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Abstract

Data assimilation, as presented in this thesis, is the statistical merging of sparse

observational data with computational models so as to optimally improve the prob-

abilistic description of the field of interest, thereby reducing uncertainties. The cen-

terpiece of this thesis is the introduction of a novel such scheme that overcomes

prior shortcomings observed within the community. Adopting techniques prevalent

in Machine Learning and Pattern Recognition, and building on the foundations of

classical assimilation schemes, we introduce the GMM-DO filter: Data Assimilation

with Gaussian mixture models using the Dynamically Orthogonal field equations.

We combine the use of Gaussian mixture models, the EM algorithm and the

Bayesian Information Criterion to accurately approximate distributions based on

Monte Carlo data in a framework that allows for efficient Bayesian inference. We

give detailed descriptions of each of these techniques, supporting their application

by recent literature. One novelty of the GMM-DO filter lies in coupling these con-

cepts with an efficient representation of the evolving probabilistic description of the

uncertain dynamical field: the Dynamically Orthogonal field equations. By limiting

our attention to a dominant evolving stochastic subspace of the total state space, we

bridge an important gap previously identified in the literature caused by the dimen-

sionality of the state space.
We successfully apply the GMM-DO filter to two test cases: (1) the Double Well

Diffusion Experiment and (2) the Sudden Expansion fluid flow. With the former, we

prove the validity of utilizing Gaussian mixture models, the EM algorithm and the

Bayesian Information Criterion in a dynamical systems setting. With the application

of the GMM-DO filter to the two-dimensional Sudden Expansion fluid flow, we further

show its applicability to realistic test cases of non-trivial dimensionality. The GMM-

DO filter is shown to consistently capture and retain the far-from-Gaussian statistics

that arise, both prior and posterior to the assimilation of data, resulting in its superior

performance over contemporary filters.
We present the GMM-DO filter as an efficient, data-driven assimilation scheme,

focused on a dominant evolving stochastic subspace of the total state space, that



respects nonlinear dynamics and captures non-Gaussian statistics, obviating the use
of heuristic arguments.
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Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

The need for generating accurate forecasts, whether it be for the atmosphere,

weather or ocean, requires little justification and has a long and interesting history

(see e.g. Kalnay (2003)). Such forecasts are, needless to say, provided by highly

developed and complex computational fluid dynamics codes. An example of such is

that due to MSEAS (Haley and Lermusiaux (2010); MSEAS manual) .

Due to the chaotic nature of the weather and ocean, however, classically exem-

plified by the simple Lorenz-63 model (Lorenz, 1963), any present state estimate -

however accurate - is certain to deteriorate with time. This necessitates the assimila-

tion of external observations. Unfortunately, due to the limitation of resources, these

are sparse in both space and time. Given further the dimensionality of the state

vector associated with the weather and ocean, a crucial research thrust is thus the

efficient distribution of the observational information amongst the entire state space.

Data assimilation concerns the statistical melding of computational models with

sparse observations for the purposes of improving the current state representation.

By arguing that the most complete description of any field of interest is its probability

distribution, the ultimate goal of any data assimilation scheme is the 'Bayes filter', to

be introduced in this thesis. The scheme to be developed in this thesis is no different.



1.2 Goals

The centerpiece of this thesis is the introduction of a novel data assimilation

scheme that overcomes prior shortcomings observed within the data assimilation com-

munity. Adopting techniques prevalent in Machine Learning and Pattern Recognition,

and building on the foundations of the Kalman filter (Kalman) and ESSE (Lermu-

siaux, 1997), we introduce the GMM-DO filter: Data Assimilation with Gaussian

mixture models using the Dynamically Orthogonal field equations. By application

of the Dynamically Orthogonal field equations (Sapsis (2010), Sapsis and Lermusi-

aux (2009)), we focus our attention on a dominant evolving stochastic subspace of

the total state space, thereby bridging an important gap previously identified in the

literature caused by the dimensionality of the state space. Particularly, with this,

we make obsolete ad hoc localization procedures previously adopted - with limited

success - by other filters introduced in this thesis. With the GMM-DO filter, we

further stray from the redundant operating on ensemble members during the update

step; rather, under the assumption that the fitted Gaussian mixture model accurately

captures the true prior probability density function, we analytically carry out Bayes'

Law efficiently within the stochastic subspace.

We describe the GMM-DO filter as an efficient, data-driven assimilation scheme

that preserves non-Gaussian statistics and respects nonlinear dynamics, obviating the

use of heuristic arguments.

1.3 Thesis Overview

In chapter 2, we explore various existing data assimilation schemes, outlining both

their strengths and weaknesses. We will mainly limit our attention to methodologies

based on the original Kalman filter (Kalman), whose general theory will serve as the

foundation for the GMM-DO filter.

In chapter 3, we will introduce the critical components that ultimately combine to

produce the GMM-DO filter. After providing the details of the scheme itself, we will



give a simple example of its update step. We conclude the chapter with a literature

review, in which we compare and contrast the GMM-DO filter against past and more

recent schemes built on similar foundations.

In chapters 4 and 5, we apply the GMM-DO filter to test cases that admit far-

from-Gaussian statistics. We specifically evaluate the performance of the GMM-DO

filter when applied to the Double Well Diffusion Experiment (Chapter 4) and the

Sudden Expansion fluid flow (Chapter 5), comparing its performance against that

of contemporary data assimilation schemes. We describe in detail the manner in

which the GMM-DO filter efficiently captures the dominant non-Gaussian statistics,

ultimately outperforming current state-of-the-art filters.

We give our concluding remarks in chapter 6.
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Chapter 2

Data Assimilation

Data assimilation, as presented in this thesis, is the statistical merging of obser-

vational data with computational models for the sake of reducing uncertainties and

improving the probabilistic description of any field of interest. The concern will par-

ticularly be with the aspect of filtering: generating the most complete description

at present time, employing all past observations. In a future work, we may further

extend this to the case of smoothing.

Today, ocean and weather forecasts are provided by computational models. In-

evitably, these models fail to capture the true nature of the field of interest, be it due to

discretization errors, approximations of nonlinearities, poor knowledge of parameter

values, model simplifications, etc. As a consequence, one often resorts to providing a

probabilistic description of the field of interest, introducing stochastic forcing, param-

eter values and boundary conditions where necessary (Lermusiaux et al., 2006). By

further incorporating uncertainties in the initial conditions, data assimilation goes be-

yond providing a single deterministic estimate of the field of interest; rather, given the

inherent uncertainties in both forecast and observations, data assimilation provides a

statistical description from which one may quantify states and errors of interest.

The purpose of this chapter is to explore various traditional data assimilation

schemes, outlining both their strengths and weaknesses. We will mainly limit our

attention to methodologies based on the original Kalman filter, whose general theory

will serve as the foundation for the data assimilation scheme to be developed in this



thesis.

The following presentation is largely based on the MSEAS thesis by Eric Heubel

(2008), the MIT class notes on Identification, Estimation and Learning by Harry

Asada (2011), chapter 22 of Introduction to Geophysical Fluid Dynamics by Cushman-

Roisin and Beckers (2007), and the seminal books by Gelb (1974) and Jazwinski

(1970).

2.1 Kalman Filter

The Kalman filter (Kalman) merges model predictions with observations based on

sound statistical arguments, utilizing quantified uncertainties of both predicted state

variables and measurements. It is sequential in nature, essentially consisting of two

distinct components performed recursively: a forecast step and an update step. While

the structure of the update step will change little as we progress into more evolved

filters, the forecast step of the Kalman filter specifically assumes linear dynamics.

Particularly, we write for the discrete-time governing equation:

Xk+1 - AkXk + GkFk, (2.1)

where X E Rn is the (random) state vector; Fk C R' is a random vector (source of

noise); k is a discrete time index; and Ak C R""" and Gk C R"" are matrices whose

physical interpretations require little clarification.

Sparse and noisy measurements of the system, Yk E RP, are intermittently col-

lected, assumed to be a linear function of the state vector:

Yk = HkXk + Tk, (2.2)

where the vector Tk E RP represents measurement noise. The observation operator

Hk C RPXl linearly maps elements from the state space to the observation space,

thus allowing their statistical comparison.

The Kalman filter makes a number of assumptions on the statistics of the system.



Particularly, the sources of noise are assumed to be unbiased:

E [i] = 0

E [Tt] =0

with the following auto- and cross-correlations in space and time:

S [f srT] =6,Rt

. [rsT] = 0

where ogj denotes the Kronecker delta. With this, we proceed to examine the ma-

chinery of the Kalman filter.

Update

At any point in time, the goal of the Kalman filter is to determine the state vector,

Xa, that minimizes the quadratic cost function

X" = argmin E [ (X Xt) (X - zX) I yk, Xo],
x

(2.5)

where xz is the true state of the system; y' = {yi,. Yk} represents all measure-

ments collected up to the current time step; and Xo is the initial state estimate. We

refer to Xa as the analysis vector.

If we define the error A = X - x, with the assumption that this estimate is

unbiased (i.e. S [A] = 0), we find that (2.5) is equivalent to writing

xa = argmin E [ATA I yk, X 0 ]

= argmin Tr (E [AAT I yk, X 0])

(2.6)

(2.7)

(2.8)=- argmin Tr () ,

where P is the state covariance matrix conditioned on all available measurements

(2.3)

(2.4)



and Tr(.) denotes the trace operator. Thus, seen from this perspective, the Kalman

filter attempts to find the state that reduces the sum of the variances of the system

- a highly reasonable goal.

The idea behind the filter's update step is as follows: at the time of a new mea-

surement, the current state estimate (from hereon forecast), denoted Xf, is linearly

updated using the observed data, Y, weighted appropriately by inherent knowledge

of the statistical uncertainties. We write:

X a = Xf + K (Y - H Xf) ,(2.9)

for which we wish to evaluate the optimal gain matrix K C R"pXp. As before, we

define the errors:

Af = Xf - x

A a = - zX (2.10)

A" = Y - yt

with the assumption that these estimates are unbiased, i.e.

g [Af] = S [A"] = S [A ] = 0. (2.11)

For completeness of notation, we further define the error-covariance matrices:

R = E [A ooT]

Pf = e [A Af T] (2.12)

Pa = E [A"AaT].

Using equation (2.10), the analysis step, (2.9), can thus be written

Xz+ A" = Xl+ A + K (A - HAf) - K (yt - Hz') (2.13)



giving

A" = Af + K (A - HAf) . (2.14)

With this, we derive an expression for the cost function, denoting this J, in (2.5):

J - 8 [AaTAa]

= S [ (A + K (AO - HAf))l (Af + K (AO - HAf))]

=E[ ((I- KH)A A+Kn")T ((j - KH) Af + KA")]

8F [AfTAf] + E [AfT HT K"KHAf] -28 [Af TKHAf]

+ 2 [AfT KAO] - 2 [oT KTKHAf] + A K TKA]

Imposing zero cross-correlations between the state and observation errors,

E [AA T] = 0,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

combined with standard matrix calculus (see e.g. Petersen and Pedersen (2008)), we

derive an expression for the gradient of the cost function with respect to the gain

matrix:

aJ
= 2KHE [Af Af T] HT - 2KH [AfAoT] - 2KE [OAf T] HT

+ 2KE [AQAoT] + 28 [%f AoT] -2 [Af Af T] HT

= 2KHPf HT + 2KR - 2PJHT.

(2.20)

(2.21)

Equating the above with zero leads to the equation for the optimal gain matrix,

termed the Kalman gain matrix:

K - pfffT (HPf H T + R) ((2.22)



With this, we get for the analysis state covariance matrix:

Pa = E [ (Af + K (AO - HAf)) (A! + K (A - HAf))T] (2.23)

= e [((I - KH) Ai + KAO) ((I - KH) Af + KAO)T] (2.24)

= (I - KH) P'(I - KH)T + KRK (2.25)

= (I - KH ) Pf. (2.26)

We note that neither the Kalman gain matrix nor the analysis state covariance matrix

depends on the actual measurements and can thus be calculated off-line. Instead, only

the updated state vector accounts for the observations, taking the form:

a = e [Xf+ K (Y - HXf)] (2.27)

= tf + K (y - Hztf) ,(2.28)

where we have used the over-bar notation, x, to denote the mean estimate, thus

differentiating this from its associated random vector, X.

It is instructive at this point to examine the structure of the Kalman update

equations, particularly the importance played by the state covariance matrix Pf. We

do so with a simple example.

Example

Let us assume that X E R2, with the following forecast:

1 and pf[16 -4

L1 1--4 4

Let us further assume that we observe only the first state variable, with an observation

uncertainty of o- 2= 8. Therefore,

H = [1 0] and R = 8.



With this, the analysis state vector becomes:

a X+ PfHT (HPfHT + R) '(y - H2f)

1 16 -4 1 j [A16 -4 1 -[ 1E
1_Ij L -4 4 _ 0 _j-4 4 01

1 16 y -1

1 -4 16 + 8'

with the associated analysis covariance matrix:

Pa=(I -KH)Pf

1 0 1 16 -1 -] 16 -4

0 1 16+8 _4 1 4
1 16 -4
3 -4 10

This simple example serves to illustrate three important roles played by the state

covariance matrix, Pf:

1. In (HPfHT + R) 1, the matrix Pf determines the amount of weight that

should be allocated to the observations in accordance with the uncertainty in

the prior estimate. For this reason, it is crucial that one obtains a good approx-

imation to the true uncertainty in the vicinity of the observations, generally

represented by terms on or close to the diagonal of Pf.

2. The term PfHT serves to distribute information due to the sparse observations

among the entire state space. Thus, while it is crucial to estimate the local

variances correctly, it is equally important to correctly estimate the off-diagonal

terms of the state covariance matrix. With this, Pf allows the propagation

of information from observation locations to remote, unobserved parts of the

system as well as across state variables, taking into account the relative error



of observations and models (Cushnan-Roisin and Beckers, 2007).

3. Since the posterior covariance matrix is a function of its prior, any errors ini-

tially present will remain following the update and potentially compound when

evolving the state estimate forward in time.

From the above, it is evident that the chosen state covariance matrix, Pf, takes great

importance. For a heuristically chosen Pf, the above analysis refers simply to Optimal

Interpolation. The Kalman filter uses the given dynamics, however, to update the

covariance matrix between time steps. We show this in the following section.

Forecast

Based on the current estimates ia and P" we wish to obtain the forecast at time

k + 1. By taking the expectation of (2.1), we have:

+1 = (AX + Gk k] (2.29)

-Aka5. (2.30)

Furthermore, by using (2.1), (2.2) and (2.4), we can show that E [FkA"T] 0. With

this, we therefore obtain:

Pf+ = 'F [,A+1(Af+1)T] (2.31)

= E [ (A A - Gkrk) (AA" - GkT k)T] (2.32)

= AkS [A"A" AT - GkE [Fk a] A - AkE (A FkT G ]G(3
k k T k k k k(2 .3 3 )

+ GkE [kT ]Gk

Ak PaAT + GkQkG . (2.34)

This completes the forecast step. In summary, the Kalman filter proceeds as follows:

Definition: Kalman Filter



For the discrete time governing equation

Xk+ = AkXk + GkT k, (2.35)

with observation model

Yk = HkXk +Y k, (2.36)

perform the following two steps recursively:

1. Forecast: Given current estimates 21 and Pa, obtain estimates at time k + 1

using:

-f = ~ (2.37)

k+1 = AkP AT + GkQkGj. (2.38)

2. Update: Given estimates cf and Pf, and observation Yk, with measurement

error covariance matrix, R, update the estimates according to:

a = f + K (Yk - HXt f (2.39)

P = (I - KH) P, (2.40)

where

K=PHT (HPfHT+R . (2.41)

Two remarks may suitably be made on the optimality of the Kalman filter (Asada,

2011):

(1) If we assume that the optimal filter is linear, then the Kalman filter is the

state estimator having the smallest posterior error covariance among all linear filters.

(2) If we assume that the external noise processes are Gaussian, then the Kalman

filter is the optimal minimum variance estimator among all linear and nonlinear filters.

For these reasons, the past popularity of the Kalman filter comes as no surprise.



It is firmly grounded in the theory of linearity, however, which greatly restricts its

applicability. In the following, we therefore identify filters that have attempted to

overcome this limitation.

2.2 Extended Kalman Filter

For the case of nonlinear dynamics

Xk+1 ak(Xk) + GkFk (2.42)

with a nonlinear observation operator

Yk = h(Xk) + Tk, (2.43)

we have noted that the theory behind the Kalman filter breaks down. For this, we

introduce the Extended Kalman filter, derived by Stanley F. Schmidt (NASA, 2008),

in which we resort to linearizing equations (2.42) and (2.43) about the current state

estimate, 4k, using a Taylor series expansion. As with the regular Kalman filter, we

separate the analysis into a forecast step and an update step:

Update

We modify the analysis step of the Kalman filter to include the nonlinear obser-

vation operator:

Xa = Xf + K (Y - h(Xf)) . (2.44)

By linearizing the observation operator about the current estimate for the state vector,

21, we may approximate the above as:

(2.45)Xa~X + K (Y - h(ztf) - W(Xf -. 21)) ,



where

'h =(2.46)

Using (2.10), and by noting that through our assumption of unbiased estimators we

may write zf = xt, we have:

x+ A" x' + Af + K (yt + A" - h(z/) - 'H(Af + ot - -f) 2.7

= XI+ A + K (y + A - h(xt) - 'AI) (2.48)

= Xt + Af + K (AO - 'XAf) + K (yt - h(xt)) (2.49)

giving

A"a = Af + K (AO - WAI) (2.50)

With this, and repeating the procedure used for the regular Kalman filter, we conse-

quently obtain:

P" = (I - K') Pf (2.51)

(2.52)

where

K = pJ'WT ('Hpf'WT + R) (2.53)

Forecast

As with the update equation, we linearize the nonlinear operator in the governing

equation about the current state estimate,

ak(Xa) = ak(-a) + A(Xa _ a 2 5

z a f + K (y - hz) ,f

(2.54)



where

A-Oak
Axw

This gives for the governing equation

X+ = ak(7a) + A(Xa - ") + Gk'k.

By taking expectations, we have for the forecast at time k + 1:

2+1 =F E Xk+1]

=S [a (aa) + A(X" - ") + GkFk]

= ak(2k).

By a similar procedure, using equation (2.10) and again writing a

xt +1 + 1 = ak(-a) + A( a + x. - -a) + GkT

giving

= ak(xk) + AAa + GkFk

Af1 = AA + GkFk.

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

= xt, we have:

(2.60)

(2.61)

(2.62)

Therefore

Pf + [Af (Af+1)T]

[(Ak/M ± kk(AkAa ± G T]~
-( A A +GkTk)( +GkTk

= A ki + GkQkG.

(2.63)

(2.64)

(2.65)

Thus, while we evolve the point estimate for the state nonlinearly according to the

true governing equation, the covariance matrix is evolved using linearized dynamics.

&



In summary, the Extended Kalman filter proceeds as follows:

Definition: Extended Kalman Filter

For the discrete time nonlinear governing equation

Xk+1 - ak(Xk) + GkFk (2.66)

with nonlinear observation model

Yk = h(Xk) + Tk, (2.67)

perform the following two steps recursively:

1. Forecast: Given current estimates a and Pa, obtain estimates at time k + 1

using:

Xk+1 = ak(xk) (2.68)

Pk± = AkPa AT + G QkG, (2.69)

where

A . (2.70)

2. Update: Given estimates 2f and Pf, and observation Yk, with measurement

error covariance matrix, R, update the estimates according to:

-k = + K (Yk - h(x{)) (2.71)

P (I - KW) Pf, (2.72)

where

K = P T WPfW + R (2.73)



and

Oh
'N = j. (2.74)

In practice, the Extended Kalman filter has been found to suffer from instability

and ultimately divergence of the estimate from the true solution. It is in general

only applicable for weakly nonlinear systems in which the timescales that arise due to

nonlinearities are on the order of the time between measurements. Furthermore, the

calculation of the Jacobian matrices at each time step become prohibitively expensive

as we extend the scheme to systems of increasing complexity. For these reasons,

we require a fundamentally different approach to approximating the nonlinear filter.

With this, we transition to Monte Carlo methods.

