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Abstract

The Casimir energy is the change in energy of a configuration of objects due to
second quantization of the electromagnetic field. The Casimir energy of a dielectric
object inside a perfectly conducting sphere was recently analyzed [1]. Building on
this result, I calculate the changes in energy levels of a quantum top inside a cavity
after promoting the Casimir energy to a quantum Hamiltonian. I apply the result to
a diatomic molecule and find the changes in the spectroscopy induced by the Casimir
effect. This can potentially provide an additional experimental probe into the Casimir
effect.
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Chapter 1

Introduction

Casimir energies arise from quantum fluctuations of the electromagnetic (EM) field

modified by the presence of objects [2, 3, 4, 5, 6]. The fluctuating EM field must obey

boundary conditions imposed by the objects. The boundary conditions depend on

the size, shape, spatial orientation, and EM frequency response of the objects. The

Casimir energy is the difference between the energy in the EM field with the objects

present and with the objects infinitely separated.

Recently a novel technique for computing the Casimir energy was developed based

on scattering theory [4, 5, 6]. This method uses scattering amplitudes originating at

the surface of the objects and translation matrices that propagate the fluctuations

through the EM field. The scattering amplitudes encode the objects' spatial geome-

try and EM properties, and the translation matrices encode their relative orientations

and separations. These methods have been used to precisely calculate Casimir en-

ergies for a variety of configurations of both conductors and dielectrics. Precision

experiments measuring Casimir forces in the laboratory have provided tests for these

new theoretical tools [7].

I will apply the results of Zaheer et al. [1] - that of a polarizable dielectric in-

side a perfectly conducting sphere - to the energy levels of a quantum top. They

calculated the Casimir energy as a function of the classical coordinates (the location

and orientation) of an object inside a sphere. I will elevate this to a quantum Hamil-

tonian in the space of states of the quantized top. This is justified by a separation of



scales: the fluctuations that dominate the Casimir energy are much faster than the

motion of the top. Treating the top as stationary, it is sensible to use an adiabatic

approximation where the Casimir effect is a small perturbation on the energy levels

of the top.

First I review the general method for computing the Casimir energy as well as

the result for a polarizable material inside a conducting sphere. Next I review the

quantum top, including the quantum numbers, energy eigenvalues, and wavefunctions.

Then I treat the Casimir energy as a first-quantized Hamiltonian and apply first-

order perturbation theory to a quantum top. Last, I use these results to study

changes to the spectroscopy of a diatomic molecule. Current experiments study the

Casimir effect using molecular force probes and other microelectromechanical devices;

precision spectroscopy can provide an additional experimental test of these Casimir

energies.



Chapter 2

The Classical Casimir Problem

The computational method for finding the Casimir energy uses a path integral formu-

lation and techniques from scattering theory. I will outline the path integral method

first. The action in the path integral uses the EM Lagrangian, and the functional

integration is over all possible configurations of the EM fields subject to the con-

straints imposed by the objects. There are no free charges or currents, but quantum

fluctuations induce currents inside and at the surfaces of the objects subject to the

constraints imposed by the properties of the material. The constraints depend on the

size, shape, and composition of the objects being studied. To find the energy, I start

with the path integral formulation for the trace of the propagator.

Tr e-iHcT/h = [DA]c exp SEM(A)

The subscript C denotes the constraints imposed by the objects. The EM action

depends on the total time elapsed T and the fields E and B.

SEMA,T +00SE (, ) -ES Jd'x(6E* -E__'-iB. B)
n=-00A

The EM fields, as well as the permittivity E and permeability p, depend on both

position F and frequency wn - 2.

The partition function for a system at temperature T = is defined by the trace



over the states weighted by e-#H

Z(#) Tr e-H

The free energy for the system is

F(#) = log Z(p).

The ground-state energy is projected out by taking the limit # -+ oo,

O= - lim log Z(3-> #+)

This energy will generally depend on an ultraviolet cutoff. However I am only inter-

ested in the energy due to the presence of the objects; by subtracting out a reference

configuration ZR, these divergences can be canceled. This is usually accomplished

by separating the objects to infinity. When the objects are inside one another the

reference configuration will be different, such as a concentric configuration (see [1]).

1
E=- lim -log Z(#)/ZR(#)

#->oo/#

Analytically continuing the time T -+ -ih# in the EM action, the Minkowski

path integral transforms into a Euclidean path integral. The trace of the Euclidean

path integral is a partition function. Under this transformation, the frequency w,

changes to the wavenumber ,,, = The Lagrangian is quadratic, so modes with

different r.,, decouple and the total partition function decomposes into a product of

the partition function of each mode. The free energy is the logarithm of the total

partition function divided by #; the logarithm of the product over all modes of the

partition functions turns into a sum over all modes of the logarithm of the partition

function of each mode. The ground-state energy is the free energy after taking the



limit # - o. This limit turns the sum over all modes into the integral , f dr;.

