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Abstract

This thesis is focused on the theoretical characterization of topological order in non-Abelian
fractional quantum Hall (FQH) states.

The first part of the thesis is concerned with the ideal wave function approach to FQH
states, where the idea is to try to obtain model wave functions and model Hamiltonians for
all possible FQH states and to have a physical way of characterizing their topological order. I
will explain recent attempts to do this through the so-called pattern of zeros framework and
its relation to conformal field theory. The first chapter about the pattern of zeros introduces
the basic concepts for single-component FQH states, how it relates to the conformal field
theory approach to FQH wave functions, and how it can be used to derive various topological
properties of FQH states. The second chapter extends the pattern of zeros framework to
multi-component non-Abelian FQH states; this is an attempt at a full classification of possible
topological orders in FQH states.

Aside from the ideal wave function methods. the other known general method of con-
structing non-Abelian FQH states is through the parton construction. Here the idea is to
break apart the electron into other fermions, called partons. and assume that they form in-
teger quantum Hall states. This method allows us to describe all known FQH states. After
reviewing the parton construction, I will demonstrate how it can be used to derive the low
energy effective field theories for some of the most well-known non-Abelian FQH states, the
Zk parafermion (Laughlin/Moore-Read/Read-Rezayi) states.

The parton construction will motivate yet another topological field theory, the U(1) x
U(1) x Z 2 Chern-Simons (CS) theory. I will demonstrate how to calculate many highly
non-trivial topological properties of the U(1) x U(1) x Z 2 CS theory, such as ground state
degeneracy on genus g surfaces and various fusion properties of the quasiparticles. Using
the U(1) x U(1) x Z 2 CS theory, we will study phase transitions between bilayer Abelian
states and non-Abelian states. The non-Abelian ones contain a series of new states, which
we call the orbifold FQH states. These orbifold FQH states turn out to be important for the
conceptual foundations of the pattern of zeros/vertex algebra approach to ideal FQH wave
functions. We also find a series of non-Abelian topological phases - which are not FQH states
and do not have protected gapless edge modes - that are separated from the deconfined phase
of ZN gauge theories by a continuous phase transition. We give a preliminary analysis of
these Z 2 "twisted" ZN topological phases.

Thesis Supervisor: Xiao-Gang Wen
Title: Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction

1.1 From symmetry-breaking order to quantum order

Matter can collectively organize itself in a rich variety of ways, continually surprising those
who are curious enough to peer into its inner workings. At the cutting edge of scientific
inquiry are systems in which quantum mechanical effects are highly pronounced and inter-
actions between the constituent particles are so strong that they cannot be in any sense
ignored. These kinds of situations lead to qualitatively novel behavior that challenges our
most fundamental understanding of the collective nature of matter, has the potential to usher
in revolutionary new technologies, and even yields insights into the origin of matter, space,
and the fundamental forces.

A striking feature of many-body physics is the concept of universality. Even though
different physical systems may have very different microscopic origins and microscopic de-
tails, the long-wavelength, low energy features of these different systems may have exactly
the same behavior; that is, some features of the behavior are universal. These universal
properties change dramatically as various parameters of the system are tuned through phase
transitions. Before we understand the details of any given system of interacting particles, one
of the coarsest questions to answer relates to determining these universal, long-wavelength
properties. Among the most fundamental questions in physics therefore are those that relate
to how we can understand and characterize all possible universal behaviors; this will allow
us to characterize the different states of matter and the transitions between different states.

For most of the twentieth century, there were two overarching paradigms in physics that
helped us understand the universal behavior of the collective states of matter and the tran-
sitions between them. These are Landau Fermi liquid theory, which is immensely success-
ful in describing the behavior of metals, and the Ginzburg-Landau theory of symmetry-
breaking, which was believed to describe all universal properties of all ordered phases of
matter. Ginzburg-Landau theory is based on the idea that there is some local operator, the
order parameter, that has zero expectation value in an unordered phase but that acquires
a nonzero expectation value in the ordered phase. The order parameters classify different
patterns of symmetry breaking that may occur, and the long wavelength dynamics can be
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described by fluctuations of the order parameter. The Ginzburg-Landau theory is immensely

successful and can describe a wide variety of states, such as superconductors, superfluids.

ferromagnets and antiferromagnets, etc.

However, not all systems develop symmetry-breaking order at low enough temperatures.

There are well-known examples that have been understood for many decades, such as band

insulators, and that we now consider to be mundane. However in the early 1980s, with the

discovery of the fractional quantum Hall effect, it was found that there is a great deal more

to the story than had been imagined. Physicists found that quantum mechanics allows for

totally new kinds of order, which we generally now refer to as quantum order (Wen, 2004), and

which has nothing at all to do with symmetry or patterns of symmetry-breaking. These new

states of matter still have some intricate form of order present - the microscopic constituents

are performing some kind of collective, complex quantum dance - yet it cannot be understood

by any of our conventional theoretical paradigms, such as symmetry-breaking theory.

One of the most prominent examples of this new kind of order is called topological order.

In the following section we will give a brief summary of the theory of topological order.

1.2 Topological phases of matter

Topologically ordered phases of matter are quantum phases with certain universal physical

properties that are robust to any perturbations of the system. These physical properties

include long-range quantum entanglement, fractionalization, and topological degeneracies in

the energy spectrum. Typically the phrase topoloqical order is used to described gapped

phases, but sometimes it is used more loosely to describe any fractionalized phase; in this

thesis, we will be using the former, stricter definition. The low energy excitations of such

phases carry quantum numbers that are fractions of the quantum numbers of the individual

microscopic constituents of the system this is the phenomenon of fractionalization, one of

the most striking features of strongly correlated quantum phases of matter. We need not

strike particles together at exceedingly high energies in a particle accelerator in order observe

quantum particles of electric charge e/3; we can just as well study two dimensional electron

gases at semiconductor interfaces in our own basement!

An important property of topologically ordered phases is the existence of degeneracies

in the energy spectrum that are robust to perturbations. For example, depending on the

topology of the manifold on which the system is defined - whether it is a sphere, a torus,

etc - the system may exhibit different ground state degeneracies. This degeneracy cannot be

lifted by any perturbation of the Hamiltonian, which is why it is referred to as topological.

The degeneracy is not protected by symmetry, but by the topological order inherent in the

system. This topological degeneracy indicates something quite profound about the non-local

character of these phases, in that they can somehow feel the global topology of the space.

Indeed it has been found that the ground state wave functions of topological phases possess

some form of long-range quantum entanglement (Levin and Wen, 2006; Kitaev and Preskill.,

2006).
The low energy excitations of gapped quantum phases of matter can be localized in a
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wave packet to a length scale on the order of the inverse of the energy gap. In a certain
class of topological phases, these quasi-particle excitations, even when they are pinned at a
certain point in space, may bring with them topological degeneracies in the energy spectrum.
For example, a pair of well-separated quasiparticle excitations at fixed locations may have a
degeneracy of states that is robust to any perturbation of the system. In such a case, the only
way to have the system switch from one topological sector to another is through a nonlocal
operation that braids the quasiparticles all the way around each other. Topological phases
with this property are called non-A belian topological phases.

One of the driving forces behind the modern interest in non-Abelian topological phases is
the possibility of utilizing them for robust, intrinsically fault-tolerant quantum information
storage and processing. Imagine that the possible states of a qubit are associated with the
different topological sectors that exist in the presence of quasiparticle excitations. Then the
environment, which can only cause local perturbations, cannot cause the system to jump from
one topological sector to another because that would require a sequence of operations that
carries one quasiparticle all the way around another - an exponentially unlikely process. As a
result, such qubits are intrinsically insensitive to environmental noise, raising the possibility
of topoloqical quantum computing (Kitaev, 2003; Freedman et al., 2003; Dennis ct al., 2002).

1.2.1 Mathematical characterization of topological phases

In order to follow the rest of this thesis, it will be important to outline more specifically how
it is that we mathematically characterize the properties of topological phases, and what kinds
of data, or topological quantum numbers characterize a topologically ordered phase. For a
more in depth discussion, see for instance (Kitaev, 2006; Preskill, 2004).

Topological phases are characterized by a set of topological charges, {yo, .- , 7N-I (see
Figure 1-1). If we take our system and break it up into a collection of subsystems., then
for each state in the low energy Hilbert space we can assign a set of topological charges to
each of the subsystems. These topological charges can, in gapped systems, be localized to a
point-like excitation, so usually we will speak of them in terms of quasiparticles. This is like
having each subsystem be a point in the space, and most of the points are associated with
the identity -yo, and some of them (the locations of the quasi-particles) will be labelled by 'yi,
for i > 0.

Given a system, there are many ways that we can break it up into a distinct set of
subsystems. So given two subsystems with topological charge -yi and yj, an important piece
of information is how to assign a topological charge to the combined subsystems. This is
indicated by the fusion rules of the topological phase:

Yxi >( = ZNyk. (1.1)
k

The integers N.. indicate the number of independent ways that 'yj and 5 can fuse to -yk.
More concretely, states with overall topological charge given by -Yk and that contain just two
quasi-particles -yj and -y at fixed locations have a topological degeneracy given by Np.. This
means that in the limit that there are no interactions between the quasi-particles (e.g. they
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Figure 1-1: Schematic diagram showing how we may break up a physical system into various

regions and assign topological charges to each region. More physically, this is like having

quasiparticles of various types fixed at various locations throughout the sample.

are infinitely separated in space), there is a degeneracy in the Hilbert space, given by N .

and no local perturbation to the Hamiltonian can lift this degeneracy. Typically, Nk = 0

or 1. It is convenient to define the set of N fusion matrices, each of dimension N x N, as

()-- Nk.

A simple way to understand the fusion rules is to consider their meaning when applied

to more conventional quantum numbers. For quasiparticles whose only quantum numbers

are electric charge, the fusion of two quasiparticles of charge qa and qb is to a quasiparticle

of charge qa + qb. If the quasiparticles carry spin, then the fusion rules become the Clebsch-

Gordon coefficients of the tensor product of the spin representations.

(1.1) indicates that combining two topological charges in general leads to a superposition

of topological charges. Physically, we may think of this as follows. If we have two quasi-

particles, 'yi and 7 2 , then "fusing" them - bringing them to the same location - will lead to

a superposition of wave functions with the quasi-particles 'yk; the basis labelled by 7Y is a

preferred basis because it is in this basis that the fusion rules Nk are integer. We say that

a quasiparticle 'yj is Abelian if, for any fixed j, N. = 1 for only one value of k, and zero for

all other values of k. That is, the fusion of yj with any other quasiparticle produces only

one quasiparticle. Non-Abelian quasiparticles are interesting because a set of non-Abelian

quasiparticles at fixed positions will have a degenerate set of states, and the degeneracy is

robust to any local perturbations.

The degeneracy of states in the presence of m quasiparticles of type 'yj at fixed locations

grows as d7 . di is known as the quantum dimension of yj and is equal to the largest eigenvalue

of the fusion matrix Ni. For Abelian quasiparticles, the quantum dimension is 1, while for

non-Abelian quasiparticles, it is greater than 1.

The fusion rules must satisfy a set of consistency conditions, for example they must all
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= exp(2,is)

Figure 1-2: The twist is the phase obtained when a quasiparticle - whose world line should
be framed into a ribbon is rotated by 27r.

commute with each other:

N, N3 = N3 Ni, (1.2)

which ensures the associativity of the fusion algebra: -i x (7j x 7k) = (-N x Yj) x ye.
Another important topological quantum number associated with the topological charges

is called the quasiparticle twist, O6, or the topological spin si, where o -_ ei2,S. This is
the phase acquired by a wave function with total topological charge -yj under a 27r rotation.
Alternatively, one could think in terms of world lines of quasiparticles, whereby the world
lines should be framed to form ribbons (Witten, 1989), and a 2-r rotation of the quasiparticle
adds a phase of 27si to the amplitude for some process (see Figure 1-2).

The quasiparticle twists, together with the fusion rules, almost completely character-
ize the topological quantum numbers of a phase. They are topological in the sense that
these properties are all completely invariant under any weak perturbation to the Hamilto-
nian. The mathematical formalism that describes topological phases of bosonic systems is
called modular tensor category theory (Turaev, 1994). It formalizes all of the properties that
quasiparticles must have, the consistency conditions that must be satisfied, and the data
that completely specifies all possible topological quantum numbers. It is analogous to group
theory as a way to understand symmetry-broken phases. The extension of modular tensor
category theory to describe topological phases of fermionic systems is currently the subject
of research.

1.2.2 Physical characterization of topological phases

Topologically ordered phases naturally can be grouped into two different categories. There
are those that have protected gapless edge modes when the system is put on a space with
boundary, and there are those that do not.
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Of the ones that do not have protected edge modes, there are also two different possibili-

ties. First, there are time-reversal invariant topological phases. These are topological phases

of matter that can preserve time-reversal symmetry, even though all of their properties are

robust to time-reversal breaking perturbations. One necessary, but not sufficient, condition

on such topological phases is that for every quasiparticle -y with twist 6j, there must exist a

quasiparticle with twist i -1. The other possibility consists of topological phases that cannot

preserve time-reversal symmetry and do not have protected gapless edge modes.

Topologically ordered phases with no protected edge modes can currently be understood

through the theory of string-net condensation, which provides a physical mechanism through

which to understand the emergence of topological order (Levin and Wen, 2005). More specif-

ically, the string-net construction provides exactly solvable model Hamiltonians for bosonic

systems whose ground state wave functions are believed to be able to describe any time-

reversal invariant topological phase. It is also possible that the string-net construction can

actually describe the wider class of all topologically ordered phases with no protected gapless

edge modes. In other words, for essentially any possible topological phase without protected

edge modes that can occur in a bosonic system, we may write model Hamniltonians that enter

into such a phase and we have model wave functions that exhibit the topological properties

of such phases. 1

However, topologically ordered phases that do have protected edge modes are much less

understood theoretically. We do not have such a systematic classification, or a way to physi-

cally understand in general the topological properties of such phases. In particular, the lack

in our understanding occurs for non-Abelian topological phases with protected gapless edge

modes. Ironically., the experimental situation is the reverse: so far the only established exper-

iniental realizations of topological phases occur in the fractional quantum Hall states. which

do have protected edge modes, while the exactly solvable lattice Hamiltonians that exhibit

topological phases without protected edge modes have not yet been realized experimentally.

The focus of this thesis is on extending the theory of (non-Abelian) topologically ordered

phases with protected gapless edge modes. The only known physical examples of such phases

occur in 2+1 dimensional systems the fractional quantum Hall systems.

1.3 The fractional quantum Hall effect

The fractional quantum Hall effect is the first discovered example of a topological phase

of matter, and it is what initiated the discovery of topological order. It is observed when

electrons are confined to two spatial dimensions in the presence of a strong external magnetic

field perpendicular to their plane, and at low temperatures.

If we ignore the interactions between the electrons, then we can exactly solve the quantum

mechanical system. The result for a single electron confined to two dimensions in the presence

of an external magnetic field is as follows. The energy spectrum forms a series of "Landau"

'Strictly speaking this is currently believed to hold in general only for time-reversal invariant systems,
although there is currently some evidence to believe that it can be extended to hold for all topological phases

without protected edge modes.



1.3. THE FRACTIONAL QUANTUM HALL EFFECT

levels, at energies En = (n + 1/2)hw,, where we = eB/mc is the cyclotron energy. Each
Landau level contains N -- P/4 0 states, all degenerate in energy. 4 is the total flux
piercing the plane and 4o = hc/e is the flux quantum.

Thus if we ignore interactions, we expect that as we add more and more electrons, more
of the states in each Landau level are filled. When a Landau level is totally filled, we obtain
a band insulator. When it is fractionally filled, we have a band metal. The filling fraction,
v = Ne/Nt, indicates the number of filled Landau levels; fractional filling indicates that a
Landau level is only partially filled.

It is thus easy to understand through a single-particle framework why incompressible
states are found at integer filling. Each filled Landau level contributes a Hall conductance of

h, so that the Hall conductance is ve 2/h when v is an integer (Thouless et al., 1982), while
the longitudinal conductance is exponentially suppressed and vanishes in the limit of zero
temperature. In practice, in the presence of disorder, the incompressible states are stabilized
for a wider range of magnetic fields, because of the presence of extra localized states so that
one sees plateaus in the Hall conductance at integer multiples of e2/h (Klitzing et al., 1980).

Remarkably, as experimental samples were made cleaner, the magnetic field made higher,
and the temperature made lower, plateaus in the Hall conductance, accompanied by dips
in the longitudinal conductance, started appearing at fractional fillings (Tsui et al., 1982)
(see Figure 1-3). Since all of the single-particle states in a given Landau level are degener-
ate in energy, the emergence of a gapped, incompressible state can occur solely because of
interactions between the electrons.

The emergence of the fractional quantized Hall conductance came as a big surprise. Ex-
perimentally, the first plateau observed was at filling fraction V = 1/3, while subsequently
plateaus were found at v = 2/5, 3/7, 4/9, and others. In attempting to understand the nature
of these new states, a new chapter was opened in the study of condensed matter physics and
in our understanding of the possible quantum states of matter.

Laughlin made seminal progress when lie found a wave function that characterizes the
essential properties of the v = 1/3 state (Laughlin, 1983):

'P 1/ 3 ({Zi}) = 11(z, - zj)3e- E Jz,2/4 (1.3)
i<j

Laughlin found that when he exactly diagonalized the Coloumb Hamiltonian and took the
overlap of the ground state wave function with the trial wave function (1.3), the overlap
was exceedingly high (close to 0.99), for a system of three particles. Knowledge of the wave
function allowed for the understanding of a host of physical properties of these states. For
example, it naturally suggests that quasihole excitations can be made by depleting the density
in some region:

I1/ 3 (7; fzi}) =7f(z, - 1) fJ(zi - zy) 3 e- Z, 12/4 (1.4)
2 i<J
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Figure 1-3: Plots showing the Hall resistance Rq = Vy/I, and the magnetoresistance Rx? =

Vx/Ix of a two-dimensional electron system of density n = 2.33 x 1011 cm-2 at a temperature

of 85 mK, vs. magnetic field. The numbers indicate the filling fraction. Data is from

(Eisenstein and Stormer, 1990).
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Laughlin's analysis of such a wave function shows that the quasihole carries a localized electric
charge of e/3! Thus came the first example of fractionalization in a physical system in more
than one spatial dimension. Subsequently, it was discovered that the quasiparticles also have
fractional statistics (Halperin, 1984; Arovas et al., 1984).

The simple form of the Laughlin wave function made it amenable to generalizing it to
other possible incompressible FQH states, which gave an explanation of almost all observed
plateaus. This led to the hierarchy states (Haldane, 1983; Halperin, 1984, 1983), the Jain
states based on the composite fermion picture (Jain, 1989, 1990), and multilayer states like
the Halperin states (Halperin, 1983).

The hierarchy construction starts from the observation that the quasiparticles and quasi-
holes above any given FQH state are themselves charged particles confined to two dimensions
in the presence of an external magnetic field. If the quasiparticle excitations also condense
into a FQH state, then a new incompressible state is formed. This construction naturally
leads to a hierarchy of states and can yield possible incompressible FQH phases for any
rational filling fraction.

The composite fermion approach allows for a different persepective on FQH states and
also yields a recipe for constructing a wide variety of them. Here., one imagines that each
electron binds to an even number of flux quanta to form "composite fermions" - bound states
of electrons and flux. These composite fermions are then assumed to form integer quantum
Hall states.

Halperin generalized Laughlin's wave function for single layer states to describe multilayer
states as well. The famous double-layer examples of these states are the Halperin (mnl) states,
which are described by the wave function

<b (mn)({Zi}, {w7}) = J(z, - zj)mf J(W, wjY)" [(zi - j)le- zj 2/4Z? 1h 1/4, (1.5)
i<j i<j ij

where zi and wi are complex coordinates of electrons in the two distinct layers. These describe
incompressible states at filling fraction v = (m + n - 21)/(mn - 12).

The form of Laughlin's wave function also naturally suggested a possible field theory -
Chern-Simons theory - as the description of the long wavelength behavior of these phases
(Zhang et al., 1989; Girvin and MacDonald, 1987; Read, 1989; Blok and Wen, 1990a,b).

It was eventually discovered that the FQH states cannot be described by any local order
parameter, which defies the theoretical paradigm of symmetry-breaking theory. An impor-
tant conceptual problem thus arose about how to understand the order of these novel, exotic
states. Eventually it was realized that these states have a new kind of order, called topolog-
ical order (Wen, 1989; Wen and Niu, 1990). Thus they should be viewed as a totally new
kind of quantum phase of matter that cannot be described by symmetry-breaking and the
conventional Ginzburg-Landau theory. The challenge is therefore to understand how to fully
characterize and to experimentally probe topological order in the FQH states.

The problem of characterizing the topological order of Abelian FQH states was solved by
the K-matrix formalism developed in (Wen and Zee, 1992a). Using this theory, for example,
it can be shown that the hierarchy construction can describe all possible Abelian FQH states
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and that the composite fermion construction, although very different, does not lead to new

topological orders. However, the problem of systematically characterizing and classifying the

topological order of non-Abelian FQH states is still unsolved.

1.4 Outstanding conceptual problems

Nearly thirty years after the discovery of the FQH effect, our understanding of these states of

matter are still not complete. While there is much established knowledge in the theory of the

FQH effect and in the study of topological phases of matter, there are still many interesting

open and unanswered questions.

