied fields is negligible over the particle

motion amplitude the adiabatic approximation can be used to determine the charged

particle trajectory. In this case it is assumed that the particle motion consists in a

small amplitude oscillation at the frequency Q of the applied RF field superimposed

over a smooth secular motion driven by the DC field. Thus, we expect that the

solution has the form:



X(t) = U(t) + (Q(t), (2.15)

where (Q(t) oscillates at frequency Q, and where the average of X(t) over one period

of the RF field is equal to u(t). Plugging this approximation in the equation of motion

(2.5) and expanding up to the first order in (a, we obtain:

d2u d2(q Q [ dEDC dE RF
d + dF r m EDC + (a + ERF coS(Qt) + d cos(t) , (2.16)
dt2  dt2  -M, dX Qt)

where the electrical potentials where replaced by their corresponding fields. The

next step of the approximation is to require the oscillating terms and smooth varying

terms to separately satisfy the equation of motion (2.16). So for the oscillating term

we obtain:

d2 mE (2.17)
dt2  m

with the solution:

Q I
(oQt = - 2ERF S(t) 2.8

mQ

Substituting the above result back into the equation of motion (2.16) and averaging

over the oscillating period, the equation of motion for the smooth varying part u(t)

becomes:

d2 u Q DC Q2 dERF (2.19)
dt 2  m m2Q2 (ERFddX COS (2t1))

from which it follows that the secular motion is determined by the an effective

(pseudo) potential:

4eff(X) = 4 DC(X) + 4mQ2 FRF(X). (2.20)

The advantage of using the adiabatic approximation is that the quantitative behavior



of the particle confinement can be obtain without solving the exact equation equations

of motion (2.14) or knowing the particle's initial conditions (Fig. 2-7). By replacing

the definitions of a and q into Eq. (2.20) and solving the equation of motion in the

secular approximation, we obtain the solution:

Figure 2-7: Example of a pseudopotential for a surface electrode trap obtain by
numerical modeling.

(2.21)

where A and B are two integration constants. By comparing the solution (2.21) with

the exact solution (2.14), we recognize that the adiabatic approximation is equivalent

with expanding the exact solution up to n = ±1 terms, which is true if the imaginary

part of the characteristic exponent satisfies the condition:

#2 ~ a + - 1.
2

(2.22)

2.2.2 Boundary element method for numerical simulation

In practice any quadrupole ion trap is a set of metallic electrodes held at fixed posi-

tions with respect to each other, on which either DC or RF voltages are applied. But

2) 
(7 1_ 2)

u(t) = A cos (a + q' -t + B sin a + q _t
2 2 2 2



in order to analyze their trapping properties it is necessary to know the potentials

created outside of the trap electrodes. Except for highly symmetric trap geometries

most often it is impossible to derive an analytic solution for the trapping potentials.

The recourse is to either numerically solve the trapping potentials or to experimen-

tally characterize the trap, although the latter case becomes unfeasible when the

search space for the applied voltages is high. Essentially, the numerical modeling of

the trapping potentials reduces to solving the Laplace equation for the potentials for

a given set of boundary conditions. The main numerical methods for solving partial

differential equations (PDE) are boundary element method (BEM) and finite element

method (FEM) [JinO2], with the former method being particulary suitable for mod-

eling surface electrode ion traps (although BEM has few other advantages over FEM:

only surfaces need to be discretized, the solution is more accurate since BEM solves

the equivalent integral equation, there is no need for unphysical bounding boxes, etc.).

The boundary element method starts with the observation that the applied electrode

voltages are equivalent with a set of (surface) electric sources and related to them by

the Poisson equation (only the electrostatic case is considered here; the retardation

effects for the RF potentials can be safely neglected for the frequencies and distances

involved in the ion traps):

v2  (z) =- , (2.23)

which in integral form and specifically for the electrode surface only becomes:

1o- (:') d2 I(.4Delectrode (5) = electrde d'. (2.24)47rco scetr X y - z

In principle, the integral equation (2.24) can be solved analytically for the equivalent

surface charge density, but in practice except for very simple trap geometries the

method becomes very cumbersome (the problem is equivalent with finding a com-

plete set of orthogonal functions over the surface of all electrodes). This is the point

where the surface discretization comes into play. The electrode surfaces are com-

monly tessellated with variable shaped triangles and/or fixed size squares. For both



tessellation shapes the integrals appearing in Eq. (2.27) have analytical solutions,

which helps in speeding up the numerical computations. The choice between tiling

with triangles or squares depends on the geometry of the problem. Triangles can

approximate curved boundaries or surfaces very well, but their description requires

nine real numbers (three for each vertex). On the other hand, squares are suitable for

tiling flat rectangular surfaces (which is often the case for surface electrode ion traps),

and their position and orientation can be described with only five real numbers. Let

us assume that all the trap electrodes were divided in a set of finite size elements;

then equation (2.24) takes the form:

1 f c (:') 2 I
(I i - GIelectrode (Xi) - al- d2 x'. (2.25)

7 j all surface elements Si

There is leeway in where exactly the potentials are evaluated and in what position

dependence for the charges we assume. The most common choice is to evaluate the

discrete set of surface potentials at the corresponding geometric center of each surface

element (i.e. collocation method) and to assume constant surface charge densities over

each surface element. Under these conditions equation (2.25) can be written further

as:

elem es 2X (2.26)
jC all surface elements i

or

4)Z Mijo-n, Mii = 4  jp d2x. (2.27)
47eo s.7 |$ -- 1|

Since the surface voltages are given, finding the discrete set of surface charges -j is

just a matter of inverting the matrix formed from the elements Mij:

lo-) = M- 1 l)), (2.28)

where we used Dirac notation. With the equivalent electric charges known, the elec-

trical potentials can be easily determined anywhere in space:



(DV) = 1 / E 1 d2X. (2.29)
47rEo s x-z

Since the electrical potentials satisfy the superposition principle Eqs. (2.28) and

(2.29) can be solved only once for any arbitrary set of applied voltages:

aj (k) = M "Di (k), i (k) = 1, i - electrode with voltage V (2.30a)

0, otherwise

47rc Ic-l Vk 5j u(k) Xj
kE all independent voltages jE all surface elements iS

(2.30b)

Equation (2.28) can be solved numerically by some simple method such as Gaussian

elimination, but equation (2.30a) requires applying the method for every independent

applied voltage, which becomes time consuming. The alternative is to invert the

matrix M before proceeding with solving the set of equations (2.30). There are

various ways to numerically invert matrices, but considering the capabilities of a

desktop computer and the programming language used, few aspects must be kept in

mind when choosing the matrix inversion algorithm. In most cases the matrix to be

inverted would not fit in the computer RAM memory in which case it is necessary

to break it in sub-matrices of lower dimensionality (the alternative is to just use

the programming language linear algebra pack inversion algorithm and to let the

computer utilize the virtual memory, but the computation becomes exceedingly slow).

One such matrix inversion algorithm which satisfies the above requirements is based

on block LDU decomposition [Ste98]. Suppose that the matrix M is partitioned

in sub-matrices of various dimensionalities with the only restriction that the main

diagonal blocks must be square (i.e. be invertible):



'l :M1,N

M = -. - ..--. Mii Mi'i+1 .. .. (2.31)
-.. - .. Mi+1,i Mi+1,i+1

MN,1 MN,N

then the following pseudocode implements the in place inversion of matrix M:

! LDU decomposition

for i=1 to N-1

M[i+1:N;i]=M[i+1:N;i]*M$_i,i^-1$

M[i+1:N;i+1:N]=M[i+1:N;i+1:N]-M[i+1:N;i]*M[i;i+1:N]

end for i

! M inversion

for j=1 to N

Mj,j=Mj, -1

for i=1 to j-1

Mj,j=-Mj, *M [i; i: j-1*M [i: j-1; j]
end for i

end for j

for i=N-1 to 1 step -1

a=M[i+1:N;i]

M[i+1:N,i]=O

M[1:N;il=M[1:N;il-M[1:N;i+1:N]*a

end for i

where the notation M[i + 1 : N; i], for example, stands for all blocks from row i + 1

to row N on ith column of matrix M. In Appendix A I present an example of this

algorithm implemented in Mathematica 7.



2.3 CPW microwave resonator

The use of microwave resonators based on transmission lines was proposed before as

a method to realize cavity quantum electrodynamics with superconducting electrical

circuits [BHW+04], which was subsequently demonstrated experimentally [WSB+04).

The same microwave resonators based on transmission lines can be also used to realize

cavity quantum electrodynamics with molecular ions. Here, I give a short classical

description of the CPW microwave resonators integrated in surface electrode ion traps.

2.3.1 Classical description of CPW microwave resonators

Let us consider a lossless microwave resonator formed from a CPW transmission line of

length L embedded between two semi-infinite CPW transmission lines but separated

from them by two small gaps. We model the transmission lines as a distributed set

of capacitances c and inductances 1 (and as such both the resonator itself and the

semi-infinite transmission lines have the same characteristic impedances Z), while for

simplicity the coupling gaps are modeled as two capacitor of capacitance Co [Wad9l,

SimOl, MYJ80]. Assuming that the system is fed from the left with a sinusoidal

signal of amplitude V+ at frequency w, the left semi-infinite line will contain a positive

propagating current wave and a reflected negative propagating wave, and the right

semi-infinite line will contain only a positive propagating current wave, while the

resonator will contain both types of current waves (see Fig. 2-8). Since the system

is driven at a single frequency w in the following all the appearing quantities will

implicitly contain a term of the form exp(iwt). In order to determine the resonator

properties, we make use of the charge conservation law at the two coupling gaps:

VL_ L gC kk _g+ikk dL

IL + dQL iQL, (2.32a)Z Z dt

Vj _ Vg+ - y -ik k dQR
R Z - d -iQR, (2.32b)

Z Z dt

where the currents were written in terms of their associated voltage amplitudes, and

where the subscripts +/- show the direction of propagation of the respective waves.



Figure 2-8: CPW based microwave resonator.

The charges on two coupling capacitor QL,R are related to voltage drops across the

two gaps by the relations:

VL (V + VL _ (+6eiki +ikL) (3

AVR = (V+e ik2 + V - - V= Q (2.33b)

The set of linear equations (2.32) and (2.32) can be solved for the unknown voltages

as function of the applied voltage Vf. Making the notations # = 2wCoZ = 2k- and
C

-= e--2k, the results are:

VL +±i)±+G3Wi) L (2.34a)

V = V+,(2.34b)
[1 + _y(# - z)2]

V+ 3/4 (1 + #2) (0 _ i) VL(23b
# [1 + _y(# - z)2]

V_= -y 1/4  (1 + #2)i VL (2.34c)
#[1+ y(# - i) 2] +

V - 1/2 (1 + #2) V (2.34d)

[1 + -y(# - z)2] V+

If the feeding line is to be electrically matched to the resonator, there should by no

reflected wave inside the feeding line. This is equivalent to setting the Eq. (2.34a)

equal to zero, from which we obtain a condition for the length L of the resonator has



to satisfy:

Cotan(k L) = 2k-. (2.35)

The quality factor of the resonator can be calculated from the definition of the quality

factor Q =Lw x Stored Energy.
= UXPower Loss*

Q1 Co (1AVL +IAVRI 2 ) + [c V + VL/ 2  (+ V 2 dx
2 VIL* + VI+R*

(2.36)

which after performing the integral becomes:

4Co { (1 + #2)2 _ [/3 sin(2kL) + #2 cos(2kL) + 0.5]1} + cL (1 + #2)2 (2 + #2)
#2{04+ 4[# cos(kL) - sin(kL)]2}

(2.37)

2.3.2 Numerical estimates

As an example, I analyze a CPW microwave resonator compatible with a surface elec-

trode ion trap. Consider a superconducting resonator built from a Nb layer deposited

on top of a sapphire substrate with following characteristics: specific impedance

Z = 50 , specific capacitance c = 153 pF/m, specific inductance 1 = 383 nH/m,

central electrode width 400 pm, and coupling capacitances Co=1.53 x 10-" F. Figure

2-9 shows the quality factor of the microwave resonator versus the resonator length

L, for an incoming radiation of angular frequency w = 2 -r 6.52 x 109 Hz.
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Figure 2-9: CPW microwave resonator quality factor versus its length for a radiation
of angular frequency w = 2 ir 6.52 x 109 Hz. Resonator characteristics: specific
impedance Z = 50 Q, specific capacitance c = 153 pF/m, specific inductance I = 383
nH/m, central electrode width 400 pm, and coupling capacitances Co=1.53 x 10~"
F.



Chapter 3

Dynamics of co-trapped atomic

and polar molecular ions in the

presence of electromagnetic fields

This chapter presents two methods for the detection of microwave field coupling to

the rotational transitions of a polar molecular ion. Preliminarily, I present the atomic

ion interacting with a laser field, and the structure of the molecular ion. The rest of

the chapter presents a theoretical analysis of the molecular rotational states evolution

coupled to a microwave filed in two cases: in the presence of atomic - molecular ions

collisions and in the presence of a microwave cavity.

3.1 Laser cooling of systems with A level structure

In atoms or atomic ions with one valence electron more than a closed shell like Sr+, the

excited states usually display a A-like structure as shown in Fig. 3-1. For such atoms

the excited state le) can decay either to the ground state 1g) or to the metastable level

im). Once the atom reaches the metastable level, it cannot be addressed any longer

by the cooling laser tuned to the g +-+ e transition [KP09]. Consequently, a second

laser tuned to the m +-+ e transition is necessary in order to repump the metastable

level 1m) back to the active level le).
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Figure 3-1: A level structure in SSSr+ ion.

The evolution of the system under the influence of the two coherent radiation fields

is described by the following set of optical Bloch equations [CTDRG92, LS84]:

gg -iQeg cos (WL,egt) (Peg - Pge) + Pee~eg + PmmFmg ,

Pmm = -i~em cos (WL,emt) (Pem - Pme) + PeeFem - Pmmrmg,

(3.la)

(3.1b)

Pee = iem cos (WL,emt) (Pem - Pme) + M0eg Cos (WL,egt) (Peg - Pge) - Pee em - Pee eg

Pge =WegPge - iQeg cOS (WL,egt) (Pee

Pme

1
Pgg) + iQem COS (WL,emt) Pgm - 1Pge (Peg

= ZWemPme - iAem cos (WL,emt) (Pee - Pmm) + z~eg COS (WL,egt) Pmg

2Pme (Peg + rem + img)

Pgm = ZmgPgm + iqeg COS (WL,egt) Pme - em COS (WL,emt) Peg - Pgm Pmg

Peg = Pget, Pem = Pmet, Pmg = Pgm , I

(3.1c)

+ Fem)

(3.1d)

(3.le)

(3-1f)

(3.1g)

52S 1/

4D3/2



where the various symbols appearing in the above equations have the typical mean-

ings, i.e.: p's are the populations and coherences, w's are the transition frequencies,

F's are the decay rates, WL's are the frequencies of the applied lasers, and Q's are

the Rabi frequencies. In the laser frame (pge -+ pgeeiWLegt, Pme -+ pmeeiWL,emt, Pgm -+

Pgmei(WLe-WLem)t) and with the rotating wave approximation the optical Bloch equa-

tions become:

fgg = i (Peg - Pge) + PeeFeg + PmmFmg , (3.2a)

Qe
emm (Pem - Pme) + PeeFem - pmm mg , (3.2b)Mm 2 (pPm~m

Q = e (Pe - pme) +i (eg - Pge) - Peerem - Peereg , (3.2c)
2 em

Qeg 1
Pge =-egPge -- g (Pee - pgg) + 1 2 pgm - Pge (Peg + Fem) , (3.2d)

Pie = -idemPme - em (Pee - Pmm) + 2 Pmg - Pme (eg + Fem + Pmg) , (3.2e)
22 2

Q Q 1
Qeg Qem

Pgm i( 6 eg - 6em) Pgm - 2 Pem + 2 pge 2 pgm mg , (3.2f)

Peg = Pget, Pem = Pmet, Pmg = Pgm , (3.2g)

where (5 =L - w are the detunings between the applied fields frequencies and the

atomic transition frequencies. For numerical calculations is preferable to replace the

complex coherences with their real and imaginary parts:

Pge = Xge - ZYge, Pwe = Xme - iYme, PgM -- Xgm - Mygm . (3.3)

Also note that because of the normalization condition Pee + Pmm + Pgg = 1 the system

of equations is over-determined, we can eliminate one of the populations (for example

Pmm), and then the Eqs. (3.2) take the form:

-|pt) = Mjp(t)) + 1c), (3.4a)
dt

{(t)|=I ( Pee pgg Xge yge xme yme xgm ygm ,(3.4b)



-Fem - Feg 0 0 - 0 -em 0 0

Feg - mg Fmg 0 Qeg 0 0 0 0

0 0 reg+rem -6eg 0 0 0
___ Qeg r,9+eM e

2 2 6eg 2 0 0 2 0

0 0 0 0 reg+remrmg -- em 0 -e
2 2

Qem i Q 0 0 
6

em reg+rem+rmg - 0

0 0 0 0 - - oog
2 2 20 0m-o 0e _e_-_e -

(3.4c)

(cI=( 0Pimg 0 0 0 -r 0 0 ) , (3.4d)

The steady state solution can be obtained analytically by setting the left-hand side

of Eq. (3.4a) to zero. For the case in which Pmg -+ 0 (a very good approximation

given that im) is metastable) the excited state population pee becomes proportional

with (6 eg - 6em) 2:

Pee = 4 (Peg + Fem) (6 eg - 6em) eg e

x [remQ2g ((4 (6eg - 6em) 6em + 2 ) 2 + 4 (6eg - 6em) 2 (Peg + Fem) 2)

+ 2egQeim ((4 (6eg - 6em) 6eg - 2 2 + 4 (6eg - Sem) 2 (P )2)

+QegQ2m (Q~m (2Feg + Fem) + Q2g (Feg + 2Pem) + 8 (6 eg - 6em) 2 (Peg + Fem))]

(3.5)

This shows that when the two laser detunings are equal the atom gets trapped in a

dark state and no longer can scatter light. The absorbtion and emission of photons by

the atom generates a force on the atom proportional with the momentum exchanged

between the radiation filed and the atom. If the spontaneous emission is isotropic

then the scattering force averages to zero and the only force felt by the atom is due

to the photon absorbtion (one dimension and one laser color) [MS99]:

F = hkegregPee, (3.6)



since at steady state the number of absorbed and emitted photons is the same. If the

atom is in motion the radiation absorbed is Doppler shifted by 6eg ~ WL,eg -Weg~WL,eg C

for small atomic velocities. To the first order in the atomic velocity the light force

becomes:

F = hkL,egTieg (PeeIv=0 - kL,eg apee v=0U
awL,eg/

(3.7)

So the motion of the atom is damped at the rate (Fig. 3-2):

= hkL,eg2 eg ee v=O,
&WL,eg

(3.8)

while the constant zeroth order force just shifts the equilibrium position of a trapped

atom.

-100 0 100
6 eg [MHz]

3. x 10-137]

2. x 10-13

1. x 10-13

-1. X 10-1,

-2. x 10-11
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Figure 3-2: Damping coefficient a vs. laser detunings for SSSr+ ion cooled on
nm transition with Qeg = Qem = 1MHz. For 6eg = 6 em the damping coefficient
excited population pee become zero.

422
and

Equation (3.7) implies that the atom would come to a rest, which however is not

true. Due to the time randomness of the photon absorbtion and space randomness
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of the photon emission the atom's momentum variance increases in time with the

momentum diffusion coefficient:

d(p 2) = 2D, = (hkL,eg) 2 fegPee v0 - (3.9)

At steady state the heating and cooling rates become equal and the atom reaches a

final temperature:

kBTD = (3.10)

The temperature (or velocity) of a single atom can be determined by monitoring the

photon scattering rate, which according to equation (3.5) is:

eg - FegPee [6eg(v), 6 em(V)] . (3.11)

For an ensemble of trapped atoms in thermal equilibrium the above expression must

be integrated over their Maxwell-Boltzmann velocity distribution (obtaining a Voigt

profile).

3.2 Rotational levels of diatomic heteronuclear

molecules in I electronic ground state

Most diatomic molecules have a 1E electronic ground state [BC03, GC84]. When

the nuclear coupling and the interaction between molecular rotation and vibration

are neglected, the molecule can be approximated by a rigid rotor. For diatomic

molecules in 1E states, the principal moment of inertia about the molecular axis is

zero, and the other two moments corresponding to rotations perpendicular to the

molecular bond are equal. Therefore, the Hamiltonian is:

H = (J + j) j 2  (3.12)
21 Y 2I'



where its energy eigenfunctions are the usual spherical harmonics (rjm) = Yjm(O, 4)
with the corresponding eigenvalues given by Ejm = Lj(j + 1). During the molecular

rotation, as a result of the centrifugal force, the internuclear distance increases and

hence the moment of inertia increases too. A better model which accounts for the

centrifugal distortion is that of a non-rigid rotor. During the molecular rotation

the new internuclear equilibrium position Rc is determined by the balance of the

centrifugal force Fc and the the electronic restoring force k(Rc - Re), where Re is

the bond length in the absolute molecular ground state (j = 0). If m is the reduced

mass of the molecule, and w is its angular velocity, the classical angular momentum

becomes:

J = wIc = wmRc, (3.13)

and the centrifugal force is given by:

Fe = mm2RRc =P (3.14)

But at equilibrium Fc = k(Rc - Re), and we have:

J2  2

Rc - Re = ~ . (3.15)
kmR3 kmR3

The total Hamiltonian is now the sum of the kinetic and potential energy:

H = + -k (Rc - Re) 2. (3.16)
2Ic 2

Using the expression of Rc from (3.15) in the Hamiltonian (3.16), and keeping terms

to the second order in Rc - Re, the Hamiltonian becomes:

J2  P4
H = R+... . (3.17)

2mR2 2km2 R6

The eigenfunctions of the Hamiltonian (3.17) corrected for the centrifugal distortion

remain the same spherical harmonics, but the corresponding eigenvalues become:



Ejm = 2 + 12(j + 1)2 + (3.18)
ee

3.3 Collisional assisted microwave heating

Here I present the theory of collisional assisted microwave heating (Figure 3-3). The

section begins with a derivation of the cross section for the angular momentum trans-

fer between an atomic ion and molecular ion during Coulomb collisions. From the

collisional cross section I determine the rotational de-/excitation rates for the molec-

ular ions in motional thermal equilibrium with the co-trapped atomic ions. Both

the cross section for the angular momentum transfer in ion - ion collisions and the

rotational de-/excitation rates for the molecular ions were studied before in connec-

tion with electrical excitation of nuclei [MG51, ABH+56] and collisional excitation

of interstellar molecular ions [CD74, Chu75, Jac72, PM79, FT01]. In the last part, I

present an original derivation of the rate at which energy from an applied microwave

field is transferred to the translational motion of the molecular ions.

SrCl* Sr* .mixed ion cloud
/MW transmission line

oL

X

Figure 3-3: Schematic of the collisional assisted microwave heating experiment. A
mixed ion cloud of Sr+ and SrCl+ is trapped in a surface electrode ion trap above a
CPW microwave transmission line.



atomic ion

molecular ion

Figure 3-4: Schematic of the angular momentum transfer between an atomic ion
and molecular ion during a Coulomb collision. Internal angular momentum of the
molecular ion can be transferred from or to the relative motion of the two ions.

3.3.1 Collisional excitation cross section

Consider the following reaction (Figure 3-4):

A+ + M+(jm) -* A+ + M+(j'm'), (3.19)

where j and m are the angular and magnetic quantum numbers of the molecular ion

M+. The internal structure of the molecular ion is modeled as a rigid rotator having

an permanent electric dipole p, while the the atomic ion is taken to be a point charge.

The Hamiltonian which describes the above system (in CM coordinates) is:

2 2 1 e2

H =Hrigidrotator - Vr ± --- + Vmonopole-multipole, (3.20)
2mo 47reo r

where mo is the reduced mass of the atomic-molecular ions, and r is the distance

between their centers of mass [CD74, Chu75, ABH+56, CBK82]. Choosing the un-

perturbed Hamiltonian to be:

HO =Hrigidrotator - -v 1 e (3.21)
2mo r 47ro r

then the unperturbed wave function @ separates into a product of a Coulomb wave



function 0( k , 7)= | k ), and a spherical harmonic function Yjm (n) representing the

molecular rigid rotator (ii is the molecular internuclear unit vector).

The higher order molecular electric multipole - atomic ion interaction

Vmonopoie-multipole, can be written quite generally as [Jac99, Joa75]:

1 PA (r-n)eQA(.2
Vmonopoie-multipole = 40 r P3A (3.22)

A=1

where PA is the Legendre polynomial of Ath order, and QA is the Ath permanent

electric moment of the molecular ion.