2.3 Ensemble Kalman Filter

While the Extended Kalman filter proved popular for a number of decades, expe-

rience showed that it was costly to implement, difficult to tune, and only reliable for

systems that were almost linear on the time scale of the updates (Julier and Uhlmann,

1997).

To overcome the need for linearization of the governing equation, Monte Carlo

methods were adopted. One such scheme was the Unscented Kalman filter introduced

by Julier and Uhlmann (1997), in which a set of N = 2n + 1 particles, termed 'sigma

points', were sampled to deterministically capture the first two moments of the state

estimate. These would in turn be evolved in time using the nonlinear governing

equation to arrive at the state forecast, from which one would proceed with the

assimilation of observations.

For complex systems with large state vectors, however, the handling of N = 2n+ 1

particles would become unfeasible. The Ensemble Kalman filter, introduced by

Evensen (1994), circumvents this issue by using only as many particles as is com-

putationally tractable. The Ensemble Kalman filter proceeds as follows:



Forecast

From an initial estimate of uncertainties or using the analysis of a previous as-

similation step, we have in our possession an ensemble of sample points, {xa}=
{x,... , Xk}, representative of the state's probability distribution. We propagate

each of these particles forward in time using the governing equation,

Xki = ak(Xk) + Fk, (2.75)

to obtain an ensemble representation for the forecast at time k + 1:

{XkHl, f . ,k} (2.76)
{k+11 = {x1,k+1 -. Nk+1 '

= {ak(X$) + 71,. , ak(N,k + YN (2.77)

We note that the 7; refer to realizations of the noise term generated from its appro-

priate distribution.

Update

At the time of a new measurement, we update the ensemble in a manner that

differs little from that of the regular Kalman filter. Here, however, we estimate Pf

using the sample covariance matrix:

pf 1 N

N 1 I x k2 )(Xfk -2tf)T, (2.78)

where
N

z = x . (2.79)
i=1

With this, we proceed with updating each individual particle in turn as if it were the

mean of the original Kalman filter:

, - ), = , , N . (2.80)



We notice that the update equation differs further from that of the regular Kalman

filter in that we create an ensemble of observations to which we add noise:

yje = :::yk + og, T ~ N(v;0, R) . (2.81)

With this, we write for the Kalman gain matrix:

K = P$H (HPH + R)1 (2.82)

where
N

= N E- 1 - -((2.83)
i=1

with, as for the ensembles, the mean matrix given by:

= (2.84)
i=1

Summary

Since its introduction, the Ensemble Kalman filter has been widely applied. It

mainly owes its success to the following two points:

1. While the Ensemble Kalman filter retains the linear update equation of the

regular Kalman filter, it acts on the individual ensemble members and thus

potentially retains some of the non-Gaussian structure that may initially have

been present.

2. As opposed to the Unscented Kalman filter, the Ensemble Kalman filter operates

only on a user-specified number of particles, usually significantly less than the

dimensionality of the system, i.e. N << n. While, with this, one clearly only

spans a subspace of the full state space, it nonetheless importantly makes the

filter computationally tractable.



2.4 Error Subspace Statistical Estimation

In his data assimilation via Error Subspace Statistical Estimation (ESSE), Ler-

musiaux (1997) suggests further condensing the analysis presented by the Ensemble

Kalman filter to a mere subspace of the error covariance matrix, thus focusing only

on the dominant structures obtained through an appropriate orthonormal decompo-

sition. By limiting his attention to this reduced space, he disregards less pronounced

structures and consequently lessens the computational costs involved.

Rather than using the sample covariance matrix as in the Ensemble Kalman filter,

identified by the eigenvalue decomposition

P = EAET, (2.85)

Lermusiaux proposes to retain only the subspace corresponding to its dominant rank-p

reduction, identified by use of the Singular Value Decomposition (SVD). Specifically,

carrying on the notation used for the Ensemble Kalman filter, and defining

M = {z} - {2},l (2.86)

he proceeds by taking its SVD,

SVD,[M] = UE VT (2.87)

to obtain the p most dominant basis vectors, EP = U, with associated eigenvalues,

A,- N -2. With this, he arrives at an estimate for the error covariance matrix

from which he proceeds with the Kalman update equation in the decomposed form.

Benefiting significantly from these efficiencies, the first real-time ensemble data as-

similation done at seas was in the Strait of Sicily in 1996 utilizing ESSE (Lermusiaux,

1999).



2.5 Bayes Filter

In the introduction to this thesis we argued that the most complete description of

any field of interest is its probability distribution. When placed in the context of filter-

ing, this optimal (nonlinear) filter is coined the Bayes filter. While its implementation

in practice is infeasible, it is nonetheless instructive to provide its mathematical de-

scription, since ultimately all data assimilation schemes attempt to approximate this

filter. Furthermore, it serves to smoothen the transition to particle filters, described

in the next section.

Let us, for simplicity, rewrite the (nonlinear) governing equation as

Xk+1 -ak(Xk) + Pk, (2.88)

while keeping the observation model as before:

Yk = h(xk) ± Tk. (2.89)

In order to proceed, we require the definition of a Markovian system (see e.g. Bert-

sekas and Tsitsiklis (2008)):

Definition: Markov Process

A system is Markovian if the probability of a future state depends on the past only

through the present. Mathematically, we write:

PXk+lIXk,..,Xi(Xk+1|Xk, - - - ,x 1 ) - pxk+lxk(xk+1 Xk). (2.90)

Clearly, by inspection of equation (2.88), our system is Markovian, allowing us to

write for the probability distribution of the state forecast at time k + 1:

Px IXx,...,xxk1|, . . . ,f x) = p +1|(X lX). (2.91)

In fact, by conditioning on the previous analysis vector, this Markovian property



further extends to past observations, thus giving

p+IX'kyx -,Ixk+1 xk, Yk, -. - -,y1) = pxfk+ (2.92)

By the process of marginalization, we therefore arrive at a lossless description of the

forecast at time k + 1:

.x (xIf+PxkAlk,x k+1, x)dx k

Pxf+1 Xa (xf+1|xa)px_(xa)dXz

(2.93)

(2.94)

(2.95)qr(xf+1 - a(Xa))pXa(Xa)dz,

where qr(xf+1 - a(xa)) is the probability distribution of the noise term in (2.88).

To arrive at the expression for the update equation, we make use of Bayes law:

pxx) =pXyk(X )
PYk Xf (Yk IXk) kxf

PY(Yk)

rpY Xf(y k)pX(xk)

rqr(yk - h(xf))pxf (x)

(2.96)

(2.97)

(2.98)

where q-r(yk - h(xf)) is the probability distribution of the noise term in the mea-

surement model, equation (2.89), and rj is a constant to ensure that (2.98) is valid.

We thus see that through the Markovian property of the governing equation, we

arrive at the recursive nature of the optimal nonlinear filter, sequentially applying

the forecast equation (2.95) and the update equation (2.98). As expected, for linear

dynamics and linear observation models with external Gaussian noise sources the

Bayes filter reduces to the Kalman filter (Asada, 2011).

(Xf+l IXa)JjXa k k



2.6 Particle Filter

The Particle filter attempts to approximate the Bayes filter by representing the

probability distribution as a weighted sum of dirac functions:

n

(2.99)Px(X) ~ w (x - xi),
i=1

where wi are the individual weights assigned to each particle such that 1 Wi = 1.

With this, the forecast step of the Bayes filter, (2.95), becomes:

p + (1 f+1) qr(x'+1 - a(Xo))px_(xa)dXa

Lw, Jgr(xk+1 - a())6(xa - Xa )dXa
i=1

= ~w qr (f+1 - a(xZk))

(2.100)

(2.101)

(2.102)

(2.103)f - Xfk+1),
i

where the x+ are drawn from the distribution qr(xf+1 - a(Zk)). Wei,k±1ki') -W notice that

the particle weights do not change during the forecast step.

By a similar procedure, at the time of a new measurement, the updated distribu-

tion, (2.98), becomes:

pxa(xa) = Tq-r(y - h(xf))pxf (xf)

r- - h(xw))q(xy --
i=1

X)

(2.104)

(2.105)

(2.106)&6(Xa - X)

where

&j = rwiqr(yk - h(xfk)). (2.107)



Here, we note that the particle locations do not change during the analysis step.

To avoid the collapse of weights onto only a few particles, the particle set if

often revised. Most commonly, one proceeds by the method of resampling (Doucet

et al., 2001): new particles are generated from the posterior distribution (2.106),

occasionally dressing the particles with kernels to avoid co-locating multiple particles.

See e.g. van Leeuwen (2009) for a comprehensive exposition on this topic.

With this, we complete our introduction to classical data assimilation schemes.

In the following chapter, we describe a number of tools that aim to address the

shortcomings made explicit in this chapter. Particularly, we introduce our novel

data assimilation scheme, the GMM-DO filter, that efficiently preserves non-Gaussian

statistics, all the while respecting nonlinear dynamics.
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Chapter 3

Data Assimilation with Gaussian

mixture models using the

Dynamically Orthogonal field

equations

In this chapter, we introduce the core components that ultimately combine to

produce the proposed data assimilation scheme: the GMM-DO filter. Particularly,

we introduce the following concepts:

* Gaussian mixture models;

e the Expectation-Maximization algorithm;

e the Bayesian Information Criterion; and

e the Dynamically Orthogonal field equations.

Rather than merely stating their definitions, we attempt to justify their choice by

providing an explanation of their origins and, where possible, placing them in the

context of similar ideas. After providing the details of the GMM-DO filter itself,

we conclude the section with a literature review, in which we compare and contrast



our data assimilation scheme against past and more recent filters built on similar

foundations.

3.1 Gaussian mixture models

Definition: Gaussian Mixture Model

The probability density function for a random vector, X G R", distributed according

to a multivariate Gaussian mixture model is given by

M

px (x) = Z rj xA(x; -j, Pj), (3.1)
j=1

subject to the constraint that
M

Z rE -1. (3.2)
j=1

We refer to M E N as the mixture complexity; 7rj E [0, 11 as the mixture weights;

xi E R" as the mixture mean vectors; and P G R nx" as the mixture covariance

matrices. The multivariate Gaussian density function takes the form:

N(X; 2, P) - 1 e/2 I)1/2 e . (3.3)

(2r)"/2 |P|1/2

Gaussian mixture models (GMMs) provide an attractive semiparametric frame-

work in which to approximate unknown distributions based on available data (McLach-

lan and Peel, 2000). They can be viewed as a flexible compromise between (a) the

fully parametric distribution for which M 1 and (b) the kernel density estimator

(see e.g. Silverman (1992)) for which M = N, the number of data points. The fully

parametric distribution, while justified based on maximum entropy arguments (see

e.g. Cover and Thomas (2006)), is often found to enforce too much structure onto

the data, being particularly incapable of modeling highly skewed or multimodal data.

The kernel density estimator, on the other hand, requires one to retain all N data

points for the purposes of inference - a computationally burdensome task. Further-



more, due to the granularity associated with fitting a kernel to every data point,

they often necessitate the heuristic choosing of the kernel's shape parameter. We

will allude to this phenomenon later in this chapter when presenting the literature

review on current data assimilation methods. Mixture models enjoy their popularity

by efficiently summarizing the data by a parameter vector, while retaining the ability

to accurately model complex distributions (see figure 3-1 for a visual depiction of the

three approaches). In fact, it can be shown that in the limit of large complexity and

small covariance a Gaussian mixture model converges uniformly to any sufficiently

smooth distribution (Alspach and Sorenson, 1972).

..... ..~. .m

Parametric Distribution Gaussian Mixture Model Kernel Density Approximation

Figure 3-1: Gaussian (parametric) distribution, Gaussian mixture model and Gaus-
sian (kernel) density approximation of 20 samples generated from the mixture of uni-
form distributions: px(x) = 1 x Ub(x; -8, -1) + 1 x U(x; 1, 8), where U(x; a, b) = 1

denotes the continuous uniform probability density function for random variable X.

A number of expansions have previously been considered in approximating arbi-

trary probability distributions, among them the Gram-Charlier expansion, the Edge-

worth expansion and Pearson-type density functions (Alspach and Sorenson, 1972).

While the former two suffer from being invalid distributions when truncated (namely,

that they must integrate to one and be everywhere positive), the latter does not lend

itself well to Bayesian inference. In contrast, by equations (3.1) - (3.3), Gaussian

mixture models are clearly valid. More importantly, however, for the specific - but

popular - case of Gaussian observation models, they make trivial the Bayesian update

by invoking the concept of conjugacy, defined as follows (see e.g. Casella and Berger

(2001)):



Definition: Conjugate Prior

Let F denote the class of probability densities pylx(ylx). A class g of prior distri-

butions on X, px(x), is a conjugate family for F if the posterior distribution for X

given Y, via Bayes' law, is also in the class g for all pylx(ylx) E F, all px(x) e g

and all y E Y.

While the above definition assumes the simple case of univariate random variables

living in the same space, the definition trivially extends to that of multivariate ran-

dom vectors related through a linear operator, i.e. Y = HX. For the purposes of

simplicity, in the following analysis we restrict our attention to the case of H = I,

the identity operator. When proceeding to introduce the GMM-DO filter, however,

we will, for obvious reasons, adopt the more general framework common to ocean and

atmospheric applications.

Theorem

A multivariate Gaussian mixture model,

M

px(x) = 5rfxNf(x; t, P), (3.4)
j=1

is a conjugate prior for a multivariate Gaussian observation model,

prix (ylz) = N(y; x, R). (3.5)

Specifically, the posterior distribution equally takes the form of a multivariate Gaus-

sian mixture model,

M

xy(XIy) = y7rxN(X;. pa P)6)
j=1



,a
wr xNM(y;zy,P +R)

=I{wfxN(y;zP+f ± R)

a = + P (P + R)-1(y - -f)Xiri r+Ei IyX

P aJ= (I - P (P + R))P .

Proof

To avoid cluttering the following analysis, we define the quadratic notation:

(3.7)

(a - b)TC(a - b) = (a - b)TC(e).

We let the prior probability density function take the form of a multivariate Gaussian

mixture model,
M

px (x) = Z7rjxNf(x; , Pj),
j=1

and the observation model that of a multivariate Gaussian distribution,

prix(yox) = (y; x, R).

By application of Bayes' Law, we obtain the following posterior distribution:

pxjY(XIY)
Pyjx(Y x) x px(x)

py(Y)

ocxpyIx(yx) x px(x)
M

= N(y; x, R) x r fxV(x;zf , P)
j=1

(27r)n/ 2 |R 1/2 C

X) T R1(*) X f 1 e(I(X2r/pf)T(pf)()
E~ 7 (2wr)'/ 2 1pf 1/

j=1 ~j 1/

M f

_ 71 - ((y-x)TR o(.)H-(x-g)T(P,)

,1 (2r)n|Ri1/2 pf 1/2

By expanding the exponent, we have using the property of symmetric covariance

with parameters:



matrices:

(y - x) T R- 1 (e) + (x - 2 )T (P)--1(O)

xT((P') - + R--)x - 2xT((P) 1 + R-'y)+(zf)T Pf)1f + yTR-ly

By adding and subtracting ((P> )1- + R- y)T((p) 1 + R- 1 ) 1 (e), we get

xT((P{)- + R- ')x - 2xT((P{)- iz + R--y)

+ ((Pf)-12 + R-y)T((P )-- + R-')- (.) - ((P{)-12r + R- y) T ((P)-1 + R- 1 ) -1()

+ (zf)T(pf)--1f + yTR y,

from which, by completing the square, we obtain

=(x - ((P()PR 1) + R-y))T ((Pf)-l + R- 1)()

-((Pf) t + R--y) T ((P{)- + R-1) 1(o) + () T(P)-- f + y T R-- 1y.

Finally, by applying the Matrix Inversion Lemma: (Ea 1 + - ), = (I - Ea (Ea + Eb) 1) Ea,

= (x - (I - P (P + R)- 1 )P (P)- f - (I - R(P + R)-')RR-- y) T ((Pf)

- ((P{)-- ' + R-ly) T ((P)-- + R-1)-1(*) + (z)T(P )- z + y T R-ly

= (x - (z + P (P + R)-(y - 2 ))) T ((P + R- 1)(9)

+ (y - )T (P{ + R)(e).

We therefore have for the posterior distribution:

PXjY(xIY) 0C
M f

((X -- i)T((P)-- - )(*)+(y--)T(P +R (

=1(27r)n R 1/21p 11/2

-1 + -1)--1/21 (P + R) 1/21M n

j~p

M

j=1

+ R-1 )()

(27r)"|R|1/2 p11/2
Pf + R)x N(Xx z, P) x N(y;.2

Mr(Xx Nax zpa) x N(y; tj, Pf + R)



which gives

M

PX|Y(XY E 7, X N(X; t, P'),
j=1

where

a 7X (y;_f,Pf+R)

= 1 7 xN(y; t{, P{ + R)
;ta=;f+ P (Pf + R)-(y - dzf)

P = ((P)- + R-1)-1 (I - Pf (Pf + R)-)P. D

Consequently, for Gaussian observation models with Gaussian mixture models as

priors, the usually intractable Bayesian update reduces to a trivial update of the

elements of the parameter set, {7r1, . . . , M, 21,. , zM . . . , PM , given by (3.7).

Specifically, the individual mixture means and covariance matrices are conveniently

updated in accordance with the already familiar Kalman filter, coupled solely through

their mixture weights.

Having introduced Gaussian mixture models as an attractive method for approx-

imating distributions for the purposes of Bayesian inference, it remains for us to de-

termine its optimal set of parameters, {rI, .. . , 7M, 2, . . , X, P 1 , . . , PM Ioptimal,

based on the data at hand. Particularly, we seek the value for the parameters that

maximizes the probability of obtaining the given data; the Maximum Likelihood es-

timators. For this we make use of the Expectation-Maximization algorithm.

3.2 The EM algorithm

The following exposition on the Expectation-Maximization (EM) algorithm is

largely based on the MIT class notes by Jaakkola (2006) and Wornell (2010) as well

as the books by McLachlan and Basford (1988), McLachlan and Krishnan (1997) and

McLachlan and Peel (2000).



The EM algorithm describes an iterative procedure for estimating the parameters

of a target distribution that maximize the probability of obtaining the available data,

{X} = {x 1, .. . , XN}, thus arriving at the Maximum Likelihood (ML) estimate for

the unknown set of parameters. While ML estimators can be justified on intuition

alone, they can further be shown to be both consistent and asymptotically efficient

(Bertsekas and Tsitsiklis, 2008) and are thus particularly attractive.

For most realistic cases, obtaining the ML estimate by differentiating the paramet-

ric probability distribution, px({x}; 01,... , OM) say, with respect to the parameter

of interest and equating with zero,

Op{x} ({x}; 01, ... ,v) = 0, 1 = 1, , M7 (3.8)
00i

results in a nonlinear equation that lacks a closed form solution (Wornell, 2010). In

such cases, one must resort to numerical optimization methods. While various hill-

climbing schemes exist, the EM algorithm takes advantage of the particular properties

associated with probability distributions from which it ultimately enjoys its simplicity.

In literature, the EM algorithm is commonly introduced in the context of 'in-

complete data', for which ML parameter estimation by the method of partial dif-

ferentiation, as described above, can be a difficult task. The primary step is thus

to artificially complete the data at hand with additional pseudo data (or knowledge

about the existing data), thereby giving rise to a simpler structure for which ML

estimation is made computationally more tractable. Specifically, the complete data

problem typically yields a closed form solution to the estimation problem (McLachlan

and Peel, 2000), allowing one to obtain the ML parameters by simple partial differen-

tiation. The data with which to complete the existing data set is chosen by the user

and may have little physical relevance; its choice, however, ultimately dictates the

efficiency of the algorithm. By conditioning the complete data on the available data,

an estimate for the ML parameters may iteratively be obtained. This procedure lies

at the heart of the EM algorithm, to be described in detail in what follows.