A wide gap in our understanding is in connecting theory and experiment. While fractional

charge has been detected experimentally, we still lack experimental probes of topological

order. Through a combination of numerical methods and experimental measurements, we

can only guess at what some possible candidate phases are. In all but the simplest cases, the

numerical results are not conclusive and so there are many situations in which we cannot be

sure of what topological order is being realized. This is like knowing that a solid is forming

some crystal, but not being able to ascertain the crystal structure, ie whether it is a cubic

lattice, or a diamond lattice, etc.

Aside from our understanding of how to experimentally probe topological order, there are

also fundamental conceptual gaps in our understanding of topological order. These mostly

regard non-Abelian FQH states, phase transitions between topological phases, and the possi-

bilities for collective states of Abelian and non-Abelian anyons. Further understanding these

issues may ultimately be important for bridging the gap between theory and experiment. Let

us discuss some of these issues individually.

As mentioned above, time-reversal invariant topological phases of matter can all be classi-

fied using the theory of string-net condensation. Given any allowed set of topological quantum

numbers for a time-reversal invariant topological phase, it is known how to construct a model

Hamiltonian and ground state wave functions that are in that phase. While not yet proven,

this statement may hold more generally for all topological phases that do not have protected

edge modes. In contrast, chiral topological phases that do have protected edge modes are not

classified. We do not know how to systematically construct and classify model Hamiltonians

and model wave functions that describe any possible chiral topological phase. This applies

in particular to non-Abelian FQH states. Aside from a few examples such as the Moore-

Read Pfaffian and the Read-Rezayi states, there have been very few examples of non-Abelian

FQH states for which we have model wave functions and model Hamiltonians and that we

fully understand. This is an experimentally relevant question because it is plausible that

the non-Abelian FQH states that are realized in experimental systems do not lie in, or are

not restricted to, the severely limited class of states that we currently understand how to

theoretically describe. Instead, very different states may be realized experimentally. Further-

more, the current constructions of these ideal wave functions, which rely on a connection to

conformal blocks of 2D CFT, are in many ways conceptually unsatisfying. We would like to

have a more systematic and plysical way of characterizing such non-Abelian states.



1.5. OVERVIEW OF THIS THESIS

Another set of problems that is not currently well-understood involves phase transitions
between different topological phases, especially between Abelian and non-Abelian topological
phases. We have a limited class of examples of phase transitions in non-Abelian topological
phases. In fact, so far all known examples have been equivalent to the weak to strong pairing
phase transition in p + ip paired BCS superconductors. In particular, we would like to know
which topological phases can be connected to others through continuous phase transitions and
which cannot, and what the universality class of the continuous transitions are. This is also
an experimentally relevant question because while discerning topological phases is difficult.,
detecting transitions between them may be easier and indeed has been done experimentally
in certain cases.

1.5 Overview of this thesis

This thesis is focused on studying some of the issues raised in the previous section. In
particular, the focus is on improving our understanding of how to theoretically characterize
topological order in non-Abelian FQH states and studying phase transitions in non-Abelian
states.

This thesis is organized as follows. In Chapter 2, we present the ideal wave function
approach to constructing non-Abelian FQH states. This approach starts with the celebrated
Laughlin wave function and uses the connection between ideal FQH wave functions and
conformal blocks in 2D CFT to construct a wider class of non-Abelian FQH states. The
basic idea of this approach is developed further through the introduction of the pattern of
zeros characterization of ideal FQH wave functions and., more recently, by studying in detail
generalized vertex algebras. We will describe the pattern of zeros framework, its relation to
conformal field theory, and how it is used to characterize quantitatively and systematically
the topological properties of FQH states. In Chapter 3, we will develop the pattern of zeros
characterization for multilayer FQH states and discuss some simple non-Abelian states that
may be realized in experiments on double-layer FQH systems. The multilayer classification
provides a foundation for the systematic characterization and classification of all non-Abelian
topological orders in FQH states, and may even be applicable for topological phases that are
not FQH states. A challenging question that will emerge is whether most of the pattern of
zeros solutions can describe valid, incompressible FQH states. This is a question that we
will be able to address in Chapter 6, after totally different theories and methods have been
developed.

In Chapter 4, we turn to the other known method of constructing non-Abelian FQH
states: the parton/projective construction. We will show how the projective construction
can be used to derive the bulk effective field theory of the Z parafermion (Laughlin/Moore-
Read/Read-Rezayi) FQH states. The effective field theory of these states (for k > 2) had been
an unresolved issue; the projective construction allows us to derive the topological properties
of these states in a different way from the CFT approach and allows us to understand these
states in terms of the simpler integer quantum Hall states. It also shows that all known
non-Abelian FQH states can be described through the projective construction.
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In Chapter 5, motivated by a certain version of the projective construction and its relation

to some known bilayer FQH states, we will study U(1) x U(1) x Z 2 CS theory with integer

coupling constants (k, 1). This CS theory, containing a disconnected gauge group, is difficult

to define and thus studying its topological properties is a challenge. We will demonstrate

how to compute the ground state degeneracy on genus g surfaces, how this yields the quan-

tum dimensions of all of the topologically distinct quasiparticles, and various properties of

topological defects like the Z 2 vortices, which we find to be non-Abelian. We will point out

that for I = 3, the properties of the U(1) x U(1) x Z 2 CS theory agree with those of the Z 4

parafermion states at filling fraction v = 2/(2k - 3), suggesting that the U(1) x U(I) x Z2

theory is an alternative description of the long wavelength behavior of these states. This

suggests the possibility of a Z 2 Higgs transition between the Z 4 parafermion states and the

(k, k, k - 3) bilayer Abelian states.

In Chapter 6, we will pose and answer the question of whether the U(1) x U(1) x Z2

CS theory, for other values of its coupling constants, also describes valid FQH states of

systems with local interactions. To this end, we will introduce a slave particle gauge theory

that can be used as a lattice regularization, or UV-conpletion, of the U(1) x U(1) x Z2 CS

theory. The slave particle theory will allow us to compute even more topological properties

that we could riot compute from the U(1) x U(1) x Z 2 theory alone; in fact it may be

viewed as a more complete definition of the U(1) x U(1) x Z 2 CS theory. It also provides an

interesting example in which Z 2 electron fractionalization can lead to non-Abelian topological

phases. The slave particle gauge theory will show that the U(1) x U(1) A Z 2 CS theory, for

all values of its coupling constants, describes valid FQH states; these are new non-Abelian

FQH states that we will dub the orbifold FQH states because they are closely related to

the famous Z 2 orbifold CFT at central charge c = 1. After further studying the topological

properties of these proposed phases, we will demonstrate how they exemplify a series of 3D

Ising, or Z 2 Higgs, transitions in bilayer FQH systems between Abelian and non-Abelian

states. We will comment on the experimental significance of these theoretical developments

for experimental studies of bilayer FQH systems. Finally, we will briefly discuss these orbifold

FQH states through the perspective of the pattern of zeros and vertex algebra approaches.

These states are important in this regard because they are closely related to pattern of zeros

solutions whose viability for describing incompressible FQH phases had been questionable.

The orbifold FQH states show that these "problematic" pattern of zeros solutions are indeed

physically relevant for characterizing incompressible FQH states and they yield fundamental

insights into the pattern of zeros and vertex algebra approach to ideal FQH wave functions.

It has recently been observed that U(1) x U(1) CS theory, for a certain choice of integer

coupling constants, describes the topological properties of the deconfined phase of ZN gauge

theory in 2+1 dimensions (see for instance (Kou et al., 2008)). This CS description admits a

way to "twist" ZN gauge theory and gauge the electric-magnetic duality by simply enlarging

the gauge group to U(1) x U(1) X Z 2. In Chapter 7. we will study these resulting topological

phases, which do not have protected edge modes and are not FQH phases. We will introduce

a parton construction, utilizing only mean-field IQH states. whose topological properties are

those of the deconfined ZN phase. This is a novel way to describe the deconfined phase of ZN

gauge theory, and has the advantage that it will allow us to utilize the Z 2 fractionalization



1.5. OVERVIEW OF THIS THESIS 23

construction of Chapter 6 in order to interpolate between the ZN phase and the "twisted" ZN
phase. This study shows that there are a series of non-Abelian topological phases separated
from the simple, Abelian ZN topological phases by a continuous Z2 transition.



24 CHAPTER 1. INTRODUCTION



Chapter 2

Ideal wave functions: conformal
field theory and the pattern of
zeros approach

This chapter will provide a brief introduction to the conformal field theory and pattern of
zeros approach to characterizing ideal FQH wave functions. The content presented here
regarding the pattern of zeros approach is based on (Wen and Wang, 2008a,b; Barkeshli and
Wen, 2009c).

2.1 Introduction and background

Many-body wave functions of N charged particles on a plane in the lowest Landau level take
the form

''(1,1.--,XNN) = (z1, ... , ZN)e- I z,12 /4 (2.1)

where z xi + iyi is the complex coordinate of the ith particle and I({zi}) is a holomorphic
polynomial in the complex coordinates {zi}. The magnetic length the length scale associated

with the presence of the external magnetic field, 113 is set to one. For identical
particles, @({zP}) must be either an anti-symmetric or a symmetric polynomial, depending
on whether the particles are fermions or bosons. For charged particles on a sphere, (xi, yi) are
interpreted as the stereographic projection onto the plane of the coordinates on the sphere
and the factor e- Ed 2 /4 is replaced by F[1 + zil 2 /(4R2 )-1Ng>/ 2 , where R is the radius
of the sphere and N4> is the number of flux quanta piercing the surface of the sphere.

When the lowest Landau level is completely filled, the ground state wave function is given
by a Slater determinant of all of the single-particle states in the lowest Landau level:

'IDv-1 = J(zi - zn). (2.2)
i<j
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This describes a uniform, incompressible, insulating state of electrons with a quantized Hall

response.

What kind of wave functions describe incompressible, uniform fluids when the lowest

Landau level is only partially filled? Laughlin (Laughlin, 1983) proposed one series of wave

functions:

<Drm({zi}) = 1(zi - zy) m , (2.3)
i<j

which describe a circular droplet of uniform density with filling fraction v 1 1/m. These wave

functions are special because <bm, is zero only when the coordinates of electrons coincide; there

are no off-particle zeros. In fact, (bm is the unique polynomial of highest density that has mth

order zeros as any two particles approach each other. This property allows us to design an

idealized Hamiltonian that selects for such a wave function as its ground state. This idealized

Hamiltonian is of the form

H = V"0(zi, zj), (2.4)

i<j

where V "m (zi, zj) is a two-body potential that contains only delta functions and derivatives

of delta functions in order to select for wave functions that have zeros of a certain order as

two particles are brought close together. Put another way, V "m is a projector that projects
onto the subspace where two particles have a relative angular momentum of m. When m = 2

for example,

VM(zi, zy) = (zi - z), (2.5)

and <b2 is a zero-energy state of this Hamiltonian. The fact that <b2 is the unique such

symmetric polynomial of highest density suggests that b2 may describe an incompressible

state. When m = 4. the potential

V(zi, zy- v0 (zi - z2) + v 2 2. 6(zi - z2),92 (2.6)

yields <bm-,4 as the ground state (Haldane, 1983).

An important property of the Laughlin wave function is that it is also equal to a correlation

function of vertex operators in a 2D free chiral scalar boson conformal field theory:

<Dm({zi}) = lim zg (eN(2.o~ ... y7)
Zo--100

where hN - N 2m/2 and the "electron operator" is V(z) = eiVo(z), which has scaling

dimension he - r/2. Alternatively, we could use a fernionized representation for the electron

operator: V(z) = ] 1 Ii(z), where )i(z) is a complex free chiral fermion field in a 2D CFT.

The operator product expansions of the electron operators in the CFT encode how the wave

function goes to zero as various coordinates are brought together.
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These observations suggest a route to obtaining other viable FQH trial wave functions
by replacing V(z) with other operators from a CFT (Moore and Read, 1991; Wen and Wu,
1994; Wen ct al., 1994a). The simplest generalization of the Laughlin construction is the
choice

Ve (Z) = (Z) eiv54-'(2), (2.8)

where now V) is- a chiral Majorana fermion, which has scaling dimension 1/2 and that squares
to the identity: $b2 = 1. This choice yields the so-called Moore-Read Pfaffian wave function
at filling fraction v = 1/n:

1Mpf i (zi - zj) m , (2.9)

where

Pf ( 1 ) = (1)a(P) 1 1 . (2.10)
zzp - zP 2  zPN-1 ~ ZFN

P denotes a permutation over N variables, Zp is the sum over all such permutations, and
o-(P) refers to the sign of the permutation.

The Pfaffian wave function is the unique zero energy ground state of highest density of
an ideal Hamiltonian with more complicated three-body interactions:

H = E V "(zi. z-j, zk),(.1

i<j<k

where for the v = 1 Pfaffian,

V(iz2, z) = S[vo(z - z2 )6(z2 - z3 ) - vi (zi - z2)02;o(z2 - Z3 )a3 ]. (2.12)

S is the total symmetrization operator between zi, z 2 , and Z3 .

This relation to conformal field theory is a powerful observation because not only does
the CFT yield a trial ground state wave function, but it also encodes all of the topological
properties of these phases. To see how this works, let us return to the Laughlin and Moore-
Read Pfaffian examples. The fundamental quasiholes in Laughlin's V = 1/m states are
described by the following ideal wave function:

N Nqh

,71.Nqh (z1 --, zN) = C(f]i )fj(zi - Tj) X fJ(zi - zj) (2.13)
i=1 j=1 i<j

where qi are the complex coordinates of the quasiholes. Note that the normalization C({'7})
of this wave function depends on the coordinates {j }. These quasi-holes describe holes in the
density of the electron fluid that carry fractional electric charge e/m and that carry anyonic
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statistics. Like the ground state wave function, the quasi-hole wave functions can also be

obtained from correlation functions in a 2D CFT:

2h~ urn (VC(C0 1()..V(]q)'Z)..V(N (2.14)
<I7(D -7 (z1, --- , ZN) = liM Z NhpVoZoV(9)''V(CaV~z)-V~N,(-

qhzoh -- C+o

where V1(7) = ei(1/m)V() and the background charge Voo(z) = e-i(N±+Nqh/VH)#(Z) is

inserted so that the correlation function does not vanish. Alternatively, in the fermionized

description, where we had Ve(z) - 1 #i (z) and 0j(z) is a chiral free fermion from a

2D CFT, the quasihole operator is V(rj) = <i(q) for any i (any choice of i will yield the

same quasihole wave function above). More generally, there are m topologically distinct

quasiparticles in the Laughlin states, each with charge i/m for I = 1, -. - , m. The case 1 = m

corresponds to the topologically trivial electron. In the CFT description, these are described

by the operators V (71) - ei(I/m)V/$(q), which correspond to bound states of 1 fundamental

charge-1/m quasiparticles.

The proper way to view the electron and quasiparticle operators is through the language of

chiral conformal field theory and chiral verteK algebras. The electron operator Ve(z) satisfies

an operator algebra, which includes the operator product expansion (OPE) of Ve(z) with

itself and with all other operators that are generated in the OPEs:

Ve(z)Ve(w) =(z - w)h2 - 2 V(w) + O((z - )h2- 2 he+1).

V(z)V2 (w) (z - w)h3h2-heV 3 (w) + O((z - )h:h3he)+1

(2.15)

In the mathematical literature, this is referred to as a vertex algebra; in the conformal field

theory literature, it is referred to as a chiral algebra.1 It is an infinite-dimensional algebra

generated by the electron operator. Each mode of the electron operator can be viewed as

a generator and there are an infinite number of modes when we expand V(z) in a Fourier

basis. This infinite-dimensional algebra contains the Virasoro algebra as a subalgebra. In

this quantum Hall setting. we will refer to it as the electron chiral algebra Ae. In the case

of the Laughlin states, Ae is a well-known chiral algebra it appears in the theory of the

1+1D free scalar boson and is called a U(1)m Kac-Moody algebra. In terms of the theory

of chiral algebras, the operators V(z) have a natural interpretation. They are the primary

fields, or highest weight representations, of the algebra Ae. In the case of the Laughlin states,

each distinct representation of the chiral algebra Ae corresponds to a topologically distinct

quasiparticle, while operators that lie in the same highest-weight representation correspond

to topologically equivalent quasiparticles.

Let us pause to discuss the intuition behind this framework. All excitations generated

by the electron operator acting locally in some region of space correspond to "local," topo-

logically trivial, excitations. The operators that create these local disturbances reside in the

"electron chiral algebra." When we characterize topological orders, we need to understand all

'More specifically, when the electron is a fermion, then Ve has half-integer scaling dimension and Ae is

then called a chiral superalgebra.
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of the topologically distinct quasiparticle excitations, which can only be created by non-local
operators. The quasiparticle operators must be local with respect to the operators in the
chiral algebra, and the operators in the electron chiral algebra can act on topologically non-
trivial excitations to create local disturbances. These local disturbances cannot change the
topological class of the excitation. In this rough sense, we see that quasiparticle excitations
correspond to "representations" of the electron chiral algebra.

The first novel example using this relation to CFT was the Moore-Read Pfaffian state.
As discussed above, the electron operator in this approach can be written as Ve(z) =
,/(z)eiV*(z), where @'(z) is a chiral Majorana fermion. This yields the Pfaffian wave func-
tion, as in (2.9). How do we obtain the topologically distinct quasiparticles? This is a difficult
question and, in its full generality, is still the subject of ongoing research.

One way to proceed is to embed the chiral algebra Ae in some well-known conformal field
theory. For example, in the case of the Pfaffian at v = 1/m, we embed the algebra in the
Ising x U(1) CFT. This is the simplest, or "minimal" CFT that contains the operator V.
The Majorana fermion is from the Ising CFT, while the vertex operator eidf(z) is from
the U(1) free boson CFT. The quasiparticle operators correspond to all operators from the
Ising x U(1) CFT that are local with respect to the electron operator. The locality condition
can be checked by making sure that the OPE of a quasiparticle operator with an electron
operator is single-valued; this ensures that the quasiparticle wave functions are all single-
valued in the electron coordinates. Two quasiparticle operators are equivalent if they can
be related to each other by an electron operator (or, more generally, by an operator in the
electron chiral algebra). In Table 2.1, we show how this works for the Pfaffian state.

This approach was generalized further in (Read and Rezayi, 1999), where a different
electron chiral algebra was chosen and embedded in a Z, x U(1) CFT, where Z, denotes the
Z, parafermion conformal field theory of Zamolodchikov and Fateev.2 The electron operator
has the form Ve = @(z)ei 7 1(s), where @ is a Z, paraferinionic current, which has fractional
scaling dimension hp = (n - 1)/n and satisfies i" = R. The wave functions for these states are
exact zero energy states of an ideal Hamiltonian with (n + 1)-body interactions; the ground
state wave function is the unique zero energy state of highest density. The quasiparticle
operators correspond to operators that can be constructed in this CFT that are local with
respect to the electron operator. These "Z, parafermion" FQH states are also referred to
as the Read-Rezayi states; they exist for filling fraction v = n/(nM + 2), where M is an
even (odd) integer for FQH states of bosons (ferinions). The case n = 2 is the Moore-Read
Pfaffian while the case n = 1 yields the Laughlin state.

The conformal field theoretic approach to trial FQH states has a number of assumptions
that in some cases have been borne out in numerical studies. It is assumed that all topo-
logically inequivalent quasi-particle excitations correspond, one-to-one, to some quasiparticle
operator in a chiral vertex algebra. The topological properties of the quasiparticles are then
assumed to follow from the properties of the quasiparticle operators in the 2D CFT. The
twist, 07, is related to the scaling dimensions of the quasi-particle operators hY through

2 This conformal field theory emerges at the critical point of certain Z,, statistical lattice models
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v = 1 Pfaffian state

CFT Label Scaling Dimension Quantum Dimension

ff ~ yV=@, 0~ 1 1
1/2 1

ge i1/24 3/16

v = 1/2 Pfaffian state

CFT Label Scaling Dimension Quantum Dimension

I ~ Ve =ei' 0-~3/2 1

e i/2V+ 1/8 1

V) 1/2 1

,Oei1/2v2+ 5/8 1

gei1/4 V20 1/8

,aei3/4v 2_0 5/8 2 -

Table 2.1: The Ising CFT consists of three conformal primary fields, denoted 0, 7, and the

identity R. These have scaling dimension 1/16, 1/2. and 0, respectively. The U(1) theory has

primary fields of the form eis+(z), with scaling dimension a 2 /2. Carrying out the procedure

described in the text, we find three topologically inequivalent quasiparticles for the v = 1

Pfaffian state and six topologically inequivalent quasiparticles for the V = 1/2 Pfaffian state.

Oy = e2 2 .ri3 Furthermore. the fusion rules of the topological excitations in the bulk are

believed to be equivalent to the fusion rules, with respect to the chiral algebra Ae, of the

quasiparticle operators in the CFT.

Remarkably, it is also found that in all well-studied examples, the CFT that describes

the gapless edge dynamics turns out to be equivalent to this "bulk" CFT, which is used in

constructing the ideal ground state and quasihole wave functions.