The first order transition probability per unit time dw corresponding to particle

scattered from k i to k f within an element of solid angle dQf, while the molecular

ion undergoes a transition from j -> j' is given by:

2ir 1 mokf
dw = 1 (,f |( VV i) |2 dQf (3.23)

h , 2j + 1 (27r) 3 h2  (

where the matrix elements of the transition were averaged over the magnetic number

m of the initial states, and summed over m' that of the final states. Since the total

energy is conserved during the transition the wave vector of the final state k f satisfies

the relation:

h2 k 2  h2j(j + 1) k h2 kf 2 j'(j' + 1)+ = + (.4
2mo 21M+ 2mo 2M+

In order to determine the total cross section for j - j' rotational transition, we divide

the transition rate dw to the incident particle flux and integrate over the direction of

the final state wave vector k f:

1 _mo2 kf 1 (3.25)
4,r We ki ,'M 2j + 1

To proceed further, we need to calculate the value of the matrix element:

Bfj = (Of/I|V i/)p) = (Yym'() I(h) |IYjm(n)), (3.26)



where

I()= (k I EPA, i)
heCou wav f a

The expressions for the Coulomb wave functions are:

(7| Jk i)=exp(-7r77i/2)]P(1+ir )exp(iki

and

(I i)=exp(-r /2)F(1-irf)exp(ik f

(3.28)- i) 1F1(-ij,1;i(kjr - k i -

- Y) 1F1(irf/,1;-i(kfr + k f - (3.29)

where the r/,f represent the Sommerfeld parameters:

rji = M2 mok

' 47reo hki,f
(3.30)

and 1Fi() is the confluent hypergeometric function. To calculate the integral in Eq.

(3.25), we expand the Coulomb wave function into partial waves [BJ03, AC04, Joa75]:

(7|ki: -)= E 47r(-1)milexp(iol(rji))Y,-mn(i)Yim(k) kir), (3.31)
1,M

and

(3.32)( k |)= 47(-1)"'ikexp(-iofj(r/f))Y,-m(k f) Fl kr),

where a- (r7)=argF (1+1+ir) is the Coulomb phase shift, and where Fi(kr) is the regular

solution to the radial wave equation for the orbital angular momentum 1.

Using the addition theorem for the spherical harmonics [AW95]:

2A+PA(f -n)= 2A±1 >Y(n)Yx,(i), (3.33)

(3.27)



and the relation:

(2' /+ 1)(2A + 1)(2j + 1) '
(Y/m/( n)YX"*(ni)|IYjm (A)) =47 0

A j

0 0

A j

y M )
(3.34)

the angular integration over n can be performed, yielding [Sak8l, DM77, MG51]:

(k 5| A+ k j)=

47r3/2 -3 >3i'f (-1)exp(i(or + of)) (2/i + 1)
E El I2 m

X YiMi(ki)YI,,mf(kf) (
(2A + 1) (2lf + 1)

A)

0 )
(3.35)

1f A

-m5 yL

where the radial matrix element M is defined by:

_ A 1 1
M1=1f kikf

Hence Eq. (3.27) becomes:

00 Fif (kfr) F, (kir)

ja rA+ 1 dr.

I( =Z QxT Y .fmfY* (n)Y i,_mi(ki)Yl,,m(kf)Mjj, 1 ,
A,#L 1i,lf mi,mf

where

TAI,Iimilf Mf = (47) 5 /2 i-1f (-1) exp(i(ai + of))

(21i + 1) (21f + 1)
(2AX +1)

The transition matrix element Bfj can be evaluated [AG92, RST98, OKKN01]:

(3.36)

(3.37)

A)

0 )

if A

-m [p)
.(3.38)

lij

0



Bf, = (3>( GjjmmYif,,(kf)M 1,
Al i,If

GAI,, ,1jjjmm,
eQA T , (2l,+1)

16r 2C0 0lf I0
(2j + 1)(2j'+ 1)(2A + 1)

M' -pi

Substituting the expression for Bfj in Eq. (3.25), we obtain:

o0

u(j -+ j') =>( ox,

where aA is defined as:

e2 Mo2 kf Q 22j'+1 (j
7reo W4 ki 2A+1 0

x ( (2lj+1) (2lf+1)
isi,f 0

2
j' A

0 0

f A M -12 F
00 J

For the special case of electric dipole excitation A = 1 the radial matrix elements Mij,

are related to the well known electric dipole bremsstrahlung radial matrix elements

Mj'% [ABH+56]. The connection is given through the equation of motion (Ehrenfest

theorem):

d7T 1 e2

mo - = 2

dt 47reo r2
(3.43)

which leads to

-mow2( k fJrYi(#)| k i)= -( kf22 k ),
47reo r

(3.44)

where

(3.39)

(3.40)

(3.41)

aA(j -+j') =

(3.42)



where

-mow2M 4 irc ,

h(k2- kf
2

)

2mo

(3.45)

(3.46)

The M+, can be evaluated analytically by expressing the Coulomb wave function in

parabolically coordinates [Som53] and the righthand sum in the Eq. (3.42) can be

written in closed form as:

(21i+1) (21f+1) 1 S12 9 1

0 |M -lf,2 64r 2 kikf E1 (ri, , (3.47)

where

3274 exp (27r/) (\ d . . 2
9 (exp (27rj) - 1) (exp (27rr/f) - 1) dXo

(3.48)

with (=r - r/i and Xo=-22. Hence

2
fE1(r/i, )o-(j,j' = j ± 1) = 4 2 h4 (1 + 2j') (Qrji)2

e42 m0 0
(3.49)

For the case in which |xol > 1 the Gauss hypergeometric function 2F does not

converge [AW95, TC01]. In order to evaluate fE1 it is necessary to use the analytic

continuity of 2F1:



2F1(a,b;c;z) =
(F(c)J(b - a)) 2F (a, a - c + 1; a - b + 1; )

(-z)a(F(b)r(c - a))

+ (c)F(a - b)) 2F1 (b, b - c + 1; -a + b + 1; ()
(-z)b(F(a)F(c - b)) '

With the help of the following relations:

a 2F1 (a, b; c; z) _ (ab) 2Fi(a + 1, b + 1; c + I; z)
az c

and

2F 1 (a, b; c; z)=(lZ)-a-b+c 2 F1(c - a, c - b; c; z),

(3.51)

(3.52)

fE1 becomes:

32737777
E1(i,) = - 1mr- 2F1 if, rI; 1 - i(;9 ( exp(27() - 1 i Xo)

x 2 F 1 I - ira, -ik; 1 + i(; +exp(i #) 2 F1 1 - ing, -in7; 1 - i(;
X0 X0

+7j # 1g}, (3.53)

where

# = 2arg[F(i()F(i77)/F(iqf)] + (In|Xol. (3.54)

3.3.2 Collisional excitation reaction rate

Consider a two component non-neutral plasma mixture of atomic ions and molec-

ular ions with the densities nA and nM(j, TR), respectively. Assuming that both

species are in translational thermal equilibrium described by a Maxwell-Boltzmann

distribution with a translational temperature TT, the reaction rate per unit volume

k(j -+ j', TT, TR) for the collisional transition j -+ j' is given by [TF79, SB73, DF81]:



k(j -+j',TTTR) = nAnM(j, TR) BT ]2 "(v, -+ j')veXp( 2kBTT) 3

(3.55)

where if is the relative speed of the atomic ions to the molecular ions. The molecular

ion internal (rotational) and external (translational) degrees of freedom are not neces-

sarily in thermal equilibrium, hence their characteristic temperatures are taken to be

different. Since the reaction cross section is independent of the absolute orientation

of the relative speed, the transition rate per molecular ion y(j -+ j', TT) initially in

the rotational state j becomes [Jac72, PM79, FT01]:

/ 3/2 ( mov 2

T(j -+ j',TT) = 4 7nA (2,rkBTT J j+ j)v 3 exp 2kBTT) dv, (3.56)

where the velocity integration interval still must be defined. A typical surface elec-

trode ion trap has a trap depth of ~ 6000 K (- 0.5 eV), while a Doppler cooled

trapped ion cloud has a temperature of - 1 K. Thus the velocity upper limit of in-

tegration can be extended to the infinity. The lower velocity limit depends on which

direction the energy is transferred during the collision: for j < j' there is a threshold

velocity

/h2[j'(j' + 1) - j(j + 1)]Vo= moIM + (3.57)
'MOIM+

below which the reaction cannot proceed, and for the case j > j' the system gains

translational energy so the initial relative velocity can be zero. The de-excitation

transition rate can be readily calculated from the excitation transition rate, as they

are related by the detailed-balance equation [DF81]:

(2j + 1)7(j -+ j + 1, TT) = (2j + 3)-y(j + 1 -+ j, TT)exp 2B(j + 1) (3.58)
kBTT



where B is the rotational constant of the molecular ion.

Consider a mixed ion cloud of SSr+ and SSSr 3 5Cl+ with a translational temper-

ature TT = 1 K and with an atomic ion density nA = 1.25 x 1014 m 3 (a 20 pum

separation between ions). The collisional transition rates per molecular ion are:

yol(0 - 1) = 1.73 x 107 Hz and ycoll(1 - 0) = 7.92 x 106 Hz. For compari-

son in a 10 K cryogenic environment the black body radiation induced transitions

rates are: YBB(O - 1) = 9.75 x 10-6 Hz and YBB(1 - 0) = 3.25 x 10-6 Hz, while

the spontaneous transition rate is yp(l -+ 0) = 1.03 x 10~ 7 Hz. With these results, I

estimate the internal and external molecular ion temperature equilibration time to be

of the order of - 1/ycou ~ 100 ns, which means the two temperatures can be taken

to be equal.

3.3.3 Collisional enhanced heating rate

Here I examine the effect of an applied microwave field on the rotational population

distribution of the molecular ions. We take the microwave radiation to be liner

polarized along S direction with an angular frequency wM comparable with the j =

0 + j = 1 rotational transition frequency of SSSr 3 Cl+, and to have an electric

field amplitude EM. To model the microwave field - molecular ions - atomic ions

system, we make the following simplifying assumptions: 1.) only electric dipole

transitions are allowed, i.e. j -+ j ± 1, 2.) the magnetic sublevels of the same

rotational level are degenerated, 3.) the atomic ions are considered to be an infinite

heat reservoir with a constant temperature TT , and 3.) neglect the black body

and vacuum radiation induced transitions compared with the collisional transition

rates. In order to write the optical Bloch equations, we remark that the S linear

polarized microwave field links only the m = 0 ++ m' = 0 rotational sublevels, and

the collisional transition rates between rotational sublevels are given by Eq. (3.56)

multiplied with their transition probabilities computed from Eq. (3.34) (Fig. 3-

5). Since the evolution of all coherences except for nol, are neither influenced by

the microwave field nor connected to the evolution of the populations, we do not

write them explicitly. With the observation that the populations of the degenerated
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Figure 3-5: Transition probabilities between the magnetic sublevels of the rotational
levels j=O, 1, and 2.

magnetic sublevels for each rotational level j > 2 can be summed in one population

per level, the optical Bloch equations are [CTDRG92, CKK08]:
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+ Y n223

-coil +7coil+0 0 i 0
+ i woirin -'h 2 ri01

Coil Yoil
d0 Q cos(wM t) (1n - oo) - i w0 1 n 0 ~Yio 2

__ =- ( 1 C , nj colc,jnj-,j-1 3 01,jnj+1,j+1 j
dt ^6- - + ^ rijj + '- 1 ri- C + 1 j

where Q = p (Y00 |i - s|Y 10) EM/h is the Rabi frequency, w01 is the j = 1 ++ j = 0

angular transition frequency, and nT, are the populations and coherences of the rota-

= cos(wM t) ( 1
1 1 + n 1 + n1) - -y 00 oo (3.59a)

(3.59b)

(3.59c)

(3-59d)

(3.59e)

(3.59f)

(3-59g)



tional sublevels/levels (the magnetic number for j = 0 level is not shown). Introducing

a new set of variables by switching to a rotating frame:

nii = nil

nyj = njj

n = nexp (-iwMt)

"= niexp (10t), (3.60)

and making use of the rotating wave approximation, Eqs. (3.59) become:

i( 0o - +ol) + 0 (il + ii1 + nn) - 7col- (3.61a)
dt 2 (

+ ± coll Coll

1 - ( o _ '712 11Til +oo + - h22 (3 61b)dt 3 3

d 0 coil coil
_____ __ _Y 2Co 721

11 (1 (ho 1 c 11 + Yoll oo1  + 22 (3.61c)

coll coil
1 7 ± 1712 1 il + oo ~ n22 (3.61d)

di~1  .Q coi +'7coill-
1_ 1 - hoo) - 1 AM - 1o, (3.61e)dt 2 0

d 0 coil _ 7 "col

1 (ii 1  noo) + i AMn 10 - 2 1110

dtji Col 0ol '71o+ll -0h +,j , (3.61g)

dt = jj~ + ('7 ~ .+ l~) h + '7ji,j 1 1 , j1 + '7jjiTiiii I 36g

where Am - - wo1 is the detuning between the microwave radiation frequency and

rotational transition frequency. Since we are interested in the steady state populations

of the rotational states, we set the time derivatives in Eqs. (3.61) to zero, and solve the

remaining system of linear equations. In order to reduce the infinite set of equations

to a finite set, we proceed as follows. From Eq. (3.59g) and the detailed balance

relation Eq. (3.58), we note that at steady state, the populations for rotational levels

with j > 1 remain in thermal equilibrium:



+ +1 exp Bj(j+)
njj 2j+1 - kr

nil 3 exp _ B
(3.62)

and making use of the definition of the partition function for the rigid rotator at

temperature TT, we obtain:

Z(TT) =(2 +1)exp -

= 1±3exp - B )
(kB T

Bj(J+1)
kBTT )

1
+ - 3 exp -

2B

kBTT

_2

z:njj, (3.63)

coll

- (Z1(T)-1) nn.

oo

Z njj= 1-noo,
j=1

Eq. (46) becomes:

coll

noo = -L
'Yoiol

Thus the infinite set of equations Eqs.

(3.66). Solving for noo and nil yields:

noo =

nil =

(Z (TT) - 1) nii, (3.66)

(3.61g) are replaced by one equation Eq.

(3.67a)

(3.67b)

with

But since

o

Enjj
j=1

(3.64)

(3.65)

1 + 2 (Z (TT) - 1) P1001+

10

1 + 21o~ (Z (TT) - 1) P10-YO1



3 KS + 78" 2 -8(36"
P10 = KS + 7 +I (3.68a)

r, r+ ,coillr c+ coil10i ' 10Y1
37[Col + -Ycol

K = ci (3.68b)
'YiO +12

S= .+ + ) (3.68c)
4AM2 + (0col -i ll + ' Y8) 2

Since the populations of rotational levels with j > 1 remain in thermal equilibrium

with the ion cloud, the rate per molecular ion at which the microwave radiation energy

is transferred to the atomic - molecular ion plasma as translational energy is given

by:

RH = hW01 ( coil oi), (3.69)

or using Eqs. (3.67):

P10o1 - orRH = 00l co11 (3.70)
1+ (Z (TT) - 1) Pio

The direction of energy transfer is determined by the sign of Plo y[1 /7t'y - 1, where

Piol C[/7oll is the population inversion between j = 0 and j = 1 rotational levels in

the presence of the microwave field.

3.3.4 Numerical evaluation of collisional enhanced heating

rates

As an example, consider a plasma of SSSr+ and 88Sr 35Cl+ with an atomic ion density

nA = 1.25 x 1014 m- 3 (a 20 pm separation between ions). We take the microwave radi-

ation to have an angular frequency WM equal with the j = 0 ++ j = 1 rotational tran-

sition frequency of 8 Sr 35Cl+, and to have an electric field amplitude EM = 1500 V/m

(which is easily attainable in a surface electrode ion trap with integrated CPW mi-

crowave transmission line). With this field amplitude the Rabi frequency becomes

Q = p (Yoo In - | Y1) EM/h = 2.68 x 108 Hz. Under these assumptions the popu-
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Figure 3-6: Population inversion as function of the ion cloud temperature, in the
presence of microwave radiation tuned to resonance with the j = 0 < j = 1 transition
(AM = 0). The other parameters are as in text: EM = 1500 V/m, nA = 1.25 x

1014 m- 3.

lation inversion between j = 0 and j = 1 rotational levels in the presence of the

microwave field is presented in Figure 3-6, while the rate per molecular ion at which

the microwave radiation energy is transferred to the atomic - molecular ion plasma

as translational energy is shown in Figure 3-7 (see Appendix B for details).

For the actual experiment, it is required to know the maximum microwave fre-

quency step at which the microwave - rotational transition resonance needs to be

scanned with. Since the rotational transition frequency is not known exactly, it is

necessary to set the scan step to be less or equal to half of the full width at half

maximum (FWHM) of the rotational transition frequency. For the case in which the

SrCl+ is trapped in an ion cloud the transition FWHM has three components: the

natural width, the collisional width, and the Doppler width. The natural width was

shown previously to have a value of 7,p(l -a 0) = 1.03 x 10- Hz. The other two

widths are temperature dependent, and for an ion cloud temperature TT = 1 K the

collisional width becomes -+(1 - 0) = 7.92 x 106 Hz, while the Doppler width has

a value of 7TDoppler = 2.8 x 103 Hz. Thus, the microwave frequency scan step should

be set to AvMw,step , 4 x 106 Hz.
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Figure 3-7: Heating rate per molecular ion as function of the ion cloud temperature,
in the presence of microwave radiation tuned to resonance with the j = 0 -+ j = 1
transition (AM = 0). The other parameters are as in text: Em = 1500 V/m, nA =
1.25 x 1014 n-3.

3.4 Cavity assisted microwave heating

In this section, I derive the side band microwave cavity assisted heating rates for a

system of one molecular ion and one atomic ion (Figure 3-8). The heating or cool-

ing mechanisms are similar with those involved in assisted laser cooling techniques

for atoms trapped in optical cavities [CLZ95, HHG+97, VCB01]. The molecular and

atomic ions are co-trapped in a RF ion trap in the presence of a microwave cav-

ity. The first rotational transition of the molecular ion is pumped on the first red

motional sideband, while the microwave cavity is tuned to the natural rotational

transition frequency (Figure 3-9). This section is divided in three main parts. The

first two parts present preliminary result necessary for the actual derivation of the

heating rates: in the first part, I review the quantized motion of the two co-trapped

ions [Jam98, MECZ99], while in the second part, I compute the quantized electro-

magnetic normal modes for a CPW microwave cavity [BHW+04, RGRSO9] necessary

in the determination of the molecular vacuum Rabi frequency. In the final part, I de-

rive the side band microwave cavity assisted heating rates based on a density matrix



approach [ADD+06, WRLZ08].

mixed ion crystal
/MW cavity field

Figure 3-8: Schematic of the cavity assisted microwave heating experiment. An ion
crystal composed of one Sr+ ion and one SrCl+ ion is trapped in a surface electrode
ion trap above a CPW microwave cavity.
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Figure 3-9: Overview of side band microwave cavity assisted heating for a system of
one molecular ion and one atomic ion. The molecular and atomic ions are co-trapped
in a RF ion trap in Lamb-Dicke regime and in the presence of a microwave cavity. The
first rotational transition of the molecular ion is pumped on the first red motional
sideband, while the microwave cavity is tuned to the natural rotational transition
frequency. In the presence of the microwave cavity the spontaneous decay rate of the
molecular excited rotational state is enhanced by the Purcell effect.

3.4.1 Normal modes of a one dimensional harmonic ion trap

Let us consider a system of one atomic ion and one molecular ion confined together

by a one dimensional harmonic (parabolic) electric potential. We define a system of

Wtrap

lJ = 1)|n - 1)wW"



Figure 3-10: System of right-handed cartesian coordinates for analyzing the normal
modes of a one dimensional harmonic ion trap. The ion motion is confined to y axis
only, and the microwave field is directed along the z axis.

right-handed cartesian coordinates such that the axis of the planar trap lies along

the y direction and the normal to the trap surface lies along the z direction (the x

direction is automatically defined by the rule 1 = Q x .) (see Figure 3-10). Assuming

that the confining potential has a minimum at y = 0, without loss of generality it can

be written as:

4(Y) = a 2 . (3.71)

With this definition for the confining electric potential, the Lagrangian of the ion trap

and ions is [GPS01]:

2 2 2mAYA2 mMYM2 a 2 a 2 e2 1
E = ± - e-ya - e-- -YM, (3.72)2 2 2 2 4Fco |yy y(37

where the subscripts A and M stand for the atomic ion coordinates and molecular ion

coordinates, respectively. Since we are interested in the small amplitude motion of

the ions around their equilibrium positions, we need to determine these equilibrium

positions by minimizing the potential energy in the Lagrangian L with respect to YA

and yM:

V (yA, yM) = eayA + e (M 2 =0, (3.73a)ByA 4rE0 (yM - yA 0

V (YA, YM) = eaym YMY 0 (3.73b)
ayM 4xE0o (yM -yA)2

YA YM



where we assumed that yM > YA. Solving the system of equations (3.73), we obtain:

YMeq -- YAeq = Yo = ( (3.74)) 1/3
167eoa)

Let us define a new set of coordinates for the ions (small amplitude motion):

YA -Yo + (A,|(Al < Yo,

YM Yo + (M, M < yo.

(3.75a)

(3.75b)

Expanding the potential energy to the second order in (A,M (by the definition of

equilibrium the first order expansion is zero), the Lagrangian (3.72) becomes:

MAA1 mMnM 2 2+

2 2
(3-76)

where the constant energy terms were neglected. The Lagrangian (3.76) can be

written in a matriceal form by defining a displacement vector:

(3.77)

a mass matrix:

mA

0
(3.78)

0

mM

and an elastic constant matrix:

yielding:

In order to determine the normal modes I(), it is necessary to find a time independent

2ea

-ea

-ea

2ea
(3.79)

) 2 ((JKl). (3.80)

A

M

1L
2 I ~



matrix T

|() = TI(), (3.81)

such that TtMT = I and T t KT is diagonal [GPSO1I]. The matrix T can be formed

from the eigenvectors |v) of the following eigensystem:

Kjv) = w2 Mlv), (3.82)

where the eigenvectors are normalized such that:

(vj Mjv3 ) = ij.

Solving the eigensystem (3.82), we obtain the following eigenvalues:

WBMCM
2  ea

where M is the total mass of the ions, p is the reduced mass of the ions, and

the subscripts BM and CM stand for the breathing mode and center of mass

respectively. The corresponding eigenvectors are:

(3.83)

(3.84)

where

mode,

IVBM) =M K +

1

|VCM ) M
wih a+ (1 i

with a = ma/mM. With

1+a
2

la 2

1+ a
2

+ a2-a+1)

T = I VBM) , vCM)) ,

(3.85a)
1

1-a - a2 - a+

1-a + /a-2 - a+1

(3.85b)

and

(3-86)



( = BM (387)
CM

the Lagrangian (3.76) becomes:

(BM2 (CM2 CBM2(BM2 WCM2(CM2
L = + -(3.88)

2 2 2 2

The Hamiltonian associated with the Lagrangian (3.88) is:

7FBM
2  7rCM

2  WBM2(BM2 WCM2(CM2

2 2 2 + 2 (3.89)

where iri are the canonical conjugate momenta to (i. Using the canonical quantization

the quantum Hamiltonian of the ion trap - ions system becomes [MECZ99, VMD06,

Jam98, ICZ10]:

S=hwji atai + ,) (3.90)
i=BM,CM

where al and ai are the usual rising and lowering operators:

a = - i (3.91a)

a= (j + i 2 7ri, (3.91b)
2h 2hwj

satisfying the commutation relation ai, a4 = 1. In terms of quantized normal modes

the absolute displacements of the atomic and molecular ions are:

i=BM,CM
YAUM o+ =cM(0) 2 (' 392a)

YM - YO + =BcM(Vi)2 r 2w T + ai(3.92b)
i=BM,CM

As an example let us consider a Sr+ ion and a SrCl+ ion trapped at a motional

temperature of 500 mK. The ions are assumed to have a center of mass mode secular



frequency of WOcM = 27r MHz, and a breathing mode secular frequency of WBM =

2-r x 1.78 MHz. Under these assumptions the maximal displacements for the atomic

ion and molecular ion are (A,max = 2.6 pim and =,ma= 1.8 pm, respectively.

