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Abstract

Atmospheric nitrous oxide N20 concentrations have been rising steadily for the past century
as a result of human activities. In particular, human perturbation of the nitrogen cycle has
increased the N2 0 production rates of the two major sources of this greenhouse gas, soil and
the ocean. Nitrification, and particularly ammonia oxidation, is one of the major processes
that produces N20 in the ocean. In this thesis, a series of stable isotopic methods have been
used to characterize the biogeochemical controls on N20 production by marine nitrification
as well as the natural abundance stable isotopic signatures of N20 produced by marine
nitrifiers. This thesis shows that in addition to chemical controls on N20 production rates
such as oxygen (02) and nitrite (NO2 ) concentrations, there are also biological controls
such as nitrifier cell abundances and coastal phytoplankton blooms that may influence N20
production by ammonia oxidizers as well. Ammonia oxidizers can produce N20 through
two separate biochemical mechanisms that have unique isotopic signatures. Using culture-
based measurements of these signatures, we conclude that one of these pathways, nitrifier-
denitrification, may be a significant source of N20 produced in the South Atlantic Ocean
and possibly the global ocean.
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1. INTRODUCTION

Nitrous oxide (N2 0) is the third most important greenhouse gas in terms of anthropogenic

climate forcing (Solomon et al., 2007). Human activities have increased the flux of N20

from the earth's surface by 40-50% since the industrial revolution (Hirsch et al., 2006), so

that at 322 ppb, its current atmospheric concentration is 17% higher than the preindustrial

concentration (Sowers et al., 2002; Prinn et al., 1990). Accelerating rates of microbial

nitrogen cycling driven by agricultural use of nitrogen fertilizer have probably fed rising

N2 0 concentrations. Biomass burning, cattle farms, and fossil fuel combustion also make

smaller contributions to the atmospheric N20 budget (Solomon et al., 2007; Galloway

et al., 2004). In the atmosphere, N20 has a 120 year life span before reactions in the

stratosphere destroy it (Prinn et al., 1990; Volk et al., 1997). These reactions include

photolytic and photo-oxidation processes that also destroy ozone (03), increasing the earth

surface's exposure to ultraviolet radiation (Crutzen, 1970; Johnston, 1971). With the phase

out of industrially manufactured 0 3-depleting substances, N2 0 is now ranked as the most

important 03 depleting substance in the atmosphere (Ravishankara et al., 2009).

The oceans are an important source of N20, contributing up to 25% of global emis-

sions (Nevison et al., 2004; Solomon et al., 2007). Marine N2 0 is produced by cycling of

the ocean's natural or baseline nitrogen inventory as well as growing amounts of nitrogen

supplied to the ocean by human activities. Several microbial processes are involved in

N2 0 cycling. In oxic thermocline waters, nitrifying microorganisms are thought to produce

N2 0, while in suboxic and anoxic waters, denitrification can both produce and consume

N2 0 (Cohen and Gordon, 1978; Naqvi et al., 2009). Nitrification is the sequential con-

version of ammonia (NH 3 ) to nitrite (N02) and then nitrate (N0 ). This 02 dependent

two-step process is carried out by distinct groups of chemolithoautotrophic microorganisms:

ammonia-oxidizing bacteria and archaea convert NH 3 to N02 and nitrite oxidizing bacteria

convert N02 to N03 (Martens-Habbena et al., 2009; Ward and O'Mullan, 2005). N20 is

a byproduct of ammonia oxidation, the first nitrification step. In contrast, denitrification

is an anaerobic heterotrophic process that reduces N03 to dinitrogen N2 during organic



carbon respiration. The enzyme-mediated steps of this process reduce NO to N02, nitric

oxide (NO), N2 0, and then N2 (Figure 1).

Marine N2 0 was originally attributed to nitrification or denitrification based on where

its distributions were in relation to maxima and minima in 02, NO, and N03 concen-

tration profiles. In aging, oxic water masses, decreasing 02 concentrations and increasing

N03 concentrations are usually associated with increasing N20 concentrations, produc-

ing especially tight linear correlations between N2 0 and 02 and implicating nitrification

as the source of most marine N2 0 (Elkins et al., 1978; Oudot et al., 1990; Naqvi and

Noronha, 1991; Yoshinari, 1976; Nevison et al., 2003, 1995). However, in low 02 (<5tM)

environments, the linear relationship found in higher 02 waters breaks down as more N2 0

is produced relative to 02 consumption (Codispoti and Christensen, 1985). Two different

phenomena may explain this nonlinearity. The first is the increased production of N2 0 by

nitrifiers under low 02 conditions (Goreau et al., 1980; Nevison et al., 2003). The second

is denitrification interrupted by turbulent injections of 02 that disrupt the full denitrifi-

cation sequence (Figure 1) and allow the intermediate, N2 0, to escape further reduction

(Firestone and Tiedje, 1979; Naqvi et al., 2000). There is also a sink for N2 0 in anoxic

waters such as those in the cores of the stable oxygen deficient zones (ODZs) in the East-

ern Tropical North and South Pacific and the Arabian Sea where low N2 0 concentrations

are maintained, providing evidence that denitrification consumes N2 0 in addition to NO 3

and N02 (Elkins et al., 1978; Cohen and Gordon, 1978; Naqvi and Noronha, 1991; Farias

et al., 2009). Although N20 is destroyed in these core anoxic waters, the ODZs are still net

sources of N2 0 because of high production rates above and below their main anoxic zones

(Naqvi and Noronha, 1991).

Microbiological and enzymological research has provided a mechanistic understanding

of how nitrification and denitrification produce N2 0 (Payne et al., 1971; Poth and Focht,

1985; Ritchie and Nicholas, 1972; Hooper and Terry, 1979). A fraction of the NH 3 oxidized

by ammonia oxidizers is released as N2 0 rather than N02 (Goreau et al., 1980; Ritchie

and Nicholas, 1972). The size of this fraction, or yield, is variable and understanding what

controls it is a primary focus of marine N20 research. There are two pathways of N2 0
12



production in ammonia-oxidizing bacteria (Figure 1). The first occurs during the oxidation

step, during which NH 3 and 02 are converted to an intermediate, hydroxylamine (NH 2OH)

that is then oxidized to NO. This intermediate can also decompose to N2 0 through an

unknown mechanism (Hooper and Terry, 1979; Ritchie and Nicholas, 1972). The second

pathway is known as nitrifier-denitrification, which reduces NO to nitric oxide (NO) and

then N2 0 using enzymes that bear genetic similarity to those of certain denitrifiers (Poth

and Focht, 1985; Ritchie and Nicholas, 1972; Casciotti and Ward, 2001, 2005). It is un-

certain whether there is an adaptive significance of nitrifier-denitrification. It is thought

to occur preferentially at low 02 concentrations (Sutka et al., 2004) and in the presence

of higher concentrations of NO (Beaumont et al., 2004). Some have proposed that when

02 is scarce, NO acts as an alternative terminal electron acceptor, as it does during deni-

trification (Zumft, 1997). Others have concluded that the reaction is a means of removing

accumulating NO, which can become toxic at high concentrations (Beaumont et al., 2004;

Laanbroek et al., 2002; Ritchie and Nicholas, 1972). In either case, nitrifier-denitrification

can significantly increase the amount of N20 produced by nitrifiers.

Low 02 environments such as coastal and continental shelf regions as well as the periferies

of the ODZs are known to be large net sources of N20 to the atmosphere (Naqvi et al.,

2009). Although some of these suboxic regions occur naturally, several studies have noted

that they are expanding and intensifying as a result of global climate change (Stramma

et al., 2008). If these trends continue, marine emissions of N2 0 may rise substantially

(Codispoti, 2010). Low 02 environments are unique in that aerobic nitrification and anaer-

obic denitrification may co-occur, leading to significant N2 0 production. Identifying their

individual contributions to the overall N2 0 source is a necessary step before quantitative

predictions can be made about the effects of eutrophication and expanding low 02 zones

on marine N20 production. Stable isotopic measurements of N20 can provide a way to

distinguish between these two processes.

Measuring the amounts of the heavier stable isotopes (15 N, 180, 170) relative to the

lighter stable isotopes (14N, 160) of nitrogen and oxygen in N2 0 provides a passive way

to track them through the various nitrogen cycle transformations linked to N2 0. During
13



these transformations, molecules that contain different isotopes of the same element react

at slightly different rates. The rate differences impart characteristic isotopic signatures on

N2 0 molecules as they are produced or consumed. Kinetic fraction factors, designated ak,

are used to keep track of these differences. For example, ak = 14 k/ 15 k and ' 4 k and 15 k

are the respective rates of reaction of molecules containing the light and heavy nitrogen

isotopes. When the kinetic fractionation factors are known for individual biological reac-

tions they can be used to reconstruct or constrain the reaction's individual contribution to

environmental N2 0 distributions. With the development of techniques for measuring in-

tramolecular nitrogen isotope distributions in N20 (Toyoda and Yoshida, 1999), isotopomer

ratios of N20 are also used to interpret how production and consumption processes shape

marine N20 distributions.

If the isotopic signatures of N2 0 from different environments (e.g. soil versus marine

versus combustion) are unique and well constrained, they can be used to construct global

atmospheric isotope budgets. Such budgets are typically used as a way of accounting for

all of the known sources and sinks contributing to the net flux of N20 into the atmosphere.

In the ocean, a similar approach may also be taken towards accounting for the relative

contributions of different biological processes (e.g. nitrification and denitrification) to the

marine N2 0 source. This thesis focuses on marine nitrification as a source of N2 0, a process

whose environmental rates are typically slow, have high spatial and temporal variability,

and produce a low yield of N2 0. As discussed below, stable isotopic measurements are

particularly well suited to the study of this process because they are sensitive to low rates

but can also integrate information about biological N2 0 production over large temporal

and spatial scales.

2. OVERVIEW

In the following three chapters, the stable isotopic composition of N2 0 is used to answer

three questions: how much marine N2 0 is being produced?, how it is being produced?, and

what environmental variables control the yield of N2 0? Stable isotopic methods provide

a way to specifically track certain processes and also to integrate the effects of multiple
14



processes occurring at the same time or in the same location. Different stable isotopic

approaches have different strengths and weaknesses. Here, three separate stable isotopic

approaches have been adopted to address the same three questions.

In Chapter 2, pure cultures of ammonia-oxidizing bacteria were used to study the effects

of basic biogeochemical variables like 02 and N02 concentrations, and cell density on the

yields and isotopic signatures of N2 0 that they produced. The advantage of culture based

studies is that they allow experimental control over the chemical and isotopic composition

of the growth environment and culture conditions for a single species of N20 producing

organisms. The drawback of such studies are that organisms that can be obtained in

pure cultures are often not representative of the diversity of nitrifiers found in natural

communities and culturing conditions are usually enriched in substrate (NH 3) relative to

concentrations found in the ocean. Nevertheless, these effects were reduced by working with

a marine strain of ammonia oxidizer and using relatively low substrate concentrations.

In Chapter 3, the motivating questions were whether coastal nitrification rates and the

yields of N20 from nitrification change as the overall productivity of the water increases.

Here, the sensitivity of 15N tracer-incubations was used to measure low in situ potential

nitrification rates and N20 production rates during a spring phytoplankton bloom in the

coastal waters off Cape Cod, Massachusetts. While this technique achieves specificity and

sensitivity in the rate measurements, they are potentially influenced by "bottle effects"

that cause naturally occurring biological assemblages to behave differently in an incubation

environment than they would in their natural environment. Whenever possible, we made an

effort to minimize these effects by using large incubation volumes and by keeping incubation

periods short (12 and 24 hours). In highly productive natural waters, nutrient regeneration

can also have a significant impact on nitrification rate calculations by changing the isotopic

composition of the ammonium (NH+) pool over time. Here, the measurements necessary

to correct this effect were made by adding NH+ above ambient concentrations, possibly

perturbing actual process rates.

In Chapter 4, the natural abundance stable isotope signatures of N2 0 measured in the

South Atlantic were used to identify the microbial sources and the yields of N2 0 in this
15



region. While the process rates measured in the isotope tracer-incubations of Chapter 3

were subject to some experimental uncertainties and low spatial and temporal coverage,

in Chapter 4 oceanographic isotopic measurements of dissolved N2 0 were collected with

high spatial resolution across the central South Atlantic. These data integrate the isotopic

impacts of different biological and mixing processes, providing a more holistic view of what

processes contribute to marine N2 0 production and where in the water column they occur.

The study region included the transition from the oligotrophic subtropical gyre to the low 02

upwelling zone off the coast of southwestern Africa allowing us an opportunity to investigate

how natural gradients in productivity, 02, nutrients, and water mass distributions influence

the concentration and isotopic compositions of dissolved N2 0.

Although different techniques are applied in each of the studies that follow, they target

the same underlying question of what controls N2 0 production by marine nitrifiers. The

ultimate goal is to understand the present contribution of the ocean to the global N2 0 source

and how that contribution will change as human activities influence the climate and the

marine nitrogen cycle. By pairing specific N2 0 production mechanisms with their isotopic

signatures as well as the chemical and biological variables that favor these mechanisms, we

have expanded and refined the biogeochemical toolkit used to measure and model marine

N2 0 production.
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Abstract. Nitrous oxide (N20) is a trace gas that contributes
to the greenhouse effect and stratospheric ozone depletion.
The N20 yield from nitrification (moles N20-N produced
per mole ammonium-N consumed) has been used to esti-
mate marine N20 production rates from measured nitrifi-
cation rates and global estimates of oceanic export produc-
tion. However, the N2 0 yield from nitrification is not con-
stant. Previous culture-based measurements indicate that
N20 yield increases as oxygen (02) concentration decreases
and as nitrite (N02 ) concentration increases. Here, we have
measured yields of N20 from cultures of the marine 0-
proteobacterium Nitrosomonas marina C- 11 3a as they grew
on low-ammonium (50 pM) media. These yields, which were
typically between 4 x 10-4 and 7x 10-4 for cultures with
cell densities between 2x 102 and 2.1 x 104 cells ml- , were
lower than previous reports for ammonia-oxidizing bacte-
ria. The observed impact of 02 concentration on yield was
also smaller than previously reported under all conditions
except at high starting cell densities (1.5 x 106 cells ml- 1),
where 160-fold higher yields were observed at 0.5% 02
(5.1 pM dissolved 02) compared with 20% 02 (203pM dis-
solved 02). At lower cell densities (2x 102 and 2.1 x 104

cells ml 1), cultures grown under 0.5% 02 had yields that
were only 1.25- to 1.73-fold higher than cultures grown un-
der 20% 02. Thus, previously reported many-fold increases
in N2 0 yield with dropping 02 could be reproduced only at
cell densities that far exceeded those of ammonia oxidizers in
the ocean. The presence of excess NO- (up to I mM) in the
growth medium also increased N20 yields by an average of
70% to 87% depending on 02 concentration. We made stable
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(cframe@whoi.edu)

isotopic measurements on N20 from these cultures to iden-
tify the biochemical mechanisms behind variations in N20
yield. Based on measurements of 615Nbulk, site preference
(SP =615N - 615NO), and 6180 of N20 (618 0-N20), we esti-
mate that nitrifier-denitrification produced between 11% and
26% of N20 from cultures grown under 20% 02 and 43%
to 87% under 0.5% 02. We also demonstrate that a posi-
tive correlation between SP and 6180-N 20 is expected when
nitrifying bacteria produce N20. A positive relationship be-
tween SP and 6180-N2 0 has been observed in environmental
N20 datasets, but until now, explanations for the observation
invoked only denitrification. Such interpretations may over-
estimate the role of heterotrophic denitrification and underes-
timate the role of ammonia oxidation in environmental N20
production.

1 Introduction

The atmospheric concentration of the greenhouse gas nitrous
oxide (N2 0) has risen steadily over the last century. Pro-
cesses in the microbial nitrogen cycle are the largest source
of atmospheric N20 and 20% of this source may come from
the oceans (IPCC, 2007). Humans have greatly increased
the amount of fixed nitrogen entering the oceans (Galloway
et al., 1995), and the functioning of marine microbial ecosys-
tems is shifting in response (Fulweiler et al., 2007; Beman
et al., 2005; Naqvi et al., 2000). Understanding the impact of
anthropogenic activity on the size of the marine N2 0 source
requires knowledge of which microbes are involved in N20
production and how the production is controlled by chemical
variables.
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Nitrification, and in particular ammonia oxidation, is
thought to dominate N2 0 production in oxic water columns
(Elkins et al., 1978; Cohen and Gordon, 1979; Goreau
et al., 1980; Ostrom et al., 2000; Popp et al., 2002). Over-
saturations of dissolved N2 0 (9 N2 0, nmol L-1) are of-
ten positively correlated with apparent oxygen utilization
(AOU, pmol L~ 1) (Yoshinari, 1976; Cohen and Gordon,
1978; Elkins et al., 1978). AOU is a tracer of organic matter
remineralization. Therefore, the direct relationship between
AOU and 0 N20 is taken as evidence that N20 is produced
as nitrifying organisms convert regenerated NH3 to NO- and
NO-.

Stoichiometric relationships among N20 production,
N03 regeneration, and AOU have been used to convert
oceanographic nutrient and 02 data to estimates of N20 pro-
duction (e.g., Codispoti and Christensen, 1985; Fuhrman and
Capone, 1991; Jin and Gruber, 2003; Suntharalingam and
Sarmiento, 2000) or to use N2 0 concentration data to calcu-
late nitrification rates (e.g., Law and Ling, 2001), However,
there is not a universal AOU:N 20 ratio and linear AOU:N 2 0
relationships break down unpredictably in low-02 environ-
ments (Cohen and Gordon, 1979). Several different factors
may contribute to this break-down: 1) at low 02 concentra-
tions, ammonia-oxidizing bacteria produce higher yields of
N2 0 per mole of NH 3 oxidized (Goreau et al., 1980; Lip-
schultz et al., 1981; Jorgensen et al., 1984), 2) heterotrophic
denitrifying bacteria produce more N20 in low-02 condi-
tions (Knowles et al., 1981; Payne et al., 1971), 3) in stably
anoxic environments denitrifying bacteria are net consumers
of N20, which they reduce to nitrogen gas (N2 ) (Cline et al.,
1987), and 4) mixing between waters with different chemical
properties influences the slopes of AOU:N 20 linear regres-
sions (Nevison et al., 2003). There is also potential niche
overlap among nitrifiers and denitrifiers in low-02 environ-
ments, making it especially difficult to distinguish between
these two N20 sources. Ammonia-oxidizing bacteria are
able to thrive at low 02 concentrations (Carlucci and Mc-
Nally, 1969; Goreau et al., 1980; Codispoti and Christensen,
1985) and it has been suggested that denitrification occurs
in oxic ocean waters in the anaerobic interiors of organic
particles (Yoshida et al., 1989; Alldredge and Cohen, 1987).
To understand how the N20 budget may respond to global
change, we need methods for determining the individual con-
tributions of nitrification and denitrification to the N2 0 bud-
get.

Understanding the N20 source from ammonia-oxidizing
bacteria is particularly complicated because these organisms
contain two distinct N20-producing pathways that may re-
spond differently to geochemical controls. One pathway is
the oxidative decomposition of hydroxylamine (NH 2OH), or
one of its derivatives, during the conversion of NH3 to N02
(Hooper and Terry, 1979). The other mechanism, known as
nitrifier-denitrification, is the sequential reduction of N02
to NO and then N2 0 by the action of the nitrite reductase
(NIR, encoded by the gene nirK) and the nitric oxide reduc-

tase (NOR, encoded by the gene norB). All of the ammonia-
oxidizing bacteria that have been screened to date contain
the nirK and norB genes (Casciotti and Ward, 2001; Shaw
et al., 2006; Casciotti and Ward, 2005; Cantera and Stein,
2007; Norton et al., 2008; Arp et al., 2007), and the conver-
sion of 1

5 NO to 1
5 N20 has been demonstrated in several

genera (Poth and Focht, 1985; Shaw et al., 2006). Archaeal
ammonia oxidizers also appear to possess nirK and norB ho-
mologs (Treusch et al., 2005; Hallam et al., 2006; Walker
et al., 2010) but it is not known whether the proteins encoded
by these genes are involved in N2 0 production.

The enzymes involved in nitrifier-denitrification are ho-
mologous to those found in a subset of heterotrophic deni-
trifying bacteria. However, unlike heterotrophic denitrifica-
tion, nitrifier-denitrification may not be a strictly anaerobic
process (Shaw et al., 2006). Ammonia-oxidizing bacteria
express nirK in aerobic environments in response to N02
(Beaumont et al., 2004) and it has been hypothesized that
NIR's main role is in detoxifying N0 (Poth and Focht,
1985; Beaumont et al., 2002). Nevertheless, a role for 02
is suggested by the fact that nirK expression increases in
low-02 conditions (Beaumont et al., 2004), and yields of
N20 from cultures of ammonia-oxidizing bacteria increase
more than 40-fold when 02 concentrations drop below 5puM
(Goreau et al., 1980).

N20 with biologically distinct origins can be identified
using stable isotopic signatures. The oxygen isotopic sig-
nature (6180-N 2 0) has been used to distinguish nitrifica-
tion and denitrification N20 sources (Ostrom et al., 2000;
Toyoda et al., 2005; Wrage et al., 2005; Kool et al., 2007).
The 6180 of N20 depends on the proportion of oxygen in
N20 that is derived from 02 vs. H2 0, as well as any frac-
tionation factors associated with incorporation or loss of the
oxygen atoms in the metabolic precursors of N20 (Fig. 1)
(Casciotti et al., 2010). N20 derived from NH2OH con-
tains only oxygen atoms from 02 whereas N20 produced
by nitrifier-denitrification or heterotrophic denitrification de-
pends on the 6180 of NO~ (and the 6180 of N0-, in the
case of heterotrophic denitrification), which is derived from
both 02 and H20 (Andersson et al., 1982; Casciotti et al.,
2010; Buchwald and Casciotti, 2010). Since the 6180 values
of marine H20 are typically at least 20%o less than those of
dissolved 02 (Kroopnick and Craig, 1976), marine N20 pro-
duced with different amounts of oxygen from H20 and 02
will reflect this in the 6180 signature. Indeed, positive corre-
lations between oceanographic 6180-02 and 6180-N20 data
have been interpreted as evidence that the N20 is a product
of nitrification because oxygen from 02 is most directly in-
corporated into N2 0 through NH 2 OH during NH 3 oxidation
(Ostrom et al., 2000; Andersson and Hooper, 1983).

However, there may be isotope effects associated with the
incorporation of oxygen atoms from 02 and H20 into N20
(Casciotti et al., 2010). If these isotope effects are signif-
icant and variable among different species of ammonia ox-
idizers, it may prove difficult to extract source information
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2H20

H20

2 NH3 -- 2 NH2 OH - 2 NO2

(H 20*4 2 H20
SEND 2 NO02 N20

ENH2OH \'..H 20
N20

Fig. 1. During ammonia oxidation, the oxygen atoms incorporated
into N2 0 come from either 02 or H2 0. The 6180-N20 depends
upon the isotopic signatures of these two substrates as well as iso-
tope effects (18 E) that may be associated with the individual forma-
tion mechanisms, hydroxylamine (18ENH2OH) decomposition and
nitrifier-denitrification of nitrite (18END)-

based on oxygen isotopes alone. Furthermore, the 6180 of
N20 produced by ammonia-oxidizing bacteria may change
depending on what fraction of the oxygen atoms are de-
rived from 02 (via NH 2OH decomposition and nitrifier-
denitrification) vs. H20 (via nitrifier-denitrification) (Fig. I).

The 15N site preference (SP) is another isotopic signa-
ture used to interpret environmental N20 data (Toyoda et al.,
2002; Sutka et al., 2003, 2004; Toyoda et al., 2005; Sutka
et al., 2006; Koba et al., 2009). SP as defined by Toyoda and
Yoshida (1999) is the difference in the isotopic enrichment of
the internal (a) and external (@) nitrogen atoms in the linear
N20 molecule:

Sp = 615Na - 6tSNO.