Unfortunately, there are several conceptual holes in our current understanding of con-

structing ideal FQH wave functions and deducing their topological properties. First, the

topologically inequivalent quasiparticles, and even the electron operator itself, are currently

usually labelled according to a particular arbitrary embedding of the electron chiral algebra

into some known CFTs. For example the Read-Rezayi states are understood by embedding

the chiral algebra into the Z, x U(1) CFT We would like to understand and characterize

these idealized trial wave functions in a more physical way, without reference to this arbi-

trary embedding, which is not even a well-defined procedure in general. We would then like

to be able to derive all topological properties of the states from this new characterization of

the FQH states.

Another important question is, do all non-Abelian FQH states have an ideal wave function

3 When the electron is a fermion, V has scaling dimension 1/2 and the twist is only defined up to a sign,

a fact which complicates the application of modular tensor category theory to fractional quantum Hall states

of fermions.
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that is the exact ground state of an ideal Hamiltonian? In the case of the Abelian FQH states,
we know that every topological phase can be described by an invertible K-matrix, and for
each K-matrix we can construct an ideal Hamiltonian and an ideal wave function that exhibits
those topological properties. Is a similar situation also true for all non-Abelian FQH states?

Resolving these questions would lead to a better understanding of ideal FQH trial wave
functions and their topological properties. It would also allow us to systematically construct
non-Abelian FQH states and to go beyond the few known examples that can be constructed
in this way. As an attempt to shed light on many of these questions, the pattern of zeros ap-
proach., and more recently the chiral vertex algebra approach, to FQH states was introduced.

In the following, we will introduce the pattern of zeros characterization for single-layer
FQH states and describe the main known results. The following chapter will develop the
theory of the pattern of zeros characterization for multilayer FQH states.

2.2 Pattern of zeros characterization for single-layer FQH states

As discussed in the previous section, the ideal Hamiltonians contain interactions that contain
only delta functions and derivatives of delta functions. As such, the polynomials that are
zero energy ground states of such ideal Hamiltonians have a specific structure in the way they
go to zero as various numbers of particles approach each other. This suggests that in order
to systematically characterize and classify ideal wave functions and their ideal Hamiltonians.
we should study the structure of zeros of a certain class of polynomials. In the following we
will explain the pattern of zeros approach to this problem for single-component FQH states.

An N-particle FQH wave function in the lowest Landau level correponds to a complex
polynomial of N complex variables, @({zj}). If the particles are bosons. 4 is a symmetric
polynomial, while if the particles are fermions, it is an antisymmetric polynomial. Given any
anti-symmetric polynomial %anti-sym,, one can construct a symmetric polynomial 4syrrr
by dividing a Jastrow factor:

4
)lanti sr'r(z}4bsymm({Zi}) = zi) (2.16)

Thus, in order to characterize FQH wave functions of either fermions or bosons, it suffices to
develop a characterization of symmetric polynomials.

2.2.1 S, characterization

Consider a symmetric polynomial @({zj}), and a set of a coordinates. Define Sa to be the
minimal power of H a zi in the polynomial 4. This means that if we set zi = Aj + z(a) for
I 1,- , a, where z(a) _ zi+ ++z is the center of mass of the coordinates and R 0,
then

(2.17)<bD({zj}) = A S"P({{i, z(a),f {za+1, -)+ O(As"+1),
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where P({j}, z(a), {Za+1, - - }) is a polynomial in {i} and the remaining coordinates z(a) and

{Za+i}. We refer to z(a) as the coordinate of an a-cluster. We assume that Sa is independent

of the choice of z(a), which must be the case for translationally invariant wave functions.

We also assume that Sa is independent of the choice {(J} and that different polynomials

P({(i}, z(a), {za+1, - - - }) obtained from different choices of (j are linearly dependent. This

is the assumption of unique fusion. The restriction to polynomials that satisfy this unique

fusion condition is the first major constraint on the space of symmetric polynomials that we

choose to focus on. All known ideal FQH wave functions satisfy this unique fusion condition,

however its necessity is not completely understoood.

We can immediately deduce some basic properties of Sa. Since C has no poles, it is clear

that Sa > 0. Since (P must be single-valued under rotating A in the complex plane by an angle

2wr. Sa must be an integer. Let Si be the minimal power of zi. A translationally invariant 4t

will have S1 = 0, otherwise it will vanish everywhere.

Thus, for a translationally invariant polynomial, S, is a nonnegative integer that charac-

terizes the order of zero that results when the size of an a-cluster goes to zero.

2.2.2 Derived polynomials and the Dab characterization

In the previous section, we introduced the derived polynomials P({ }, z(. {Za+1,- }). As

a consequence of the unique fusion condition, these polynomials are actually independent of

the {j}. We may consider more general derived polynomials by bringing together other sets

of coordinates in P to obtain P(z(a), z(b).). Then we may consider bringing together an

a-cluster and a b-cluster:

P(z(a), z(b), . . ( z(>(a+b) (Z(a) - Z (b))Dab (Z(a+b), z(c), . ) (9((z(a) - Z(b))Dab+l)

(2.18)

Thus, Dab characterizes the order of the zeros in the derived polynomials as a cluster of a

electrons are brought close to a cluster of b electrons. The unique-fusion condition assumes

that the derived polynomials obtained from the different ways of fusion are always linearly

dependent, which is why Dab does not depend on how the clusters are formed and taken close

to one another. The fact that 1 is a single-valued, symmetric polynomial implies

Dab - Dba G Z, Daa = even, Da, > 0. (2.19)

We can deduce a relation between Dab and Sa as follows. The order of the zero obtained

by creating an (a + b)-cluster is Sa+b. One way of creating such a cluster is by first creating

an a-cluster, then creating a b-cluster, and finally bringing together the two clusters to create

an (a + b)-cluster. The order of the zero in this case will be Sa + Sb + Dab. Thus Dab can be

obtained from {Sa} through the formula

Dab = Sa+b - Sa - Sb.2 (2.20)
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Since Si = 0, we also have

Sa+1 = Sa + Dai. (2.21)

From this recursion relation and from the fact that Si = 0, we may obtain Sa from the
sequence Dab. Therefore we may equivalently label the pattern of zeros data using {Sa} or
{Dab}.

2.2.3 Characterization by sequence of highest occupied orbitals

The symmetric polynomial 4D>({zi}) can be expanded in a certain basis labelled by the pattern
of occupation of the various angular momentum orbitals:

<b = C{a,}<>{,}({zi}), (2.22)

where

N

z =(2.23)

P i=1

P denotes a permutation of N variables, Ep is the sum over all such permutations. and i
for i = 1, - - , N is an increasing sequence of integers such that the number of i for which
1i = I is given by n-TI.

Let us study what kind of boson occupations {5j} appear in the above sum when <} is
characterized by {Sa}. Let us set zi = 0. Since <D(0, z 2 , - ) does not vanish by translation
invariance, there is at least one boson occupying the z1'=0 orbital. Now let us assume that a
boson occupies the z1=0 orbital and bring a second coordinate, z 2 , to zero. We have:

<Dsi,(0, Z2, ... = Z2" P2 (Z3, Z4..) + 0(Z2" 2.4

Thus, among those {T-} that contain a boson occupying the 1 0 orbital, there is also a
boson occupying the 12 = D11  S2 - S1 orbital. Now consider taking z 3 to zero:

P2 (Z3, 4, ... =Dz1 P3(za, ... ) + O(z D), (2.25)

which shows that among those {I5} that have a boson occupying the 1 = 0 and 12 = D11
orbitals, there must be one which has a boson occupying the 13 = D2 1 = S 3 - S 2 orbital.
Repeating this procedure, we find that there must be one term in the sum (2.22) for which
the ath boson is occupying the angular momentum orbital la = Sa - Sa-1. Let nr be the
number of a such that la = 1. Then, <Df,, 1 ({zi}) is a term with the ath boson occupying the
angular momentum orbital la - Sa - 3o-1, which means that

< ({{zi ,1({zi}) + E C{j,<I i,I({z}). (2.26)
{ni}
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The two sequences {nl} and {S,} have a one-to-one correspondence; {ni} is referred to as

the occupation number sequence.

The other terms in (2.26) labelled by the sequence {i} correspond to sequences {Sa}

that satisfy Sa > Sa. This is clear because in extracting the basis element described by {n},
we always picked those terms with the lowest order of zeros as the particles were brought to

the origin.
Haldane has conjectured that all known ideal FQH wave functions actually satisfy a

stronger condition, whereby the other sequences {51 } that appear in the sum in (2.26) can

be obtained from the "root" sequence {nj} by squeezing operations. A squeezing operation

is a two-particle operation where two particles occupying the t1 and 12 angular momentum

orbitals move to the l and l orbitals, where li < i < li < l2 and li + l2 = li + l. These

squeezed sequences are consistent with the above requirement that Sa > Sa, but it is not

clear precisely what the origin of this squeezing property is.

2.2.4 Relation to angular momentum on the sphere

A FQH wave function <D({zi}) defined on a sphere forms a representation of SU(2). In such a

case, z represents the stereographic projection onto the plane of a point on the sphere. A single

particle in the lowest Landau level can fill any of the Nq + 1 orbitals, so the representation

of SU(2) formed in this case is the one with angular momentum .1 = Nq/2. The SU(2) Lie

algebra is generated by

Lz = z9z - J, L~ = Oz, L- = -z 282 + 2Jz. (2.27)

The total angular momentum of an a-cluster in the z direction will be the eigenvalue of the

operator

a

La = (zizi - J). (2.28)

i=1

The operator a 1 zi0zi counts the total power of a polynomial. Since the minimum total

power of fJi = zi is Sa, the minimum total angular momentum of an a-cluster is given by

Sa - aJ. This means that an a-cluster carries an angular momentum of

Ja = aJ - Sa = aN4/2 - Sa. (2.29)

We will use this relation later to construct ideal Hamiltonians and to place conditions on the

pattern of zeros for when they can correspond to rotationally invariant wave functions on the

sphere.

2.3 Consistency conditions

For the pattern of zeros to describe a valid FQH wave function, it must satisfy certain

consistency conditions. We already encountered several such conditions above. For instance,
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Figure 2-1: Schematic drawing of contours around which z(a) is taken. The crosses depict
off-particle zeros. (a) z(') is taken around C1 and then C 2 , not enclosing any off-particle
zeros. The function f(z(')) picks up a phase 27r(Dab + Dac). (b) z(b) and z(c) are brought
together, fusing a b-cluster and a c-cluster, dragging in some of the off-particle zeros along
with them. z(a) is taken around the fused combination, as illustrated by the contour C3 . The
function f(z(a)) then picks up a phase 27Da,b+c > 27(Dab + Dac).

we found that Sa is a nonnegative integer, Dab = Sa+b - Sa - Sb 2 0, and Daa = S 20 - 2S"
is even. In the following we find additional conditions that the pattern of zeros must satisfy.

2.3.1 Concave condition

One of the most important conditions on the wave function is simply the condition that the
wave function have no poles. This condition is remarkably restrictive on the allowed pattern-
of-zeros sequences. Consider a derived polynomial P(z(a), z(b).--) and fix all coordinates
but z("), thus viewing it as a complex function f(z(")). f(z(a)) has zeros at isolated points,
but no poles anywhere. Some of the zeros are located at z(b), z(c), etc. Those zeros are called
on-particle zeros. The rest of the zeros are called off-particle zeros.

If we imagine taking z(") around z(b) without enclosing any off-particle zeros, then f
will pick up a phase 27rDab. Similarly, if we take z(") around z(c) without enclosing any
off-particle zeros, then f will pick up a phase 2 7rDc. Now consider taking z(b) -* z(c). Under
such a process, some nearby off-particle zeros may also be taken to z(c). Therefore, if we
take z(4) around a contour that encloses both z(b) and z(c) in the limit that z(b) - z(c), the
complex function f must change by a phase that is greater than or equal to 2 7F(Dab + D,,c).
The phase can never be less than this amount because that would require the existence of
off-particle poles that get taken to z(c) in order to diminish the strength of the on-particle
zeros. By definition, the phase change of f under the above procedure is 2 7FDa,b+c. Therefore,
the condition that the wave function have no poles leads directly to the following concavity
condition on the integer Dab:

Dab+c 2 Dab + Dac. (2.30)

This is illustrated in Figure 2-1. In cases where all of the zeros are located on the particles
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and there are no off-particle zeros, the above inequality is saturated. This occurs in the

Laughlin states <D = ]I (zi - zy)"'

In the following, we will rewrite the concave condition as

A3(a, b, c) > 0,

A3(a, b, c) Da,bc Dab + Dac

= So+b+c - So+b - Sa+c - Sb+c + Sa + Sb + Sc. (2.31)

2.3.2 Cluster condition

The cluster condition is a way to associate some kind of grading to the polynomials that is

physically meaningful. The cluster condition states that the concave condition is saturated,

z. e.

Dab+c = Dab + Dac, (2.32)

whenever either a, b, or c is a multiple of some integer n. Such a polynomial is said to satisfy

the n-cluster condition. This means that the derived polynomial containing a kn cluster is

non-zero unless z(kn) coincides with the coordinates of another cluster; viewed as a function

of the single variable z("k). it has no off-particle zeros. A consequence of this is that if all of

the particles are fused to form n-clusters, then the resulting derived polynomial has the form

of a Laughlin wave function and there are no off-cluster zeros.

The Read-Rezayi (Z, parafermion) wave functions satisfy an n-cluster condition and they

are exact ground states of Hamiltonians with (n + 1)-body interactions. For a fixed filling

fraction. as n increases, the number of topologically distinct quasiparticles. the ground state

degeneracy on higher genus surfaces and the complexity of interactions necessary to realize

the state all increase. This suggests that the energy gap typically decreases with increasing

n. Wave functions that do not obey a cluster condition can be thought of as having infinite

n; we do not know how to design ideal FQH wave functions for incompressible states that do

not obey an n-cluster condition.

The cluster condition is extremely powerful and simplifying because it allows us to deter-

mine the entire pattern of zeros sequence from knowledge of a "small" number of elements

in the sequence. To see how this works, first observe that

Da = aDni = ma, (2.33)

where we have defined m = Dni. So for any kn-cluster, we have

Dkna = k'ma. (2.34)

The above equations imply

D frn = nDi = nm = even, (2.35)
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where the latter equality follows from the fact that Daa = even. In terms of the sequence
{Sa}, this implies that

1
Sa+kn = Sa + kSn + kma + -k(k - 1)nm. (2.36)

2

Therefore, all of the integers {Sa} can be determined from the set of integers {S2 ,- , Sn}.
In terms of the sequence {la}, we have

la+kn = Sa+kn - Sa+kn-1 = Sa - Sa-1 + km = la + km. (2.37)

This implies that the occupation number sequence {n} is periodic in 1, ni = nl+mn, for large
1.

2.3.3 Rotational invariance on the sphere

Under what conditions can we consider the polynomial <b({zj}) to be a rotationally invariant
polynomial defined on the sphere? In order for <D to be rotationally invariant, it must have
zero total angular momentum. We know that the total angular momentum of <D is given by

JN = NNp/2 - SNv (2.38)

For rotational invariance, we demand that JN = 0. so that

NN, = 2 SN. (2-39)

Let us suppose that N = nNc. In such a case. all of the particles can be clustered together to
form Nc n-clusters, and the resulting derived polynomial will have the Laughlin form. which
is rotationally invariant on the sphere. Thus we look for conditions under which 4 can be
made rotationally invariant on the sphere when N is a multiple of n.

Using the cluster condition and (2.39), we have:

N) = 2SL/n + (Nc - 1)m, (2.40)

which implies that 2Sn, must be a multiple of I:

2SC/n E Z. (2.41)

Note that the filling fraction v is defined as:

N1- v 1N - S, (2.42)

were S is the "shift," a topological quantum number of a FQH state that depends on the
spatial manifold. From (2.40), we see that the filling fraction of <D is given by

v = n/m, . (2.43)
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while the shift S on a sphere is given by

m - 2Sr/n. (2.44)

As a simple example, note that the Laughlin state has n = I, and since Si = 0, we find the

well-known result that the shift of the v = 1/m Laughlin state on a sphere is equal to m.

Note that rotational invariance on a sphere is not actually a necessary condition to have

a uniform, incompressible FQH state on a disk. Thus, this condition may in principle be

relaxed while still studying meaningful FQH states.

2.3.4 Additional constraints: A 3 = even

Studies of the solutions to the pattern of zeros sequences have shown that the conditions

determined so far allow for sequences {Sa} that cannot describe translationally invariant

polynomials. Such illegal solutions seem to satisfy A 3 (a, b, c) = odd, so in order to rule out

such solutions, the additional constraint A 3 (a. b, c) = even may also be imposed. However

this constraint is actually too restrictive; currently the only way we know how to relax this

constraint while describing valid polynomials is to use the vertex algebra approach and to

replace the A 3 (a, b, c) = even condition with certain consistency conditions on the vertex

algebra of the electron operators. Currently we do not know how to impose the appropriate

constraints without making reference to vertex operator algebras.

2.4 Ideal Hamiltonians

Given a pattern of zeros sequence. it is important to be able to construct a local, gapped

Hamiltonian whose unique ground state wave function has the given pattern of zeros. If

this is possible, then we know that the corresponding pattern-of-zeros sequence describes a

topological phase of matter. Whether this particular phase is realized in an experiment then

depends on the particular types of interactions between the electrons in the unfilled Landau

levels.

We can go about constructing such a Hamiltonian by noticing that on a sphere, the

integers S, are directly related to the angular momentum of the a-cluster. For an electron

system on a sphere with Np flux quanta, an electron will cary an angular momentum of

J = Np/2. For an a-cluster, the maximum angular momentum is therefore aJ. However, for

a polynomial <D({zi}) described by a pattern of zeros {Sa}, the maximum allowed angular

momentum of the a cluster is only Ja = aJ - Sa (see Section 2.2.4). The pattern of zeros

forbids the appearance of angular momentum aJ - Sa + 1, a J - Sa + 2, - , a.J for any

a-clusters in <b({zi}).

Such a condition can be easily enforced by writing the Hamiltonian as a sum of projection

operators, P 4a. Let P(a) be a projection operator that acts on the a-cluster Hilbert space.
(P)PS projects onto the subspace of a-clusters that have total angular momenta greater than
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aJ - S. Now consider the Hamiltonian

H{s = P,(a) (2.45)
a a-clusters

where Ea-clusters sums over all of the a-clusters for a fixed a. The wave function described
by {Sa} will clearly be a zero-energy ground state of the above HS - In many cases, there
is only one unique ground state wave function with minimal total angular momentum, but
in general there can be many independent polynomials with the same pattern of zeros. In
such a situation, the Hamiltonian would need to be modified further to select for a particular
polynomial with the given pattern of zeros.

In order for the above Hamiltonian to be local, Eu must be limited to a small, finite
number of a-clusters. But as a result, we cannot guarantee in general that the ground state
wave functions will always be described by the sequence {Sa} for every a, or even that they
will obey the cluster condition. In many of the known cases, such as the Laughlin, Moore-
Read, and Read-Rezayi wave functions, the sum over a-clusters can indeed be terminated
after the first few clusters while still yielding a unique zero energy ground state wave function
described by {Sa}.

The above construction for Hs, should therefore be viewed as a starting point for con-
structing an ideal Hamiltonian that is local, gapped. and whose unique ground state wave
function is described by {Sa}. In some of the simplest cases, we know that this construction
suffices.

2.5 Pattern of zeros for quasiparticle wave functions

The above pattern of zeros characterization was for translationally invariant, ground state
wave functions. Excited states <D({zj}) containing a quasiparticle at z = 0 will have a
different pattern of zeros {Sya} as zi. , zo approach 0:

4({z}) = As5 " P ({(} Z i; za+, ) + O(AS7"). (2.46)

The minimal total power of R.1 z in <D({zi}) is S;a. Thus we can use {Sm;a} to characterize
different quasiparticles. The index -y labels the different types of quasiparticles.

The sequence {S ;a} should also satisfy certain conditions. We restrict our attention to
quasiparticle wave functions <h- that are also zero-energy ground states of the ideal Hamilto-
nian H{sSa. In general, quasiparticles that differ by some number of electrons are regarded as
topologically equivalent. In every equivalence class of quasiparticles, we assume that there are
always members that correspond to zero energy excitations for the ideal Hamiltonian. This
allows us to study the topological properties of quasiparticles by studying the zero-energy
excitations of the ideal Hamiltonians.

The zero-energy condition on quasiparticles requires that Sa satisfy

Sna > Sa. (2.47)
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Although both the ground state <D and the quasiparticle states <D, have zero energy, the

ground state has highest density and minimal angular momentum (minimal powers of zi),
while the quasiparticle states have lower density and higher angular momentum (higher total

powers of z 1).
The first condition on the sequence {Sya} can be obtained as follows. S- a+b is the order

of the zero obtained by taking a + b electrons to the origin. This should be greater than or

equal to the order of the zero obtained by taking a electrons to the origin and creating an

isolated b-cluster. That is:

Sy-a+b Sy;a + Sb. (2.48)

The difference, Sy;a+b - Sy;a - Sb, is understood in the following way. Consider the derived

polynomial obtained by taking an a-cluster to the location of the quasiparticle, at the origin:

PY+a(z(b), z(c),. .- where z(b), z(c), etc., indicate the location of other clusters. Then, we
define D +a;b as:

Py+a(Z(b), z(c) -- -(zbo (b))D+a;bP,±+a+b((c) + ((Z(b)jD,+a;b+1). (2.49)

From the unique fusion condition, it is clear that Dy+a b can be expressed in terms of Sy;a

through:

Sy a + Sb + Dy+a.b = S-ya+b. (2.50)

To see this, compare the order of the zero obtained from taking (a+b) particles to the location

of y - this gives the RHS of (2.50) - with first taking a particles to the location of -f, then

creating a b-cluster, and finally taking the b cluster to the location of y - this gives the LHS

of (2.50). By the unique fusion condition., these must be equal, which yields (2.50).