= 0j d log Z()/ZR(;) (2.1)
27r fo

This outlines a rather formal description of the Casimir energy, but to calculate it

for a real system more practical techniques must be developed. The Casimir energy

arises from the interaction of the currents and fields between the objects. The interac-

tions between the currents can be expanded in multipoles, and the multipoles become

the variables in the functional integral. These multipoles characterize the fluctuating

potentials within and between objects and the corresponding surface currents on the

objects that satisfy the appropriate boundary conditions. Calculating the interactions

between these multipoles involves changing coordinate systems and translating be-

tween their respective origins. This can be expressed by a set of translation matrices,

denoted U. These translation matrices are universal - they are independent of the

shape and composition of the objects - and only depend on the type of multipole

expansion used and the relative position and orientation of the objects.

The self-interaction terms are the outgoing multipoles generated by the fluctuating

surface currents on the object. This is defined in scattering theory as the T-matrix

and depends on the shape and composition of the object. As an example, consider

the Casimir effect for two objects. There are two translation matrices, {U+, U-}, and

two T matrices, {T1, T2}. U+ translates from object 1 to object 2; U- translates from

object 2 to object 1. T' and T 2 describe the outgoing fluctuations emanating from

objects 1 and 2, respectively. After performing the outlined steps on the partition

function using the effective action and multipoles, this becomes the two-body Casimir

energy in (2.1):

E dr, log Det[1 - U-T 2 U+T'].
27r Jo

Defining a new matrix N = U-T 2U+T1 , using the matrix identity log DetA = Tr log A,



and expanding the logarithm as an infinite series, the Casimir energy becomes

hc 1
S= -2] dr TrY NP. (2.2)

p=1

This presents a simple physical interpretation. Each order in N generates a wave from

the first object, travels to the second object, and is scattered back to the first object

- an expansion in the number of two-scattering processes. Within N the matrices are

built of multipoles that can be expanded as partial waves. This allows for controlled

expansions of the Casimir energy to a desired accuracy.

Utilizing this formulation of the Casimir energy, Zaheer et al [1] calculated the

Casimir energy of an object of size r inside a spherical metal shell of radius R. They

summed all orders in the expansion of the logarithm in (2.2) but assumed the object

to be small enough that only dipole fluctuations on the object contribute. This is

the interior analog of the Casimir-Polder approximation [3]. In this limit the object's

properties are summarized entirely by its static electric and magnetic polarizabilities.

To leading order in the limit R > r, they found the Casimir energy as a function of

the displacement of the object from the center of the sphere to be

S = 3 ER4  {(f(a/R) - a+ - -a)}. (2.3)
3R4P=E,M Z X Y

The functions f and g are known in terms of modified Bessel functions. Generally,

the f-function is about an order of magnitude larger than the g-function for a given

displacement -. The tensor ap is the static electric (P = E) or magnetic (P = M)

polarizability tensor of the object. The most interesting features of this formula are

the non-trivial dependence on the displacement and the orientation dependence of

the coupling to the polarizability tensor.
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Figure 2-1: gE as a function of displacement from the center of the sphere. The
other coefficient function gM is positive and follows a similar functional form. The f
coefficient functions follow a similar functional form and are both larger by roughly
an order of magnitude, with fM positive and fE negative.

2.1 Adiabatic Quantization of Motion

in a Casimir "Potential"

The Casimir energy in (2.3) is a quantum mechanical effect that comes from the

second quantization of the EM field. However, this result is a "classical" energy in

the sense that it treats the object as fixed in space and orientation. In this thesis

I explore treating this energy as a quantum Hamiltonian acting on a quantized top

using perturbation theory. The Casimir energy is dominated by contributions to

the wavenumber integration in the r ~ 1 region for a cavity of radius R. The

quantum top rotates at a frequency dependent on the total angular momentum and

principle moments of inertia of the top. In order for the calculation to be valid in

the quantum situation, the top must be treated as effectively static and adiabatically

responsive to the Casimir effect. This requires the quantum timescale associated with

the rotation of the top to be sufficiently greater than the timescales that dominate the

Casimir effect. The rotational energy is (Iw, = iL, and the semi-classical rotational

frequency is estimated by Wrot = VJ(J+ 1). The dominant frequency from the

Casimir effect is approximately we,,, - -. The requirement we , >> Wrot gives this

condition on the cavity radius in terms of the characteristic moment of inertia of the



top,

cI
> R. (2.4)

h J(J+1)

If the cavity radius satisfies this requirement, then both the low-frequency approx-

imation used to derive the energy formula and first-order perturbation theory are

valid. For a physical system such as a diatomic molecule this is easily satisfied.

2.2 Static Polarizability Tensor Components

in Different Frames

The polarizability tensor that appears in the Casimir energy 2.3 is the static elec-

tric/magnetic polarizability of the object. This is defined in terms of the response

of the object to a constant external electric/magnetic field. The polarizability tensor

is the coefficient matrix from the first correction of the potential due to the pres-

ence of the object; there are higher-order tensors that can contribute as well. The

polarizability is measured in the static limit.

S? aE - ext
= FEext + r3  + -

This is a symmetric rank-2 Cartesian tensor, and it forms a reducible representation

under the angular momentum algebra. In the angular momentum algebra, the po-

larizability can have spherical tensor components of rank-0, 1, or 2. Because it is

symmetric in the Cartesian basis, the rank-1 components vanish. The rank-O compo-

nent is a scalar under rotations. Therefore the orientation dependence of the object

is found in the rank-2 components. The spherical tensor components for the polariz-

ability will be designated [Tf) .