Following Wornell (2010), we let {x} = {xi, - - - , XN}T denote the set of available



data, {z} the complete data vector and 6 = {1, - - - , Om t the set of parameters (to

be determined) of the chosen distributional form, p{z}({z}; 6). We further assume,

as is often the case, that the available data is a unique and deterministic function

of the complete data, i.e. {x} = g({z}). (For instance, this may simply be a subset

of the complete data.) By the Total Probability Theorem (see e.g. Bertsekas and

Tsitsiklis (2008)), we may thus write:

p{z}({z}; 6) = p{z}{x}({z}{Z}; 6) x p{x}({x}; 6) (3.9)
{x}

= p{z}|{x}({z} g({z}); 6) x p{x}(g({z}); 6). (3.10)

By taking logarithms, we consequently obtain for any value of {z} that satisfies {x} -

g ({z}):

log (pfx}({x}; 6)) =log (p{z}({z}; 6)) - log (p{z}|{x}({z} {x}; 6)). (3.11)

By further taking expectations with respect to the complete data, conditioned on the

available data and parameterized by an arbitrary vector 6 (to be optimized), i.e.

E [() 1 {X} = {}; ] = (e)p{z}{x}({z}{}; 5)d{z}, (3.12)

the left hand side of equation (3.11) remains unaffected,

E [log (px}({X}; 6)) {X} - {}; ] log (pIx}({x}; 6)), (3.13)

and we thus obtain

log (px(}){x}; 6) E [log (p{z}({z}; 6)) 1{X} ={x}I (3.14)

- S [log (p{z}I{x}({z} {x}; 6)) 1{X} = {}; 5].



For the sake of convenience, we denote

U(6;5) = [log (p{z}({z};6)) {X} = {x};] (3.15)

V(6; 0) -E [log (p{z}|{x}({z}|{x}; 6)) |{X} ={}; 6 (3.16)

to obtain the simplified expression

log (p{x1 ({x}; 6)) = U(6; 6) + V(6; 6). (3.17)

By application of Gibbs' inequality (see the appendix), we see that

V(6; 5) =- [log (p{z}|{x}({z}|{x}; 6)) |{X} ={}; ] (3.18)

> -E [log (p{z}1{x}({z}{}; 6)) | {X} ={X}; 5] (3.19)

= V(6; 6). (3.20)

Therefore, if we denote 6 as our present estimate for the parameter vector, by choosing

6 0 such that it further satisfies U(6; 6) ; U(6; 6), we guarantee that

log (p{x1({}; 6)) = U(6; 6) + V(6; 6) (3.21)

> U(6; 6) + V(6; 6) (3.22)

= log (p{x ({X}; 6)). (3.23)

Consequently, upon repeated iterations, our estimate for the parameter vector mono-

tonically increases the log likelihood of generating the data at hand. Assuming further

that the likelihood is bounded from above, we are thus guaranteed to converge to a

stationary point and as such obtain an estimate for the ML parameter vector (Casella

and Berger, 2001).

In summary, the EM algorithm proceeds as follows:

Definition: The EM algorithm

Given the available data, {x} = {X1 ,..., XN}, initial parameter estimate 0(0), pro-



posed complete data vector {z} with predetermined, user-specified distribution, p{z}({z}; 6 ,

repeat until convergence:

" Using the present parameter estimate 6 (k) form

U(O; O(k)) = E [log (p{z,({z};O )) 1{X} {x}; 6(k)]. (3.24)

e Update the estimate for the parameter vector, 0 (k+1), by maximizing U(6; O(k)).

6 (k+1) = argmax (U(O; 6 (k))). (3.25)
0

For the purposes of this thesis, it is instructive to illustrate the application of the

EM algorithm to multivariate Gaussian mixture models. We do so as follows.

3.2.1 The EM algorithm with Gaussian mixture models

We assume that we have the set of data, {x} = {X1,... , XN}, generated by the

multivariate Gaussian mixture distribution:

M

px (x) = : gr x M (x; 2 5, Pj) (3.26)
j=1

for which we wish to obtain the maximum likelihood estimate for the parameter

vector:

6 - {r1, - -. ,M, 1, ,M , 1, Pl- , PM}. (3.27)

Note the convenient abuse of notation of allowing the parameter vector to contain

both non-transposed vectors as well as full matrices. Note, also, that for the moment,

we assume the mixture complexity to be fixed and known. (In the subsequent section

we will introduce a method that estimates the optimal choice for M based on the

data at hand.) We augment the available data set to form the complete data set

{Z} = {C1 , X 1 ,. . . , CN, XN}, (3.28)



where ci represents an indicator vector such that

(ci)j = 1 if data point xi was generated by mixture, (3.29)
0 otherwise,

with (ci)j referring to the jth element of vector ci. (We note that, for our purposes,

these membership indicators have little physical relevance, and exist merely as a con-

ceptual device within the EM framework.) Conditioned on the additional knowledge

of the set {c} = {ci, . . ., CN}, we therefore assume we know the origin of each realiza-

tion, namely the mixture that generated it. This knowledge gives rise to closed form

solutions for the Maximum Likelihood estimator of the parameter vector, specifically:

N
-r (3.30)

i=1
Py = (i X (Xi - zy)(Xi -tj T57 (3.32)

where

N

Nj = (c )y. (3.33)
i=1

We have thus completed the data vector. Rather than hardwiring a realization to a

particular mixture as done with the complete data set, however, in the EM algorithm

we successively estimate the weights with which a given realization is associated with

each of the mixtures based on the present parameter estimates. This is followed by

optimizing the parameter vector based on the previously calculated weights. With

this, we ultimately arrive at an estimate for the Maximum Likelihood parameter

vector based on the available data set, {x} = {xI,... , XN}-

By the assumed independence of the data, the probability distribution for the



complete data takes the form

N

P{z}({z}; 6) =JPci,x (ci, x; ) (3.34)

(3.35)
N M

=1 J=(7r
i=1 j=1

(Note that in arriving at equation (3.35), we adopted a common trick allowed by the

use of categorical random variables. See e.g. Bertsekas and Tsitsiklis (2008)) Upon

taking logarithms we obtain

log (p{z} ({z}; 6))

N M

= (ci) (log rJ + log A (xi; 2t, Pj)).
i=1 j=1

By further taking the conditional expectation of equation (3.36) with respect to the

available data, arbitrarily parameterized by vector 6(k),

E [() 1{X} = {x}; 6(k) - (*)P{z}|{x}({z} { x}; O(k)) d{z}

we consequently obtain the expression to be maximized under the EM algorithm:

U(O; O(k)) = [log (p{z}({z}; 0)) 1 {X} = {x}; 0(k)]
N M

-8E (ci) (log 7r + logA
i=1 j=1

(Xo; 7j, Pj )) | {X} = {X}; O(k)]

N M

E3 S [(ci)| {X} = {x}; (k)] (log 7rj + log Ns (xi; 2-, Ps)).
i=1 j=1

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

x AN (xi; zyI Pj) )



Finally, for convenience of notation, we define

ry (Xi; 6(k)) =S [(ci)j I {X}I = {f} X6 (k)]

= E [(ci) - x; (3.42)

= Pr((c ) = 1 Xi = Xi; 6 (k)) (3.43)

(r,(k (k) p(k)
7 1j ( j; j j I . )( 3 4 4 )M k)N ( ), p ))

where we made use of the definition for the expectation of a Bernoulli random variable

in going from equation (3.42) to (3.43) (see e.g. Bertsekas and Tsitsiklis (2008)). This

completes the E-step of the EM algorithm.

We proceed with evaluating 8 (k+1), the parameter vector 6 which maximizes

U(6; 6 (k)). This forms the M-step of the EM algorithm. (The following analysis

is rarely given in the literature. In fact, we failed to find a single account of its

complete derivation in connection with the EM algorithm. It is given here since it

serves to illustrate the simple use of matrix calculus (see e.g. Petersen and Peder-

sen (2008)) by which the final result is achieved.) By expansion of the multivariate

normal distribution, U(O; 6 (k)) takes the form:

N M

U(6; 6 (k)) - _ +6()(log r logA (xi; tj, Pj)) (3.45)
i=1 j=1

M N k
Tj(X;(k))(log 7rj - -log 27

1 i=1 2 (3.46)
1  1 1

- 1 og I -t.x -~)Tp-l(X, _-j)

In what follows, we proceed by the method of Lagrange multipliers (see e.g. Cover and

Thomas (2006)) for optimizing the terms of the parameter vector in which constraints

exist. (Such is for instance the case for 7ry where we require TM1 7rj = 1. In a later

discussion, we will further place a restriction on the mixture means, 2i.) For the

unrestricted terms of the parameter vector, we determine the optimal parameters by

regular differentiation.



To determine 7 , we introduce the auxiliary function with Lagrange multiplier,

M N k
A = Tj[xr;9(k))(log -rj - log 2-r - log |Pj|

j=1 i=1

1 M

-2 (Xi- zj)TP '(x, - 2j)) + A(Z rk - 1).
k=1

from which, upon equating the gradient with the zero vector,

OA
and = 0,BA

(3.47)

(3.48)

we obtain the expression:

T(Xo; 6 (k)) + A, rk - I) = (0, 0) Vp E {1, 2,.
k=1

By observation, since the above holds for all p, and A is unique, we thus have the

condition:

1 ( (k))
P

7Tq
Vpq C {1,2, ... , M} (3.50)

or equivalently

N

7 Tp(Xi; 0()) -
i=1

N

Tq(X 1  (k))
i=1

Vp, q c {1, 2,.. .,

Upon summing over q, we obtain for the left hand side of (3.51):

M N
7rq r (x; 8 (k))

q=1 i=1

N

- Z~~ i;O(k))
i=1i

N

r, (Xi; 6(k))
i=1

N

.,M} (3.49)

M}. (3.51)

M

qr=1
q=1

(3.52)

(3.53)

0P 0 VpcE 1, 2, . . ,M}

6( *))



and similarly for the right hand side of (3.51):

75k+1) Tq(Xi 6 (k))
q=1 i=1

N M
_(k+1) 

O(k))

i=1 q=1

N

= 7r k+ 1) E 1
i=1

= N x 7r(k+1)

(3.54)

(3.55)

(3.56)

and therefore arrive at the final expression for the updated mixture weights:

(3.57)

where Nk) is the sum total of particles associated with a given mixture, p, under the

current paramter vector, G(k).

With this, we proceed to determine the unconstrained parameters 2 k+1) and

p(k+l) simply by taking the appropriate partial derivatives and equating with zero.

Specifically, to obtain zPk+1), we have:

(Ti(xi; 6 (k)) ( log 7r - log 27 -

2 X -Xi)Tp

(TP(Xi; e(k)))a ((X, _ )T p-i X 

N

=0

giving

(TP( 2 ; o(k)) (X (-))TP 1 ),

~(k+1) Xi 1 /)X
P N1 P

(k+1) __ Z =1  ( ;i. 6(k)) - N (k)

p N N

OU(O; O(k))

I1(X 
- t )

log |Pl

(3.58)

(3.59)

8M N

1 = =1

N=



and, similarly, to obtain p(k+1), we have (with knowledge of tz(k+ 1)

&U(O; O(k))

1 X
2

N

2-

N=

1

(TP(Xi;(k)) (p-T + p-T(X k+ (X - 7(k+1))TP-T)

1 (k)) (p + (X - (k+1))

(3.60)

giving

. g(k) (k+1))(X - k+)T
P -)

In summary, the EM algorithm for Gaussian mixture models proceeds as follows:

Definition: The EM algorithm for Gaussian mixture models

Given the available data, {x} = {x1, .. . , XN}, and initial parameter estimate,

(O) - .) . 4 ? (0) . (0) p(0) p()}, (3.62)

repeat until convergence:

* For all i E {1,2,.. . ,N}

estimate 0 (k), form

and j E {1, 2, . .. , M}, using the present parameter

(3.63)7j(X~ i.(k)) _ E M (k)pv. p)),r N gAr z k) p ()

=17rk") (X 1.M, P M)

Tj (Xi; (k) )(log 7r 2k log 27 - Ilog |Pj|

+-(k1))Tp '(I

(p X.O(k))d' (log IPpl + (X. - 1(kH-))Tp-
1 (I - zk+1)

TP ( I O~PP7 rPP(i X ))

(TXi; O(k)) (p-1 + p- 1 _ (k+l) _ -r(k+1))TP-1)

i=1

p(k+l) 
-

P Pk
(3.61)

a M N

P(j1 =1

- I
Xi _.t(k+l))T) P

P ) P

(k+l)))



e For all j E {1, 2,... , M}, update the parameter estimate 6 (k+1) according to

(k-i-) N (k)

7,T - (3.64)

N

k + 1 (k ) ' ( k)); (3 6 5 )
N

.P k+1) (t) k+1)(x _e(k+1))T (3.66)
N

where

N

S(k) - 6(k)). (3.67)
i= 1

3.2.2 Remarks

Before concluding this section, we wish to address two issues regarding the EM

algorithm, namely the choice of starting parameters and the issue of convergence.

The goal of the EM algorithm is to obtain the Maximum Likelihood estimate for

the parameter vector, namely the parameter vector that globally maximizes the prob-

ability of obtaining the data. We've already noted, however, that the EM algorithm

is guaranteed to converge only to a stationary point. Thus, for a likelihood with sev-

eral stationary points, convergence to either a local or global maximum depends on

the initial estimate for the parameter vector. While this starting point may be cho-

sen deterministically through a crude but efficient clustering algorithm (e.g. Affinity

Propagation due to Frey and Dueck (2007)), such methods fail to explore the param-

eter space and therefore risk converging to a local maximum. Instead, one commonly

runs the EM algorithm from a number of starting points chosen stochastically, but

based somehow on the data spread. The optimal parameter vector is then chosen as

the one that maximizes the probability of the data over all runs.

An issue arises here, however. The global maximum, corresponding to the ML

estimate, often arises in the interior of the parameter space. For Gaussian mixture

models, however, the likelihood is unbounded on the edge of the parameter space in



which a Gaussian with zero covariance is fitted to a data point, thus giving rise to a

singularity however small the mixture weight (McLachlan and Peel, 2000). Therefore

consideration has to be given to large local maxima that occur as a consequence of

small (but nonzero) covariance matrices. Such components correspond to mixtures

containing few data points close together or almost residing in a lower dimensional

subspace. A condition for avoiding such occurrences may be given by:

>C>0, Vij { (1,... , M}

with C appropriately chosen. McLachlan and Peel (2000) note that a more informative

approach is to examine the actual eigenvalues of the covariance matrices as these

offer a better reflection of the shapes of the mixtures. Particularly, in this way one

may differentiate between small compact clusters and long thin clusters, potentially

indicating viable and less viable mixtures.

3.3 The Bayesian Information Criterion

Determining the optimal complexity of a Gaussian mixture model can be a com-

plicated task, particularly given limited a priori knowledge, and is often guided by

empirical evidence, namely the available data. Such a task is formally referred to

as model selection, and while numerous schemes exist (see e.g. McLachlan and Peel

(2000)), for the purposes of this thesis, we will restrict our attention to the metric

defined by the popular Bayesian Information Criterion (BIC). Much of this exposition

is due to Wornell (2010) and McLachlan and Peel (2000).

As the name suggests, the Bayesian Information Criterion is most easily intro-

duced in a Bayesian framework. Specifically, for the time being, we let the parameter

vector, 0, be random. We will see that under the assumption of sufficiently large

data sets, however, the arbitrarily assigned prior distribution will have little effect.

As such, we ultimately remain within the framework of classical statistics, and for

this reason we let the mixture complexity, M, be constant but unknown.



We introduce the following notation: pe(6; M) defines the prior distribution over

the parameter vector for a given mixture complexity, and pxie(x 0; M) is the proba-

bility distribution for the available data conditioned on a parameter vector at a given

complexity. In this thesis, the latter obviously takes the form of a Gaussian mixture

model, however we will leave the following analysis in its generic form. To guide the

reader, we stress that both of the aforementioned distributions are known up to the

value of the parameter vector, 0.

We wish to select the model complexity, M, that maximizes the likelihood of

obtaining the available data, {x} = {X1,... , XN}. In other words, by the assumed

independence of the data points, we seek M for which

N

Pixl ({x}; M) =7 pxi(; M) (3.68)
i=1

is a maximum. Continuing the analysis for a single data point, xi, we have by Bayes'

Law that

pO 1Xi(&jxj;MJ) -px 1|e(xi|6; M)pe(0; M) (3.69)
pxj(xi; M)

where

px, (xi; M) = Jpxile(xil0; M)pe(0; M)dO. (3.70)

Using Laplace's approximation (see e.g. Wornell (2010)), we expand the logarithm of

the left hand side of (3.69) by a Taylor series about an arbitrary parameter value, 0:

In (pex , (6|xi; M)) =ln (pex (1 xi; M)) + ln (peix, (|xi; M)) ( -

+ 1 (0 - 5 2 In (pejx. (|xj ; M)) - (0 - + ... (3.71)
2 8086 oT

By application of the EM algorithm introduced in the previous section, however, we

may choose 6 to be the ML estimate for the parameter vector, OML, such that the

following holds:
a
0 ln (peix(|xi; M)) = 0. (3.72)



Defining further the Fisher information in the data xi about the parameter vector 6,

82
Jxi=xi($ML) = - T pe|X

8086 o=OML

using (3.71) we thus arrive at the approximation

Pe~x1 (0|xi; M) pex($ML M ( AlL) J X (-ML)(-ML

(3.73)

(3.74)

PXj|0(xi IML; M)Pe(OMLI M)

Px1 (xi; M)
- (0-$M ML)JX ($ML)(0-6ML)

(3.75)

by applying (3.69) evaluated at 6ML. By integrating over 6, we obtain the relations

I pe1x1 (0jx;M)d6 -1, and

OA6L) T~~(ONIL)(O OAjIL),dO -(2iiT)K ' J, z~, (OKJL)

from which, upon rearranging the terms in equation (3.75), we have that

pxj(xj; M) px 1e(xi|I ML; M)pe(OML; M) (27F) I JX=x (OML)

Thus for N independent realizations, {x} = {x 1 ,.. , XN} we have

N

Spxi(x ; M) = pIx}({x}; M)

2

~ Pe ($ML ; M) (27) ({x}|$ML; M) Jjx} {x}(OAfL) 2

(3.80)

M)(21r) 2 pIx}1 e({x}|$AfL;M) IJc(6ML)

= Pe (MLI M) 2 J2i(OML) 2 X] Jp (eX 16ML; M)

(3.76)

(3.77)

(3.78)

(3.79)

(3-81)

(3.82)



where we used the asymptotic property

1 -

lim J{X}{x((ML) = -J; (ML), (3.83)
N- ox N

the latter being the expected Fisher information in any single observation, xi, about

0 (Wornell, 2010), in arriving at equation (3.81), and where Km is the length of the

parameter vector. Taking logarithms and normalizing by N we get

L(M) = LX (ML, M) + lOg pe)(OML; M) + log 27r
Nx N N 2N

K 1
- log N - log J (OML) (3.84)

2N N

where we have defined the notation:

N

Lf (M) = log px (xi; M) (3.85)
i=1

N

Lx(ML, M) = log px ie (Xi lML; M). (3.86)
i=1

The above two equalities define the log-likelihood of the data integrated across all

possible parameter vectors and the log-likelihood of the data evaluated at the ML

estimate for the parameter vector, respectively, both for a mixture complexity of M.

Finally, for sufficiently large N, we keep only the order one terms of equation

(3.84) to arrive at the Bayesian Information Criterion:

Definition: Bayesian Information Criterion

-2LN(M) = BIC~ Km log N - 2L ($ML, M), (3.87)

where N is the number of realizations; M is the mixture complexity; L (M) is

the log-likelihood of the ensemble set integrated across all possible parameter values;

Lx($ML, M) is the log-likelihood of the ensemble set evaluated at the ML estimate for

the parameter vector; and K, is the number of parameters.

Based on the set of ensemble realizations, {x} = {x 1, .. . , XN}, we choose the



mixture complexity, M, for which the BIC is a minimum. We may conveniently

consider the BIC to be the quantitative equivalent of the popular 'Occam's Razor' (see

e.g. MacKay (2003)), namely that one should favor the simplest hypothesis consistent

with the ensemble set. Here, we wish to strike a balance between underfitting - and

thus imposing too much structure onto the data - and overfitting, for which we limit

our predictive capacity beyond the ensemble set. We do so by penalizing the fit of

the realizations, quantified by twice the log-likelihood of the ensemble set evaluated

at the ML parameter vector, 2LN ($ML, M), with a term proportional to the mixture

complexity, Km log N.