3.4.2 Circuit QED description of CPW microwave resonator

A lossless microwave resonator formed from a CPW transmission line of finite length

L much larger than its transversal dimensions, can be modeled as a one dimensional

circuit described by the following classical Hamiltonian [SvdWCL04, DGS07]:

H = -L21j (x, t)2 + -V(x, t)2 dx, (3.93)
_L/222

where I and c are the CPW inductance and capacitance, respectively, per unit length,

and where j(x, t) and v(x, t) are the local current and voltage, respectively. From the

charge conservation law and Faraday's law equations [Jac99]:

Bv(x, t) 18j(x, t)
(3.94a)at c ax

v(x, t) - Bj(x, t) (3.94b)
ax at '

we obtain a set of wave equations which describe the current j(x, t) and voltage v(x, t)

behavior in the microwave resonator:

82j(x, t) 1 02j(x, t) ) (3.95a)
ax2  U2 t2 '

82v(x, t) 1 02 v(x, t)
0, (3.95b)

Ox 2  U2  8t 2

with u = 1 /vIc being the phase velocity. Since the boundary conditions are ex-

pressed in terms of the current it is preferably to solve first the current equation

(3a) and then use the set of equations (3.94) to determine the microwave resonator

voltage. Using the separation of variables method on the current equation (3.95a):

a 2R(x) 1 82T(t)
R(x)x 2 = -k 2 j(x, t) = R(x)T(t) (3.96)



and the relation (3.94b)the solutions for the current and voltage become:

jk(X, t) = Tk(t) [Akeikx + Bke-ikx] , (3.97a)

Vk(X, ) =j1Tk(t) [Akeikx - Bke ikx (3.97b)

The time dependence was not explicitly displayed as it is not necessary in the following

calculations. The wavevector k and the integration constants A and B are determined

from the boundary conditions, which require that there be no current flow at the

microwave resonator ends:

jk = i ) t) 0. (3.98)

Applying the condition (3.98) on the current solution, we obtain:

7F
k =n-, n E Z, (3.99a)

Bn= -(-1)"An, (3.99b)

and the general solutions:

j(x, t) = Ti(t) sin (n x) + T,(t) cos (nri.x) , (3.100a)
n>2, even n>1, odd

v(x, t) = - n(t) cos (n X) + in Tn(t) sin (n Lx), (3.100b)
n>2, even n>1, odd

where the constants An were absorbed in the definition of Tn. With the solutions as

in Eqs. (3.100) the classical Hamiltonian becomes:

Ll ET Ll in(t)2
H = - Tn(t)2 + (k ) 2. (3.101)

n>1 n>1

By defining the canonical conjugate variables:



Li Tn M
qn=L

2 Wn,

p =) , i n = ukn= n-- 
= 2 on L

the Hamiltonian (3.101) takes the form of a set of harmonic oscillators:

H = 2

n>1

(3.102a)

(3.102b)

(3.103)

The Hamiltonian (3.103) can be easily quantized by introducing the bosonic creation

and annihilation operators [BHW+04, SBC+11, RGRS09]:

at =qn

an = q2hwn

a. q-

+ iPn,

r 1 2hWnp~l

(3.104a)

(3.104b)

with [an, amn] =nm. With the help of relations (3.102) and (3.104) the quantized

voltage becomes:

v(x,t) = i E
n>2,even

cos (n x) (an - al )-iZ h
n;>1,odd L

sin (nx) (an - at).

(3.105)

In the case in which the microwave resonator is embedded between two semi-infinite

CPW transmission lines, where the couplings can be modeled as two capacitors of

capacitance Co, it was shown (Ch. 2) that the discrete wavevectors are given by the

following non-linear equations:

Co-k = cotan
c

C
- k = -tan
C

' L)

2)

odd modes,

even modes.

Although the algebraic expression for the current and voltage remain the same as in

(3.106a)

(3.106b)

+ n 2" 2).



Eqs. (3.100) (with the new set of wavevectors), the trigonometric functions appearing

in Eqs. (3.100) no longer form a complete set over the length of the microwave

resonator, and as such the Hamiltonian cannot be diagonalized exactly anymore.

3.4.3 Quantum Hamiltonian for a system of one molecular

ion and one atomic ion co-trapped in the presence of a

microwave cavity

In the presence of a microwave cavity and an applied microwave field the Hamilto-

nian describing the evolution of the trapped atomic and molecular ions is [ADD+06,

WRLZ08, RZ07]:

Rt =ttrap +'Hrotationai + Wcavity + ftrap-dipole + Rcavity-dipole + Rmicrowave--dipole- (3.107)

In the following, we will show that the ntrap-dipole interaction term can be neglected

due to the ion trap and microwave cavity geometry. 7 itrap-dipole is produced by the

interaction of the electric field at the molecular ion location due to the small displace-

ments of the ions from their equilibrium positions and the permanent electric dipole

of the molecular ion. The last two interaction terms 7Hcavity-dipole and fmicrowave-dipole

are due to the coupling of the vacuum cavity field and applied microwave field to the

molecular electric dipole. With our particular choice of coordinates the trap electric

field is oriented along y axis and the cavity/microwave fields are aligned along the z

(although the exact orientation is irrelevant, only the relative orientation of the fields

is important). Choosing the quantization axis along the z direction and assuming

that the j = 1 magnetic sublevels are degenerated the relevant rotational levels are:

g) = |IY) , (3.108a)

le) = e_1|IYc1) + eo l Y,o ) + e+ 1|Y1+1)0 (3.108b)



From Eq. (3.22) the matrix elements for the electric dipole electric - field interaction

are proportional to:

Ptrap c (el P (ii .) g), (3.109a)

/Icavity/MW CX (e I P1 (i - ) g), (3.109b)

where i is the direction of the molecular permanent electric dipole. Making use of

the spherical harmonics addition theorem the transition matrix elements become:

Ptrap E K Y1mY1,m ) 1g) c (el YmYi,m(O = r/2, = /2) 1g)
(m=-1 (M=-1

oc Ke (Y * 1 + Yi 1 ) g) (C e- KY,-1i Y 1 |g) + e+1 Y,+IY1 11g) , (3.110a)

1 1

Pcavity/Mw oc (e Y mYi,m M | OC (Cl Ylm 1,M(6 = 0, #).|g)
m=-1 m=-1

~c ( e I(Y1*O) I|g ) o~c eo ( Yi,o l Y*O Ilg ) , (3.110b)

which shows that the two orthogonal electric fields couple the ground state to two

orthogonal subspaces of the excited state. Thus transitions between j = 0 and

j = 1, n = ±1 can be mediated only by transitions in the ion trap phonon num-

ber. But given that the discrepancy between the phonon frequency and microwave

frequency is 4 orders of magnitude such transitions are energy forbidden, which

was also experimentally confirmed [BJD06, KRS07]. Based on these observation the

Hilbert space of the molecular internal degrees of freedom becomes a two dimensional

space composed from the Ij = 0, m = 0) and lj = 1, m = 0) states. With the ap-

plied microwave field described as a classical field with the frequency WMw and with

rotating wave approximation the Hamiltonian (3.107) becomes:



hA hQ (yM)
S=hwia a' - -z + h (Ac - A) c c + hg (yM) (u+c +JC+1 22

i=BM,CM
(3.111)

where Q (yM) is the Rabi frequency of the applied microwave field, g (yM) is the

coupling of the cavity vacuum field to the molecular electric dipole, ct and c are

the rising and lowering operators of the cavity field, A = WWw - 0 is the detuning

between the applied microwave field and microwave transition frequency, and Ac =

wc - wo is the detuning between cavity and molecular transition frequency. Since

the displacement of the molecular ion from the equilibrium position is in hundreds of

nanometers range, while the wavelengths of the standing applied microwave field and

vacuum cavity field are in the centimeter range (Lamb-Dicke regime), both the Rabi

frequency and the cavity coupling constant can be expanded to the first order in the

molecular ion position [Jam98, MECZ99]:

Q (yM) = Q0 cos (kMwyM + ) Q0 cos(4) - Qo sin(O)kMWyM, (3.112a)

g (YM) go cos (kcyM + 0) 2 g cos() - go sin(O)kcyM. (3.112b)

Since both the zeroth and the first order terms are important in the cavity assisted

heating (or cooling) a suitable choice for the wave phase is # = r/4.

3.4.4 Microwave cavity assisted side band heating rates

The evolution of the trapped atomic ion and molecular ion coupled to the microwave

cavity field system is given by the density matrix p(t), described by the following

master equation [CBZP92]:

= (p) = z[W, p] + Cth p), (3.113)

where Lth(p) describes the coupling of the microwave cavity to the black body radi-



ation of the environment [Car93, Sac84, CRZ91]:

Lth(P) = K (nth + 1) L[c](p) + KnthL [ct] (p), (3.114)

with L [c] (p) = 2cpct - pctc - cfcp, and where K is the microwave cavity decay rate

and where nth is the mean number of photons at the cavity frequency and temper-

ature T, nth = 1 exp -i1]. The couplings of the molecular levels to other

modes than cavity modes were neglected as the natural life time of the excited levels

is of the order of 10' s. The subsequent analysis follows the one presented in refer-

ence [WRLZ08], with the difference that here two ionic external degrees of freedom

are present. To proceed further, we separate the Liouville operator (3.113) in three

components [CBZP92, MNP+06, WRLZ08]:

L = Lm + Lc + Eg, (3.115)

where the first term LM describes the uncoupled dynamics of the molecular ion:

hA hQ (YM)
Lm(p) = h ' p] =m hwiaa a2 -2 az + 2 o, (3.116)

i=BM,CM

where the second term Ic describes the dynamics of the cavity coupled to the black

body radiation:

Ec(p) = - [h (Ac - A) ctc, p] + Lth(P), (3.117)

and where the last term Lg describes the coupling between cavity mode and molecule:

Lg(p) = [- g (yu) (o-+C + o Ci) ,p] . (3.118)

In the weak coupling regime K > g the system relaxes into the state p(t) ~pM (t) pac,

where pc is the cavity equilibrium density operator defined as:



Lc (PC) = 0. (3.119)

Following references [Zwa64, CBZP92], we introduce the projection operators:

Pp = Trc{p} 9 Pc, (3.120a)

(3.120b)Q= 1-P,

with the following properties:

PLm = IJMP,

cPLc =LcP = 0,

PLgP = 0,

P2 p, 2 = Q.

Making the notations:

Pp(t) = v(t), Qp(t) = w(t), (3.122)

and applying the Laplace transform to the equation of motion (3.113), we obtain the

following set of equations:

si(s) - v(O) = 1 MV(S) + PRg'CV(s), (3.123a)

(3.123b)sfv(s) - w(0) = (LM + Lc + Q g) 7tb(s) + Q~gfv(s),

where f(s) = fo' f(t)e-"t dt. Solving the system of equations (3.123) for s(s), and

inverting back to time domain with the help of the convolution theorem, we obtain

an equation of motion which involves only the molecular degrees of freedom:

(3.121a)

(3.121b)

(3.121c)

(3.121d)



pM (t) = -- M, pM C T g j e(LM±LC Qige-mr [pm(t) pM pC] (1

(3.124)

with pM(t) = Trc{Pp(t)}. Inserting the definitions of Lm, 1C and Eg in (3.124)

and using the quantum regression theorem [Swa81, GZ04], we obtain the following

effective molecular master equation [WRLZ08]:

PM - -- [N, pM]+ Rnth + 1) (TpMS' - StTpM) + nth (TtpuSt - STtpM) + h.c.],

(3.125)

where we made the notations:

S = g (YM) or, S(t) = eitSe-i"Mt, T = ei( c-)Te-T/ 2 S(--)d. (3.126)

In the Lamb-Dicke regime the internal and external molecular degrees of freedom

interact weakly, which allows to use the same procedure as for the cavity mode to

adiabatically eliminate the molecular internal degrees of freedom. Expanding Q (yM)

and g (yM) to the first order in Lamb-Dicke parameters yields:

Q (yM) + 1 r/Mw,i (c + i (3.127a)
i=BM,CM

g (yM) - g 1+ Z 7C,i (ac + ai)] (3.127b)
i=BM,CM .

with

h
Q = Q0 cos q)Q0 sin() kmwyo, 77mw,i = Qo sin () kmw(Vi)2 2w , (3.128a)



g = go cos(c) - go sin(<)kcyo, TC,i = -go sin(<)kc (vi) 2 / g. (3.128b)

To the same order approximation the operator T defined in Eq. (3.126) becomes:

T ~ g E_
i=BM,CM

E+ (-wi) at)] (3.129)

where

E±(w) = eiw(c-)-eT/ 2 -±(-T)d, Ei = E(0) (3.130)

and

.hA
a±(t) = e It ,±e IIt = 2 az

hQ
+ 2 Ox. (3.131)

Using the properties of Pauli matrices the exponentials appearing in Eq. (3.131) can

be expanded as:

e-iIt =eCos ( lt) -Lor], Q1 = \/Q2 +A 2

Using the above relation the integral in Eq. (3.130) can be evaluated yielding:

E_(w) = C_ (w)a_ + C+(w)a+ + Cz(w)Oz, E+(w) = E_ (-w), (3.133)

where the coefficients C(w) are defined as:

4Q12

1
C+(w) = 4Q12

2 Q2

K/2 - i (w - Ag)

2 Q2

K/ 2 - i (w - Ag)

(A + pQ1 )2 1

E

K/2 - i (w - (Ag + pQ1))

Q2

K/2 - i (w - (Ag + pQ1))

(3.134a)

(3.134b)

(3.132)

TIC'i (E - (wi) ai +

I + i sin oz



Q1

C (w) =
-2A + (A + pQ1 )

K/2 -- i (o - Ag) K/2 - i (oj - (Ag + pQi))
(3.134c)

where Ag = Ac - A. The molecular master equation (3.125) expanded up to second

order in Lamb-Dicke parameters becomes:

pM(t) _ (0 + , + C2) pM(t). (3.135)

The zeroth order term Lo is:

CO = CE + LI (3-136)

where LE represents the uncoupled dynamics of the molecular external degrees of

freedom:

hitai, PM ,
.

(3.137)

and where L, represents the uncoupled effective dynamics of the molecular internal

degrees of freedom:

LIPM [-I, PM] + 92 (nth + 1) -PMC+ -

+g 2rnth [Z+PMU- - U-Z+PM + h.c.].

The first order C1 and second order 2 terms are given by:

U+E-PM + h.c.]

(3.138)

EEPM h
.i=BM,CM



i1PM = -- /MWi TX
i=BM,CM

+g2 (nth +

+ [z-PM

92nth
i=BM,CM

BM,CM

c4 + ai)] +h.c.

T/C,i { [(E+ (wi) a2

ai + E- (-wi) ai) PM, 0+

+ E+ (-wi) c4) PM, a-

+ [E+PM, - (a + ai)

and

L2PM =

92 (nth 1 +
i=BM,CM

r/C,i [(Eiwi)ai+E (-wi) a$) PM, o+ (a' + ai)]

+g2n5th r/C,i { [(
i=BM,CM

(Pi) ai + E (-') a!) PM, a- a + ai + h.c. .

(3.140)

Proceeding as before, we define the projection operator:

Pp (PM) = Tri {pM} pI, (3.141)

where Lo (p') = 0, and obtain the following effective master equation for the molecular

external degrees of freedom p(t) = Trj {PupM(t)}:

[p(t) 9 po] d-r + Tr1 {P, 2
[p(t) o po] }, (3.142)

Using the definitions of L 1 ,2 the master equation (3.142) takes the form:

+ h.c. (3.139)

+ h.c.}

p(t) = Tr1 P{ fi e Qui

(a +ai ,PM]

C' I (- Wi



A = A (w2) L [ai] (p(t)) + A+ (wi) L [at] (,(t)) (3.143)
i=BM,CM

The coefficients A± (wi) are defined as:

A± (wi) = SQ (T-i) + Sg (T-w) + S, (-pwi), (3.144)

where

SQ (p) = (0MW'i Q) 2 Re j Trj { xe~o (0zp-PI) } eiwi-rdT, (3.145)

Sg (oi) = 2 (rc,ig) 2Re {(nth + 1) (u±Z- (wi)) 1 + nth (9-E+ (Wi)) 1}, (3.146)

S1 (±i) = 2Re Tr {KI (eot Ks (p))} e±iwir dr - Su (±wi), (3.147)

with the superoperator KC defined as:

Ks(P) = -Z-?-7/MW,iUXP + r7c,ig2 (nth + 1) [a-PE+ + E- (+wi) Pc+

-o+E- (±w) p - U+E-P

+r/c,ig 2th [0-+PE- + E+ (±Wi) Po-

-o-E+ (±wi) P - E+p] . (3.148)

In order to solve the three terms appearing in the expansion (3.144) it is necessary

to determine the time evolution of the molecular internal degrees of freedom po as

described by Eq. (3.138). In order to simplify the notation in the following, we

introduce a set of new constants. First, we define:



C_ = C_ (0), C+ = C+(0), Cz = Cz(0).

With the above notations, we introduce a set of energy shifts:

6 = -g 2 (2nth + 1) Im [C,

64 = 62 = g2 (2nth + 1) Im [C+],

(3.150a)

(3.150b)

a set of decay rates:

y = 2g2Re [C_],

hn = 2g2 (2nth + 1) Re [C_] 1,

-x = 7y = 29 2 (2nth + 1) Re [C+],

IT = -2g 2 Re [Cz] ,

(3.151a)

(3.151b)

(3.151c)

(3.151d)

(3.151e)Py = 2g 2 Im [Cz] ,

and a set of effective Rabi frequencies:

QX = 2g2 (2 nth + 1) Re [Cz]

Q9 = 2g2 (2nth + 1) IM [Cz].

(3.152a)

(3.152b)

With the constants introduced in Eqs. (3.149-3.152) the Bloch equations describing

the effective dynamics of the molecular internal degrees of freedom take the form:

(3.153)K2) = A (0) + F,

where

(3.149)



A+ 6-i- 6o

C-Yn±+Yy) -
2

Q-+FQY -7

FX\

FY (3.154)

,,Y

Expression (3.145) can be evaluated with the help of quantum regression theorem,

which after integration becomes:

1 . (io( X)o +So (O) =(r/MW,iQ) 2Re2 R F(OrX)O)] (3.155)

Using Eq. (3.154), in the resolved side band limit the expressions (3.155) and (3.146)

become:

St (G) = (qMW,i 
± 20

4P=+1, 0,-1
p2 p

(wI -p ) 2 + ap2/ 4
(3.156)

Sg (w) (r/c,ig) 2 sin2  , (nth + 1) 2

4 (P 2/4 + (ug- Ag) 2

+(rjC,jg) 
2

+ 4Q1
2

(77,ig) 2

4Q 1
2

p=+ 1

+ Kfnth
K2 /4+ (L, + Ag) 2

[(A + pq 1 ) 2Peo + Q2 e 2 (K rth + 1) 2
ee PeeK 2 / 4+ (Lij - (Ag+ Q)

[(A + pQ1 ) 2P0 -
92 -]KnthK2 / 4 + (u-i + (Ag + pQ1 )) 2

(3.157)

where we introduced further simplifying notations defined below:

0 =nth + 1 0 0
P 2nth + 1 Pee

nth
2Tth + 1

Pee 2 (2rth + 1) (A 2 + Q1
2 ) '

sin p = Q /Q1

(-Yn -YX)
2

Ory

(3. 158a)

(3.158b)

,A =

W (1, 0, 0) - (iwi + A)



7± = 7n (2 + sin 2 )/ 2, 'Yo = N (2 - sin2 p)/ 2,

, = cos 2 p + (1 + pl Ccos |)2-
2 (2nth + 1) (1 + cOS2 0

The evolution of the phonon number in the mode i = CM, BM is determined from

the master equation (3.143), and it takes the form [CBZP92, Ste86, ZM05]:

(hi) = [A+ (wi) - A_ (wi)] (ni) + A+ (wi). (3.159)

3.4.5 Numerical evaluation of cavity assisted side band heat-

ing rates

0.6 .
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Figure 3-11: Center of mass mode and breathing mode phonon numbers time evolu-
tion constant [A+ (wi) - A_ (wi)] as function of the applied microwave field frequency.
Negative values signify cooling, while positive values indicate heating. Physical pa-
rameters of the trap are provided in text.

Here I analyze a possible scenario for the realization of the microwave cavity

assisted side band heating experiment. As an example let us consider a Sr+ ion and

a SrCl+ ion trapped 10 pm above a 50 Q microwave resonator with a quality factor

of Q = 106. We assume an environment temperature of 500 mK, which sets the

ground and excited state initial populations to nj=o,m=o = 0.28 and nj=1,m=o = 0.15.

(3.158c)

(3.158d)



The first rotational transition of the molecular ion is driven by a microwave field

of 1500 V/m, while the cavity is tuned at resonance with the transition frequency

Ac = 0. The ions are assumed to have a separation of 4 pm and a center of mass

mode secular frequency of WcM = 27r MHz, and a breathing mode secular frequency of

WBM - 27r x 1.78 MHz. In figure 3-11 I show the value of the proportionality constant

[A+ (wi) - A_ (w2)] which determines the cooling or heating rate, as a function of the

applied microwave field frequency (see Appendix C for details). As in the case of the

collisional assisted heating, it is of experimental importance to know the FWHM of the

resonances for the center of mass and breathing modes. For the physical parameters

considered here, the two resonance widths are AvCM = 13.6 kHz and AVBM = 14.7

kHz.



Chapter 4

Experimental Apparatus

Two of the main elements required for the experiments presented here are the super-

conducting microwave resonator and a source of molecular ions. And since invariably

the superconducting regime involves cryogenic temperatures, I have to develop an

ion trapping system compatible with the cryogenic environment. The components

and the particular requirements necessary to build a cryogenic ion trapping system

are presented in first part of this chapter, while in the second I describe a cryogenic

compatible atomic and molecular ion source based on a laser ablation method.

There are a number of cryostat designs such as bath, closed cycle and flow

cryostats. The simplest design is the bath cryostat, consisting of a vacuum enclosure

and thermally insulated reservoirs of liquid cryogens. Several other cryogenic ion traps

based on bath cryostats were successfully operated in previous experiments. A cryo-

genic linear RF ion trap for trapping .99Hg+ was built by the NIST ion storage group

and used as a frequency standard [PBIW96]. A similar system was employed by Okada

et al. for studying the Bohr-Weisskopf effect in unstable Be+ isotopes [OWN+01].

The cryogenic system I present here is based on a closed cycle cryostat, in which

the cryogenic refrigerant is continuously cooled in an external heat exchanger. To

my knowledge this is the first cryogenic ion trap system built around a closed cycle

cryostat.



4.1 Experimental Setup

A good cryogenic ion trapping system must present some of the same characteris-

tics as a room temperature system such as high vacuum and an easy method for ion

loading. A low temperature system also brings new benefits like the suppression of

electrical noise and a faster turnaround time. On the other hand, the cryogenic sys-

tems present few challenges which are not present in the room temperature systems.

The cryogenic systems have a limited thermal load capacity, thus special attention

must be paid to reduce the heat loads from radiation, conduction and internal heat

sources. Specifically, for the cryogenic ion traps, connection wires with low thermal

conductivity are required and they have to be heat-sunk at each temperature stage

of the cryostat. In the case of the surface-electrode ion trap due to the dielectric RF

dissipation in the trap substrate the trap must be carefully thermally anchored to

the 4.2 K substrate. Another problem that must be addressed with the closed cycle

cryostats due to their principle of operation, is the damping of vibration.

4.1.1 The closed cycle cryostat

The closed cycle cryostat system (Figure 4-1) is constructed around a low vibration

cryostat produced by Advanced Research Systems (Model GMX-20B). The cryocooler

is based on a two-stage Gifford-McMahon thermal cycle, where typically the first stage

can reach a temperature of 40 K at 35 W heat load, and the second stage can reach

a temperature of 4.2 K at 0.8 W load. The cryocooler expander head of the cryostat

is mechanically decoupled from sample holder tip and vacuum chamber around it.

The cavity formed between the expander and sample holder (and a rubber bellow) is

filled with ultra high purity helium (99.999 %) at 1.5 atm pressure through which the

heat exchange takes place. The cryostat interface comes with an 8 inch conflat (CF)

flange and the UHV chamber is built by attaching a full CF nipple, a spherical octagon

(Kimball Physics, Model MCF800-S02000800-A) and an 4 inch glass viewport. The

experiment chamber is made from an OFHC cooper tube attached to the 4.2 K cold

tip. The cold tip and the experiment chamber are surrounded by a custom made
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Figure 4-1: Principal components used in the design of the cryostat system. The
fluorescence light is collected through the bottom viewport.



Figure 4-2: Schematic cross section through the closed cycle cryostat. The imaging
optics anchored onto 4 K radiation shield is exposed directly to the 300 K radiation
from the bottom viewport. (Not to scale)



Figure 4-3: View of the closed cycle cryostat working chamber. The rest of visible
components are described in Figure 4-2.

radiation shield attached to the 40 K stage of the cryostat (Figure 4-2). Only the

room temperature outer chamber is vacuum sealed, with the inner chambers non-

hermetically closed. The temperatures of the 4.2 K and 40 K stages are monitored

with two silicon diodes (LakeShore, DT-670A-SD).