The body frame of the object is chosen so that the polarizability tensor is diagonal

in the Cartesian basis, leaving three free quantities oi, a12 , and ao3 , where the EM

label is supressed. I define three new combinations of these, a = ai + a2 2 + a0s =



Tr ao, # = afi - ao2, and y = a 33 - (aOi + a22). The quantities a, #, and 7 are

defined in terms of the body frame cartesian components. The first, a, is the L = 0

spherical tensor component and is a scalar under rotations. The remaining two, #
and 7, correspond to the L = 2 components.

[Tbody] (2) = - J(2a - ai - a 2 )(Ce 0 3 11 2 (2-5)
[Tboy]~ (2)=~c4-a

I select this normalization for later convenience. These components are in a special

frame where the tensor is diagonal. To distinguish between the polarizability compo-

nents in the different frames, I use numbers in the subscripts (e.g. a 33) to designate

the body frame and letters (e.g. azz) to designate any external (lab) frame.

To rotate the polarizability tensor from one frame into a different frame, a set of

Euler angles denoted w = (#, 0, x) can be used. These rotations can be performed by

use of the Wigner D functions (see appendix A.2). I follow the conventions defined

in Edmunds [8].

2 2

[Ta] = ( D (b, , x) [T/]() = ( e-2xdm ,()e-i"''k [T])

The Casimir energy in (2.3) only couples to the L = 0 and L = 2, m = 0 components

of the polarizability tensor in the frame of the cavity. This is defined by the choice

of the z-axis to be the axis of displacement of the object inside the sphere. To find

the Casimir energy due to the object inside the sphere at an arbitrary orientation, I

rotate the body frame components into the frame of the cavity.

[Tab( 2 =S d ,()ei"'' [T dY1 , =-- #/sin2 cos2 +(3cos 2  _1)

The scalar component is the same in both frames. The energy can be expressed in



terms of a, #, and -y and the orientation of the object relative to the lab frame.

hC E
P=E,M

{(fP(a/R) - f (0)) [Tca] + gp(a/R) [T] } (2.6)



Chapter 3

The Quantum Top

The classical kinetic energy for a free top is

12 2

1 2 _ 3 W 3 .
2 2 2

The Ii are the diagonal components of the moment of inertia tensor in the body

frame of the object, and the wi are the corresponding rotational velocities about the

body frame axes. In this frame the conjugate momenta are Ji = Iiwi, and the kinetic

energy is

j12 2g 2
T = +-+ .3

211 212 213

This is the classical Hamiltonian for a free top, which can now be quantized canon-

ically. In this case the quantization of angular momentum is slightly modified from

the standard fixed-axes angular momentum. The coordinate system for the angular

momentum is in the body frame, so the axes are rotating with the top. This intro-

duces an additional minus sign in the commutation relations, [J, J] = -ieijkJk. This

is still an angular momentum algebra, and all the standard results apply if the minus

sign is treated carefully. The quantum operators j 2 and J3 can still be diagonalized

normally. The eigenvalues are h2 J(J+ 1) and hK respectively, with ranges J > 0 and

-J < K < J. In addition to diagonalizing along J3 , it is possible to simultaneously



diagonalize along one of the external frame coordinates, Jz. This follows from the

fact that 2 and jz both commute with the operator j 3 = j - n 3 , where na is the

unit vector along the principle 3-axis. The product j - i3 is a scalar with respect to

rotations of the top and is independent of any external coordinate rotations generated

by J or Jz. The eigenvalues of J, are hM with -J < M < J.

3.1 The Symmetric Top

The simplest example of a quantum top is a rigid sphere, where the moment of inertia

for all three axes are equal, so I, = I2 = 13. In this case the Hamiltonian is H-1 j 2.
21

The energy levels are E = 1-J(J + 1). Each level is (2J +1)2 degenerate, with a

factor of (2J +1) for both quantum numbers M and K. In this example the Casimir

energy is orientation independent because the sphere has no preferred direction.

A symmetric top has axial symmetry with principle moments I1 = 12 $ 13. Adding

and subtracting the term A from the Hamiltonian rewrites it in terms of the operators211

j2 and J3-

H = + J2 (j) + (6 -)j3
2I1 2 13 21\

The parameter E -' characterizes the shape of the top. This is always positive-13

when e > 1 the top is prolate (cigar-like) and when E < 1 the top is oblate (pancake-

like). In a basis of the operators JI2, J3 , and J., the energy levels are

h22.
E = -(J(J + 1) + (e - 1)K 2 ). (3.1)

2 1 i

The states with K = 0 are non-degenerate. The states with K $ 0 are doubly

degenerate between the ±K states. All of the states are still degenerate for all

(2J +1) M-values. The Wigner D functions are the rotational wavefunctions and the

rotational coordinates are the Euler angles w.