At this point, what remains for us is to introduce an efficient method for evolv-

ing the probabilistic description of the state in time. For this, we make use of the

Dynamically Orthogonal field equations.

3.4 The Dynamically Orthogonal field equations

The Dynamically Orthogonal (DO) field equations, introduced by Sapsis and Ler-

musiaux (2009), are a closed set of evolution equations for general stochastic contin-

uous fields, X(r, t; w), described by a stochastic partial differential equation (SPDE):

0X (r, t; w)X('t = L [X(r, t; w);w], (3.88)at

where r denotes the position in space; t is time; w a random process source of stochas-

ticity; and, E[.] a general, potentially nonlinear, differential operator. By hypothesiz-

ing a generalized, time-dependent Karhunen-Loeve decomposition of the stochastic

continuous field (Lermusiaux (2006), Sapsis and Lermusiaux (2009)),

S

X(r, t; ) = (r, t) + z (r, t)4(t; w), (3.89)
i=1

where X(r, t) is the mean field; zi(r, t) are orthonormal modes describing a basis

for the stochastic subspace; and 4(t; w) are zero-mean, stochastic processes, they



provide equations, based on the full SPDE, that govern the evolution of each of the

aforementioned components.

Reduced-order statistical models, in which the full equations are projected onto a

dominant, stochastic subspace, have previously been applied with great success, two

such being the Proper Orthogonal Decomposition and Polynomial Chaos. Before de-

scribing the Dynamically Orthogonal field equations, we will give a brief introduction

to these two approaches.

The following work is based on the MIT class notes on Numerical Methods for

SPDEs (Marzouk and Wang, 2010), the Ph.D. thesis by Sapsis (2010) as well as the

papers by Sapsis and Lermusiaux (2009, 2010).

3.4.1 Proper Orthogonal Decomposition

For Proper Orthogonal Decomposition (POD), the state of the dynamical system

is assumed to take the form:

S

X(r, t; W) = i(r)<Di(t; W), (3.90)
i=1

where the <bi(t; w) are stochastic processes and the xi(r) denote time-independent,

precomputed fields based on a priori knowledge. Specifically, the set of xi(r) are

orthonormal, providing an optimal modal decomposition in the sense that, when

truncating the infinite expansion of modes, these capture the dominant physics.

A Galerkin projection of the original governing equation onto the low-dimensional

subspace described by the basis functions, xi(r), is used to provide the reduced-order

ordinary differential equations governing the evolution of the unknown stochastic

coefficients, <bi(t; W).

3.4.2 Polynomial Chaos

For Polynomial Chaos (PC), instead of fixing the orthonormal fields, xi(r), as

for POD, the stochastic processes, Xi (t; w), are spectrally represented in terms of



fixed multi-dimensional hypergeometric polynomials based, for instance, on the Askey

scheme,

X(r, t; w) Z xi(r, t)4i(q(w)), (3.91)

where the 4i(w) are orthogonal polynomials of random variables TI(w).

A Galerkin projection of the governing equation onto the low-dimensional sub-

space defined by the Di transforms the original SPDE into a set of coupled determin-

istic PDEs for the unknown fields xi(r, t). The a priori choice of random variable

tj(w) dictates the convergence of the expansion. This choice is often highly problem

dependent and, given their time-independence, their suitable choice can be a difficult

task.

3.4.3 The Dynamically Orthogonal field equations

Both the Proper Orthogonal Decomposition and Polynomial Chaos suffer from

fixing in time parts of their expansion, thus failing to adapt to changing dynamics.

This deficiency was the main motivation for developing the Dynamically Orthogonal

field equations.

As mentioned previously, for the D.O. equations the solution field is decomposed

into a mean and stochastic dynamical component,

X(r, t; w) = X(r, t) + 3 (r, t)4i(t; w), (3.92)
i=1

where zi (r, t) are the modes describing the stochastic subspace of size s, and 4i(t; w)

are zero-mean, stochastic processes. By imposing nothing more than a condition on

the time-evolution of the subspace, namely that it be orthogonal to itself,

t' , - t)) =0 Vi, j E { s}, (3.93)

the original SPDE is transformed into: (1) a partial differential equation (PDE)

for the mean field; (2) a family of PDEs for the orthonormal bases describing the



stochastic subspace; and (3) a system of stochastic differential equations that define

how the stochasticity evolves within the time-varying stochastic subspace. Using this

approach, the stochastic subspace is dynamically evolved and therefore need not be

chosen a priori; rather, it adapts to the stochasticity introduced by the stochastic ini-

tial and boundary conditions, and evolves according to the SPDE governing X(r, t; w).

The stochastic coefficients, Pi(t; w), equally evolve according to dynamical equations

derived directly from the original SPDE, allowing the use of the numerical scheme

of choice for their solution (e.g. Monte Carlo methods). For details of an efficient

numerical implementation of the D.O. equations, see Ueckermann et al. (2011). We

also note that, while in the previous analysis the dimensionality of the stochastic sub-

space, s, has been assumed known and given, it can be evolved based on the dynamics

and observations of the system (Sapsis and Lermusiaux, 2010), similarly to the ESSE

scheme (Lermusiaux, 1999).

For a governing equation of the generic form:

aX(r, t; w)
at = L[X (r, t; w);- w] (3.94)

with initial conditions

X(r, to; w) = Xo(r; w) (3.95)

and boundary conditions

B [X(r, t; w)]| h(, t; w), (3.96)

where B is a linear differential operator and ( the spatial coordinate denoting the

boundary, we introduce the generalized, time-dependent Karhunen-Loeve decompo-

sition:

X(r, t; w) =(r, t) + Zi j(r, t)<Di(t; w), (3.97)
i=1

where 2(r, t) is the mean field; zi(r, t) are orthonormal modes describing a basis for

the stochastic subspace; and 4i(t; c4) are zero-mean, stochastic processes. The D.O.



evolution equations are then defined as follows (where Einstein summation is adopted,

i.e. E aibi = aibi):

dei(t; w)
dt

Ox(r, t)
at

= ([XK(-, t;w); w] - E [C[X(-, t; w); w]], i(-, t))

= S [L[X(r,t;w);w]],
ii(r, t)
at = n(S [L[X(r, t;w); w (t;w )])C 4y(t),

l'(F(r)) - F(r) - (F(-), z4 (-, t)) z (r, t)

(3.98)

(3.99)

(3.100)

(3.101)

is the projection of F(r) onto the null space of the stochastic subspace and

(3.102)

is the correlation between random variables 'i(t; w) and 4D(t; w).

boundary conditions take the form

The associated

(3.103)

(3.104)

and the initial conditions are given by

4i(to; w) = (Xo(-; W) - 2io-), zo(-))

zT(r, to) = xo(r) = S [Xo(r; w)]

(3.105)

(3.106)

(3.107)

for all i = 1,. . . , s, where zio(r) are the are the orthonormal modes describing a

basis for the stochastic subspace at time zero. This completes the definition of the

Dynamically Orthogonal field equations.

On an aside, if suitable assumptions are made, either on the form of the fields

where

Copyoi (t E1 t [Di (t; W) 4) (t;i W)]

E [h((, t; w)]

z i(r, to) = z'-io (r)

B [z(r, t)] r= =

B z~,t)] [h( , t; Lw) 4) (t; w)] C-1 y



x(r, t) and zIr-(r, t), or on that of <Di(t; w), the Dynamically Orthogonal field equations

may be shown to reproduce the reduced-order equations obtained by application of

the Proper Orthogonal Decomposition or Polynomial Chaos, respectively (Sapsis and

Lermusiaux, 2009).

3.5 The GMM-DO filter

Combining the concepts introduced in the previous section, and building on the

foundations of classical assimilation schemes, we introduce the GMM-DO filter: data

assimilation with Gaussian mixture models using the Dynamically Orthogonal field

equations. We view the GMM-DO filter as an efficient, data-driven assimilation

scheme that preserves non-Gaussian statistics and respects nonlinear dynamics. With

the GMM-DO filter we solely focus on the task of filtering; the derivation of a smooth-

ing algorithm is to be addressed in a future work by the MSEAS group.

Consistent with Bayes' filter, our scheme is composed of two distinct components:

a forecast step and an update step. In what follows, we proceed to describe each of

these in detail. We refer the reader to table 3.1 for clarification of notation specific

to the GMM-DO filter.

3.5.1 Initial Conditions

We initialize the state vector at discrete time k = 0 in a decomposed form that

accords with the Dynamically Orthogonal field equations:

SO

Xo = zo + iZi,o<Di,o(w). (3.108)
i=1

We choose the state mean, t, the orthonormal modes, i, and the stochastic coef-

ficients, <Dj(w), such as to best represent our current knowledge of the state. While

various possible representations for the stochastic coefficients, 4<D(w), exist, we adopt

a Monte Carlo approach in accordance with the scheme presented by Ueckermann

et al. (2011). Specifically, we draw N realizations from the multivariate random



Table 3.1: Notation relevant to the GMM-DO filter.

Descriptors

()-f forecast

(-)a analysis

Scalars
i C N stochastic subspace index
j E N mixture index
k E N discrete time index
n E N dimension of state vector

p E N dimension of observation vector
r E N realization index
s C N dimension of stochastic subspace
M E N complexity of Gaussian Mixture Model
N E N number of Monte Carlo members
<Di c R random variable describing probability density function for orthonor-

mal mode i,

Vectors
X E R" state (random) vector
zE C R" modes describing an orthonormal basis for the stochastic subspace

2 E R"n mean state vector
Xr c R"n state realization
Y E Rm observation (random) vector

y E R" observation realization
. E R" mean vector of mixture j in state space

A c Rs mean vector of mixture j in stochastic subspace

Or E Rs realization residing in stochastic subspace
T E R" observation noise (random) vector

Matrices
P C R"'" covariance matrix in state space
Ej E RSXs covariance matrix of mixture j in stochastic subspace

P E R"' " covariance matrix of mixture j in state space

R C Rmxm observation covariance matrix

H E R"mXn (linear) observation model
X C R""x matrix of orthonormal modes, [zi z 2 ... ;is

{ E4 c RsxN set of subspace ensemble realizations, {fy #21 -2 ON}



vector, {<D1(w), T2(w),..., Ts(w)}, to arrive at its Monte Carlo representation,

= {#1#2,- ... 1 0- -(3.109)

We emphasize that the #,rE RS represent realizations residing in the stochastic

subspace of dimension s. With this, we rewrite equation (3.108) in its Monte Carlo

form,

Xr,O = zVo + XOrO, r ={1, .... , N}, (3.110)

where, as noted in table 3.1, X E R n"" defines the matrix of modes describing an

orthonormal basis for the stochastic subspace.

3.5.2 Forecast

Using either the initial D.O. conditions or the posterior state description following

the assimilation of data at time k - 1,

a =-a Oa 'aX",1-- _1I + Xk_1 ,k_1 r l1 ... , N}, (3.111)

we use the D.O. equations, (3.98) - (3.100), to efficiently evolve the probabilistic

description of the state vector in time, arriving at a forecast for observation time k:

Xf= X= 4 , r = {1... , N}. (3.112)

We again refer the reader to the paper by Ueckermann et al. (2011) for an efficient

implementation of the forecast step.

We note that we neglect the notation of (-)f and (.)a on the stochastic subspace,

X, as this is independent of the assimilated observations. In some error subspace

schemes (Lermusiaux, 1999), observation updates and posterior misfits are used to

learn and update the subspace following the assimilation step, resulting in prior and

posterior subspaces that may not be identical.



3.5.3 Observation

Common to ocean and atmospheric applications, we impose an observation model

in accordance with the classical representation,

Y=HX+T, T~N(v;O,R). (3.113)

We denote the realized observation by y E RP.

3.5.4 Update

In what follows, to avoid clutter of the analysis, we omit the notation of time with

the understanding that the update occurs at discrete time k.

Based on our state forecast,

o~f = z/f + XPf, r {1, .I . N},

our goal is to update the mean vector, zf, as well as the set

{#} = {#, . . .f, #}, in accordance with measurement y.

the posterior state estimate:

of ensemble realizations,

With this, we arrive at

x"=z"X#", r={1..., N}.

We do so by optimally fitting a Gaussian mixture model to the set of ensemble real-

izations from which we may proceed with updating our state estimate in accordance

with Bayes' Law. Under the assumption that the Gaussian mixture model provides

an accurate representation of the true probability density function we thus arrive

at an equally accurate description of the posterior state of the system following the

assimilation of the measurement.

In what follows, we describe the update algorithm in detail.



(i) GMM representation of prior set of ensemble realizations

At the time of a new set of measurements, y, we use the EM algorithm to deter-

mine the Gaussian mixture model that best represents the set of ensemble realizations

within the stochastic subspace, {#f} = f,... ,# of}. We denote the parameters of

the Gaussian mixture model by

7r , f E , j 1,..., IM ,

where 7f E [0,1], yi E Rs and EJ E RSXs. We again stress that the Gaussian

mixture model efficiently resides in an s-dimensional subspace of the n-dimensional

state space, with s < n, thus making the prior estimation procedure computationally

feasible.

We determine the optimal mixture complexity by application of the Bayesian In-

formation Criterion, (3.87), successively fitting Gaussian mixture models of increasing

complexity (i.e. M = 1, 2, 3, .. .) until a minimum of the BIC is met. The final result is

a Gaussian mixture model optimally fit to the ensemble realizations in the stochastic

subspace whose probability density function we write as

M

pf (E) = Z 7f xF(of#; y , E ). (3.114)
j=1

Due to the affine transformation linking the stochastic subspace with the state

space we may expand the previously determined Gaussian mixture model into the

state space according to the equations:

zf = 2 + Xpf (3.115)

Pf = XE XT. (3.116)

The mixture weights, 7r , naturally remain unchanged. We note that z and Pf

now refer to the mean vector and covariance matrix, respectively, for mixture j in

the state space. We thus arrive at the prior distribution for the state vector in state



space, taking the form of the following Gaussian mixture model:

M

pxf (xf) = E r xNr(x/; 2 ,f P0). (3.117)
j=1

We emphasize that, due to the affine transformation linking the stochastic subspace

with the state space, this distribution would equally have been obtained had we

performed the prior fitting of the Gaussian mixture model directly in the state space

based on the set of realizations {x} ={xf 7, ... ,}.

(ii) Bayesian update

Using update equations (3.4) - (3.7) based on measurement y, but extending

it to the case of a linear observation operator H, equation (3.113), we obtain for

the posterior distribution for the state vector in state space (see also Alspach and

Sorenson (1972))
M

pX(X") = Zr(xN (x";zP) (3.118)
j=1

with

7r xNf(y; Hz{, HPf H + R)

ar = w H HT (3.119)
7jn x N l( y ; Htf, H PfH + R)

zta = zt + Kj (y - Hz ) (3.120)

P = (I - KjH)Pf (3.121)

where

.K P{HT (HP{H + R)-' (3.122)

is the Kalman gain matrix associated with mixture j.

With this, we may obtain the expression for the posterior mean field in the state



space:
M

-a = x2a (3.123)
j=1

Although unnecessary, we may equally determine the posterior (full) covariance ma-

trix in the state space using the Law of Total Variance (see the appendix):

M M

Pa p jaP + Z7ra(za - a) (2a - za)T. (3.124)
j=1 j=1

(iii) GMM representation of posterior set of ensemble realizations

Ultimately, we wish to project the updated GMM parameters, 2 and Pa, back

into the stochastic subspace, obtaining values for pg and Ea. In doing so, we again

make use of the affine transformation linking the stochastic subspace with the state

space. We re-emphasize that the stochastic subspace itself has remained unchanged

during assimilation of the observations and is thus still described by matrix X.

To determine the updated mixture means, pa, similar to (3.115) we first write:

.t = ta + Xp . (3.125)

By subtraction of 24 and left multiplication by XT, we then obtain:

,a = (XTY XT (v - 2" (3.126)

= XT (2 - z"), (3.127)

where (3.127) results from the orthonormality of the modes, i.e. XTX - I.

To determine the updated mixture covariance matrices, E , we proceed in a similar

manner. Using the decomposed structure of equation (3.116), as well as equation

(3.121), repeated here for convenience,

P a= XX XT

= (I - KjH)P,



we left multiply by XT and right multiply by X to obtain:

E = (XTX)- XT(I - KjH)(XTX - (3.128)

= XT (I - KjH ) Pf X, (3.129)

where, as before, equation (3.129) follows from the orthonormality of the modes.

At this point, we have arrived at expressions for the posterior mean vector, z",

as well as the posterior GMM parameters in the stochastic subspace, ,r, pa and E',

repeated here for clarity:

M

" Z [wa x a (3.130)
j=1

M

= -r x (2 + Kj (y - Hz)) (3.131)
j=1

- xA(y; Hzf, HPf HT + R)Zr" = x5 f H + R (3.132)
grFn x. N(y ; H zrn, H PfH + R)

p XT (zt - z") (3.133)

E, = XT (I KjH) P X. (3.134)

We use the latter three to generate a posterior set of ensemble realizations within the

stochastic subspace, { 4 a} = {", ... , 4" }, thus arriving at our Monte Carlo form for

the posterior state description at discrete time k,

a",k = zYa+ Xa,, r - {,... , N}. (3.135)

Before proceeding to do so, however, we remark on an efficient implementation of the

previously described algorithm, significantly lessening the computational burden.

Remark:

The previous update equations were deliberately performed in the state space to provide

an ease of understanding. Considering that uncertainty of the state is restricted to

the stochastic subspace, however, we may conveniently perform the Bayesian update



therein. (Anything in the null space of the stochastic subspace remains deterministic

and unknown). This, of course, provides significant computational savings due to its

reduced dimensionality. In what follows, it will be convenient to define the notation:

H HX (3.136)

y y - H21 (3.137)

Kj E I (ftEfT + R)- (3.138)

= XTHT (HXE{XTH+T R)-1

= XTP H (HPHT + R)-1

= XT KJ, (3.139)

where, in arriving at equation (3.139), we made use of the identity Pf = X /XT,j

the orthonormality of the modes as well as definition (3.136).

We will show - through simple manipulation of terms - that the update equations

for parameters za, 7rj, p and Ea, previously performed in the state space, may

equivalently be expressed in notation specific to the stochastic subspace. What results

is an efficient implementation of the prior results.

Starting with the update equation for the mixture weights, equation (3.132), we

have:

7f xA(y; Hz HPH T+R)
rr . i j H (3.140)

K Z 71 f xA(y; H ;{, HP[ H + R)

- xNr(y; H(2tf + Xpf), HX XT H T+R)
75 i j(3-141)

rf x(y; H( +Xp),HX {XT H + R)

by using equations (3.115) and (3.116),

7,f xN(y - Htf; HXtf, HX f XTH +R)
- f - H H H [XTHT (3.142)

r=171xN(y - Htf ; H Xpf, H X I{ H + R)



by simple rearranging of terms,

r xN(Q; Hyg, 5tEf ft' + R)
+ R)(3.143)

EM 7rf xN(; Hf, NtEf Ht + R)'

by application of definitions (3.136) and (3.137). With this, we've expressed the

update equation for the mixture weights in notation specific to the stochastic subspace,

all the while retaining the familiar structure of equation (3.132).

In a similar manner, starting with the equation for the updated mean vector, equa-

tion (3.131), we have:

M

Fa r x (z + Kj(y- Hz)) (3.144)
j=1

M

= 7ra x (f + Xp4 + Xkj(y - H(z/ + Xp{))) (3.145)
j=1

by using equation (3.115) and applying definition (3.139),

M

= + X 7r x(pI + kj(Q - Ny,)) (3.146)
j=1

by using E= 7 and applying definitions (3.136) and (3.137),

M

= z/ + XZ 7r x (3.147)
j=1

where we have defined the 'intermediate' mean vector in the stochastic subspace, ft =

pf + kj(Q - Ny4). Its intermediate nature results from the fact that we require

the parametric distribution describing the stochastic subspace to be of mean zero,

i.e. E 7ra x =0. Presumably, we fail to satisfy this condition by adopting the

intermediate mean vectors, ft . This is clearly and simply circumvented by imposing



the map:
M

AI I-i 7rfax /A. (3.148)
j=1

Rather than merely stating this as a matter of fact, however, we may equally arrive

at this result by manipulating the appropriate equation in the state space. Specifically,

starting with equation (3.133), we have:

T = X (a - za (3.149)
M

= T X X) 77jaH )-27- X ^ xa), (3.150)

j=1

by using equations (3.120) and (3.147),

M

= XT(tf+ Xp + Xkj(y - Hz ) - 7 - X E a x j,), (3.151)
j=1

by using equation (3.115) and definition (3.139),

M

=~ K yt; +f39-N r A , (3.152)
j=1

by orthonormality of the modes,

M

A - j (3.153)
j=1

as required.