Unlike 6180 and 615Nbulk values, SP is thought to reflect
the N2 0 production mechanism while remaining indepen-
dent of the substrate's isotopic signature. This is because
the reactions that produce N20 involve two identical precur-
sor molecules (either NO or NH2 OH) (Toyoda et al., 2002;
Schmidt et al., 2004) that are presumably drawn simultane-
ously from the same substrate pool. SP measurements made
on N20 produced by ammonia-oxidizing bacteria and deni-
trifying bacteria support this idea (Sutka et al., 2006). Cul-
tures of ammonia-oxidizing bacteria produce N20 with a SP
of about 33.5% via NH2OH decomposition. However, in the
presence of N02 and low 02 concentrations, the same bac-
teria make N2 0 with a SP that is closer to that of denitrifying
bacteria (-0.8%c) (Sutka et al., 2003, 2004, 2006).

Previous workers have estimated the "end-member" SP
signatures for the two different sources of N20 in ammonia
oxidizer cultures by manipulating 02 concentrations in or-
der to favor production via one process over the other (Sutka
et al., 2003, 2004, 2006). However, since NH20H decompo-
sition and nitrifier-denitrification can give rise to N20 simul-
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taneously, failure to account for this mixing may cause errors
in these end-member SP estimates. If N20 from NH 2OH
decomposition has a SP that is much higher than the SP of
N2 0 from nitrifier-denitrification, as proposed by Sutka et al.
(2003, 2004, 2006), then source mixing would cause under-
estimation of the SP of NH2 OH decomposition and overesti-
mation of the SP of nitrifier-denitrification.

Here we have used 618 0-N20 and SP measurements
to make mixing-corrected estimates of the end-member
SP values for N2 0 produced by NH 2OH decomposition
and nitrifier-denitrification by the marine ammonia-oxidizing
bacterium Nitrosomonas marina C-Il3a. These end-member
values were then used to calculate the N20 yields from nitri-
fication and nitrifier-denitrification in different growth con-
ditions, including a range of 02 headspace concentrations
(20%, 2%, and 0.5%), excess N02 (0.2 to I mM), at different
cell densities, and in the presence of nitrite-oxidizing bacte-
ria. Each experiment was carried out with an eye towards
simulating environmental conditions more closely than pre-
vious studies by using growth medium that contains a frac-
tion of the NH4 present in commonly used recipes for am-
monia oxidizer media (50pM vs. 5 to 10mM NH+), and
lower cell densities.

2 Materials and methods

2.1 Culture maintenance and experimental setup

Nitrosomonas marina C-113a cultures were maintained
semi-continuously in Watson medium containing 5mM
NH+ (Watson, 1965). All maintenance cultures were kept
in the dark at 22 C with shaking at 100 rpm. The cultures
used to inoculate experiments were periodically tested for
heterotrophic contamination as follows: I ml of each culture
was added to 2 ml of a sterile 1:4 mixture of tryptic soy broth
and artificial seawater and incubated 3 to 4 weeks in aerated
culture tubes. Contamination was of particular concern dur-
ing experiments on high density C-113a cultures because the
abundance of cellular material was a potential source of or-
ganic substrate for the growth of heterotrophic denitrifiers,
which can also produce N20 at low 02 concentrations. For
this reason, additional purity tests were done by inoculat-
ing 5 ml of each high density culture (105 - 106cells ml- ')
into 10 ml of the sterile tryptic soy/artificial seawater mix-
ture amended with I mM NaNO 2 . These cultures were in-
cubated in closed, inverted 15 ml centrifuge tubes for 3 to 4
weeks. All tubes remained free of turbidity and showed no
production of gas bubbles that would indicate heterotrophic
denitrification.

Experiments were carried out in 545 ml glass serum bot-
tles (Wheaton, 223952) that contained 100 ml sterile Wat-
son medium with 50pM NH'. Parallel experiments in
18O-enriched water were set up by adding 1 ml of 5000%o
6180-H20 into each bottle. The headspace of each bottle
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was sealed using 30 mm gray butyl rubber septa (Wheaton,
224100-331) and aluminum crimps (Wheaton, 224187-01).
Atmospheric 02 and N20 were removed by purging for 3 h
with N2 flowing at > 60 ml min~ I and appropriate amounts
of high-purity 02 (61'0 = + 25.3%.) were injected back into
each headspace to achieve 20%, 2%, or 0.5% 02 (v/v) (203,
20, or 5pM dissolved 02, respectively). Headspace 02 and
N2 0 concentrations were checked before and after each ex-
periment by electron capture gas chromatography (see be-
low). The ratio of headspace to liquid volumes was such that
complete NH3 oxidation consumed less than 10% of the total
02 in the lowest 02 headspaces.

Immediately before each experiment, 1-21 of late expo-
nential or early stationary phase cultures were centrifuged
at 10000g for 30min, washed to remove residual NH+
and N0 , and re-suspended in 30 ml sterile media without
NH+. Experiments were initiated by the injection of 500pl
of washed and resuspended cells into each bottle. In the
co-culture experiments, ammonia oxidizers with cell den-
sities of approximately 2 x 105 cells ml 1 were added with
washed and resuspended cells of the nitrite oxidizer Nitro-
coccus mobilis (106 cells ml- 1).

Initial and final cell densities were measured in samples
preserved with 2% formalin (0.22-ym filtered) by making
microscopic counts of DAPI-stained cells, or by using flu-
orescence assisted flow cytometry (FACS) to count SYBR
green-stained cells on a FACS Calibur flow cytometer (Bec-
ton Dickinson). Uninoculated bottles served as a control for
abiotic N20 production and were analyzed in parallel with
experimental bottles. All bottles were incubated in the dark
at room temperature with constant shaking. The progress of
NH 3 oxidation was monitored by measuring accumulation of
NO~ and disappearance of NH from the medium (see be-
low). Once NH 3 oxidation was complete, experiments were
terminated by injecting each bottle with I ml of 6 M NaOH,
lysing the cells.

2.2 Chemical analyses

The concentrations of NH+ were determined colorimetri-
cally by the phenol-hypochlorite method (Solorzano, 1969)
and NO- concentrations were determined by the Griess-
Ilosvay colorimetric method (Pai and Yang, 1990) using a
1 cm path-length flow cell. Headspace 02 concentrations
were determined using a gas chromatograph with a 63Ni elec-
tron capture detector (Shimadzu GC-8A). The 02 peaks from
20 to 250pt injections of sample headspace were recorded
and integrated using Shimadzu EZStart software (v.7.2.1).
Sample peak areas were calibrated with standard injections
of air. Headspace N2 0 concentrations were also measured
before and after each experiment using the GC-8A. Sample
peak areas were calibrated against commercial N20 mix-
tures (10, 1, and 0.1 ppm) and fresh atmospheric air (ap-
proximately 320 ppb). When total headspace N20 was less
than 20 nmol, N2 0 was quantified by analyzing the whole

bottle (by purging and trapping, see below) on a Finnigan
DeltaPLUS Isotope ratio mass spectrometer (IRMS) and us-
ing the linear relationship between peak area of m/z 44 and
nanomoles of N20 to determine total N20. The average
blank determined by analyzing bottles flushed with high-
purity N2 was 0.08 ± 0.04 nmol N20.

2.3 Isotopic analyses

Isotopic analyses of N20 were conducted using a Finni-
gan DeltaPLUS XP IRMS. Bottles were purged with He and
N2 0 was cryo-trapped on-line with a custom-built purge and
trap system (McIlvin and Casciotti, 2010) operated man-
ually with 545 ml serum bottles. The following modifi-
cations made large volume gas extraction possible: bot-
tles were loaded manually, the helium flow rate was in-
creased to 60 ml min~ 1, and the purge time was extended
to 45min. As described in Mcllvin and Casciotti (2010),
CO2 was largely removed from the gas stream by passage
through a Carbosorb trap, then N2 0 was separated from
residual CO2 using a capillary column (25 m x 0.32 mm)
lined with Poraplot-Q before injection into the mass spec-
trometer through an open split. Mass/charge (m/z) peak
areas were automatically integrated using Isodat 2.0 soft-
ware. Values for 6180-N 2 0, 65Nbulk, 615N", and 615 NP
were obtained from the 45/44, 46/44, and 31/30 peak area
ratios and referenced to our laboratory's N2 0 tank as de-
scribed in Appendix A. This reference tank has been cal-
ibrated for 6180-N 2 0 (% vs. VSMOW), 6l5Nbuik, 515Na,
and 6 5NP (% vs. AIR) by S. Toyoda (Tokyo Institute of
Technology). Furthermore, the isotopomer-specific NO+
fragment ion yields for our DeltaPLUS XP were determined
for the ion source conditions used in these measurements
(see Appendix B). For quality-control, two or three tropo-
spheric N2 0 samples were analyzed between every 7 to 10
experimental samples to check the consistency of our iso-
topomer analyses. These samples were created by allowing
100ml of artificial seawater to equilibrate with outside air
in 545 mL serum bottles, sealing the bottles, and analyzing
them as described above. Triplicate samples of tropospheric
N2 0 from Woods Hole, MA analyzed during a typical run
had 5

15Na = 15.0 ± 0.1%c, 61
5 NP = - 1.9 ± 0.1%., 6180 =

44.4 ± 0.2%c, 6"Nbulk =6.5 ± 0.1%o, SP= 16.9 ± 0.1%o, and
ni/z 44 peak area= 15.6 ± 0.2 mV-s (7.8 ± 0.1 nmol).

We also measured the 6"'O and 615N of N0 that was pro-
duced by cultures as NH 3 oxidation progressed. NO- was
converted to N20 using the azide method developed by Mcdl-
vin and Altabet (2005). The conversion to N2 0 was carried
out immediately after sampling to avoid shifts in the oxy-
gen isotopic values by abiotic exchange with water (Casciotti
et al., 2007) or continued biological production of N0 from
residual NH3. Individual sample volumes were adjusted so
that a consistent amount of N20 (5 or 10 nmol) was produced
for each set of azide reactions. Each sample set included
at least three sets of three different NO- standards (N-23,
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N-7373, and N-10219; Casciotti et al., 2007) that were used
to calculate sample 615 -NO (% vs. AIR) and 6SO-NO
(%/ vs. VSMOW) values. These samples were analyzed in
20 ml headspace vials using the autosampler setup described
by Casciotti et al. (2002), modified with the addition of an
-60 'C ethanol trap and column backflush (Mcllvin and Cas-
ciotti, 2010).

3 Results and discussion

Nitrifier-denitrification depends on the presence of NO- to
produce N20 (Ritchie and Nicholas, 1972; Poth and Focht,
1985; Yoshida, 1988), and the accumulation of NO in envi-
ronments such as oxygen deficient zones (ODZs) could con-
tribute to increased N2 0 production in these regions. To date,
the roles of substrate concentration and cell density in de-
termining N20 yield have not been systematically investi-
gated. This study was designed to test the impact of 02 and
NO- concentrations on the N20 yield of marine ammonia-
oxidizing bacteria at a lower substrate (NH3 ) concentration,
and at a broader and lower range of cell densities than any
previous work. N20 yield data are presented in the same
form used in oceanographic N20 studies so that yields are
the fraction of N-atoms converted to N2 0 out of the total
amount of NH 3 that is oxidized (i.e. 2 x moles N20/moles
NH3). In other words, a yield of 5 x 10-4 indicates that I in
every 2000 N-atoms from oxidized NH 3 will go into an N20
molecule.

3.1 Cell density and 02 concentration

Cell density influenced the observed N20 yields in both low
02 (0.5% and 2%) and high 02 (20%) conditions. 02 con-
centration had the greatest impact on N20 yield at the high-
est starting cell density tested (1.5 x 106 cells ml-1) (Fig. 2).
At 20% 02, the high density cultures had the lowest aver-
age yields observed, (1.3 ± 0.4 x 10--4) while at 0.5% 02 the
high density cultures had the highest average yields observed
(220 ± 40 x 10-4). In contrast, 02 had a much smaller im-
pact on N20 yield in the medium density cultures (start-
ing density=2.1 x 104 cells ml1) and the low density cul-
tures (starting density = 2 x 102 cells ml 1). In fact, the N20
yields of the medium density cultures were not significantly
different among the high and low 02 treatments (at 20% 02,
5.1 ± 0.5 x 10-4, at 2% 02, 5.5 ± 0.8 x 10-4, and at 0.5%
02, 6.4 ± 1.4 x 10-4). Low density cultures produced aver-
age yields of 3.9 ± 0.3x 10-4 at 20% 02, 4.7 ± 0.1 x 10-4
at 2% 02, and 6.7 ± 0.5 x 10-4 at 0.5% 02.

The average yields of the cultures at 20% 02 were compa-
rable to the production yields (0.8- 5.4 x 104) measured by
Yoshida et al. (1989) in the oxic surface waters of the western
North Pacific using i5NH+ tracer techniques. However, they
are lower than previously reported yields for Nitrosomonas
cultures at 20% 02 (26 - 30 x 10-4 in Goreau et al. (1980)
and 10- 390 x 10-4 in Remde and Conrad, 1990).

S1.5 x 10 1.4 x l1 cell- miT
c 2.1 x 10+/ 2.9 x 10 cells ml
- -2x 102 Cells ml

z
z
z <

z
z

z

- 20%02 - 2%02 - .5%02

Fig. 2. N20 yields vs. cell density. Each bar represents the average
of 5 replicate cultures. Error bars are for one standard deviation
among replicates.

In this study, low-02 conditions only resulted in substan-
tial increases in N20 yield when cell densities were greater
than 106 cells ml- 1. N20 yields were relatively low and less
sensitive to 02 when cell densities were closer to those ob-
served in the ocean (103-104 cells 1-1; Ward et al., 1982).
This draws into question the oceanographic applicability of
previous culture-based yield measurements, where a many-
fold increase in N20 yield was observed as 02 dropped from
20% to 0.5% (Goreau et al., 1980). Goreau et al. (1980)
worked with a marine Nitrosomonas strain at cell densities
(I x 106 cells ml 1) comparable to our high density exper-
iments and observed N20 yields of 800 - 1000 x 10-4 for
cultures grown at 0.5% 02 on 24 mM NH+. The implication
of the present study is that factors such as cell density can
influence the relationship between N20 yield and 02 con-
centration.

The mechanisms that explain the high N20 yields of high
density cultures at low 02 could be chemical or biological.
02 has a major influence on the half-life of nitric oxide (NO),
the gaseous precursor of N20 during nitrifier-denitrification.
Therefore, concentration-dependent changes in the rate of
N20-production could be related to 02 as a consequence of
the abiotic oxidation of NO:

2NO+ 02 - 2NO2

2NO2 + H20- HNO2 + HNO 3, (Ritchie and Nicholas, 1972),

where nitrous acid (HNO 2 ), is the major decomposition
product of the second reaction (Ignarro et al., 1993). In
aerobic environments, 02 is the major reactant and any NO
present reacts away soon after it is produced (Lewis and
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Deen, 1994). However, in low-0 2 environments the half-
life of NO increases, so that during bacterial NH3 oxidation,
it can accumulate to concentrations that are similar to N2 0
(Remde and Conrad, 1990; Lipschultz et al., 1981). This may
allow the enzymes that carry out NO reduction to compete
for NO with the above 0 2-dependent reaction. Studies of N.
europaea have also shown that the expression of nirK dur-
ing nitrifier-denitrification is controlled by a repressor pro-
tein (Beaumont et al., 2002, 2004) that belongs to a fam-
ily of NO-sensitive transcription regulators (Rodionov et al.,
2005). If NO induces nirK transcription, the abiotic reaction
of 02 with NO could reduce NIR-dependent N20 production
by consuming the inducer. Finally, high cell densities may be
necessary for either of these effects to become important be-
cause the ability of NO-reducing enzymes to compete with
02 for NO will depend on the diffusivities of 02 and NO
relative to the average distance between cells.

It is unclear why cultures with the highest cell densities
had significantly lower N20 yields at 20% 02 than cultures
with lower densities (Fig. 2). Time, NO- (or NO), and in-
creasing cell numbers could all enhance N20 production by
nitrifier-denitrification. There were significant differences in
the amount of time that it took cultures of each density to
oxidize all the NH+ present. The low and medium density
cultures took 14 and 3.5 d to oxidize 50pM NH+, respec-
tively, while the high density cultures took only 7 h. Cell
numbers also doubled approximately 7, 2, and 0 times, in the
low, medium, and high density cultures, respectively. Thus,
in the low and medium density cultures, N02 and cells ac-
cumulated over longer periods of time than they did in the
high density cultures. Further research is needed to deter-
mine the behavioral and/or kinetic effects that influence the
N2 0 yields from ammonia oxidizers.

3.2 NO- and 02 concentration

In pure batch cultures of ammonia oxidizers, NO- exposure
is an unavoidable result of growth because NO- accumu-
lates up to the initial NH' concentration. Excess NO- may
increase N20 yields if ammonia oxidizers convert NO- to
N2 0 to avoid the toxic effects of NO- (Poth and Focht, 1985;
Beaumont et al., 2002, 2004). To test the impact of NO- on
N2 0 yields, we increased NO- concentrations by adding 0.2
or 1 mM NO2 to some cultures, and decreased accumulated
NO2 concentrations in others by adding the nitrite-oxidizing
bacterium Nitrococcus mobilis to create a co-culture.

In the co-cultures, NO- concentrations remained below
detection at 20% 02 and below 17pM at 0.5% 02. Although
co-culturing kept NO2 concentrations lower than they were
in the pure cultures, N2 0 yields were not significantly lower
in the presence of the nitrite-oxidizing bacteria (Fig. 3a). The
insignificant differences between the yields with and without
nitrite oxidizers suggests that the 50pM NO- that accumu-
lated in our pure cultures did not have a major impact on

the N20 yields measured for those cultures. However, we
were unable to entirely eliminate N02 accumulation in the
low-0 2 experiments. Future work should focus on identify-
ing the impact of N02 on N2 0 production by nitrifiers in
low-0 2 environments.

The addition of 1 mM NO- had a greater impact on N20
yield than the differences in 02 concentration did (Fig. 3b).
The increase due to the additional NO- was apparent in both
low and high 02 conditions. Furthermore, the average N20
yields increased as the amount of added NO2 increased.
Cultures under 20% 02 with no added N02 had an aver-
age yield of 4.0± 0.03 x 10- 4 while those with 1 mM added
NO- had an average yield of 7.6± 0.5 x 10-4. Cultures un-
der 0.5% 02 with no added N02 had an average yield of
6.0 ± 0.5 x 10-4 and those with 1 mM added NO- had an
average yield of 10.2± 0.3 x 10-4. N20 yields were calcu-
lated as a fraction of the total N in NH+ consumed during
the experiment (M 5 x 10-6 moles).

From this work, it is clear that increased N0 concen-
trations enhance N20 production in cultures of ammonia-
oxidizing bacteria. This is consistent with a detoxification
role for nitrite reductase in nitrifying bacteria, as suggested
by previous work (Beaumont et al., 2004). The relationship
between N0 , nitrifier-denitrification, and N20 production
is also complex. Aerobic nirK expression occurs in response
to increasing NO- concentrations (Beaumont et al., 2004),
but nirK knock-out mutants actually produce more N20 than
the wild-type strain. The authors suggest that the NH 2OH-
dependent pathway has a role in this increase (Beaumont
et al., 2002).

Oceanic 02 concentrations may influence a number of dif-
ferent biogeochemical variables that enhance N20 produc-
tion by ammonia oxidizers. For example, low dissolved 02
concentrations are often associated with elevated NO con-
centrations (Codispoti et al., 200 1). When dissolved 02 con-
centrations are low, the biological turnover time of NO also
increases (Hashimoto et al., 1983) in part because the activity
of nitrite-oxidizing bacteria ceases at a higher 02 concentra-
tion than the activity of ammonia-oxidizing bacteria (Helder
and de Vries, 1983). Charpentier et al. (2007) also suggest
that high concentrations of organic particles found in cer-
tain productive waters enhance N2 0 production by creating
high-NO- , low-02 microenvironments necessary to support
nitrifier-denitrification. Future oceanographic work should
investigate how N20 production rates in oxygen deficient
zones (ODZs) relate to these different biogeochemical vari-
ables.

3.3 Pathway dependence of 6VsNbuIk-N 20

Ammonia-oxidizing bacteria make N20 through two dif-
ferent pathways, so that the observed isotopic signatures
of N20 are a function of the pathways' mixing fractions,
the isotopic signatures of their different substrate molecules,
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r.20%o
IM 0.5% o

Fig. 3a. N2 0 yields in the presence and absence of nitrite-oxidizing
bacteria (NOB). Starting NH concentrations were 50pM.

Fig. 3b. N20 yields increased when N0 was added to the starting
media. Initial NH+ concentrations were 50pM. Added NO~ was
either 0, 0.2 mM, or 1 mM.

and the different isotope effects associated with those path-
ways. Complete biochemical decoupling of the nitrifier-
denitrification pathway from the NH2OH decomposition
pathway is difficult to achieve with intact C-I 13a cells be-
cause the bacteria require NH3 to support their respiratory
electron transport chain, and N2 0 production stops once
NH3 oxidation is complete (Supplementary Fig. S.3). There-
fore, while we manipulated growth conditions such as 02
concentration and cell density in order to favor one N20 pro-
duction mechanism over another, in interpreting the results
we account for N20 contributions from both sources.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1/MNjo (OMA

Fig. 4. Pathway dependence of 615Nbulk N20. Symbol shapes cor-
respond to different starting cell densities: circles correspond to
1.5 x 106 cells ml1 , squares to 2 x 105 cells ml-1 , triangles to
2.1 x 104 cells ml~ 1, and diamonds to 2x 102 cells ml~ 1. Colors
correspond to headspace 02 levels, with black symbols represent-
ing 0.5% 02, blue symbols 2% 02, and red symbols 20% 02. The
slope and intercept of a Type I linear regression of 6SNbu and
1/MN2O are given ± one standard deviation. In making a linear
fit to the data, we assume that any differences in total N20 are due
to nitrifier-denitrification. The y-intercept of the line is equal to
the 6 15Nbulk of N20 from nitrifier-denitrification. Data points that
were less than I nmol N2 0 were not included.

N20 produced by all C- I13a cultures was depleted in 
15

N
relative to the substrate (6 5 N-NH7 =-3%), although the
range varied widely (6Nbu"lk-N 2O=-54.9%v to -6.6%,
Fig. 4). Culture conditions affected the degree of "N de-
pletion, with cultures grown under 0.5% 02 producing the
most depleted N 20 (- 54.9%o to - 15.2%o), while cultures
grown with 20% 02 generally produced N2 0 with higher
615 N values (- 13.6% to -6.7%o). The low-02 cultures that
produced the most depleted N2 0 also produced the most
N20 (the highest yield), We interpret the observed varia-
tion in 6SNbuik-N 20 to have arisen from pathway-dependent
mixing, which implies that a single isotope effect will not
adequately relate the 6tsNbulk-N 2 0 to the substrate nitrogen
compounds.

We assume that each datapoint (6"Nbk, Mtota, where M
refers to moles of N2 0) represents a two-component mix-
ture of a constant or "basal" N20 source from NH2OH de-
composition (MNH2OH) and a variable source of N 20 from
nitrifier-denitrification (MND) that tended to be larger in low-
02 cultures. This is the basis for performing the type I linear
regression of 6 5

NbuIk vs. in Fig. 4. Equation (3b), the
model for the linear regression was developed using the mass
balance Eqs. (I and 2) (Table 1).

According to Eq. (3b), the y-intercept of the regression
is the 6sNbulk of the more depleted nitrifier-denitrification
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Table 1. Equations used to model the 615NbulkN 20 data in Fig. 4.