The cryocooler expander head contains a valve that is actuated by the signal sent

from a helium compressor, and which allows the high pressure helium to expand at a

rate of about 2 Hz. Since the cryocooler expander head is mechanically decoupled from

the cryostat sample interface, it must be supported such that the vibration transfer to

the cryostat interface is minimized. In our setup, we chose to place the cryostat on an

optical table with the cryocooler expander head supported independently by a holder

anchored to the ceiling. But even with this setup, some amount of vibration energy

produced by the vertical movement of the expansion valve is transferred between

the expander and sample holder through the helium used as heat exchanger between

them. In order to measure vertical vibration amplitude of the sample tip, we built a



Michelson interferometer by placing a mirror on the sample tip and a beam splitter

and the second mirror on the supporting optical table, and used the light provided by

the 422 nm laser. During the operation of the cryocooler compressor, we found that

the maximum vertical displacement of the cold tip was below 106 nm (one quarter of

an interference fringe). A typical vibration power spectrum of the cold tip is shown

in Figure 4-4. The 2 Hz repetition rate of the expansion cycle can be observed in

Figure 4-4 inset.
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Figure 4-4: Vibration power spectrum of the closed cycle cryostat sample holder. The
vibration power spectrum was measured with the cryostat compressor turned off (gray
curve) and on (black curve). The inset shows the lower part of the spectrum where
the fundamental and higher harmonics of the cryocooler expander head vibration can
be distinguished. The spectrum has 2.5 kHz bandwidth and 0.17 Hz resolution.

4.1.2 Trapping potentials delivery components

The ion trap and its pcb carrier are inserted into a socket that is thermally anchored

to the 4.2 K cold tip through an OFHC copper pedestal (Figure 4-5), and through

which electrical connections are made to the socket. In order to limit the heat conduc-



tion DC bias potentials are applied to the trap through 36AWG phosphorus-bronze

wires (Lakeshore, WSL-36-500). The RF voltage generated by a function generator

and amplified by a quarter-wavelength helical resonator [Der86, DWC96, Fis76] is de-

livered to the trap through a 20 AWG silver coated copper wire. To heatsink the heat

conducted by the wires between the three temperature stages, the wires are wrapped

around copper posts mounted on the 40 K cooling stage heatshield and on the 4.2 K

baseplate.

1 Cm

Figure 4-5: Ion trap carrier ensemble. To insure good thermal contact the unused
pins of the socket are soldered to the copper plate base. The pedestal is mounted
directly on to 4.2 K baseplate.

4.1.3 Microwave source

The microwave source and delivery components are shown schematically in Figure 4-

6. The microwave signal produced by an analog signal generator (Agilent N5183A, 100

kHz - 40 GHz, 1 W max. output) is passed though a broad band microwave amplifier

(Quinstar QPJ-06183630, 6 GHz - 18 GHz, 32 dB gain, 4 W max. output) and

then fed through a DC block (Minicircuits BLK-18-S+) into the cryostat microwave

coaxial cables. In order to protect the signal generator from any reflected signal a

broad band isolator (Raditek RADI-2-18, 2 GHz- 18 GHz, 15 dB isolation) is inserted

between it and the microwave amplifier.
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Figure 4-6: Diagram of the main components involved in the production and delivery
of the microwave signal to the ion trap. All the elements present in the setup have
50 Q characteristic impedances.
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Because of the cryogenic environment the delivery of the microwave signal from

the 300 K shield to the 4 K stage of the cryostat becomes a complex problem. On

the one hand, the microwave transmission lines should have low electrical losses so

that little microwave radiation is converted into heat and on the other hand they

should have very low thermal conductivity in order not to overload the cryostat with

the conducted heat. These two requirements are difficult to satisfy in general since

for the most materials the electrical and thermal conductivities are proportional. For

this setup, I selected to build the input and output microwave transmission lines from

a set of coaxial cables with properties alternating between the previous mentioned

requirements. Between the three temperature stages of the cryostat, I chose to use

as thermal breaks two 9 cim coaxial cables of low thermal/electrical conductivity

with both core and shield made out of stainless steel (Microstock UT-34-SS-SS, 33.23

dB/m loss A 10GHz, 70 pW/K thermal conductance). In order to heatsink the heat

conducted through the short coaxial cables and also to insure good thermal contact

between the inner conductor of the microwave cables to the cooling stages, another

two 89.7 cm long coaxial cables with high thermal/electrical conductivity (Microstock

UT-85C, copper core - copper shield, 2.23 dB/m loss @ 10GHz) were tightly wrapped

around the 40 K and 4 K shields (Figure 4-7).

4.1.4 Imaging optics

To allow for laser access to the trap, a set of three 2.75 inch viewports are attached on

the side of the spherical octagon. The access through the 40 K and 4.2 K heat shields

is provided by six 1 inch BK7 windows (Thorlabs, WG11050), with three windows

mounted on each shield. The imaging of the ions is done through the bottom 4 inch

viewport. The light scattered by the trapped ions is collected and collimated by

an aspheric lens (Edmund Optics, NT49-100, 22.50 mm EFL, f/1.50). The aspheric

lens was chosen such that it had a good light collection and it can be positioned

far enough from the trap so that the electrostatic charges on it do not affect the

ions. The collimated light is focused outside the cryostat by a 75 mm plano-convex

lens. Both lenses are mounted in 1 inch Thorlabs cage mount which can slide on four



Figure 4-7: For good thermal contact the copper-copper microwave coaxial cables are
tightly wrapped around a) 40 K shield and b) 4 K stage of the cryostat.
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Figure 4-8: Imaging setup schematic. The fluorescence signal is collected by an
aspheric lens placed at 22.5 mm from the ions. The focused light is dived by a 30/70
beam splitter and collected by a CCD camera and a photon counting PMT.



posts attached to the bottom plate of the cryostat second stage chamber (Figure 4-2).

Although there is a mismatch in the thermal expansion coefficients between the lenses

and cage mount, the lenses have survived hundreds of cool down cycles. The light

outside the cryostat is collimated by two lenses, a 75 mm and a 150 mm achromatic

doublet, and then passed thought a notch filter (Semrock, FFO1-427/10-25, > 98

% transmission at 422 nm) in order to reduce the stray light scatter. The focused

light is divided by 30/70 beam splitter with 30 % of the light being directed to a

CCD camera (SBIG, ST-402ME), while the other 70 % of the light being directed to

photon counting PMT (Hamamatsu H7360-02) (Figure 4-8). The expected photon

counter efficiency at 400 nm is 20 %, resulting in overall theoretical photon detection

efficiency of 1 %. The entire imaging system has a 7.5x magnification and provides

a theoretical resolution of 1.2 pm.

4.1.5 Laser systems

The energy levels of SSSr+ and the transitions used to conduct the experiments re-

ported here were shown in Chapter 2 (Fig. 3-1). The Si/ 2 ++Pi/2 transition is used

for Doppler cooling the trapped ions and is driven by a 422 nm laser with 20 pW

power focused to a 33 pm spot size. The Pi/ 2 state has a probability of 1 in 13 to

decay to the metastable D3/2 level. To avoid the depopulation of the Doppler cooling

transition, we use a 1091 nm repumping laser with 50 pW power focused to a 100

pum spot size. The light necessary to drive these transitions is produced from two

external cavity diode lasers [LRB+07, RWE+95]. The laser diode is mounted on a

temperature stabilized baseplate, and current (50 - 100 mA) is passed through it to

produce laser radiation. An external cavity is formed by using a diffraction grating

to reflect a portion of the radiation back into the diode and provide optical feedback.

The grating also allows for additional tuning of the laser frequency. After leaving

the grating, the laser beam passes through an optical isolator, which prevents the

light reflected from various optical elements to provide unintended optical feedback

to the laser diode. The output laser beam is coupled into a single-mode optical fiber

through mode-matching lenses and delivered at the experimental setup.
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Figure 4-9: Detailed chart with the heat loads on the two cooling stages of the closed
cycle cryostat.
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4.1.6 Vacuum system and heat load

The ultra high vacuum in cryogenic systems can be obtained because of the cryosorp-

tion of residual gas molecules on the cold surfaces, even in the presence of materials

not compatible with room temperature UHV systems. To attain the UHV envi-

ronment the cryostat is first pumped with a turbomolecular pump to 5 x 10- torr

measured by an inverted magnetron pressure gauge attached at the pump inlet. In

the second stage the cryostat vacuum chamber is isolated from the turbomolecular

pump and the cool down process is started, while the pumping is continued by a small

ion pump attached directly to the spherical octagon. The cooling of the cryostat takes

4 hours, with the cold stage reaching a final temperature of 13 K and the pressure at

the ion pump getting to 3 x 10- torr, although the pressure at the ion trap location

is expected to be much lower due to the cryosorption and cryotrapping [GPQ+95].

The computed heat load from radiation and conduction to the second stage cold tip

is about 2.6 W (see Figure 4-9 for the various sources of heat). The calculated heat

load and measured temperature agrees well with cryostat heat load map supplied

by the manufacturer (Figures 4-10 and 4-9). The highest heat loads on the 4.2 K

stage come from the 300 K radiation absorbed by the exposed lenses assembly and

from heat conduction through the RF wire (total combined power of - 2.5 W). For

comparison, the thermally unloaded cold tip reaches 4.2 K after 2 hours of cooling.

4.2 Atomic and molecular ion production through

laser ablation

In our system, we successfully tested few of the ion loading methods available in room

temperature systems. For atomic ion production, we tested the following methods:

neutral atoms obtained from a resistively heated oven were ionized by impact with

electrons emitted by an e-gun or through laser photoionization [BLW+07, KP09], and

the ions were directly produced by laser ablation of a solid target [HMO+06, LCL+07]

or indirectly by photoionization of the neutrals inside the ablation plume [HGH+07];
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Figure 4-10: Temperature vs. heat load for the two stages of ARS GMX-20B cry-
ocooler (provided by the manufacturer).
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while for molecular ion production, we tried the following methods: ions were again di-

rectly produced by laser ablation, or trapped Sr ions were reacted with chlorinated or-

ganic compounds leaked into the experimental chamber [ROZS08, WBG+08, DG99].

For our experiments, we chose the laser ablation loading method as it has some ad-

vantages compared with the other loading methods. During the ion loading from an

oven, the heat production is of the order of hundreds of Joules, but in comparison a

single ablation pulse of 1.5 mJ can load our trap. If the ion trap were operated in

a cryostat which could reach temperatures in the milikelvin range, the system would

likely not be able to handle the dissipated heat from an oven. We also found that the

in situ chemical reaction method has a major drawback as the reacting compound

leaked into the cryogenic environment condenses on all optical surfaces making them

opaque. But the main benefit of laser ablation is that it can produce atomic and

molecular ions from materials with very high melting temperature.

ablation
targets

2 cm spot size

ion trap 0.5 mm

500 mm
focusing
lens

Nd:YAG
355 nm sm

5 ns pulses mirror

L7 mJ/pulse t

Figure 4-11: The light produced by a frequency tripled Nd:YAG laser is focused to a
0.5 mm spot size onto the ablation targets.

The mechanism of ion trapping from the ablation plume was described by Hashimoto

et al. [HMO+06]. The fast electrons from the ablation plume arrive first to the trap

and cancel the RF voltage applied to the trap, thus allowing the slower moving ions

to enter the trapping region even if their kinetic energy is lower than the trap well

depth. To produce the ablation plume, we use a Q-switched Nd:YAG laser (Con-
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Figure 4-12: Example of a set of three ablation targets: (from left to right) SrCl2
compressed powder, 0.5 mm thick SrTiO3 crystal, 1 mm thick SrTiO3 crystal. The
ablation targets are bonded to the copper carrier with cyanoacrylate based adhesive.

tinuum Electro-Optics, Minilite II), which produces a maximum energy in its third

harmonic (355 nm) of 8 mJ per pulse. The pulse duration is around 5 ns. The YAG

beam is steered by a high-energy mirror (CVI Laser, Y3-1025-45-P). The energy loss

in optics is around 1 mJ, thus the maximum energy delivered to the target is 7 mJ

as measured with a pyroelectric meter. The beam is focused onto the ablation target

to spot size of 0.5 mm. Because metallic "8Sr easily oxidizes in open atmosphere a

single crystal of SrTiO 3 (MTI Crystal, STOa1OO505S1) placed 20 mm from the cen-

ter of the trap (Figures 4-11 and 4-12) is used as source for atomic ions. Molecular

ions together with atomic ions are produced by ablating a small SrCl2 target. The

SrCl2 pellet (Figure 4-12) used for ablation is made in house by sinterization of com-

pressed anhydrous SrCl 2 powder (Alfa Aesar 12202, 95 % purity) at 300 'C under

open atmosphere for one hour. SrCl2 is a hygroscopic substance and it reacts with

the atmospheric moisture to form a hexahydrate SrCl2-6H 20 below 61 'C ambient

temperature [MPG+00]. Experimentally, I found that the laser ablation of hydrated

SrCl2 does not produce ions, thus making the drying process an essential step for the

target preparation. Although the SrCl2 target is capable of producing both the atomic

and molecular ions, the SrTiO 3 target is a more reliable source of ions [LCL+07] and

102



we still utilize it for characterization of new trap designs.
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Chapter 5

The ion traps

The previous chapter described the infrastructure necessary for ion trapping, while

this chapter aims to present the main component of the ion trapping: the surface

electrode ion trap with integrated coplanar microwave waveguide. The development

of the experimentally suitable trap geometry was an iterative process in which various

trap designs were tested and abandoned as functional flaws were discovered. The

beginning of the chapter is a review of the trap designs, I evaluated prior deciding

on the final trap geometry. The surface electrode ion trap with integrated coplanar

microwave waveguide is presented in detailed in the remaining part of the chapter.

5.1 3D ion traps

The purpose of the traps described in this section was to investigate the feasibility of

integrating slot and strip line microwave waveguides with planar ion traps. Because

of the geometry of these two types of microwave waveguides, the resulting ion traps

became three dimensional structures. The ion traps were built by patterning the

copper electrodes on printed circuit boards. As substrate, we chose to use 20 mil

thick Rogers R04350B laminate given its low loss tangent at microwave frequencies.
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Figure 5-1: Example of a two layer ion trap with integrated microwave slot line. The
copper electrodes are patterned on a 20 mil thick Rogers R04350B laminate. The
distance between the RF/MW electrodes is 0.8 mm, and the two electrode layers are
separated by a 0.127 mm thick PTFE spacer.

5.1.1 Slot line ion trap (Azkaban traps)

The slot line ion trap (Figure 5-1) has a two layer structure. The top layer contains

the 0.8 mm wide microwave slot line and the main ion trap electrodes. In the example

presented here, the bottom layer is separated from the top one by a 0.127 mm thick

PTFE spacer and contains another set of three DC electrodes which aid in ion con-

finement. The spacing between the two layers determines the ion position along the

normal to the ion trap plane and, as such, the ion position can be adjusted at will.

The microwave slot lines supports two modes of operation: the even mode where both

halves of the line are driven in phase and which requires a ground plane electrode as

return path for the current, and the odd mode where only a half of the line is driven

with the other half acting as current return and making a third ground electrode re-

dundant (but not forbidden). In the even operation mode the two RF electrodes act

as microwave electrodes, so the RF and MW fields have an identical space distribu-

tion. Given the fact that the ions are trapped at the point where the RF field vanish,

in the even mode the microwave field necessarily vanish too at the ion location. This

leaves only the odd mode as the suitable mode operation for the microwave slot line.

For this trap geometry the ions are trapped at 70 tm above the top layer surface.

With the following voltages applied on the trap electrodes (as identified in Figure 5-
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Figure 5-2: Slot line ion trap geometry and the numerically simulated trapping pseu-
dopotential. The red dot marks the trapped ions location.

2): DC1 = -79 V, DC2= 0 V, DC3 = 0 V, DC4 = 92 V, RF = 400 V A 10 MHz,

the ion trap has a trap depth of 0.75 eV (see Figure 5-3). Although this ion trap ge-

ometry was successful in confining atomic and molecular ions (Figure 5-4), the main

difficulty I encountered was the delivery of the radio frequency and microwave fields

on the same electrodes. The filter used in order to prevent the cross talk between the

two signal sources, presented an additional load for the step up RF helical resonator

which limited the maximum RF field delivered at the ion trap below the required

value.

5.1.2 Strip line ion trap (plate and wire)

The strip line ion trap is another two layer ion trap design. This geometry eliminates

the problem encounter in the slot line ion trap by keeping the ion trap electrodes

separated from the microwave transmission line.

The top layer contains only a rectangular shaped microwave electrode, while the

bottom layer contains the ion trap (Figure 5-5). In order to allow for the trapped

ions imaging the microwave electrode includes a pinhole, which size (0.8 x 1.2 mm) is

matched to the numerical aperture of the imaging system. The microwave electrode

width and the separation between layers are determined by the wanted characteristic
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Figure 5-3: Cross section through the trapping pseudopotential for the slot line ion
trap. The contours represent equipotential surfaces with their values indicated in
units of eV. The red dot marks the trapped ions location.

Figure 5-4: Example of a "8Sr+ ion chain trapped in the slot line ion trap. The third
ion from the left is non-fluorescent (dark ion). The mean separation between ions is
~ 10 pm.

impedance of the transmission line (in this case 50 Q for 1.58 mm separation and

7 mm line width). The numerical modeling (Figure 5-6) of the ion trap predicts

that the ions are trapped at 0.65 mm above the trap surface (bottom layer) at a

trap depth of 0.92 eV (for DC1 = -150 V, DC2 = 150 V, DC3 = 0 V, DC4 =

0 V, DC5 = 90 V, MW(DC) = 0 V, RF = 500 V @ 10 MHz). With this trap design,

we found it quite difficult to align the imaging pinhole to the trapped ions location,

which determined us to employ a modified type of microwave strip line. In the new

design, we replaced the rectangular microwave electrode with a 1 mm diameter silver

rod placed at 1 mm from the ion trap layer (Figure 5-7). To insure maximum light
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Figure 5-5: Ion trap with integrated rectangular microwave strip line: a) the bottom
layer containing the ion trap electrodes, and b) the ion trap with the transmission
line installed.

collection the ion trap plane was tilted at 30' from the imaging axis (Figure 5-8).

From the numerical modeling of the the ion trap with integrated cylindrical microwave

transmission line the ions were expected to be trapped at 0.49 mm above the ion trap

surface at a trap depth of 3.52 eV (for DC1 = -11 V, DC2 = 15 V, DC3 =

0 V, DC4 = 15 V, DC5 = 15 V, MW(DC) = 0 V, RF = 400 V A 8 MHz). But

even with the modified microwave electrode geometry, we could not confirm that our

strip line ion trap design can successfully confine atomic or molecular ions.

5.2 Nb surface electrode ion traps with supercon-

ducting CPW resonator (Giants traps)

One prerequisite for the success of the experiments presented here is the presence of

a superconducting microwave resonator integrated into the ion trap geometry. The

3D traps described in the previous section have, beside the issues already presented,

one more limitation regarding the thermal transfer efficiency which can be achieved

between the microwave line and cryostat cooling stage. By design, in all the two

layer ion traps the microwave transmission lines cannot make direct contact with the

cooling substrate, restricting the accessible thermal contact points to the outside of

the trap area. Thus, it becomes apparent that a new design is necessary, in which
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Figure 5-6: Ion trap with integrated rectangular microwave strip line geometry and
the numerically modeled trapping pseudopotential. The red dot marks the trapped
ions location.

the ion trap and the microwave line share the same substrate.

5.2.1 Trap geometry

The new design is based on the "standard" surface electrode ion trap [SHO+06,

LGA+08, SCR+06], where all the trap electrodes lay in one single plane as shown in

Figure 5-9. In this geometry, the central DC electrode together with the two lateral

RF electrodes naturally form a coplanar waveguide structure (CPW), which can be

used for microwave radiation delivery. As discussed in Chapter 2, the CPW line can be

easily transformed into a resonator by placing two capacitor gaps in the transmission

line at the appropriate locations for a given radiation frequency [FWS+05, BGW+07,

WHW+09]. (The capacitor gaps are the easiest structures to implement, but any

other type of impedance discontinuity in the transmission line will act as radiation

mirrors.) With just capacitor gaps the CPW resonator presents to the ions a floating

DC potential, but the situation can be fixed by placing a DC source at one of the

cavity standing wave nodes.
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Figure 5-7: Geometry of the ion trap with integrated cylindrical microwave transmis-
sion line and the numerically modeled trapping pseudopotential. The red dot marks
the trapped ions location.

5.2.2 Trap design and trapping properties

There are five parameters which determine the characteristic impedance of a mi-

crowave CPW: substrate thickness and its electric permittivity, metallization thick-

ness, central CPW electrode width and its spacing to the the two ground planes (or

RF electrodes) between which is embedded. In practice, as discussed in the next

section, the first three parameters are set by the chosen fabrication method. If an ion

trap is built with a transmission line its characteristic impedance must be matched

to the delivery coaxial cables impedance (50 Q in this case) [HWR+09], in which case

the last two parameters become dependent. Alternatively, if a microwave cavity is

used the last two parameters remain independent as the cavity impedance can be

chosen at will. The next step of the trap design is to optimize the RF and DC elec-

trodes geometry within the constraints imposed by the microwave CPW, such that

the ion trap meets a certain set of performance goals: maximum trapping poten-

tial depth, maximum trap stability (have trap q ~ 0.2 + 0.3 and trap a ~ 0), and

maximum microwave electric field at the trapped ions location. Once the entire ion

trap geometry is establish, its trapping properties can be modeled numerically. A full

three-dimensional numerical simulation is a time consuming process, but fortunately

the problem has a mathematical approximation in which the optimal ion trap geome-
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Figure 5-8: Ion trap with integrated cylindrical microwave transmission line. A 1
mm diameter silver rod placed 1 mm above the ion trap acts as microwave electrode.
The ion trap is mounted such that the plane of the trap makes a 30' angle with the
imaging axis.

try can be estimated in few minutes. The approximation is based on the observation

that a finite area conductor kept at potential V embedded in a infinite grounded

flat plane in otherwise empty space, produces a potential <D (r) proportional with the

solid angle subtended at the observation point r' by the electrode area a, i.e.:

<D ( V) = 0 Qa () (5.1)
27r

The proof of relation (5.1) is based on the Green's second identity applied to Laplace

equation with Dirichlet boundary conditions, and it can be found in a number of

publications [OM01, Wes08]. Equation (5.1) is an exact result. The approximation

comes into play when the ion trap electrodes are assumed to be embedded in a infinite

grounded flat plane, so that equation (5.1) can be applied to them. From relation

(5.1), we also see that the approximation becomes excellent when the height at which

the ions are trapped is small compared with the entire trap linear dimension, and when

the gaps between electrodes are small compared with the electrodes lateral extent.

Usually, the surface electrode ion traps satisfy the first condition adequately. Our ion

traps fulfill the second condition well, but generally it depends on the specific ion trap

design. The main trapping properties are set by the RF electrodes and the central
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Figure 5-9: A surface electrode ion trap with integrated microwave coplanar waveg-
uide. In this example the ion trap contains eleven DC control electrodes and two
RF trapping electrodes. In order to allow for cooling lasers access the ends of the
microwave transmission line are displaced from the ion trap longitudinal axis.

CPW electrode, which allows us to neglect the presence of the DC electrodes in our

approximation. We can make one more simplification by considering the remaining

electrodes infinitely long (compared with the trapped ions height), with the final

trap geometry shown in Figure 5-10. Under these assumptions the main trapping

parameters can be expressed in close analytical form:

Zion= v , (5.2a)

eVRF 2  4bc(c - b)2  (5.2b)
4 MionWRF2 7-2 (b + C)2 (2bc + bc(b +C)2)

8 eVRF (c - b)
qtrap = 2 (5.2c)

7rMionwJRF (b +C) 2, , b

4a
EMw/ion = VMW 7r(a 2  4 (5.2d)

In Figure 5-11 I show a Nb surface electrode ion trap with integrated microwave CPW

transmission line which was successfully operated (Figure 5-12). The trap geometry

was optimized with the approximate method previously described, and its trapping

properties obtained from the numerical modeling are presented in Figure 5-13 and

Figure 5-14 (for DC1 = -6 V, DC2 = 0 V, DC3 = 5 V, DC4 = 0 V, MW =
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Figure 5-10: Simplified geometry for the surface electrode ion trap. The letters
indicate the dimensions used in computing the approximate solution.

Figure 5-11: Example of Nb surface electrode ion trap with integrated microwave
CPW transmission line. The ion trap electrodes are identified in Figure 5-9. The
gaps between electrodes are 25 pLm wide, the RF electrodes are 0.7 mm wide, and the
central CPW electrode is 0.6 mm wide.

1 V, RF = 250 V ( 7.22 MHz).

Also in Table 5.1, I compare the results obtained from the numerical modeling with

those obtained from the approximation method. Except for the trap depth which

the approximation method underestimates by 25 %, all the other results are in an

excellent agreement.