Finally, starting with the update equation for the mixture covariance matrices,

equation (3.134), we have:

Ea = XT(I - KjH)P X (3.154)

= XT(I - XkjH )X fXTX, (3.155)



by using equation (3.116),

= (I - KjH)E, (3.156)

by orthonormality of the modes and using definitions (3.136) and (3.139).

With this analysis, we have efficiently arrived at the updated parameters in a

framework associated with the stochastic subspace:

M

a

- = + x _j rx a

- + X 7ra x (pj + ky (-Ny))

irxA(P; fiyfHnE ± R)

(3.157)

(3.158)

(3.159)

(3.160)

(3.161)

-1rf x.AV(I; Hft, Njf + ft T R)

j=1

E = (I - kgN)E.

We have proved their equivalence with the update equations in the state space by direct

manipulation of terms.

(iv) Generation of posterior ensemble realizations

We complete the update step, as with ESSE scheme A (Lermusiaux, 1997), by gen-

erating a new set of realizations within the stochastic subspace, {#4} = {4= , . a. ,

according to the multivariate Gaussian mixture model with parameters

7rf, pa , E, j = 1, . . ., M.

With this, we have arrived at an updated D.O. representation for the state vector



based on the assimilation of observations at time k,

X",k = X" + Xk#,, r {1,... , N}. (3.162)

From here, we proceed with the next forecast from time step k to k+ 1. This concludes

the GMM-DO filter. We summarize the procedure using the flowchart displayed in

figure 3-2.

In what follows, we illustrate the update procedure of the GMM-DO filter by way

of a simple example.

3.5.5 Example

Assume we are provided with the following (arbitrarily chosen) forecast for the

D.O. decomposed representation of the state:

1 1 0

't = 2 and X =0 1,

3 0 0
with one hundred subspace realizations, {#W} {{,... ,#fo} generated from a

Gaussian mixture model of complexity two:

2

pA(D = 7r, xNM($P; pfI Ef)
j=1

Let us further arbitrarily choose the following forecast parameters:

-10 1 0
- 1 0 1

Tr = 0.5 , pf = ,0 E f = .
1 0 1



Initial Conditions: We initialize the state vcc/t in

a decomposed form that acconis wath the Dynamically Or-

thogonal field equations:

oo = o + XoOeo, r = {1, N}.

£ E R" is the mean vector, X E R"" defines the niatrix

of modes describing an orthonormal basis for the stochas-

tic subspace, and the ,. E R' represent N realizations

drawn from. the multivariate rundom ector described by

{PI(w), D2(w), .. . .b,(w)} that reside in the stochastic sub-

space of dimnsion s.

Forecast: Using cither the initial D.O. conditions or
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For simplicity, we'll take the true field to coincide with one of the realizations, i.e.

We make noisy measurements of the first and third elements of the state vector, i.e.

H 1 0 0

L0 0 1

normally distributed with an error covariance matrix given by

R = o- 2X [ 0
0 1

where ob-,s = 5. We illustrate all of the above in panel (a) of figure 3-3.

With this, we proceed with the update step, using the GMM-DO flowchart, figure

3-2, as reference. In what follows, for the purposes of illustration, we bypass the

application of the Bayesian Information Criterion and rather present results directly

for fitted Gaussian mixture models of complexity, M, one and two. We note that the

latter would - with high probability - be obtained using the BIC criterion.

Fitting of GMM

1. Use the EM algorithm to obtain the prior mixture parameters

within the stochastic subspace based on the set of ensemble realizations,{#f}=

{# f, ... , #foo}. The identified mixtures (of complexities one and two), along
with their marginal distributions, are displayed in panel (b-i) of figure 3-3.



Update

1. Calculate parameters:

H HX

y - H 2f

and determine the mixture Kalman gain matrices:

KRE3 ~f T (Hf H f T
+ R)

2. Assimilate the measurements, y, by calculating the 'intermediate' mixture means

in the stochastic subspace,

A f= y + e(9 -e

and further compute the posterior mixture weights:

ra =
rfxA(D; sjff tE ft T + R)

EM T XA(;H fp t T +R)

3. Update the D.O. mean field (displayed in panel (c), column (ii) of figure 3-3),

M

tf 2 + X E 7r xf a,

j=1

as well as the mixture parameters within the stochastic subspace:

M

j=1

4E = (l -reii)Eo.

4. Generate the posterior set of ensemble realizations within the stochastic sub-



space, {#a} = {#o, ... , oo}, according to the multivariate Gaussian mixture

model with posterior parameter values

7rf, pt, E, j = ,...,M.

We display the posterior set of realizations in panel (c-i) of figure 3-3.

By way of this simple example, we may draw two conclusions on the benefits of

adopting the update procedure of the GMM-DO filter. Firstly, given the initial non-

Gaussian statistics, the Gaussian mixture model (GMM) - of mixture complexity

two - was found to provide a superior posterior estimate for the true solution when

compared with the Gaussian parametric distribution (PD) (as evidenced by their

posterior means displayed in panel (c-ii) of figure 3-3). In particular, due to the

PD's conservative estimate for the covariance matrix of the true probability density

function (see panel (b-i) of figure 3-3), the noisy measurements were favored over the

prior mean estimate, essentially resulting in an 'overshoot' of its posterior estimate

for the mean. Given the GMM's accurate representation of the prior statistics, on

the other hand, the prior information was accurately balanced with that due to the

measurements, resulting in a successful update of the mean state. While this was to

be expected given the initial bimodal structure, previous arguments suggest that this

holds for arbitrary distributions as long as the fitting of Gaussian mixture models

based on the EM algorithm and the Bayesian Information Criterion provides a good

approximation of the true probability density function.

The second conclusion refers to the posterior statistics, represented by the sub-

space realizations, {"} = {, . . . , # 1, in panel (c-i) of figure 3-3. In addition to

the GMM's accurate approximation of the true solution, the compactness of the pos-

terior set of realizations emphasizes its added belief in this estimate. The accuracy of

the posterior representation of the true statistics clearly affects future assimilations.

We hypothesize that the GMM-DO filter outperforms simpler schemes in this respect.

In chapters 4 and 5, we support this hypothesis by applying the GMM-DO filter in a

dynamical systems setting.
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Figure 3-3: GMM-DO filter update. In column (i), we plot the set of ensemble realiza-
tions within the stochastic subspace, {<p}; in column (ii), we display the information
relevant to the state space. Panel (a) shows the prior state estimate; in panel (b), we
show the fitting of Gaussian mixture models of complexity M = 1 (PD) and M = 2
(GMM), and plot their marginal distributions for each of the stochastic coefficients;
in panel (c), we provide the posterior state estimate again in the decomposed form
that accords with the D.O. equations.
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3.5.6 Remarks, Modifications and Extensions

In what follows, we develop a few remarks, modifications and extensions to the

GMM-DO filter:

EM algorithm in p-dominant space of stochastic subspace

Estimating and manipulating non-trivial probability density functions in high-

dimensional spaces can be a difficult task (Bengtsson et al., 2003). Heuristic argu-

ments, for instance, suggest that the number of realizations required to accurately

represent multivariate probability density functions grows exponentially with the di-

mension of the space (Silverman, 1992). For this reason, it is worthwhile investigating

modifications to the current procedure for fitting Gaussian mixture models to real-

izations in which the dimension of the stochastic subspace may pose a difficulty.

As in the main body of this paper, we let the dimension of the stochastic subspace

be s, i.e. X E R"x. When deemed necessary on the grounds of tractability, we can

limit our estimation of mixtures to the stochastic coefficients associated with the

space defined by the p most dominant modes, denoting this XP C R"xP. We in turn

approximate the stochastic coefficients of the remaining s - p modes, {p+1,-.. ,s},

as zero mean Gaussian with (co)variances based on the sample covariance matrix.

For our purposes, an obvious and appropriate measure of dominance is the variance

of each of the stochastic coefficients.

In what follows, we describe the modified EM algorithm for Gaussian mixture

models in a p-dominant space of the stochastic subspace:

Definition: EM algorithm in p-dominant space of stochastic subspace

Given the set of ensemble realizations, { } IRsxN , associated with the stochastic

subspace, X C Rx, we limit our attention to the ensemble set, {P} C RPxN

associated with the p-dominant reduced space, XP C Rnxp, of the stochastic subspace

(i.e. p < s). We define p such that the following holds:

EP var(@Di)
1;> : =1 > C > 0, (3.163)

E l var((j)
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where C denotes a user-specified constant chosen such that the majority of the en-

ergy in the stochastic subspace is captured. (Note, we assume that the stochastic

coefficients, (Di, are ordered by decreasing variance, i.e. var(@1) > var(42) -

var(41@s).)

Therefore, based on the reduced ensemble set, { 4P} = {$, ... , P and an initial

parameter estimate,

p(0) _ ,() p(0) p,(0) p (0) 1 -p,(0) pP (0)
_ 1F X .. X' 1-1 1 1 M 1

appropriately sized for the reduced EM estimation procedure,

gence:

e For all i C {1,2,...,N} andj E {1,2,...,M}, use

estimate, 6 p,(k) to form

p,(k)Nr (k'C), Ep

jp,(k)M-~ p (k) Art ,v

we repeat until conver-

the present parameter

() (3.164)
* 

)~~it

e For all j c {1, 2,... I M}, update the parameter estimate, 6 (k+1), according to

N
p,(k+1) _ 1

N
N

y '(k+1) N -'(k) p,(k))g p

N'((k1)

N1

N,''(k) pk) A
i=1

(3.165)

(3.166)

(3.167)

(3.168)

Once converged, we obtain the Gaussian mixture model associated with the stochastic

subspace, X G Rfnxs, by embedding the above p-dominant vectors and matrices into

2_=17i NWBZJI y , )
n h:

'



their appropriately sized equivalent as follows:

[= ] O E R8-P (3.169)
0

and

Ej 1:P,(P+1):S , (3.170)
E(p+1):s,1:p E(p+1):s,(p+1):s

where E E Rsxs is the sample covariance matrix,

1 N

N - 1 'OT (3.171)

and Ea:b,c:d denotes the sub-matrix of E defined by rows a-b and columns c-d. We

arrive at equations (3.169) and (3.170) by application of the Law of Iterated Expec-

tations and the Law of Total Variance, respectively (see e.g. Bertsekas and Tsitsiklis

(2008)), ensuring that the stochastic coefficients, {<pb+1,... ,<b}, are approximated

as zero mean Gaussian with variances based on the sample covariance matrix.

Constraining the mean of the Gaussian Mixture Model

In the D.O. formulation, equation (3.108), we impose a zero-mean constraint on

the random vector, <(w), represented by the ensemble set, {<p}. Since the EM

algorithm is an unconstrained optimization procedure in this regard, however, the

EM fit of the Gaussian mixture model may not necessarily itself be of zero mean, i.e.

M

r g3  #0. (3.172)
j= 1

While the test cases presented in part II of this two-part paper give evidence to suggest

that this is little cause for concern (namely that this mean offset is negligible), we

nonetheless propose two possible remedies:

1. When forming the auxiliary function in equation (3.47), one may add the con-



straint that the Gaussian mixture model be of zero mean, i.e.

M

Z 7 ptg = 0, (3.173)
j= 1

thus obtaining for the auxiliary function:

M N k
A = Tj (i; (k)) (log 7r - _log 2-r - -log P

2 2lo pI
j=1 i=i M M (3.174)

k=1 1=1

While this clearly provides a viable solution, a closer inspection reveals that

such a constraint destroys the simplicity of the EM algorithm. Particularly,

with this added constraint, closed form equations for the updated mixture pa-

rameters, equations (3.64) - (3.66), no longer arise. Rather, the parameters to

be optimized become coupled.

2. A complementary approach proceeds by obtaining an estimate for the parameter

vector by means of the regular EM algorithm for Gaussian mixture models. This

estimate may in turn be fed as an initial guess to the coupled set of equations

in (i), for which an optimization procedure of choice may be utilized. With

this, it is estimated that few iterations are needed to arrive at the optimal set

of parameter values.

We leave further investigations intro each of these approaches for a future work.

3.6 Literature Review

Gaussian mixture models are by no means a new phenomenon within the data

assimilation community. In this section, we therefore provide a review of appropriate

literature that places the GMM-DO filter in the context of past and recent schemes

that have approached filtering in a similar manner. We wish to show the evolution of



such methods over the past few decades, ultimately outlining the shortcomings and

limitations overcome by the GMM-DO filter.

Alspach and Sorenson (1972)

Gaussian mixture models were essentially first addressed in the context of filtering

theory in the seminal paper by Alspach and Sorenson (1972). Here, the authors were

particularly motivated by the inappropriate use of Gaussian distributions, stating

that

"the Gaussian [parametric] approximation greatly reduces the amount of

information that is contained in the true density, particulary when it is

multimodal".

They emphasized the ability of Gaussian mixture models to approximate arbitrary

densities, all the while retaining the familiar computational tractability when placed

in the context of Bayesian inference.

Based on an approximation of the known, initial (non-Gaussian) distribution by

a Gaussian mixture model of complexity M, their scheme would essentially run M

extended Kalman filters in parallel - one for each mixture - coupled solely through the

mixture weights. Their update equation would thus take a form structurally similar

to that of the GMM-DO filter, set aside the latter's efficient use of the stochastic

subspace. While the authors freed themselves of the Gaussian, parametric constraint,

their scheme remained grounded in linear theory, however, having been inspired by

the moderate success of the Extended Kalman filter.

In their paper, the authors made no mention of the appropriate mixture complex-

ity, nor the manner in which the initial mixture parameters were obtained. Moreover,

while they alluded to the potential necessity for having to intermittently restart the

distribution - either due to the poor mismatch of forecast distribution with observa-

tions, or the collapse of weights onto a single mixture - no appropriate remedies were

proposed.



Anderson and Anderson (1999)

Anderson and Anderson (1999), most likely inspired by the recent advances of

ensemble methods within the data assimilation community (e.g. Evensen (1994) and

Lermusiaux (1997)), extended the work of Alspach and Sorenson (1972) by resorting

to a Monte Carlo approach for evolving the state estimate. By arguing that

"one of the fundamental advantages of a Monte Carlo approach [is its!

ability to represent non-Gaussian probability distributions",

they chose to approximate the density in question based on a kernel approach,

I N

pXf(Xf) N ZA/(xf; xf, f), (3.175)
i=1

with xi representing the particle locations; E the ensemble covariance matrix; and a

an heuristically chosen scaling parameter.

Upon assimilating data, y, from a Gaussian observation model, their posterior

distribution for the state vector would thus take the familiar form

N

pXa (X) = pXf Y(xf ly) = g (xa; x, aE"), (3.176)
i=1

from which they would draw N new particles.

The authors justifiably argued for its advantages over filters that would invoke the

regular parametric Gaussian distribution, giving as example their respective perfor-

mances when applied to the Lorenz-63 model (Lorenz, 1963). While the kernel filter

would essentially represent states solely in accordance with the model dynamics, sim-

pler filters would potentially assign finite probability to regions of state space never

visited. Such is the case depicted in figure 3-4.

The main drawback of the filter lay in the vague arguments for choosing the scaling

parameter, a. Specifically, the authors stated that while

"a number of methods for computing the constant covariance reduction

factor, a, have been developed, ... the value of a is often subsumed into a



x
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Figure 3-4: Schematic representation of advantages of kernel over single Gaussian

filter for a low-order model. The background is a projection of a trajectory from the

Lorenz-63 model showing the attractor structure. Superimposed is an idealized image

of the single Gaussian (outer curve) and kernel (inner curves) prior distributions for

a three-member ensemble. (Anderson and Anderson, 1999)

tuning constant and so does not need to be calculated explicitly. ... Tuning

a filter for a real system is complicated ... [and] must be chosen with care."

Hoteit et al. (2007) would later extend the filter by allowing the particles to carry

uneven weights, drawing on concepts familiar to the particle filter. To avoid the

collapse of weights onto only a few particles, they proposed a number of interesting

methods for resampling. While effective, these ideas will not be pursued further here.

Bengtsson et al. (2003)

Bengtsson et al. (2003) expressed a concern over Anderson and Anderson's use of

kernel density methods for approximating distributions, arguing that the use of

"scaled versions of the full ensemble covariance around each center in

the mixture ... cannot adapt as easily to local structure in the forecast

distribution".

(We greatly share this opinion and equally express it in this thesis.) Instead, they

proposed to approximate the set of ensembles by a Gaussian mixture model (of com-

plexity less than the number of ensemble members), in which the mixture parameters



were estimated using knowledge of the ensemble distribution. They stated that such

an approach would provide a more accurate local approximation to the true proba-

bility distribution, as is the point of view taken in this thesis.

Their scheme essentially proceeded as follows: M ensemble members would arbi-

trarily be chosen to act as means for the proposed Gaussian mixtures, from which

the N nearest neighbors to each center would be used to approximate their respec-

tive mixture covariance matrices. From here, one would proceed with the Bayesian

update, inspired in part by the particle operations of the Ensemble Kalman filter.

As with Alspach and Sorensen, the authors left unanswered methods for deter-

mining both the mixture complexity, M, as well as the appropriate choice of N,

the number of nearest neighbors. Furthermore, the choice of mixture centers, based

on the arbitrary sampling of ensemble members, would certainly invite for sampling

noise.

In their paper, the authors further expressed difficulties associated with manip-

ulating probability density functions in high dimensional spaces. As a consequence,

they introduced a hierarchy of adaptations to the aforementioned filter, in which they

invoked varying degrees of localization approximations, all again based on heuristic

arguments. In this thesis, we overcome all such approximations by adopting the D.O.

framework.

Smith (2007)

Indirectly extending the work by Bengtsson et al., Smith (2007) proposed to use

the EM algorithm to uncover the underlying structure of the particle distribution,

thus replacing the former heuristic arguments. In his paper, he modified the en-

semble Kalman filter to allow for a Gaussian mixture representation of the prior

distribution, using Akaike's Information Criterion (AIC) as the method for selecting

the appropriate mixture complexity. (As a side note, McLachlan and Peel (2000)

found BIC to outperform AIC when fitting Gaussian mixtures to data; specifically,

the latter would have the tendency to overestimate the mixture complexity.) Similar

to the scheme proposed by Bengtsson et al., Smith retained the concept of operating



on individual ensemble members, invoking only the approximation that the posterior

distribution be normally distributed. His Cluster Ensemble Kalman filter proceeded

as follows (adopting notation previously applied in this document):

1. Determine the mixture complexity, M, using Akaike's Information Criterion.

2. Apply the EM algorithm to the ensemble of states in the full state space, xf,

to obtain the ML estimate for the Gaussian mixture parameter vector,

= 7f, ... ,7r , f , .. . , P{, ... , P f }, (3.177)

as well as the weights

Wij = T (xf; 6) (3.178)

3. For each component distribution, j, compute:

PfT-
Pf H =(wi

(xf - tj)(Hx[ - H j)T

HPfH T =wi,(Hxf - H 2)(Hxf -

4. Compute the Kalman update for each ensemble member, xi, under each com-

ponent distribution.

xi x{ + Kj(y - Hxf - ej), (3.182)

with

(3.179)

(3.180)

.K. P{ HT(HPfHT + R)-1 (3.181)

7rN(of; tf , P)= .
fe| fx 2 Pf



with

ei ~ N (e; 0, R). (3.183)

5. Update the mixture weights based on the observed data, y,

,r x N(y ; Hd2f, H P H T+ R)
ra = .± (3.184)

7xA(y; H f z, HPf H +R)

6. Create the remapped analysis ensemble:

M M
oa=E~ gr z +r j Ewi"(Fp)-1(a'k_- z) . (315f- j=1 (k= )) (3.185)

(Smith justified this latter procedure by wanting to approximate the posterior

distribution by a parametric Gaussian distribution with "= M_ 7r az and

Pa"- =ji_ wrPa. By the Law of Total Variance, we note that the latter

approximation is incorrect (see the Appendix).)