(1) 6
t5

Noa x Mtotat =
6

Nbk x MND + 61
5

NNH 20H x MNH2 OH

(2) MND = Mtotal - MNH 2OH

bl6
5

Nbuk _ 
6

NNu x (Mto - MNH2OHI) + 6
1
'NNu, 0 1 X MNH2OH

(3a) total - Mt N'a

(3b) 6SsNlk = (6
5

N 2OH x MNHOH - 615Nk MNH2 OH) x + 615Nbulk

end-member (6isNNk). This is because as the amount of
N20 approaches infinity, the 6' 5Nbul should overwhelm the
basal end-member signature, 6t

5
NbuNH70H'

The value of 6t5Nbuk obtained in this way is - 59.9%o,
t 3.8%o (errors are given as one standard deviation of the y-
intercept). The difference between the 615Nbulk of the prod-
uct N20 and the 615 N of the substrate NH3 is the overall
isotope effect associated with N2 0 formation by nitrifier-
denitrification (15

END = - 56.9%6). The most enriched N20
produced in these experiments had a 615Nbuik of -6.7%,
providing a minimum for 615N IH This is a minimumNHOH' hsi iiu

because if a fraction of this N20 was produced by nitrifier-
denitrification, we would not observe the heaviest possible
value for the NH 2OH end-member.

This end-member mixing model does not account for the
Rayleigh effects that kinetic isotopic fractionation has in
closed systems such as batch cultures. These effects change
the isotopic signatures of the NH3 that is consumed and the
N0 that accumulates as NH3 oxidation proceeds (Mariotti
et al., 1981) so that at any instant during the reaction, the
615N of N2 0 produced from these substrates will also reflect
these isotopic shifts. However in this study, the end-member
mixing model is not a serious violation of Rayleigh assump-
tions because all cultures were allowed to oxidize the same
amount of NH 3 to completion before the total N20 was an-
alyzed. Abrupt changes in N20 production rates during the
NH 3 oxidation reaction could also make this model problem-
atic in a Rayleigh system. In these experiments, however,
N20 accumulated steadily as NH3 oxidation progressed and
N0 accumulated (Supplementary Fig. S.3).

3.4 Covariation of SP and 6180-N2 0

The 6180 of N20 is like the 65Nbulk in that these signatures
are both process-dependent and substrate-dependent. That
is, the 6180 of N20 produced by ammonia-oxidizing bacte-
ria depends on the mixing fraction of the two N20-producing
pathways as well as the isotopic signatures of the substrates
(02 and H2 0) that contribute oxygen atoms to those path-
ways and isotopic fractionation during oxygen atom incorpo-
ration or loss in the reactions that make N20 (Fig. 1) (Cas-

ciotti et al., 2010). The conversion of NH 3 to N02 incorpo-
rates oxygen atoms from 02 in the first step and H20 in the
second step (Andersson et al., 1982; Andersson and Hooper,
1983):

NH 3 + -02 - NH 2OH
2

NH 2OH + H20 -+ HNO 2 + 4H.

We expect the 6180 of N2 0 derived from NH 2OH decom-
position to be independent of the 6180 of H2 0 because 02 is
the sole contributor of oxygen during the first reaction. How-
ever, the 6180 of N20 produced by NO- reduction during
nitrifier-denitrification depends upon both the 6180-02 and
6180-H2 0, in proportions that are affected by the amount
of oxygen atom exchange between N02 and H20 (Ander-
sson and Hooper, 1983; Casciotti et al., 2002; Kool et al.,
2007; Casciotti et al., 2010). The fact that the 6180 of N20
produced by nitrifier-denitrification is sensitive to changes
in 6180-H20 is the basis for a technique that uses parallel
experiments in 180-labeled and unlabeled H20 to identify
the proportion of N20 produced by nitrifier-denitrification
(Wrage et al., 2005).

The impact of the 6180-H20 on the 6180 of N20 produced
by C- I13a is demonstrated in Fig. 5, where cultures grown
in water with a 6180 of +40%c (labeled) produced N2 0 that
was 5% to 40%r more enriched in 180 than cultures grown
in H20 with a 6180 of - 5%c (unlabeled). The difference in
6180-N 20 between labeled and unlabeled cultures was great-
est at 0.5% 02, when more N20 was produced. At higher 02
concentrations, less N20 was produced and there was con-
vergence of the 6180-N 20 values from labeled and unlabeled
experiments. The difference in 618 0-N20 from ammonia ox-
idizers grown in labeled and unlabeled H20 is directly pro-
portional to the fraction of the total N2 0 that is produced
by nitrifier-denitrification. The pattern is consistent with rel-
atively more N20 production by nitrifier-denitrification as
the 02 concentration drops and H2 0 contributes more to the
overall 6180-N 20. Note that in these experiments, side-by-
side comparisons between labeled and unlabeled replicates
assume that nitrifier-denitrification and NH2OH decomposi-
tion contribute the same proportion of N20 to both labeled
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Table 2. Equations used to model the SP and 6180-N20 data in Figure 5.

(4a) SPtotal = FND X SPND + ( - FND) X SPNHOH

SPMi - SPNHfOH(4b) FND = - SPNH
2OH

(5) 6180-N20total = FND X (68 O-NO~ - END)+ ( - FND) X (6 180-02 -
1

8ENH2OH)

(6) 61
8
0-N20total = S - H OH X (6 0-NO - END) + (I - p- SNHOH ) X (6180-02 - ENH2OH)

e y = (-0.904 *0.087) x + 50.4 *1.1 A 0.5%0
r2 *0.78 A 20%0,o

y =(0. 152 *0.044) x + 16.4 *: :.6

r'=0.40

0 0

-10 -5 0 5 10 15
ate Preference (%)

20 25 30 35

Fig. 5. Pathway dependence of 6180-N20 and SP. Filled sym-
bols are data from cultures grown in labeled water (about 40%o)
while open symbols are data from cultures in unlabeled water
(about - 5

%6). Circles correspond to cultures with cell densities of
1.5 x 106 cells ml- 1, squares to 2 x 105 

cells ml- 1, and triangles
to 2.1 x 104 cells m1 . Colors correspond to headspace 02 lev-
els, with black symbols representing 0.5% 02, blue symbols 2%
02, and red symbols 20% 02. Regression slopes and intercepts
are given ± one standard deviation. Data from low-density cultures
were not included to avoid the impact of relaxation of the 6180-
NO2 towards equilibrium with H2 0 over the course of the NH3
oxidation reaction. Data points that were less than I nmol N20 were
not included. All 6180 values are referenced to VSMOW.

and unlabeled replicates and that the N20 from NH2OH de-
composition has the same 180 signature in both labeled and
unlabeled experiments. This will be addressed in more detail
below.

In contrast to 6180-N 20, SP signatures of N20 from am-
monia oxidizers are thought to be process-dependent and
substrate-independent: SP signatures vary as a result of mix-
ing among N20 sources with distinct SP values (Sutka et al.,
2003, 2004,2006), but they do not depend on the 6t5 N values
of the N20 precursor molecules (Toyoda et al., 2002). In the
present study, C-1 13a produced high-SP N20 (up to 33.2%)
under 20% 02 and low-SP N20 (down to -9.1%o) under
0.5% 02 (Fig. 5). Similar results have been observed for
N. europaea, which produces high-SP N20 (31.4 ± 4.2%)

when growing aerobically on NH3 , (Sutka et al., 2006) but
can also produce low-SP N20 (-0.8 ± 5.8%o) in the pres-
ence of NO2 and anaerobic conditions (Sutka et al., 2003,
2004).

Knowing the end-member SP signatures of N20 from
NH 2OH decomposition and nitrifier-denitrification is pow-
erful because these values can then be used to calculate the
size of each pathway's contribution to a culture's total N20
output based on its SP signature (SPt0ut) (Charpentier et al.,
2007). We developed the following model in order to ex-
tract these end-member SP signatures from our data while
accounting for the fact that the SP of the N20 from each
culture is a mixture of these end-members. Following Char-
pentier et al. (2007), we set up a system of isotopic mass
balance equations (Table 2) that describe isotopic mixing
between low-SP N20 from nitrifier-denitrification (SPND)
and high-SP N20 from NH2OH decomposition (SPNH 2OH),
where FND is the fraction of total N2 0 that is produced by
nitrifier-denitrification. Solving Eq. (4a) for FND produces
Eq. (4b) which cannot be solved for FND without knowing
the end-member values, SPND and SPNH2OH, or having ad-
ditional information about the value of FND for each data
point. Therefore, we develop a complementary mixing equa-
tion based on the 6180-N 20 in Eq. (5) (Table 2).

As discussed above, the measured 618 0-N20 (6180-
N20m1.) depends not only on the mixing fraction FND, but
also the isotopic signatures of the substrate molecules (6180-
02 and 618 0-NO2) and kinetic and/or branching isotope ef-
fects associated with either reaction (18ENHOH and 18END)-
In these equations, 8 

ENH2OH and 18eND are the respective net
isotope effects expressed during oxygen incorporation from
02 or N02 into N20. Here we do not consider the impact of
Rayleigh fractionation on the 6180-02 because the 02 pool
is large relative to the fraction that is consumed (< 10%) and
is expected to raise the 6180-02 less than 2%. Substituting
(4b) into (5) produces Eq. (6) (Table 2), which includes both
SP values and oxygen isotopic signatures.

The best-fit values of the parameters SPNHOH, SPND,
1
8

ENH2 OH, and 1
8 END (Table 3) were obtained by fitting

Eq. (6) to our dataset (n = 33) using a Levenberg-Marquardt
non-linear regression program (Draper and Smith, 1981).
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Table 3. Isotope effects and signatures derived in this paper for N2 0 production by N. marina C-Il 3a. Best fit values of model parameters
for Eq. (6) are given with standard deviations based on covariance estimates in Bard (1974).

parameter value c description
15 END 56.99' 3.8%e N isotope effect of nitrifier-denitrification
18END - 8.4%6o 1.4%.c 0 isotope effect of nitrifier-denitrification
18ENH2OH 2.9%o 0.8%c effective 0 isotope effect of NH 2OH decomposition

SPND - 10.7% 2.9/c site preference of N20 from nitrifier-denitrification
SPNHOH 36.3%o 2.4%o site preference of N20 from NH2OH decomposition

Inputs were the values of SPtotal, 6180-N 20, and 6VO-NO-
measured for each culture, as well as the known 6180 of
the high-purity 02 used in the headspaces (+25.3%o). Our
estimates of the end-member SP values of N 20 are signif-
icantly lower for N2 0 produced by nitrifier-denitrification
(- 10.7 ± 2.9%) and higher for N 20 produced by NH 2OH
decomposition (36.3 ± 2.4%c) than previous estimates (Sutka
et al., 2003, 2004, 2006). A sensitivity analysis of the model
reveals that the value of SPND is sensitive to the values of
the isotope effects 18ENH2OH (Supplementary Fig. S.4A and
S.4C and Supplementary Table 1) and 18END (Supplemen-
tary Fig. S.4A) but that this sensitivity decreases in labeled
water (Supplementary Fig. S.4B and S.4D and Supplemen-
tary Table 2). Drawing data from both labeled and unlabeled
experiments, as we have done here, leads to acceptable levels
of uncertainty (Table 3).

These results expand the range of SP values produced by
ammonia oxidizers by more than 10%c. This has an impact
when Eq. (4b) is used to calculate the fraction of N20 from
nitrifier-denitrification using oceanographic SP data (Charp-
entier et al., 2007). We used the new end-member SP values
to calculate that nitrifier-denitrification by C-I 13a accounted
for 11% to 26% of N 20 production under 20% 02 and 43%
to 87% of production under 0.5% 02 (Table 4). The variabil-
ity for a given 02 level occurred among cultures with differ-
ent cell densities; on average, the denser cultures produced
relatively more N2 0 by nitrifier-denitrification at low-02 and
less at high-0 2 concentrations (also see Fig, 5).

Our estimated values of 18END and 18
ENH2 OH were

-8.4 ± 1.4% and + 2.9 ± 0.8%o, respectively. This means
that N20 produced via nitrifier-denitrification was enriched
in 180 by 8.4% relative to the N0 , and N 20 produced from

NH 20H was depleted in 180 by 2.9% relative to 02. The
180 enrichment from nitrifier-denitrification is most likely
the result of a combination of kinetic and branching isotope
effects. There are few published estimates of these isotope
effects that we can compare with our model results. Work on
the heterotrophic denitrifier Pseudomonas aureofaciens indi-
cates that the branching oxygen isotope effect of N0- reduc-
tion is approximately 15%o (Casciotti et al., 2007). However,
it is not known whether the same isotope effect applies to
nitrifier-denitrification or if there is also a kinetic isotope ef-
fect that influences the 6180-N 20. Recent work has also ad-

dressed the isotope effects for oxygen atom incorporation by
C-I 13a (Casciotti et al., 2010), but was not able to separate
fractionation during 02 and H2 0 incorporation.

Equations (5) and (6) assume that the oxygen atoms in
N20 produced by NH 2OH decomposition come only from
02. If a fraction of this oxygen actually comes from
H2 0, then the model value of 188NH2OH reported in Ta-
ble 3 could be too high for data from experiments in un-
labeled H20 (6180-H2 0<6180-02) and too low for data
from labeled H20 (618 0-H2 0 >6 "0-02). However, this
structure was not apparent in the residuals of 18ENH2OH from
labeled vs. unlabeled experiments. When a parameter for
oxygen-exchange between H20 and NH2OH was included
in Eq. (6), we were unable to resolve it with the present
data set. However, if an exchange term is included in
Eq. (6) so that 20% of the oxygen atoms in N20 produced by
NH2OH decomposition are from H2 0, then using the values
of SPNH,OH, SPND, and 

18END from Table 3 and values of

SPtotal, 6'0-N20total, 6180-NO- , and 6180-02 from Sup-
plementary Tables I and 2, estimates of 18ENH 2OH would de-
crease to - 3.7%o in unlabeled water and increase to 6.7%,
in labeled water if we assume that the oxygen atoms from
water are incorporated without any isotope effect. However,
20% exchange is an extreme case and available evidence
does not support significant exchange of oxygen atoms be-
tween NH2OH and water during ammonia oxidation (Cas-
ciotti et al., 2010; Hollocher et al., 1981; Dua et al., 1979).
Additional experiments in 

180-labeled water could shed light
on the issue of oxygen exchange.

The 6180 and SP signatures of the N20 in these exper-
iments covaried (Fig. 5). The covariation depended on the
6180 of the H20 in the media: the slope of the linear regres-
sion of SP and 6180-N 20 was negative (-0.904 ± 0.087) for
experiments performed in 180-enriched H2 0 (+40%c) and
positive (0.152 ± 0.044) for experiments in unlabeled H20
(- 5%c) (Fig. 5). Our model provides an explanation for the
covariation between SP and 6180-N2 0 because it describes
mixing between two N20 sources with distinct SP values and
different proportions of oxygen from 02 and H2 0. Accord-
ing to Eq. (6), the sign and magnitude of the regression slope
will depend upon the difference between 6180-02 and 6tt0-
H2 0.
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Table 4. The fraction of N20 produced by nitrifier-denitrification (FND) calculated using measured SP values, Eq. (4b), and the best fit
values for SPND and SPNH2OH in Table 3.

density (cells/ml- 1) 20% 02 2% 02 0.5% 02

2 x 102 0.26± 0.06, n= 5 0.38 ± 0.04, n = 5 0.43 ± 0.09, n= 4
2.1 x 104 0.19 ± 0.03, n = 5 0.18 ± 0.04, n = 5 0.48 ± 0.11, n= 5
2 x 105  0.11 l: 0.03, n = 6 0.58 ± 0.11, n= 6
1.5 x 106 0.87 ± 0.09, n= 5

Positive correlations between 6180-N 20 and SP observed
in environmental data have been interpreted as signs that
N20 consumption by denitrification is an important N2 0 cy-
cling process in the system under scrutiny (Koba et al., 2009;
Yoshida and Toyoda, 2000; Popp et al., 2002; Toyoda et al.,
2002; Schmidt et al., 2004). Indeed, there is experimental ev-
idence demonstrating that progressive consumption of N20
by denitrifier cultures results in a simultaneous increase in
both SP and 6180-N 20 (Ostrom et al., 2007). The theoret-
ical basis for this behavior is the fact that the N-0 bonds
formed by the heavier nitrogen and oxygen isotopes have
lower zero-point energies and are therefore more resistant to
being broken than bonds between the lighter isotopes (Yung
and Miller, 1997; Toyoda et al., 2002). As a result, decom-
position of a symmetrical O-N-N-O intermediate during N20
formation and also cleavage of the N-O bond during N20 re-
duction to N2 will produce N20 with positively correlated
6180 and SP values.

Our work demonstrates that SP and 680-N20 can also
covary as a result of N20 production by nitrification, with-
out invoking N20 consumption by heterotrophic denitrifiers.
The sign and magnitude of the correlation depends on the
difference between the 6180 of the 02 and the H2 0 that con-
tribute oxygen atoms to the N20. In contrast to this study,
where we manipulated 6180-H 20, there is little natural vari-
ation in 6180-H 20 in the open ocean but much larger vari-
ation in 6180-02 as a result of isotopic fractionation as-
sociated with respiratory 02 consumption (Kroopnick and
Craig, 1976; Bender, 1990; Levine et al., 2009). According
to model Eq. (6), we would expect the slopes of the 6180-
N20:SP regressions (such as those in Fig. 5) to increase as
6180-02 rises relative to 6180-H20 (or 6180-NO). Nitri-
fication may therefore influence the 6'0-N20:SP dynam-
ics in the oxycline in two opposing ways : 1) a drop in 02
concentration may promote nitrifier-denitrification and thus
the incorporation of low-6180 oxygen atoms from H20 into
low-SP N20, and 2) respiratory 02 consumption increases
the 6180 of the remaining 02 pool, raising the 6180 of the
N20 produced by NH2 OH decomposition as well as nitrifier-
denitrification. In the future, the combined use of SP, 6180-
N20, and 6180-02 may be used to resolve these effects. An
important unknown that remains in the marine N2 0 isotope

biogeochemistry is whether archaeal ammonia oxidizers also
produce N20 and if so, what their impact is on the N20 bud-
get and the isotopic signatures of N20 in the ocean.

4 Conclusions

As shown previously, culturing conditions influence N20
yields from ammonia-oxidizing bacteria. However, the
yields observed in this study were much lower than those
obtained in previous culture-based measurements, and they
did not increase as dramatically at low oxygen concentra-
tions except at high cell densities. These results are in
line with modeling- and incubation-based oceanographic es-
timates of N20 yields from nitrification and may be useful
in future modeling of N2 0 production and distributions in
the ocean. Recent work interpreting isotopic signatures of
biogenic N20 has often relied on the assumption that a di-
rect relationship between 6180-N20 and SP was indicative of
N20 consumption and production by denitrification. How-
ever, our work suggests that a direct relationship between
these signatures may also occur as a result of nitrification, at
least when the SP values vary between - 10% and 36%v. Ni-
trification produces this relationship through mixing between
high-SP, 18 0-enriched N20 produced by NH20H decompo-
sition and low-SP, '5 0-depleted N20 produced by nitrifier-
denitrification.

Appendix A

Calculating the position-specific 15 N/ 14N ratios
of N20

Data collected during continuous flow isotopic analyses
of N20 included simultaneous signal intensities (in volt-
seconds) of 30, 31, 44, 45, and 46 mass/charge detec-
tors. The delta values and site preferences reported here
were calculated using the raw peak area ratios of 31/30,
45/44, and 46/44 for a reference gas injection and the
eluted sample peak. Isodat software reports these raw ra-
tios as rR 31NO/30NO, etc. For each run, sample raw
ratios were referenced to the standard ratios and these
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"ratios of ratios" were multiplied by the appropriate standard
ratios (

3
1Rswndard =0.004054063, 

45Rsandard =0.007743032,
4 6

Rsandard =0.002103490) to calculate 3
1Rsample, 

4 5
Rsample,

and 46Rsample, respectively. For example,

3 1Rsampic=[rR 3lNO/30NOsampie]/

[ rR 31 NO/ 30NOstndad J X 3 1
Rstandard

The Rstandd values are the calculated ratios that the Farraday
cups in the Casciotti DeltaPLUS isotope ratio mass spectrom-
eter (IRMS) should detect whenever the standard gas is an-
alyzed under normal operating conditions. They depend on
the actual isotopic/isotopomeric composition of the standard
gas and also how that gas is fragmented in the IRMS. To cal-
culate these three values we used 1) values of 615N', 615NO,
and 6180 for our standard gas as measured by Sakae Toyoda
and 2) The relative yields of m/z 30 and 31 from ISN14 NO
and t4NisNO when these isotopomers are analyzed in the
Casciotti IRMS (see Appendix B for details).

31 Rsample, 45 Rsample, and 46Rsample values are then entered
into the following equations:
31
R= (( I - y)15Ra + K15

RO + 15Rai1RP + 17R(l + y 1Ra

+(I- K)
15

RP))/ ( I + y iR" + (I - K)15R)

45
R= 15Ra + 15R + 17R

46 = (15R4 + 15RP) '
7
R + 18R + ISRa 

5
RO

17R/0.0003799 = (iR/0.0020052).
5
i

6

where y and K are the yields of the scrambled fragment
ions from 14NiSNO (31NO+) and '5N14 NO (31NO*), re-
spectively (see Appendix B). The four equations above can
be evaluated with a nonlinear equation solver to obtain values
for LSR , 15R, 17R, and 18R for each sample.

Appendix B

Calculating m/z 30 and 31 yield coefficients

When N20 is introduced into the ion source of the mass spec-
trometer, NO+ fragment ions are produced. While most of
these ions contain N from the a position, a small amount of
"scrambling" occurs, yielding NO+ ions containing the 0 N.
Accurate measurements of 15R' and 15RP require quantifi-
cation of the scrambling behavior for the mass spectrometer
under standard operating conditions.

Westley et al. (2007) use six separate coefficients to de-
scribe the 30NO* and "NO+ fragmentation behaviors of
the 4 N'5 NO, iSN1

4NO, and 15 N'5 NO molecules. We fol-
lowed their recommendation and performed mixing analy-
ses using purified 14 N' 5NO, iSN1 4NO, and '5 Ni5NO gases
from ICON (Summit, N. J.) to investigate the fragmentation

behavior of individual isotopologues in our mass spectrome-
ter (see supplementary material). We also compared this ap-
proach to the results of a simpler approach using two scram-
bling coefficients, y and K, to describe the relative produc-
tion of 3nNO* ions from 14N'NO and 31NO* ions from
15N14NO, respectively. These coefficients were used in the
system of equations that convert 3t R, 45R, and 4 6R to 15RO,
"R, 7R, and "8 R for each sample (see Appendix A for the
full set of equations).

We calculated y and K using a series of dual inlet mea-
surements of two sample gases with known isotope and iso-
topomer ratios referenced to a standard gas that also has a
known isotopic composition. In this case, the sample gases
were from the laboratories of K. Koba (Tokyo University of
Agriculture and Technology) and N. Ostrom (Michigan State
University), and the standard gas was the reference gas from
the Casciotti lab (WHOI). These three N20 reference gases
were all calibrated by S. Toyoda (Tokyo Institute of Technol-
ogy).