2.5.1 Concave condition on quasiparticles pattern of zeros

Now we are in a position to generalize the concave condition on {Sa} to a condition on {Sy;a}

as well. Consider the derived polynomial P,+0 (z(b). z(c),...), obtained by taking an a-cluster

to zero, so that the origin consists of the quasiparticle -y and an a cluster, and creating a

b-cluster at z(b) and a c-cluster at z(c). Now fix all coordinates but z(c), viewing the derived

polynomial as a complex function f(z(c)). f(z(c)) has zeros at isolated points, but no poles

anywhere. Some of the zeros are located at 0, z(b), etc. Those zeros are called on-particle

zeros, while the rest of the zeros are called off-particle zeros.

If we imagine taking z(c) around the origin without enclosing any off-particle zeros, f will

pick up a phase 2irDy+a;c (see Figure 2-2). If we imagine taking z(c) around z(b) without

enclosing any off-particle zeros, then f will pick up a phase 2 7Dbc. Now consider taking z(b)

to the origin. Under such a process, some nearby off-particle zeros may also be taken to the

origin. Therefore, if we take z(c) around a contour that encloses both z(b) and the origin in

the limit that z(b) -* 0, the complex function f must change by a phase that is greater than

or equal to 2n(Dy+ac + Dbc). The phase can never be less than this amount because that
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Figure 2-2: Schematic drawing of contours around which z(c) is taken. The crosses depict
off-particle zeros. (a) z(c) is taken around C1 and then C2, not enclosing any off-particle zeros.
The function f(z(c)) picks up a phase 27(Dy+a;c+Dbc). (b) z(b) is taken to the origin, fusing a
b-cluster with the quasiparticle -y and the a-cluster, dragging in some of the off-particle zeros
along with them. z(c) is taken around the fused combination, as illustrated by the contour
C3. The function f(z(c)) then picks up a phase 2 7Dy+a+bc > 27F(Dy+a;c + Dbc).

would require the existence of off-particle poles that get taken to the 0 in order to diminish
the strength of the on-particle zeros. By definition., the phase change of f under the above
procedure is 2 7rDy+a+b;c. Thus we obtain the condition

Dy+a+b;c > Dy+a:c + Dbc (2.51)

In terms of {Sya} and {S}, this is:

A. (a. b, c) > 0,

A- (a, b, c) = S;a+b+c - Sy;a+b - Sy;a+c - Sb+c + Sy;a + Sb + Sc. (2.52)

2.5.2 n-cluster condition

The n-cluster condition assumes that as a function of z("), any derived polynomial P- (z(n),
is nonzero if z(") does not coincide with the coordinates of another cluster or the location of
the quasiparticle. This implies that the concave condition is saturated when c = n:

Dy+a+b;n = Dy+a;n + Db:n. (2.53)

In terms of the Sy;a, this implies:

Sy;a+kn = Sy;a + k(Sy;n + ma) + mnk(k - 1) (2.54)
2

Thus I{S, -,} is fully specified by f{71iS-y;1. I , n , and n.
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2.5.3 Orbital occupation sequence

Not every possible sequence {Sya} that satisfies the above conditions corresponds to a topo-

logically distinct quasiparticle. To help characterize the topologically inequivalent quasipar-

ticles, and to make contact with the conformal field theory approach, it is useful to use the

following labelling scheme for the pattern of zeros. We define

ly;>a Sy - S-y-a-, a= 1, 2, ... (2.55)

Just as for the sequence {la} introduced in 2.2.3, we may interpret l-y;a as the label of the

orbital that is occupied by the ath particle. The occupation distribution, {rn-y}, is then

defined in the following way. n; is the number of a for which 1y-a = .

The n-cluster condition on {S;a} implies that

lra+n = ly;a + m, (2.56)

which in turn implies that

nyl+m = n_ (2.57)

for large enough 1. Two quasiparticles that differ by electron operators will have occupation

number sequences {nyl} that differ only for small 1 and that are the same asymptotically as 1

grows large. If the pattern of zeros is a full characterization of the quasiparticles (which is the

case for some FQH states), then two quasiparticles that have the same occupation number

sequences in the large I limit are topologically equivalent.

Now that we have obtained all of the consistency conditions on the quasiparticle pattern

of zeros, we can numerically find all allowed sequences {Sya} associated with a given ground

state sequence {S,}. This was carried out for some cases in (Wen and Wang, 2008b). While

there are an infinite number of solutions for {Sy.a}, there are only a finite number that have

distinct unit cells for {fn-};lI in the limit of large 1. The number of these inequivalent solutions

is a lower bound on the number of topologically distinct quasiparticles. For states in which

the pattern of zeros is a full characterization of the phase (such as for the Laughlin/Moore-

R.ead/R.ead-R.ezayi states), the number of distinct quasiparticle pattern of zeros solutions is

the same as the number of topologically distinct quasiparticles.

In light of this new quantitative characterization of FQH ground states and their quasi-

particle excitations, several questions emerge. First, can we compute topological properties

of the FQH states from these pattern of zeros sequences? Second, is this a full character-

ization of the topological order of FQH states? We can indeed compute many topological

properties of the quasiparticles from the pattern of zeros sequences; this makes the pattern

of zeros a meaningful., quantitative characterization of the topological order of FQH states.

However, the pattern of zeros is not a full characterization of FQH states, and as a result,
not all topological properties can be computed solely using the pattern of zeros.

In the following section, we will explain the connection between the pattern of zeros

approach and the conformal field theory approach. Using these two frameworks, we will
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obtain a better understanding of the structure of quasiparticles in the FQH states and we
will see how to use the pattern of zeros to compute various topological properties of FQH
states, including the electric charges of quasiparticles, their fusion rules, and ground state
degeneracy on genus g surfaces.

2.6 Pattern of zeros and relation to conformal field theory

As discussed in Section 2.1, many ideal FQH states can be written as a correlation function
of vertex operators Ve(z) in a CFT:

<z =lm zN (V(zoo) F Ve (zi)). (2.58)

The pattern of zeros characterization also applies to this class of FQH wave functions., so in
the following we will discuss the relation between the CFT approach and the pattern of zeros
approach in a general setting.

In the above expression, the electron operator V generally has a form

Ve(z) -(Z)

where v is the filling fraction of the FQH state. The CFT generated by the V operator
contains two parts. The first part, the simple current part, is generated by a simple current
operator 0, which satisfies an Abelian fusion rule(Zamolodchikov and Fateev. 1985; Gepner
and Qiu, 1987)

a'0(Z)&b(Z) = ?a+b(Z), V/ a(Z) [@(z)ia

The second part, the U(1) "charge" part, is generated by the vertex operator eiP(z)/V'V of
a Gaussian model, which has a scaling dimension h = 1. The scaling dimension of $ya is
denoted as h". Thus the scaling dimension of the ai power of the electron operator

Va - (Ve)a = @aeiaw(z)/v'v

is given by

ha = hsc + -. (2.59)a 2v*

Recall the definition of the integer S, in the pattern of zeros characterization:

<b({zi})A, o = lAsP((1,. - ,(; za+1, --- )+---

where zi = A(j, i = 1.- , a. In other words, Sa is the order of zeros in <b({zi}) as we bring
a electrons together.

In the pattern of zeros approach, a FQH state is characterized by the sequence {Sa}. III
the CFT approach, a FQH state is characterized by the sequence {ha} or equivalently {hac}
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From the operator product expansion (OPE) of the electron operators:

Va,(z)Vb(w) = Cabc V(w) + (2.60)
(z - W) haehbhV +

we find that {Sa} and {ha} are closely related

Sa = ha - ahi. (2.61)

Recall that {Sa} should satisfy:

A 2 (a, a) - even > 0, A 3 (a, b, c) - even > 0., (2.62)

where

A 2  Sa+b - Sa - Sb- (2.63)

A3  S a +b+c - Sa+b - Sb+c - Sa+c + Sa + Sb + Sc.

Finding the sequences {Sa} that satisfy the above conditions allows us to obtain a classifica-
tion of symmetric polynomials and FQH states.

The conditions (2.62) become the following conditions on hsc:

ab
Asc(a, b) + -- = integer > 0, (2.64)

a2
'A SC(a, a) + -- = even, A c (a,.,c vn20

-een ~cabc) -even> 0.

where

=c = S- hsC - hsc2 - ~ h a±b

AsC = hC b+c ~- hab - hs c - hsc + hsc + hc + hsc.

It is not surprising to see that the equations in (2.64) are actually a part of the defining
conditions of parafermion CFTs (Zamolodchikov and Fateev, 1985; Gepner and Qiu, 1987).
This reveals a close connection between the CFT approach and the pattern of zeros approach
to FQH states. This also explains why many FQH states obtained from the pattern of zeros

construction are related to parafermion FQH states.

In light of the relation between the pattern of zeros approach and the CFT approach,
let us consider in more detail an important issue of the possible stability of proposed FQH
wave functions. In the pattern of zeros approach, we use a sequence of integers {Sa} to
characterize a FQH state. The question is: does the sequence {Sa} uniquely determine the
FQH state? Can there be more than one FQH states that give rise to the same pattern
of zeros? Through a few examples, we find that some sequences {Sa} uniquely determine
the corresponding FQH states, while other sequences {Sa} cannot determine the FQH state
uniquely. Through the relation to CFT, we can address such a question from another angle.
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We would like to ask: can the scaling dimensions ha of the operators Va uniquely determine
the correlation function of those operators? Or more simply, can the scaling dimensions
ha of the operators Va uniquely determine the structure constants Cabc in the OPE of the
simple current operators (see eqn. (2.60))? Such a question has been studied partially in
CFT. It was shown(Zamolodchikov and Fateev, 1985) that if ha' = a(n - a)/n, then Cabe is
uniquely determined. On the other hand if hsc = 2a(n - a)/n, then Cabc can depend on a
continuous parameter. In this case, the pattern of zeros cannot uniquely determine the FQH
wave function. We may have many linearly independent wave functions (even on a sphere)
that have the same pattern of zeros.

2.6.1 The pattern of zeros of the quasiparticle operators in CFT

The state <by with a quasiparticle at ( can also be expressed as a correlation function in a
CFT:

<b((;{zA)(= 4 oc zf(V(zoo)Vy(() Ve(z 2)). (2.65)

Here Vy is a quasiparticle operator in the CFT which has a form

V,-, (= o(z)e (2.66)

where - (z) is a "disorder" operator in the CFT generated by the simple current operator
,V). Different quasiparticles labeled by different -y will correspond to different "disorder"
operators. Q, is the charge of the quasiparticle.

How can we obtain the properties, such as the charge Q,, of the quasiparticles? It is
hard to proceed from the abstract symbol -y which actually contains no information about
the quasiparticle. It turns out that the pattern of zeros provides a quantitative way to
characterize the quasiparticle operator. Such a quantitative characterization does contain
information about the quasiparticle and will help us calculate its properties.

To obtain the quantitative characterization, we first fuse the quasiparticle operator with
a electron operators:

Vy+a(z) V7Va = o-+a(z)ei WQ,+-/V

o L+a =yioa, Qy+a = Q/ + a. (2.67)

Then, we consider the OPE of Vy+a with V

Ve(z)Vy+a(w) = (z - W)la+1Vy+a+I(W) +--- (2.68)

Let ha, h-, and h-y+a be the scaling dimensions of V, V, and V+a respectively. We have

lY;a+1 = h-y+a+1 - h-y+a - hi. (2.69)

Since the quasiparticle wave function <b7 ({zj}) must be a single valued function of the zt's,
ly;a must be integer. For the wave function to be finite, lya must be non-negative. The
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sequence of integers {l;a} gives us a quantitative way to characterize quasiparticle operators

V, in CFT. {ly;a} turns out to be exactly the sequence of integers introduced in Section 2.5

to characterize quasiparticles in a FQH state. The sequence {ly;a} describes the pattern of

zeros for the quasiparticle -.

As discusseed in Section 2.5, not all sequences {Ly;a} describe valid quasiparticles. The

sequences {1y;a} that describe valid quasiparticles must satisfy

S7,a+b - Sy;a - Sb > 0, (2.70)

S,;a+b+c - Sy;a+b SY ;a+c - Sb+c + S,;a + Sb + Sc > 0,

where the integers Sy;a are given by

a

Sy;a = ,- = ,-+a - h_ - ahi.

i=1

The solutions of eqn. (2.70) give us the sequences that correspond to all the quasiparticles.

As mentioned in Section 2.5, there is an equivalent way to describe the pattern of zeros

{lU;a} using an occupation-number sequence. Consider a one-dimensional lattice whose sites

are labeled by a non-negative integer 1. We can think of ly-a as defining the location of the

ath electron on the one-dimensional lattice. Thus the sequence {l:a} describes a pattern

of occupation of electrons in the one-dimensional lattice. Such a pattern of occupation can

also be described by occupation numbers {ny; 1}, where n;z denotes the number of electrons

at site 1. Thus, each quasiparticle V, defines a sequence {ly;a} and an occupation-number

sequence {n-,1 }. The occupation-number sequence {ny:} happens to be the same sequence

that characterizes the ground states in the thin cylinder limit for the FQH states (Seidel and

Lee, 2006; Bergholtz et al., 2006; Bernevig and Haldane, 2007).

The distinct quasiparticles are actually equivalence classes of fields, where two fields are

said to belong to the same quasiparticle class (or type) if they differ by an electron operator:

Vy ~ VyVe. There are a finite number of these quasiparticle classes, and this number is

an important characterization of a topological phase. Two equivalent quasiparticles which

are related by a number of electron operators will have nearly the same occupation-number

sequence. The quasiparticle operator V-I+b = V- Vb is described by

yf+b;a = hy+b+a - hy+a+b-1 - 1y;a+b. (2.71)

Thus if two sequences {ily;a} and {ly';a} satisfy ly:a =-y;a+b, then Vy, V-_ Vb and therefore

they belong to the same quasiparticle class because they only differ by electron operators.

Two such sequences will give occupation-number sequences {ny;l} that are the same asymp-

totically as I grows large, but are different near the beginning of the sequence. Thus we can

classify the quasiparticle types by the asymptotic form of their occupation-number sequence.

Here we take the point of view that two operators are physically distinct only if their

disparity can be resolved by the electron operator. In other words, if two operators in the

conformal field theory yield the same pattern of zeros as defined above, then the electron
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operator cannot distinguish between them and therefore we identify them as the same phys-
ical operator. This point of view is correct if the pattern of zeros uniquely determines the
correlation functions (such as the structure constants Cabc).

Let us use y' = 0 to label the "trivial" quasiparticle created by Vo = I. We see that such
a trivial quasiparticle is characterized by

1 0:a+1 a+1 = ha+1 - ha - hi. (2.72)

Since ho = 0, we see that 11 - 0.

For the FQH states of n-cluster form, the corresponding CFT satisfies

On = ($)" = 1. (2.73)

As a result of this cyclic Zn structure, the scaling dimensions of the simple currents satisfy:

S0, +n = hc, (2.74)

where k is a positive integer. Let

m 1 n+1 = hn+1 - hi - hn.

Using hn1 - hi - h =(n+1)2 
-n.

2  = we find that the filling fraction i is given byUsingh,+, h, -h~rt 2v

v -. (2.75)

For such a filling fraction, we also find that 1yTa satisfies

lyOa+n = ly;a + m. (2.76)

This is an important consequence of the Z structure. It implies that the occupation numbers
nyl are periodic: ny,;l+m, =- ny,;l, with a fixed number of particles per unit cell. From the
preceding equation it follows that the size of the unit cell is m and there are n particles in
each unit cell.

We also note that for hs2 that satisfy (2.64), m and Sa must be even, and the solutions
satisfy

nhS = integer.

2.6.2 Quasiparticle charge from its pattern of zeros

Now let us calculate the quasiparticle charge Qy (see eqn. (2.66)) from the sequence {ily;a}.
Since o-,+= o, we have (see (2.59) and (2.69))

(Qy + n,)2 _ Q,2n
h22+n - h/y nhi + S lya. (2.77)

a=1
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Using Q_=o = 0, we find a formula for the charge of the quasiparticle in terms of the pattern

of zeros:

Q(ly;a - la). (2.78)

a=1

This result can be obtained in a different way, without making use of the relation to

CFT (Wen and Wang, 2008b), by studying the pattern of occupation of the various angular

momentum orbitals for the quasiparticle states.

2.7 The structure of quasiparticles

In this section, we will study in detail some general properties of quasiparticles in FQH

states using the pattern of zeros characterization. One of the most simplying features of the

quasiparticles that is revealed by the pattern of zeros characterization is the way they break

up into representations of a magnetic translation algebra that can be defined to act on the

pattern of zeros. Quasiparticles within a representation differ from each other by Abelian

quasiparticles while quasiparticles in different representations differ from each other in their

non-Abelian properties.

In Section 2.7.1, we will first introduce a new convenient way to label the quasiparticles. In

Section 2.7.2 we will discuss the appearance of the magnetic algebra and its consequences for

understanding the structure of quasiparticles. In Section 2.7.3 we will show how to calculate

the fusion rules of the quasiparticles from the pattern of zeros, and in Section 2.7.4 we will

use all of these results to show how one can compute the ground state degeneracy on genus

g surfaces from the pattern of zeros.

2.7.1 A new labeling scheme

Let h'c be the scaling dimension of o which satisfies

hs = hs7

Following (2.69), we can define a new sequence {l'a} that does not depend on the U(1) sector

of the CFT and describes the simple-current part of the quasiparticle:

lya+1 hS+a+i - hsya+a - hI. (2.79)

lSC has the following nice properties

9sc sc lsc _ sc
y;a+n - y;a y+b:a -;ath-

Since + = hy+a -(Q-a)
2 SC and I are related:

sc _ m(Q2v +;a -12

7, a &Ya m(~ -)(2.80)
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We see that

'nla = integer.

We also see that

a

h +a = hs + ahsc +ZE is
b=1

In particular, setting a n in the preceding equation implies that the average over a complete
period of P7a yields the scaling dimension of the simple current operator:

b=1

It is convenient to subtract off this average to introduce Iya:

isc a a + h1c = h a+1 -- sc+a,

which also satisfies

nT [,a= integer. (2.81)

We find that lsa satisfies Ea= - 0 (see (2.79)) and

a

hsc hs" + Z cb. (2.82)
b=1

We see that if oy and o are related by a simple current operator, a- = or+a O-ya, then
the scaling dimension of og can be calculated from that of o using eqn. (2.82).

We have seen that the different quasiparticles for an n-cluster FQH state are labeled by
ya, a = 1, -, n. In the following, we will show that we can also use {Q; l,- , lgj} to

label the quasiparticles.

Since h 0 = 0, from (2.82) we see that

hscsc ic

Therefore, from (2.80), we see that

~ sc sc m(Qy + a - 1
ly;a = lYa - hi + m

sc fse n(Qy + a -1)1 +s -S + n

So, the quasiparticles can indeed be labeled by {Q,; I1,. -. .- i}
We note that -y+ 1 corresponds to a bound state between a 7-quasiparticle and an electron.
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The (-y + 1)-quasiparticle is labeled by

{Q- +1 i:+1;1, ~ ~~ , I 7J+1 = I{Q + 1; IN2, - ' n 1 [-Sw

Since two quasiparticles that differ by an electron are regarded as equivalent, we can use

the above equivalence relation to pick an equivalent label that satisfies 0 < Q, < 1. For

each equivalence class, there exists only one such label. We also see that the two sequences

{l>.,... , ls} for two equivalent quasiparticles only differ by a cyclic permutation.

We would like to point out that two quasiparticles with the same sequence {li, , lSC }

but different Qy only differ by a U(1) charge part. This is because {lsc,- , ls>} do not

depend on the U(1) part of the CFT. They only depend on the simple current part of CFT.

Using the terminology of FQH physics, the above two quasiparticles only differ by an Abelian

quasiparticle created by inserting a few units of magnetic flux. Inserting a unit of magnetic

flux generates a shift in the occupation number: ny.1 -> niy' = n,;,-1.

At this stage, and for what follows, it is helpful to see some examples as described in Table

2.2.4 The v = 1/2 Z 2 parafermion state has six types of quasiparticles. We see that the six

quasiparticle types in the v 1/2 Z 2 parafermions states are labeled by {Q ,; i, 12) =

{0; 1, - }, { ;, -}} {0; 4 .}, {j; -. }}, { ; 0, 0}, and { ; 0, 0}. {O; 1, -} is the trivial

quasiparticle (7e the ground state with no excitation). {; , -- } is an Abelian quasiparticle

created by inserting a unit flux quantum. {0; -, }} is a neutral fermionic quasiparticle

created by inserting two unit flux quantum and combining with an electron. { ; - ., }
is the bound state of the neutral fermionic quasiparticle with the quasiparticle created by

inserting a unit flux quantum. { ;-0,0} is a non-Abelian quasiparticle. {4 ;0, 0} is the bound

state of the above non-Abelian quasiparticle with the quasiparticle created by inserting a

unit flux quantum.