)(w) = (w| J, M, K) = 2J+1
MK87 2 MK)



J=9

J=8

J=7

J=6

J=5

J= 4

J=3

J=2
J=1

K=1

J=7

J=6

J=5

J=4

J=3

J=2

K=2

J=3

K=3
J=8

J=7

J=6

J=5

J=4

J=3

J=2
J=1

K=0
States

Figure 3-1: Energy levels for the quantum top, with E = 10. The dotted lines indicate
levels forbidden because J < K.

These wavefunctions are normalized over the space of the Euler angles. The measure

over this space is dw = sin 0 d# dO dx and the total solid angle is 87r2. When K = 0,

the eigenfunction is independent of the orientation of the 3-axis and the 'D functions

reduce to the standard spherical harmonics.

(3.2)0 V) (-1)M
MK=O(w) = )YJM(0,

The factor (-1)M follows from the choice of phase and the - factor normalizes the

wavefunction with respect to the x angle.

Until now I have assumed that the top was a rigid, featureless object. However, if

there is some structure to the top, an additional component of the wavefunction can

be included along with the associated quantum numbers. I designate this internal



wavefunction @ (Q).

X V) (w, Q) = 2 J+ 1D(J) (Q)

3.2 Discrete Symmetries of the Symmetric Top

A symmetric top can be characterized by two discrete symmetries [9, 10, 11]. One

of these is parity, the inversion of the external frame coordinates. The other is an

exchange symmetry, which indicates the top is symmetric about a reflection in the

xy-plane that divides the upper and lower halves of the top.

3.2.1 Parity

Under the parity operation the external coordinates are inverted. The first two Euler

angles are spherical polar angles that follow the well-known transformation under

parity of # -+ 7r + # and 0 -+ 7r - 0. The third Euler angle, x, is a rotation about

the final z-axis. However, the symmetric top is identical under rotations about the

internal 3-axis, meaning the final rotation is redundant. I rotate the internal 2-axis

so that it matches its alignment before the parity inversion, a convention that will be

useful for the other discrete symmetry. This is accomplished with the transformation

x -+ 7r - x. I will show how this affects the wavefunction assuming that the internal

wavefunction is an eigenfunction of parity, P4(Q) = p@(Q), where p = ±1. In the

K = 0 case the rotational wavefunctions reduce to the spherical harmonics (3.2),

which are eigenstates of parity with eigenvalue (-1)J. The total parity of the state

is ir = p(-1)J, and the wavefunction is

K=0,r(W) - (-1)M (0,1+):1(Q)

The parity alternates between the J states. If the internal function is not an eigen-

function of parity, one can be constructed from a linear combination of the states

4(Q) and P4(Q) = 4(Q).



In the K f 0 case, the rotational wavefunctions are not eigenstates of parity.

I calculate how the wavefunctions change under this transformation, assuming the

internal wavefunction transforms as P4h(Q) = (Q).

PWV() = 2J+1 1/2D ( r +#,r -,r X) (Q)
MK M ~ 872 / M

= (-1)JK 1 1/2 K

This changes the sign of K, changes the internal wavefunction to 1(Q), and introduces

an overall sign of (- 1 )J-K. States of definite parity are constructed from the pair of

degenerate states with ±K.

1)J 11/2 EJ
w) = 16(2 J/ [D K Q (1)J-KK( (Q (3.5)

3.2.2 R-Symmetry

The second discrete symmetry is the exchange of the upper and lower halves of the

top. In the top's body frame this is accomplished through the operator Ri, a rotation

by 7r about the internal 2-axis. In the lab frame this rotation is designated Re; it

is identical to the rotation performed in the parity operation. If the top has this

symmetry property, then these two operations must be identical. The two cases with

K = 0 and K 4 0 have important differences.

When K = 0, the operator Ri acts on the internal state 1(Q) and has eigenvalues

r = t1. The eigenvalues must be ±1 because R? is a rotation by 27r for a system

with integer angular momentum, and thus R2 = +1. The operator Re acts on the

rotational wavefunction in the same way as the parity operation due to the choice of

transformation of x. The eigenvalue is the same as before, (-1)J. Setting the two



eigenvalues equal, the top has the following rotational spectrum:

() ( )M YJM (, ) 4(Q)-

r =+1 = J=0,2,4,...

r =-1 J J 1, 3,5,...

A top with an internal state that has a definite r-value has either J = 0, 2, 4, or

J = 1, 3, 5, - --. This is a powerful constraint on the rotational spectrum that halves

the allowed J values based on the internal symmetry of the top. The eigenfunctions

when K = 0 are the same for parity in equation (3.4), and the quantum numbers r

and p are distinct.

When K / 0, the internal state can no longer necessarily be labeled with the

eigenvalue r. Instead, I denote the rotated state R 141(Q) = 4(Q). The operator

Ri has the eigenvalues Z2 = (-1)2J. The internal state may not have integer total

angular momentum and this operator introduces a complex phase instead of a real

eigenvalue. The rotation Re acts on the rotational wavefunction with the same trans-

formation as parity. This operator introduces a phase (- 1 )J-K and takes K -+ -K.

WI'(w) = 2J+ 1)1'2 ( ) + (-1)J-K -K Q (3.6)

The P and R operators acting on the rotational wavefunctions have the same effect

on the Euler angles and thus are commuting observables. For the total wavefunction

to be an eigenfunction of both, the internal wavefunction must transform such that

@(Q) = t4(Q).