For each sample gas the "measured" value of
[rR 31NO/30NOsample]/[rR 31NO/30NOIandard] was deter-
mined by averaging the results of a series of 10-cycle dual
inlet analyses on the Casciotti IRMS. Then the "calculated"
value of [rR 31NO/30NOsamplcJ/[rR 31NO/30NOstandard]
(equivalent to 3 1

Rsample/
3 

1Rstandard) was obtained by insert-
ing Toyoda's calibrated values of 15R, 15 RO, 17R, and 18 R
for the sample and standard gases into the equation below
and guessing values of y and K:

3 R =((I - y) 15RO + K15 RP + 15Ra 15 R + 17 R(l +y
I5RG + (1 - K) 

15
RP))/(I + y -Ra + (1 - K) 1

5
RA)

The problem is one of optimization where the ob-
ject is to vary y and K until the calculated values of
31Rsample / 3 Rstandard are as close as possible to the inea-
sured [rR 31NO/30NOsampleJ/[rR 31NO/30NOtandard] for
both sample gases. This two-coefficient model automati-
cally obeys the constraint of Toyoda and Yoshida (1999) that
615N bulk (isRa + 15RP)/2. The optimized values obtained
here are y = 0.1002 and K = 0.0976. These coefficients are
consistent with reported values for fragment ion yields and
scrambling coefficients (between 0.08-0.10) (Westley et al.,
2007; Toyoda and Yoshida, 1999).

Following the alternative approach of Westley et al. (2007)
we found that ionization of the "N14NO ICON standard
produced approximately one tenth as many 31NO* as the
14N15 NO ICON standard (see supplementary material for
data and calculations). This result is an independent con-
firmation of the scrambling coefficient approach described
above (because K/(I - y )=0.10 8 ) and it does not require a
priori knowledge of the isotopomeric composition of the ref-
erence gas.

For the data presented in this paper, we opted to use two
coefficients and assumed that the fragment ion yields of 30
and 31 sum to 1 for both 14N15 NO and 15N14 NO. Using this
approach we were able to reproduce the isotopomer ratio val-
ues of sample gases with a broad range of site preferences
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(calibrated value for N. Ostrom tank = + 26.5%o and the value
measured using our approach = + 27.0%v; calibrated value of
K. Koba tank = - 5.49c and measured = - 4.8%c).

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/7/2695/2010/
bg-7-2695-2010-supplement.pdf.
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Table Al: Cell abundances measured at the start and end of the cell density experiment.
Averages are given for replicate treatments.

density (cells/ml)timepoint
20% 02 high cell density
Tinitial
Tfinal
20% 02 medium cell density
Tinitial
Tfinal
20% 02 low cell density
Tinitial
Tfinal
2% 02 high cell density
Tinitial
Tfinal
2% 02 medium cell density
Tinitial
Tfinal
2% 02 low cell density
Tinitial
Tfinal
0.5% 02 high cell density
Tinitial
Tfinal
0.5% 02 medium cell density
Tinitial
Tfinal
0.5% 02, low cell density
Tinitial
Tfinal

18054
47720

138
17495

stdev (cells/ml)

226511
56160

3780
4740

2099

106827
46295

1365
45593

1545

3740

3261

1539884
1492285

22992
46755

250
17239

1527693
1583817

21031
48062

103
16681

1399267
1376279



SUPPLEMENTARY MATERIAL

CAITLIN H FRAME, KAREN L CASCIOTTI

1. CALCULATING ISOTOPOMER-SPECIFIC ION YIELDS

Here we describe the results obtained from the calibration exercises recommended for

calibration of isotopomer measurements using mixtures of pure isotopomer gases (ICON)

and our N2 0 reference gas (Westley et al., 2007). In this approach, the fragment ion

yields from 15N14 N160 and 14 N15N160 are determined experimentally from analysis of these

isotopomers mixed with our calibrated N20 reference gas.

In dual inlet mode, we filled one bellows with a mixture of one of two isotopomers

(15N14 N16 0 or 14 N15 N16 0) and variable proportions of our standard gas. The other bel-

lows was filled with our standard gas. The ratios of the NO (31R) and N 45R)

measurements from the mixture and standard gases are graphed below as ratios Rmi r

45Rand 45  ")in red and blue circles (Figure S.1). The raw data are given in the excel file

included with the Supplementary Material.

Next, we developed a series of equations that relate 3Rm1xtre- and Rmixture to the yields
31Rstandard Rstandard

of 3 1NO+, 3 NO+, 45N2 0+, and 44 N2 0+ from the ICON isotopologues and our standard gas.

The fractional yields of the fragment ions (30NO+, 3 1NO+) and molecular ions (44 N2 0+,
4 5N2 0+) are assumed to be constants for each of the three gases under standard operating

source conditions and are defined as follows:

31standard mole standard and 3 11CON = yie ld 3131l yield 1i mole ICON



S.1: The ratios of the 31R and 45 R measurements from the ICON mixture and standard
gases.
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Then, for any mixture of ICON gas and standard gas we have:

yed3+ _yield 31+
31Rm 31mixy~r F x moines 3d-+ (1-F) xmoeTN1Rmixture = 

3
0mixture F x yield 31 + 1F) yield 30+

mole standard mole ICON
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and

4 5  
D. -

4 5
ixture F X yield 45+ iF eld 45+

45R t _ 45m-xture _ Fxmole standard + (1 x
mixture -

4 4
mixture F x yield 44+ +(1-F) x Id 4

mole standard mole ICON

where the mixing fractions F and 1 - F, are defined as follows:

F _moles standard
moles ICON+moles standard

1 - F _ moles ICON
moles ICON+moles standard

Based on the above definitions of 3 1Rmixture and 45Rmixture, if we divide 31Rmixture by

3 1Rstandard or 4 5 Rmixture by 45 Rstandard we get:

yield 31+ yield 31+
ixture-mole ICON mole standard

:listadar F+1 Fxyield 3o0+ yield 30+F+(1-F)x mole ICON mole standard

45R F+(1-F)x vield 45+ yield 45+
Rmixture mole ICON ' mler sanAdard

4b71standard ~ F+1-Fx yield 44+ yield 44+
mole ICON mole standard

By making the following substitutions

A _ yield 31+ yield 31+
mole ICON mole standard



B _ yield 30+ yield 30+
mole ICON mole standard

c - yield 45+ yield 45+
mole ICON mole standard

D _ yield 44+. yield 44+
mole ICON mole standard

we can simplify the expressions for iL"mit"r andRstandard Rstan.dard

3 1
Rmixtum F + (1-F) x A

31Rstandard F + (1-F) x B

4 5
Rmt F + (1-F) x C
Rstarard F + 1-F) x D

Solving for F in terms of A, B, and ilRmixtur" we have
31Rstandard

A - Rmixture x B
F =

- 1 + A - x B
Rstandard Rstandard

By substituting this expression of F into the equation for RmWure (see the column labeledRstandard

'calc 4 5R/45Rstd' in the supplementary spreadsheet), we now have an equation for 4 5
11itRr"

stadard

in terms of with unknown parameters A, B, C, and D. This equation can be applied

to both 14 N15 N16 0 and 15N14N16 0 ICON standard mixtures but they will have different

sets of best fit values for A, B, C, and D which we call A, B, C, and D for the 15N 14 N16 0

isotopomer and A', B', C', and D' for the 1 4N15 N16 0 isotopomer.



By definition, these parameters are all referenced to the appropriate ion yields from our

reference gas, so it is possible to make direct comparisons between A and A', C and C',

etc. The values of A and A' (the relative yields of 31NO+) were fitted by varying A, B,

C, and D until the calculated slopes and intercepts of the 4fRmiXture vs. linsixture
Rstandard Ritndard

aligned with those of the actual measurements from the ICON mixing analyses in Figure
45 RmitS.1. The ratios calculated for 4i Rmtare using the fitted values of A, B, C, D, A', B', C',

RstanDrd

and D' and the measured values ofRmx are graphed below (Figure S.2). The fitted
Rtandard

S.2: The values of4R calculated using fitted values (A, B, C, D and A', B', C', D')
Rtandard

for each ion yield.
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values are A = 22.65 and A' = 217. The numbers indicate that when the 15 N14N16 0 and
14 N15N16 0 isotopologues are ionized, they make 22.65 and 217 times as many 3 1NO+ per

mole of parent gas than the gas in our reference tank. Their ratio (= 0.104) indicates that

in our ion source, the 14 N15N160 isotopologue yields about ten times as many 31NO+ than

the 15 N' 4 N16 0 isotopologue.

Although the fitted values of B and B' could be used to produce a similar estimate of

the 30NO+ yields of the ICON standards referenced to our standard tank, the slopes of
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the calibration lines are not very sensitive to changes in B and B' because the gas in our

standard tank also produces a large yield of 3 0NO+.

We note that in this model of the R vs. line, the best fit values of A andWe otetht i tis ode o th 4Rstanidard Rtan-dardlie

A' are dependent on the relative ion yields of 45N20+ from each isotopomer (the values of

the C and C' parameters). We used values of C and C' that are essentially equal to each

other and very close to values that we estimated by analyzing individual ICON standard

gases using a single Faraday cup and peak jumping as discussed in Westley et al (2007).

2. N 2 0 AND N02 ACCUMULATION DURING NH 3 OXIDATION

The N2 0 data presented in the main text were from end-point experiments. Here we present

the results of a time-course experiment used to monitor the N2 0 yields over the course of

an incubation. The experiment was set up and initiated in the same way as the other

experiments. The initial cell density was approximately 5 x 104 cells ml- 1 . Replicate

bottles were sacrificed by adding 1 ml of 6M NaOH at different timepoints along the course

of the oxidation of 50 pM NH+. Total N20 was measured for each bottle by analyzing it

on the mass spectrometer with the same purge and trap system described in the main text.

Yields were consistently 3 x 10-4 for bottles containing 20% 02 and dropped from 8 x 10-4

at the 6 hour timepoint down to 4 x 10-4 at the 72 hour timepoint for bottles containing

0.5% 02-



S.3: Growth of C-113a on 50 p.M NH+. N2 0 accumulates steadily as NH 3 is oxidized and
NO accumulates. N2 0 production drops off when NH 3 is completely oxidized.
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3. SENSITIVITY ANALYSES OF SITE PREFERENCE END-MEMBER VALUES, SPND AND

SPNH2OH, TO 186 ND AND 186 NH 2 OH

We were able to manipulate the 6180 of the N02 and N2 0 produced during ammonia

oxidation by carrying parallel experiments out in 18 0-enriched and unenriched water. In

equation (6) (see the main text), the sensitivity of SPND and SPNH2 OH to the values of the

isotope effects 18 END and 18 6NH 2OH depends on the values of 618 0-NO , o180-N20total, and

SPtotal. Here we demonstrate that the value of the SPND end-member may be less sensitive

to 18END and 18 ENH 20H in 180-labeled H 2 0.

To test the sensitivity of SPND to 18END, 1 8 ENH 2 OH, and SPNH 2OH, values were substituted

into equation (6) as follows: SPtotal = 17%o, j 18 0-N20total = 19%o in unlabeled water and

35%o in labeled water, 618 0-NO = 6%o in unlabeled water and 44%o in labeled water, and

6180-02 = 25.3%o in all experiments. We note that these values fall within the ranges

of the values of SP, 6180-N20 (see Figure 5 in the main text), and 6180-NO that were
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actually observed but they are not representative of all datapoints that were included as

model inputs for the non-linear regression analysis discussed in the main text. In Figures

S.4A and S.4B, the best fit value of SPNH2 OH (36.3%o) was used to calculate SPND and

18 6NH 2 OH for different 18END. In Figures S.4C and S.4D, the best fit value of 18END (-8.4%o)

was used to calculate SPND and 18ENH 2 0H for different SPNH2 OH-

Using the parameter values discussed above, SPND is more sensitive to 18END in unlabeled

water (Figure S.4A) than in labeled water (Figure S.4B), as indicated by the larger vertical

distance between contours (lines of constant 186ND) in S.4A than in S.4B. SPND is also

more sensitive to 18 eNH 2 OH in unlabeled water (Figures S.4A and S.4C) than labeled water

(Figures S.4B and S.4D). This is evident in that the lines of constant 18eND or SPH 2OH

are more horizontal in S.4B and S.4D than they are in S.4A or S.4C.

We also see this in Supplementary Tables 1 and 2, where we have recalculated SPND

using values of 18 ENH 2 OH, 18CND, and SPNH2 OH that are one standard deviation higher or

lower than the best fit values. For the same set of best fit values and standard deviations,

the calculated range of SPND values is larger in unlabeled water (Supplementary Table 1)

than in labeled water (Supplementary Table 2).

This data set had a larger range of j 18 0-N 20 values than it would have had if we had

only included data from cultures in unlabeled water. The larger range of 618 0-N 2 0 in

labeled water helps explain the reduced sensitivity of the model parameters to each other

in labeled water. Future experiments may expand this range even further by increasing the

difference between the substrate 6180-02 and 618 0-H 20 values.
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deviations in Table 1 of the main text) for the contoured variable.

TABLE 1. The effect of uncertainty in 18 ENH 2 OH, 18 6ND, and SPNH 2OH On
the calculated value of SPND in unlabeled water (6180 ~ -5%o). All entries
are in %o. Bold entries in the first three columns have been changed ± one
standard deviation above and below the best fit values.

SPNH2OH
36.3
36.3
36.3
36.3
36.3
36.3
33.9
36.3
38.7

SPND
-4.1
-9.1
-17.2
-1.2
-9.1
-17.1
-5.9
-9.1
-12.4

SPtotal
17
17
17
17
17
17
17
17
17

o 8O-N20total
19
19
19
19
19
19
19
19
19

5180-N0 2 -
6
6
6
6
6
6
6
6
6

6510-02
25.3
25.3
25.3
25.3
25.3
25.3
25.3
25.3
25.3

TABLE 2. The effect of uncertainty in 186NH 2 OH, 18 END, and SPNH2OH on the
calculated value of SPND in 180-labeled water (6180 ~ 40%o). All entries
are in %o. Bold entries in the first three columns have been changed ± one
standard deviation above and below the best fit values.

SPNH2OH
36.3
36.3
36.3
36.3
36.3
36.3
33.9
36.3
38.7

SPND
-11.5
-9.7
-8.1
-11.8
-9.7
-7.5
-6.3
-9.7
-13.0

SPtotal
17
17
17
17
17
17
17
17
17

J"O-N20total
35
35
35
35
35
35
35
35
35

JR50-N0 2 -
44
44
44
44
44
44
44
44
44

6'50-02
25.3
25.3
25.3
25.3
25.3
25.3
25.3
25.3
25.3

'6ENH 2OH
2.1
2.9
3.7
2.9
2.9
2.9
2.9
2.9
2.9

'8END

-8.4
-8.4
-8.4
-9.8
-8.4
-7.0
-8.4
-8.4
-8.4

'8ENH
2 OH

2.1
2.9
3.7
2.9
2.9
2.9
2.9
2.9
2.9

16END

-8.4
-8.4
-8.4
-9.8
-8.4
-7
-8.4
-8.4
-8.4



3: NITROUS OXIDE PRODUCTION BY NITRIFICATION DURING A
COASTAL PHYTOPLANKTON BLOOM
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1. ABSTRACT

Coastal nitrogen cycling contributes significantly to marine nitrous oxide (N2 0) emis-

sions. Nitrification is a part of this cycle that produces N20. However, the factors that

control the N2 0 yield of nitrification in coastal microbial communities are not well un-

derstood. Potential nitrification rates and N2 0 production rates were measured over four

consecutive weeks during a spring bloom of the cyanobacteria Synechococcus in Woods Hole

Harbor off Cape Cod, Massachusetts using 15N tracer techniques. The transformation of

99.8% 15N ammonium (NH+) into nitrite (NO-) and nitrate (NO-) was measured during

a 24 hour incubation consisting of a 12 hour dark period followed by a 12 hour light period.

The isotopic composition of the NH+ was also measured and used to correct nitrification

and N2 0 production rates for significant regenerative dilution of the 1 5N-NH+ over time

(20-40% of the initial enrichment). Nitrification rates were low and nearly constant over

the course of the bloom (0.2-0.4 21'4) and the rates during the dark and light periods

were similar. In contrast, N2 0 production increased steadily as the Synechococcus bloom

expanded, starting at 0.7 foE4 and peaking at 3.8 f"nole along with the Synechococcus1xday lxday

abundance. N2 0 yields from nitrification were high, ranging from 4 x 10-3 to 33 x 10-3

with the yield peaking at the same time as the Synechococcus abundance peaked. N0

and oxygen (02) concentrations, which are known to affect N20 yields in nitrifier cultures,

remained constant over the course of each incubation (-65nM and 20%, respectively), sug-

gesting that (an)other factor(s), such as a different microbial community composition or

rising organic and particulate concentrations was driving the change in yield.

2. INTRODUCTION

Nitrous oxide (N2 0) is a long-lived greenhouse gas whose atmospheric concentration

has risen since the industrial revolution, along with carbon dioxide (C0 2) (Weiss et al.,

1981; Prinn et al., 1990). Unlike C0 2, the increase in N2 0 is not directly driven by fossil

fuel combustion. Rather, it is mainly due to increasing use of nitrogen-rich fertilizers

and other agricultural activities (Seitzinger and Kroeze, 1998; Prinn et al., 1990). River

nitrogen fluxes are directly correlated with population density (Howarth et al., 1996) so that
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human impacted coastal regions that would otherwise be nutrient limited are particularly

susceptible to phytoplankton blooms (Beman et al., 2005). Large N2 0 fluxes observed in

these coastal areas have been linked to elevated organic carbon, nitrogen, and oxygen (02)

concentrations during phytoplankton blooms (Harrison and Matson, 2003).

Nitrification and denitrification both produce N2 0 in coastal environments, but their

relative importance is not well known. Large fluxes of organic matter from surface waters

stimulate sedimentary denitrification by supplying organic carbon and causing anaerobic

conditions. Nitrification is stimulated by direct inputs of anthropogenic ammonium (NH')

as well as NH+ regenerated from organic nitrogen by zooplankton and heterotrophic bac-

teria. NH+ is also taken up by phytoplankton and other microorganisms to fill their nutri-

tional nitrogen requirements, and is often the preferred nitrogen source over other dissolved

inorganic nitrogen (DIN) compounds (McCarthy et al., 1977; Levasseur et al., 1993). In

shallow estuary sediments, when demand for NH+ is greater than the NHt regeneration

rate, competition between phytoplankton and nitrifiers can limit sedimentary nitrification

rates (An and Joye, 2001). Light and turbidity may also influence nitrification rates because

phytoplankton require light and some nitrifier strains can be inhibited by it (Guerrero and

Jones, 1996a,b). In highly productive systems, nitrifiers may also use 02 produced during

rapid daytime photosynthesis (An and Joye, 2001).

Given the potentially complex ecological relationships among nitrification, primary pro-

duction, and NH+ regeneration, it is not necessarily clear if or how phytoplankton blooms

influence nitrification rates in coastal surface waters. Furthermore, changes in the chemi-

cal and biological environment that accompany a phytoplankton bloom may also influence

the yield of N2 0 during nitrification. As discussed in the previous chapter, the N2 0 yield

of nitrification is defined as the fraction of NH+ nitrogen atoms that wind up in N2 0 as

ammonia oxidizers convert ammonia (NH 3 ) to nitrite (N02 ). In chapter 2 we showed that

the N20 yield of pure cultures of ammonia-oxidizing bacteria depends on the 02 and N02

concentrations as well as the abundance of ammonia oxidizer cells in the cultures.

Coastal environments are a small fraction of the total ocean area but they account for

15-61% of oceanic N2 0 emissions (Bange et al., 1996a,b). The uncertainty of this estimate
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is large because coastal N2 0 production is spatially and temporally patchy and the phys-

ical variables that influence air-sea gas exchange, such as wind and temperature, change

rapidly. The contribution of surface nitrification to the N2 0 flux out of the ocean is also

not well constrained because fluxes are generally small compared to atmospheric back-

ground concentrations (Bange, 2006). 15N tracer methods are highly sensitive to low-rate

processes, making them better suited to measuring surface nitrification and N2 0 produc-

tion than concentration-based rate measurements. These rates are calculated by adding

15NH+ to seawater and tracking 15 N as it is converted from NH+ to NO-, nitrate (NO-),4 4 2' nirt 3(~

and N2 0. However, regeneration of NH+ during these experiments can interfere with rate

measurements by diluting the initial isNH+ with 14NH+.

Here we use 15NH+ and a combination of NH+, NO-, NO 3 , and N20 isotopic measure-

ments to investigate whether nitrification rates and N2 0 production rates change during

a spring phytoplankton bloom in Woods Hole Harbor (Cape Cod, Massachusetts). The

bloom is a highly predictable expansion of the number of picocyanobacteria of the genus

Synechococcus that is driven by seasonal increases in water temperature and insolation

(Waterbury et al., 1986). The bloom begins in late March or early April as Synechococcus

abundances increase exponentially from a winter density of 100-1000 cells ml-1, peaking at

105 cells ml-1 in mid June.

3. MATERIALS AND METHODS

3.1. Incubation Setup. Incubations were set up once a week for four consecutive weeks

between May 9 and June 2, 2010. During each experiment, 2 4L polycarbonate bottle

incubations were used to measure rates of NHt and NO- + NO- transformation and

uptake, as well as Synechococcus abundance. Subincubations in headspace bottles (165ml)

that contained 100ml seawater and were sealed with teflon-lined butyl rubber septa were

set up simultaneously to measure N2 0 production over the course of the experiment.

Water was collected after sun-down at high tide off Dyers Dock in Woods Hole Harbor

and strained through a sieve with 0.5mm holes into an acid-washed, seawater-rinsed 20L

carboy and two 4L polycarbonate bottles. 15 N-NH+ (99.8%) was added to the carboy to
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bring the concentration of added NH+ to 1pM. Water from the carboy was dispensed into

two 4L polycarbonate bottles and six 165 ml serum bottles. For filtered controls, the water

in the two independently collected 4L bottles was pumped through a 0.2pm pore-size filter

into two clean 4L carboys, 1IpM tracer was added, and a set of two 165 ml serum bottles

was also filled with 100ml of the same filtered water. Bottles were incubated at 130 C for

12 hours in the dark followed by 12 hours under artificial light (-20 JEm- 2 s-1)

Two 45ml samples were collected from large bottles for chemical and isotopic analyses

after 0, 12, and 24 hours. At each timepoint, two experimental 165ml bottles were poisoned

with 500pl of saturated mercuric chloride (HgCl 2). At t = 24 hours, a pair of filtered-control

165ml bottles was also poisoned.

3.2. Synechococcus cell counts. Samples for cell counts were collected at T = 0 and T

= 24 hours. One 45ml sample was frozen immediately and one was preserved with 0.25%

glutaraldehyde before freezing. Initial (TO) counts were made by gently filtering 5 to 10ml

of each sample through white polycarbonate filters with 0.2 pm pores. Duplicate mounted

filters were examined using a Zeiss microscope with an epifluorescence illumination system.

3.3. NH+ Concentration. NH+ concentrations were measured in triplicate on unfiltered

water immediately after collection using the orthoplithaldialdehyde-fluorescence method

described by Holmes et al. (1999) and a Turner field fluorometer with filters for NH+

concentration measurements. Standards were prepared in both freshly deionized water and

in the same seawater used in each set of incubations. Matrix effects were taken into account

using the seawater standard curves and corrections for background NHZ and background

fluorescence in the seawater standards were made using the deionized water standard curves.

Details of the standard calibration are included in the Appendix.

3.4. NO + NO Concentrations. Each NO + NO concentration was measured in

duplicate using standard solutions prepared in deionized water. NO + NO was reduced

to NO by injection into a hot Vanadium (III) bath in line with a chemiluminescence detector

(Braman and Hendrix 1989). Concentrations were low so large sample volumes (5 to 10ml)

were used to increase the signal to noise ratio.
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3.5. NO Concentrations. NO was measured in duplicate using the Griess-Ilosvay col-

orimetric method (Pai and Yang, 1990) and standards prepared in deionized water. A

spectrophotometer was used to measure 543 nm light absorbance through a 10cm path-

length cell. Turbidity corrections, calculated as the difference in absorbance between fil-

tered and unfiltered incubation water before the addition of reagents, were 27-37% of the

total absorbance signal with the addition of reagents.