2.7.2 Magnetic translation algebra

We saw that the distinct quasiparticle classes can be classified by the asymptotic form of the

occupation number sequences {n- 1 }. Asymptotically, {n-,,} is periodic, ny+m = n-y;l for

large 1, so distinct quasiparticle types can actually be classified by the asymptotic form of

a single unit cell, {'ny;am, n;arm+ 1,.' , 'y;am+rrt-1} for large enough a. Henceforth, we will

drop the term am in the subscript, with the understanding that

1)= {_y;o, y;,-- , ny;m-1} (2.83)

refers to the asymptotic form of a single unit cell of the occupation number sequence {ny;l }.
In terms of the sequence (2.83), there is a natural unitary operation of translation that can

be defined. In fact, we shall see that the distinct quasiparticle types, when represented using

(2.83), naturally form representations of the magnetic translation algebra. We are familiar

with this phenomenon in quantum Hall systems because the Hamiltonian has the symmetry

4Note that the meaning of the labelling {:} introduced in the text is different from what is used in the

left-most column of Table 2.2
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ZV = 1
{Q7; l, m} {niy;l} zn, n - { h hC h 

{0;0,0} 20 1 -I 0 0 0
{0;0,2} 02 -1 1 1/2 1/2 0

{1/2; 1, 1} 11 00 3/16 1/16 1/16

Z v = 1/2
{Q,; l, m} {ny:} n -{lsIa} hy ha/' hascm

{0; 0, 0} 1100 1 -1 0 0 0
{1/2; 0, 0} 0110 1 -1 1/4 0 0
{0; 0, 2} 0011 -1 1 1/2 1/2 0
{1/2;0,2} 1001 -1 1 3/4 1/2 0

{1/4; 1, 1} 1010 0 0 1/8 1/16 1/16
{3/4; 1, 1} 0101 0 0 5/8 1/16 1/16

Table 2.2: Pattern-of-zeros sequences and scaling dimensions defined thus far for the two

simplest parafermion states: the Pfaffian states at v = 1 (for bosonic electrons) and v

1/2 (for fermionic electrons) with n = 2. The asymptotic form of the occupation-number
sequences {fny;;} in a single unit cell are listed. lI is shown for a = 1, 2. {, m} are the SU(2)
labels for the parafermion primary fields; for further explanation of the notation, see Section

2.8. For the v = 1 ZW state, q = 1 (where v = p/q with p and q coprime) and the three
quasiparticles form a dimension 2 and dimension 1 representation of (T1 , JT2 ), as one can see

from the action ofT 1 . which cyclically permutes {n ;;}. For the v = 1/2 Z state, q 2 and

the six quasiparticles form a dimension 4 and dimension 2 representation of (T1, T2). (The
dimension 4 representation is not an irreducible representation. There are three irreducible
representations in both cases).

of the magnetic translation group. Remarkably, this structure already exists in the conformal
field theory.

Let us define two "translation" operators T1 and T 2 that act on {fny;o, n;1, -, y;m-1 }
in the following way:

T1-|7 Ti {ny;o, n;1, -, nm-1})
=I{nn.m_1, n1 o, - - - , lny;m-2}1) = |7-'),

T2Y) - e""QjY). (2.84)

Note that the label -y refers to a single representative of an entire equivalence class of quasi-
particles and that while all members of the same class will be described by the same set of
integers in (2.83), their electric charges will differ by integer units, making ei22 Qf indepen-
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dent of the specific representative -y and dependent only on the equivalence class to which it
belongs.

In terms of the {1y~a} sequence, (2.84) implies that the sequence for -y' is closely related
to that for -y plus some number b of electrons:

l7/;a = -+b;a + 1, (2.85)

where b depends on which specific representative -y' is chosen from the equivalence class that
contains it. (2.85) implies, from (2.78), that the charges Q = Q,+b - b and Qy are related:

nn
Qy - QY = - (lyIa - ly+b:a) + b - + b. (2.86)

a=1

This means that modulo 1, -y and -y' differ in charge by v. From the above relations, we can

deduce that Ti and T2 satisfy the magnetic translation algebra:

T2TI = T1 2e " . (2.87)

The key distinction between quasiparticles in different representations of the above mag-
netic algebra is that they may differ in their non-Abelian content. They can be made of
different disorder operators o7, which are non-Abelian operators in the sense that when o-
and o-, are fused together. the result may be a sum of several different operators. In con-

trast, quasiparticles that belong to the same representation differ from each other by only

an Abelian quasiparticle. This can be seen as follows. For two quasiparticles -y and -y' whose
occupation-number sequences are related by a translation T 1, we have, according to (2.85),

Y a =ly+b;a + 1. It is easily verified in this case that the simple current part of their pat-
tern of zeros is the same up to a cyclic permutation: l =;a ,cb;a a+b, which implies

that -y and '}' are both made of the same disorder operator o7. It can also be verified that

V = (Qy - Qy+b). So, modulo electron operators., the difference between -y and -y' is solely a

U(1) factor. That is, if tily) = J-y'), then the pattern of zeros of the operator o e '+v
is described by 1-y'). We may later abuse this notation and refer to T1 as acting on a quasi-

particle operator V, to give another quasiparticle V., Ve "i , by which we mean that

Ti acts on the pattern-of-zeros of V, and yields the pattern-of-zeros of Vy,,.

This structure has important consequences for the topological properties of the quasi-
particles. Let the filling fraction have a form v = p/q where p and q are coprime. Each
quasiparticle must belong to a representation of the magnetic translation algebra generated
by Ti and T2 . The dimension of each representation is an integer multiple of q (see Table 2.2).
This is because two quasiparticles related by the action of Ti differ in charge (modulo 1) by
v, and therefore we come back to the same quasiparticle if and only if we apply T1 a multiple
of q times. The dimension of each representation is at most m (where recall m - 1n+1 is the
size of the unit cell of the occupation-number sequences and v = n/n).

Let us relabel the quasiparticle -y as (i, a), with the Roman index i labeling the repre-
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sentation and the Greek index a G Zecq labeling the particular quasiparticle within the i11
representation. ci is an integer and ciq is the dimension of the Ith representation. (i, a) and
(i, a + ciq) refer to the same quasiparticle. We can choose the labels a such that

Ti Ii, a) = i, a + 1), (2.88)

and this implies that the quasiparticle operator V,,, is related (modulo electron operators)
to V,+1 by a U(1) factor:

V,a+1 - e VT4. (2.89)

In terms of the charges, this is equivalent to writing

Q(i,a+1) mod 1 = (Q(i,a) + v) mod 1. (2.90)

Note that we consider the charge modulo one because of the equivalence of two quasiparticles
that are related by electron operators.

In this notation, we can write the fusion rules as

-= Ni, 0)(j.V,y. (2.91)
k,-y

The magnetic algebra structure of the quasiparticles implies an important simplification in
the fusion rules:

NN' = N (k,--) (2.92)(ice),I (j,3) (iO),(jO)

This means that the fusion rules for all of the quasiparticles are determined by the much
smaller set of numbers given by N(k.) Furthermore, since charge is conserved in fusion,(iO),(jO)*, cagiscnevdnfuo.
N(k,) = 0 if (Q(.,o) +Q(o) - Q(k,5)) mod 1 / 0. There are only Ck different quasiparticles
in the kth representation that have the same charge modulo 1, so for each i, j, and k, there
are actually only Ck different values of 6 for which N (k,6) must be specified. In particular,
knowing that a quasiparticle from k is produced in the fusion of (i, 0) and (j, 0) is generally
not enough information to completely specify the fusion rules. However, in some cases, even
more information can be massaged out of these relations.

The ith representation has dimension ciq, from which it follows that (i, ciq) and (i. 0) label
the same quasiparticle. From (2.92), we can deduce the following identity:

N - N (k.-) - N (kj6~"jq) 2.93(i.O),(j,O) - (i,ciq),(j,O),- (i.O),(j,O) (2'9 )

Suppose that there are integers n, M, and I for which

nci + mc3 + lCk 1. (2.94)

This happens when the greatest common divisor (gcd) of ci, cj and ck is 1. In this case, using
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(2.93), one finds

N(k,') = N ',+q) (2.95)
(io),(jO) (iO),(j,0)(

This means that if one quasiparticle from the kth representation is produced from fusion of

(i, 0) and (j, 0), then all quasiparticles with the same charge are also produced. In particular,

if gcd(ci, Cj, Ck) = 1 for all choices of i, j, and k, which happens when m = q. then the fusion

rules are completely specified by the way different representations of the magnetic algebra

fuse together. We can conclude that when m = q, the representations of the magnetic algebra

are all irreducible and the fusion rules decompose in the following way:

N(k,) if (Q(i,o) + Q(j,B) Q- (k,y))%1 = 0 (2.96)
(i,k).(3) 0 otherwise

More generally, it is straightforward to check that

N (k) N(k,6+gcd(cj,cjck)) (2.97)
(,)(,0) (i,0),(j,0) '

which implies that once i, j. and k are fixed, the fusion rules are completely specified by

gcd(ci, cj, ck) of the fusion coefficients. The rest of the fusion coefficients can be obtained

from (2.92) and (2.93). As a special, familiar example of this. consider the Pfaffian quantum

Hall states at v = 1/q. There, the quasiparticles form two representations of the magnetic

translation algebra, one with dimension q, and the other with dimension 2q, for a total of 3q

quasiparticles. The quasiparticles in the dimension 2q representation are eil?/pV and @e"W/V/'
for I = 0, 1., - - - , q - 1. The quasiparticles in the dimension q representation are of the form

o(2T+ and o- are the primary fields of the Ising CFT. Consider the fusion rule

- 21+1 21'+1 1+'+1

o-et 2,- O X e 2,,/- = (1 + O)ec /-q . (2.98)

The fact that both 1 and 0 are produced and not either one individually can now be seen

to be a special case of the analysis above: since ged(1, 1, 2) = 1, all quasiparticles in the

dimension 2q representation that have the allowed charge must be produced from the fusion

of quasiparticles in the dimension q representation.

2.7.3 Fusion rules, domain walls, and pattern of zeros

The pattern-of-zeros sequences {ly;a} defined thus far are interpreted by supposing that there

is a quasiparticle V, at the origin while electrons are successively brought in towards it.

cy-a Characterizes the order of the zero that results in the correlation function (ie the wave

function) as the ath electron is brought in.

Generalize this concept: imagine putting b electrons at the origin and having a sequence

of integers {lba} that characterizes the order of the zeros as electrons are sequentially brought

in to the origin until, after some number ao of electrons are brought in., the quasiparticle V, is

taken to the origin and fused with the electrons there. We then continue to bring additional

electrons in and obtain the rest of the sequence. In terms of the quasiparticle sequence {l-y;a}.
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the combined sequence {lb,;a } would be given by

lb,7 ;a = b;a if a - ao (2.99)
1- y+b;a if a > ao

If ao is large enough, the occupation-number sequence {ni} that corresponds to {lb-;a} will
have a domain wall structure. The first ao particles will be described by the sequence {nb;l},
while the remaining particles will be described by the sequence {n+b;l}- We see that a quasi-
particle not at the origin corresponds to a domain wall between the ground state occupation
distribution { nb} and the quasiparticle occupation distribution {nly+b;1}. In the large I limit,
{n~y~b~l) ={(y;1 } and the asymptotic {fn;1} indicates that there is a quasiparticle y near the
origin.

Extending this concept further, we see that upon bringing V in to the origin after ao
electrons, we can bring another quasiparticle, Vy, in to the origin after yet another set of, say,
ai electrons have sequentially been taken to the origin. The sequence {1Y;a} for a > 01 will
describe a new quasiparticle -y" that can be regarded as a bound state of two quasiparticles
-y and -y' near the origin. This suggests that by considering the sequence in such a situation.
we can determine the fusion rules of the quasiparticles.

However, the fusion of non-Abelian quasiparticles can be quite complicated, as indicated
by the fusion rule:

Vl/ Vy, ~ N>, V n, (2.100)

which suggests that the bound state of quasiparticles y and -y' can correspond to several
different quasiparticles -y". Can the consideration of the above sequence capture such a
possibility of multiple fusion channels?

The answer is yes. Suppose -y and -' can fuse to -y". Then, the above consideration of the
fusion of quasiparticles -y and y' will generate a sequence {lbyy;a}:

lb;a if a < ao
lb-yoy';a - ly+b;a if ao < a < a1  (2.101)

ly"+b;a if a > ai

The occupation-number sequence in this case will have two domain walls. For the first ao
particles, the sequence will be described by {fnb.;}which corresponds to the ground state. For
the next ai particles it will be described by {n;l }, which is a sequence that corresponds to the
quasiparticle -y. After ai it will be described by {fny";l} which is a sequence that corresponds
to the quasiparticle 7-". In this picture, an occupation-number sequence that contains domain
walls separating sequences that belong to different quasiparticles describes a particular fusion
channel for several quasiparticles that are fused together (E.Ardonne et al., 2008).

In (E.Ardonne et al., 2008) the fusion rules for parafermion FQH states was obtained
from the pattern of zeros by identifying the domain walls that correspond "elementary"
quasiparticles in paraferinion FQH states. In the following, we will describe a very different
and generic approach that applies to all FQH states described by pattern of zeros.
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Figure 2-3: Schematic drawing of contours around which y is taken. The crosses depict off-

particle zeros. (a) y is taken around C1 and then C2, not enclosing any off-particle zeros. The

correlation function picks up a phase 27(P-y+a;b + Py+c;b). (b) z and w are brought together,

fusing V-y+a(z) and Vy+c(w), dragging in some of the off-particle zeros along with them. y

is taken around the fused combination, as illustrated by the contour C3. The correlation

function picks up a phase 2 7FP-f,"+a+c;b > 27(Pya;b + Py+c;b)

Notice the absence of the sequence {ny;l} in the above consideration of the fusion -y' -+

even though the quasiparticle -y' was part of the fusion. Here the quasiparticle -y' appears

implicitly as a domain wall between {rny;;} and {nY;;}. This motivates us to view the

fusion from a different angle: what quasiparticle can fuse with quasiparticle -y to produce

the quasiparticle -y"? From this point of view, we may try to determine {fn z'} from {ni;}

and {nru;;} to obtain the fusion rule. Or more generally, the three occupation distributions

{niy;}, {n ;}. and {n 1y;;} should satisfy certain conditions if -y and ' can fuse into x".

Let us now look for such a condition. Suppose two quasiparticle operators -y and -Y' can

fuse to a third one, y/". and consider the OPE between the following three operators:

V+a(z)Vg+c(W)Vb(y) ~ f(z, W, Y)Vy"+a+b+c(Z) + ... (2.102)

(Such an OPE makes sense if we are imagining a correlation function with all other operators

inserted at points far away from z, w, and y.) Let us first fix all positions except y and regard

the correlation function as a function of y. Zeros (poles) of the correlation function can occur

when y coincides with the positions at which other operators are inserted. However zeros

can also occur at locations away from the particles (see Figure 2-3). Imagine that we take

y around w without enclosing any of the off-particle zeros. The phase that the correlation

function acquires upon such a monodromny is simply 2xp-y,+c;b- 5 In terms of the scaling

dimensions, the integer Py;b is given by

P1 ;b =h-+b - h, - hb = P b + bQ,/v, (2.103)

where
b

pl~ - h +b hC- c __ sa - lse). (2.104)
a=1

5 Note that the integer Py+a;b used here has the same meaning as the integer D,+a;b introduced in Section
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If we take y around z without enclosing any off-particle zeros, the correlation function acquires
a phase 2 7rPy+a;b. Taking y around w and then around z thus gives a total phase of 27(P-y+a;b+
Py'+c;b). Compare that combined process with the following process: fuse V,+, and V,+c to
get VY'+a+c, and take Vb(y) around Vy'+a+c; physically this corresponds to taking z to be
close to w compared to y and taking y around a contour that encloses both z and w (Figure
2-3). The result of such an operation is that the correlation function acquires a phase of
2 7rpy"/+a+c;b. In fusing Vy+a(z) and V,'+c(w) to get V"+a+c(Z), some of the off-particle zeros
that were present before the fusion may now be located at z. That is, fusing Vy+a(z) and

Vy+c(w) corresponds to taking w -4 z, which in the process may take some of the off-particle
zeros to z as well. Therefore we can conclude:

Py+a;b + Py'+c;b PY"+a+c;b, (2.105)

which must be satisfied for all positive integers a, b, and c. The inequality is saturated when
there are no off-particle zeros at all.

The U(1) Abelian fusion rules imply charge conservation: Q, + QY' = Q,", which means
that the U(1) part saturates the inequality (2.105) (see eqn. (2.103)). This allows us to
obtain a more restrictive condition

P Y+a;b + PY+c;b <P '+a-c;b (2.106)

which corresponds to (2.105) applied to the simple current part. In terms of the sequences
{ 1 /;a }, the condition (2.106) becomes

b b

+7
a j +-+c;- - l3c) 1 '++c:j (2.107)

j=1 j=1

Remember that ls' is obtained from 1ya through eqn. (2.80) and eqn. (2.78). The pattern-
of-zero sequences {ly-} that describe valid quasiparticles are solved from eqn. (2.70).

For states that satisfy the n-cluster condition, the scaling dimensions and hence the
pattern of zeros have a periodicity of n:

SCSC SC(218
Py+a+n;b - PY+a:b P-y+a;b+n- (2.108)

Therefore, a, b, and c need only run through the values 0,..., n - 1.

The eqn. (2.106) or eqn. (2.107) is the condition that we are looking for. The fusion
coefficient N , can be non-zero only if the triplet (-y, -y', -y") conserves charge., Q,-+Qy = Q,"
and satisfies eqn. (2.106) (or eqn. (2.107)) for any choice of a, b, c. This result allows us to
calculate the fusion rules from the pattern of zeros.

Remarkably, the condition eqn. (2.106) or eqn. (2.107) appears to be complete enough.
We find through numerical tests that for the generalized and composite parafermion states
discussed below, condition (2.106) is sufficient to obtain the fusion rules: V, V,, arid V_
satisfy (2.106) and charge conservation if and only if V and Vy, can fuse to give V,. We
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do not yet know, aside from these parafermion states, whether condition (2.106) is sufficient

to obtain the fusion rules. On the other hand, if we assume Nk, = 0,1 , then eqn. (2.106) or

eqn. (2.107) completely determines the fusion rule.

2.7.4 Fusion rules and ground state degeneracy on genus g surfaces

After obtaining the fusion rule from the pattern of zeros (see eqn. (2.106)), we like to ask:

can we check this result physically? (Say through numerical calculations). Given a pattern

of zeros sequence, there is a local Hamiltonian, which was constructed in (Wen and Wang,

2008a), whose ground state wave function is described by this pattern-of-zeros. The Hamil-

tonian can be solved numerically to obtain quasiparticle excitations and in principle we can

check the fusion rules. However, this approach does not really work since the numerical cal-

culation will produce many quasiparticle excitations, and most of them only differ by local

excitations and should be regarded as equivalent. We do not have a good way to determine

which quasiparticles are equivalent and which are topologically distinct. This is why we can-

not directly check the fusion rules direction through the excitations obtained from numerical

calculations.

However, there is an indirect way the check the fusion rules. The fusion rule in a topo-

logical phase also determines the ground state degeneracy on genus g surfaces. We can

numerically compute the ground state degeneracy on a genus g surface and compare it with

the result from the fusion rule.

Why fusion rule determines the ground state degeneracy? This is because genus g surfaces

may be constructed by sewing together 3-punctured spheres (see Fig. 2-4). Each puncture

is labeled by a quasiparticle type, and two punctures can be sewed together by summing

over intermediate states at the punctures. This corresponds to labeling one puncture by a

quasiparticle y, labeling the other puncture by the conjugate of -y, which is referred to as -.

and summing over -y. y is the unique quasiparticle that satisfies No- = 1; the operator that

takes -y to -y is the charge conjugation operator C: Ca= N 0 . The dimension of the space

of states of a 3-punctured sphere labeled by a, 0, and -y is NO-, = Nc0. Na-, is symmetric

in its indices, which we can raise and lower with the charge conjugation operator:

- C N, = N, = C- N a.

CO is the inverse of Ca: COCO - = o'. Also, note that C squares to the identity, CCp, =

so that C is its own inverse: C,0 = C". If we represent a 3-punctured sphere by a vertex

in a p3 diagram with directed edges and label the outgoing edges by a, 0, and Y, each vertex

comes with a factor Ng. A genus g surface can then be thought of as a g-loop diagram.

This implies that the ground state degeneracy on a torus. for example, is E NoagNodj.

The ground state degeneracy on a genus 2 surface would be given by

NaI N& = N_' NS3

0-fy 0-fiy
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(a)

x 
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(b) (A

Nas {~K>N~-~ 0

(c(T

Figure 2-4: (a) Genus g surfaces can be constructed by sewing together 3-punctured spheres;
the case g = 2 is shown here. (b) 3-punctured spheres can be depicted by vertices of P3

diagrams. There is a factor of Np3 for each vertex with outward directed edges c. 13, and y.
Reversing the direction of an edge corresponds to replacing a quasiparticle with its conjugate.
The g = 2 case is depicted by a 2-loop diagram, and has a factor E.' NagNj. (c) An
example of a 5-loop diagram, corresponding to a genus g = 5 surface. This would give a
factor E Nay N' NpxNANpoo N N which can be written more compactly as

Tr (FO NavNa )9~t

In general, one obtains the following formula for the ground state degeneracy in terms of the
fusion rules (Verlinde, 1988) (see Figure 2-4):

G.S.D. = Tr( Na . (2.109)
a=0

N is the number of quasiparticle types, (N=) N ' 3 , and matrix multiplication of the fusion

matrices is defined by contracting indices, so that (NNu) = N iN3k. (2.109) assumes that
all fields are fusing to the identity, so it applies only when the total number of electrons is a
multiple of n (for n-cluster states). For other cases, one must perform a more careful analysis.