5.2.3 Trap fabrication and packaging

All our niobium based surface electrode ion traps are fabricated in house through

standard photolithographic methods. As electrode substrate, we use 0.5 mm thick

c-cut single crystal sapphire (ALC50DO5C2, MTI Corporation) given its low dielec-
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Figure 5-12: Chain of five "8Sr+ ions trapped in the Nb surface electrode ion trap
with integrated microwave CPW transmission line. The mean separation between
ions is pm.
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Figure 5-13: Geometry and trapping pseudopotential for the Nb surface electrode
ion trap with integrated microwave CPW transmission line. The red dot marks the
trapped ions location.

Table 5.1: Comparison between the trapping parameters obtained from full the nu-
merical modeling and from the approximate method.

Trap parameter Numerical modeling Approximate method
Ion height (mm) 0.58 0.57
Trap depth (eV) 0.20 0.15
Trap q parameter 0.22 0.23

Microwave electric field (kV/m)1  460 466
'At 1 V amplitude microwave signal applied on the CPW electrode.
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Figure 5-14: Nb surface electrode ion trap x0z cross sections for: a) pseudopotential,
and b) microwave electric field absolute value. The microwave electric field is orthog-
onal to the lines of constant value. The red dot marks the trapped ions location.

tric loss tangent and high thermal conductivity at low temperatures. The niobium

layer is deposited on the sapphire substrate by DC sputtering. The metallic layer is

limited at 200 nm thickness in order to prevent the sputtering target from getting

shorted to ground. The ion trap electrodes are patterned with a Heidelberg puPG

101 micro pattern generator, and exposed by a final etch. The ion trap is glued

with a cyanoacrylate based adhesive on a custom made carrier (Figure 5-15). The

carrier acts as breakout box for the various electrical signals necessary to drive the

ion trap. It is necessary to use a trap carrier since the microwave SMA end launchers

(142-0761-871, Emerson/Johnson ) cannot be mounted directly to the trap. The con-

nections between the trap electrodes and the trap carrier are made with aluminium

wirebonds (Figure 5-15)(the more common gold wire does not bond to niobium). The

trap carrier is fabricated from the same materials (2 oz copper on 20 mil thick Rogers

R04350B laminate) as the 3D ion traps described earlier.

5.2.4 Trap issues: ablation charging and electrode arcing

There are two main issues which affect the surface electrode ion traps operations:

one is due to the ion loading method I employ, and the second one is due to the ion
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Figure 5-15: a) Ion trap carrier with the microwave end launchers installed. The ion
trap chip is glued to the central white area of the carrier. b) Detail of the wirebond
connections between the ion trap and carrier CPW transmission lines.

trap fabrication. The charges produced during laser ablation strike the surface of the

exposed dielectric between electrodes, where they remain trapped for long periods of

time (and more so at cryogenic temperatures). The electric field produced by these

dielectric charges disrupts the trapping potential leaving the ion trap non operational.

I measured (Figure 5-16) that one 7 mJ ablation pulse directed at a SrTiO3 target

placed 2 cm away from the ion trap center delivers at the trap location a charge

density of 4.38 x 10-10 C/mm2. At this charge density an exposed dielectric area

of 1 mm 2 can produce a maximum electric field of about 16 MV/m; for comparison

the maximum RF electric field in a typical surface electrode ion trap is around 1

MV/m. There are two methods to mitigate the dielectric charging problem: decrease

the number of charges produced during the laser ablation by reducing the laser energy

used, and decrease the exposed dielectric area by narrowing the electrode gaps. But

as we will see, the second method exacerbates the issue due to the trap fabrication.

The etching process used for trap fabrication leaves rough edges on the niobium

electrodes. Depending on the electrical field intensity present and on the radius of

curvature of these sharp points they can become electron emission sources (Figure 5-

17). The arcing between the trap electrodes negatively impacts the ion trap operation

in two aspects: it physically damages the ion trap (Figure 5-18), and it disrupts the

trapping potential.
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Figure 5-16: Current density delivered at the trap location by a 7 mJ ablation pulse
directed at a SrTiO3 target placed 2 cm away from the ion trap center.

In general the roughness of the electrodes edges can be improved by annealing,

but because of the high melting temperature of the niobium (2750 K) the method is

impractical in this case. The other option is to reduce the electrical field intensity

between the trap electrodes by increasing the dividing gaps span. Initially, in order

to reduce the dielectric charging, the ion traps were fabricated with 10 Am gaps, but

because of electrode arcing they were impossible to operate. By trial and error, I

found that 25 Am wide gaps and rounded electrode corners (Figure 5-19) gave us the

least problems with the electrode arcing and dielectric charging issues.

5.3 Trapping and detection of molecular ions

The ion confinement in an RF ion trap involves two distinct processes: the initial

ion trapping itself, and the subsequent ion cooling. When the ions are produced

outside the trapping region, depending on their initial kinetic energy, the ions are

either reflected from the trapping barrier or pass through the conservative trapping

potential. Therefore, it is necessary to have a mechanism through which the ions

with lower kinetic energy than the trap depth are able to penetrate the into the
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Figure 5-17: Arcing between the niobium electrodes of the ion trap. The gaps between
the electrodes are 10 pm wide, and they are kept at a potential difference of 250 V.

Figure 5-18: Electron microscope images of the electrodes damaged by arcing in the
10 pm gap ion traps: a) on the straight edges of the electrodes, b) at the electrodes,
corners.

trapping region. In the case of laser ablation method such a mechanism is provided

by the electrons generated together with the ions as it was described in more detail

in Section 4.2. The trapped ions through the process called RF heating can absorb

energy from field during multibody Coulomb collisions [PWM+91, RZS05], and they

need to be actively cooled in order to maintain their temperature below the trapping

potential. Since the atomic ions 88Sr+ have closed electronic transitions they can

be laser cooled as shown in Section 3.1. On the other hand, the molecular ions

SrCl+ are cooled indirectly through the Coulomb interactions with the atomic ions

(sympathetic cooling) [OZW+06, BWO2, RBD+06]. From the standard plasma theory
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Figure 5-19: New ion trap design with 25 pm electrode gaps and rounded electrode
corners with 5 pm radius of curvature.

of non-neutral plasmas, the thermalization time between the two species of ions is

given by [GR95]:

2mam kBTA kBTM 3/2

r = (4MrAo) jM) (53)

where the subscripts A and M stand for atomic ions and molecular ions, respectively,

and where the temperatures represent the initial temperatures of the two species of

ions. For example, in the case of our surface electrode ion traps this thermalization

time is of the order of few milliseconds. The trapped ion species can be identified

using resonant secular excitation. As shown in Chapter 2, the trapped ions execute

secular oscillatory motions along the three principal axes of the trapping pseudopo-

tential. In the case of axial motion (along the RF electrodes), since the confinement

is provided mainly by the applied DC potentials, the axial secular frequency is re-

lated to the ion charge to mass ratio in a particularly simple way vaxial oc Q. The

expressions for the other two radial secular motions are bit more involved, since the

radial pseudopotential itself depends on the ion charge to mass ratio. By applying

a small exterior AC "tickle" voltage to one of the trap DC electrodes, any of the

ion secular motions can be selectively excited and thus heating up the ion cloud or

crystal [ZRSO2, BWO2, CGD+10]. The change in temperature of the trapped ions

is determined by monitoring the laser induced fluorescence rate, which in Chapter 3
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was shown to be related to the ions temperature by (Voigt profile):
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Figure 5-20: Mass spectroscopy spectra obtained from axial secular excitation of ion
clouds trapped in the Nb surface electrode ion traps. Top: spectrum is obtained from
a cloud which contains only Sr+ atomic ions; Bottom: spectrum is acquired from an
ion cloud containing a mixture of Sr+ atomic ions and SrCl+ molecular ions. The
experimental ratio of the two axial frequencies is (VSr+ / vsrC1+) exp = 1.18 ± 0.07, which
is in very good agreement with the theoretical ratio (vsr+ /vsrC1+) th = 1.18. Both scans
were done from low to high frequencies. The fluorescence signal increases after the
ejection of the SrCl+ molecular ions because the temperature of the remaining Sr+
atomic ions falls bellow the temperature of the initial mixed ion cloud.
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where I'D veg 2kB TA is the Doppler width of the atomic ions. Although theD C VMA4

temperature of the molecular ions cannot be monitored directly during the secular

excitation, due to the fast thermalization (Eq. (5.3)) with the co-trapped atomic ions,

the same atomic fluorescence can be used to determine the molecular ions secular

frequency. In Figure 5-20, I show two typical mass spectroscopy spectra obtained

from axial secular excitation of ion clouds trapped in the Nb surface electrode ion

traps. The top spectrum is obtained from a cloud which contains only Sr+ atomic

ions, while the bottom one is acquired from an ion cloud containing a mixture of

Sr+ atomic ions and SrCl+ molecular ions. The ratio of the two axial frequencies

as obtained experimentally is (vsr+/vsrC+) exp = 1.18 ± 0.07, which is in very good

agreement with the theoretical ratio (vSr+/VsrC1+) th = 1.18. For both species of ions

the excitation voltage amplitude (1 V) was high enough to rise the ions temperature

above the trap depth and eject them outside the trap. The rise in fluorescence signal

after the ejection of the SrCl+ molecular ions is due to the decrease in the temperature

of the remaining Sr+ atomic ions.

If the cooling laser frequency is swept around the atomic transition frequency, the

florescence profile as modified by the Doppler effect (Eq. (5.4)) allows one to extract

the ion cloud temperature [JHB04, MD00]. Once the laser frequency moves above

the atomic transition frequency, the laser action switches from cooling to heating

the atomic ions. As such, only the lower frequency part of the laser scan provides

information about the ion cloud temperature. Figure 5-21 shows the fluorescence

signal of an ion cloud containing a mixture of Sr+ atomic ions and SrCl+ molecular

ions, as the cooling laser frequency is swept across the atomic ion transition frequency.

By fitting a Voigt profile (Eq. (5.4)) through the experimentally obtained data points,

the temperature of the mixed species ion cloud is determined to be approximately 5.8

K.

With the laser ablation method, we were able to trap other molecular ion species
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Figure 5-21: Fluorescence signal versus cooling laser frequency acquired from an ion
cloud containing a mixture of Sr+ atomic ions and SrCl+ molecular ions. Black
dots: experimental data points; Blue curve: fitted Voigt profile (Eq. (5.4)). The
temperature of the ion cloud is approximately 5.8 K.
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10 mm
Figure 5-22: Example of Bastille surface electrode ion trap built by patterning the
copper electrodes on 20 mil thick Rogers R04350B laminate.

beside SrCl+. From the SrClO 3 crystal ablation target, we produced TiO+, TiO+, and

SrO+ molecular ions, which were subsequently successfully trapped them in a simple

cryogenic surface electrode RF ion trap design containing no integrated microwave

transmission line (Bastille trap series). Similarly to the slot line and strip line ion

traps, the Bastille ion trap was built by patterning its copper electrodes on 20 mil

thick Rogers R04350B laminate (Figure 5-22). Its characteristics are described in

more detail in reference [LCL+07]. The Bastille ion trap is capable of reaching trap

depths of 1.5 eV, although for the molecular ion loading test it was operated at 0.75

eV only.

The axial secular oscillatory motion of the trapped ions is characterized by the secular

frequency:

1 QUO
= Km (5.5)

where Q and m represent the ion charge and mass, Uo is the DC axial confining

potential, yo is the distance from the axial confining DC electrodes to the trap center,
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and where r, is a geometric factor which depends on the trap geometry and it can be

determined either from numerical modeling or experimentally. In the case of Bastille

ion trap yo = 3.05 mm, while the geometric factor was determined numerically to

be , 0.031. In Figure 5-23, I present the fluorescence signal from mixed ion

clouds versus "tickle" frequency obtained at three different axial confining voltages

Uo. The ablation targets were prepared similarly with those described in Section 4.2,

except that instead of SrCl2 I used CaCl2. Although only the SrTiO3 crystal ablation

target was used to load the mixed species ion clouds, the surface of the crystal got

contaminated with CaCl2 during the ablation targets preparation and, as such, some

ion clouds contained CaCl+ molecular ions. Figure 5-24 shows a comparison between

the theoretical and experimentally obtain secular frequencies for the Bastille ion trap

in the case of four different ion species.
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Figure 5-23: Fluorescence signal of mixed ion clouds versus "tickle" frequency ob-
tained at three different axial confining voltages Uo as shown on figure. For all three
scans the amplitude of the excitation voltage was kept at 0.2 V. The numbers under
the fluorescence dips mark their positions, while the numbers in parentheses indicate
the theoretical axial secular frequencies for the corresponding ionic species. All the
ion clouds were produced from the SrTiO3 crystal ablation target, although during
the preparation its surface got contaminated with CaCl2 -

125



210 -

205- -
TiO+

'i' 200- T

195-
88' +

5 190-

185-

i 180-

8 a SrO+O 175-

. 170-x
165-

160 1
74 76 78 80 82 84 86 88 90 92

Axial Confining DC Potential [V]
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ion trap in the case of four different ion species. Every displayed point is an average
of 20 experimentally measured data points.

126



Chapter 6

Conclusions and outlook

In this thesis I investigated some of the challenges associated with performing mi-

crowave spectroscopy of rotational the levels of polar molecular ions trapped in RF

ion traps with integrated superconducting microwave cavities. I have looked at both

the theoretical and experimental aspects of this project, and the main results are

summarized here.

One difficulty in observing the coupling of the microwave radiation to the rota-

tional levels of a molecule is posed by the very long lifetime of the excited rotational

levels. As a consequence, a first step of the experiment was to identify a mechanism

capable of reducing the effective lifetime of the excited rotational levels. I proposed

and analyzed two such schemes. The first method is based on the fact that in a

mixed ion cloud containing both atomic and molecular ions, during the Coulomb

collisions, the molecular internal angular momentum can be transferred from or to

the atomic ions. I showed that the collisional enhanced rotational de-excitation rate

can be observed in a cryogenic environment with moderate temperatures of 4-10 K.

The second method I proposed starts with the observation that when the molecular

rotational transition is strongly coupled to a microwave cavity, the effective rotational

decay rate becomes proportional to oc g2/K, where g is the vacuum Rabi frequency

and n is the microwave cavity decay rate [ADD+06]. To enhance g requires that the

molecular ion be trapped very closed (1 - 10 pm) to the microwave cavity electrode,

while in order to reduce cavity K necessitates a very high microwave cavity quality
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factor (~ 106). Both of these requirements demand that the RF ion traps be operated

in cryostats capable of reaching temperatures of - 100 mK, on one hand to suppress

the molecular ion motional heating rates [LGA+08] and on the other hand to enhance

the microwave cavity quality factor.

The second part of the thesis describes the experimental components necessary

to implement this project. One immediate implication of the presence of supercon-

ducting microwave resonators is that the entire experiment must be carried out in

a cryogenic environment. So, the initial task was to build a cryogenic ion trapping

system based on a closed cycle cryostat and to show that RF ion traps can be success-

fully operated in such system. The second challenge I met was to find a suitable RF

ion trap geometry capable of supporting a microwave transmission line or resonator.

The nature of the experiment requires both a high trap depth and a high microwave

field at the trapped ion location. I found experimentally and theoretically that these

two ion trap requirements are conflicting with each other. I tested four ion trap de-

signs one based on slot line, two based on strip line (plate and wire), and one based

on a coplanar waveguide (CPW), which I deemed to have the best characteristics.

Another experimental requirement was to find a source of molecular ions compatible

with the cryogenic environment. I demonstrated that molecular ion source based on

a laser ablation method can reliable load an RF ion trap without adversely affecting

the trapping system.
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Appendix A

Boundary element method code for

rf ion traps numerical modeling

The entire code was written in Mathematica 7, and it is intended to be run on any

64-bit OS which Mathematica supports. The code can be copied in a Mathematica

notebook and be run as it is. The code has four main components: in the first two the

user inputs the ion rf trap geometry and specifies the grid on which the dc potentials

and rf electric field are to be calculated; the third part does the actual computations

based on the boundary element method (BEM); and the last component computes

the rf ion trap characteristics.

A.1 Trap geometry

The axes orientation is specified in Figure 5-13. The possible trap geometries are lim-

ited to traps with rectangular electrodes parallel to either xOy plane or yOz plane, and

which possess reflection symmetries to xOz and yOz planes. As such the trap geometry

needs to be specified only in the first octant of the axes system. The electrodes parallel

to yOz plane are specified in ez table, and the electrodes parallel to xOy are specified in

ex table. The position of the electrode is determined by specifying two of its opposite

corners coordinates, i.e. {{xi, x2} , {yi, Y2}, {zi, z2} , axis #, V + electrode name},

where axis # represents the number of the axis which the electrode is perpendicular
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to. Vrf electrode is a mandatory entry. None of the ez and ex tables can be empty;

in case that all the electrodes are parallel only to one of the planes, one very small

and far away electrode can be introduced in the empty table. All the electrodes are

tesselated with squares, which side sizes (in millimeters) are specified by segmentsize;

the segmentsize must be chosen such that is a common divisor of all the electrodes.

memorysize specifies the maximum dimension (memorysize x memorysize) the ma-

trices entering the programm can have. The memorysize as the name suggests is

related to the available ram memory, and the code execution speed gets faster as

memorysize is increased. For example for 8 GB a suitable value for memorysize is

4500, while for 48 GB it is 7500.

(*specifies the trap electrodes coordinates*)

$HistoryLength = 0

ClearAll[ez, ex, d, pardir, electrodename, voltagename, segments, segmentsz,

segmentsx, Vgnd, Vmid, Vend, Vrf, Vquad, segmentsize, memorysize]

ez = {{{0, 0.32},{0, 3.68}, {0,0}, 3, Vgnd},

{{0.32, 1.04}, {0, 3.64}, {0, 0}, 3, Vrf},

{{1.04, 5.04},{0,0.52},{0,0}, 3, Vmid},

{{1.04, 5.04},{0.52, 2.04},{0,0}, 3, Vquad},

{{1.04,5.04}, {2.04, 3.56}, {0, 0}, 3, Vend},

{{1.04,5.04}, {3.56, 3.64},{0,0}, 3, Vrf}};

ex = {{{20, 20}, {20, 20.04}, {20, 20.04}, 1, Vgnd}};

segmentsize = 0.04/3;

memorysize = 4500;

(*creates the directories*)

pardir = SetDirectory[NotebookDirectoryn]

CreateDirectory["Positions"]

CreateDirectory["Segments"]

CreateDirectory["'ItansferMatrix"]
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CreateDirectory["Results"]

voltagename = Map[ToString, Union[ez[[All, 5]], ex[[All, 5]]]]

electrodename = StringDrop[voltagename, 1]

CreateDirectory["Charges"]

SetDirectory["Charges"]

For[i = 1, i < Length[electrodename], CreateDirectory[electrodename[[i]]]; i++]

SetDirectory[pardir]

CreateDirectory["Potentials"]

SetDirectory["Potentials"]

CreateDirectory["Positions"]

For[i = 1, i < Length[electrodename], CreateDirectory[electrodename[[i]]]; i++]

SetDirectory[pardir <> "\Segments"]

DumpSave["voltagename.mx", voltagename];

DumpSave["electrodename.mx", electrodename];

ClearAll[electrodename, voltagename, pardir]

(*divides the electrodes*)

d = segmentsize;

segmentsz = {}

Forj = 1,j<=Length[ez],j++,

f = Which[ez[[j, 4]] == 1,

Table[{ez[[j, 1, 1]], ez[[j, 2, 1]] + d * (n - 0.5) * Sign[ez[[j, 2,2]] - ez[[j, 2, 1]]],

ez[[j, 3, 1]] + d * (m - 0.5) * Sign[ez[[j, 3,2]] - ez[[j, 3, 1]]], ez[[j, 5]]},

n, Round [Abs[ez[[j,2,2 ]-ez[[j,2,1]

m, Round Absfez[[j,3,2 l-ez[[i,3,1111

ez[[j, 4]] == 2,

Table[{ez[j, 1, 1]] + d * (n - 0.5) * Sign[ez[j, 1, 2]] - ez[j, 1, 1]]],

ez[[j, 2, 1]], ez[[j, 3, 1]] + d * (m - 0.5) * Sign[ez[[j, 3, 2]] - ez[[j, 3, 1]]],

ez[[j,5]]}, {n, Round Abslez[[i,1,2j-e[[j,1 ,1]]]

{m, Round Abs[ez[[U,3,2]-ez[[U,3,1111
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Table[{ez[j, 1, 1]] + d * (n - 0.5) * Sign[ez[[j, 1, 2]] - ez[[j, 1, 1]]],

ez[[j, 2, 1]] + d * (m - 0.5) * Sign[ez[[j, 2,2]] - ez[[j, 2, 1]]], ez[[j, 3, 1]],

ez[[j, 5]]}, {n, Round Abs[ez[[U,1,21 ]-ez[[,1,1]

{m, Round Abs[ez[[j,2,2 ]-ez[[j,2,1]}]] .

segmentsz = Join[segmentsz, Flatten[f, 1]]; ClearAll[f]; ClearSystemCache[;];

Dimensions[segmentsz]

DumpSave["segmentsz.mx", segmentsz];

ClearAll[segmentsz]

ClearSystemCache[

segmentsx = {}

ForUj = 1,j<=Length[ex],j++,

f = Which[ex[[j, 4]] == 1,

Table[{ex[[j, 1, 1]], ex[j, 2, 1]] + d * (n - 0.5) * Sign[ex[[j, 2,21] - ex[[j, 2, 1]]],

ex[j, 3, 1]] + d * (m - 0.5) * Sign[ex[[j, 3,2]] - ex[[j, 3, 1]]], ex[[j, 5]]},

{n, Round [Abs[ex[Lj,2,2I]-ex[[j,2,1]

{m, Round [Abs[ex[[j,3,2]-ex[j,3,1]]]

ex[[j, 4]] == 2,

Table[{ex[j, 1, 1]] + d * (n - 0.5) * Sign[ex[[j, 1, 2]] - ex[[j, 1, 1]]],

ex[[j, 2, 1]], ex[[j, 3, 1]] + d * (m - 0.5) * Sign[ex[j, 3, 2]] - ex[j, 3, 1]]],

ex[[j, 5]]}, {n, Round Abs[ex[[j,1,2l-ex[[j,1,1]]]

m, Round [Abs[ex[[j,3,2jj-ex[[j,3,1j]] ex[, 4] == 3,

Table[{ex[[j, 1, 1]] + d * (n - 0.5) * Sign[ex[[j, 1, 2]] - ex[[j, 1, 1]]],

ex[[j, 2, 1]] + d * (m - 0.5) * Sign[ex[[j, 2,2]] - ex[[j, 2,1]]], ex[[j, 3, 1]],

ex[[j, 5]]}, {n, Round Abs[ex[[j,1,2 ]-ex[[j,1,1]

m, Round Abs[ex[[j,2,2]-ex[[j,2,1]]] .

segmentsx = Join[segmentsx, Flatten[f, 1]]; ClearAll[f]; ClearSystemCachen;];

Dimensions[segmentsx]

DumpSave["segmentsx.mx", segmentsx];

DumpSave["segmentsize.mx", segmentsize];

DumpSave["memorysize.mx", memorysize];
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ClearAll[segmentsx, segmentsize, d, memorysize, ex, ey]

ClearSystemCache[

A.2 Dc potentials and rf electric field grid

The grid is specified (in millimeters) in the M table:

M = Table [{i, j, k}, {i, zi, X2, x-step} {j, yi, Y2, y-step} , {k, z1 , z2 , z-step}].
None of the grid points can be in the same planes containing the trap electrodes. For

example if all the electrodes are perpendicular to z axis and located at z=O (in xOy

plane) there cannot be grid points with the z coordinate equal to zero.

(*Specifies the grid on which the dc potentials and the rf

electric field are computed*)

Needs["-UtilitiesCleanSlate'"]

CleanSlate["Global"]

$HistoryLength = 0

ClearSystemCache[

SetDirectory[NotebookDirectorya <> "\\Segments"]

Get["memorysize.mx"];

SetDirectory[NotebookDirectorya <> "\\Potentials\\Positions"];

M = Table[{i, j, k}, {i, 0,0.714,0.017}, {j, 0,3.604,0.068},

{k, 0.001,1.361,0.034}];

M = Flatten[M, 2];

Dimensions[M]

DumpSave["M.mx", M];

For[i = 1, i<=Quotient[Length[M], memorysize] +1, i++,

nI = (i - 1) * memorysize +1; nh = Min[memorysize * i, Length[M]];

px = M[[nl;;nh, 1]];

py = M[[nl;;nh, 2]];

pz = M[[nl;;nh, 3]];
DumpSave["px" <> ToString[i] <> ".nx", px];

DumpSave["py" <> ToString[i] <> ".mx", py];

DumpSave["pz" <> ToString[i] <> ".mx", pz];

I;
ClearAll[M, nl, px, py, pz, memorysize]

ClearSystemCachefl

149



A.3 BEM

This part of the program is entirely automated and requires no user input (except for

starting it). Also this is the most time consuming part of the code; as an example

on a 8 GB machine, for about 80000 electrode segments and about 80000 grid points

it takes around 8 hours to run. The last segment of the code Potentials can be run

independently from the rest of the code (by commenting out the rest of the code).