In his paper, he applied his Cluster Ensemble Kalman Filter to a simple two-

dimensional phytoplankton-zooplankton biological model. While successful for such

simple models, he emphasized the difficulties of extending his scheme to test cases of

larger dimensions, making, however, the useful comment that

"the state space could be projected onto a lower dimensional space depict-

ing some relevant phenomenon, and the full covariance matrix in this state

space could be used."

By adopting the D.O. equations, we exactly allow for this.

Dovera and Rossa (2010)

Dovera and Rossa (2010) modified the approach of Smith by attempting to over-

come the constraint that the posterior distribution be Gaussian. Their scheme pro-

ceeded as follows:



1. For each component j E {1, . . . , M}, compute the updated mixture weights

based on the observed data, y,

a xwxN(y; Hz{, HP H T + R)
,j" = 5 . (3.186)

Z 7f xA(y; H2-, HPf H T+ R)

2. Loop on ensemble members. For each xf:

" set k as the known component of the member xf;

* generate a random index of new component I E {1,... , M} according to

the discrete distribution given by { 7, ... , 7

* compute the auxiliary vector x according to

of = z P[( P)(x[ -f) (3.187)

" compute the updated vector X using the updating equation for component

1 on the auxiliary vector xf:

X = f K,(y - Hxf'). (3.188)

The authors successfully applied their scheme to both the Lorenz-63 model as well

as a two-dimensional reservoir model, as expected outperforming the regular ensemble

Kalman filter. As with previous schemes, however, they noted the problems caused

by systems of high dimensionality, stating that

"this restriction poses two obstacles in the numerical implementation of

the proposed method for large scale applications. The first problem is the

application of the EM algorithm to the forecasted ensemble ... The sec-

ond problem is due to the covariance matrices factorization by Cholesky

decomposition ... that cannot be addressed directly in a high dimensional

space."



As previously done, the authors adopted a number of localization arguments to over-

come the aforementioned burdens. They specifically hypothesized that the correlation

matrices be local, therefore retaining only the model states in the vicinity of the ob-

servations. By adopting the D.O. framework within the GMM-DO filter, we address

- and ultimately eliminate - all such approximations.

Summary

Past literature has identified the advantages of adopting Gaussian mixture models

when assimilating data, allowing the update step to capture and retain potential non-

Gaussian structures. Its success has been shown using a number of simplified test

cases, including the classic Lorenz-63 model. Later publications, specifically those

due to Smith (2007) and Dovera and Rossa (2010), have further made use of both

the EM algorithm and model selection criteria for arriving at appropriate mixture

parameters, resulting in a better resolution of the probability density function. All

of this is equally utilized in the GMM-DO filter.

The novelty of the GMM-DO filter lies in having identified the necessity to couple

the previous concepts with an efficient reduced order model, specifically the Dynami-

cally Orthogonal field equations due to Sapsis and Lermusiaux (2009). With this, we

address prior limitations caused by the size of the state space. Particularly, we make

obsolete ad hoc localization procedures previously adopted - with limited success -

by filters introduced in this section. We further stray from operating on individual

ensemble members; rather, we efficiently manipulate directly the determined Gaus-

sian mixture model exactly within the stochastic subspace under Bayes' Law by the

assumption that the aforementioned Gaussian mixture model captures the true non-

Gaussian structures.

In conclusion, we present the 0MM-DO filter as an efficient, data-driven assimi-

lation scheme that respects nonlinear dynamics and captures non-Gaussian statistics,

obviating the use of heuristic arguments. By limiting our attention to a dominant

stochastic subspace of the total state space, we specifically bridge an important gap

previously identified in the literature. In the following chapters, we apply the GMM-



DO filter to a number of test cases with the intention of evaluating its performance

when compared against popular filters currently in use.
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Chapter 4

Application 1: Double Well

Diffusion Experiment

The Double Well Diffusion Experiment has served as a test case for a number

of data assimilation schemes (e.g. Miller et al. (1994)), recently among them the

Maximum Entropy filter (MEF) introduced by Eyink and Kim (2006) and outlined

in the appendix of this thesis. Due to its bimodal climatological distribution, the

experiment lends itself well to filters that aim to extract non-Gaussian structures.

Given the experiment's low dimensionality, the Dynamically Orthogonal field

equations, introduced as an integral part of the GMM-DO filter, will here be of

little use and thus excluded. Instead, the purpose of this test case will be to validate

the use of the EM algorithm with Gaussian mixture models in a dynamical setting.

After introducing the physics of the experiment, we will evaluate the performance

of the GMM-DO filter against the Ensemble Kalman filter (EnKF) and the Maximum

Entropy filter, the latter of which is particularly well-suited to the given test case.

4.1 Introduction

In the Double Well Diffusion Experiment, our goal is to track the location of a ball,

located in one of two wells. The ball is forced under pseudo-gravity and externally

excited by white noise. Specifically, the location of the ball evolves according to the
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following stochastic differential equation (Miller et al., 1994):

dx = f(x)dt + idF (t), F ~ N(y; 0,1) (4.1)

with

f(x) - 4x - 4x3  (4.2)

essentially acting as the gravitational force (see figure 4-1 for a graphical depiction).

We understand i as a diffusion coefficient that tunes the strength of the stochastic

forcing. We also note that x E R.

x=-1
x=1

Figure 4-1: Forcing Function, f(x). At any location (o), x,
pseudo-gravity in the direction indicated by the appropriate

the ball is forced under
vector. The magnitude

of the vector corresponds to the strength of the forcing. We note that there exists an
unstable node at the origin, and two stable nodes at x ± t1, corresponding to the
minima of the wells.

We occasionally get access to direct, but noisy, measurements of the current ball

location, modeled as:

(4.3)

From these measurements, we wish to infer the current location of the ball. We are

thus faced with a filtering task.

The Double Well Diffusion Experiment is an ergodic Markov Chain (see e.g. Cover

and Thomas (2006)) and therefore possesses a stationary distribution (from hereon

climatological distribution). It can be shown that this distribution satisfies (Eyink

and Kim, 2006):
2x

4  
4x2

qx(x) oc e- 2
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prx(yx ~ X) (y; X, o2) .



which may adequately be approximated by a Gaussian mixture model of complexity

two. Specifically, we write for the approximation of the climatological distribution:

2

qx (x) = wmN(;um,n 2), (4.5)
m=1

with, by arguments of symmetry, the following properties:

Wi= W2= 0.5 (4.6)

-1i = P2 = P (4.7)

o 1  =o 2  .2. (4.8)

For the particular case of r, - 0.40, Eyink and Kim (2006) determined (by an unspec-

ified procedure and metric) the mean and variance of the Gaussian mixture model to

be y = 0.98 and o.2 = 0.011, respectively. This is plotted against the exact distribu-

tion in figure 4-2:

Gaussian Mixture Approximation

Exact Distribution

x=-1 x=1

Figure 4-2: Climatological distribution and Gaussian mixture approximation for
r= 0.40. In accordance with intuition, the distributions are bimodal, appropriately
centered on the minima of each of the two wells.

The choice of K determines the average residence time of the ball spent in any one

well. For instance, according to Eyink and Kim (2006), for the case of , = 0.40, this

residence time is ;-res ~ 10' with transitions from one well to the other taking only

Ttrans ~ 101. For small values of i, we are thus faced with a phenomenon perhaps

most accurately characterized as a noisy switch.

For the sake of illustration, we plot in figure 4-3 a viable, arbitrarily generated,

trajectory for the ball under the governing stochastic differential equation (4.1) for

the case of r, = 0.45. We have purposely centered the plot about a transition of the
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ball from one well to the other, as this event will be of central interest to us. We have

framed the transition within a suitable time window that will allow for appropriate

analysis. Superimposed onto the trajectory of the ball are noisy measurements with

Measurements

True Solution

00

c Time, t

20 40
0

-1-

Figure 4-3: Example trajectory of the ball for r, - 0.45. The horizontal axis denotes
time; the vertical axis the location of the ball. Superimposed onto the plot are
intermittent measurements, shown in green, with their associated uncertainties.

their standard deviation indicated by the length of the error bar.

4.2 Procedure

We wish to evaluate the performance of the GMM-DO filter against the Ensemble

Kalman filter and the Maximum Entropy filter in its ability to track the ball. We

will do so by varying the following parameters: (1) the observation error, Oo; (2) the

diffusion coefficient, i'; and, (3) the number of particles, N.

For each choice of r,, we will generate the true trajectory for the ball by appro-

priately stitching together two runs. For each run, the ball is allowed to propagate

under the stochastic differential equation (4.1) from an initial position of zero (see

figure 4-4). We justify this procedure by noting that, when switching from one well

to the other, the ball must cross the zero line. (Alternatively, we could generate the

trajectory by allowing the ball to diffuse naturally from one well to the other. This,
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1. Generate two trajectories, each initiated at the origin.

0 0

00

Time, t Time, t

0 20 0 20

2. Rotate one trajectory. 0

Time, t

-20 20

3. Stitch the trajectories together at the origin.

Figure 4-4: The true trajectory for the ball is obtained by appropriately stitching
together two runs, each initiated at x = 0.

however, would certainly be time consuming and has therefore been avoided). This

simulated true trajectory is held constant as we vary the other parameters.

We implement the governing stochastic differential equation (4.1) computationally

using the Euler-Maruyama scheme (see e.g. Higham (2001)):

Xk+1 = Xk - f (Xk) At + K} v/At, (4.9)

where -y is drawn from a normal distribution with zero mean, unit standard deviation

and white in time.

For each choice of s, we computationally derive the optimal parameters of the

Gaussian mixture approximation for the climatological distribution. We do so by

initially placing 500,000 particles at x = -1 and 500,000 at x = 1, allowing these

to run 10,000 time steps at At = 0.01, at which point we use the EM algorithm to

approximate the appropriate parameters.
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In order to allow for a fair comparison, all filters are initiated with the same

particles, generated from the Gaussian mixture approximation for the climatological

distribution. Furthermore, the stochastic forcing is held constant across the three

filters. For each observation error, o, we further hold the observations constant as

we vary the number of particles, N.

We will provide results for the following range of parameters:

* K = {0.4, 0.51
* o2 {0.025, 0.050, 0.100}
* N ={100, 1000, 10000}

4.3 Results and Analysis

The following plot, figure 4-5, serves as legend for each of the resulting figures, 4-6

- 4-11. Superimposed onto the true solution we show the temporal mean and standard

deviation envelope for each of three filters, as well as the obtained measurements. In

figures 4-6 - 4-8, we investigate the results for a diffusion coefficient, K, of 0.40; in

figures 4-9 - 4-11, the diffusion coefficient is increased to a value of K =0.50. We do

so by varying the measurement uncertainty, or, as well as the number of particles,

N, as described above.

Measurernents std. dev.

TV
mean

Time, t0

20 40
0

GMM-DO
True Solution-

Figure 4-5: Legend for the Double Well Diffusion Experiment.
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-1-

Figure 4-6: Results for MEF, GMM-DO, and EnKE with parameters r, - 0.4; a~ 2

0.025; arid (top) 100 particles; (middle) 1000 particles; and (bottom) 10000 particles.
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Time, t
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20 46

Time t

40

Time,

Figure 4-7: Results for MEF, GMM-DO, and EnKF with parameters r, 0.4; o =
0.050; and (top) 100 particles; (middle) 1000 particles; and (bottom) 10000 particles.
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Time, t

20 40

Figure 4-8: Results for MEF, GMM-DO, and EnKF with parameters r, = 0.4; o=
0.100; and (top) 100 particles; (middle) 1000 particles; and (bottom) 10000 particles.
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Figure 4-9: Results for MEF, GMM-DO, and EnKF with parameters r, = 0.5; o =

0.025; and (top) 100 particles; (middle) 1000 particles; and (bottom) 10000 particles.
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Figure 4-10: Results for MEF, GMM-DO, and EnKF with parameters r, 0.5;
o 2 - 0.050; and (top) 100 particles; (middle) 1000 particles; and (bottom) 10000

0

particles.
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Time, t
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Figure 4-11: Results for MEF, GMM-DO, and EnKF with parameters K = 0.5;
o 2  0.100; and (top) 100 particles; (middle) 1000 particles; and (bottom) 10000
particles.
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On average, the GMM-DO filter provides a substantial improvement over the

Ensemble Kalman filter in its ability to capture the transition of the ball from one well

to the other. In fact, already with a small number of particles does the performance

of the GMM-DO filter become comparable to the Maximum Entropy filter (which,

for the given test case, is close to optimal, namely Bayes' filter).

The Maximum Entropy filter derives its success from accurately imposing rele-

vant structure through the known, predetermined climatological distribution, mod-

ified only by the first two moments of the particles. The GMM-DO filter, on the

other hand, attempts to infer this structure in real time by use of the EM algorithm.

As a consequence, for the particular case of the Double Well Diffusion Experiment,

in order for the GMM-DO filter to assign finite probability to any well, this well

must have been 'explored' by the ensemble of particles at the time of fitting of the

Gaussian mixture model. In agreement with our results, this exploration is enhanced

as we either increase the number of particles, N, or the diffusion coefficient, t. For

instance, if, for the case of N = 10, 000 and o = 0.050, we compare the results for

K= 0.4 and ,'= 0.5 (i.e. the bottom panels of figures 4-7 and 4-10), we notice that

for the former, two measurements are required for the GMM-DO filter to infer the

transition of the ball: the first to force particles into the opposite well and the second

to consequently assign this well sufficient probability. For the latter case, this forcing

of particles from one well to the other occurs naturally due to the larger diffusion

coefficient (and is thus recognized when fitting the Gaussian mixture model). Inter-

estingly, these results are nearly independent of the observation error - an obvious

strength of the GMM-DO filter.

As opposed to both the Maximum Entropy filter and the GMM-DO filter, the

Ensemble Kalman filter consistently transitions from one well to the other over a

number of assimilation steps (if and when it transitions), as evidenced, for instance,

by the bottom panel in figure 4-7. Upon receiving measurements from the well op-

posite to that in which its probability is placed, particles are gradually forced across.

The strength of forcing is derived by weighing of the prior variance against the ob-

servation noise, as defined by the Kalman gain matrix. Therefore, for observations
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of relatively large variance, the Kalman gain matrix takes on a small value, causing

the Ensemble Kalman filter to perform poorly, as evidenced for instance by figure

4-8. With reference to the same figure, we suitably note the comparably superior

performance of both the Maximum Entropy filter and the GMM-DO filter, especially

when the data error variance increases, thus emphasizing their enhanced abilities to

extract information from noisy measurements.

We visualize the prior analysis by a trio of figures, 4-12 - 4-14, examining in detail

the prior and posterior distributions (and their respective particle representations)

assigned by each of the three filters for the case of N = 1, 000, o2 = 0.100 and

, = 0.5 (i.e. the middle panel of figure 4-11). We center the analysis on the observation

immediately prior to the true transition of the ball, as well as the two following.
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-- ---- -- -- - --- - -- -

S

Prior Distribution

Time, t

40

I I

Posterior Distribution

Legend:

- GMM-DO Particles - GMM-DO Distribution
- EnKF Particles - EnKF Distribution
0 True Solution -- Observation Distribution

Figure 4-12: Analysis of the prior and posterior distributions (and particle represen-
tations) by each of the three filters (EnKF, GMM-DO and MEF) for the particular
case of N - 1, 000 and rK = 0.5, centered on the observation immediately prior to the
true transition of the ball.
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Time, t

Posterior Distribution

Legend:

* GMM-DO Particles - GMM-DO Distribution
- EnKF Particles - EnKF Distribution
* True Solution -- Observation Distribution

Figure 4-13: Analysis of the prior and posterior distributions (and particle represen-
tations) by each of the three filters (EnKF, GMM-DO and MEF) for the particular
case of N = 1, 000 and r' = 0.5, centered on the observation immediately following
the true transition of the ball.
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Time, t

Posterior Distribution

Legend:

- GMM-DO Particles - GMM-DO Distribution
... EnKF Particles - EnKF Distribution
0 True Solution - Observation Distribution

Figure 4-14: Analysis of the prior and posterior distributions (and particle represen-
tations) by each of the three filters (EnKF, GMM-DO and MEF) for the particular
case of N = 1, 000 and , = 0.5, centered on the second observation following the true
transition of the ball.

In figure 4-12, the ball has not yet transitioned and all three filters assign proba-
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bility to the correct well, both prior and posterior to the recorded measurement. In

figure 4-13, following the transition of the ball from one well to the other, both the

two (blue) particles located in the well centered on x = -1 (into which the ball has

transitioned) caused the GMM-DO filter to assign sufficient probability to this well

such that, posterior to the assimilation of the measurement, it places the majority of

its probability to the true well. Such is equally the case for the MEF. The EnKF, on

the other hand, assigned insignificant prior probability to the correct well, such that

the measurement had little influence. In the final figure, 4-14, while the GMM-DO

filter and MEF have captured the true location of the ball, the EnKF gradually shifts

its probability into the correct well. Not until the next measurement (not depicted

in detail) does that EnKF correctly capture the true location of the ball.
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4.4 Conclusion

For the range of parameter values investigated in the Double Well Diffusion Ex-

periment, the GMM-DO filter has been shown to outperform the Ensemble Kalman

filter in its ability to capture the transition of the ball from one well to the other.

Moreover, for only a moderate number of particles is the performance of the GMM-

DO filter comparable to that of the Maximum Entropy filter, the latter of which is

particularly well-suited to the given test case. As we further increase the number of

particles, we expect the GMM-DO filter to converge to the Bayes filter. This claim

is supported by the results obtained for the case of N = 10, 000 particles. We also

note that as the observation error variance increases, the performance of the EnKF

deteriorates much more rapidly than the GMM-DO filter. One can thus expect that if

either measurement model errors are large or measurements are sparse, the GMM-DO

filter will outperform the EnKF and other Gaussian updates. These two measurement

situations are very common in ocean/atmospheric flows. For example, even if sensor

errors are small, the multiscale properties of the flows and geometry are such that

errors of representativeness can especially be large and so dominate the measurement

model errors.

The Maximum Entropy filter shares a number of similarities with the GMM-DO

filter, particularly in its use of Gaussian mixture models for approximating the prior

distribution. While the Maximum Entropy filter enforces its structure through the

imposed climatological distribution (modified only by the moments of the particles),

the GMM-DO filter attempts to infer this structure in real time by use of the EM

algorithm. As a consequence, the GMM-DO filter is substantially more generic, need-

ing no specification of any climatological distribution. In any event, for cases in which

the climatological distribution is known or may fairly well be approximated, it is not

unreasonable to expect that the two schemes may be merged in a beneficial manner.

This remains to be investigated, however.

The bimodal structure present in the Double Well Diffusion Experiment is remi-

niscent of that which arises in the dynamics of the Kuroshio current (Sekine (1990),
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Miller et al. (2004)). As a consequence, many of the conclusions drawn from the

previous results may reasonably be extrapolated to that of larger systems with more

complicated dynamics. This is to be explored in the following chapter.
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Chapter 5

Application 2: Sudden Expansion

Fluid Flow

In this chapter, we examine the performance of the GMM-DO filter in a more real-

istic setting, namely a two-dimensional sudden expansion fluid flow. Such flows have

been of considerable interest in the past (see e.g. the papers by Durst et al. (1973),

Cherdron et al. (1978) and Fearn et al. (1990)) and continue to attract attention in

the literature. Due to the breaking of symmetries with increasing Reynolds number

and the consequent development of bimodal statistics, it provides a test case particu-

larly well-suited to the evaluation of our proposed data assimilation scheme. We also

chose this example because it corresponds to a uniform barotropic jet (flow 2D in the

horizontal) exiting a Strait or an estuary, in the case of a width that is small enough

for the effects of the earth rotation (Coriolis acceleration) to be neglected. Such strait

or estuary flows occur in the ocean, generally leading to meanders as the jet exits the

constriction. A generalization of such jets would include Coriolis and barolinic (3D)

effects, which could be considered in future work.