K=0 Kf0
r=+1,7r=p r= -1,7=-p 7 = ±1
J=0,2,4, ... J = 1,3,5, ... J=K,K+1,K+ 2,.. .

Table 3.1: The allowed quantum numbers of the states of the top.



Chapter 4

The Casimir Effect on a

Quantum Top

Before calculating the matrix elements of the Casimir effect for a quantum top, an

analogy can be drawn with the electric dipole operator for a charged particle on a

sphere. In this case the wavefunction for the particle is described in terms of spherical

harmonics Yim rather than Wigner D functions. The dipole moment operator is qz,

where q is the charge of the particle and z is the displacement along the z-axis. The

position operator z can be rewritten as R cos 0 since the particle is constrained to a

sphere. In terms of spherical harmonics, this is proportional to Y10.

(J', M'|qz|J, M) = J ddQ'{ J'M'|'{)('|qR cos0}Q)(QJ, M)

qR JdQdI'YJ'M' (Q)Y 10 (Q)(- ')YJM(Q)

J' 1J~ qR
-M' 0 M

This matrix element evaluates to a reduced matrix element, qR, and a Wigner 3j

symbol.

For a quantum top inside a conducting spherical cavity, I start with the Casimir

energy found in equation (2.6). The polarizability tensor is promoted to a quantum



operator and the "classical" energy becomes the Hamiltonian operator. The coef-

ficients for the different spherical tensor components are denoted BPm. I find the

first-order energy splittings due to this interaction by taking the expectation value of

the Hamiltonian between two states (S'| IS). These states are labeled with rota-

tional quantum numbers JC'), M'), and K('). Let Q(') denote any additional quantum

numbers that characterize the system.

(S'I W|I S) = B (J', M', K', Q'I [T ]L I J, M, K, Q)
P,L,m

From equation (2.6), there are two non-zero coefficients, the L = 0, m = 0 scalar

component and the L = 2, m = 0 tensor component. The scalar component is

independent of the rotational configuration of the top; this shifts all of the states by

a fixed amount and does not change the spectroscopy. The tensor component does

depend on the rotational states and affects the rotational spectra, so the remaining

analysis only includes that term. The coefficient for the L = 2, m = 0 polarizability

operator is B2 = 34 9P(a).

The classical polarizability is measured by fixing the object in space, applying a

static uniform field, and measuring the response field. Let the L = 2, m = 0 quantum

polarizability operator be denoted [TQJO, where I suppress the electric/magnetic field

index P. The object is held at the fixed Euler angle w in the lab frame, and the

expectation value for the polarizability is

(/'IT ab]( 2) 1 = [ (a]2)6(W, _ W).

In section 2, I calculated the lab frame polarizability tensor in terms of the body frame

components and Wigner D functions. To find the matrix element of the polarizability

operator, I insert two complete sets of position states into the expectation value and

use the expression for the integral of the product of three Wigner D functions to



evaluate the resulting integral (equation (A.2) in the appendix).

(S'I [T ab]2 IS) = dw'dw (J', M', K'I 2') ('|I[T ab] 2) L) (w J, M, K)

=Jdwdw' 2J'+ 1 a=* (')[Tab] 2  2+±1 2K

= (2J' + 1)(2J + 1) fd D J'*() X
87J2M,KkW

(2 moy')DJ W
= (l)K'-M'(2J + 1)(2j + 1)

J'

-K'

2

+2

J' 2 J
X

-M' 0 M

J + J'

K )2 -K'

2

-2

In the last line I insert the combinations of the polarizability tensor defined in equation

(2.5), #3 = aQ -a 2 and y = a (aii + a2), for the operators [Tgody](2,O. The

first Wigner 3j symbol gives the selection rule that M = M' between the two states,

which follows from how the Casimir effect couples to the polarizability. The z-axis

is the axis of displacement of the top inside the sphere and M is the projection of

the angular momentum this axis. Because the cavity is spherically symmetric, the

coupling of the Casimir effect is independent of the z-axis and does not affect the

M quantum number. The last line shows how the Casimir effect couples to the

L = 2 polarizability tensor components. When the polarizability is axially symmetric

the body frame components are ai = ao2, and the combinations are #3-0 and

= a 3 - ai. In this case, because the top is axially symmetric, only the first term

in the final line contributes and gives the selection rule K = K'.

The first-order energy shift for the state I J, M, K) with an axially symmetric

polarizability tensor is

AEcas= E B (()K-M J

P=E,M -M

2 J

0 -K

2

0

1 J' P i

2 (-K'3 _



This is the shift in energy levels due to the Casimir effect for a polarizable symmetric

top inside a conducting sphere. The sign of K does not affect the energy shift. The

states with parity and/or R symmetry are superpositions of rotational eigenstates

with quantum numbers ±K, therefore these states will have the same change in

energy levels. The free quantum top's energy levels are independent of the quantum

number M. The perturbation due to the Casimir effect depends on the absolute value

of the quantum number M, breaking the degeneracy. This result also follows from

the Wigner-Eckart theorem by reducing along the M and K quantum numbers and

assuming spherical symmetry of the cavity and axial symmetry of the top.
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Chapter 5

A Physical System

Diatomic Molecules in a

Metallic Cavity

A diatomic molecule inside a metallic cavity provides an excellent test case for the

Casimir effect. These molecules are axially symmetric tops, have well-known rota-

tional band spectra, and have a non-zero L = 2, M = 0 spherical tensor component

of their electric polarization. For a full discussion of the spectroscopy of diatomic

molecules, see the classic text by Herzberg [9] or the modern Brown and Carrington

[10].