We show in Appendix 2.B that (2.109) can be rewritten as

g-1 N-1

G.S.D. =Ed 2 E d -2(-1. (2.110)

(-=0 -Y=0
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d. is the "quantum dimension" of quasiparticle 'y. It is given by the largest eigenvalue of the

fusion matrix N-, and it has the property that the space of states with n quasiparticles of
type -y at fixed locations goes as ~ d" for large n. In particular, Abelian quasiparticles have

unit quantum dimension. It is remarkable that the ground state degeneracy on any surface
is determined solely by the quantum dimensions of quasiparticles.

From (2.110) and the magnetic algebra structure of the quasiparticles, we can prove that
the ground state degeneracy on genus g surfaces factorizes into a part that depends only on
the filling fraction v and a part that depends only on the simple current CFT. In particular,
we show in Appendix 2.B that (2.110) can be rewritten as

G.S.D. = v9 cd ) ( ccd2(91)) . (2.111)

Here E' sums over the representations (which are labeled by i) of the magnetic translation
algebra. di is the quantum dimension of quasiparticles in the ith representation. cic is the
number of distinct fields of the form 0"o-i for a fixed i. It can be determined from the
pattern-of-zeros as follows. Recall that all of the quasiparticles in the ith representation of
the magnetic translation algebra have the same sequence {1s. } up to a cyclic permutation.
cic describes the shortest period of {lca:

i~a

i-sc , -Is

{lb"a} always satisfies 1' = li' and very often c-c 'n. But sometimes. cc can be a factor
of n.

We see that the cic are determined from the pattern of zeros of the quasiparticles. We have
seen that (under certain assumptions) the fusion rules (and hence the quantum dimensions
di) can also be determined from the pattern of zeros. Thus eqn. (2.111) allows us to calculate
the ground state degeneracy on any genus g surface from the pattern of zeros.

(2.111) shows that the ground state degeneracy on a genus g surface factorizes into v-9
times a factor that depends only on the simple current CFT. This is remarkable because
vi 1 is generically not an integer. The second factor may be interpreted as the dimension of
the space of conformal blocks on a genus g surface with no punctures for the simple current
CFT. In particular, for genus one, this gives 1/v times the number of distinct fields of the
form Vao-i in the simple current CFT. a result which we find more explicitly in the following
section for the parafermnion quantum Hall states. Note that this formula assumes that the
number of electrons is a multiple of n; we expect a similar decomposition into v-9 times a
factor that depends only on the simple current CFT if the electron number is not a multiple
of n, but we will not analyze here this more complicated case.

2.8 Parafermion quantum Hall states

Using the pattern of zeros approach, we can obtain the number of types of quasiparticles
(Wen and Wang, 2008a.,b), the fusion rules, etc . However, to obtain those results from the
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pattern of zeros approach, we have made certain assumptions. In this section, we will study
some FQH states using the CFT approach to confirm those results obtained from the pattern
of zeros approach.

The quantum Hall states to which we now turn include the parafermion (Read and Rezayi,
1999), "generalized parafermion," and "composite parafermion" (Wen and Wang, 2008a)
states. These states are all based on the Z, parafermion conformal field theory introduced
by Zamolodchikov and Fateev(Zamolodchikov and Fateev, 1985). In the context of quantum
Hall states, we focus on the holomorphic part of the CFT and leave out the anti-holomorphic
part. The Z,1 parafermion CFT is generated by n simple currents Va(z), a = 0,...,n - 1,
which have a Z, symmetry: i" = 1 and ?P =,O".

The field space of the theory splits into a direct sum of subspaces, each with a certain
Z, charge, labeled by 1, with I = 0, .., n - 1. The fields with minimal scaling dimension in
each of these subspaces are the so-called "spin fields" or "disorder operators" al. Fields in
each subspace are generated from the o7 by acting with the simple currents: v'oal. Based on
a relation between SU(2) current algebra and paraferinion theory, a way of labeling these
primary fields is as 4) (Gepner and Qiu, 1987). The spin fields are o = 5 and the simple
currents are @a =2a. The Z,, symmetry implies that D 2 - 0'4)1  = 1 The scalingm+2n In
dimensions of the simple currents V) - (I are chosen to be

Aa = ( .a) (2.112)

Such a choice then determines the scaling dimensions of the rest of the fields in the theory.
The scaling dimension Al of the field V is given by

(1(1+2) M2 + M-l iflm 2 -
++22 i + if I < m < 2n-4(,n+2) in 2

M 1(1+2) M2 if -I < M < (2.113)
4(n+2) 4n 1

I and m satisfy

I + m = even, 0 < I <n. (2.114)

In the 's(2)n/u-(1) coset formulation of the parafermion CFTs, the following field identifica-
tions are made:

{l,m} ~ {n - l, m - n} ~{n - 1, n + m}. (2.115)

Also, the Z. structure implies:

{l, m} {l, m + 2n}. (2.116)

From (2.114), (2.115), and (2.116), we can find the distinct VI's (see Fig. 2-5). In the
pattern-of-zero picture, the identification (2.115) is natural because quasiparticles containing
the field 44t yield the same pattern of zeros as those containing the field #n and for this
reason are considered to be physically equivalent.

The electron operator in the conventional Read-Rezayi Zn, parafermion quantum Hall
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Figure 2-5: (Color online) The filled dots represent the distinct 4I1 's in Z6 parafermion CFT.

The blue dots represent the simple current operators 4bi% = /)a and the red dots represent

thc spin operators

states at filling fraction v! is given by

V (z) (Z) e1 ±cp _Tz)w (2.117)

In the "~generalized" Z~)parafermion states, we use V'k instead of 0/,1 to define the electron

operator:

o of o ~ oZ

Ve ( = 4'k(z)e (2.118)

The states ZMthus correspond to the conventional Read-Rezayi states. The condition that

the electron operator have integer or half-integer spin translates into a discrete set of possible

filling fractions for the Zdtt 'n paraferinion states:

V __ 117,(2.119)
nrIM + 2k 2

T is a nonnegative integer; that it m ust be nonnegative is derived from the condition that the

operator product expansion (OPE) between two electrons must not diverge as two electrons

are brought close to each other. Eqn. (2.119) is the generalization of the well-known formula

V n for the conventional Zn Read-Rezayi parafermion states. In what follows, we

assume k and n are coprime; cases in which they are not must be treated differently.

The quasiparticle fields take the form

v = 1 (2.120)

where Q is the electric charge of the quasiparticle. V is a valid quasiparticle if and only

if it has a single-valued OPE with the electron operator. To find the number of distinct

quasiparticle types, we need to find all the valid quasiparticle operators V while regarding

two quasiparticle operators as equivalent if they differ by an electron operator.

Since quasiparticle operators that differ by an electron operator are regarded as equivalent.

every quasiparticle is equivalent to one whose charge lies between 0 and 1. Thus a siple

way of dealing with this equivalence relation is to restrict ourselves to considering operators
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whose charges Q- satisfy

0 < Q, < 1. (2.121)

This ensures that we consider a single member of each equivalence class, because adding an
electron to a quasiparticle operator increases its charge by one. For each primary field labeled
by {1, m}, there are only a few choices of Q- that satisfy eqn. (2.121) and that will make the
operator V, local with respect to the electron operator. Finding all these different allowed
charges for each {l, m} will give us all the different quasiparticle types.

The OPE between the quasiparticle operator and the electron is

Vy(Z)Ve(w) ~ (z - w)} ,,+ 2 ke i(Q, 1 , (2.122)

a = Am+ 2 k - Am - 2k + Qy/vlJ. (2.123)

Locality (single-valueness) between the quasiparticle and the electron implies that a must be
an integer. Each allowed charge Q, for a given primary field {l, m} can therefore be labeled
by an integer a that, from eqn. (2.121), satisfies

0 < a - 2k +'Al + A2k < 1/V. (2.124)

Therefore, to find all the distinct, valid quasiparticles, we search through all of the distinct.
allowed triplets {a, 1, m}, subject to (2.114) and the identifications in (2.115) and (2.116), and
find those that satisfy eqn. (2.124). Carrying out this program on a computer. we learn that
the number of quasiparticles in the generalized Znlk) parafermion states follows the formula

1rn±+1)
No. of Quasiparticles - . (2.125)

2 v

This is the natural generalization of the formula -i(nM + 2)(n + 1) that is well-known for the
k = 1 case.

The above approach has yielded not only these generalized parafermion states, but also a
series of "composite parafermion" states. In these states, the relevant conformal field theory
is chosen to consist of several parafermion conformal field theories taken together, of the form

Q& Z . We emphasize that here the ni are all coprime with respect to one another and ki
is coprime with respect to ni. Cases in which these coprime conditions do not hold should
be treated differently. Here, the electron operator is

i=1

where Oki;ni is a simple current of the Zr, parafermion CFT. The condition for the filling
fraction. eqn. (2.119). generalizes to

N
N =(2.127)

NM +2N Ei k
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where N = fJi ni and M is a nonnegative integer. Following a procedure similar to that

described above in the generalized paraferinion case, the condition eqn. (2.124) generalizes

to

0 < a - Z(A+ 2k;n + + A02k;Pj) < 1/v (2.128)

where Al .i is the scaling dimension Ali from the Zn, parafermion CFT. We find that the

number of quasiparticles follows the natural generalization of eqn. (2.125):

No. of Quasiparticles = (n1 + 1) (2.129)
2

Strikingly, these results agree with the number of quasiparticles computed in an entirely

different fashion through the pattern-of-zero approach (Wen and Wang, 2008b).

Since we know the fusion rules in the Z, parafermion CFTs, we can easily examine

the fusion rules in the parafermion quantum Hall states. The most general states that we

have discussed in this section have been the @ Zk composite parafermion states. The

quasiparticles operators can be written as

V i - rn,; e (2.130)
i=1

where Vi.m is the primary field V from the Zn parafermion CFT. Equivalently. we can

label each quasiparticle as {Q;1imi, 2,m 2 , - .

The primary fields V> in the Zn parafermion CFT has the following fusion rules (Gepner

and Qiu, 1987):
nin(l+l',2n-l-l')

(D X DiI=(i (2.131)

j=|1-l'1

Therefore, in terms of the {Q,; li, mi,- - } labels, the fusion rules for the quasiparticles in

the composite parafermion states are given by

1mnin(l+1'12n -l-l')

{97 2, i, -- X 97; i, i,- } (y Gy; i$Mi + m, #2M2 + M'2,

(2.132)

where there is a sum over each 1" for i = 1, 2,- and we make the identifications

hQ- li, mi, agree with -a -. , ni - li, rti - nli, y -e-r}

~IQ,; - - - , 1j, mi + 2ni, -- - } ~ {Qy + 1; - 1j ,l, mi + 2ki, - .(2.133)

These fusion rules agree with that obtained previously from the pattern of zeros using Eqs.
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Z) v = 3/2

{Q,; 1, m} {n:} n- {l-fi'} hy h" hsc,,i

{0;0,0} 30 2 0-2 0 0 0
{1/2; 0, -2} 03 -2 2 0 3/4 2/3 0

{I/2; 1, 1} 21 1-10 3/20 1/15 1/15
{0; 1, 3} 12 -1 0 1 2/15 2/5 1/15

Table 2.3: Pattern-of-zeros, scaling dimensions, and charges for
state at u = 3/2 (for bosonic electrons). The periodic sequence
The asymptotic form of a single unit cell of {n;} is shown.

the quasiparticles in the Z1
lSC is listed for a = 1, . , 3.y;a

Z( v 5/2

{Q-y; 1, m} { ny;} n - {lg}- hSC h8C
{1/2; 0, 6} 05 -2-4 42 0 0
{0; 0, 0} 50 4 2 0-2-4 0 0 0

{1/2:1,1} 41 3 1 -1 -30 3 2 2
{0;1, 5} 14 -1 -303 1 6 67 7 35)

{1/2; 2, 6} 23 -2 1 -120 15 17 3208 35 35
f{0:2, 0} 32 -1 20-2 1 2 2 3

1 7 35

Table 2.4: Pattern-of-zeros, scaling dimensions, and charges for
state at v = 5/2 (for bosonic electrons). The periodic sequence
The asymptotic form of a single unit cell of {n; } is shown.

the quasiparticles in the Z(
S Ca is listed for a = 1,--- 5.

2.106 or 2.107.

2.9 Examples

Now we will describe some specific examples of the parafermion states, listing their pattern-
of-zeros, scaling dimensions, ground state degeneracies, and discussing their fusion rules.

In the Z state at v = 3/2 (which is the bosonic Z 3 parafermion state (Read and Rezayi,
1999)), Table 2.3 shows that there are two representations of the magnetic algebra, with two
quasiparticles in each representation. These two representations are irreducible (q = ri), so
the fusion rules decompose as (2.96). Labeling these two by 1 (the identity) and o, we see
that they satisfy the fusion rules

uo = 1 + G. (2.134)



CHAPTER 2. THE PATTERN OF ZEROS APPROACH

{QY; 1, mr}

{0;0,0}
{5/8; 0, 04
{2/8; 0, 64
{7/8; 0, 6}
{4/8; 0, 24
{1/8; 0, 8}
{6/8; 0, 8}
{3/8; 0, 44

{0; 1. 5}
{5/8; 1,
{2/8; 1,
{7/8; 1,
{4/8; 1,
{1/8; 1,
{6/8; 1,
{3/8; 1,

5}
1}
1}
7}
3}
3}
-1}

{0; 2. 0}
{5/8; 2, 0}
{2/8; 2, 6}
{7/8; 2, 6}
{4/8; 2, 24
{1/8; 2, -2}
{6/8; 2, -2}
{3/8; 2,4}

{n0; 0

20102000
02010200
00201020
00020102
20002010
02000201
10200020
01020002

01110020
00111002
20011100
02001110
00200111
10020011
11002001
11100200

10101101
11010110
01101011
10110101
11011010
01101101
10110110
01011011

Z5

Table 2.5: Pattern-of-zeros, scaling dimensions, and charges for the quasiparticles in the Z2

state at v = 5/8 (for bosonic electrons). The periodic sequence 1 "c is listed for a = 1, - 5.

The asymptotic form of a single unit cell of {n. 1 } is shown. Note that the charges, modulo

one, of two quasiparticles that are related by a translation T1 differ by v = 5/8, as explained
in Section 2.7.2.

v=5/8

n - {lya}

6 -2 0 2 -6
6 -2 0 2 -6
-6 6 -2 0 2
-6 6 -2 0 2
2 -6 6 -2 0
0 2 -6 6 -2
0 2 -6 6 -2
-2 0 2 -6 6

-4 3 0 -3 4
-4 3 0 -3 4
4 -4 3 0 -3
4 -4 3 0 -3
-3 4 -4 3 0
0 -3 4 -4 3
0 -3 4 -4 3
3 0 -3 4 -4

1 -2 0 2 -1
1 -2 0 2 -1
-1 1 -2 0 2
-11 -2 0 2
2 -11 -2 0
0 2 -11 -2
0 2 -11 -2
-2 0 2 -1 1

h0Y

0
0

4

5

35

2

3

35
3
35
N

0

29
16
1
13
16

21
16

6

1h1

75
112
31

2

7
67

112
15

615
5 o

67
111)

hSc

0
0
0
0
0
0
0
0
2

2

35
2

35
2

3

3

3

35
3

35N
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There are only two modular tensor categories of rank 2, the so-called semion MTC and the
Fibonacci MTC, and we see that these fusion rules correspond to the Fibonacci MTC (Rowell
et al., 2007).

In the Z k) states (Wen and Wang, 2008a), we also have q = r and the quasiparticles
form three irreducible representations of the magnetic algebra. The fusion algebra again has

the simple decomposition eqn. (2.96). In the Z state at v = 5/2, Table 2.4 shows that there

are two quasiparticles in each irreducible representation, while in the Z(2) state at u = 5/8,
Table 2.5 shows that there are eight quasiparticles in each irreducible representation of the
magnetic algebra. The non-trivial, non-Abelian part of the fusion rules is given by the fusion
rules among the three irreducible representations. Labeling these three by 1, ai, and a2, and
using eqn. (2.106) or eqn. (2.132), we can see that they satisfy the following fusion rules:

(T1 1 1 I+ 2,

0202 1 + 0li + 2,

Ui02 = U1 + 02. (2.135)

This corresponds to the (A1 , 5). MTC described in (Rowell et al., 2007).

We see that when q = 7n. the decomposition of the fusion rules (2.96) into a non-trivial.
non-Abelian part that depends only on how the different irreducible representations fuse

together and a trivial Abelian part greatly simplifies these states. The Z(1) state, which at
v = 3/2 contains four quasiparticles. has only two irreducible representations of the magnetic
algebra and therefore the non-Abelian part is described by a simple rank 2 modular tensor

category (MTC) (Rowell et al., 2007): the Fibonacci MTC. Similarly, Z ,k) which for k = 2
and v = 5/8 has 24 quasiparticles, actually has only three different irreducible representations
of the magnetic algebra, and therefore the non-Abelian part of its fusion rules is described by
a simple rank 3 MTC. The Z 2 states listed previously in Table 2.2 have two representations,
yet one of them is not irreducible. It turns out that the non-trivial, non-Abelian part of the

fusion rules in the Z 2 states is described by the rank 3 Ising MTC. So, even though Z( at
first sight seems a great deal more complicated than Z 2 , their non-Abelian parts have the
same degree of complexity, namely they are both described by a rank 3 MTC.

Using the fusion rules (2.132), we can also verify that the ground state degeneracy on
genus g surfaces follows the decomposition (2.111). In particular, for the Z, parafermion
CFTs of Zamolodchikov and Fateev, the quantum dimensions of the fields al = <D' can be
found from the relation of these theories to SU(2)r, WZW models (Francesco et al., 1997b).
The result is:

sin(" 1)
d, = n2 (2.136)

sin(' )

From the relations (2.115), it follows that for n even, there are n + 1 distinct Ti's. cc

for I = 0,---. n/2 - 1 and csc= n/2. For n odd, there are "1 distinct o's, and csc = n for

1 0, - . Using (2.111), we find that the ground state degeneracy for the Zn") states
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Ground State Degeneracies for Znk states

n GSD

2 v-929-1 (29 + 1)

3 v-939( 1 + o2)g-1( 1 + p--2(g-1))

4 v-929-1(39 + 1 + (2
2g - 1 )( 3 9-1 + 1))

Table 2.6: Ground State Degeneracies on genus g surfaces for Zk) parafermion quantum Hall

states for the case when the number of electrons is a multiple of n. 0 2 " is the golden
ratio.

on a genus g surface is given by

(jz/2 sin 2 ( + ) + (n/2 ( 2(g-1) + if n is even
G.S.D. = v~9ngx 1n1 n i n is even

(z1+)/ 2 sin 2  ( (l1)/2 sin( ) if n is odd

(2.137)
Table 2.6 lists the ground state degeneracies obtained from the above formula for the cases
n = 2 (Oshikawa et al.. 2007), 3. 4 (E.Ardonne et al., 2008). These are the same results that

one would obtain by numerically computing (2.109) for the fusion rules (2.132). For the Z,)
states, they also match the same results obtained in (E.Ardonne et al., 2008).

2.10 Chapter summary

In this chapter, we discussed the ideal wave function approach to theoretically constructing
and understanding non-Abelian FQH states. In this approach, ideal Hamiltonians are de-
signed that select for a particular class of wave functions with certain idealized properties.
In the cases that we understand, these wave functions can be written as correlation functions
of vertex operators from a chiral CFT. We introduced the pattern of zeros characterization
of FQH ground states and their quasiparticle excitations. This provides for a quantitative.,
systematic way to characterize FQH states. We saw how to compute various topological
properties of quasiparticles from their pattern of zeros, such as their electric charges, their
fusion rules, and certain information about their spin (twists/scaling dimensions of quasipar-
ticle operators). We verified predictions from the pattern of zeros framework by comparing
to.the conformal field theory approach. We also saw that the pattern of zeros is a useful way
of understanding how quasiparticles form representations of a magnetic translation algebra
and how quasiparticles from the same representation differ by an Abelian quasiparticle while
those from different representations differ in their non-Abelian part. The appearance of this
magnetic algebra greatly simplifies the understanding of the fusion rules and it allows us to
show in general that the ground state degeneracy on genus g surfaces isv- 9 times a factor
that depends only on the simple current part of the CFT.
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While the pattern of zeros is a powerful tool to characterize the topological properties of
FQH states, it is not a complete characterization in general. When the values of the sequence

{ S,} are too large, then the pattern of zeros cannot uniquely fix the polynomial <D. In these
cases, <b has too many zeros and more data is required to uniquely specify their locations.
This raises the following questions. First, what additional data is needed to characterize the
polynomials? Second, can ideal gapped Hamiltonians be designed for these wave functions?
Alternatively, can these "higher" pattern of zeros solutions possibly describe incompressible
FQH states? These questions are the subject of current research; throughout the rest of this
thesis an answer will begin to emerge for some of these questions.