After providing a general introduction to the test case, we will describe the numer-

ical method used to simulate the flow. We evaluate the performance of the GMM-DO

filter by application of an 'identical twin experiment' (Bengtsson et al., 1981): we

generate a simulated true solution over a suitable time frame at a Reynolds number

that allows for interesting dynamics. Based on sparse and intermittent measurements
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of velocities, we ultimately wish to reconstruct the true solution with knowledge only

of initial uncertainties. Specifically, we compare the GMM-DO filter against a mod-

ified ESSE scheme A. To measure and compare the accuracy of the estimates, we

employ the temporal root mean square difference between the true solution and their

respective mean fields. We provide detailed results at each of the assimilation times

and conclude with an in-depth analysis of their performances.

5.1 Introduction

It is a well known fact that flows, symmetric both in initial conditions and geome-

try, may develop asymmetries with increasing Reynolds numbers, Re; a phenomenon

sometimes referred to as the " Coanda" effect (Fearn et al., 1990). A classical example

of such is the development of the von Karmen vortex street in the wake of a blunt

body placed in a uniform flow (Kundu and Cohen, 2008). In this chapter we will

focus on the so-called sudden expansion fluid flow which exhibits similar behavior.

The sudden expansion fluid flow, here limited to two dimensions, is perhaps most

easily understood visually. We refer the reader to figure 5-1.

H, channel height

h, inlet height

U,, inlet velocity

U0 , outlet velocity

x, downstream distance

Figure 5-1: Setup of the sudden expansion test case (Fearn et al., 1990).

A developed, symmetric flow of maximum inlet velocity Umax in a channel of height

h expands into a larger channel of height H, denoting H/h as the expansion ratio.

Depending on the Reynolds number,

Re = (h/2)Umax, (5.1)
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where v is the kinematic viscosity, a number of phenomena may occur. Experimental

results show that for low Reynolds numbers the flow is symmetric about the channel

centerline, with circulation regions formed at the corners of the expansion (Durst

et al., 1973). This is the case depicted in figure 5-1, where the flow is described by

streamlines. As the Reynolds number is increased, instabilities develop giving rise

to steady, asymmetric flows. Cherdron et al. (1978) experimentally determined the

critical Reynolds numbers at which these instabilities arise; they did so as a function

of both expansion and aspect ratio, the latter referring to the ratio of channel width

to channel height (appropriate only for three-dimensional flows). Their findings are

provided in figure 5-2.

16

Sym Asym. Sy Asym.

40 280 420
Re

Figure 5-2: Boundaries of symmetric and asymmetric flow as a function of aspect
ratio, expansion ratio and Reynolds number (Cherdron et al., 1978).

These findings were partially verified by the numerical stability analysis of Fearn et al.

(1990) for 2D flows. Examples of experimental results that depict the aforementioned

symmetric and asymmetric flows may be seen in figure 5-3.

In this chapter, we will be considering the case of an intermediate Reynolds num-

ber for which the 2D flow develops asymmetries, yet remains steady and laminar.

Specifically, we will be working with an expansion ratio of 3 and Re ~ 200, for which

figure 5-2 confirms the onset of asymmetries (for the case of 3D flows). We expect

results similar to that predicted numerically and verified experimentally by Fearn

et al. (1990) for the case of Re = 140, as shown in figures 5-4 and 5-5.
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Figure 5-3: Flow patterns at different Reynolds numbers for an aspect ratio of 8 and
an expansion ratio of 2. (a) Re = 110. (b) Re = 150. (c)
1978).

(f) (e)

Re = 500. (Cherdron et al.,

U/u

Figure 5-4:
calculated p

Numerical and experimental velocity plots at Re = 140. The numerically
rofiles are shown as continuous cu

(c) x/H = 5; (d) x/H = 10; (e) z/H = 20; (f)
rves. (a) x/H = 1.25; (b) x/H = 2.5;
x/H = 40. (Fearn et al., 1990).

Figure 5-5: Calculated streamlines at Re = 140. (Fearn et al., 1990).

The symmetric inlet velocity initially breaks to one side of the centerline, visu-

alized, in particular, by curves (c) and (d) in figure 5-4. Further downstream, at
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x/H ~ 20, a second region of circulation forces the flow to the opposite side, depicted

by curve (e), before eventually restoring its initial symmetry (see curve (f)). The full

picture is given in figure 5-5. Clearly, the favored direction of the flow depends sensi-

tively on perturbations in the initial conditions, thus giving rise to bimodal statistics.

5.2 Procedure

From here on, all figures depicting the fluid flow will be described by streamlines

overlaid on a color-plot in which the color denotes the magnitude of velocity.

Physical Setup

In figure 5-6, we present the setup for our test case:

h, inlet height 1H, channel height

Ui, inlet velocity L, channel length
-y, transverse distance

I, inlet length No-slip boundary conditions at walls
U.,, outlet velocity

:x, downstream distance

Figure 5-6: Sudden Expansion Test Setup.

Placing variables in a non-dimensional form, we let h = = 4; H = 1; and L = 16.

We further impose a uniform inlet velocity of U, = 1. By conservation of mass and

using the steady, fully developed Navier-Stokes equations, we predict the following

velocity profile at x = 0 (see Appendix):

U(x = 0, y) = 2  - y2 . (5.2)
ha 4

We therefore expect a maximum inlet velocity of

1 3
Uma = U(X = 0,y = 0) ,h2' (5.3)

2h 2
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corresponding to a Reynolds number of

(h/2)Umax 62Re= - 103 250. (5.4)

This confirms our previous expectation regarding the nature of the flow, namely that

it will exhibit steady asymmetries (we again refer the reader to figure 5-2).

Initialization of DO decomposition

(1) Mean Field, zr-: the x-component of the mean field velocity is everywhere

1 in the inlet and j at any point in the channel, in accordance with continuity; the3

y-component of the mean field is initially zero everywhere. See figure 5-7.

U0.5 - Men1.0

05

0 x, downstream distance 16 0.0

Figure 5-7: Initial mean field of the DO decomposition.

(2) Orthonormal modes, i: Following Sapsis and Lermusiaux (2009), the

orthonormal modes are generated by retaining the dominant eigenvectors of the cor-

relation operator C(., .), defined by

C ((x1 , yI), (x2 , Y2)) = ((x 1 , y1), (x2 , Y2)) C(r), (5.5)

where r is the Euclidean distance between points (x1, Yi) and (x 2, y2), and A4(., -) is

a mollifier function globally taking the value 1 except at solid boundaries, at which

it vanishes smoothly. We let C(r) take the form

52r.2
C(r) = (1-+ 5r+ )e . (5.6)

3

We create the stochastic subspace, X, by retaining the twenty most dominant eigen-

vectors (i.e. we let s = 20); we hold this number constant throughout the simulation.
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In the analysis section of this chapter, we justify this choice in the sense that it ade-

quately captures the inherent uncertainties. Specifically, we studied the subspace and

assimilation results with a varying number of modes, concluding that a subspace of

size 20 was sufficient. In a future work, we may let s be time-variable and governed

by the system dynamics, as described in Sapsis and Lermusiaux (2010). A selection

of the initial modes is shown in figure 5-8.

(3) Ensemble Members, {#4}: We generate 10,000 ensemble members, #i, from

a zero mean, multivariate Gaussian distribution with diagonal covariance matrix. We

thus initialize the modes as being statistically uncoupled with marginal variances

proportional to the eigenvalues of the previously described correlation operator.

Observations

We make a total of three sets of measurements of both u- and v-velocities of the

true solution at times Tobs = {50, 70, 90} at the locations indicated in figure 5-9.

The measurements are independent of each other and are made with an observation

noise distributed according to a zero-mean Gaussian with variance o-2 - 0.1. Other

data errors were investigated, but will not be presented here.

Generating the True Solution

We initialize the true solution by selecting an arbitrary ensemble member gen-

erated according to the aforementioned initialization scheme, restricted, however, to

the five most dominant modes. Since the true solution is generated from the same

statistics as the one imposed, we ensure that our initial statistics capture the true

solution.

The true solution is propagated deterministically forward in time under the gov-

erning equation (i.e. the Navier-Stokes equations) for a total time of T = 100, after

which the simulation will have settled into its steady state. In the following section,

we describe the numerical implementation of the Navier-Stokes equations.
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0 x, downstream distance 16

Figure 5-8: Selection of initial modes of the DO decomposition.

5.3 Numerical Method

Based on Ueckermann et al. (2011), we solve the Navier-Stokes equations numer-

ically using a flexible, modular and efficient finite volume framework implemented in
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Ui, inlet velocity Observations

Uc,, outlet velocity

Figure 5-9: Observation Locations: (Xobs, Yobs) {(4, }), (4, 0), (4, )}.

MATLAB.

Geometry

The Sudden Expansion geometry is discretized on a uniform, two-dimensional,

structured grid of 40 by 30 elements in the x- and y-direction, respectively. A stag-

gered c-grid is specifically utilized to avoid spurious pressure modes.

Discretization in Space

The diffusion operator is approximated using a second order central differencing

scheme, while the advection operator makes use of a Total Variation Diminishing

(TVD) scheme with a monotonized central (MC) limiter (van Leer, 1977).

Discretization in Time

The time discretization uses a first-order accurate, semi-implicit Projection method,

where the diffusion and pressure terms are treated implicitly, and the advection is

treated explicitly (for details see Ueckermann et al. (2011)). In all cases we limit the

time step in accordance with the Courant-Friedrichs-Lewy (CFL) condition.

Boundary Conditions

As depicted in figure 5-6, we assume no-slip boundary conditions at all solid

boundaries, while imposing a uniform velocity of 1 across the inlet opening. At the

open, outlet boundary we restrict the flow by eliminating the first x-derivative of the

v-velocities and the second x-derivative of both pressure and u-velocities (i.e. O = 0,

O 2 = 0 and 9 = 0).
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5.4 Results and Analysis

In what follows, we plot at every 10 time units the true solution against a con-

densed representation of the full DO decomposition, using notation identical to that

presented in chapter 3. Specifically, we display

1. the mean field, z;

2. the first two modes, -i and zV2;

3. the marginal probability density functions of the stochastic coefficients 011 and

(P2 using MATLAB's 'ksdensity' function;

4. a scatter plot of the ensemble set, {#} = {#1,..., #N}, projected onto the pair

of modes: (i, X 2 );

5. a time history of the variances of all the stochastic coefficients, 4j; and

6. a time history of the RMS error of both the GMM-DO filter and a modified

ESSE scheme A, as described in our introduction. The latter refers to the

GMM-DO filter with a mixture complexity of one, i.e. M = 1. In what follows,

we give it the term "DO-ESSE Scheme A".

These plots will allow the reader to appreciate the way in which the flow develops,

ultimately settling into its steady state. It will equally clarify the manner in which

the DO equations evolve the state representation.

At the time of new measurements (i.e. Tobs = {50, 70, 90}), we expand the repre-

sentation of the DO decomposition by plotting

1. the mean field, t;

2. the first four modes, i, z2 , i 3 and z4,

3. the marginal probability density functions of the stochastic coefficients (i, 42,

(D 3 and 4 using MATLAB's 'ksdensity' function;
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4. a scatter plot of the ensemble set, {#} { ... , #N , projected onto the pairs

of modes: (il, 22 ), (i 1, x3 ), (-72 , X 3 ) and (za, i4);

Superimposed onto (3) and (4), we further display the Gaussian mixture model identi-

fied as the appropriate prior distribution (as part of the GMM-DO filter procedure).

For the latter, we specifically display the one-standard-deviation contours of each

individual mixture.

We finally plot both the true solution and its associated observation against the

prior distribution at each of the measurement locations. In the same figure, we

present the appropriate posterior distributions, as arrived at using Bayes'. Finally,

we once again display the posterior DO decomposition using the original, condensed

representation.

With this, we proceed with the results:
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Figure 5-10: True solution; condensed representation of DO decomposition; and root
mean square errors at time T - 0.
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Figure 5-11: True solution; condensed representation of DO decomposition; and root
mean square errors at time T -10.
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T = 20
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Figure 5-12: True solution; condensed representation of DO decomposition; and root
mean square errors at time T = 20.
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T = 30
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Figure 5-13: True solution; condensed representation of DO decomposition; and root
mean square errors at time T - 30.
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T = 40
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Figure 5-14: True solution; condensed representation of DO decomposition; and root
mean square errors at time T = 40.
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T = 50 : Assimilation 1

True Solution0.5

0

-0.5

0.5

0

-0.5

0.5 r

-0.5

0.5

0

-0.5

0.5

0

-0.5

0.5 r

Mean

Mn4D 1

Mode 3

Mnia A

1.0

.6 0

1.4

16 0.0

0.8

116 0.016 0

1.0

16 0.0

0.8

16 0.0

1.5

0.0
0 x, downstream distance 0

Figure 5-15: True solution; DO mean field; and first four DO modes at the first
assimilation step, time T = 50.
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T = 50 : (i) Prior Distribution
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Figure 5-16: True solution; DO mean field; and joint and marginal prior distributions,
identified by the Gaussian mixture model of complexity 29, and associated ensembles
of the first four modes at the first assimilation step, time T = 50.
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T = 50 : (ii) Observations and Local Distributions
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Figure 5-17: True solution; observation
the prior and posterior distributions at
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T = 50 : (iii) Posterior Distribution
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Figure 5-18: True solution; condensed representation of the posterior DO decompo-
sition; and root mean square errors at time T = 50.
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Figure 5-19: True solution; condensed representation of DO decomposition; and root
mean square errors at time T = 60.
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T = 70 : Assimilation 2
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Figure 5-20: True solution; DO mean field; and first four DO modes at the second
assimilation step, time T = 70.
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T = 70 : (i) Prior Distribution
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Figure 5-21: True solution; DO mean field; and joint and marginal prior distributions,
identified by the Gaussian mixture model of complexity 20, and associated ensembles
of the first four modes at the second assimilation step, time T = 70.
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T = 70 : (ii) Observations and Local Distributions
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Figure 5-22: True solution; observation
the prior and posterior distributions at

and its associated Gaussian distribution; and
the observation locations at time T = 70.
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T = 70 : (iii) Posterior Distribution
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Figure 5-23: True solution; condensed representation of posterior DO decomposition;
and root mean square errors at time T = 70.
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T = 80
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Figure 5-24: True solution; condensed representation of DO decomposition; and root
mean square errors at time T = 80.
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T = 90 : Assimilation 3
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Figure 5-25: True solution; DO mean field; and first four DO modes at the third
assimilation step, time T = 90.
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T = 90 : (i) Prior Distribution

True Solution

Mean

0. -

0

: -0.5
GJ

> 0.5
C

0

-0.5

40

0 1.0

Stochastic Coefficient 1

0

Stochastic Coefficient 4

Figure 5-26: True solution; DO mean field; and joint and marginal prior distributions,
identified by the Gaussian mixture model of complexity 14, and associated ensembles
of the first four modes at the third assimilation step, time T = 90.
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T = 90 : (ii) Observations and Local Distributions

u-observation @ (x,y) = (4,+0.25)
25

0-
-1.0

-0.5 0 0.5

u-observation @ (x,y) = (4,-0.25)

5 -1.0 -0.5 0

- 0 .-

1.0 1.5 -1.0

100

0'
1.5 -1.0

500 r

.5 1 0 -

0.5 1.0 -1.0

v-observation @ (x,y) = (4,+0.25)

0 0.5

v-observation @ (x,y) = (4,0)

L,

1.0 1.5

-0.5 0 0.5 1.0 1.5

v-observation @ (x,y) = (4,-0.25)

-0.5 0 0.5 1.0

Legend:

0 True Solution

0 Observation
Observation Distribution

Prior Distribution

Posterior Distribution

Figure 5-27: True solution; observation
the prior and posterior distributions at

and its associated Gaussian distribution; and
the observation locations at time T = 90.
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T = 90 : (iii) Posterior Distribution
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Figure 5-28: True solution; condensed representation of posterior DO decomposition;
and root mean square errors at time T = 90.
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The previous series of figures clearly indicate the favorable results obtained by

use of the GMM-DO filter, specifically when compared with the DO-ESSE scheme

A. We've quantified this performance using the root mean square error, whose final

plot we conveniently repeat in figure 5-30. We particularly note that the GMM-DO

filter shows a four-fold improvement over the DO-ESSE Scheme A at the final time

step, T = 100. Of course, these results depend on the specific truth chosen and on

the properties and realizations of the observations, but we obtained relatively similar

improvements for the varied examples we ran.

Root Mean Square Error

DO-ESSE Scheme A
GMM-DO filter

0.12

0.10

0.08

0.06

0.04

0.02

0
0 20 40 60 80 100

Time, T

Figure 5-30: Time-history of the root means square errors for the GMM-DO filter
and DO-ESSE Scheme A.

Based on the figure above, an important observation is due: the performance of the

DO-ESSE scheme is comparable to that of the GMM-DO filter up until the second

assimilation step (i.e. T = 70), after which the latter shows marked improvements.

(This trend has been supported by runs not included in this thesis.) We attribute

this observation to the GMM-DO filter's ability to retain non-Gaussian structures

upon the assimilation of data, in accordance with the exact Bayesian update, such

that the state representation remains statistically accurate at later assimilation times.

Focusing, for instance, on the distribution for the most dominant stochastic coeffi-

cient, <P1 , the GMM-DO filter suitably preserves its bimodality - however weighted

- throughout the simulation, as evidenced by the appropriate marginal distribution
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in the previous series of figures, 5-10 - 5-29 (an instance of which we repeat in figure

5-31 for clarification).

4 - Stochastic Coefficient 1

0
-1.0 0 1.0

Figure 5-31: Bimodal distribution for the most dominant stochastic coefficient, <bI,
at T = 40. The GMM-DO filter captures and retains this bimodality throughout the
simulation of the sudden expansion fluid flow, resulting in its superior performance.

Clearly resembling the structure of the Double Well Diffusion Experiment, we argue

that the bimodality of the most dominant stochastic coefficient reflects the ambiguity

of direction with which the sudden expansion fluid flow prefers to break, as alluded

to in our introduction to this test case. As such, it is crucial for the filter to not only

capture these non-Gaussian structures when approximating the prior distribution,

but equally to preserve them following the Bayesian update. This, we make possible

with the GMM-DO filter. While we do not include detailed results for the DO-ESSE

Scheme A in this thesis, it is evident that the fitting of single Gaussian distributions

to ensemble sets, {#}, of such complexities removes any non-Gaussian structure, thus

resulting in its relatively poor performance.

The ability of the fitted Gaussian mixture model to accurately capture the multi-

dimensional distribution given by the ensemble set, {#}, at the time of assimilation

of new data is visualized in figures 5-16, 5-21 and 5-26. For the sake of convenience,

we repeat figure 5-16 in figure 5-32, and refer to the latter in what follows. Using

MATLAB's 'ksdensity' function (represented by the blue marginal distributions in

figure 5-32) as an appropriate approximation for the optimal marginal distribution

based on an arbitrary data set, we note the remarkable accuracy with which the Gaus-

sian mixture model captures this distribution. With figure 5-32, we equally attempt

153



-0.5

2

0.5
4 10

0 0
-1.0

0

0

Ensemble Members
Gaussian Mixture Model

1.0
-1.0 0 1.0 -0.5 0 0.5

Stochastic Coefficient I Stochastic Coefficient 4

Figure 5-32: Gaussian mixture model approximation of the ensemble set, {q5}, at
the time of the first assimilation of observations, T = 50. Assuming MATLAB's
'ksdensity' function to represent an appropriate approximation to the true marginal
densities, we note the satisfactory approximation of the Gaussian mixture model.

to convey the manner in which this accuracy extends to the multidimensional case.

In figures 5-16, 5-21 and 5-26, we further note how the mixture complexity reflects

the complexity of the ensemble set, approximating the latter at the first assimilation

step by 29 mixtures; the second by 20 mixtures; and the third by 14 mixtures -

as determined by the BIC. This adaptability allows the scheme to fully capture the

non-Gaussian structures in an optimal way, again as visualized in figure 5-32.