This is useful if the initial chosen grid did not capture the entire pseudopotential.

ClearAll[timestart, timeend];

timestart = AbsoluteTime[];

(*SegmentsSmall - computes the distances between all possible pairs of segments *)

Print[SegmentsSmall]

Needs["-UtilitiesCleanSlate']

CleanSlate["Globarl, Verbose->False]

$HistoryLength = 0

SetDirectory[NotebookDirectoryfl <> "\\Segments"];

Get["segmentsz.mx"];

Get["memorysize.mx"];

z = segmentsz[[All, 1;;3]];

ClearAll[segmentsz]

ClearSystemCache[

Needs[ "UtilitiesCleanSlate"]

CleanSlate["Globarl, Verbose->False]

f = Compile[{{x, .Real, 2}},

Module[{s}, s = z; Do[ni = (i - 1) * memorysize +1; nh = Min[memorysize * i, Length[s]];

Do[ml = (j - 1) * memorysize + 1; mh = Min[memorysize * j, Length[s]];

Dmx = Outer[Plus, s[[nl;;nh, 1]], -s[[ml;;mh, 1]]];

DumpSave["Dm" <> ToString[i] <> x <> ToStringlj] <> ".mx", Dmx];

ClearSystemCache[; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["Utilities'CleanSlat'"]; CleanSlate["Globarl, Verbose->False];

Dpx = Outer[Plus, s[[nl;;nh, 1]], s[[ml;;mh, 1]]];

DumpSave["Dp" <> ToString[i] <> x <> ToString[j] <> ".mx", Dpx];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];
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Needs["UtilitiesCleanSlat"]; CleanSlate["GlobaP", Verbose->False];

Dmy = Outer[Plus, s[[nl;;nh, 2]], -s[[ml;;mh, 2]]];

DumpSave["Dm" <> ToString[i] <> y <> ToString[j] <> ".mx",Dmy];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlate']; CleanSlate["GlobaP', Verbose->False];

Dpy = Outer[Plus, s[[nl;;nh, 2]], s[[ml;;mh, 2]]];

DumpSave["Dp" <> ToString[i] <> y <> ToString[j] <> ".mx", Dpy];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlate']; CleanSlate["Globa", Verbose->False];

Dz = Outer[Plus, s[[nl;;nh, 3]], -s[[ml;;mh, 3]]];

DumpSave[D <> ToString[i] <> z <> ToString[j] <> ".mrx", Dz];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz, ml, mh];

Needs["UtilitieACleanSlatd"]; CleanSlate["Globar', Verbose->False],

{j, i, Quotient[Length[s], memorysize] + 1}];

ClearSystemCache[]; ClearAll[nl, nh]; Needs["UtilitiesCleanSlate"'];

CleanSlate["Globarl, Verbose->False],

{i, 1, Quotient[Length[s], memorysize] + 1}];]];

f[X]

Get["segmentsx.mx"];

y = segmentax[[All, 1;;3]];

ClearAll[segmentsx]

ClearSystemCache[]

Needs["-UtilitiesCleanSlate']

CleanSlate["Globar", Verbose->False]

g = Compile[{{x, _.Real, 2}, {y, _Real, 2}},

Module[{s, p}, s = x;p = y; Do[nl = (i - 1) * memorysize + 1;

nh = Min[memorysize * i, Length[s]];

Do[ml = (j - Quotient[Length[s], memorysize] - 2) * memorysize +1;

mh = Min[memorysize * (j - Quotient[Length[s], memorysize] - 1), Length[p]];

Dmx = Outer[Plus, s[[nl;;nh, 1]], -p[[ml;;mh, 1]]];

DumpSave["Dm" <> ToString[i] <> x <> ToString[j] <> ".mx",Dmx];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlatd"]; CleanSlate["Global", Verbose->False];

Dpx = Outer[Plus, s[[nl;;nh, 1]],p[[ml;;mh, 1]]];

DumpSave["Dp" <> ToString[i] <> x <> ToString[j] <> ".nx", Dpx];

ClearSystemCachel; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlate']; CleanSlate["Globar", Verbose->False];

Dmy = Outer[Plus, s[[nl;;nh, 2]], -p[[ml;;mh, 2]]];
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DumpSave["Dm" <> ToString[i] <> y <> ToString[j] <> ".mx", Dmy];

ClearSystemCachel; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlate"]; CleanSlate["Global", Verbose->False];

Dpy = Outer[Plus, s[[nl;;nh, 2]],p[[ml;;mh, 2]]];

DumpSave["Dp" <> ToString[i] <> y <> ToString[j] <> ".mx",Dpy];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["Utilities'CleanSlate"]; CleanSlate["Global", Verbose->False];

Dz = Outer[Plus, s[[nl;;nh, 3]], -p[[ml;;mh, 3]]];

DumpSave[D <> ToString[i] <> z <> ToString[j] <> ".mx", Dz];

ClearSystemCache[; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz, ml, mh];

Needs["UtilitiesCleanSlatd"]; CleanSlate["GlobaI", Verbose->False],

{j, Quotient[Length[s], memorysize] + 2,

Quotient[Length[s], memorysize] + Quotient[Length[p], memorysize] + 2}];

ClearSystemCache[; ClearAll[nl, nh]; Needs["UtilitiesCleanSlat"];

CleanSlate["Global, Verbose->False],

{i, 1, Quotient[Length[s], memorysize] + 1}];]];

g[X, y]

Needs["-UtilitiesCleanSlat2']

CleanSlate["Global", Verbose->False]

h = Compile[{{y, _Real, 2}},

Module[{p},p = y; Do[nl = (i - Quotient[Length[x], memorysize] - 2) * memorysize + 1;

nh = Min[memorysize * (i - Quotient[Length[x], memorysize] - 1), Length[p]];

Do[ml = (j - Quotient[Length[z], memorysize] - 2) * memorysize +1;

mh = Min[memorysize * (j - Quotient[Length[x], memorysize] - 1), Length[p]];

Dmx = Outer[Plus,p[[nl;;nh, 1]], -p[[ml;;mh, 1]]];

DumpSave["Dm" <> ToString[i] <> x <> ToString[j] <> ".mx", Dmx];

ClearSystemCache[]; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlate"]; CleanSlate["Global", Verbose->False];

Dpx = Outer[Plus,p[[nl;;nh, 1]],p[[ml;;mh, 1]]];
DumpSave["Dp" <> ToString[i] <> x <> ToString[j] <> ".mx", Dpx];

ClearSystemCache[; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiesCleanSlat"]; CleanSlate["Globar', Verbose->False];

Dmy = Outer[Plus,p[[nl;;nh, 2]], -p[[ml;;mh, 2]]];

DumpSave["Dm" <> ToString[i] <> y <> ToString[j] <> ".mx", Dmy];

ClearSystemCacheo; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["UtilitiegCleanSlatd"]; CleanSlate["Global", Verbose->False];

Dpy = Outer[Plus,p[[nl;;nh, 2]], p[[ml;;mh, 2]]];

DumpSave["Dp" <> ToString[i] <> y <> ToString[j] <> ".mx", Dpy];
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ClearSystemCache[; ClearAll[Dmx, Dpx, Dmy, Dpy, Dz];

Needs["Utilities'CleanSlate'"]; CleanSlate["GlobaP', Verbose->False];

Dz = Outer[Plus,p[[nl;;nh, 3]], -p[[ml;;mh, 3]]];

DumpSave[D <> ToString[i] <> z <> ToStringj] <> ".mx", Dz];

ClearSystemCache[; ClearARl[Dmx, Dpx, Dmy, Dpy, Dz, ml, mh];

Needs["UtilitiesCleanSlatd"]; CleanSlate["Globar, Verbose->False],

{j, i, Quotient[Length[x], memorysize] + Quotient[Length[p, memorysize] + 2}];

ClearSystemCache[; ClearAll[nl, nh]; Needs["UtilitiegCleanSlatd"];

CleanSlate["Globar", Verbose->False],

{i, Quotient[Length[z], memorysize] + 2,

Quotient[Length[x], memorysize] + Quotient[Length[p], memorysize] + 2}];]];

h[y]

ClearAll[x, y, Dmx, Dpx, Dmy, Dpy, Dz, ml, mh, nl, nh, segmentsz, segmentsx, f, g, h]

Needs["-Utilities'CleanSlat']

CleanSlate["GlobaI", Verbose->False]

ClearSystemCache[]

(*Charges&Positions - sets one electrode at 1 V with the others at 0 V*)

Print[Charges&Positions]

Needs["Utilities'CleanSlate"']

CleanSlate["Global, Verbose->False]

$HistoryLength = 0

SetDirectory[NotebookDirectory[ <> "\\Segments"];

ClearAll[voltagename, electrodename, x, y];

Get["voltagename.mx"];

Get["electrodename.mx"];

For[i = 1, i<=Length[voltagename],

Forj = 1,j<=Length[voltagename],

ToExpression[voltagename[[j]] <> "=" <> ToString[If[i == j, 1,0]]];

j++];

Get["segmentsz.mx"];

ToExpression[x <> electrodename[[i]] <> "=" <> ToString[segmentsz]];

ClearAll[segmentsz];

For[k = 1, k<=Length[voltagename],

ToExpression["ClearAll[" <> voltagename[[k]] <> "]"];
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i++];
Get["segmentsz.mx"];

Get["memorysize.mx"];

x = segmentsz;

ClearAll[segmentsz]

ClearSystemCache[]

Needs["UtilitiesCleanSlate']

CleanSlate["Globar", Verbose->False]

Do[nl = (i - 1) * memorysize + 1; nh = Min[memorysize * i, Length[x]];

SetDirectory[NotebookDirectory[ <> "\\Positions"];

Rx = z[[nl;;nh, 1]];

DumpSave["Rx" <> ToString[i] <> ".mx", Rx];

Ry = z[[nl;;nh, 2]];

DumpSave["Ry" <> ToString[i] <> ".mx", Ry];

Rz = x[[nl;;nh, 3]];

DumpSave["Rz" <> ToString[i] <> ".mx", Rz];

For[k = 1, k<=Length[electrodename],

SetDirectory[NotebookDirectory[ <> "\\Charges\\" <> electrodename[[k]]];

ToExpression[electrodename[[k]] <> "=" <> x <> electrodename[[k]] <>

"[[nl;;nh,4]]"];

DumpSave[electrodename[[k]] <> ToString[i] <> ".mx", Evaluate[electrodename[[k]]]];

k++];

ClearSystemCache[; ClearAll[nl, nh, Rx, Ry, Rz];

For[k = 1, k<=Length[electrodename],

ToExpression["ClearAll[" <> electrodename[[k]] <> "]"];

k++];

Needs["UtilitiesCleanSlate'"]; CleanSlate["Global", Verbose->False],

{i, 1, Quotient[Length[x], memorysize] + 1}];

For[k = 1, k<=Length[electrodename],

ToExpression["ClearAll[" <> x <> electrodename[[k]] <> "]"];

k++];

ClearSystemCache[]

Needs[ "UtilitiesCleanSlate']

CleanSlate["Globarl, Verbose->False]

SetDirectory[NotebookDirectory[ <> "\\Segments"]

For[i = 1, i<=Length[voltagename],

For[j = 1,j<=Length[voltagename],

ToExpression[voltagename[[j]] <> "=" <> ToString[f[i == j1, 0]]];
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:j++];
Get["segmentsx.mx"];

ToExpression[y <> electrodename[[i]] <> "=" <> ToString[segmentsx]];

ClearAll[segmentsx];

For[k = 1, k<=Length[voltagename],

ToExpression["ClearAll[" <> voltagename[[k]] <> "I"];
k++];

i++];

Get["segmentsx.mx"];

y = segmentsx;

ClearAll[segmentsx]

ClearSystemCacheo

Needs["-UtilitiesCleanSlate"]

CleanSlate["Globar", Verbose->False]

Do[nl = (i - Quotient[Length[x], memorysize] - 2) * memorysize +1;

nh = Min[memorysize * (i - Quotient[Length[z], memorysize] - 1), Length[y]];

SetDirectory[NotebookDirectoryo <> "\\Positions"];

Rx = y[[nl;;nh, 1]];

DumpSave["Rx" <> ToString[i] <> ".mx", Rx];

Ry = y[[nl;;nh, 2]];

DumpSave["Ry" <> ToString[i] <> ".mx",Ry];

Rz = y[[nl;;nh, 3]];

DumpSave["Rz" <> ToString[i] <> ".mnx", Rz];

For[k = 1, k<=Length[electrodename],

SetDirectory[NotebookDirectory[ <> "\\Charges\\" <> electrodename[[k]]];

ToExpression[electrodename[[k]] <> "=" <> y <> electrodename[[k]] <>

"[[nl;;nh,4]]"];

DumpSave[electrodename[[k]] <> ToString[i] <> ".mx", Evaluate[electrodename[[k]]]];

k++];

ClearSystemCache[]; ClearAll[nl, nh, Rx, Ry, Rz];

For[k = 1, k<=Length[electrodename],

ToExpression["ClearAll[" <> electrodename[[k]] <> "]"];

k++];

Needs["UtilitiesCleanSlate"]; CleanSlate["Globarl, Verbose->False],

{i, Quotient[Length[x], memorysize]+ 2,

Quotient[Length[x], memorysize] + Quotient[Length[y], memorysize] + 2}];

For[k = 1, k<=Length[electrodename],

ToExpression["ClearAll[" <> y <> electrodename[[k]] <> "]"];
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k++];

ClearSystemCache[];

ClearAll[i, j, k, nl, nh, x, y, electrodename, voltagename, Rx, Ry, RzJ;

Needs["UtilitiesCleanSlatd"]; CleanSlate["Global, Verbose->Falsel;

(*TransferMatrix - computes f Ida between all possible pairs of segments,

i.e. the potential produced by the the total charge of one segment at the

location of another/same segment; used colocation method*)

Print[TansferMatrix]

Needs[ "UtilitiesCleanSlatd']

CleanSlate["Globa'l

$HistoryLength = 0

ClearSystemCache[]

ClearAll[int, a, b, c, segments, seg, x, z, lz, lx, TM, A, d]

SetDirectory[NotebookDirectory[] <> "\\Segments"];

Get["memorysize.mx"];

Get["segmentsize.mx"];

int = Compile[{{a, ..Real, 2}, {b, ..Real, 2}, {c, ..Real, 2}},

-c

ArcTan[

(c(-(segmentsize/2 + a)(-segmentsize/2 + b)

V(-segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2+

(-segmentsize/2 + a)(-segmentsize/2 + b)

V(segmentsize/2 + a)2 + (-segmentsize/2 + b) 2 + c2)

((-segmentsize/2 + a)(segmentsize/2 + a)(-segmentsize/2 + b)2+

c2 N(-segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2

X(segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2)] +

c

ArcTan[

(c(-(segmentsize/2 + a)(segmentsize/2 + b)

,(-segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2+

(-segmentsize/2 + a)(segmentsize/2+ b)

V(segmentsize/2 + a)2 + (segmentsize/2 + b)2 + c2 /
((-segmentsize/2 + a)(segmentsize/2 + a)(segmentsize/2 + b)2 +

c2 V(-segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2

V(segmentsize/2 + a)2 + (segmentsize/2 + b)2 + c2)] +
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(-se~ymentsize/2 +b)

]Lo -segmentsize/2+a+ V(-segmentsize/2+a)2+(-segmentsie/2+b)2+C2]+
Lgsegmentsize/2+a+ V(segmentsize/2+a)

2
+(-segmentize/2+b)2+c

(-se~mentsize/2 + a)
Lo -segmentsize/2+b+ i,/(segmentsize/2+a)2+(-segmerntsize/2+b)2+c2]+

Lg segmentsize/2+b+ (-segmentsize/2+a)2+(segmentsize/2+b)2 +C2

(segmentsize/2 + b)
]LoE segmentsirze/2+a+ (segmentsize/2+a)2+(segmentsize/2+b)2+C2 1

I -segmentsize/2+a+ ,(-segmentsize/2+a)2+(segmentsize/2+b)2+C2J+

(segmntsize/2 + a)
Lg[segmentsize/2+b+ ,(segmentsize/2+a)2+(segmentsize/2+b) 2 +C2 1

[-segmentsize/2+b+ V(segmentsize/2+a)2+(-segmentsie/2+b)2+C2 J
SetDirecor[NotebookDirectoryD <> "\\Segments"]

Get ["segmentsz.mx"];

lz = Quotient[Length[segmnentsz], memorysize] + 1;

ClearAll[segmentsz]

ClearSystemCacheo

Get["segmentsx.mx"];

Ix = Quotient[Length[segmentsx], memorysize] + 1;

ClearAll[segimentsz]

ClearSystemCachefl

TM = Compile[{{z, JInteger}, ix, JInteger}, {w, -RedI, 21}, Module[{8, p},.3 z;p x;

Dmx = Dpx = Dmy = Dpy = Dz = wn;

Do[

Do,[

SetDirectory[NotebookDirectorya <> "\\Segments"];

Get["Dm" <> ToString[i] <> x <> ToStringjj] <> mx]

Get["Dp" <> ToString[i] <> x <> ToStringUj] <> ".mx"];

Get[-Dp" <> ToString[i <> y <> ToStringUj] <> ".mx"];

Get["Dp <> ToString[i <> <> ToStrg] <> ".mx"];

Print[' irst!' <> ToString[i] <> "-"2 <> ToStringj]];

SetDirectory[NotebookDirectoryn <> "\\nXansferMatrix"];

A = int[Dmx, Dmy, Dz] + int[Dmx, Dpy, Dz] + int[Dpx, Dpy, Dz]+

int[Dpx, Dmy, Dz];

DumpSave[A <> ToString~i] <> "2" <> ToStringUj] <> ".mnx", A];

ClearAll[A, Dmx, Dpx, Dmy, Dpy, Dz]; ClearSystemCacheD;

Needs[ "Utilitie'Cleanfflat~"]; Cleanffiate["~Giobar~, verbose -+ False],

1j, i,81
{i, 1, 8}];

Needs[ "UtilitiesCleanSlatd"]; CleanSlate["Globa 9 ', Verbose -4 False];

Do[

157



Do[

SetDirectory[NotebookDirectory[ <> "\\Segments"];

Get["Dm" <> ToString[j] <> x <> ToString[i] <> ".mx"];

Get["Dp" <> ToString[j] <> x <> ToString[i] <> ".mx"];

Get["Dm" <> ToString[j] <> y <> ToString[i] <> ".mx"];

Get["Dp" <> ToString[j] <> y <> ToString[i] <> ".mx"];

Get[D <> ToStringUj] <> z <> ToString[i] <> ".mx"];

Dmx = Tfanspose[Dmx];

Dpx = Transpose[Dpx];

Dmy = Transpose[Dmy];

Dpy = Transpose[Dpy];

Dz = Transpose[Dz];

Print["second_" <> ToString[i] <> "_" <> ToString[j]];

SetDirectory[NotebookDirectory[] <> "\\TransferMatrix"];

A = int[Dmx, Dmy, Dz] + int[Dmx, Dpy, Dz] + int[Dpx, Dpy, Dz]+

int[Dpx, Dmy, Dz];

DumpSave[A <> ToString[i] <> "." <> ToString[j] <> ".mx", A];

ClearAll[A, Dmx, Dpx, Dmy, Dpy, Dz]; ClearSystemCachel;

Needs["UtilitiesCleanSlate'"]; CleanSlate["GlobaP", Verbose - False],

{j, 1, s}],

{i, s +1, s +p}];

Needs["UtilitiesCleanSlate"]; CleanSlate["Globar', Verbose -+ False];

Do[

Do[

SetDirectory[NotebookDirectory[ <> "\\Segments"];

Get["Dm" <> ToString[i] <> x <> ToString[j] <> ".mx"];

Get["Dp" <> ToString[i] <> x <> ToString[j] <> ".mx"];

Get["Dm" <> ToString[i] <> y <> ToStringUj] <> ".Mx"];

Get["Dp" <> ToString[i] <> y <> ToString[j] <> ".mx"];

Get[D <> ToString[i] <> z <> ToStringo] <> ".mx"];
Print["third-" <> ToString[i] <> "" <> ToString[j]];

SetDirectory[NotebookDirectory[] <> "\\TIIansferMatrix"];

A = int[Dz, Dmy, Dmx] + int[Dz, Dpy, Dmx] + int[Dz, Dpy, Dpx]+

int[Dz, Dmy, Dpx];

DumpSave[A <> ToString[i] <> "' <> ToStringUj] <> ".mx", A];

ClearAll[A, Dmx, Dpx, Dmy, Dpy, Dz]; ClearSystemCache[;

Needs["Utilities'CleanSlate'"]; CleanSlate["Global", Verbose -4 False],

{j, S +1, s +p}],

158



{i, 1, s}];

Needs["UtilitiesCleanSlate"]; CleanSlate["Globarl, Verbose -+ False];

Do[

Do[

SetDirectory[NotebookDirectory[ <> "\\Segments"];

Get["Dm" <> ToString[i] <> x <> ToStringUj] <> ".mx"];

Get["Dp" <> ToString[i] <> x <> ToString[j] <> ".mx"];

Get["Dm" <> ToString[i] <> y <> ToStringj] <> ".mx"];

Get["Dp" <> ToString[i] <> y <> ToStringUj] <> ".mx"];

Get[D <> ToString[i] <> z <> ToStringUj] <> ".mx"];

Print["fourth_" <> ToString[i] <> "_' <> ToString[j]];

SetDirectory[NotebookDirectory[] <> "\\TransferMatrix"];

A = int[Dz, Dmy, Dmx] + int[Dz, Dpy, Dmx] + int[Dz, Dpy, Dpx]+

int[Dz, Dmy, Dpx];

DumpSave[A <> ToString[i] <> "" <> ToString[j] <> ".mx", A];

ClearAll[A, Dmx, Dpx, Dmy, Dpy, Dz]; ClearSystemCachea;

Needs["Utilities'CleanSlate']; CleanSlate["Globalr', Verbose - False],

{Ji, s +P}],

{i, s +1, s +p}];

Needs["UtilitiesCleanSlate'"]; CleanSlate["Global", Verbose - False];

];
];
TimeUsed[

TM[lz, lx, ConstantArray[O, {2, 2}]]; //AbsoluteTiming

TimeUsed[

ClearSystemCache[

ClearAll[int, a, b, c, segments, seg, X, z, lz, lx, TM, A]

Needs["UtiitiesCleanSlate'"]

CleanSlate["Globa']

(*LDU decomposition - prepares the transfer matrix for inversion by doing

first a LDU block decomposition*)

Print[LDUdecomposition]

ClearAll[A, lz, lx, , y, z, w, i, j, k, a, b, c, d, s, p, LDU, tran, prod, fun]

Needs["Utitie'CleanSlate"]

CleanSlate["Global"]l
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SHistoryLength = 0

ClearSystemCacheo

SetDirectory[NotebookDirectory[ <> "\\Segments"];

Get["memorysize.nx"];

Get["segmentsize.mx"];

Get["segmentsz.mx"];

Iz = Quotient[Length[segmentsz], memorysize] +1;

ClearAll[segmentsz]

ClearSystemCache[

Get["segmentsx.mx"];

lx = Quotient[Length[segmentsx], memorysize] + 1;

ClearAll[segmentsz]

ClearSystemCache[]

tran = Compile[{{x, _Real, 2}}, Transpose[]];

Do[

Do[

SetDirectory[NotebookDirectoryl <> "\\TransferMatrix"];

Get[A <> ToString[j] <> "-" <> ToString[i] <> ".mx"];

A = tran[A];

DumpSave[A <> ToString[i] <> "2" <> ToStringUj] <> ".mx", A];

ClearAll[A]; ClearSystemCache[;

Needs["Utilities'CleanSlate']; CleanSlate["Globar', Verbose -+ False],

{j, 1, i - 1}],

{i, 2, lz}];

Do[

Do[

SetDirectory[NotebookDirectory[ <> "\\TransferMatrix"];

Get[A <> ToStringUj] <> "2" <> ToString[i] <> ".mx"];

A = tran[A];

DumpSave[A <> ToString[i] <> "2" <> ToStringUj] <> ".mx", A];

ClearAll[A]; ClearSystemCache[;

Needs["UtilitiesCleanSlate']; CleanSlate["GlobaP', Verbose -+ False],
{j, lz +1, i - 1}],

{i, lz + 2, Iz + lx}];

Needs["Utilities'CleanSlate"]

CleanSlate["Global"]

prod = Compile[{{b, _Real, 2}, {c, _.Real, 211}, b.c];

fun = Compile[{{a,.Real, 2},{b, _Real, 2}, {c, _Real,2}}, a - b.c];
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LDU = Compile[{{z, _Integer}, {x, -Integer}, {w, _Real, 2}},