2.A Scaling dimensions of quasiparticles

The way the magnetic algebra structure of the quasiparticles factorizes in the fusion rules
is also seen in another topological property of the quasiparticles: the scaling dimensions, or
spins, of the quasiparticles. Since quasiparticles that belong to the same representation of the
magnetic algebra are described by sequences {1[a} that are related by a cyclic permutation.
from eqn. (2.82) we see that for each irreducible representation there is a single number h' min
that we need in order to calculate the scaling dimensions of all other quasiparticles in the
same representation. h'min is the minimum of hs+ over all the quasiparticles that belong
to this representation. Given hcmin, the scaling dimension of the quasiparticle Vy+a can be

calculated from its pattern of zeros {l,
It is not obvious that the information to obtain hmi for each irreducible representation

is even contained in the pattern of zeros. It may be that {1ly;a} is not enough information to
uniquely specify the CFT and therefore also not enough information to completely determine
the scaling dimensions of the fields that are contained in the theory. However, in the case
where the pattern of zeros corresponds to the (generalized and composite) paraferinion states
discussed above, there are explicit formulas in terms of 1y;a that yield h 11 min. This comes as
no surprise because in these cases, the pattern-of-zeros completely specifies the CFT. We do
not have a formula that can even be applied in the more general situations.

Let us now describe how to calculate the scaling dimension h-y+a of the operator V+a
given hsmin. First we must find the index ao at which

I Cmin hca+ao. (2.138)

This is equivalent to finding the index ao at which

hy+k - hy+a+ao > 0 (2.139)

for all k, because hm is defined to be the minimum of hy+k over all k. Recalling that
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+a+ - hC a+b, we see that ao is therefore the index at which
-y+a~b+l - : y: b± h - ah b'

y+a+ao+k - hc+a+ao

k

[sYc+a-ao+i -

h+a+ao+k - h , > 0 (2.140)

for all k. Using eqn. (2.140), we

hy+a using eqn. (2.82):

can determine ao from {l,}, after which we can determine

ao

hZ7+a =h 1 i1 - Iscy+a;b
b=1

(2.141)

2.B Ground state degeneracy on genus g surfaces

Here we illustrate how (2.110) and (2.111) can be determined from (2.109). First we observe

that the fusion matrices N, commute (and can therefore be simultaneously diagonalized)

because the fusion of any three quasiparticles a, i3, and -y should be independent of the order

in which they are fused together. Remarkably, there is a symmetric unitary matrix S, known

as the modular S matrix, which squares to the charge conjugation operator, S. 3 S =

and that simultaneously diagonalizes all of the fusion matrices (Verlinde, 1988; Moore and

Sciberg. 1989a):

Ng = San) "St (2.142)

Using (2.142) and the fact that Nao = , the eigenvalues A))

be written in terms of S:

A(n) = Son
* Son

S also has the remarkable property that the largest eigenvalue

dimension d,, is given by A(O):

Soo

Inserting eqn. (2.142) into eqn. (2.109) yields

N-1 (N-1 )9-

G. S.D. =A Al"
n=0 a=0

of the fusion matrix N, can

(2.143)

of N0 , which is the quantum

(2.144)

(2.145)
N-1 N-1

= (Son) -2(g- ) ESan San

n~o (A=o
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Using the fact that Sa pSfp-, = C, and Ca Cf, = 6,,, we see that Za San Sn = Eao SnaCaOSn=
1, so that (2.109) can be rewritten as

N-1

G.S.D. = So-( d)
=0 ,=0

(2.146)

N-1

d 2(g-1)

,=0

where in the last equality we use the fact that Ea d2 - S-02, which follows from (2.144) and
La S0 aSa0 =1.

From the magnetic algebra structure of the quasiparticles that was described in Section
2.7.2, we know that quasiparticles in the same representation of the magnetic algebra differ
from each other by Abelian quasiparticles and thus they all have the same quantum dimension.
Since there are ciq quasiparticles in the Zih representation, we can see that (2.146) can be
rewritten as

G.S.D. = q9

where the sum
and, as defined
I = p/q with p

representation.

g-1 c d d2()) (2.147)

over i is a sum over the different representations of the magnetic algebra
in Section 2.7.2, ciq is the dimension of the ith representation. Recall that
and q coprime. di is the quantum dimension of the quasiparticles in the i"'

To proceed further, let us pause to consider the structure of the simple current CFT. The
simple current CFT contains the "disorder" fields o-j, which are primary with respect to the
algebra generated by the simple current V/(z). There are also fields of the form , which
are primary with respect to the Virasoro algebra. Since V)" = 1, there are at most n different
fields of the form O"o-i. However, these fields are not necessarily all distinct. It may be the
case that cx and @"aui refer to the same field for certain values of a. This occurs when these
two fields have the same pattern-of-zeros sequences. That is, when

Li;b i-a+b (2.148)

for b = 0. - , n - 1. Let us suppose that this happens when a is a multiple of some integer
ci'. Then, @'i'ai and ci label the same fields and so there are only cyc distinct fields of the
form 0bai. Note that cic must divide n.

:,p is to take itNow recall that the action of Ti on some quasiparticle Vi,a= oje '"
to a new quasiparticle that differs from Vi,, by a U(1) factor:

Ti : (7i e of e0-i C. (2.149)
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So if we apply tfci to Vi, we get

= o- e i(QtY ,)+cipq) J1p

~n-c ""o eQ(ic) J , (2.150)

where in the last step we have used the fact that two quasiparticles are equivalent if they differ

by electron operators. Since cjq is the dimension of the i1h representation, quasiparticles in

the ith representation are invariant under the action of i1 C%. This means that o-se -Q() J ~

"-ciP0o-e? ")V . This happens only when ar and 0/-fiPo- refer to the same fields. Since

o 'i all refer to the same field, we find that

cip = c c. (2.151)

Inserting this in (2.147) yields (2.111).



Chapter 3

Pattern of zeros for multilayer FQH
states

In this chapter,l we generalize the pattern of zeros characterization to multilayer FQH wave
functions. Much of the discussion will mirror that of the single-layer pattern of zeros char-
acterization. Such a systematic classification leads us to the construction of non-Abelian
multilayer FQH states and also helps identify the simplest non-Abelian generalizations of the
Halperin (mni) bilayer FQH states (Halperin. 1983). In the same way that the Pfaffian FQH
state is the simplest non-Abelian single-layer state and so one of the first non-Abelian states
expected to be realized experimentally, this construction allows us to identify the simplest
non-Abelian bilayer states and therefore some of the ones that deserve further consideration
in future experimental and numerical work.

The pattern of zeros characterization for multilayer FQH states is a step towards a full
classification of all possible topological orders in FQH states, in the following sense. We know
that all Abelian FQH states are characterized by a non-singular, symmetric matrix, called the
K-matrix (Wen and Zee, 1992a). For each K-matrix that describes a FQH state, there is an
ideal wave function and ideal Hamiltonian that captures the topological properties described
by such a K-matrix. Similarly, the pattern of zeros classification of multilayer FQH states is
a step towards a full classification of non-Abelian topological orders in FQH states.

This chapter is organized as follows. We begin by describing the ideal FQH wave functions
that we can characterize by the pattern of zeros and their relation to symmetric holomorphic
polynomials. In Section 3.2, we describe the different ways to characterize the pattern of
zeros. In Section 3.3 we find the conditions that the pattern of zeros must satisfy in order to
describe valid FQH wave functions. In Section 3.4. we sketch how one may begin to construct
ideal Hamiltonians whose ground states will be FQH wave functions with a given pattern of
zeros. After a brief summary of the pattern of zeros data arid conditions in Section 3.5,
we explain in Section 3.6 the relation between the pattern of zeros approach and the CFT
approach to FQH wave functions. In Section 3.7, we describe some example solutions of this
systematic classification of multilayer FQH wave functions, which yields many non-Abelian

1The content of this chapter is adapted from (Barkeshli and Wen, 2009a,b)
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multilayer states. In Section 3.8 we discuss some of the simplest of these non-Abelian bilayer

states that may be relevant for experiments on two-component quantum Hall systems and

that warrant further numerical study.

3.1 Multilayer fractional quantum Hall states and symmetric
polynomials

The ground state wave function of a two-dimensional system of electrons in the lowest Landau

level can be written in the form

4' (ZI,.. ,Z~re 4 i=I :N Z, 1 (3.1)

where zi = x- + 1y', (xi, yi) are the coordinates of the ith electron, and P(zi,- , ZN) is a

holomorphic function of zi. Since the electrons obey Fermi statistics, 1 is anti-symmetric

under interchange of any two coordinates zi and zj when all of the electrons are identical. In

many physical situations, the electrons may be distinguished by various quantum numbers,

such as a spin index (when the Zeeman energy is not too high), a layer index (in a multilayer

two-dimensional electron system)., a valley index (such as in graphene and SiGe heterostruc-

tures), etc. In such cases, the ground state wave function in the lowest Landau level may

instead be written in the form

= ({z/})e-4 _ I _i 1 (3.2)

where I - 1-- , Nf is a flavor index and Nf is the number of different flavors. P is then

necessarily antisymmetric only under interchange of z[ and zj for any i and j. Given any an-

tisymmetric polynomial Ganti-sym({zf}), we can uniquely construct a symmetric polynomial:

s({z }) = Ganti-sym({z(})3.3)
sy ii<j(zJ - zj)

Dsymm will also be a polynomial because Ganti-sym must vanish when any two identical particles

approach each other. Thus the above division by the factor Hi (z< -ziJ) will never produce

any poles in the resulting function.

Therefore to classify FQH phases of electrons, we can restrict our attention mainly to

symmetric polynomials @({zf}), where 4 is invariant under the interchange of z and j for

any i and j, but not necessarily invariant under the interchange of z and z if I # J. In

this chapter we will often refer to I as a layer index. In the following, 1 will always refer to

such a symmetric multilayer polynomial.

We will introduce data, such as n, r, and S5, to characterize and classify bosonic FQH

states (ie symmetric polynomials) P({zJ}). From the above discussion, we see that the

same set of data also characterizes fermionic FQH states whose wave functions are given by

anti-symm({z}) - ({z/}) Hi<j(Z - z4).
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3.2 Pattern of zeros characterization

The spirit of the pattern of zeros approach is to consider bringing together a1 particles of type
I, for I = 1, - - - , Nf, and asking how D goes to zero under such a procedure. The order of
the zero will be denoted Sd, where d - (ai, - - - , aNf). In the following we will more precisely
define Sg and discuss some different yet equivalent ways of characterizing the pattern of zeros.
This discussion is a straightforward generalization of the discussion in the single-layer case
(Wen and Wang, 2008a,b; Barkeshli and Wen, 2009c), which was presented in Chapter 2

3.2.1 Sj characterization

Consider a set of al coordinates of each type I. and set = (ai, - , aNg). Define Sd as the

minimal power of (11 1 ) in the polynomial D. This means that if we set

z ~ + z(d) i i, .... , al, VI,

z(d) = Z i zl, 0 (3.4)
E, aj iI a1J

and we take A - 0, then

Asp({ 1(a){zJ±- - }) + O(As,+ 1 ), (3.5)

where P({{/},z(a), { - - }) is a polynomial in {{f} and the remaining coordinates z(a)

and {z }+i}. We refer to z(a) as the coordinate of an d-cluster. We assume that Sd is indepen-

dent of the choice of z(d), which must be the case for translationally invariant wavefunctions.
We also assume that Sd is independent of the choice of {{[} and that different polynomials

P({f }.z(), {za+1, --- }) obtained from different choices of (/ are linearly dependent. This
is the assumption of unique fusion.

We can immediately deduce some basic properties of Sd. Since 4 has no poles, it is clear
that S- > 0. Since P must be single-valued under rotating A in the complex plane by an
angle 27r, Sj must be an integer. Let Se, be the minimal power of z; that is. ( = orj. A
translationally invariant 4 will have Sg, = 0, otherwise it will vanish everywhere.

Thus, for a translationally invariant polynomial, Sj is a nonnegative integer that charac-
terizes the order of zero that results when the size of an a-cluster goes to zero.

3.2.2 Derived polynomials and the Dg characterization

In the previous section, we introduced the derived polynomials P({f }. z(a), {z , - }). As
a consequence of the unique fusion condition, these polynomials are actually independent of
{{f}. We may consider more general derived polynomials by bringing together other sets

of coordinates in P to obtain P(z(7), z(b),.- ). Then we may consider bringing together an
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a-cluster and a b-cluster:

(Z(a) -- z()Ddgg/9(d+6), Z,)

+ O((z(6) _ 1). (3.6)

Thus, Dg characterizes the order of the zeros in the derived polynomials as a cluster of d elec-

trons are brought close to a cluster of b electrons. The unique-fusion condition assumes that
the derived polynomials obtained from different ways of fusion are always linearly dependent.

The fact that <b is a single-valued, symmetric polynomial implies

Dgg = D- E Z, Da- = even, Dd ;>0. (3.7)

We can deduce a relation between Dg and Sd as follows. The order of the zero obtained

by creating an (d + b)-cluster is Sg. One way of creating such a cluster is by first creating

an a-cluster, then creating a b-cluster, and finally bringing together the two clusters to create

an (d + b)-cluster. The order of the zero in this case will be Sa + S6 + D,,. Thus D.6 can be
obtained from {Sd} through the formula

D66 = Sa -- Sa - Sg. (3.8)

Since SF, = 0, where recall (e6)j =1j is the unit vector in the I direction, we also have

S + = Sd + Dd,. (3.9)

From this recursion relation and from the fact that Sg, = 0, we may obtain Sa from the
sequence Dg. Therefore we may equivalently label the pattern of zeros data using {Sd} or
{Dd.}.

3.2.3 Characterization by sequence of highest occupied orbitals

The integer Sij has the following meaning. A polynomial with a, particles of Ith kind (ie al

particles in the Ith layer) has a total order of Sg. In other words the total angular momentum
of the quantum Hall droplet is Sd if the droplet has a' particles in the It" layer. If we remove
one particle from the Ith layer, then the total angular momentum of the quantum Hall droplet
will be reduced to Sg_, . Thus we can interpret

IL = Sa - SY--, (3.10)

as the angular momentum of the highest occupied orbital in the Ith layer for a quantum
Hall droplet with ai particles in the Jth layer. The Nj-dimensional sequence of vectors

S= (lj...j ) will be called the sequence of highest occupied orbitals (HOO).
We see that li makes sense only when a' > 0. We will set li = 0 when it does not
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make sense. From (3.10), we also see that there is a one-to-one correspondence between the
sequence Sa and li. Thus we can also use 1d to characterize the pattern of zeros in the wave
function. See Section 3.A for more of a discussion on the sequence {1}.

3.2.4 Relation to angular momentum on the sphere

A FQH wave function <b({z/}) defined on a sphere forms a representation of SU(2). In such a
case, z represents the stereographic projection onto the plane of a point on the sphere. A single
particle in the lowest Landau level can fill any of the ND + 1 orbitals, so the representation
of SU(2) formed in this case is the one with angular momentum J = N/2. The SU(2) Lie
algebra is generated by

Lz = zOz - J. L -- =, L+ = -z 20z + 2Jz. (3.11)

In the multilayer case, then, the angular momentum of a particle of type I will be J = N/2
where N, is the total number of flux quanta through the sphere seen by the particles in
the I" layer. Note that here we allow the numbers of flux quanta in different layers to be
different. The total angular momentum of an a cluster in the z direction will be the eigenvalue
of the operator

a1

L- Z( zfz - JI). (3.12)

The operator E, EK z 1 jOz counts the total power of a polynomial. Since the minimum
total power of f 1 Ha 1 z' is Sd, the minimum total angular momentum of an d-cluster is
given by Sd - E a, J1 . This means that the d-cluster carries an angular momentum of

Jit = a. -J - Sa - Nq, -Sit, (3.13)2

where = (Ji, ... , JNf) and e = (N, .. , N -f). We will use this relation later to con-
struct ideal Hamiltonians and to place conditions on the pattern of zeros for when they can
correspond to rotationally invariant wave functions on the sphere.

3.3 Consistency conditions

For the pattern of zeros to describe a valid FQH wavefunction, it must satisfy certain con-
sistency conditions. We already encountered several such conditions above. For instance, we
found that Sd is a nonnegative integer, D1 g = Sg- S- Sg > 0, and Dit = 32-2S6 is even.
In the following we find additional conditions that the pattern of zeros must satisfy. Most.
but not all, of the conditions are simple generalizations of those found in the single-layer case.
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3.3.1 Concave condition

One of the most important conditions on the wave function is simply the condition that the
wave function have no poles. This condition is remarkably restrictive on the allowed pattern

of zeros sequences. Consider a derived polynomial P(z(6), z(b),... ) and fix all coordinates but
z(6), thus viewing it as a complex function f(z()). f(z(a)) has zeros at isolated points, but

no poles anywhere. Some of the zeros are located at z(b), z(', etc . Those zeros are called
on-particle zeros. The rest of the zeros are called off-particle zeros.

If we imagine taking z(6) around z(b) without enclosing any off-particle zeros, then f
will pick up a phase 27D-6. Similarly, if we take z(") around z(a- without enclosing any

off-particle zeros, then f will pick up a phase 27Dgg. Now consider taking z(b) - z('). Under
such a process, -some nearby off-particle zeros will also be taken to z('. Therefore, if we

take z(6 around a contour that encloses both z(b) and z(' in the limit that z(b) Z z(0, the
complex function f must change by a phase that is greater than or equal to 2 7r(Dgg + Dd).
The phase can never be less than this amount because that would require the existence of
off-particle poles that get taken to z(' in order to diminish the strength of the on-particle
zeros. By definition., the phase change of f under the above procedure is 2xDg.6 Therefore.
the condition that the wavefunction have no poles leads directly to the following concavity
condition on the integers Dug:

D > D g + Duj. (3.14)

In cases where all of the zeros are located on the particles and there are no off-particle zeros,
the above inequality is saturated. This occurs in the Laughlin states <b - ]j (zi zj)m
and their multilayer Abelian generalizations, the Halperin states

i = Q (z[ - zf)KII 17 (z/ _ J)Kj. (3.15)
I;i<j I<J;i,j

In the following we will rewrite the concave condition as

A 3 (,b. ) > 0, (3.16)

A 3 (a. b, c =Da1  - Dg + Ddg

=S -. -s -.-s (3-17-
=S - S+- Sac - Sb + S +Sg +S. (3.17)

3.3.2 Cluster condition

The cluster condition is a way to associate some kind of grading to the polynomials that is
physically meaningful. Let {I } for I - 1, -- - , Nf be a set of vectors that generate an Nf-
dimensional lattice, where Nf is, as before, the number of flavors of particles (or the number
of layers). The cluster condition states that the concave condition is saturated, i.e.

(3.18)D_ =Dg + D--,
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if either d, b, or ' lie on the lattice generated by {F 1}. That is, if either a, b, or ' can be
written as a linear combination with integer coefficients of the vectors {' 1 }. This means
that a derived polynomial containing a k =n- k1 cluster is non-zero unless z(k) coincides
with the coordinates of another cluster; viewed as a function of the single variable z(k), it
has no off-particle zeros. A consequence of this is that if all of the particles are fused to form
r-clusters, then the resulting derived polynomial has the Laughlin-Halperin form (see (3.15))
and there are no off-particle zeros.

The single-layer Read-Rezayi Z., parafermion wave functions satisfy an n-cluster condition
and they are exact ground states of Hamiltonians with n + 1-body interactions. For a fixed
filling fraction, as n increases, the number of topologically distinct quasiparticles, the ground
state degeneracy on higher genus surfaces and the complexity of interactions necessary to
realize the state all increase. This suggests that the energy gap typically decreases with
increasing n. Wave functions that do not obey a cluster condition can be thought of as
having infinite n and are not expected to correspond to gapped phases. This intuition also
comes from the CFT approach to FQH wave functions; infinite n corresponds to an irrational
conformal field theory, which does not yield a finite number of quasiparticles and a finite
ground state degeneracy on the torus. In the multilayer case, we may use the volume of the
unit cell spanned by {Ff1} as one way to measure the complexity of a given FQH state.

The cluster condition is extremely powerful and simplifying because it allows us to deter-
mine the entire pattern of zeros sequence from knowledge of a "small" number of them. To
see how this works, first observe using (3.18) that

D -= aiDDag, (mja, (3.19)
I I

where we have defined the matrix ii - Dan,. So for any vector k =E kr 1iI, where k1 is
an integer and E kj(nrj).j > 0, we have:

Df =Z(klijaj. (3.20)
IJ

The above equations imply

DgrL = ~ Z nJADI,F = E nJAm1A = (nmT) j,
A A

= ZU1ADA., ij TIAmJA = (mnT)ji, (3.21)
A

where we have also defined the matrix nrj = (ni)j.
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In terms of the sequence {S,}, this implies that for k = 1 k1 1 , where k1 is an integer.