3.6. 02 Concentrations. Headspace 02 concentrations were determined with a gas chro-

matograph with a 6 3Ni electron capture detector (Shimadzu GC-8A). The 02 peaks from

20pl injections of sample headspace were recorded and integrated using Shimadzu EZStart

software (v. 7.2.1) and calibrations were made with standard injections of air.

3.7. NH+ Isotopic Composition. NH+ isotopic measurements were made in triplicate.

Unfiltered samples for NH+ isotope analyses were treated immediately after collection by

converting NH+ to NO- by the hypobromite oxidation method described by Zhang et al.

(2007) and modified as follows. All samples were placed in 20ml headspace vials rinsed

with deionized water and stoppered with rinsed rubber septa. Vial + reagent blanks were

measured at each timepoint by standard addition (1-5 nmole) of isotopically quantified

NH+ standards USGS-25 (-30.41%o) and USGS-26 (53.75%o). Blanks were typically about

5 nmoles. Working reagents and sodium hydroxide solutions were prepared freshly before

each measurement to avoid ambient N02 and NH 3 accumulation. Background N02 was

removed by adding 20 pl sulfanilic acid working reagent (1.75ml deionized water, 2 ml

of sulfanilic acid stock (125 pM) stored refrigerated, and 6.25ml of 40% HCl) to 3.7095

ml of sample, stoppering the vials with butyl rubber septa, shaking, incubating at room

temperature for 30 min, loosening the septa, and heating samples to just below their boiling

temperature for 15 min. While the samples were still warm 13.65 nmole of carrier NH+

(USGS-26) was added as 136.5pl of 100 pM carrier solution, bringing the total NH+ to

15-17 nmoles. The hypobromite reagent was added as 384.6 [pl of working solution (20

ml deionized water + 1.2 ml 6M HCl + 2ml Br stock prepared according Zhang et al.

(2007) incubated for one hour in the dark before addition of 20 ml 10M sodium hydroxide
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(NaOH)). Stoppered samples were incubated for 30min at room temperature and then

384.6 pl of sodium arsenite stock solution (2.55g NaAsO 3 in 50 ml of deionized water) was

added. Samples were acidified with 384.6ptl of glacial acetic acid, stoppered, and closed

with aluminum crimps immediately before reduction to N2 0 by the azide method (McIlvin

and Altabet, 2005). Samples were analyzed with an isotope ratio mass spectrometer at the

University of California, Davis stable isotope facility.

3.8. NO+NO2 and NO Isotopic Composition. NO+NO2 was reduced to N2 0 by

the denitrifier method (Sigman et al., 2001; Casciotti et al., 2002) immediately after adding

10 or 20 nmoles of carrier NO to 8.8il sample, bringing the moles of sample NO + NO

to 7.5-15% of the moles carrier NO + NO. The lower carrier to sample ratio was for all

samples except those from the first incubation. Each set of measurements was made along

with two sets of the NO isotopic standards USGS-32, USGS-34, and USGS-35 (Bohike

et al., 2007). For NO-only measurements, NO in 8.8ml of sample was reduced to N2 0

using the azide method (McIlvin and Altabet, 2005) immediately after adding 5nmole of

carrier NO- and 1imole of diluting NH+. The samples were measured with two sets of

the NO isotopic standards, N-23, N-7373, and N-10219 (Casciotti et al., 2007). Limited

sample volumes allowed only a single measurement of the NO-only isotopic composition.

N2 0 isotopic composition was measured with a Finnigan DeltaPLUS XP IRMS.

3.9. N20 Concentration and Isotopic Composition. Isotopic analysis of N20 in the

165ml serum bottles was made on a Finnigan DeltaPLUS XP IRMS with the automated

purge and trap system described by McIlvin and Casciotti (2010). Before the samples were

analyzed, 500 pl of 0.33 M natural abundance isotope ratio NH+, NO-, and NO- were

added to each sample to dilute any 15N tracer. The total N2 0 in each 165ml incubation

bottle was purged with helium on-line with the mass spectrometer. N2 0 concentration

measurements were made using a linear conversion between m/z peak area 44 and total

moles of N20. The reported precision for these measurements is 0.13%o for o15N-N 2 0 and

0.18%o for 61o8 0-N2 0 (Mcllvin and Casciotti, 2010).



Where indicated, 15 N values were converted to isotopic mass fractions (15F) with the

following equations:

15 Rsample = ( + 1) X 15 Rstandard

15 F = 11

3.10. Assessment of Uncertainty. The propagated errors of the 15 F-NH measurements

were dominated by the uncertainty in the size of the blank. An uncertainty of ±2 nmole was

assumed, however occasional fliers with higher blanks appeared during standard additions.

Although the NH+ concentration measurement is precise (Figure 1) and has a low de-

tection limit, its accuracy depends on the correction for background fluorescence in the

seawater used for the standard additions. A geometric correction was used here but there

is some debate about how to make this correction (see Taylor et al. (2007) and the Appen-

dix).

For 15 F-NO3+NO2 measurements, a 50pt pipetting error was assumed for each 8.8ml

sample addition. A 1pl pipetting error was assumed for 100pil carrier additions and a 1IpM

error was assumed for the carrier NO- concentration.

4. RESULTS

Synechococcus abundances increased from 4.8 x 104 cells ml-1 on May 9 to 15.4 x 104

cells ml- 1 on May 23 and then decreased to 8.2 x 104 cells ml- 1 on June 2 (Table 1). During

the first three incubations, NH+ concentrations decreased rapidly (15-30 nM hour-') during

the dark period and remained relatively constant during the light period (Figure 1). In the

last incubation, the NH+ concentration increased during the dark period and then dropped

during the light period. 15F-NH+ values decreased between 15 and 43% by the end of every

incubation (Figure 2), indicating that NH+ regeneration balanced a significant proportion

of NH+ uptake. In the fourth incubation, regeneration outpaced uptake during the dark

period so that at T12, NH+ concentrations were higher than the TO values.

Initial NO + NO (N+N) concentrations were low (0.1 to 0.2 IM). They decreased

slightly over time during the May 15, May 23, and June 2 incubations and remained constant

during the May 9 incubation (Figure 3). NO concentrations remained low (60-70 nM) and
57



composed 30-50% of the total N+N, with no clear concentration trend over time (Figure 4).

However, nitrification resulted in detectable accumulation of 15N tracer in the N+N (Figure

5) and the NO- (Figure 6) pools. Tracer did not appear in the N+N of incubations with

filtered sea water, indicating that the >0.2im particulate fraction was responsible for NH4

oxidation. 15 FN+N increased fastest during the May 15 and June 2 incubations (Figure 5).

NO enrichment (Figure 6) increased more than the N+N enrichment, as expected for a

species with a smaller reservoir size and a similar flux magnitude to the NO3 pool.

The conceptual nitrogen cycle used to model inorganic nitrogen transformations in this

system is represented in Figure 7. Nitrification rates were modeled two different ways: in

model 1 a constant nitrification rate, Rait (moles N * time-1) and first order N+N uptake

with rate constant k (time-') were used, and in model 2 a constant nitrification rate and a

constant [N+N] were used to make a simpler check on the general magnitude of the results

from model 1. The following differential equations were the basis of model 1:

(1) d'[N+N] = R * 15 FNH 1 5 FN+N * [N + N]

(2) d14 N+N] Rnlit * 14 FNH+(t) - k * 14 FN+N * [N + N]

where the isotopic fraction of NHt (15 FNH±(t)) is assumed to change linearly over time

with a slope of 15m and a y-intercept (15 FNH+O) equal to the starting isotopic fraction of

NH+:

15 FNH+(t) = 1 5 FNHO0 15 m * t

and

14 FNH+(t) = 15FNH+(t) = 14 FNH+o + 14m * t

The solutions to (1) and (2) are

15 [N + N)(t) = 15 N + N]o * e-kt + Rnit* FNH+ 15__+ m*Rnit 1 e kt

kt + Rnit*14 FNH+O __14 __ ++0
14[N + N] (t) = 14[N + N]o * e-' + N4 14- )+ m*Rnit

Input values included t (time), 15 FN+N(t) (the isotopic fraction of N+N over time), and

the appropriate values of 15m and 14m. The parameter values in Table 1 were determined

using least squares minimization.

The basis for model 2 was equation 3:



(3) 1 5 FNH+ x Rait * At = A( 15 FN+N * [N + N]const),
5 F FNH+(ti) 15 FNH+(ti+1)

where the average enrichment of NH, FNH ' 2 4 and [N+N] is

assumed to be constant over time. This assumption introduces error that depends on

the importance of the N+N uptake rate. When N+N uptake is important, the estimated

nitrification rate from model 2 overestimates the actual rate because a greater change in

15F can be made for a given amount of nitrification in a smaller N+N pool. Since uptake

caused a measurable decrease in [N+N] over time (Figure 3), the nitrification rates of model

2 should be considered a back-of-the-envelope check on the ranges estimated using model

1. Nitrification rates from model 2 will be higher than those that allow N+N uptake that

is significantly faster than nitrification. Using model 1, the dark and light rate constants

for N+N uptake were relatively high (- 0.2-0.3 hr- 1), making the uptake rates about two

orders of magnitude higher than the nitrification rates.

Using model 1, potential nitrification rates during the dark incubation period were similar

to rates during the light period for all four sets of incubations (0.2-0.3 ,,,Ie, Table 1) and

all rates were lower than those calculated with model 2 (1.1-2.8 " " ). The dark and light

potential nitrification rates calculated with model 2 were similar for individual incubation

dates, ranging between 1.1 and 2.2 ""nk during the dark incubation periods and between 1.3lx day

and 2.8 nMoL during the light periods (Table 2). In both models, the calculated nitrificationlx day

rates were higher than they would have been if the 15 FNH± values were assumed to be 1

throughout each incubation. The 15FNH+ measurements had a particularly large impact

on the May 9 and May 23 nitrification rate calculations, when the 15FNH+ at TO was much
N4

lower than 1 (Figure 2).

Tracer also appeared in N20 present in the serum bottle incubations. 61 5N-N 2 0 values

increased steadily from TO values of 6 to 12%o to 16 to 40%o at T24 (Figures 8-9). J180-

N2 0 values increased over time as well in the May 15 and May 23 experiments (Figure 10).

Production rates were calculated using similar approaches to the ones described for nitrifi-

cation, with values from sacrificial bottles taking the place of time point measurements:

(4) N2O] = RN0 * 15 FNH+ (t) (model 3, Table 3)



Integrating this function and substituting the linear 15FNH+ equation,

1 5 FNH+ (t) = 15 FNH 15 m * t

produces:

1 5 FN 2O(t) = RN 2 O * 1 5 m * t 2 + RN 2 O * 15 FNH+o * t + 1 5 FN 2 00

Model 3 is the analogous N2 0 model to nitrification model 1, except that there is no con-

sumption/uptake term for N2 0, only a production flux, RN20 (where RN2O*24 hours*2nmol

headspace N2 0*1L/(0.1 L incubation volume) = mole 1- 1 * day-' in Table 3).

Model 4 is analogous to nitrification model 2 and is presented here as another back-of-

the-envelope check on the results of model 3:

(5) 15FNH+ x RN2 0 * At = A( 15 FN20 * [N2 0 ]const) (model 4, Table 4)

The analogous 14FN20 equations were not used in these rate calculations because they

were insensitive to the N20 production term. This is true because the N20 produced during

the incubations was a very small fraction of the total headspace N2 0 and headspace N20

concentrations did not change significantly over the course of the incubation.

Since there is no uptake flux for N2 0, the two models should be (and are) in better

agreement with each other than the analogous nitrification models. Production rates mod-

eled for the entire incubation (dark + light period) with model 3 ranged between 0.6 and

3.8 -"jg (Table 3). Split dark and light production rates calculated with model 4 ranged

between 0.6 and 3.0 f"ul in the dark and 0.4 to 3.1 finole in the light (Table 4). Unlike the
1xday lxday

nitrification rates, the N2 0 production rates followed the same trend as the Synechococcus

cell abundances, increasing between May 9 and May 23 and then dropping on June 2. The

N2 0 yield calculation (fractional N20 yield = 2RateNca ) based on these rates and the

nitrification rates estimated with model 1 increased from 4.9 x 10-3 on May 9 to 9.9 x 10-3

on May 15 and 32.5 x 10-3 on May 23, and then dropped to their lowest value, 3.9 x 10-3

on June 2. The 02 concentrations in the headspaces of the serum bottle incubations re-

mained at atmospheric equilibrium (20% 02) for each timepoint during the May 23 and

June 2 incubations (Figure 11).



5. DISCUSSION

Water temperature controls the onset of the springtime Synechococcus bloom (Water-

bury et al 1986) and experiments were initiated when the temperature reached 13 C and

should have corresponded with the exponential phase of the bloom. The doubling time of

Synechococcus is 4.3 days during this phase (Waterbury et al., 1986), although short-term

events such as storms can reduce growth rates. Synechococcus abundances measured here

did not increase exponentially, suggesting that the bloom was either already in its senes-

cent stage or that sampling captured the effects of short term disturbances in the harbor.

Precipitation and runoff should not have had an effect as there was no precipitation in

the two days prior to the start of each incubation. Synechococcus accounts for 5-10% of

primary production in this environment (Waterbury et al., 1986). Additional work charac-

terizing the rest of the microbial community may be necessary in order to understand what

is driving the larger nitrogen cycle dynamics in this system.

Potential nitrification rates were low compared to estuarine and some open ocean esti-

mates (2-7T *, (Olson, 1981b)) but were comparable to surface rates measured by Ward

et al (1984) off the coast of Washington state (0.2-0.7"e). Rates were substantially slower

than estimated N+N uptake rates (Table 1). This is expected for an ecosystem supported

by steady influxes of new NO from terrestrial, atmospheric, or other coastal sources. The

dark and light periods of each incubation were modeled separately because both the ni-

trification rates and the uptake rates were expected to change with the light regime. For

example, in high-nutrient waters, NO. uptake by phytoplankton is highest during the day

(Goering et al., 1964; Eppley et al., 1971; Cochlan et al., 1991) and there is evidence that

nitrification is photo-inhibited in the surface of the open ocean (Olson, 1981a). However,

dark and light nitrification rates estimated with both model 1 and model 2 were similar,

as were the N+N uptake rates estimated with model 1 (Table 1 and Table 2). Rates of

N+N disappearance during the dark and light periods were approximately equal (Figure 3

and Figure 4). Since nitrification rates were low relative to uptake, the net N+N uptake

in these two figures is probably close to the gross N+N uptake. Uptake rates were much



higher than nitrification rates (Table 1), so that turnover of N+N in this system must be

determined almost entirely by uptake and physical transport. For simplicity, model 1 does

not include an isotope effect for N+N uptake. This effect probably had little impact on the

observed 1 5 FN+N: the isotope effects of uptake are typically small in phytoplankton and

bacterial cultures, (between 1 and 8%o, Granger et al. (2010)) as well as in the euphotic

zone (Altabet et al., 1999). Furthermore, the fraction of starting N+N consumed over the

course of the incubations was small (< 0.3).

The 1 pM tracer NHt added to these incubations was a large perturbation of ambient

concentrations (30-180nM) but was necessary to track isotopic dilution of the 15N-NH4

and to trace 15N into N2 0. Therefore, the rates measured here must be qualified as poten-

tial rates, not in situ rates. Phytoplankton respond to increased NH+ concentrations by

increasing their uptake rates (MacIsaac and Dugdale, 1969). Previous work has measured

a 300 nM saturating concentration for NH+ uptake in Vineyard Sound, Massachusetts

(Glibert et al., 27). Few studies have tested the kinetics of NH+ oxidation in marine en-

vironments, but they indicate that the half-saturation concentration for NH+ oxidation is

150nM (Hashimoto et al., 1983). In cultured NH 3 oxidizing bacteria the half-saturation

concentrations are much higher (100s of pM) (Jiang and Bakken, 1999). However, the

archaeal ammonia oxidizer, Nitrosopumilus maritimus has a much lower half-saturation

constant (135 nM) that is closer to marine NH+ concentrations (Martens-Habbena et al.,

2009). If NHZ oxidation in Vineyard Sound behaves according to archaeal and measured

marine kinetics, then the nitrification rate measurements could be at least twice as high as

the unperturbed rates.

N2 0 production rates and yields increased in sync with the Synechococcus cell abun-

dances (Table 3, Table 4, and Figures 8-9) but not in direct proportion to them. These

results are intriguing and their possible biological significance will be discussed, but there

are reasons to suspect that the N2 0 sample preservation method may have influenced the

measured 613N-N 2 0 values. The serum bottles poisoned at TO were expected to have

3'5 N-N 20 values close to the atmospheric value of 6%o. However, the May 9, May 23

and June 2 incubations all had higher values (Figure 8), suggesting either that there was
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post-preservation N20 production from one of the 15N-labeled pools of nitrogen or that

the seawater was not in isotopic equilibrium with the atmosphere at the time of collection.

Poisoning seawater with HgCl 2 is a standard preservation method for N2 0 isotopic and

concentration measurements (e.g. Yoshida et al. (1989); Dore and Karl (1996); Popp et al.

(2002); Westley et al. (2006); Yamagishi et al. (2007)). The ratio of saturated HgCl2 so-

lution to seawater used here was 0.5 ml : 100 ml. Although this ratio is higher than that

used to preserve samples in chapter 3 (0.06 ml : 100 ml), similar ratios have been reported

in the literature (e.g., 0.4 ml : 100 ml (Dore et al., 1998)).

The bottles from all four incubations were analyzed at the same time, one week after

the last incubation, and five weeks after the first incubation so that samples from later

incubations were analyzed after shorter amounts of time than samples from earlier incuba-

tions. The disappearance of NO over time in HgCl 2-preserved samples has been reported

before (Aminot and Kerouel, 1996; Kattner, 1999) but the mechanism of disappearance

is not known. A Hg -dependent NO reduction mechanism producing N2 0 is thermody-

namically favorable (C. Lamborg, personal communication), but overnight tests on fresh

seawater containing NH+, NO-, or NO- preserved with HgCl 2 showed no immediate reac-

tion (unreported data).

The increases in the apparent 6180-N 20 values observed in Figure 10 may shed some

light on which of the 15N-labeled nitrogen pools gave rise to the 1 5N2 0 produced during

the incubation. The 518 0-N 20 values increased over time in the May 9, May 15, and May

23 incubations. The isotopic compositions of 02 and H2 0 in the incubations were both

near natural abundance, and very little N2 0 was actually produced during the incubation.

The apparent increase was probably not due to an actual increase in the abundance of

N2
18 0. For reference, each of the serum bottle incubations represented in Figures 8, 9,

and 10 contained ~ 2.1 nmole of N2 0 and individual bottles were within 0.05 nmole of

each other across all experiments. However, large inputs of doubly labeled 15N15NO may

have caused an increase in m/z 46 ions that would have been interpreted as N2 180 by our

analytical software. Based on the results of the large bottle incubations and assuming a

binomial distribution of 15N and 14N in the N20, the N0 and N+N pools never reached
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15N enrichments high enough to form detectable concentrations of 15N 15NO without also

forming much larger quantities of 15N14 NO and 14 N15NO than were actually observed in

Figures 8 and 9. That is, the observed production of 15 N14 NO and 14 N1 5NO was lower than

expected if 14N and 15N in the N+N pool were reacting to form N2 0 with probabilities

proportional to their respective concentrations. This suggests that the N2 0 produced in

these incubation bottles was actually formed with nitrogen atoms from the NH+ pool,

which contained a much higher fraction of 15N than either of the N+N pools.

If nitrification produced N2 0 during these incubations, the yields are similar to those

observed by Goreau et al. (1980) at 20% 02 in Nitrosomonas cultures but they are about

10 times higher than other observations made on cultured ammonia oxidizers (Frame and

Casciotti, 2010) (Table 5). Some of the observed yields are actually lower than those cal-

culated by Dore and Karl (1996) for the euphotic zone at station ALOHA using 15N tracer

measurements of NH+ oxidation and surface flux mass balances to model N2 0 production

(yield = 27 x 10-3). Considering the large uncertainties associated with the eddy-diffusion

coefficients used to calculate 1-D surface fluxes, the agreement between studies is good.

Based on a Redfield 02 : NO stoichiometry of 9.3-10.7, our results also agree with local

atmospheric anomalies in N2 0 and 02 concentrations that coincided with a coastal up-

welling event off the coast of California (AN 2 0/Aatmospheric potential 02 = -1.2 x 10-4

(Lueker et al., 2003)). Using the same 02 : NO stoichiometry, the yields here are also in

agreement with values measured in the South Atlantic in the following chapter. Dissolved

02 concentrations were never low enough to stimulate nitrifier-denitrification and ambi-

ent N02 concentrations changed very little over the course of each incubation (Figure 4).

However, aggregation of NH 3-oxidizer cells into particles with higher cell densities, higher

N02 concentrations, or lower 02 concentrations than the surrounding water may create

localized conditions conducive to nitrifier-denitrification. There are a number of findings

that suggest that nitrifiers prefer living near each other. For example, Ward et al. (1984)

observed clustering of Nitrosococcus cells in shallow coastal waters. Growth of cultures of

the archaeal ammonia oxidizers N. maritimus are inhibited when culture conditions are not

static. Finally, the bacterial ammonia oxidizer Nitrosomonas europaea forms biofilms in



liquid culture media (Laanbroek and Gerards, 1993). A seasonal increase in productivity

could enhance N2 0 yields by providing ammonia oxidizers with substrate to aggregate on.

6. CONCLUSIONS

Paired measurements of nitrification and N2 0 production allow ground truthing of N2 0

yields measured in cultures of ammonia oxidizers as well as yield estimates made with

oceanographic N2 0, 02, and N+N concentration data. Possible methodological issues with

sample preservation may have influenced potential yields measured here. Nevertheless,

the experimental results indicate that N2 0 yields do not increase linearly in proportion to

nitrification rates, and that a variable other than ambient 02 or N02 concentration causes

the increase in yield.
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8. APPENDIx A: STANDARDIZATION FOR NH+ CONCENTRATIONS MEASURED WITH THE

OPA-FLUORESCENCE METHOD OF HOLMES ET AL. (1999)

Immediately before each set of NH+ concentration measurements, a set of standards was

prepared with the same seawater used for each tracer incubation and another set was pre-

pared with freshly-drawn deionized water (Figure 12). In between incubation time points,

the seawater used for standards was refrigerated in a closed polycarbonate bottle. The equa-

tion of the final calibration curve was obtained by using the slope of the seawater standard

curve and a y-intercept that was corrected for total background fluorescence. According

to Taylor et al. (2007) this background fluorescence has 3 sources: the fluorescence of the

reagents themselves, the background NH+ present in the seawater, and other naturally

occurring compounds that fluoresce in the presence of the OPA reagent. The correction for
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reagent fluorescence was made by shifting the y-intercept of the seawater standard curve

down by the same number of fluorescence units as the y-intercept of the deionized water

standard curve. In Figure 12, this was done by moving the seawater y-intercept at point B

down to point C, where B - C = A and A is the y-intercept of the deionized water standard

curve. The next two components of the fluorescence correction are not fully resolvable

without knowing the background NH+ concentration. In an effort to systematically appor-

tion this unresolved fluorescence between actual NH+ in the seawater and other sources

of fluorescence in the seawater, the base of the seawater standard curve was moved along

a perpendicular line drawn between it and the deionized water standard curve. This was

accomplished by moving point C to point F, where the line CF is perpendicular to the

deionized water standard curve. The length of line CD was assumed to be the background

NH+ concentration, AE was the fluorescence due to the background NH+, and the length of

line CE was assumed to be the background fluorescence of seawater. In these experiments,

the average unresolved fluorescence signal (= B - A) was 73 fluorescence units, or about

9% of the total signal.