154



A clear strength of the GMM-DO filter is its ability to statistically converge to

the true solution, as visualized particularly in figures 5-17, 5-22 and 5-27. Such is

the consequence of combining the DO equations for evolving the state representation

with Gaussian mixture models and the EM-BIC algorithm for approximating the

given ensemble set. In the following analysis, we focus in particular on the top left

panel of figure 5-17, repeated for convenience in figure 5-33.

u-observation @ (x,y)= (4,+0.25)
14 -

I True Solution
0 Observation

Observation Distribution
Prior Distribution
Posterior Distribution

0
-1.5 -1.0 -0.5 0 0.5 1.0

Figure 5-33: An example of the manner in which the GMM-DO filter captures the true
solution through its use of Gaussian mixture models. We equally note the increased
weights placed on the mixtures surrounding the true solution following the Bayesian
update, depicted by the green curve.

From the figure above, we point out a number of observations. To our satisfaction,

the prior distribution - bimodal in nature - perfectly captures the true solution. Had

we instead used a Gaussian approximation for the prior distribution, the true solution

would merely have been nested within the tail of the Gaussian and thus inadequately

represented. Of further notice is the shape of the posterior distribution, placing

greater weight on the mixtures surrounding the true solution that make up the left

lobe of the bimodal distribution. We again wish to emphasize that the update is done

exactly under Bayes Law. A similar example, in which the true solution is nested

within a set of mixtures of smaller - yet finite - weight is given figure 5-34. Again, we
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note the shape of the posterior distribution, placing greater weight on these mixtures.

This would not be captured when resorting to a regular Gaussian distribution.

v-observation @ (x,y) = (4,-0.25)
250

* True Solution
0 Observation

Observation Distribution
Prior Distribution
Posterior Distribution

-1.0 05V051015

Figure 5-34: A second example of the manner in which the GMM-DO filter captures
the true solution through its use of Gaussian mixture models. Here, however, the
true solution is contained within a mode of small - but finite - probability. Note the
increased weights placed on the mixtures surrounding the true solution following the
Bayesian update.

Finally, as alluded to in the introduction to this chapter, choosing the dimensional-

ity of the stochastic subspace, s, is crucial to ensure that the GMM-DO filter suitably

captures the true statistics of the system. For the purposes of this test case, we had

allowed this dimensionality to be constant with s = 20, supported by a number of

prior convergence tests. An example of such is visualized in figure 5-35, in which

we display the part of the true solution (termed 'error') orthogonal to the stochas-

tic subspace for the case of 15 and 20 modes at the time of the first assimilation.

We note that in practice such comparisons with the true solution can for obvious

reasons not be done, and instead statistical comparisons with the observations and

their inherent uncertainties must be made. Furthermore, referring to recent work by

Sapsis and Lermusiaux (2010), it is intended in a future work to let the stochastic

dimensionality, s, be variable and driven by the dynamics of the system.
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Figure 5-35: We show the part of the true solution orthogonal to the stochastic sub-
space for the case of 15 and 20 modes at the time of the first assimilation. 'Difference'
refers to the difference between the true solution and the mean field; 'error' to the
part of the true solution not captured by the GMM-DO filter. We note that as we
increase the number of modes, the norm of the error marginally decreases, indicative
of convergence.
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5.5 Conclusion

We have examined the application of the GMM-DO filter to a two-dimensional

sudden expansion fluid flow of aspect ratio 3 and Re = 250, at which the test case

admits a steady, asymmetric flow. Given the sensitivity of the preferred direction of

breaking to initial perturbations, the flow admits complex, far-from-Gaussian distri-

butions and as such is particularly well-suited to evaluating the performance of the

GMM-DO filter.

Based on the root mean square error, we found the GMM-DO filter to significantly

outperform the DO-ESSE Scheme A. Specifically, utilizing temporally and spatially

sparse measurements of relatively large uncertainty, the GMM-DO filter accurately

predicted the structure of the true solution at the final time, T = 100, made evident

in figure 5-29. We attribute this performance to the GMM-DO filter's ability to

accurately capture and retain the inherent far-from-Gaussian statistics, both prior

and posterior to the melding of data, in exact accordance with the Bayesian update.

With the sudden expansion fluid flow, we have proven the applicability of the

GMM-DO filter to realistic 2D Navier-Stokes flow test cases of non-trivial dimension-

ality, made possible by application of the DO equations. By focusing on a dominant

stochastic subspace of the full state space, we allow the fitting of Gaussian mixture

models with the EM-BIC algorithm - an otherwise computationally intractable pro-

cedure. For test cases admitting complex statistics, we have shown the latter to

crucially improve the filtering skill. In future work, the GMM-DO equations and fil-

tering schemes can be implemented for a full, 3D ocean model and their performance

evaluated in multiscale ocean simulations (Haley and Lermusiaux, 2010).

158



Chapter 6

Conclusion

In an introductory chapter we emphasized the importance played by the forecast

covariance matrix in appropriately assimilating and distributing information due to

sparse observations. In this context, progress has more recently been made in identify-

ing the advantages of adopting Gaussian mixture models for approximating the prior

distribution, allowing the update step to capture and retain potential non-Gaussian

structures. Its success has been shown using a number of simplified test cases, in-

cluding the classic Lorenz-63 model (Lorenz, 1963). Later publications, specifically

those due to Smith (2007) and Dovera and Rossa (2010), further introduced both the

EM algorithm and model selection criteria in a Monte Carlo setting for arriving at

the optimal mixture parameters, resulting in a more accurate resolution of the true

probability density function. All of this is equally utilized in the GMM-DO filter.

One novelty of the GMM-DO filter lies in having identified the necessity to couple

the previous concepts with an efficient reduced order model, specifically the Dynami-

cally Orthogonal field equations due to Sapsis and Lermusiaux (2009). By limiting our

attention to a dominant stochastic subspace of the total state space, we thus bridge

an important gap previously identified in the literature caused by the dimensional-

ity of the state space. Particularly, with this, we make obsolete ad hoc localization

procedures previously adopted - with limited success - by other filters introduced in

this thesis. With the GMM-DO filter, we further stray from the redundant operating

on ensemble members during the update step; rather, we manipulate directly the
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determined Gaussian mixture model exactly under Bayes' Law with the assumption

that the aforementioned distribution sufficiently captures the present non-Gaussian

structures.

In this thesis, we successfully applied the GMM-DO filter to two test cases: (1)

the Double Well Diffusion Experiment and (2) the Sudden Expansion fluid flow. With

the former, we proved the validity of utilizing the combination of Gaussian mixture

models, the EM algorithm and Bayes Information Criterion in a classical filtering

context. Specifically, for the range of parameter values investigated, we found that

the GMM-DO filter outperformed the Ensemble Kalman filter in its ability to capture

the transition of the ball from one well to the other. Furthermore, for only a moderate

number of particles was the performance of the GMM-DO filter comparable to that

of the Maximum Entropy filter, the latter of which is particularly well-suited to the

given test case.

With the application of the GMM-DO filter to the Sudden Expansion fluid flow,

we proved its applicability to realistic two-dimensional Navier-Stokes test cases of

non-trivial dimensionality. The GMM-DO filter was shown to consistently capture

the far-from-Gaussian statistics associated with the test case, resulting in its superior

performance over filters that would invoke the Gaussian assumption.

In conclusion, we present the GMM-DO filter as an efficient, data-driven assim-

ilation scheme, focused on a dominant stochastic subspace of the total state space,

that respects nonlinear dynamics and captures non-Gaussian statistics, obviating the

use of heuristic arguments.
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Appendix A

Jensen's Inequality and Gibbs'

Inequality

The following presentation is completely due to Wornell (2010). We focus on

discrete random variables in the proofs; the statements are also true for continuous

random variables.

Definition: Convex Set

Let V be a convex set. Function #(-) V - 1 R is convex if for any v1, v2 G V and any

A E [0, 11,

#(Avi + (1 - A)V 2 ) < A#(vi) + (1 - A)#(v 2 )

A function that satisfies the definition with a strict inequality for all

called strictly convex. We call a function #(.) concave if -#(.) is convex.

With this we are ready to state and prove the inequalities of interest.

Definition: Jensen's Inequality

If #() is a concave function and V is a random variable defined over

(i.e. that values which it can take), then

E [#(V)] < #(E [V])

(A.1)

A # 0,1 is

alphabet V

(A.2)

If #() is strictly concave, equation (A.2) holds with equality if and only if V is a
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deterministic constant.

Proof

We will prove this inequality by induction on the size of the alphabet V. First, we

consider |V| = 2 (i.e. random variable V can only take on two values) and let vi and

v 2 be the two elements in V. The definition of concavity implies

E [#(V)] = pv(v1)#(v1) + pv(v2)#(v2) #(PV(vi)vi + pv(v2)v2) = #(E [V]), (A.3)

where pv(v) is the probability density function for random variable V.

We now consider V = {vi, ... , vM}, M > 2, and assume that equation (A.2) holds

for all random variables defined over alphabets smaller than M elements. Suppose V

is not deterministic, i.e. there exists vi such that pv(vi) is neither 0 nor 1. In this

case, we can perform the following algebraic manipulations:

M

S [$(V)] = PV(Vm)0)(Vm) = pV(Vi)#0 (Vi) + E pv( Vm)#0 (Vm) (A.4)

mn=1 m54i

pV(vi)#5(vi) + (1 -pv(Vi))S PV(Vm) #(Vm). (A.5)
m7i1 - PV(Vi)

It is easy to see that the sum in equation (A.5) is equal to S [#(V) | V z vi]. By

induction we have E [#(V) | V / vi] #(E [V |V $ vi]) and

E [#(V)] = pv(vi)#(vi) + (1 - PV(Vi)) E PV(V)_#(Vm) (A.6)

< pv(v #(vi) + (1 - pv(vi))# ( Pv(Vm ) (A. 7)
1 -pv(v)

< (Pv(VMvi) + (1 - pv(v2 )) E Pv(vm) (A.8)

M

= E PV(Vm) = #(E [V]), (A.9)
(m=1

where equation (A.7) follows from the induction step for |VI = M - 1, and equation

(A.8) follows from the induction step for |VI = 2.
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If #(-) is strictly concave, the only way we can get equalities in the derivation

above is to make sure that pv(vi) = 0 or pv(vi) = 1, and furthermore, conditioned

on V # vi, V is deterministic. These conditions are satisfied if and only if V is

deterministic. F

Definition: Gibbs' Inequality

Let V be a random variable distributed according to distribution pv(-). Then for any

distribution qv( - ),

E [ log pv(v) I pv(v)] ;> E [log qv(v) I pv(v)], (A.10)

with equality if and only if q p.

Before proving this result, we note that we use the notation S [- pv(v)] to

emphasize the distribution with respect to which the expectation is being taken.

Proof

By concavity of the logarithm,

S [log qv(v) | pv(v)] - S [logpv(v) | pv(v)] S [log v | pv(v)]
pv(v)

qv(v )
<logSE[ |pv(v)]

pv(v)

= log pv(v)
log E~pv~v V(v)

= 0,

where the inequality in equation (A. 12) follows from Jensen's inequality.
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(A.12)

(A.13)

(A.14)
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Appendix B

The covariance matrix of a

multivariate Gaussian mixture

model

We obtain the (full) covariance matrix of a Gaussian mixture model by applying

the Law of Total Variance, defined as follows (see e.g. Bertsekas and Tsitsiklis (2008)):

var (X) = E [var (X|Y)] + var (E [X|Y]).

For the Gaussian mixture model

px (x) = Yr F
j=1

let us define the discrete random variable, I, with probability mass function

Pr (I = i) = 7r.

With this, we may write using the Law of Total Probability:

M

Px (x) = pxir (x l I - j) Pr (I =
j=1

165

(B.1)

(B.2)

(B.3)

(B.4)

xNr(x; z, )PA),



where

(B.5)Px I (xI = j= (x; zy, Pj).

We therefore have:

var (X II) = P,

E [X I] = -J,

and thus, by the Law of Total Variance:

var (X) = S [var (X II)] + var (E [X II])

=SE [Pr] + var (.ti)

= rZPj + E rj (±yj - z) (zm -

M

j= 1
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Appendix C

Maximum Entropy Filter

In this section, we describe the Maximum Entropy filter (Kiml et al. (2003) and

Eyink and Kim (2006)), developed in the Ph.D. thesis by Sangil Kim (2005).

The motivation behind the author's work lay in extending the framework of the

Ensemble Kalman filter to handle far-from-Gaussian distributions. As with the En-

semble Kalman filter, the Maximum Entropy filter operates on an ensemble of parti-

cles. It is only applicable to cases in which a climatological distribution for the system

exists, is known, and further can be well approximated by a (semi-)parametric distri-

bution that allows for tractable Bayesian updates.

For simplicity of analysis, in what follows we will restrict our attention to uni-

variate distributions. We note, however, that the analysis generically extends to the

multivariate case.

C.1 Formulation

We assume that our system is defined such that a stationary distribution exists

and is known. While the method holds for arbitrary distributions, for the purposes

of this thesis we further model it as a Gaussian mixture of complexity M:

M

qx (X) = wmN (z; ym, o') .(C1)
mn=1
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For a system modeled as a non-periodic Markov Chain with a single recurrent

class, it can be shown that any distribution, px(.), forced under the transition kernel

converges to the stationary distribution of the system, qx( - ) (Cover and Thomas,

2006). We write this, here, as:

lim Dx(pk q) = 0, (C.2)
k--oo

where k is a discrete time index, and Dx (p q) denotes the Kullback-Leibler diver-

gence (Kullback, 1968) between distributions px( -) and qx(

Dx(p || q) = Px(x) log dx. (C.3)
Ix qx xM

Based on this observation, leading up to a Bayesian update we choose to model the

prior probability distribution of the system as an information projection,

pk argmin Dx (p q), (C.4)
PESk

with Sk denoting a chosen set of distributions consistent with particle moment con-

straints. Qualitatively, we understand (C.4) as finding the distribution, px( - ), sat-

isfying the moment constraints given by Sk, that is "closest" to the climatological

distribution, qx(.), having chosen the Kullback-Leibler divergence as the appropriate

measure of distance. We adopt the hat notation on the probability density function,

j, to remind the reader that it has arisen through an information projection.

For the purposes of tractability, we will concern ourselves only with the first and

second moments, i.e.

S = {px() : S [| pxI(-)] 4, var(X | px(-)) = s'}, (C.5)

although, the analysis holds for arbitrary constraints. We note that zk and s' refer

to the sample mean and variance, respectively, at discrete time k. When limiting

our attention to the first two moments, we will show that the prior distribution, too,
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takes the form of a Gaussian mixture.

With Sk defined as in (C.5), it can be shown that x is a member of the

following exponential family (Wornell, 2010):

x' (x) = qx(x) CA1 , A2 )'
X Z(I, A2)

(C.6)

with A, and A2 chosen such that (C.5) is satisfied (i.e. A, = A(xk, s) and A2

A2(zk, s2)), and where Z(Aj, A2 ) is the partition function. With this, we will show

that px( -) (having dropped the explicit notation of time with the understanding

the the update occurs at discrete time k) takes the form of a Gaussian mixture

distribution. We write:

ex+Al x 2

Z(A1, A2)

:w'm N (x; p m Orl)A2

m- 1 (7 r 2 ) Z(Al, A2 )

1 ___-32

Z( 1, A2) 7 2r o)Z(AlA 2 ) m~~2a ~2 12Tn2 i)

by completing the square,

M

m wN(x; tm,&2n)
mn-1
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with

WW n1 - Pm2 e ( t +m yO M A ) 2

Z(A, A2 ) 1- 2oi

- pm + JnA1 (C.7)

1 - 22A2

Having determined the prior distribution (here, left as a function of A(2t, s 2 ) and

A2 (2, s2)), we proceed to evaluate the Bayesian update:

pxjy(xly) = PYIx(y.x)px) (C.8)
pY(y)

But for a Gaussian observation model,

prix(yI) =.I (y; x, o2), (C.9)

we have already shown that this again takes the form of a Gaussian mixture. Using

(3.4) - (3.7), we therefore have for the posterior distribution:

M

pxly(xzy) = EJrmNA(x;tm,&m), (C.10)
m=1

where

WmJr (y; ftm, U2 + &2)

o~ + m 0

0+ m
~2 2

&-2  072 7o-
8- (2 +±(T2

rn 0

At this point, we generate a new set of particles from the updated Gaussian

mixture model and evolve these in time using the governing equation for the system.

This completes the details of the Maximum Entropy filter. In what follows, we apply
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it to the Double Well Diffusion Experiment.

C.2 Double Well Diffusion Experiment

By symmetry of the Double Well Diffusion Experiment, we have already noted that

the parameters for the climatological distribution, modeled as a Gaussian mixture of

complexity two, takes the form:

W1 = W2 = 0.5

2 2 2
-1 =012 = 7

At any discrete time, k, the prior distribution thus takes the slightly simplified form:

M

fx (x) - > mN (X. A, &)
M=1

with parameters

0.5 1

Z(\, A2 ) /1-2 2 A2

0.5 e
&2  Z(eA 2) 2,2

I , - 2 o
o- a 2 A , _/I

1 - 2o 2A2

&2 
(7____2

1 - 202A2

(2)

1-22 A 2

1-2c,2 A2 )
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By normalization, Ib1 + 2 =1, giving for the partition function:

0.5
Z(A , A2 ) =1 2cr2A 2

0.5
e

1 - 20. 2

1 2 (-_ 2 )2

e2c2 (I 1-2,24 A

( C (1 
-, s 2 1 2

202 2a2(1-2o22)

+ e 20-2 ( 1 - 2_2 \2

(/,+,
2

2 1-)2

+ C20-2 (1-2,72 ' 2 ))

such that the prior distribution equivalently writes:

x ~2pA 1

pjx (x) =-,s
1--aA

Now, by applying the moment constraints of (C.5), we have:

XX I10 p(.) +&2A2

02, , u
2 ,\ t 2pAj

1-272__ 2 1_ 1-20,
2 

A2
1-aA2 1--2 2A2

2
pc A

1+6 2- A2

1 - 2o.2/ 2 1 -22A2

2pAj

1 1 20, 2A2

= Xk.

By the Law of Total Variance:

var (X I Sik (X)) = S [var(X II)] + var(E [X1I])
2 2

=-( 2 + (iti - 2

= &2 + ih 1 (A1 - s)2 + w 2 (i 2 - k)

= 2 + 2+ 2 2x - 2k(1f1 ± & 2 A 2 ) - 2

= 2 + W1A2 + 2 - 212 +2 &2 2 -2

2 pA 1

1 2 o4A + p2 22Ap 1 -2,2 2

(1 - 2o.2A) 2  (1 - 2o.2A) 2  1+ ± 1-2-A2

s2Sk.

172

(C.12)
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(C.14)

(C.15)
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We thus have the following set of nonlinear simultaneous equations for A1 (xk, sk) and

A2(zk, s2), whose roots may be found by any means available (we used the 'fsolve'

function in Matlab):

1 2. 2A 1 - 2. 2A2

2a 2A
(1 - 2.2 )2

2pA1

_1--2, 2

1 + e i-2, 2A 2

1- 2 tzo I

2pA J
1 + e 1-2

2 A2

With this, using (C.11), we proceed with the Bayesian update to retrieve the posterior

distribution.
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(1 - 2o.2A2)2

= Xk

= 2 -t2
- k + k



174



Appendix D

Sudden Expansion Inlet Velocity

Profile

The steady, fully developed, planar Navier-Stokes equations reduce to the follow-

ing familiar expression:
1 dp
p dx

(D.1)

By integrating in y, we obtain

du YdP +A
dy p dx

U(y) = - + kAy +B
2 1tdx

where A and B are integration constants. By applying the boundary conditions

associated with the sudden expansion fluid flow, we have:

du
dy y=o

= 0 by symmetry - A = 0

u(h/2) = 0 -4 B =

8p ax
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(D.3)

and

(D.4)

(D.5)
h2 dj



We therefore obtain the familiar parabolic velocity profile

( 1 dp (h 2

2pdx 4 - y2 ) (D.6)

Now, by conservation of mass, we require that the mass flux due to the developed

profile equals that due to the inlet conditions,

Qin = hUin x 1
3

Therefore, mathematically we require

Q-t f u(y)dy

Ih12 1p (2
-h/2 2y dx 4

1
3

(D.7)

- y2) dy

(D.8)1 dp yh2 y3 h/2

2p dx 4 3 . -h/2

h dp
12p dx

-Qin

giving
dp 4p

dx h
(D.9)

With this, we obtain the final expression for the velocity profile at the expansion:

2
U~y a

(D.10)
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