Module[{s, p}, s = z;p = x;

A = d = b = c =w;

Do[

SetDirectory[NotebookDirectoryD <> "\\TransferMatrix"];

Get[A <> ToString[k] <> "2' <> ToString[k] <> ".mx"];

A = d = Inverse[A];

DumpSave[A <> ToString[k] <> "_" <> ToString[k] <> ".mx", A];

ClearAll[A]; ClearSystemCache[];

Needs["-UtilitiesCleanSlate'"];

CleanSlate["Globai",Verbose -+ False];

Do[

Get[A <> ToString[i] <> "-" <> ToString[k] <> ".mx"'];

A = prod[A, d];

DumpSave[A <> ToString[i] <> "-2 <> ToString[k] <> ".mx", A];

ClearAll[A]; ClearSystemCache;

Needs[ "Utiities'CleanSlate'"];

CleanSlate["Globar', Verbose -+ False],

{i, k + 1, s + p}];

Do[

Get[A <> ToString[i] <> "2' <> ToString[k] <> ".rmx"];

b = A;

Do[

Get[A <> ToString[k] <> "2' <> ToString[j] <> ".mx"];

c = A;

Get[A <> ToString[i] <> "-" <> ToStringj] <> ".mx"];

A = fun[A, b, c];

DumpSave[A <> ToString[i] <> "" <> ToString[j] <> ".mx", A];

ClearAll[A, c]; ClearSystemCacheD;

Needs[ "Utilities'CleanSlate'"];

CleanSlate["Globar', Verbose -4 False],

{j, k +1, s + p}];

ClearAll[A, b, c]; ClearSystemCachen;

Needs["-UtilitiesCleanSlate'"];

CleanSlate["Globar, Verbose -+ False],

{i, k + 1, s +p}];

Do[

Get[A <> ToString[k] <> "_"' <> ToStringUj] <> "t.mx"];
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A = prod[d, A];

DumpSave[A <> ToString[k] <> ".' <> ToStringj] <> ".mx", A];

ClearAll[A]; ClearSystemCache[];

Needs[ "UtilitiesCleanSlate'"];

CleanSlate["GlobaI", Verbose -+ False],

{j,k+1,s+p}];

ClearAll[A, d]; ClearSystemCache[;

Needs{"UtilitiesCleanSlate'"];

CleanSlate["Globar", Verbose -> False],

{k, 1, s + p - 1}];

Get[A <> ToString[s + p] <> "2' <> ToString[s + p] <> ".mx"];

A = Inverse[A];

DumpSave[A <> ToString[s + p] <> "2' <> ToString[s + p] <> ".mx", A];

ClearAll[A]; ClearSystemCacheo;

Needs["UtilitiesCleanSlate'"];

CleanSlate["GlobaI", Verbose -+ False];];];

TimeUsed[]

LDU[Iz, lx, ConstantArray[O, {2, 2}]]; //AbsoluteTiming

TimeUsedo

ClearAll[A, lz, lx, x, y, z, w, i, j, k, a, b, c, d, s, p LDU, tran, prod, fun]

ClearSystemCache[]

Needs[ "UtilitiesCleanSlate'"]

CleanSlate["Globar']

(*ChargesFinder - the transfer matrix gets inverted*)

Print[ChargesFinder]

Needs ["UtilitiesCleanSlate'"]

CleanSlate["Globar'l]

$HistoryLength = 0

ClearSystemCachel

ClearAll[voltagename, electrodename, lx, lz, prod, fun, k, q, i, A, a, b, c];

SetDirectory[NotebookDirectory[ <> "\\Segments"];

Get["memorysize.mx"];

Get["segmentsize.mx"];

Get["segmentsz.mx"];

Iz = Quotient[Length[segmentsz], memorysize] +1;
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ClearAll[segmentsz]

ClearSystemCache[

Get["segmentsx.mx"];

Ix = Quotient[Length[segmentsx], memorysize] + 1;

ClearAll[segmentsz, a, b, c]

ClearSystemCache[;

prod = Compile[{{b, .eal, 2}, {c, Real, 1}}, b.c];

fun = Compile[{{a, _Rteal, 1}, {b,Real, 2}, {c, Real, 1}}, a - b.c];

SetDirectory[NotebookDirectoryl <> "\\Segments"]

Get["voltagename.mx"];

Get["electrodename.mx"];

For[k = 1, k < lz + lx - 1, k++,

For[q = 1, q<=Length[electrodename],

SetDirectory[NotebookDirectory[ <> "\\Charges\\" <> electrodename[[q]];

Get[electrodename[[q]] <> ToString[k] <> ".mx"];

ToExpression[s <> electrodename[[q]] <> "=" <> electrodename[[q]]];

q++];

For[i = k + 1, i < Iz + lx, i++,

SetDirectory[NotebookDirectory[ <> "\\TransferMatrix"];

Get[A <> ToString[i] <> "." <> ToString[k] <> ".mx"];

For[q = 1, q<=Length[electrodename],

SetDirectory[NotebookDirectory[ <> "\\Charges\\" <> electrodename[[q]]];

Get[electrodename[[q]] <> ToString[i] <> ".mrx"];

ToExpression[electrodename[[q]] <> "=fun[" <> electrodename[[q]] <>

",A,s" <> electrodename[[q]] <> "]"];

DumpSave[electrodename[[q]] <> ToString[i] <> ".mx",
Evaluate[electrodename[[q]]]];

q++];

];
ClearAll[A];

For[q = 1, q<=Length[electrodename],

ToExpression["ClearAll[" <> electrodename[[q]] <> "]"j;

ToExpression["ClearAll[s" <> electrodename[[q]] <> "]"];

q++];

ClearSystemCache[];

Needs["-UtilitiesCleanSlate'"];

CleanSlate["Globar', Verbose -+ False];

]; //AbsoluteTiming
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Needs["-UtilitiesCleanSlate'];

CleanSlate["Globar', Verbose -4 False];

For[i = 1, i ; Iz + lx, i++,

SetDirectory[NotebookDirectory[ <> "\\TransferMatrix"];

Get[A <> ToString[i] <> "_" <> ToString[i] <> ".mx"];

For[q = 1, q<=Length[electrodename],

SetDirectory[NotebookDirectoryo <> "\\Charges\\" <> electrodename[[q]]];

Get[electrodename[[q]] <> ToString[i] <> ".mx"];

ToExpression[electrodename[[q]] <> "=prod[A," <> electrodename[[q]] <> "]"];

DumpSave[electrodename[[q]] <> ToString[i] <> ".mx",

Evaluate[electrodename[[q]]]];

q++];

]; //AbsoluteTiming

ClearAll[A];

For[q = 1, q<=Length[electrodename],

ToExpression["ClearAll[" <> electrodename[[q]] <> "]"];
ToExpression["ClearAll[s" <> electrodename[[q]] <> "]"];

q++];

ClearSystemCache[;

Needs["-UtilitiesCleanSlate''];

CleanSlate["Globar', Verbose -+ False];

For[k = lz +lx, k > 2, k-,

For[q = 1, q<=Length[electrodename],

SetDirectory[NotebookDirectoryl <> "\\Charges\\" <> electrodename[[q]]];

Get[electrodename[[q]] <> ToString[k] <> ".mx"];

ToExpression[s <> electrodename[[q]] <> "=" <> electrodename[[q]]];

q++];

For[i = k - 1, i > 1, i-,

SetDirectory[NotebookDirectory[ <> "\\TransferMatrix"];

Get[A <> ToString[i] <> "-" <> ToString[k] <> "mx"];

For[q = 1, q<=Length[electrodename],

SetDirectory[NotebookDirectory[ <> "\\Charges\\" <> electrodename[[q]]];

Get[electrodename[[q]] <> ToString[i] <> ".mx"];

ToExpression[electrodename[[q]) <> "=fun[" <> electrodename[[q]] <>
",A,s" <> electrodename[[q]] <> "]"];

DumpSave[electrodename[[q]] <> ToString[i] <> ".mnx",

Evaluate[electrodename[[q]]]];
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];
For[q = 1, q<=Length[electrodename],

ToExpression["ClearAll[" <> electrodename[[q]] <> "I'";

ToExpression["ClearAll[s" <> electrodename[[q]] <> "]"];
q++];

ClearAll[A];

ClearSystemCache[;

Needs[ "UtilitiesCleanSlate'"];

CleanSlate[l"GlobaX', Verbose -> False];

]; //AbsoluteTiming

ClearAll[A, prod, fun, electrodename, voltagename, lx, lz];

ClearSystemCache[;

Needs[ "UtilitiesiCleanSlate'"]

CleanSlate["Globar, Verbose -> False];

(*Potentials - computes the dc potentials and rf electric fields on the

specified grid*)

Print[Potentials]

Print["Memorybegin = ", MemoryInUsen]

Needs["UtilitiesCleanSlat'"]

CleanSlate["Global"]

$HistoryLength = 0

ClearSystemCache[]

ClearAll[int, a, b, c, segments, seg, x, pot, lp, exy, ez, prod, sum, f, fx, fy,

fz, lp, lz, lx, electrodenamedc, d]

SetDirectory[NotebookDirectorya <> "\\Segments"];

Get["memorysize.mx"];

Get["segmentsize.mx"];

int = Compile[{{a, _Real, 2}, {b, _Real, 2}, {c, .Real, 2}},

-c

ArcTan[

(c(-(segmentsize/2 + a)(-segmentsize/2 + b)

V(-segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2 +

(-segmentsize/2 + a)(-segmentsize/2 + b)

\(segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + C2

((-segmentsize/2 + a)(segmentsize/2 + a)(-segmentsize/2 + b)2 +

165



c 2 .(-segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2

V(segmentsize/2 + a) 2 + (-segmentsize/2 + b) 2 + c2 +

c

ArcTan[

(c(-(segmentsize/2 + a)(segmentsize/2 + b)

\(-segmentsize/2 + a)2 + (segmentsize/2 + b)2 + c2+

(-segmentsize/2 + a)(segmentsize/2 + b)

\(segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2

((-segmentsize/2 + a)(segmentsize/2 + a)(segmentsize/2 + b)2 +

c2 \(-segmentsize/2 + a)2 + (segmentsize/2 + b) 2 + c2

V(segmentsize/2 + a) 2 + (segmentsize/2 + b)2 + c2 +

(-se'mentsize/2+b)
Lg I-segmentsize/2+a+ (-segmentsize/2+a) 2 +(-segmentsize/2+b) 2 +c 2 +

segmentsize/2+a+ V(segmentsize/2+a)2+(-segmentsize/2+b)2+c2
(-e ntsize/2 + a)

I -segmentsize/2+b+ (-segmentsize/2+a)2+(-segmentsize/2+b)2+c2]
segmentsize/2+b+ V(-segmentsize/2+a)

2 +(segmentsize/2+b)
2 +c 2

(segmentsize/2 + b)
L segmentsize/2+a+ /(segmentsize/2+a)2+(segmentsize/2+b) 2+c 2 1 +
I -segmentsize/2+a+ /(-segmentsize/2+a) 2 +(segmentsize/2+b)

2 +c
2

(segmentsize/2 + a)
Log L segmentsize/2+b+ \(segmentsize/2+a) 2+(segmentsize/2+b) 2 +c2

-segmentsize/2+b+ (segmentsize/2+a)
2 +(-segmentsize/2+b)

2 +c
2

exy = Compile[{{a, -Rteal, 2}, {b, _Real, 2}, {c, IReal, 2}},

Ljog[

(segmentsize/2 - b + V(-segmentsize/2 + a)2 + (-segmentsize/2 + b) 2 + c2

(-segmentsize/2 - b + \(segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2

((segmentsize/2 - b + V(segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2

(-segmentsize/2 - b + \(-segmentsize/2 + a)2 + (segmentsize/2 + b)2 + c2

ez = Compile[{{a, _.Real, 2}, {b, Rteal, 2}, {c, _Real, 2}},

ArcTan[

(c(-(segmentsize/2 + a)(-segmentsize/2 + b)

V(-segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c 2+

(-segmentsize/2 + a)(-segmentsize/2 + b)

V(segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2 /
((-segmentsize/2 + a)(segmentsize/2 + a)(-segmentsize/2 + b)2+

c2 /(-segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + C2

V(segmentsize/2 + a)2 + (-segmentsize/2 + b)2 + c2 _

ArcTan[

(c(-(segmentsize/2 + a)(segmentsize/2 + b)

\(-segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2+

(-segmentsize/2 + a)(segmentsize/2 + b)
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,(segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2

((-segmentsize/2 + a)(segmentsize/2 + a)(segmentsize/2 + b)2+

c2 V(-segmentsize/2 + a)2 + (segmentsize/2 + b) 2 + c2

\(segmentsize/2 + a)2 + (segmentsize/2 + b)2 + C2

prod = Compile[{{b, _Real, 2}, {c, .Real, 1}}, b.c];

sum= Compile[{{a, _Real, 2}, {b, -Real, 2}, {c, _Real, 2}, {d, .Real, 2}},

a + b + c + d|;

SetDirectory[NotebookDirectoryfl <> "\\Segments"];

Get["electrodename.mx"];

electrodenamedc = Complement[electrodename, {"rf"}];

Get["segmentsz.mx"];

Iz = Quotient[Length[segmentsz], memorysize] + 1;

ClearAll[segmentsz]

ClearSystemCache[]

Get["segmentsx.mx"];

Ix = Quotient[Length[segmentx], memorysize] +1;

ClearAll[segmentsz]

ClearSystemCache[

SetDirectory[NotebookDirectory[ <> "\\Potentials\\Positions"];

Get["M.mx"];
ip = Quotient[Length[M], memorysize] +1;

ClearAll[M]

ClearSystemCache[

pot = Function[{p, z, , w,V}
Module[{lp, lz, lx},

lp = p;

Iz = Z;

Ix = X;

px = py = pz = Rx = Ry = Rz = rf = v;

For[q = 1, q<=Length[electrodenamedc],

ToExpression[electrodenamedc[[q]] <> "="<> v];

q++];

am = ap = bm = bp = c = f = fx = fy = fz = w;

For[i = 1, i ; lp, i++,

Print["Memoryl = ", MemoryInUsefl];

SetDirectory[NotebookDirectory[ <> "\\Potentials\\Positions"];

Get["px" <> ToString[i] <> ".mx"];

Get["py" <> ToString[i] <> ".mx"];
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Get["pz" <> ToString[i] <> ".mx"];

For[q = 1, q<=Length[electrodenamedc],

ToExpression[p <> electrodenamedc[[q]] <> "=" <> "0"];

q++];

xrf = 0; yrf = 0; zrf = 0;

Forj = 1,j ; lz,j++,

Print["Memory2 = ", MemoryInUsen];

SetDirectory[NotebookDirectoryn <> "\\Positions"];

Get["Rx" <> ToStringj] <> ".nx"];

Get["Ry" <> ToString[j] <> ".mx"];

Get["Rz" <> ToStringUj] <>".x]

am = Outer[Plus, px, -Rx];

ap = Outer[Plus, px, Rx];

bm = Outer[Plus, py, -Ry];

bp = Outer[Plus, py, Ry];

c = Outer[Plus, pz, -Rz];

ClearAll[Rx, Ry, Rz];

ClearSystemCache[;

Needs["UtilitieiCleanSlate'");

CleanSlate["Globar", Verbose->False];

f = int[am, bm, c];

f = f +int[am, bp, c];

f = f + int[ap, bm, c];

f = f + int[ap, bp, c];

ClearSystemCache[];

Needs["UtilitiesCleanSlate'"];

CleanSlate["Globar", Verbose->False];

For[q = 1, q<=Length[electrodenamedc],

SetDirectory[NotebookDirectory[ <> "\\Charges\\" <> electrodenamedc[[q]]];

Get[electrodenamedc[[q]] <> ToString[j] <> ".mx"];

ToExpression[p <> electrodenamedc[[q]] <> "=p" <> electrodenamedc[[q]] <>

"+prod[f," <> electrodenamedc[[q]] <> "]"];

q++];

ClearAll[f];

For[q = 1, q<=Length[electrodenamedc],

ToExpression["ClearAll[" <> electrodenamedc[[q]] <> "]"];

q++];

ClearSystemCache[];
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Needs[ "UtilitiesCleanSlate'];,

CleanSlatel"Global, Verbose->False];

Print["Memory3 = ", MemoryInUse[];

SetDirectory[NotebookDirectoryo <> "\\Charges\\rf"];

Get["rf" <> ToString[j] <> ".mx"];

fx = exy[am, bm, c] + exy[am, bp, c] + exy[ap, bm, c] + exy[ap, bp, c];

xrf = xrf + prod[fx, rfl;

ClearAll[fx];

ClearSystemCache[;

Needs["-Utilities'CleanSlate'];

CleanSlate["Global", Verbose->False];

fy = exy[bm, am, c] + exy[bm, ap, c] + exy[bp, am, c] + exy[bp, ap, c];

yrf= yrf+prod[fy,rfl;

ClearAll[fy];

ClearSystemCache[;

Needs[ "UtilitiesCleanSlate'];

CleanSlate["GlobaI", Verbose->False];

fz = ez[am, bm, c] + ez[am, bp, c] + ez[ap, bm, c] + ez[ap, bp, c];

zrf = zrf + prod[fz, rfl;

ClearAll[fz, rf, am, ap, bm, bp, c];

ClearSystemCache[];

Needs[ "UtilitiesCleanSlate'"];

CleanSlate["Globar, Verbose->False];

Print["Memory4 = ", MemoryInUse[l];

];
Forj = lz +1, j lz + lx, j++,

Print["Memory5 = ", MemoryInUse[]];

SetDirectory[NotebookDirectory[ <> "\\Positions"];

Get["Rx" <> ToString[j] <> ".mx"];

Get["Ry" <> ToStringUj] <> ".mx"];

Get["Rz" <> ToStringj] <> ".x"];

am = Outer[Plus, px, -Rx];

ap = Outer[Plus, px, Rx];

bm = Outer[Plus, py, -Ry];

bp =Outer[Plus, py, Ry];

C = Outer[Plus, pz, -Rz];

ClearAll[Rx, Ry, Rz];

ClearSystemCache[;
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Needs["UtilitiesCleanSlate'];

CleanSlate["Globa", Verbose>False];

f = int[c, bm, am];

f = f + int[c, bp, am];

f = f + int[c, bm, ap];

f = f + int[c, bp, ap];

ClearSystemCache[;

Needs["-UtilitiesCleanSlate'']

CleanSlate["Globarl, Verbose->False];

For[q = 1, q<=Length[electrodenamedc],

SetDirectory[NotebookDirectoryn <> "\\Charges\\" <> electrodenamedc[[q]]];

Get[electrodenamedc[[q]] <> ToStringUj] <> ".mx"];

ToExpression[p <> electrodenamedc[[q]] <> "=p" <> electrodenamedc[[q]] <>

"+prod[f," <> electrodenamedc[[q]] <> "]"];

q++];

ClearAll[f];

For[q = 1, q<=Length[electrodenamedc],

ToExpression["ClearAll[" <> electrodenamedc[[q]] <> "]"];

q++];

ClearSystemCache[;

Needs[ "UtilitiesCleanSlate'"];

CleanSlate["GlobaP', Verbose->False];

Print["Memory6 = ", MemoryInUsel];

SetDirectory[NotebookDirectoryn <> "\Charges\\rf"];

Get["rf" <> ToStringj] <> ".mx"];

fx = ez[c, bm, am] + ez[c, bp, am] + ez[c, bm, ap] + ez[c, bp, ap];

xrf = xrf + prod[fx, rfl;

ClearAll[fx];

ClearSystemCache[;

Needs["UtilitiesCleanSlate"]1;

CleanSlate["Globar", Verbose->False];

fy = exy[bm, c, am] + exy[bm, c, ap] + exy[bp, c, am] + exy[bp, c, ap];

yrf = yrf + prod[fy, rf];

ClearAll[fy];

ClearSystemCache[;

Needs["-UtilitiesCleanSlate'');

CleanSlate["Globalr', Verbose->False];

fz = exy[c, bm, am] + exy[c, bm, ap] + exy[c, bp, am] + exy[c, bp, ap];
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zrf = zrf + prod[fz, rf;

ClearAll[fz, rf, am, ap, bm, bp, c];

ClearSystemCache[];

Needs[ "Utilities'CleanSlate'"];

CleanSlate["Globar', Verbose->False];

Print["Memory7 = ",MemoryInUseo];

1;
For[q = 1, q<=Length[electrodenamedc],

SetDirectory[NotebookDirectory[ <> "\\Potentials\\" <> electrodenamedc[[q]]];

DumpSave[p <> electrodenamedc[[q]] <> ToString[i] <> ".mx",

Evaluate[p <> electrodenamedc[[q]]]];

q++];

SetDirectory[NotebookDirectorya <> "\\Potentials\\rf"];

DumpSave["xrf" <> ToString[i] <> ".mx",xrf];

DumpSave["yrf" <> ToString[i] <> ".mx", yrf];

DumpSave["zrf" <> ToString[i] <> ".mx", zrf];

ClearAll[xrf, yrf, zrfl;

For[q = 1, q<=Length[electrodenamedc],

ToExpression["ClearAll[p" <> electrodenamedc[[q]] <> "]"];
q++];

ClearSystemCache[;

Needs[ "UtilitiesCleanSlate'];

CleanSlate["Globar, Verbose->False];

Print["Memory8 = ", MemoryInUseo];

];
];
];
TimeUsed[]

pot[lp, lz, lx, {{1, 0}, {0, 1}}, {1, 0}]; //AbsoluteTiming

TimeUsed[]

ClearSystemCache[];

ClearAll[int, a, b, c, segments, seg, x, pot, lp, exy, ez, prod, sum, f, fx, fy,

fz, lp, xrf, yrf, zrf, rf, am, ap, bm, bp, q];

For[q = 1, q<=Length[electrodenamedc],

ToExpression["ClearAll[" <> electrodenamedc[[q]] <> "]"];

ToExpression["ClearAll[p" <> electrodenamedc[[q]] <> "I"];

q++];

Needs["UtilitiesCleanSlatd']

171



CleanSlate["Globa"]

Print["Memoryend = ", MemoryInUseo]

timeend = AbsoluteTime[;

(timeend - timestart)/3600

A.4 Trap analysis

The user specifies the trap voltages in V, rf voltage frequency in Hz, and the ion mass

in amu. The code computes the dc node and rf node positions in mm (they must

match for the trap to be compensated), trap depth in eV, the secular frequencies in

Hz, and the trap a and q parameters.