9. APPENDIx B: STANDARDIZATION FOR NH+ ISOTOPIC MEASUREMENTS MADE USING

THE METHOD OF ZHANG ET AL. (2007)

Standards were analyzed for every set of NH+ measurements made at every time point

for each incubation. Six standard additions were made for each of two USGS NH+ isotope

standards (USGS-26 and USGS-25). The isotopic composition and mass of the blanks was

calculated by fitting the standard addition data using the reported isotopic compositions

and known masses of added standard (Figure 13). The 615N-NH+ values of the blanks were

usually less than 0%o. Each batch of vials and butyl rubber stoppers was treated similarly

by rinsing thoroughly with freshly deionized water and then air drying. The size of the

blank was found to increase if acid or soap were introduced into the washing procedure.
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10. APPENDIX C: DERIVATION OF THE SOLUTION TO THE DIFFERENTIAL EQUATION

USED TO MODEL SIMULTANEOUS AMMONIA OXIDATION AND NITRATE UPTAKE

For an inhomogeneous ordinary differential equation of the form

y' + Ay - B(Cx+D) = 0

where
, d[' 5N] d[14 N]

dt or dt

y = [15N] or [14 N]

x = time

A = k, rate constant of uptake

B = Rnit

C = slope of the 15FNH+ vs. time equation

D = intercept of the 15FNH± vs. time equation

Multiply through by the integrating factor, the exponential of the integral of the zeroth

order term, A, which is eAx:

eAx y'+ AeAx y= BeAx (Cx+ D)

This turns the left-hand side into a product-rule derivative:

(eAx y)= eAx y' + A eAx y

(eAx y)' = BeAx(Cx + D)

Integrate

eAx y = f BeAx(Cx + D)dx + K

= BC f xeAxdx + BD f eAxdx + K

The integration of the second term follows from the differentiation of exponentials (ie,

(eAx)' = AeAx):

f eAxdx - (eAx)/A

To integrate the first term f xeAx dx, use integration by parts. Set u = x, dv = eAx dx.

The identity for integration by parts is f udv = uv - f vdu. Then du = dx and v = f eAx

dx = (eAx)/A. So:

f xeAx dx = f u dv = uv - f v du = x(eAx)/A - f (eAx)/A dx



= x(eAx)/A - (eAx)/A 2

Take

yeAx = BC f xeAxdx + BD f eAxdx + K

and substitute the two integrals on the right-hand side:

yeAx = BC(x(eAx)/A - (eAx)/A 2) + BD((eAx)/A) + K

Then multiply through by e-Ax:

y = BC[x/A - 1/A 2] + BD[1/A) + Ke-Ax

The constant of integration K is determined by the initial conditions.
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FIGURE 1. NH+ concentrations over time in experimental incubations. The
solid and dashed lines of a single color represent experimental replicates.

Error bars indicate the standard deviation among triplicate concentration
measurements.
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TABLE 1. Synechococcus cell counts, nitrification rates, and rate constants
(k) for N+N uptake calculated with model 1 (see text).

Date Syn cells ml- 1

May 9 4800 ± 1130
May 15 9350 ± 2900
May 23 15400 ± 2550
June 2 8200 ± 990

Ratedark (jay)

0.29±0.12
0.26±0.06
0.23±0.15
0.31±0.06

Ratelight (fxd
0.19±0.10
0.37±0.19
0.16±0.10
0.32±0.07

TABLE 2. Nitrification rates calculated with model 2 (no net N+N uptake).

Ratedark (Ix)ay)
1.6
2.2
1.1
1.9

Ratelight (imd'ale
1.3
2.8
1.5
2.1

TABLE 3. N20 production rates calculated with model 3

RN2O x106 (hour-')
1.4 ± 0.14
2.78 ± 0.22
7.97 ± 0.46
1.20 ± 0.15

N 2 0 production rate (fx'")lxday)

0.7 ± 0.1
1.3 ± 0.1
3.8 ± 0.2
0.6 ± 0.1

kdark (hr- 1 )
0.022
0.022
0.023
0.025

kiight (hr-1 )
0.022
0.026
0.027
0.025

Date
May 9
May 15
May 23
June 2

Date
May 9
May 15
May 23
June 2



TABLE 4. N2 0 production rates calculated with model 4

Rate N20dark (Ixday)
0.6
1.2
3.0
0.8

Rate N2Olight (f"y)

0.7
0.4
3.1
0.4

TABLE 5. N2 0 yields calculated with model 1 and model 3. Yields were
calculated using dark nitrification rates.

Date
May 9
May 15
May 23
June 2

average yield (mol-N)
4.9 x 10-3
9.9 x 10-3
32.5 x 10-3
3.9 x 10-3

Date
May 9
May 15
May 23
June 2
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4. NITROUS OXIDE PRODUCTION AND TRANSPORT IN THE
SOUTH ATLANTIC OCEAN
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1. ABSTRACT

Marine nitrous oxide (N20) production is a significant source of this greenhouse gas to

the atmosphere. The flux of N20 to the atmosphere is a combination of soil, marine, and

anthropogenic sources that has expanded steadily over the past hundred years. Stable iso-

topic characterization of marine N2 0 is valuable because it provides a way of constraining

the ocean's contribution to this flux. It also provides a means of identifying which mi-

crobial nitrogen cycle processes contribute to the distribution of N2 0 in the ocean. Here,

N2 0 concentration and isotopic data are reported from a 2007 cruise across the South

Atlantic during the austral spring. The cruise track spanned four distinct provinces, the

oligotrophic subtropical gyre, the upwelling of the subequatorial gyre, the intensified up-

welling of the Angola Gyre (AG), and the wind-driven coastal upwelling of the Benguela

Current off southwestern Africa. It revealed subsurface N20 concentrations as high as 49.4

nM and surface supersaturations that increased in the more productive upwelling zones.

Using the 618 0-N 2 0, 615Nbuilk-N 2 0, and the position-specific nitrogen signatures 15No-

N20 and 15N1 -N2 0, three potential sources of N2 0 to the atmosphere were identified, a

shallow isotopically depleted source associated with the thermocline and the primary ni-

trite maximum, a larger mid-depth source fueled by nitrification during remineralization of

organic matter exported out of the surface, and a deep source exported from the subsurface

waters of the Southern Ocean.

The mid-depth N2 0 source created a concentration maximum at 300-400 m depth whose

concentration increased as 02 consumption inside the AG increased. This, combined with

its isotopic composition (318 0-N 20 = 42.0 ± 0.5%,, 615Nbulk-N 2 0 = 6.4 ± 0.2%o, 6o5Na-

N2 0 = 12.2 ± 0.6%c, 6' 5N#-N 2 0 = 0.6 ± 0.2%o), and particularly its relative enrichment in

15N' over 15NO or Site Preference (SP = 11.7%o) and low 618 0-N 20 signature, indicates that

nitrification contributed significantly to the N20. A lighter source at 50-200 m was produced

by nitrification with a 50-60% contribution from nitrifier-denitrification (O8 0-N 2 0 = 38.8±

0.5%o, 615Nbulk-N 2 0 = 5.2 ± 0.2%e, 615 Na-N 2 0 = 9.2 ± 0.7%o, 615 N,-N 2 0 = 1.3 ± 0.4%o).

This source intensified inside the AG (618 0-N 20 = 38.2±0.4%o, 3isNbulk-N 2 0 = 4.4±0.1%o,



65Na-N 20= 7.6 ± 0.4%o, 15iNO-N2 0 = 1.1 ± 0.1%o) with the shoaling of the thermocline

and the expansion of the primary nitrite maximum. The deep source was a mixture of N2 0

from the atmosphere, N20 from global stable oxygen deficient zones transferred via the

Southern Ocean, and the shallower nitrification and nitrifier-denitrification sources. The

isotopic signatures of this N2 0 were near those of modern atmospheric N2 0 (5' 8 0-N 2 0

= 45.8 ± 0.8%o, 15iNbuik-N 2 0 = 7.9 ± 0.3%o, j 15 N'-N20 = 15.7 ± 0.6%o, 615NO-N 2 0 =

0.2 ± 0.2%o). Thus, although individual sources of marine N2 0 are isotopically distinct

from the atmosphere, their mixture produces an oceanic source signature that is close to

that of the atmosphere, creating a buffer of atmospheric N2 0 against changes driven by

terrestrial N2 0 production.

2. INTRODUCTION

Nitrous oxide (N2 0) is a climatically important greenhouse gas that is also involved in

stratospheric ozone destruction (Yung and Miller, 1997). Atmospheric N2 0 concentrations

have steadily risen over the past 100-150 years (Sowers et al., 2002), further forcing the

global greenhouse effect. The main sources of N2 0 are probably microbial, releasing an

estimated 12 Tg of nitrogen per year from terrestrial soils and 3 Tg per year from the

ocean (Solomon et al., 2007). The major sink of tropospheric (N2 0) is a combination

of ultraviolet photolysis and photo-oxidation in the stratosphere (Cantrell et al., 1994;

Hanisco and Kummel, 1993; Preston and Barr, 1971). However, these sources and sinks

are variable in both space and time and predicting future environmental fluxes requires a

clearer mechanistic understanding of the sources and sinks of atmospheric N2 0. The stable

isotopic composition of N20 can be used to identify and constrain different sources.

A number of studies have investigated the nitrogen and oxygen isotopic signatures of

N2 0 produced by nitrification and denitrification, the two main biological processes that

generate N20 in the oceans and in soils (Kool et al., 2007; Toyoda et al., 2005; Ostrom et al.,

2007; Sutka et al., 2003, 2004; Yoshida, 1988) and several oceanographic studies have used

these signatures to characterize localized production and consumption mechanisms (Ostrom

et al., 2000; Popp et al., 2002; Westley et al., 2006; Yamagishi et al., 2007; Yoshida et al.,
92



1989). However, closure of the global N2 0 isotope budget using this "bottom up" approach

(Solomon et al., 2007) has been elusive thus far, in part because different regions of the

ocean contain N2 0 with different stable isotopic signatures, making it difficult to identify

a single set of signatures for the net marine N2 0 source. Unlike the troposphere, which

is well-mixed with respect to N2 0, the mixing time of the ocean is long relative to in situ

rates of N20 production, consumption, and air-sea gas exchange.

To date, isotopic measurements made on marine N2 0 have focused heavily on the Pa-

cific Ocean, particularly the tropical and subtropical gyres (Kim and Craig, 1990; Ostrom

et al., 2000; Popp et al., 2002) and the stable oxygen deficient zones (ODZs) of the eastern

boundary waters off of North America (Yoshinari et al., 1997; Yamagishi et al., 2007) and

South America (Charpentier et al., 2007). Measurements have also been made in the stable

ODZs of the Arabian Sea (Yoshinari et al., 1997; Naqvi et al., 1998; McIlvin and Casciotti,

2010) and the Black Sea (Westley et al., 2006). Stable ODZs are known hot spots of N2 0

production, yet they account for a small fraction of the total ocean volume and surface

area. The major sources and sinks of marine N20 are likely to be different between ODZs

and the well-oxygenated regions.

Nitrification and specifically, ammonia oxidation, occurs in and above the nutricline of

oxic waters (Yool et al 2007) where it is probably the major source of N2 0 in the open

ocean. This N2 0 enters the atmosphere on timescales determined by surface mixing and

much slower rates of exchange across the nutricline. In contrast, both denitrification and

nitrification may contribute N2 0 to the waters immediately above and below stable ODZs,

and denitrification consumes N2 0 in the anoxic ODZ cores. These stable ODZs are charac-

terized by limited direct exchange with the atmosphere (Naqvi et al., 2006; Stramma et al.,

2008) and weak lateral transport (Nevison et al., 2003), and so may build up significant

excesses of N2 0.

These processes affect both the concentrations and the isotopic composition of dissolved

N2 0. The signatures trace the distribution patterns of a particular N2 0 source as the

N2 0 mixes out of its formation region. They also provide us with information on the



biological processes that produced it. The relevant isotope systems are the bulk 15N sig-

nature (015Nbuik-N2 0), the Site Preference or relative enrichment of the internal nitrogen

atom (N0 ) over the external nitrogen atom (N)3 ) in the asymmetric N2 0 molecule (SP =

jl 5 No-N 2 0 - 615NO-N 2 0), and the 180 signature (618 0-N 2 0).

Ammonia-oxidizers carry out the conversion of ammonia (NH 3 ) to nitrite (NO2), the

first step in the nitrification process. They produce N2 0 in two ways: as a side-product

during the NH 3 oxidation reaction (Hooper and Terry, 1979; Ritchie and Nicholas, 1972;

Poth and Focht, 1985) and during nitrifier-denitrification, a N02 reduction pathway that is

enzymatically similar to denitrification (Shaw et al., 2006; Casciotti and Ward, 2001; Walker

et al., 2010). Pure cultures of ammonia oxidizing bacteria produce N20 with a range of

jl5Nbulk and SP signatures that varies depending upon which of these two pathways is more

important (Sutka et al., 2003, 2004; Frame and Casciotti, 2010). The 6180 signature of this

N20 also depends on the 02 concentration, following that of 02 in oxic environments and

dropping closer to that of seawater in low-0 2 environments (Ostrom et al., 2000; Frame

and Casciotti, 2010).

Denitrifying bacteria produce N20 during incomplete nitrate (N03 ) reduction (Firestone

and Tiedje, 1979). This N2 0 is depleted in 15N and enriched in 180 relative to the substrate

N03 (Casciotti et al 2007), with a SP that is near 0%o (Toyoda et al., 2005). In the

absence of 02, denitrification may also consume N2 0, converting it to N2 . This process

is fractionating, enriching the residual N2 0 in 15N and 180 (Yoshinari et al., 1997; Naqvi

et al., 1998), and preferentially increasing the 15N enrichment of the internal nitrogen atom

over the external nitrogen atom. As a result, the SP of the residual N2 0 increases in parallel

with the 6180 in a ratio of 1:2.2%o as N2 0 is progressively consumed (Ostrom et al., 2007).

In the ocean, these biological processes leave their mark against a N2 0 distribution

that is set by physical processes, particularly gas exchange with the atmosphere. The

atmosphere is a significant and well-mixed N20 source and air-sea gas exchange drives

N20 in surface waters towards the equilibrium concentration and isotopic composition of

the atmosphere (6l5Nbulk = 6%o, 6180 = 45%o, SP = 18.7%o, and 615N" ~ 17%o 515NO ~

-2%o (Yoshida and Toyoda, 2000; Griffith et al., 2009; Croteau et al., 2010)). Anthropogenic
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activity has increased atmospheric N20 concentrations over the past 100-150 years so that

the current concentration (322 ppb) is 17% higher than the preindustrial concentration

(275 ppb). As a result, water masses that equilibrated with the atmosphere and subducted

more than 150 years ago contain a proportionately smaller amount of atmospheric N2 0

than younger water masses (Walter et al., 2006; Freing et al., 2009). Other factors, such

as thermal disequilibrium, advection, and upwelling are also important drivers of marine

N2 0 distributions and exchange with the atmosphere. For example, N2 0 is more soluble in

colder water, so that water that outcrops in colder regions can dissolve more atmospheric

N2 0 than warmer water. In addition water that subducts before fully equilibrating will

not be reset to the atmospheric equilibrium concentration and isotopic composition.

Coastal upwelling regions are recognized hot spots of N2 0 release to the atmosphere (e.g,

the northwest Indian Ocean (Law and Owens, 1990), California coast (Lueker et al., 2003;

Nevison et al., 2004)). These regions may be particularly strong sources of N2 0 to the

atmosphere for two reasons. First, intense vertical mixing draws to the surface deep water

that has accumulated N2 0 while submerged (Nevison et al., 1995; Lueker et al., 2003;

Charpentier et al., 2010). Second, high nutrient deep water stimulates phytoplankton

blooms as it enters the euphotic zone (Lueker et al., 2003). Marine nitrification rates

are tied to rates of surface primary production because organic nitrogen from the surface

decomposes to NH+ in the nutricline, stimulating nitrification, and thus N20 production.

The Benguela upwelling system along southwestern Africa supports high levels of primary

production, particularly during the austral spring and summer. It is predicted to be a large

N2 0 source (Nevison et al., 2004) and intensifying 02 depletion observed there over the

past 50 years (Stramma et al., 2008) suggests that the source may be growing larger.

Here we present N2 0 concentration and isotopic data from the oligotrophic waters of the

subtropical gyre to the eutrophic waters of the subequatorial gyre and the coastal upwelling

of the Benguela Current. We collected this data during the 2007 CoFeMUG cruise across

the South Atlantic. The spatial resolution of sampling was high, both laterally along the

cruise track and vertically from surface to deep. This allowed us to observe the distribution

of N2 0 as well as its probable circulation along South Atlantic currents. Here we present
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concentration and isotopic measurements from 23 of the 28 stations occupied during the

CoFeMUG cruise (Figure 1). To our knowledge, this is the first report of such measurements

in the Atlantic.

3. MATERIALS AND METHODS

The CoFeMUG cruise crossed the South Atlantic between mid November and mid De-

cember 2007 (Noble et al., 2011). It consisted of three transects: a West to East transect

from the coast of Brazil to the Angolan coast (330 W, 11'S - 12.2 E, 14.75 S), a coastal

transect along Angola and Namibia (12.2 E, 14.75'S - 14.5*E, 25'S), and a southern East

to West transect leaving the coast of Namibia (14.5 E, 250S - 10 E, 25 S) (Figure 1).

Salinity, potential temperature, and oxygen data were recorded by the ship's CTD. Oxy-

gen sensor data were calibrated with Winkler titrations at the beginning and end of the

cruise. Nutrient concentration measurements (phosphate, nitrate, and silicate) and NOs

isotopic measurements were made on filtered samples that were kept frozen until analy-

sis. Nutrient concentration measurements were made for all depths and all stations by a

nutrient facility (see Noble et al. (2011) for details).

NO isotopic measurements were made on samples collected at stations 5-17 between 0

and 1000m. NO samples were converted to N2 0 for nitrogen and oxygen isotope analyses

using the denitrifier method (Sigman et al., 2001; Casciotti et al., 2002) and measured along

with USGS isotopic standards (Bohlke et al., 2007) on the same IRMS

Single water samples for N2 0 analyses were collected from about ten depths between

20 and 1000m at stations 5 though 27. Immediately after rosette recovery, water samples

were collected by twice overfilling glass 165 ml serum bottles (Wheaton prod. no. 223748)

from the bottom up using tygon tubing attached to each niskin bottle. They were poisoned

with 100 pl of saturated HgCl 2 solution and then sealed with butyl stoppers (MicroLiter

Analytics prod. no. 20-0025) and aluminum crimps. Poisoned samples were stored for at

least 2 months in the dark at room temperature before analysis.

Isotopic analyses of N2 0 were made using a Finnigan DeltaPLUS XP IRMS calibrated

for isotopomer-specific measurements (see Frame and Casciotti (2010) for details). Bottles
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were purged with He and N2 0 was trapped on-line with a custom-built purge and trap

system (McIlvin and Casciotti, 2010). The total moles of N2 0 were determined from each

bottle using a constant linear relationship between N2 0 mass and m/z 44 peak area.

All data were plotted in Igor Pro, v. 6.03. Contour plots were made in Igor Pro using

linear interpolation.

4. RESULTS AND DISCUSSION

4.1. Overview. The following approach was used in the analysis below: the descriptive

physical oceanography of the South Atlantic was used to identify the water masses that

were sampled during the cruise. The N2 0 samples that were collected during the cruise

were classified into types based on the similarity of their isotopic signatures and the overall

variability of the entire isotopic data set. The water masses from which the samples came

were identified using the conservative and semi-conservative tracers salinity, potential tem-

perature, and silicate concentration. The biological processes that gave rise to each type

of N2 0 were evaluated based on the sample's location and by comparing its isotopic signa-

tures with those measured in pure cultures of ammonia oxidizing bacteria and denitrifying

bacteria. Finally, an assessment was made of the importance of each type of N2 0 to the

overall isotopic budget of marine N2 0.

4.2. Surface Currents. The northernmost cruise transect extended from the Brazilian

coast, through the northern part the subtropical gyre, across the Angola Gyre (AG), and

ended at the Angolan coast (Figure 1). The most oligotrophic conditions occurred between

stations 1 and 8, where downwelling in the subtropical gyre caused the deepest thermoclines

and haloclines observed during the cruise (150-200m) (Figures 2a and 2b). In this zone,

surface 02 concentrations were at atmospheric equilibrium, the subsurface 02 minimum

was small (Figure 3a), and N0 + N0 concentrations at the top of the thermocline were

low (Figure 3b). Surface N2 0 concentrations (Figure 3c) were at equilibrium with the

atmosphere at these stations.

In the subequatorial gyre (stations 9-19), cyclonic upwelling caused the thermocline

to shoal. The shallowest thermoclines occurred inside the AG (stations 13-19), where
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intensified upwelling caused significant upward doming of the isotherms (Figure 2a) and

isohalines (Figure 2b) in the surface 300m. Nutrients drawn to the surface in this region

(Figure 3b) stimulated primary production, causing subsurface 02 concentrations to drop

(Figure 3a). To the north, organic-rich discharge from the Congo River may have also

contributed additional surface nutrients (van Bennekom and Berger, 1984). Inside the AG,

surface N2 0 concentrations were above equilibrium with the atmosphere (up to 3 times

higher).

In the coastal transect, the shallow southward flow of the coastal Angola Current con-

verged with the northward flow of the deeper coastal arm of the Benguela Current (Gordon

and Bosley, 1991). At the convergence zone, deeper water surfaced, causing the isohalines

to become nearly vertical (Figure 2b) and allowing N2 0 that accumulated in this water

during its circuit around the AG to be released to the atmosphere (Figure 3c). In the

southern transect, southeast trade winds drew the coastal branch of the Benguela Current

offshore (Figure 1), fueling ekman pumping and drawing colder, oxygenated water up from

depth along the coast (Figures 2a and 3a).

4.3. Subsurface Watermasses. The potential temperature (T) and salinity (S) data fall

along a mixing line that intersects the T-S values of the major subsurface watermasses in the

South Atlantic (Figure 4). Data were collected between 0 and 1000lm, a range in which the

deepest (densest) samples are also the least saline (Figure 4). The deepest water sampled

was closest in T and S to the Antarctic Intermediate Water (AAIW1 and AAIW2) with a

colder, more saline contribution from the Circumpolar Deep Water (CDW, Figure 4). Most

of the T-S data lie on a conservative mixing line between this water and South Atlantic

Central Water (SACW, Figure 4). In the literature, the SACW is commonly split into the

shallower SACW1, which is warmer (16 - 18 C) and more saline, and SACW2, whose T

is between 12 - 13*C. SACW1 and SACW2 are also split into equatorial (SACWE) and

tropical (SACWT) branches, with younger/more recently ventilated water present in the

tropical branches. The most saline (up to 36.9 psu) samples were collected at the surface
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in the far western part of the northern transect, a high surface-salinity field off southern

Brazil (Stramma and Schott, 1999).

The highest N2 0 concentrations (up to 49.4nM) were observed in the eastern part of the

northern transect between 300 and 400m (Figure 3c), which falls between the SACW2 and

AAIW on the T-S mixing line (Figure 4). The N2 0 concentration maximum was coincident

with the 02 concentration minimum, (19.8 pM, Figure 3a) and slightly shallower than the

N03 + N02 concentration maximum (Figure 3b). The plume of high-N2 0, low-02 water

extended westward along the northern transect, gradually decreasing in intensity but re-

maining well above the contemporary and historical atmospheric saturation concentrations

(10-13 nM). The core of high-N2 0 water also extended down the coast to station 21 (20 S,

12 E). In the off-shore waters of the southern transect, a smaller N20 maximum (-27

nM) was also present at 300m. High benthic N20 concentrations were observed in the

near-shore stations (stations 23 and 24) of the southern transect (Figure 3c).