5.1 Brief Review of Diatomic Spectroscopy

A diatomic molecule is a system of two nuclei and their respective electron cloud with

a complicated set of interaction between every object involved. Even the simplest

example of a hydrogen molecule does not permit an exact solution of the energy

levels. In this case an adiabatic approximation is made, called the Born-Oppenheimer

approximation, where the (fast-moving) electrons follow the motion of the (slow-

moving) nuclei adiabatically. The electronic states change slowly from the motion

of the nuclei and do not mix with each other. The electronic wavefunction depends



only on the position of the nuclei, not their momenta or orientation. The nuclear

wavefunction neglects the electrons entirely; these interactions can mix the nuclear

states. The electrons' positions are designated ri. The relative nuclear position

and orientation is characterized by the inter-nuclear separation R and a set of Euler

angles w. This approximation separates the total wavefunction into a product of the

electronic and nuclear wavefunctions.

Jtot = e(Rr ON (R, w)

From here on I ignore the electronic wavefunction and assume that it is the ground

state configuration. The two nuclei are bound by an inter-nuclear potential forming

a "dumbbell" configuration that is free to rotate. At leading order, the rotational

motion is that of a rigid, symmetric quantum top, and the binding potential is ap-

proximately a harmonic well. As a result, the wavefunction for the nuclei obeys a

rotational-vibrational Schrddinger equation. An additional approximation assumes

the rotational and vibrational motions are completely independent. This separates

the nuclear wavefunction into rotational and vibrational components.

ON (R, w) = NOib(R) 0"t(w)

The vibrational wavefunction satisfies the harmonic oscillator wave equation, with

vibrational modes denoted v. There are higher-order anharmonic corrections to the

potential function that can be treated perturbatively. Due to these corrections, the

energy levels are treated as a perturbation series in the quantum number (v + }).
Following standard spectroscopic notation, the first two coefficients are denoted we

and -XeWe.

Evib = We(v+1/2) - xewe(v +1/2) 2 +-
hc

The coefficient xewe is approximately a factor of 10-2 smaller than We.

The rotational wavefunction is a symmetric top, which is solved by the Wigner D



functions as found in equation (3.3). The nuclei have two distinct moments of inertia,

IL and II, which are defined relative to the symmetry axis connecting the two nuclei

of the molecule. These are assumed to be completely rigid. The body frame moments

of inertia in Section 3 are I1 = 12 = I_ and I3 = 11. As the nuclei have much smaller

radii than the inter-nuclear distance, I_ >>> II. Following standard spectroscopic

notation, the two rotational coefficients are denoted B = h and A = , with47rcI_1  47rclj1 '

A>>>B.

Erot J +1)+ h2 K 2 = BJ(J + 1) + (A- B)K 2
hc 47rcI 4rc1111 47rcIlJ

Because A >>> B, the states with different values of |K are completely separated

from each other. The rotational energy levels are the same as those of a simple

rotor, BJ(J + 1), except there is a shift of magnitude, (A - B)K 2 , and levels with

J < K are absent [9]. The solution of the rotational wave equation assumes that the

moment of inertia is perfectly rigid, however the nuclei are not at a fixed separation.

Therefore the rotational constant B depends on the separation of the nuclei through

the moment of inertia. There are numerous perturbative corrections that come from

the rotational motion and the vibrational oscillations of the nuclei. Because of these

corrections, the rotational energy levels are written as a power series in both the total

angular momentum J(J + 1) and oscillator mode (v + j).

Erot = BeJ(J + 1) - De J 2 (J + 1)2 - aeJ(J + 1)(v + 1/2) + - (5.1)
hc

The coefficients De and ae are approximately 10-3 to 10-4 smaller than the rotational

constant Be.

In diatomic spectroscopy, the quantum number |K is designated A, with the

notation {A = 0 -+ E state, A = 1 -+ I state, A = 2 -+ A state, A = 3 -+

<1 state, ... }. This is analogous to the spectroscopic notation for the electronic

angular momentum of atomic states, {S, P, D, F, ... }. For diatomic molecules,

because they have axial symmetry instead of spherical symmetry, A is usually a

good quantum number and is used to label the state. Depending on the strength



of the coupling between the nuclear and electronic degrees of freedom, the quantum

number E for the projection of the total electronic angular momentum along the

inter-nuclear axis is also needed. In this case the quantum number Q = IA + E|

is the good quantum number to label the states, however the notation labeling the

states by {E, H, A, <,D... } is maintained. The states are also labeled by the total spin

angular momentum of the electronic wavefunction Se with quantum number S. This

is denoted by the combination 2S + 1 in the upper-left index. The parity of the state

is designated by t in the upper-right index. For homo-nuclear molecules, there is an

exchange symmetry between the two nuclei of the molecule. This is identical to the

operator R discussed in section 3. In spectroscopic notation, the quantum number

r = ±1 is instead denoted g and u for gerade (r = +1) and ungerade (r = -1), from

the German for even and odd, and is placed in the lower-right index. For example,

a parity even, gerade ground state with S = 1/2 and Q = 0 would be labeled 2E+

Table 5.1 lists some diatomic molecules and their properties.