(*interpolates the grid voltages*)

Needs["-UtilitiesCleanSlate'']

CleanSlate["Globar'l

$HistoryLength = 0

ClearSystemCache[

SetDirectory[NotebookDirectorya <> "\\Segments"];

Get["memorysize.mx"];

SetDirectory[NotebookDirectoryl];

SetDirectory[ParentDirectory[ <> "\\Potentials\\Positions"];

Get["M.mx"];

lp = Quotient[Length[M], memorysize] +1;

ClearSystemCache[]

Px = {}; Py = {}; Pz = {};

SetDirectory[NotebookDirectory[];

SetDirectory[ParentDirectory[ <> "\\Segments"];

Get["electrodename.mx"];

electrodenamedc = Complement[electrodename, {"rf" }];

For[q = 1, q < Length[electrodenamedc],

ToExpression[P <> electrodenamedc[[q]] <> "={}"];

q++];

Erf2={};

For[i = 1, i < lp, i++,

SetDirectory[NotebookDirectoryl];
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Seirectory[ParentDirectoryfl <> "\\Potentials\\Poitions"];

Get["px- <> ToString[i] <> "L.mx"];

Px = Join[Px, px];

Get["py" <> ToStringfi] <> ".nmx"];

Py = Join[Py, py];

Get["pz" <> ToStringi] <> ".mxc"];

Pz = JoinlPz, pz];

For[q = 1, q :5 Length[electrodenamedc],

SetDirectory[NotebookDirectoryfl];

SetDirectory[ParentDirectoryfl <> "\\Potentials\\" <> electrodenamedc[[q]]];

Getip <> electrodenamedc[[q]] <> ToString[i] <> ".mx"];

TbExpression[P <> electrodenamedc[[q]] <> "=JoinjP" <> electrodenamedc[[q]] <

",p" <> electrodenamedc[[q]] <> ITT]

SetDirectory[NotebookDirectoryfl];

SetDirectory[ParentDirectoryfl <> "\\Potentials\\rf"];

Get['xrf" <> ToString[i] <> ".mxk"];

Get['yrf' <> ToString[i] <> ".mx"];

Get["zrf" <> ToString[i] <> ".mx"];

Erf2 = Join [Erf2, Xrf2 + yrf2 + Zrf2 ];

I;
SetDirectory[NotebookDirectoryfl];

SetDirectory[ParentDirectoryfl <> -\\Potentials\\Positions"];

DumpSave["Px.mx", Px];

DumpSave["Pymx, Py];

DumpSave["Pz.mx", Pz];

Fbr[q = 1, q 5 Length[electrodenamedc],

SetDirectory[NotebookDirectoryfl];

SetDirectory[ParentDirectoryfl <> "\\Potentials\\" <> electrodenamedc[[q]]];

DumpSave[P <> electrodenamedc[[q]] <> ".mx",

Evaluate[P <> electrodenamedc[[q]]]];

SetDirectory[NotebookDirectoryfl];

SetDirectory[ParentDirectoryfl <> "\\Potentials\\rf"];

DumpSave["Erf2.mx", Erf2];

ClearAll[px, py, pz, xrf, yrf, zrf, mw];

For[q = 1, q 5 Length[electrodenamedc],

ToExpression["ClearAll[p" <> electrodenamedc[q] <>"I]
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q++];

Erf2wpos = Table[{{0, 0, 0}, 0}, {Length[M]}];

Erf2wpos[[All, 1]] = M;

Erf2wpos[[All, 2]] = Erf2;

Erf2interp = Interpolation[Erf2wpos, InterpolationOrder - 10]

(*computes the pseudopotential, rf node, and dc node;

gives a cross - section through the pseudopotential*)

NMinimize[{Erf2interp[O, 0, z], 0.001 < z < 1.361}, {z}]

e = 1.60217646 * 10-19;

amu = 1.66053886 * 10-27

m = 88;

freq= 7.22 * 106;

Vrf = 250;

Vmid = -6;

Vend =5;

Vquad = 0;

Vgnd = 0;

pseudopot = Vmid * Pmid + Vend * Pend + Vgnd * Pgnd + Vquad * Pquad+

e*vrf2 r2
4*amu*m*(2*2r*freq) 2*10 6- * Erf2;
pseudopotwpos = Table[{{0, 0, 0}, 0}, {Length[M]}];

pseudopotwpos[[All, 1]] = M;

pseudopotwpos[[All, 2]] = pseudopot;

pseudopotquadinterp = Interpolation[pseudopotwpos, InterpolationOrder -+ 5]

pseudosymmxy = pseudosymmx = pseudosymmy = pseudopotwpos;

pseudosymmxy[[All, 1, 1;;2]] = -pseudosymmxy[[All, 1, 1;;2]];
pseudosymmx[[All, 1, 1]] = -pseudosymmx[[Al, 1, 1]];

pseudosymmy[[All, 1, 2]] = -pseudosymmy[[All, 1, 2]];

pseudopotwpos = Union[pseudosymmx, pseudosymmy, pseudosymmxy, pseudopotwpos];

pseudopotinterp = Interpolation[pseudopotwpos, InterpolationOrder -+ 10]

trapmin = NMinimize[{pseudopotinterp[O, 0, z], 0.001 < z < 1.361}, {z}]
pm = trapmin[[1]]

ClearAll[z]

to = z/.trapmin[[2]]

ClearAll[z]

Show[{ContourPlot[pseudopotinterp[x, 0, z] + "0.128075",

{x, -0.35,0.35}, {z, 0.4, 1}, AspectRatio -* Automatic, Contours - 12,

AspectRatio -+ Automatic,
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ContourLabels -+ Function[{z, y, z},

Text[Style[ToString[N[z]] <> " eV", 16, Bold], {x, y}]],

FrameLabel -+ {"x (mm)", "z (mm)"}, LabelStyle -+ {Bold, 16}],

Graphics[{PointSize[Large], Red, Point[{0, t0}]}]}]

(*computes the coordinates of the saddle point on the last closed

pseudopotential surface, and finds the trap depth*)

ClearAll[nx, ny, nz]
nx = 6;

ny = 3;

nz = 10;

DistributeDefinitions[nx, ny, nz, E2, pseudopotquadinterp];

E2[x., y.., z.] = D[pseudopotquadinterp[z, y, z], x]2+

D[pseudopotquadinterp[x, y, z], y]2 + D[pseudopotquadinterp[z, y) z], z] 2

DistributeDefinitions[E2]

dp =

ParallelTable[

NMinimize[{E2[z, y, z], i z < i + 0.714/nx, j ! y j j+ 3.604/ny,

k < z < k + (1.361 - 0.001)/nz}, {x, y, z}, Method - "DifferentialEvolution"],

{i, 0,0.714 - 0.714/nx, 0.714/nx}, {j, 0, 3.604 - 3.604/ny, 3.604/ny},

{k, 0.001,1.361 - (1.361 - 0.001)/nz, (1.361 - 0.001)/nz}};

dp = Flatten[dp, 2];

sol = SortBy[dp, First];

175



sol[[1;;10]]
ClearAll[nx, ny, nz]

pseudopotinterp[x, y, z]/.{x -+ "0.383859", y -+ "0.", z -+ "1.01192"}

0.0789579

(*displays the trapping potential*)

Show[{ContourPlot3D[pseudopotinterp[r, y, z] == "0.0789579",

{x, -"0.383859", "0.383859"}, {y, -3.604,3.6041,

{z, 0.4, 1.261}, Mesh -+ False, ContourStyle -+ Opacity[0.55](*, PlotPoints a 20*)],

Graphics3D[{

Green, Opacity[1], Cuboid[{-0.3, -3.645,0}, {0.3,3.645, 0}],

Orange, Opacity[l], Cuboid[{0.315, -3.645, 0}, {1.015,3.645, 0}],

Orange, Opacity[1], Cuboid[{-0.315, -3.645, 0},{-1.015, 3.645, 0}],

Orange, Opacity[1], Cuboid[{1.015, 3.545, 0}, {4.5,3.645, 0}1,

Orange, Opacity[1], Cuboid[{1.015, -3.545, 01, {4.5, -3.645,0}],

Orange, Opacity[1], Cuboid[{-1.015, 3.545,01,{-4.5, 3.645,01],

Orange, Opacity[1], Cuboid[{-1.015, -3.545, 0}, {-4.5, -3.645,01],

Lighter[Blue], Opacity[1], Cuboid[{1.03, -0.5,0}, {4.5,0.5, 0}],

Lighter[Blue], Opacity[l], Cuboid[{-1.03, -0.5,0}, {-4.5, 0.5,0}],

Blue, Opacity[1], Cuboid[{1.03,0.515,0}, {4.5, 2.015, 0}],

Blue, Opacity[1], Cuboid[{1.03, -0.515,0}, {4.5, -2.015,0}],

Blue, Opacity[1], Cuboid[{-1.03,0.515, 01, {-4.5, 2.015,011,

Blue, Opacity[l], Cuboid[{-1.03, -0.515,0}, {-4.5, -2.015,0}],

Darker[Blue], Opacity[l], Cuboid[{1.03, 2.03,01, {4.5, 3.53, 0}],

Darker[Blue], Opacity[1], Cuboid[{1.03, -2.03, 0}, {4.5, -3.53,01],

Darker[Blue], Opacity[1], Cuboid[{-1.03,2.03, 0}, {-4.5, 3.53, 0}],

Darker[Blue], Opacity[1], Cuboid[{-1.03, -2.03, 0}, {-4.5, -3.53, 0}],

Red, Opacity[1], PointSize[0.0075], Point[{0, 0, t0}]}]},
PlotRange - All, BoxRatios -+ {2 * 3.645,9, 1.261},

AxesLabel -+ {"x (mm)", "y (mm)", "z (mm)"}, LabelStyle -+ {Bold, 30}]

(*computes the pseudo electrical fields in which the ions move*)

ClearAll[x, y, z, t, i, j, k, a, b, c]
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DistributeDefinitions[x, y, z, i, j, k, pseudopotinterp]

ext = ParallelTable[-D[pseudopotinterpx, y, z], x]/.{x - i, y- j, z -+ k},
{i, -0.714,0.714,0.017}, {j, -3.604,3.604,0.068}, {k, 0.001,1.361,0.034}];

Ex = ListInterpolation[ext, {{-0.714,0.714},{-3.604,3.604},{0.001,1.361}},

InterpolationOrder -+ 5]

eyt = ParallelTable[-D[pseudopotinterp[x, y, z], y]/.{x -+ i, y -+ j, z -+ k},

{i, -0.714,0.714, 0.017}, {j, -3.604,3.604,0.068}, {k, 0.001,1.361,0.034}];

Ey = Listlnterpolation[eyt, {{-0.714,0.714}, {-3.604, 3.604}, {0.001, 1.361}},

InterpolationOrder -+ 5]

ezt = ParallelTable[-D[pseudopotinterp[z, y, z], z]/.{x -+ i, y -+ j, z -+ k},

{i, -0.714,0.714,0.017}, {j, -3.604,3.604,0.068}, {k, 0.001,1.361,0.034}];

Ez = Listhnterpolation[est, {{-0.714,0.714},{-3.604, 3.604},{0.001, 1.361}},

InterpolationOrder -+ 5]

(*solves the equations of motion for the ions; gives the secular frequencies,

and a and q trap parameters*)

Clear[q, fx, fz, fy, a]

temp = 0.0001+ pm;

periodx =

NDSolve [{x"[t]==ma 1 0  * Ex[x[t], y[t], z[t]],

y"t]==M*MII.10-a * Ey[z[t], y[t], z[t]],
z" [t]== *- * Ez[x[t], y[t], z[t]], z[O] == y[== 0, z[0] == to,

='[0]==103  2.e.(temp-pm) y'0] == z'[0] == 0 ,{x, y, z},{t, oo},
Method - "EventLocator", "Event" -+ z~t], "Direction" - -1}, AccuracyGoal->12,
PrecisionGoal->12];

periody = NDSolve [{x"[t]== am 1 0  * Ex[z[t], y[t], z[t]],

yP"[t]==, .1- * Ey[z[t], y[t], z[t]],
z" [t]== e *-- * Ez[x[t], y[t], z[t]], x[0] == y == 0, z[0] == to,

y' [0]==103 * 2*e.(temp-pm) x[] == z'[0] -= 0 ,{x,, Z, {t, oo},
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Method -+ {"EventLocator", "Event" -+ y[t], "Direction" -+ -1}, AccuracyGoal -+ 12,

PrecisionGoal->12];

periodzup =

NDSolve [{x"[t]==man 1 0  * Ex[x[t], y[t],z[t]],

y"[t]== am10 * Ey[x[t], y[t], z[t]],
z" [t]== a m * Ez[z[t], y[t], z[t]], x[O] == y[== 0, z[] == t,

z'[0]==10 3 
* 2*e*(empm), y'[0] == z'[0] == 0 , {x Y, Z}, {t, oo},

Method -+ {"EventLocator", "Event" -+ z[t] - tO, "Direction" - -1},

AccuracyGoal->12, PrecisionGoal->12];

periodzdown =

NDSolve [{X"[t]== am 1 0  * Ex[zlt], y[t], ztt]],

y"[t]=M~amu*o-a * Ey[x[t], y[t], z[t]],

z"[t==am 10- * Ez[x[t], y[t], z[t]], x[O] == y[O] ==0, z[O] == to,
z'[0] == -10 3  2*e*(temp-pm) , y [0] == a'[0] 0 , {z, y, z}, {t, oo},

Method - {"EventLocator", "Event" -+ z[t] - to, "Direction" -+ 1},
AccuracyGoal->12, PrecisionGoal->12];

temp - pm

fx = 1/(2 * periodx[[1, 1, 2,1,1, 2]])

fy = 1/(2 * periody[[1, 1, 2, 1,1,2]])

fz = 1/(1 * (periodzup[[1, 1, 2,1, 1,2]]+ periodzdown[[1, 1, 2, 1, 1,2]]))
2* 2

a (.M ,req _g/
Plot[Evalufx~atezt/proxt0.,prox[,,2),, ]} ltag +Al

Plot[Evaluate[y[t]/.periody], {t, "0.", periody[[1, 1, 2, 1, 1, 2]]}, PlotRange + All]

Plot[Evaluate[z[t]/.periodzup], {t, "0.", periodzup[[1, 1, 2, 1, 1, 2]]},

PlotRange -+ All]

Plot[Evaluate[z[t]/.periodzdown], {t, "0.", periodzdown[[1, 1, 2,1,1, 2]]},
PlotRange -+ All]

0.0001

527335.

113109.

578658.

0.216869

0.00217779
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Appendix B

Numerical evaluation of collisional

enhanced heating rates

The following is Mathematica 7 code for the numerical solution to the collisional as-

sisted heating rates as presented in Section 3.3.

(*set up physical constants and problem parameters*)

Clear[etai, etaf, ti, f]

ts= AbsoluteTime[]

kb =1.38 * 10- 23

hb = 1.054 * 10-

ev = 8.854 * 10-12

c = 3 * 108

a = 1/137

el = 1.602 *10-19

amu = 1.660 * 10-27

me = 9.1093826 * 10-31

debye = 3.33564 * 10-30
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d = 9.806 * debye

M = 88+123 * amu

Q= el*d*m
4*w*ev*hb

el
2

*m
4*lr*ev*hbl

etran = 6.52 * 109 *2* ir * hb

4*r*ev*hb*7

els

4*ir*ev*hb* 2.(t-

(*computes the collisional cross section s*)

f1ea- t6- 321r
3 

*etai*etaf *1*f[etai-, etaf-] - * (etaf-etai) * Exp[2*1r*(etaf-etai)]-1

Im Hypergeometric2F1 li*etai,i*etai,1-i*(etaf-etai),- (
etai

(Hypergeometric2Fl[1 - i * etai, -i * etai, 1 + i * (etaf - etai),

(etaf-etai) 2

4*etai*etaf ] +

Exp [i * (2 * Arg [Gamma[i*(etaf-etai)]*Gamma[i*etaiI]+Gamma[i*etaf]

(etaf - etai) * Log [Abs [- (*ai*etI )

Hypergeometric2Fl[1 - i * etaf, -i * etaf, 1 - i * (etaf - etai),

(etaf-etai) 2  +
4*etai*etaf )

OHypergeometric2F1[ietaf, ietaf, 1 - i(-etaf + etai),

(-etaf+etai)
2

4etafetai J

(Hypergeometric2Fl[1 - ietaf, -ietaf, 1 + i(-etaf + etai),

(-etaf+etai)
2

4etafetai ] +

i(2Arg[ Gamma[iet etaf+etal)] +(-etaf+etai)Log [4Abs

Hypergeometric2Fl[1 - ietai, -ietai, 1 - i(-etaf + etai),

(-etaf+etai)
2

4etafetai

fdex[etai., etaf!] = * (1 + 0.218 * Abs[etaf - etai]- 2/ 3)

fex[etai_, etaf-] = * (1 + 0.218 * Abs[etaf - etai]- 2/3 ) *

Exp[-2rAbs[etaf - etail];
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8[Ji.,jL, etaL, etaf_] =

3*(2*jf+1) * (Q * etai) 2 * ThreeJSymbol[{ji, 0}, {jf, 0}, {1, 0}]2*
4*lr

fdex[etai, etaf] /k0 2

Clear[ti, t, v]

omega = d3500

(*computes the collisional excitation reaction rate*)

g12[t_]:=

Re[

NIntegrate[8.611665937676688*A-32

1 + Abs * 0.218 4
Abs~~~~~- 4.51571723913732-^- .i77s3A2*-

1-8.6 3 5 7 1 0 4 1 7 1 5 2 5 4 *A- 2 4 +ti

2* *m *amu (ir*1.38*10-23)3/
2 * EXP [-t*1.38*10-23

{ti, 2 * etran, 5000kb}, MaxRecursion -+ 500] * (20 )3]

gOl[t_]:=

Re[

Nlntegrate[1.291749890651503*A-31

1 + As 4170.218 4 ,

Abs 4 . 51 57 1 2 39 1 3 7 3 2*^-7 _ 4 .51 5 7 1 7 2 539 1 3 7 32 *A /
L -4.a1785520857627*A -24+ti %t]

2* j*j43*amu (r*1.38*10-23)3/
2 * -XP *1.3810-

{ti, etran, 50OOkb}, MaxRecursion -+ 500] * (2*1o-a )3

(*computes the heating rate rhm and population inversion n0lrat*)

glO[t.]:=gOl[t] * Exp [ etra 3

Z[t_]:= E50(2 * k + 1) * Exp 6.52*10***hb*k*(k+1

(go1[t+g1o[tj+g12[t])*omega 2

4S42t.WO )+(gO1[t]+g1O[t]+g12[t]) 2

3grv[t](glO[tj+gt2_t)+(3glOt+g:2[])St,

rh[-, v..]:=etran * gOMI1Th~t9Igt1-g t/ el
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DistributeDefinitions[gOl, g1O, g12, Z, S, f, rh, etran, kb, amu, t, ti, v, el]

SetDirectory["C:"]

rhout = ParallelTabletrh[z, v], {x,0.5, 10,0.1}]

SetDirectory["C:\\Users\\Moi\\Desktop\\slides 2"]

DumpSave["rhout.mx", rhout];

n1Orat = ParallelTable 11 * Exp etran ] ,{,0.5, 10,0.1}

DumpSave["n10rat.mx", n1Orat];

ClearAll[rhout, n1Orat]

ClearAll[rh, v, 1]

SetDirectory["C:"]

Get["rhout.mx"]

I = Length[rhout]

rh[v_] = Simplify[rhout]

rhm =

Table[{(0.5 + 0.1 * (k - 1)),

NIntegrate [2 * 21kb(00.*(k-1)) * Exp 2*kb(0.15+0.1(k-1)) *

rh[v[[k]], {v, 0, 2*5000kb }, MaxRecursion -+500 } k, 1, l}

(*plots the heating rate per molecular ion*)
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(*plots the the population inversion*)

ClearAll[rh, v, 1]

SetDirectory["C:"]

Get["n10rat.mx"]

I = Length[nlOrat]

func = Interpolation[nlOrat, InterpolationOrder -+ 10]

Plot[func[x], {x, 0.5, 10}, Frame -+ True, Axes -+ False,

FrameLabel -+ {Style["Ion cloud temperature [K]", FontSize -+ 24, Bold],

Style["J:0-1 Population invertion", FontSize -+ 24, Bold]},

PlotStyle -+ Thick, PlotRange -+ {{0, 10}, All},

BaseStyle->{FontWeight-> "Bold", FontSize -+ 24}]
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Appendix C

Numerical evaluation of cavity

assisted side band heating rates

The following is Mathematica 7 code for the numerical solution to the microwave

cavity assisted heating rate coefficient as presented in Section 3.4.

(*set up the numerical parameters of the problem*)

modecm = 27r106 ;

modebm = modecm *

gO = "16574.4";

wC = 21r6.52 * 109;

wo = 21r6.52 * 109;

Q = 106 .

T = 500 10-3

1+ ;

yO = 2 10-

ic = 2 wc/Q;

a = 88/123;

M = (88 + 123)1.660 * 10-27
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p= 88 *123 * (1.660 * 10-27) 2 /M;

(*define the equations enetering the heating rate coefficient*)

nth = 1
E~xp 1.04. -14w

%5 6.5(*+0918 16=WMW),

g 2- - 6.52* 10 18 10wc);

VC 2 (1a+ -r- -a+ 1);

vcm = (1a12+)

vb M= (1 - Ci- Vaj 2-a-+ 1J);

etamwcm I .~OW') vcm 1.054*10-34.

etacbm = (. 2 1 81 w) vbm F2AbS[Wbrn]'

etaccm = (&652 *109118  3 w7 Uc) vcm 1 1054*10.
1026. 2Abs[w.]

s1 =

etaMW2

2(( [(+-c~3w Wo+wmw+ Vn2+(--o+wmw)2) + -o+m - %,/2+&_O+_MW)2 
21

j~2 4 Re C--w -i (-Wc+mw - v n+(-~,O+wMW)2) J-i.(-'.~C+~W+ +Voi*w)2I Re 2+(wo+wmw)2

(1 + 2nth) (i- n2W 2 (2- fl2+(,+

(1+2th + 2(+0) 2 2+(O(,W2) (4 (wj2 + 6j
4

Re 2n2 w -- ~'w + (-Wo+wmw+ V02+(-WO+WMW)2)2 +

LI \ (-Wc+wmw- Vfl2+(-oFWM W)2)

(-wo+wmw - nf2+(-WO+WMW)2)2\/

j- (-WCc+wmw+ y02+( WO+WMW)2))

(f12 + (WO+ LMW) 2 )] 2 (1 +2nth) 2 (2- f+(WwM) 2)) +

(9 2
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Pie[

W0+WW+ 2+(~o~ww)
2  

O+MW 2+(w MW)
2

)2
2n2 + 0 + n2+--_O+-M )2 + (-d+,m - W W

t+i(wc-,amw) '-t (-WC~'wMW c2(o~~) +W;; Wc4+n2+(-wo+Wmw)q

(1 + 2th) (i - f2+( ,o+wmw)2) (2± fl2+(_o+WjMW))

(1+2thth +
(1+Abs1-n 2+( ta0 2 ] 2

2(1+2flth) (2- 1 2
+(-cao+wmw)

(4

(1jg'Re [(+22 __ + (-oww J)2 (-w 0 +WMW)2)2 +
64 -'Ii~wc-MW7 '-i (-Wc+wmw - Vfnl2+&-Wo+WMW)2)

(-wo+Lmw- nf2+(-WO+~W)
2 

)2\/

j-i (-wcw+VW+-TWO+WM))I

(n2 + (-WO + WMW) 2)] 2 (1 + 211th) 2(+ nl2+ AOMW) 2+

(9 2

(-wo+Amw+ln2+(-_aO+_Wu)2)
2

(-wa+Wmw -A/02+(-_O+_MW)2)2 1
t+i(wc--~mwY' f-1(wiw An2+(_.,o+~w)3) 41 -W12WNi2+(-_0+-mw)2

(1 + 2th) (i- nl2IOW) (2+ nl2+(+)W

( (_W~M )bs(1-f 2+( -WO,)2 ] 2

nthh+ ( 2+(-+m
l+2flth 2(1+2nth) 42- 02

2
+(-O+W

2 /

(14D2 +[( ( 2  +
1~gA;~ [ ~ i~wcWMW)+ f-i (-WC+WMW_- n2+(_o+WMW)2)

(-wo+wmw- Vn2+(-WO+gWM)2)2\/

-i (-WC+~WM+ Vl+(-Woww))/

(02 + (-&WO + WMW) 2)] 2 (1+2t) 2 (2+ 2Ww2 2+

(Ui+ N/2 + (-&jo + WMWi)21) 2)) )) ;
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n2 ( Csth 1 + +nh)

S2 = etac2  4(n+(-Wo+WWw)
2 ) +

n 4  (1+fth) (-o+WMw_ n2+(-o+_Mw)2

Kflth - 2(1+2,nth)(n2+2(-wo+WMw)2) 
L+

2
nth

4()+( 4+WW2 2 t oWw 2(MfM)
4(

2
+(-wo+ww)

2
)( -+ (wc+wi-ww-Vfn2+(-wo+&-Mw)2)2) +

n4 +nth (-Wo+Mw+ n2+(-_O+SMw)2 2

(1+fth) 2(1+2fth)(n 2+2(-wo+Mw)
2) + L+2nth

4(02+(-wo+WMW)
2

) (2+(-oc+3+WMW - 2+(-wo+wMw)2)2)

"(1+th) ( o-+WMw+ _n2+(-o+WMw)2

r(Lh -21+"2th)(n +2(-wo+_Mw)
2

) + 1+2nth

4(fl
2

+(-wo+WMW)
2

) (+ (-ac+wi-Mw+ 2+(-wo+WMw)2)2)

X2(11hL nR n nth 2
+00+-W 

- 2d.-_MwMW)

r*(l+nth) ( +(nth-2Oth)(w2+2(l-+FwoWwIw)2)
4(f)2+(-,O+WMW)

2
) X2+(~+~w.w Vnil2-+(-wo+LwMW)2) 2)

S3 = etaccm
2 

(. / 6 +
S3=4 r.2/4+(wcm-wo+ww? ~ 2/4+(wcmiwo-ww?

etacbm 2  . )c
4 r2/4+(Wbm-wo+wmw 0 -K/4+(C'm+Www)2)

Sa[x_, y_, f0.] = Sl/. {ww -+ x, w -Y};

Sb[x-, y_,.00-] = S2/. {wMw - x, w -+ y};

Sc[x., y., z.] = S3/. {Wmw -+ X, Wcm 4 Y Wbm -4 z};

A[x_, 00_] = Sb[x, mode, f0 - Sb[x, -mode, 0O];

(*plot the heating rate coefficeint versus microwave frequency*)

Plot [-Sc [x * 106 + wc, modeem, modebm] , {z, -47r, 47r}, PlotPoints 4 100,

PlotRange -+ {-0.6,0.6}, Frame -4 True,

FrameLabel -+ {"Microwave detuning A=wMw - wo (MHz)",

"Cooling/Heating rate (s1)"},LabelStyle -+ {Bold, 20},

FrameStyle -) Thick, PlotStyle - {Thick}]
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