A shallow plume of N2 0 between stations 13 and 19 was depleted in 15N and 180 relative

to both the atmospheric N2 0 above it as well as the N2 0 concentration maximum below

it (Figure 5a-d). The plume was centered between 40 and 200mn and its minimum observed

signatures were 618 0-N2 0 = 37.4%o (150m, station 19), 51iNbulk = 3.2%o (54m, station

18), and SP = 4.2%o (70m, station 18). We infer that dissolved atmospheric N2 0 has a

618 0-N 2 0 = 45.0%o, 6i5Nbulk = 6.4%0, and SP = 18.4%o, based on the isotopic signatures of

the N2 0 present in the shallow surface water of the western half of the northern transect.

The deep concentration maximum contained N2 0 with a o18 0-N 2 0 = 42.0%o, 15 Nbulk -

6.4%o, and SP = 11.7%o. Below the concentration maximum (600-1000m), the N20 was

slightly more enriched than modern atmospheric N20 but had a lower SP, where 518 0-N 2 0

= 45-46%o, s5Nbulk = 7-8%o, and SP = 15-16%o.

4.4. Cluster analysis of N2 0 isotopic composition. Physical processes can be as im-

portant as biological processes in determining the distributions of dissolved N20 (Nevison

et al., 2003, 2004; Suntharalingam and Sarmiento, 2000). Since physical dynamics are par-

ticularly influential in the Benguela upwelling region, we used a classification scheme based
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on the isotopic composition of the dissolved N20 to identify and organize the different types

of N2 0 that were observed. The goal of the analysis was to identify which water masses

and/or biogeochemical conditions were associated with the different N20 types. Different

N2 0 types tended to correspond to specific locations along the cruise track. For this anal-

ysis, the mathematical boundaries that separate one type of N20 from another depend

on the amount of variation in the entire data set and therefore, they are not entirely in-

dependent of the sampling scheme. Because samples within each type are co-located and

isotopically homogeneous, they may have formed either through thorough mixing of N20

from multiple biological sources or through an individual biological process producing N2 0

with a single set of isotopic signatures. The values of the three atom-specific isotopic sig-

natures (6 18 0-N 20, 615N , and 615NO) were standardized by subtracting each signature's

mean value and then dividing by the signature's standard deviation. A dendrogram was

assembled by hierarchically pairing samples based on their covariances (Figure 6) in Matlab

(v. 2009b) using the pdist, linkage, and dendrogram functions in the statistics tool box.

The branches of clusters with above-average linkage values were colored. The ability of

the dendrogram to accurately represent the original covariances between data pairs was

assessed by calculating the cophenetic correlation coefficient between the leaves of the den-

drogram and their original covariances (value = 0.7358). For reference, the metadata for

each sample (station, depth, 515 N', and S'5 N, j 18 0-N20, potential temperature, salinity,

N2 0 concentration, 02 concentration, and NO + NO concentration) were included to

the right of the dendrogram. The metadata for samples in the larger clusters were colored

according to their general location along the cruise track (northern transect outside the

AG, northern transect inside the AG, coastal transect, southern transect).

The data fell into a number of clusters, the largest of which are labeled in Figure 6

as A (n = 38), H (n = 15), and I (n = 29). These clusters corresponded to shallow

(169 ± 56m), intermediate (370 ± 49m), and deep (765 ± 298 m) samples. Samples in

cluster A, the shallowest cluster, were almost entirely from the northern transect, both

inside and outside the AG. These samples were isotopically light (518 0-N 2 0 = 38.8±0.5%o,

615Nbulk = 5.2 ± 0.2, and SP= 7.9 ± 1.0%o) and were taken from water with a range of
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02 concentrations (19 to 150pM, average = 61 ± 39pM). The mean N20 concentration in

this cluster was 36 ± 7nM. Samples in cluster H, at intermediate depths, came from both

the northern transect (inside and outside the AG) and the southern transect. They were

isotopically heavier than the cluster A samples, but also depleted relative to atmospheric

N2 0 (618 0-N 2 0 = 42.0 ± 0.5%o, 6l5Nbulk = 6.4 ± 0.2, and SP= 11.7 ± 0.5%o). The 02

and N2 0 concentrations of these samples were similar to those in Cluster A ([02) = 30

to 160pjM, average = 75 ± 45pM and [N2 0] = 35 ± 8nM). Cluster I samples were from

higher 02 water (60 to 180pM, average = 118 ± 33pM) but also above-equilibrium N2 0

concentrations (29 ± 4nM). The average isotopic composition of these samples was slightly

heavier than atmospheric N2 0 (61 80-N 2 0 = 45.8 ± 0.8%o, 6l5Nbulk = 7.9 ± 0.3, and SP=

15.7 ± 0.6%o).

Besides these larger clusters, we also identified a group of samples that only came from

inside the AG, from within the top 100m (Cluster B). This was the lightest N2 0 observed

during the entire cruise (6180-N 2 0 = 38.2±0.4%o, 6l5Nbulk = 4.4±0.1, and SP= 6.5±0.5%o).

The N20 concentrations in these samples were high (30 ± 3nM) and as was the range of 02

concentrations (60 to 180pM, average = 103 ± 52pM). Few of the coastal transect samples

fell into larger clusters with samples from the northern and southern transects. Those that

did tended to fall out in or near the shallower clusters, A and B. We have not tested the

statistical robustness of the dendrogram's topology. However, the underrepresentation of

the coastal data in the larger clusters suggests that a different set of processes produced

these N2 0 signatures, perhaps through intensified or multiple-endmember mixing as well as

a unique set of in situ biological processes including sedimentary and terrestrial processes.

The smaller number of samples collected in the coastal transect could have also contributed

to their underrepresentation in any larger clusters.

4.5. N2 0 Concentration versus Conservative Tracers. Previous studies in the South

Atlantic (Brea et al., 2004; Poole and Tomczak, 1999) have identified the salinities, potential

temperatures, and silicate concentrations that are characteristic of each of the major parent

water masses flowing through this basin (i.e., the SACW1, SACW2, AAIW, and CDW).
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By plotting N2 0 concentration against these conservative and semi-conservative tracers, we

were able to identify which water masses contained specific isotopic types of N2 0. Although

salinity (Figure 7a-d) and potential temperature (Figure 8a) are used most often to identify

water masses, a silicate concentration plot was also included (Figures 8b) because it was

better at representing the contributions of the silicate-rich AAIW and CDW to the deeper

water (Brea et al., 2004).

Subsurface N2 0 concentrations were significantly higher than atmospheric equilibrium

concentrations. The N2 0 concentration maximum (samples from cluster H) was mainly

located in the SACW2 based on temperature, salinity, and depth, but also included smaller

AAIW and CDW components (Figures 7a and 8a-b). N2 0 from cluster I was associated

with the deepest water masses, AAIW and CDW. This N2 0 was significantly oversaturated

with respect to atmospheric equilibrium (~75% higher) but occupied a region in isotope

space that was most similar to the signatures of modern atmospheric N2 0. The shallowest

subsurface water was a mixture of the SACW1 and SACW2 that was oversaturated by 100-

260% (Figures 7a and 8a-b). The lowest N2 0 concentrations (7-8nM) were observed in well-

mixed surface waters that were at or very close to atmospheric equilibrium concentrations.

The same water masses circulate through the AG and the outer subequatorial gyre.

However, subsurface N20 concentrations were consistently higher inside the AG (Figures

7a-d and 8a-b) than anywhere else along the cruise track. The largest increase in N2 0

concentration occurred in the concentration maximum (400m, S = 34.7-35 psu), where 02

concentrations dropped to the lowest observed values (Figure 7d). A second zone of N2 0

production occurred at the top of the thermocline (50-100m, S = 35.4-36.0 psu). In the next

section, we use these concentration differences to quantify the amount of N2 0 production

linked to enhanced productivity in the AG.

4.6. N2 0 and nutrient remineralization stoichiometry (AN 20/AO2 , N*). Stoichio-

metric relationships between subsurface N20 production and 02 consumption or NO + N0

remineralization relate N2 0 to organic matter remineralization rates. Ideally, they can be
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used to estimate what fraction of the nitrogen that supports surface production will be con-

verted to N2 0. However, N20:0 2 stoichiometries (AN 20/AO2) estimated by regressing

N2 0 supersaturation (AN 20) against Apparent Oxygen Utilization (AOU) have produced

a number of different values depending on the regions and depths included (Nevison et al.,

1995). The variations are caused by mixing between water masses with different N2 0 and

02 concentrations and biological changes that increase the yield of N2 0 as 02 concentra-

tions change (Nevison et al., 2003).

N2 0 and 02 concentrations are inversely related (Figure 9a-b). Based on the slopes

of N2 0:0 2 regression lines, the magnitude of AN 20/AO2 is significantly higher in the

northern transect (-0.19 nM/pM) than the coastal or southern transects (-0.14 nM/pM).

In the northern transect, the N20 and 02 distributions are dominated by four extrema: (1)

the surface water, where dissolved 02 and N2 0 are near equilibrium with the atmosphere

(N2 0 = ~7 pM, 02 = ~220 pM), (2) the deep N20 source (N2 0 = ~28nM, 02 = -150pM),

(3) the N2 0 concentration maximum (N2 0 = -47nM, 02 = -20pM), and (4) the shallow,

secondary N2 0 maximum found inside the AG (N2 0 = ~33nM, 02 = ~50pM). The

distribution of data points between these extrema make it difficult to distinguish the effects

of production from simple mixing between end-members.

Comparing data taken from inside and outside the AG is like resampling the same water

masses before and after they have been through the AG upwelling regime. This approach

reduces the influence of mixing and preformed N2 0 on AN 20/AO2 calculations. In Table 1,

the average N2 0, 02, and N0 + N02 concentrations from inside and outside the AG are

compared for samples from within the three major N2 0 types (clusters A, H, and I in Figure

6). The average N2 0 concentration increased 3.7nM in all three clusters. The thermocline

waters of the subequatorial gyre have an estimated 9 year residence time (Bosley, 1991),

making the average N2 0 production rate in the gyre 0.4 nM yr- 1. This rate falls in the

middle of the range of values calculated by Freing et al. (2009) for the top 1000m of the

North Atlantic. The magnitude of the AN 20/AO2 ratios decreased from -0.25 x 10- 3 in

the shallow cluster to -0.17 x 10~ 3 in the concentration maximum and -0.11 x 10-3 in

the deep cluster, with ~25% uncertainty based on the standard deviations among samples.
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Nevison et al. (2003) calculated a very similar deep water ratio of -0.12 x 10-3 based on

data from 026.9 in the northwestern South Atlantic (this would correspond to samples from

Cluster H here). The ratio in the concentration maximum is the same as that calculated by

Naqvi and Noronha (1991) for the oxygenated waters above the deep ODZ in the Arabian

Sea. The higher yields observed in shallower water imply a change in the mechanism of N2 0

production. Nitrifier-denitrification has been shown to enhance the overall yield of N2 0

from ammonia-oxidizers (Frame and Casciotti, 2010) but denitrification can also increase

N2 0 concentrations without consuming 02 (Naqvi et al., 2000).

N*, the excess or depletion of NO- relative to P0- based on Redfield stoichiometry is a

tracer whose value increases in regions where N2 fixation is important and decreases when

denitrification occurs (Gruber and Sarmiento, 1997). High N* values were observed in the

subequatorial gyre between 100 and 600m, particularly within the AG (Figure 10b). N2 0

concentrations were also slightly positively correlated with N* (r 2 = 0.31, Figure 10a), sug-

gesting that nitrification enhanced by surface N2 fixation produced the N2 0 (Nevison et al.,

2003). The water in the AG tended to have higher N2 0 concentrations than the stations

in the outer gyre and the coastal and southern transects (Figure 9). The water in the AG

is the most aged, suggesting that the accumulation of N20 is related to remineralization

processes.

4.7. Linking N2 0 isotopic composition and production mechanisms: oceano-

graphic observations. Previous oceanographic studies have reported stable isotopic sig-

natures for N2 0 from three different types of environments: the surface and shallow sub-

surface waters of the oligotrophic subtropical gyres, seasonal high productivity coastal

upwelling zones, and stable ODZs that lie under certain highly productive surface waters.

Data from all three environments are relevant to the signatures found in the South Atlantic.

In the North Pacific subtropical gyre (station ALOHA), a shallow (200m) isotopic min-

imum (6180 = 40.8%o, 615 N = 5.8%o) was attributed to nitrification by Dore et al. (1998).

At the same site, Ostrom et al. (2000) supported this conclusion based on the covariation
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of 6180-02 and O8 0-N20. They reasoned that nitrifier-denitrification made an impor-

tant contribution to this N20 because the 618 0-N 2 0 observed at this depth was closer

to the 618 0-H 2 0 than at any other depth. Finally, a low site preference (SP minimum

= 8%o) was observed at this depth by Popp et al. (2002), supporting the hypothesis that

nitrifier-denitrification contributed to the N2 0 at the top of the thermocline. In the Chilean

upwelling zone, Charpentier et al (2007) also observed a SP minimum of N2 0 at the top

of the thermocline (50m, SP = 12%o and 3180 = 52%o). The dynamics in that system were

similar to the Benguela system: oligotrophic South Pacific central gyre water mixed with

high nutrient, low 02 upwelled water near the Chilean coast. In this area, the concentra-

tion maximum (400m) was more enriched in 180 and had a higher SP (5180-N 2 0 = 54%o,

SP = 24%o) than the concentration maximum observed in the South Atlantic, possibly

contributing to the higher SP and 6180 values that they observed in the shallow isotopic

minimum.

The shallow thermocline signatures noted by Dore et al. (1998), Ostrom et al. (2000), and

Popp et al. (2002) are close to those of Cluster A in the northern transect, but are slightly

more enriched in 180. Cluster B, the shallower N20 from the thermocline of the AG, is

both isotopically depleted and lower in SP than the ALOHA data and the Chilean upwelling

data. However, like both of these types of N2 0, the N2 0 in Clusters A and B is lighter and

lower in SP than the atmospheric N2 0 above it and the N2 0 of the concentration maximum

below it. These past studies have concluded that this N2 0 is the product of nitrification

and nitrifier-denitrification. The SP signatures measured for cultures of ammonia oxidizing

bacteria support the conclusion, but the Si1Nbulk signatures and 6180 signatures are both

significantly higher than those measured in culture (sl5Nbulk = 40-50%o higher, 6180 =

22%o higher).

Upwelling and nutrient injection in the coastal transect produced redox gradients in the

water column that did not exist in the northern or southern transects. Some of the lowest

and highest 02 concentrations were observed here (Figure 3a) and this was the only region

where low values of N* were observed (Figure 10b). Most of the N2 0 here failed to cluster

with any data from the rest of the cruise, suggesting a unique source or combination of
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sources. The 6180 of the N2 0 observed here was particularly high (Figure 11b) given its

low SP and 1 5 N signatures (615 Nbulk-N 20 = 4%o, 618 0-N 20 = 46-47%o, SP = 6%o). This

could be the result of nitrification in water with an extremely high J180-02, or production

by denitrification. However, in the same region, Kuypers et al. (2005) attributed large fixed

N losses in the region to anammox bacteria. No data has been published on the isotope

effects associated with anammox, but they could influence the 15iN and 6180 values of

the N2 0 precursors N02 and N0. A similar mismatch between N and 0 signatures

was observed by Naqvi et al. (1998, 2006) in the coastal surface waters of the monsoonal

upwelling region in the Arabian Sea. A large surface source of N2 0 there was highly

depleted in 15 N but not 180 (6 15N-N 2 0 = 0.8%o, j 8 0-N 2 0 = 46%o). In the oxycline of the

Black Sea, Westley et al (2003) attributed 15N-depleted, 18 0-enriched (615 N = -10.8%o and

6180 = 60 to 70%o) N2 0 to a combination of production by nitrification and consumption

by denitrification on the basis of its high SP (25-30%c).

Although there are no stable ODZs in the Atlantic, the ODZs of the Eastern Tropical

North Pacific (ETNP), Eastern Tropical South Pacific (ETSP), and the Arabian Sea all

produce and export large amounts of N2 0 (Nevison et al., 2003). These ODZs have an im-

pact on South Atlantic N2 0 through the circulation of the Southern Ocean, which receives

water from each of the major ocean basins. The isotopic composition of the 500m concen-

tration maximum in the Southern Ocean is very similar to that of the deep N2 0 Cluster

I (618 0-N2 0 = 46%o, 615Nbulk-N 2 0 = 7.5%o, SP = 16%o) (Figure 12) (Boontanon et al.,

2010). The AAIW and CDW both contributed to this deep water and may have brought

N2 0 from the polar region with them. The N20 exported from the 800m concentration

maximum in the ETNP was observed to have an isotopic composition that was enriched in

180 and had a high SP (6 18 0-N 2 0 = 54%o, 615Nbulk-N 20 = 9%o, SP = 23%o) (Dore et al.,

1998; Popp et al., 2002; Kim and Craig, 1990; Yamagishi et al., 2007). Charpentier et al.

(2007) observed similar signatures in the N2 0 concentration maximum (400m) just south

of the ETSP (61 8 0-N2 0 = 54%o, 615Nbuilk-N 2 0 = 7.5%o, SP = 24%o). In the Arabian Sea,

180 and SP were similarly enriched in the concentration maximum (618 0-N 2 0 = 64%o and



SP = 24%o, Sl 5 Nbulk-N 20 = 12.5%o) (McIlvin and Casciotti, 2010). In the eastern bound-

ary upwelling zone of the Arabian Sea, Naqvi et al. (1998) also noted the impact of N2 0

consumption at depth as 518 0-N 20 and 61 5N-N 20 increased into the deep 02 minimum

(6 18 0-N 2 0- 58%o, 6i 5N-N 2 0 = 20%o).

The SP and 618 0-N 2 0 of the Southern Ocean lie very nearly on a mixing line between

the N20 exported from the ETNP and ETSP and the shallow subsurface N2 0 (cluster A)

in the South Atlantic (Figure 12). If this is a true mixing line, then the N20 of the Southern

Ocean appears to be split nearly evenly between a nitrification/Cluster A-like contribution

and a contribution from the major ODZs. The Southern Ocean may provide the closest

available approximation of an integrated marine isotopic signature because of its role in

global ocean circulation.

4.8. Linking N20 isotopic composition and production mechanisms: culture sig-

natures. So far, transport from the Southern Ocean has been identified as the source of

deep N2 0 in the South Atlantic (cluster I) based on the similarity of isotopic signatures and

concentrations. We assumed that the two shallower sources were the result of localized bio-

logical processes based on the increase in N20 concentration fueled by surface production.

Do the isotopes support this conclusion? The isotope effects associated with measurements

made in pure bacterial cultures of nitrifiers and denitrifiers are evaluated below.

The biological sources of N2 0 are nitrification, nitrifier-denitrification, and denitrifica-

tion. The isotopic composition of N2 0 from each of these sources depends on the isotopic

composition of its substrate molecules and the enzymatic mechanisms that produce the

N2 0. Since the j 15N of NH+ was not measured on the cruise, we have to approximate the

substrate 15N signature with the j 15N of the NO + NO at the top of the thermocline. In

the northern transect, this value ranged between 5 and 6.5%o, decreasing near the African

coast (Figure 13b). The shoreward depletion in 15N is probably the result of increased

expression of the isotope effect of N03 + NO uptake by phytoplankton (Altabet et al.,

1999) as surface NO + NO concentrations increased or it is the result of input of isotopi-

cally light nitrogen from N2 fixing organisms (Bourbonnais et al., 2009) (Figure 13a). The
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only measurements of the isotope effects of N2 0 production during ammonia oxidation in-

dicate that the 6i5Nbulk isotope effect is large (57%o) and normal for nitrifier-denitrification

and much smaller for nitrification (<; 2%o) (Frame and Casciotti, 2010). The 15N of the

shallow thermocline N2 0 was 4-5%o, which is too high to have been produced by bacterial

nitrifier-denitrification. N20 is a by product of nitrification, not the major product, so that

the completeness of substrate NHt consumption should not affect the expression of the

isotope effects associated with N20 production.

As discussed above, the 5180 of the shallow thermocline N2 0 is about 22%o higher than

any values observed for ammonia oxidizing bacteria cultures. The 6180 of N2 0 produced

by nitrification should track the j180 of 02 (Ostrom et al., 2000). However, in productive

waters the 6180 signature of N2 0 is altered by photosynthesis in the euphotic zone and

respiratory 02 consumption during respiration and remineralization. The 8180 of atmo-

spheric 02 is 23.5%o but photosynthesis drives the value towards that of water (0%o) (Quay

et al., 1993; Luz and Barkan, 2005) and respiratory fractionation can drive the value higher

by up to 20-30%o.

Even if the N2 0 formation mechanism does not have its own isotope effect, the 6180

of N2 0 produced in a system that is closed to both 02 and N2 0 should lag behind the

j180-02 observed in the same water parcel. This is because the 6180-N 2 0 behaves the

same way as that of a major product accumulating in a rayleigh system, i.e. it is inte-

grating over all the N2 0 formed during the reaction's progress (Mariotti et al., 1981). In

contrast, the 02 that is being respired is the major reactant and its 6180 increases rapidly

as consumption progresses to completion. To test the impact of closed-system respiratory

02 consumption on the 818 0-N 2 0, the 6180-02 was modeled as a rayleigh function of 02

concentration (Equation 1), where the degree of discrimination against 1802 is set by the

kinetic fractionation factor a (a = k180 2 /k16 0 2 ):

(1) j180-02 = 1000%o X [([02Jeasured)a-1 _ ]

Two values of a have been proposed, a more fractionating value (0.981) observed during

respiration by heterotrophic bacteria (Kiddon et al., 1993; Quay et al., 1993) and a higher

(less fractionating) value (0.990) calculated by Levine et al. (2009) using 6180-02 and 02
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concentration data from the South Atlantic. The assumptions used are that N20 produc-

tion is a linear function of 02 consumption (constant AN 20/AO2 ) and the 6180-N 2 0 is

entirely set by the 8180-02 (no 0 from H2 0 is incorporated). Integrating Equation 1 as

02 is completely consumed (atmospheric equilibrium concentration to 0) produces 5180

N2 0 values that fall within the range of observed values when a = 0.981 (Table 2) and

agree with the average 6 18 0-N 2 0 observed in the N2 0 concentration maximum/02 mini-

mum (42.0 ± 0.5%o). When the degree of respiratory fractionation is reduced (a = 0.990),

maximum 6 180-N 2 0 values also drop, as expected (Table 3).

One possible inconsistency in this calculation is that it predicts 6180-02 values that are

higher than the corresponding 6 18 0-N 2 0 values, which was not observed by Ostrom et al.

(2000) when paired 6180-02 6 18 0-N20 measurements were made at station ALOHA. If

some fractionation occurs during incorporation of 0 into N2 0 so that 18 0-N 2 0 formation is

favored over the lighter isotopologue, the 6180-N 20 would be pushed higher than the 6180-

02. Preliminary work characterizing this net isotope effect in bacterial ammonia-oxidizers

indicates that 0 2-dependent N2 0 formation does not heavily fractionate 0 isotopes found

in the N2 0 (Frame and Casciotti, 2010) but more work needs to be done to test this.

Another consideration is that at very low 02 concentrations, the 6180-02 will be sensitive

to small amounts of recharge with high-0 2 water. N2 0 concentrations should be high in

this type of water and the range of 6180-N 2 0 values is smaller than it is for 6180-02, so

that observed 618 0-N 20 values will be less sensitive to similar amounts of recharge with

atmosphere-equilibrated water.