Rotational Polarizability [12, 13]
Molecule Ground Constant (Be) (atomic units) (10-24 cm 3 )

State [14] (cm- 1) [14] aE aE -
H2 1E+ 60.85 6.8 4.8 .30
N2  1E+ 1.998 15 10 .74

02 3E+ 1.438 15 8 1.0
C12  

1E+ 0.244 64 17 7.0
HCl 'E+ 10.59 24 22 .30
CO 1E+ 1.931 15 12 .44
NO 2H 1.672 15 10 .74

Table 5.1: The ground state, rotational constant, and polarizability components of
a selected set of diatomic molecules. The polarizabilities a are calculated in atomic
units [12, 13]. The polarizability component that appears in the Casimir energy

= o1 - a1 is in cm3 to facilitate conversion to spectroscopic units.



5.2 The Adiabatic Condition

The adiabatic condition in equation (2.4) is in terms of the moment of inertia 1±. In

terms of the rotational constant measured in spectroscopy, the adiabatic condition is

1

4rBe /J(J+ l) > R.

For the typical values of Be ~ 2 cm- 1 and J ~ 20, 1 = 2 x 10- cm,
47rBe /J(J+1)

and the adiabatic constraint is 20 pum > R. Chlorine may be the ideal molecule

to study this effect - it has a very large polarizability and a very small rotational

constant. For the chlorine molecule, the adiabatic constraint on the size of the cavity

is 160 pm > R, a factor of 8 larger for the same J level. A larger cavity reduces the

size of the energy splittings as but may be more experimentally realizable. The

energy splittings grow linearly with the polarizability; chlorine's large polarizability

can partially compensate for the lost energy sensitivity.

The size of the molecule is an additional constraint on the cavity. The calculation

in [1] does not include the region near the cavity walls because higher-order fluc-

tuations contribute and the sum over multipoles does not converge rapidly enough.

To avoid this region the cavity should be much larger than the size of the molecule,

R > r, which is about 10 A.

5.3 Spectral Broadening

The Casimir effect induces a splitting of the (2J + 1) degenerate states due to the

dependence on the M quantum number. The individual |MI states may be difficult

to resolve in precision spectroscopy; however, this could be measured as a broadening

of the spectral lines. The broadening is the difference between the highest and lowest

energy states split from the same initially degenerate J, K state. Some states have a

small (or vanishing) broadening, while at large J all states broaden to an asymptotic

value of o times the coefficient B, 27 from equation (4.1). Figure 5-1 shows how

much the states broaden as a function of J within the same K band. For a cavity
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radius of R = 1 pm and a molecule with polarizability 10-24 cm 3 , a typical value of

this broadening would be approximately 10-10 cm-1 , although this is very sensitive

to the position in the cavity.

5.4 Dipole Transitions

The dominant transitions between rotational states are through dipole radiation.

These transitions are proportional to the square of the matrix elements of the dipole

moment operator, 'E = pt0 (. + Q + 2), where pO is the constant dipole moment of

the molecule. To calculate the matrix elements, the direction operators are written

in terms of the Wigner D functions.

1- 'D l (1) 1)

= '(D - 1 ),y = -- (D +D ,o) , =

Inserting these into the dipole moment operator, the matrix elements are proportional

to a set of Wigner 3j symbols.
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The first Wigner 3j symbol requires AK = 0, AJ = 0, ±1. If K = 0, then AJ = 0

is forbidden as well. The second Wigner 3j symbol has a similar set of conditions:

AM = 0, ±1 and AJ = 0, ±1. The molecule couples to all three of these cases

and radiates in all directions. For a freely rotating diatomic molecule with fixed K,

the energy levels are independent of M, and the frequency of radiation emitted is

proportional to J(J + 1) - J'(J' + 1). If J' = J - 1, the transition energy is

E
- = B[J(J+ 1) - J(J - 1)] = 2BJ.

hc

The rotational spectrum lies in the 1 to 100 cm- 1 range, depending on the molecule

and transition. There are a variety of corrections to the spectrum from the rotational

and vibrational motions (see equation (5.1)), which are smaller by a factor of 10-3 to

10~4.

For a diatomic molecule inside a conducting cavity, the Casimir effect changes the

rotational energy levels according to (4.1). The energy shift is of the same order as

calculated for the spectral broadening in Table 5-1; for a cavity radius of R = 1 Pm

and molecule with polarizability 10-24 cm 3 , the spectral change is approximately

10~10 cm- 1. The chlorine molecule can adiabatically respond to a much larger cavity.