While the high end of the nitrifier 6180-N 20 range is set by the 0 2-dependent pathway,

nitrifier-denitrification produces 180 depleted N2 0. Nitrifier-denitrification by bacterial

ammonia-oxidizers produces N20 enriched by about 8%o relative to the 6180 of the substrate

NO2 (Frame and Casciotti, 2010). The 6180-NO2 was not measured during the cruise, but

data from the Arabian Sea show a 6 18 0-NO 2 - of 9 to 10%o in the primary NO maximum

and 13-15%o in the secondary NO 2 - maximum (Casciotti, unpublished). If similar values

hold for the primary NO 2 - maximum in this dataset, bacterial nitrifier-denitrification



should produce N2 0 with a 6180 between 17 and 23%o. This is significantly lower than any

of the signatures observed in the South Atlantic.

SP is probably the clearest proxy for the different N 2 0 production processes because

it is the only signature that is thought to be independent of the isotopic composition of

the substrate molecules (Toyoda et al., 2002). The SP signatures produced by bacterial

ammonia-oxidizers (-10.7%o for nitrifier-denitrification to +36.3%o for nitrification (Sutka

et al., 2004; Frame and Casciotti, 2010)) bracket the SP values observed in the deep con-

centration maximum and the shallow isotopic minimum. If a similar range applies to the

marine N2 0 sources, then nitrifier-denitrification produces 60% of the Cluster A source, 52%

of the Cluster H source, and 63% of the Cluster B source. The SP signatures are currently

the only isotopic basis for attributing these N20 sources to ammonia-oxidizers. However,

nothing is known about the isotope effects of archaeal ammonia-oxidizers. If archaeal NH 3

oxidation proceeds via some intermediate other than NH 2OH, any N2 0 produced during

this reaction may have significantly different N, 0, and SP signatures.

Denitrifying bacteria can switch rapidly from 02 to N03-based respiration when 02

concentrations drop below a certain threshold (~5 pM). Although N2 0 is an intermediate

formed during complete N03 reduction to N2 , after the switch to N03 respiration, the

activity of nitrous oxide reductase lags behind the other enzymes in the respiratory N03

reduction chain, releasing N20 into the environment without further reduction (Firestone

and Tiedje, 1979). Suboxic and hypoxic regions that experience sporadic 02 injections

are particularly favorable for this type of N2 0 production (Naqvi et al., 2000). More-

over, it has been hypothesized that rapid decay of organic matter in low-0 2 environments

can provide anoxic microenvironments that support denitrification even when ambient 02

concentrations are too high for water-column denitrification to occur (Yoshida et al., 1989).

Three mechanisms set the range of 6 8 0-N 2 0 values produced by denitrification (sum-

marized in Table 4). The first, normal kinetic isotope effects, have been reported for oxygen

and nitrogen by Granger et al (2006) and Barford et al (1999) during N03 consumption

by denitrification (for Paracoccus aureofaciens 18 ENo - 22%o and 15 ENO = 23.5%o, for



Paracoccus denitrificans 15 6NO- = 28.6%o). This results in production of N20 that is iso-
3

topically lighter than the substrate N03 (Casciotti et al., 2002). The second is a large

"branching" isotope effect (18 ENO- = 40%o) that produces N20 that is 18 0-enriched rela-
2

tive to the substrate NO. A branching isotope effect also applies during N02 reduction

to N2 0, but it is significantly lower (18eNO = 10%o Casciotti et al. (2007)). The branching

effect occurs when light oxygen atoms are preferentially removed from the substrate NO

or NO and transferred to H2 0 (Casciotti and McIlvin, 2007). In an open system, the net

effect of the branching isotope effect and the fully expressed kinetic isotope effect should be

+18%o. At the other extreme, in a closed system, only the branching isotope effect will be

expressed (+40%o). The 6180 of thermocline NO was between 2 and 3%o, so that the 6180

of N2 0 produced by denitrification of this NO 3 would have fallen between 20%o and 43%0,

depending on the system's degree of closure with respect to NO. There is no branching

isotope effect for the nitrogen atoms of NO because they are bonded together rather than

removed during the reduction process. Therefore, the 615N-N 2 0 produced by NO reduc-

tion will always be at least as light as the substrate NO and depleted up to 23.5%o in an

open, steady-state system. The highest observed Jl 5N-N03 values in the thermocline of

the northern transect were about 5 to 7%c in (Figure 13b), so that N2 0 produced by NO 3 -

reduction would have a 15N of +5- -16.5%o. The values of 6i 5Nbulk-N 20 and 6180-N 2 0

in Clusters A, B, and H are both consistent with closed system denitrification (a +40%o

O isotope effect and a 0%o N isotope effect). Coastal sediments and large particles could

provide closed systems for denitrification. However, denitrifiers produce N2 0 with much

lower SP signatures than those observed (SP denitrification = -5%0 (Toyoda et al., 2005)).

Denitrifiers can also consume N20, reducing it to N2 and completing the NO reduction

pathway. N2 0 consumption is highly fractionating, raising the 615 Nbulk-N 2 0, 5' 8 0-N 20,

and SP values of the residual N2 0. During consumption, the ratio of isotope effects for

SP and 6180-N 2 0 is 1:2.2 (Ostrom et al., 2007). The South Atlantic data have compar-

atively low isotopic signatures and lie off the 1:2.2 line (Figure 12) so it is unlikely that

this process dominates their distribution. The combined effects of steady-state production

and consumption was observed for P. dentirificans cultures whose net N2 0 production was
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only 15%o lighter than the starting NO, rather than 28.6%o lighter (Barford et al., 1999;

Granger et al., 2006). These measurements were made in the presence of very low 02 con-

centrations (0 to 1tM) that allowed N20 reduction to proceed at the same rate as N2 0

production. Dissolved 02 concentrations were comparatively high during the cruise, never

dropping below 19pM. It is possible but seems unlikely that consumption by denitrifcation

was important at any of the open ocean stations. Consumption of N2 0 by water column

denitrification is typically only observed in the permanent anoxic zones of the major ODZs

(Cohen and Gordon, 1978). However, sedimentary denitrification could provide a stable,

anoxic environment that would allow consumption of N2 0 diffusing in from the water-

column. Furthermore, water exported from the Southern Ocean may contain some N2 0

influenced by biological processes in the major ODZs.

4.9. NO, NO 3 -, and nitrifier-denitrification. The isotopic signatures observed of the

shallow South Atlantic N20 sources are ambiguous because some of them point to a ni-

trification and nitrifier-denitrification source while others point to a sedimentary denitri-

fication source. However, the NO concentration data support a nitrifier-denitrification

source while the NO 3 concentration data suggest that sedimentary denitrification is not

responsible. The primary NO maxima at the base of the euphotic zone were located at

nearly the same depths as the shallow SP minimum in the outer subequatorial gyre stations

and also in the AG (Figure 14a-b). They also correspond with the depth of the base of the

euphotic zone (Figure 15a) and the base of the thermocline (Figure 15b). The formation

of the primary NO maximum has been attributed to differences in the degree of photo-

inhibition of ammonia-oxidizers versus nitrite-oxidizers, which slows surface NO oxidation

relative to ammonia oxidation, allowing NO2 to accumulate (Olson, 1981). This suggests

that nitrifiers are responsible for producing the N20 in the shallow isotopic minimum. In

contrast, NO + NO concentrations remain high throughout the watercolumn below the

surface at all stations, suggesting that NO consumption by denitrifiers is not important.
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5. CONCLUSIONS

A large range of N20 isotopic signatures were observed over different depths and be-

tween the more oligotrophic and eutrophic zones of the cruise track. The deep signa-

tures (600-800m) were dominated by the Southern Ocean which mixes and redistributes

subsurface N2 0 from all of the major ocean basins. Based on its isotopic composition,

half of the N2 0 in the Southern Ocean is exported there from the major ODZs and the

other half is from a combined nitrification/nitrifier-denitrification source. The SP values of

the nitrification/nitrifier-denitirifcation source indicate that 50-60% of it is from nitrifier-

denitrification. Long-term changes in marine N2 0 production and isotopic composition

will probably appear first in the Southern Ocean while short term cycles such as seasonal

blooms and upwelling events probably produce isotopically light N2 0 with a low SP, that

escapes directly from the top of the thermocline and the surface waters.
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FIGURE 1. The CoFeMUG cruise track (circles) overlaid on the surface and
shallow-subsurface current structure of the South Atlantic (Stramma and
Schott 1999, Stramma and England 1999). Salinity, temperature, 02, and
nutrient data were collected from stations 1-27. N2 0 was collected from
stations 5-27 (the 23 easternmost stations).
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A
n = 38
depth - 169 ± 56 m
6"Nx-NO - 9.2 t 0.7%.
b"NO-NaO - 1.3 ± 0.4%O
6"O-NO 38.8 ± 0.5%.
SP = 7.9 ± 1.0
6"Nbulk-NO- 5.2 ± 0.2%o
potential temperature - 13 ± 1.6 *C
salinity - 35.3 ± 02 psu
N2O = 36.2 ± 7.3 nM
O=61*39pM
NO- + NO- = 28 ±6pM

8
n=5
depth = 58 t 13 m
6"Nu-N2O = 7.6 t 0.4%
6"Np-NO= 1.1±0.1%.
8"O-N.O - 38.2 ± 0.4%o
SP = 6.5 t 0.5%.
6"Nbulk-NO = 4A ± 0.1
potential temperature = 15.9 ± 1.4 *C
salinity = 35.6 ± 0.2 psu
N2O = 30.4 ± 3.0 nM
% = 103 ± 52 pM
NO,- + NOr =26 ± 2 pM

C

depth = 325 ±65 m
6i"Nu-NO = 10.3 ± 0.4%.
6"N%-N2O = 0.9 ± 0.2%
6"O-N20 = 40.6 ± 0.4%.
SP = 9.4 ± 0.5
6"Nbulk-NO= 5.6 ± 0.2%.
potential temperature = 10.0 ± 1.0 *C
salinity = 34.9 ± 0.1 psu
N2O = 39.3 ± 5.9 nM
02 = 45 ± 21 p M
NO- + NO- = 35 ± 5 iM

D
n=9
depth = 34 ± 30 m
b"Nu-NO= 15.1 ± 0.2%.
6"NP-N2O = -1.5 ± 02%.
W"O-NO -45.3 ± 0.3%.
SP = 16.6 0.3%o
b"Nbulk-NO= 6.8 ± 0.1%o
potential temperature = 20.8 ± 1.5 *C
salinity = 36.2 ± 0.5 psu
NzO = 7.5 ± 0.5 nM
02=226±11 uM
NO,- + NO,- 1 ± 2 pM

n=7
depth = 56 26 m
b"Nac-NO = 14.0 ± 0.2%
6"Nft-NO = -1.0 t 1.0%.
6"O-N O = 44.6 ± 0.4%.
SP 14.9 ± 1.1 %.
6"Nbulk-NO= 6.5 t 0.5%.
potential temperature = 19.9 ± 1.8 C
salinity = 36.2 ± 0.6 psu
NO = 8.6 ± 0.9 nM
0,= 229±17pM
NOr + NO2- =4 ± 3 pM

n=11
depth-42.30m
1"Na-NO 14.0 ± 0.3%.
b"NP-NO-0.310.1%o
6"O-NO -45.1 t 0.3%.
SP - 13.9 0.4%.
h"Nbulk-NO- 7.0 ± 0.2%.
potential temperature = 19.0 ± 2.0 *C
salinity = 35.8 * 0.5 psu
NO - 7.8 ± 0.6 nM
O-232±7pM
NO- + NOr- 7 ± 13tpM

G
n=6
depth - 474 ± 42 m
h"Na-NO = 14.0 ± 0.5%.
b"Np-NO = 0.4 ± 02%.
6"O-N20 = 43.4 ± 0.5%.
SP = 13.9 ±0.4%.
6"Nbulk-NO- 7.0 ± 0.2%.
potential temperature = 7.0 ± 0.4 *C
salinity = 34.6 ± 0.0 psu
NO = 30.9 ± 1.6 nA
0 = 104 ± 19 pM
NO,- + NO- = 36 t2 M

H
n= 15
depth = 370 t 49 m

"Na-NO- 12.2 ±0.6%.
6"Npi-N.O = 0.6 ± 0.2%.
b"O-NO = 42.0 ± 0.5%.
SP = 11.7 ± 0.5%o
P"Nbulk-NO= 6.4 ± 0.2%o
potential temperature - 8.8 ± 0.6 *C
salinity = 34.8 ± 0.0 psu
NO = 35.1 ± 8.2 nM
0, = 75 ± 45 pM
NO, + NO,- =35 ± 6 pM

n =29
depth = 765 298 m
6"Na-NO = 15.7 ±0.6%.
"Np-NO = 0.2 ± 0.2%.

6180-NO - 45.8 ± 0.8%o
SP =15.7 ± 0.6%o
b"Nbulk-NO= 7.9 ± 0.3%o
potential temperature = 5.4 ± 0.7 *C
salinity = 34.5 ± 0.1 psu
N2O = 28.5 ± 3.9 nM
O.=118t33 pM
NO, + NO,- 37 ± 5 pM

n=5
depth = 48 22 m
6"Na-N2= 15.5 ± 0.5%.
6"NpS-NO =-2.8 ± 01%o.
b"O-N0O= 45.0 ± 0.2%o
SP =18.4 ± 0.5%.
b6Nbulk-NO= 6.4 ± 0.2%.
potential temperature = 21.3 2.6 *C
salinity = 36.4 ± 0.7 psu
NO = 7.8 ± 1.0 nM
02 = 224 ± 13 pM
NO, + NO- w7 t 15 pM

Southern
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Figure 6 (previous page). Dendrogram representing the hierarchical classification of N20 samples
based on their standardized Si5Na-N 20 and SI6NP-N 20, and 6180-N 20 values. Data (n =
241) were paired hierarchically based on their covariances. Colored clusters have linkage
values above the average value for the dendrogram. The cluster averages for other chemical
parameters are indicated to the left of the tree.
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TABLE 1. AG upwelling N20 remineralization stoichiometries. N20 con-
centrations are in nM, 02 concentrations are in pM

Source
Shallow (Cluster A)
Conc. Max. (Cluster H)
Deep (Cluster I)

AN 20
3.7
3.7
3.7

A0 2
-14.6
-38.2
-33.5

AN20/A02
-0.25
-0.17
-0.11

AG [02]
39
31
83

TABLE 2. 02 and N20 isotopic signatures (in
factor of respiration (a) = 0.981

0
2measured/ 0

2iitia

0.0
0.1
0.5

6180-N 20
42.5
38.0
29.4

%o) when the fractionation

6180-02

68.2
36.8
23.5



TABLE 3. 02 and N20 isotopic signatures (in %o) when the fractionation
factor of respiration (a) = 0.990

0 2mea~ured/
0 2initial 618 0-N 2 0 6180-02

0.0 33.4 -
0.1 31.0 46.8
0.5 26.6 30.5
1.0 - 23.5



TABLE 4. Isotope effects for N20 production by denitrification. Under "sys-
tem," open and closed refer to whether the system is open or closed with
respect to NO

0T
signature fexpre.ad (%

615N -23.5 - -28.
6'5 N -15
S15 N 0
J15 N >-15
6180 +18
6180 +29 - +33
6180 +40
8180 >+40

6
NO consumption

steady-state
steady-state

complete

steady-state
steady-state

complete

system
open
open
closed

N20 consumption
no
steady-state

- partial
open no
open steady-state

closed no
- partial

citation
Granger et al. (22); Barford et al. (2)

Barford et al. (2)

Ostrom et al. (46) w/ Barford et aL (2)

Granger et al. (22); Casciotti et al. (8)

Granger et al. (22); Ostrom et aL (46)

Casciotti et al. (8)

Ostrom et al. (46) w/ Casciotti et al. (8)
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5. CONCLUSIONS
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1. SUMMARY

Humans have more than doubled the global fixed nitrogen budget (Galloway et al., 1995).

About 2% of this added nitrogen is converted to N2 0 by microbial processes in soil and

the ocean (Nevison et al., 1996). These processes, nitrification and denitrification, are

both known to produce N2 0, but neither their relative contributions to the total annual

source nor the environmental conditions that control their N20 output are well understood.

Marine nitrification and N20 production rates are difficult to quantify because they are

often low and highly variable. Furthermore, the temporal and spatial coverage of the

measurements that have been made are low (Yool et al., 2007). Isotopic tracer incubations

provide a sensitive way of tracking and quantifying the biological processes that produce

N2 0 but they are labor intensive and provide information about only a single location and

time. Natural abundance isotopic signatures record the effects of processes over longer

temporal and spatial scales. However, the trade-off made relying on these data is in the

ease and certainty of interpreting their meaning. As we pointed out in the discussions of

Chapter 2 and Chapter 4, different biological processes can produce N2 0 with the same

isotopic signatures. Furthermore, physical mixing between isotopically distinct sources and

co-location of isotopically distinct biological sources could result in N2 0 types that appear

isotopically similar even though their origins are unrelated.

Three separate approaches to quantifying N2 0 production were taken in the preceding

chapters. In Chapter 2, pure cultures of the marine ammonia-oxidizing bacterium Nitro-

somonas marina C113-a were used as a model for N2 0 production by nitrifying microor-

ganisms. While Chapter 2 tested some of the chemical factors already known to enhance

N2 0 yields from nitrifiers (such as low ambient 02 and high NO2 concentrations) we found

that the abundance or density of nitrifier cells in the growth medium actually has a sub-

stantial impact on N2 0 yields-with denser cultures producing higher yields. At the lower

cell densities that we tested, measured yields were lower than had been previously reported

(Goreau et al., 1980). It was only when cell densities were extremely high that we observed

the dramatic increases in yield previously noted when cultures were grown under low 02



conditions. Our work suggests that future efforts to model marine N2 0 production might

be improved with additional biological information such as microbial or nitrifier cell counts,

or overall biological activity or biomass concentrations.

The second half of Chapter 2 focused on finding ways to distinguish different biolog-

ical sources of N2 0 using stable isotopic measurements. To do this, the two biochemical

pathways that produce N2 0 in ammonia-oxidizing bacteria were separated by manipulating

culture conditions to promote the production of N2 0 from one pathway relative to the other

and then using a model to fully resolve the end-member nitrogen and oxygen signatures

of both pathways. This work is important because it demonstrates that a single bacterial

nitrifier species can produce N20 with a range of isotopic signatures that is quite broad

given the variation observed in the ocean. However, this variation follows some patterns

that may be useful in future efforts to identify nitrifier-dependent sources of N2 0 in the

ocean. In particular, the incorporation of oxygen atoms into N2 0 from isotopically dis-

tinct source molecules (i.e. H20 and 02) is biochemically linked to the abundance and

distribution of 15N atoms in N20. Future work pairing these oxygen and nitrogen natural

abundance isotopic measurements with rate measurements of the major N2 0 producing

processes would help us determine whether what we observe in culture is also playing out

in the environment.

In Chapter 3 we also investigated the size of nitrification N2 0 yields and possible en-

vironmental controls on this size. However, here the system under scrutiny was an actual

microbial community from the coastal waters of Cape Cod. Potential nitrification rate mea-

surements were paired with N20 production rate measurements during a spring bloom of

the cyanobacteria Synechococcus. While potential nitrification rates were low and did not

change significantly over the course of the bloom, the rates of N20 production did rise with

the density of the bloom. Interestingly, N2 0 yields measured in this way were about ten

times higher than those measured in Chapter 2 for ammonia-oxidizing bacteria. Additional

rate measurements, as well as other types of data would be helpful in resolving whether

this relationship is robust and if so, what the underlying chemical or biological mecha-

nisms might be. Ideally, in addition to the rates, we would also have data on nitrifier cell
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abundances and phylogenetic affinities, as well as dissolved and particulate organic matter

concentrations, other phytoplankton species abundances, and chlorophyll-a concentrations.

As they stand now, the results of this chapter suggest that we may need to consider other

environmental factors beyond ambient NO2 and 02 concentrations when investigating what

controls N2 0 production by nitrifiers.

In Chapter 4, N20 measurements made in a coastal upwelling zone off of southwestern

Africa were used to investigate possible environmental controls and mechanisms of marine

N2 0 production. In this region, N2 0 concentrations increased as 02 concentrations dropped

and nutrient concentrations increased along the transition from the oligotrophic subtropical

gyre to the highly productive waters of the Angola Dome and Benguela upwelling off the

African coast. Relative to 02 consumption, the highest yields of N20 were observed at

shallower depths, just below the top of the thermocline. The bulk and site specific iso-

topic signatures of this N20 were consistent with a nitrifier-denitrification or denitrification

source. In the deeper concentration maximum, where yields were lower, these N2 0 signa-

tures were consistent with a contribution from nitrification. Although N2 0 consumption

by denitrification was probably not an important process in the upwelling environment

itself, subsurface water recirculating from the major oxygen deficient zones into the South-

ern Ocean may have been recirculated into the South Atlantic and upwelled along the the

African coast.

2. OUTLOOK

There are a number of approaches to measuring N2 0 yields in the ocean. This thesis

has focused on bottom-up approaches, which quantify the sizes and isotopic signatures of

individual N2 0 sources. The approach of Freing et al. (2009) pushed this half of the field

forward by using transient chemical tracers to couple N2 0 concentration measurements to

water mass age distributions, allowing them to calculate subsurface N2 0 production rates

and 02 consumption rates independently of each other. However, this method can only be

applied below the depths that are in direct exchange with the atmosphere and it does not

provide mechanistic information about N2 0 formation. Other approaches will be needed to
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measure the N2 0 fluxes resulting from nitrification in the top of the thermocline or within

the euphotic zone.

The bottom-up approach to flux estimation also awaits yield and isotopic signature data

for archaeal nitrifiers. These organisms are abundant in the oceans, often outnumbering

bacterial ammonia oxidizers, and are now thought to be responsible for much of the am-

monia oxidation in the ocean (Agogue et al., 2008; Martens-Habbena et al., 2009). Only

one representative of this group has been successfully isolated to date (Konneke et al.,

2005). Genomic and metatranscriptomic evidence indicates that in addition to the ammo-

nia oxidation enzyme, these organisms may also produce an enzyme homologous to NirK

(Walker et al., 2010; Hollibaugh et al., 2010), which carries out the first step of nitrifier-

denitrification. Information on the production of N2 0 by these organisms may explain some

of the discrepancies observed between N2 0 made by bacterial ammonia oxidizers in Chapter

2 and the observations that we made in the South Atlantic in Chapter 4.

Top-down approaches to identifying and measuring N2 0 sources are also gaining at-

tention. These methods, which use atmospheric models and continuous measurements of

atmospheric N2 0 concentrations, were originally geared towards estimating regional an-

thropogenic N20 emissions (Prinn et al., 1990). However, they are now being used to

identify seasonal and inter annual patterns in marine N2 0 fluxes. As these methods are

refined, they will be able to isolate small seasonal changes in biological fluxes from larger,

physically driven fluxes such as air-sea gas exchange (Nevison et al., 2005, 2007). Isotopic

measurements now being added to these studies may provide additional information on

source identities and sizes. In the geological past, atmospheric N2 0 concentrations changed

rapidly during glacial-interglacial transitions (Fluckiger et al., 1999, 2004). Human pertur-

bation of the nitrogen cycle has moved the earth into another period of rapid N2 0 increase.

Understanding the underlying biogeochemistry of this increase will allow meaningful pre-

dictions of the impacts of climate change on future atmospheric N20 concentrations.

Although the focus of much N2 0 research has been on the impact of human activi-

ties, another question that remains is what other drivers are responsible for the increases



in atmospheric N2 0 concentrations during glacial-interglacial transitions (Sowers and Gal-

braith, 2008). N2 0 may behave like another biogenic greenhouse gas, methane (CH 4 ), whose

glacial-interglacial atmospheric concentration changes have been attributed to changes in

wetland CH 4 emissions. However, recent efforts to reconstruct the geological N2 0 record

using modeling have shown that changes in meridional overturning circulation in the ocean

can also reproduce the increase in N2 0 concentration observed during rapid warming and

cooling events (Schmittner et al., 2008). Further oceanographic work will help elucidate

how changes in primary production and thermocline oxygen budgets influence the current

and past N20 budget.
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