In this case, for a cavity of radius R = 10 pm and an estimated polarizability of

7 x 10-24 cm 3 , the spectral change is approximately 10-13 cm- 1. The larger cavity

radius reduces the spectral shift by four orders of magnitude. The extreme sensitivity

of the Casimir energy on the cavity radius coupled with the adiabatic condition on

the size of the cavity argues for a small cavity (e.g. R < 1 pm). This may present a

difficult experimental challenge.



Chapter 6

Conclusion

I have calculated the Casimir energy splittings of a quantum top inside a perfectly

conducting sphere. This required "adiabatic quantization" - treating the rotating

top as effectively static and adiabatically responsive to the fluctuating electromag-

netic field. The resulting Casimir energy depends on the static polarizability and all

three quantum numbers (J, M, K) that describe the motion of the top. This pertur-

bation induces a splitting in the rotational spectroscopy and breaks the degeneracy

due to the quantum number M from 2J + 1 to 2 states per rotational level. I applied

the result to a diatomic molecule inside a metallic sphere, calculating the expected

changes in spectroscopy in several diatomic systems. Though the experimental ob-

stacles to measuring the small shifts calculated may be insurmountable for now, this

can potentially provide an additional experimental test of the Casimir effect.



Appendix A

Selected Results from Edmonds'

Angular Momentum in

Quantum Mechanics

The following are a set of result from Edmonds' Angular Momentum in Quantum

Mechanics [8], in particular from Chapters 3, 4, and 5. This was an invaluable text

for my research as a clear, concise reference on the properties of the Wigner 3j symbols

and the Wigner D functions, as well as the spherical tensors discussed in Chapter 2

and used throughout this thesis.

A.1 Wigner 3j Symbols

The Wigner 3j symbols come from the coupling of two angular momenta ji and j2

to form a state with angular momentum ja. The Wigner 3j symbols are defined by

i j72 j = (-1)1J-2-"3(2j 3 + 1)~ 11 2 (jimi, j 2m 2|jij2 ja -m 3 ).
\ 1 M2 M3



The inner product on the right side are Clebsch-Gordan coefficients. These coefficients

vanish unless the quantum numbers satisfy the following conditions:

m 1 + m 2 + m 3 =0

|ji - j2| h j5 31 + j2-
(A.1)

The Wigner 3j symbols obey many symmetry properties. Under an even permutation

of columns the value remains unchanged; an odd permutation multiplies the value by

a factor of (- 1 )jl+j2+3. The values of the mi can all change signs by multiplying by

the same factor.

ii

mi

M1

32 j3

m 2 m 3

j2 j13

m 2 m 3

2M2
32 3

m 2 m 3

j3

M3

i1

m

31 /3

3 j3

1 ( 3  M3

= ( 1 )l+ 2+ 3 (

32

M2

-- i

i mi

j2 3

-M2 -M3

They also have orthogonality properties as follows:

(23 + 1)
j3,m3

m
mi ,m2

32

j
77
1 j2 31 M2 n3
M3 M1 M2

j3

m 3

) = mim m2,ms2 ,

3 ± 1j 3,jJm 3 ,m'6(j1j2j3),

12

2

where J(j1j 2j 3) =

zero otherwise.

1 if the angular momenta satisfy the triangular condition (A.1) and

(-1)jl+j2+33

31

j3 j2m3 M2

j2

M2



This thesis makes extensive use of the following Wigner 3j symbol.

J J 2 = _M 2[3M 2 - J(J + 1)] 1

M -M 0 [(2J + 3)(2J + 2)(2J + 1)(2J)(2J -1)]1/2

A.2 Wigner D Functions

The Euler angles (a, #, 7) are a set of angles that rotate one frame of reference S into

a new frame S"'. Respectively, these rotations are about the z-axis, y'-axis, and then

the z"-axis. The generator of finite rotations for these angles is represented

D(a,#,37) = exp Jz exp ( J) -exp Jz-

The azimuthal angles a and y each extend from (0, 27r), and the polar angle # extends

from (0, 7r). The three Euler angles are denoted by a single symbol w. The measure

is dw = sin 0 do dO dx and the total solid angle is 87r 2 . The matrix elements of the

Wigner D(w) between two angular momentum states define the Wigner D functions.

(jm'| D(w)|1jm) = D2 Imn(W)

The angular momentum states are in representations that are diagonal in Jz, so the

dependence of the Wigner D functions on the angles a and 7 can be immediately

expressed.

UV)m(w) = exp(iam') d$?3,(#3) exp(iym)

The # dependence is non-trivial and I denote it with the function dj3m(/O).

d2m(#) = (jrn'j exp J n ) = D m(0, #, 0)



The dj3m(#/) obey the following transformation properties:

d'm m(7F - 3)

d~3m(3)

= (-1)jd/-Fm(7 - #) = (-1)j~"'d() ,

= (-1)" 'di_,-m(#) = (-1)M' md$m (3)

The Wigner D functions form a complete set of orthonormal functions over the Euler

angles.

8
1

2 JJdw 1 m2 )m2 ()2j, 1+ 1, m1, m2

I use the symmetric expression for the integral of the product of three Wigner D

functions to arrive at the result (4.1). This is the general expression:

dw D Q (w)D , (w)D ,() =872NI JJ m 2 1M2 m 3 ,m 3

j2 3

2

(1 j2 3

m2 m3
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