I I J

+ ( Z(nmn)ji(kjkj - 6,jk1). (3.22)
IJ

Therefore, all of the integers Sd are specified by the points a within the unit cell spanned by

{n}.
In terms of the HOO squence li, we have:

i =S-Sg -S _-,=S- , +(kAmAl
A

if±Z +A, (3.23)
A

Finally, note that since Ddd is an even integer, we have:

even Ddsd, = ( n3jDjj,, = njimj1
II

= (nmT) JJ. (3.24)

3.3.3 Equal area layers

The density profiles of the single-particle states in the lowest Landau level, z m e-zP/4 B , are

in the shape of a ring, with a peak at a radius rm = 2 mlB, where lB is the magnetic length.

Such a wave function has an angular momentum m. When many of these orbitals are filled

by particles, the total wave function will describe a uniform., rotationally symmetric state

that goes to zero at a radius rmax = V 2 mmariB, where mma refers to the filled orbital with

maximum angular momentum. Therefore, a given quantum Hall wavefunction will describe

a QH droplet of area 47rrmax12 , and mmax is given by the maximum power of zi (or z, for

any other fixed i). nmax is also equal to the number of flux quanta, Np.

An important constraint on the multilayer quantum Hall wavefunctions is that they must

describe systems in which each layer occupies the same area, lip to small corrections. The

requirement that each layer occupies exactly the same area amounts to the requirement that

each layer has exactly the same number of flux quanta, N, = NJ = No. However, it is

reasonable to include states in which different layers occupy equal areas only up to O(N0)

corrections, where Ne is the number of electrons.

Such a requirement of approximately equal area layers is summarized in the following

equation:

N'
lim * = 1. (3.25)

Ne-o Ni
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We wish to see how this condition translates into a condition on the pattern of zeros. The
conditions are slightly different depending on whether we ultimately want to characterize
gapped FQH phases of fermions or bosons. If we are interested in fermionic phases, we
require that kI({z[}) - Hl;ijD (zf - z')>({zP}) be a valid FQH wave function of fermions,
which does not require that D({zf}) be a valid FQH wave function of bosons. In what follows
we will explicitly analyze the bosonic case, where we require 4({zj}) to be a valid multilayer
FQH wave function of bosons.

N' is equal to the maximal power of zf; for the boson waveftnction 4, this is given by

N = SN - (3.26)

where recall NI is the number of particles of type I. Using the cluster condition, we find

N - N[ (n- m) i + Srj - Srj-j - maj, (3.27)

where we have set N =E kir1 . Requiring (3.25), we obtain the following condition on the
pattern of zeros:

L(min' )jj > 0. (3.28)
I

This can be seen most easily by ignoring the O(NO) terms in (3.27), taking N4'/Np -- 1,
and inverting the result to obtain N, ~ N E1 (m-in)jj, which must be nonnegative. From
this analysis, we learn that if n- 1m is not invertible, then the pattern of zeros cannot fix the
ratio of particles Nr/N 1 in the different layers. Therefore the corresponding FQH state has a
gapless mode corresponding to the relative density fluctuations between the different layers.

As a simple example of this analysis, consider the (1, 1, 1) Halperin bilayer state, which is

known to have a gapless density mode and for which n~-1m = which is not invertible.

A macroscopic number of particles can freely go from one layer to the other without changing
the area of the quantum Hall droplets, signalling the existence of a gapless relative density
mode.

Inverting (3.27) yields

S (rn);j ( N n - S, + Sig + m 1 1 ) = Nj, (3.29)

from which we can read off the filling fraction in each layer:

vI = (m-1'n)rj. (3.30)

The total filling fraction is the sum of the filling fraction of each layer: v Vi.
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For fermions, (3.26) is modified to

N±I= Sg - Sg _ + N, - I, (3.31)

due to the extra factor H,.,< (zf - zj) in W({z[}). Note that {Sd} still describes the pattern

of zeros of the symmetric polynomial 4b. The result for fermions is therefore

VI = ( + nKm)7j > 0, (3.32)

where 11 is the Nf x Nf identity matrix. If (11 + n-im) is not invertible in the fermionic case,

then there are gapless relative density modes, which is why the filling fraction in each layer

becomes undefined.

3.3.4 Shift and rotational invariance on the sphere

Consider a multilayer quantum state with N particles in the Ith layer. We want to put the

quantum state on a sphere with N' flux quanta in the Ith layer. We would like to know for

which set of N, can the quantum Hall state completely fill the sphere? Naively, one may

expect N4 and NJ are related by the filling fraction in each layer NI/v, - N. However the

precise relation between the number of flux quanta and the number of electrons includes a

shift (Wen and Zee., 1992b).,

V-1 viN = v Ne - S, (3.33)

where S is of order 1 in the large Ne limit (see eqn. (3.29) ).

More precisely, completely filling the sphere means that the quantum Hall state is ro-

tationally invariant with zero total angular momentum. Using (3.13), we find that, for a

bosonic FQH state characterized by S with N, particles and N, flux quanta in the Ith layer,

the maximum total angular momentum is given by

Jl = N - ND - Sg (3.34)

N N

where N = (NI, ... , NNf ) and N4 = (N4, ... , N f). For a fermionic FQH state characterized

by Sd with N1 particles and N' flux quanta in the Ith layer, the maximum total angular

momentum is given by

JN = -N Ni - Sg - 2 N 1 (NI - 1). (3.35)
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In the above, N must satisfy

N1, ;> Sg,, - Sfor bosons (3.36)
N1 > Sg - SN-6 + N 1 - 1 for fermions

in order for the wave function to fit into each layer.
Completely filling the sphere requires that

N = S R- S R for bosons (3.37)
N, Sg - Sg , + N1 - 1 for fermions

and Jg 0. We see that N and No must satisfy

N - N4 2SI for bosons (3.38)
2S + N1(N1 - 1) for fermions

which implies (for both bosons and fermions)

SN, (S - S-6) - 2SN . (3.39)

If a given N does not satisfy (3.39). then the corresponding quantum Hall state (with N,
particles on the jth layer) cannot completely fill the sphere. For N that satisfies (3.39), the
corresponding quantum Hall state can completely fill the sphere and has zero total angular
momentum if Ne is given by (3.37). (3.39) can generally be satisfied only if N lies on the
lattice spanned by {I'I}.

We would like to remark that it is easy to have different numbers of flux quanta on
different layers in numerical calculations. The pattern of (N, Np) where the quantum Hall
state has zero total angular momentum on the sphere can be used as a fingerprint to identify
different quantum Hall states through numerical calculations (for examples, see Tables 3.4
and 3.5).

3.3.5 Additional constraints: A3 = even

The analysis of the single-layer case in (Wen and Wang, 2008a) has suggested an additional
condition:

A3 (a, b, c) - even. (3.40)

There, it was found that allowing A 3 (a, b, c) - odd allows for certain pattern of zeros se-
quences that either do not correspond to single-valued wavefunctions (such as the square
root of the Pfaffian) or could not correspond to translationally invariant wavefunctions. It
was suggested that one way to rule out such possibilities is to impose (3.40). How should
this condition be generalized to the multilayer situation?

One natural generalization is to impose A 3 (. b, c = even for all a, b, and -. However, we
find that this condition is too restrictive. It rules out certain known FQH wavefunctions., such
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as the su(3) 2 /u(1) 2 non-Abelian spin singlet states (Ardonne and Schoutens, 1999; Ardonne

et al., 2001). The need to relax this condition while still having it remain compatible with
the single-layer situation suggests that we should impose (3.40) only for choices of a, b, c that

are collinear through the origin.

While it was found that allowing A 3 (a, b, c) = odd allows for pattern of zeros sequences
that do not seem to correspond to valid translationally invariant, single-valued wavefunctions,
there are known cases of CFTs with A 3 (a, b, c) = odd that do seem to yield translationally
invariant, single-valued wavefunctions. One such example is the so-called Gaffnian wavefunc-

tion, which has A 3 (1, 1, 1) = odd and which can be constructed using the minimal model

CFT M(5. 3) (Simon et al., 2007). This CFT however is non-unitary. It has been suggested
that FQH wavefunctions constructed using non-unitary CFTs correspond to gapless phases
(Read, 2009); whether this is always necessarily the case is currently an important open
question in FQH theory.

These considerations suggest that in order to restrict ourselves to pattern of zeros se-
quences that have a corresponding unitary CFT, we should impose A3(a, b, c = even for
those a, b, and C- that are collinear through the origin. In our search for pattern of zeros
solutions, we will impose this condition and analyze the resulting states. The precise connec-
tion, if any, between this condition and valid FQH wavefunctions that correspond to unitary

CFTs remains to be clarified.

3.4 Ideal Hamiltonians

Given a pattern of zeros sequence, it is important to be able to construct a local, gapped
Hamiltonian whose ground state wave function has the given pattern of zeros. If this is pos-
sible, then we know that the corresponding pattern of zeros sequence describes a topological
phase of matter. Whether this particular phase is realized in an experiment then depends
on the particular types of effective interactions between the electrons in the unfilled Landau
levels.

We can go about constructing such a Hamiltonian by noticing that on a sphere, the
integers Sil are directly related to the angular momentum of the d-cluster. For an electron
system on a sphere with N' flux quanta for the Ith layer, an electron of type I will carry

an angular momentum J = N1/2. For an d-cluster, the maximum angular momentum is

therefore ' - J. However, for a polynomial D({zi }) described by a pattern of zeros {S}, the

maximum allowed angular momentum of the a cluster is only J = d - J - S. The pattern
of zeros forbids the appearance of angular momentum - - J - Si + 1, a- J - Sa + 2,. - - J
for any al-clusters in <D({z}).

Such a condition cani be easily enforced by writing the Hamiltonian as a sumi of projection

operators, Pd. Let Pi be a projection operator that acts on the (-cluster Hilbert space.S s

P,, projects onto the subspace of (-clusters that have total angular momenta greater than
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a - J - S. Now consider the Hamiltonian

Hf Sd = P (3.41)
d d-clusters

where Ed-clusters sums over all of the d-clusters for a fixed a. The wave function described
by {Sd} will clearly be a zero-energy ground state of the above H{s,}. In many cases, there
is only one unique ground state wave function with minimal total angular momentum, but
in general there can be many independent polynomials with the same pattern of zeros. In
such a situation, the Hamiltonian would need to be modified further to select for a particular
polynomial with the given pattern of zeros.

In order for the above Hamiltonian to be local, E must be limited to a small, finite
number of d-clusters. But as a result, we cannot guarantee in general that the ground state
wave functions will all be described by the sequence {Sd} for every a, or even that they will
obey the cluster condition. In many of the known cases, such as the Laughlin, Moore-Read,
and Read-Rezayi wave functions, the sum over d-clusters can indeed be terminated after the
first few clusters while still yielding a unique zero energy ground state wave function with
minimal angular momentum which is described by {Sd}.

The above construction for H{s,1 should therefore be viewed as a starting point for
constructing an ideal Hamiltonian that is local, gapped, and whose unique minimal angular
momentum ground state wave function is described by {Sd}. In some of the simplest cases,
we know that this construction suffices.

3.5 Summary: pattern of zeros data and conditions

We have found that the polynomials ({z/}), I = 1,- , Nf, that may correspond to stable
FQH states are described by the following data:

n, m, {S4., (3.42)

where n and m are Nf x Nf matrices with integer entries that satisfy

mj ;> 0, njj ;> 0, det n r 0

mnaT nmT, (mnT) 1 1 = even. (3.43)

The above implies that n-im is a symmetric matrix. Furthermore, for the pattern of zeros
to fix the relative densities of particles in each layer, we have

(n m n)Ij is invertible (for bosons)

(n m)J + 611 is invertible (for fermions). (3.44)
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Otherwise, there are gapless relative density fluctuations. We also have

VI> 0.

_ Ej(m-in)'i for bosons (3.45)
v Ej(l+n-1m)~g for fermions(

The total filling fraction is v = E Vir.

Note that the {S} need to be specified only for values of a that are contained in the unit

cell spanned by {f;I}, where n-1 corresponds to the Ith row of the matrix n: (-I5) = njj.

Using the cluster condition, we can determine Sj for all a simply from m, the fact that

the Se1 =0, and from the values of Sg for which b lies in the unit cell spanned by {In 1}:

S = Sa + k, Sjj + ( kjmn13j
I I J

+ I Z(nmT)Ij (kIkj a- 61jk 1 ), (3.46)
I J

where k =E kI 1Ti. Sy must satisfy:

A2 (a, a)= even,

A2(a, b) 0, A 3 (a, b, ) 0. (3.47)

where

A2(a, b) S+6 - S - S,

A3(d, b5 )S+. - sE - Si+ - + + (3.48)

Finally we impose

e3(a, b, C) =ven (3.49)

for those d, b, and C-that are collinear through the origin.

3.5.1 Product of symmetric polynomials and primitive solutions

Consider two polynomials of u-cluster form, <b and <', and consider their product: 44'.

The pattern of zeros of <~ is the sum of the pattern of zeros of <b and <V:

h~ = Djaj + DI. (3.50)

Similarly, the data in terms of n and Sa are also additive. Note that all of the conditions

that we impose on the pattern of zeros are linear. Thus the pattern of zeros of <b is also valid.
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However, notice that the condition for filling the sphere is not linear. There may be two FQH
wavefunctions <D and 'V that can fill the sphere but whose product <I cannot fill the sphere.

Thus, we can divide the pattern of zeros solutions into primitive and non-primitive so-
lutions. Primitive solutions are solutions that cannot be written as a sum of two other
solutions.

3.6 Relation to conformal field theory

The pattern of zeros approach is closely related to the conformal field theory approach to
constructing FQH wavefunctions. In the CFT approach, the symmetric polynomial 4({z[})
that describes a multilayer FQH state can be written as a correlation function of a set of
electron operators Ve;i in a CFT (Wen et al., 1994b):

<D({z}) lim z0(V(zoc) 7Ve;i (zj)). (3.51)
i,1

The operators V, are written in the form:

Ve;i(z) = (z)el ' A 1#2(z), (3.52)

where e El AeIJ5J(z) is a vertex operator in a U(1)Nf CFT. It has scaling dimension EZ AI2/2.
V.g, is a simple current operator; that is, it satisfies the following fusion relation:

(3.53)

This Abelian fusion rule is the CFT version of the unique-fusion condition. The cluster
condition implies that 4 satisfies

~~ 1, (3.54)

where (nI)j = njj. An d-cluster of electrons will be described by the operator

V =JVc. eV,,iEIja1Mai,0i(z). (3.55)

Thus we see that the cluster condition implies that an iii- cluster is described by a vertex
operator eIZJK rIJAJKkK(z). If all of the particles are grouped into n-clusters, then the
corresponding derived polynomial will be just a correlation function of vertex operators in
a U(1)Nf theory, which will have no off-particle zeros and will be of the Laughlin-Halperin
form.

Let us denote the scaling dimension of the operator V as

ha = h! + 0a (3.56)

where hg is the scaling dimension of the simple current 4'd and ha is the scaling dimension ofa a
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the vertex operator. Notice that since '?j@ ~ 1, the simple current scaling dimensions satisfy

hs =hI. The scaling dimension of the Gaussian part is given by

1
haa a(MMT)ijaj. (3.57)a 2

The pattern of zeros are related to the scaling dimensions through the relation

Dd, h4,j - hd - h6

=S - - S_ - Sg. (3.58)

This allows us to obtain the scaling dimensions from the pattern of zeros. Using the cluster

condition, some algebra shows that MMT = n m and so (3.57) becomes

hga_ n ma (3.59)
d 2

The scaling dimensions of the simple-current part can also be determined from the pattern

of zeros by using the fact that h - ('mT) , ho = 0. and applying (3.58) iteratively. This

yields:

(nmi) 1 1 niAhg+ Si. (3.60)

Multiplying both sides by n-i gives

h-T 1 h + 2
hQF = e"CA + eA' 2 mA

1(nmi) 1 1
2 si 1 ).

In a similar manner, one can obtain

- Sq ) + Sj.

-T n-i imd
hY + a2

(3.61)

(3.62)

which determines h-5 in terms of the pattern of zeros.a

Note that the correlation function of the Gaussian part is, leaving the background charge

implicit,

KrJlCZJ A/11J~j(4J)) =J7J (zfl - zJ)(AIAI)1
I;i Ii<j

= IJ(zI - zj)(n-4,n)n

I;i<j

I~ (z J ~)(MI 1 1J

I,J;i,j

J (z[ - zJ)(n-m)hj

I<J;i~j

(3.63)

CHAPTER 3.

hd = ( a1(n-')1j( (TMTj
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Thus the FQH wave function is of the form

(zD}=SC({z!})Dga({z}), (3.64)

where

jga({z[}) = J (zJ - zJ)(""m) JJ (z[ - zf)( 'm)ilJ (3.65)
I;i<j 1<J;i,j

4bc arises from the correlation function of the simple current sector and is the "non-Abelian
part" of the wavefunction.

In this manner, each pattern of zeros solution corresponds to the current algebra of a
rational CFT. The connection between the pattern of zeros approach and the CFT approach
can be thought of in the following way. The pattern of zeros describes the essential prop-
erties of the CFT that yield valid FQH wavefunctions. So in order to classify ideal FQH
wavefunctions, one can bypass the CFT altogether and go directly to the heart of the mat-
ter: characterizing the allowed pattern of zeros solutions. Furthermore since each pattern of
zeros solution corrresponds to a CFT, the pattern of zeros classification can be viewed as a
classification of the allowed CFTs that can be used to construct FQH wave functions.

In this formulation, the pattern of zeros classifies all those ideal FQH wave functions
that can be formulated as a correlation function of conformal primary fields. There are also
many FQH wave functions, such as the hierarchy states and the Jain series, that cannot be
written in this way. These wave functions are not ideal wave functions and so are not directly
classified by the pattern of zeros. However they may be closely related to the pattern of zeros
construction, in the sense that their topological order is classified by the pattern of zeros. We
comment on this connection elsewhere.

3.6.1 Alternate labeling

Using (3.62), we can derive a formula for Sy in terms of h!c, and. a :

Sii h1 - ( a, hj,. (3.66)

Thus there is a one-to-one correspondence between the simple-current scaling dimensions and
the sequence {Sj}. This means that there is yet another way to label the pattern of zeros.
Earlier, we found that one convenient labeling of the pattern of zeros is with an N1 x Nf
matrix n,) an Nf x Nf matrix m, and the value of the non-negative integers Sq for d lying
inside the unit cell spanned by the rows of n. An alternative, equivalent labeling of the
pattern of zeros is by specifying the following data:

, In, {hic}, (3.67)

for a lying inside the unit cell spanned by n. This labeling is convenient because it makes
close contact with the corresponding CFT description; if h. $ 0 for some a, then the CFT
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has a non-trivial simple-current structure and therefore generally also has some form of non-

Abelian statistics.

3.6.2 Relevant CFTs for multilayer FQH states: gk/U(1)f parafermions

In the single-layer case, many of the pattern of zeros solutions were found to be closely related

to the Zk parafermion CFTs of Zamalodchikov and Fateev (Zamolodchikov and Fateev, 1985).

What are the relevant CFTs to expect in the multilayer case? The answer is that some of the

corresponding CFTs in the multilayer case will be closely related to the W/U(1)r parafermion

CFTs that were constructed by Gepner, where yk is a simple affine Lie algebra at level k and

r is the rank of the Lie algebra g (Gepner, 1987). The case g = su(2) is equivalent to the Zk
parafermion CFTs of Zamalodchikov and Fateev.

The simple-current algebra of the Wk/u(1)r parafermion CFT has the following structure.

For every element a of the r-dimensional root lattice of q. associate a simple current operator

45. The simple-currents will have the fusion rules

(3.68)

Furthermore, # =g if V - 3 is an element of k times the long root lattice of g. The scaling

dimension of @3 is given by

--2
h =- + n(). (3.69)

where n(d) is an integer equal to the minimum number of roots from which 6 is composed.

The inner product .2 =(, d) is defined with respect to the quadratic form matrix of g.

If we are considering quantum Hall states with Nf layers, then we would expect to see

the appearance of these parafermion CFTs with rank r > Nf. Therefore in the bilayer case,
one class of states that we expect to see should be related to W/u(1) 2 parafermion CFTS

where g is a simple Lie algebra of rank 2. There are only three simple Lie algebras of rank 2:

su(3). so(5), and G2 . Of these, only su(3) is simply laced, so the long root lattice is the same

as the root lattice. This means that for the pattern of zeros solutions that correspond to

n = ), we expect to see solutions that correspond to sU(3)k/U(1) 2 CFTs. In Appendix

3.13 we will describe the s(3) 2 /u(1) 2 CFT in more detail.

The parafermion CFTs for g = so(5) and g = G2, on the other hand, are more complicated

because the long root lattice is different from the root lattice. For example, so(5)k/u(1) 2

CFTs will generically be relevant forn = ( 2k) while (G2)k/u(1) 2 CFTs will generically

be relevant for n = k 0)
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3.7 Examples of pattern of zeros solutions

In this section we examine explicitly several simple bilayer pattern of zeros solutions. We
first fix the cluster structure n to have a simple form. Then we try to find all the solutions
{Sy} that satisfy the conditions listed in section 3.5.

The simplest non-Abelian states can be obtained from the simplest cluster structures

n - (0 2 and n = 0 ). These are the simplest non-Abelian generalizations of the
bilayer Abelian Laughlin-Halperin states.

Note that by definition the ordering of the rows in n is arbitrary; we choose it so that nri $
0. Interchanging the layers yields the same physical system but corresponds to interchanging
n11 with n 22 and n 12 with n 21 , so two matrices n and n' that are related by such an interchange
are regarded as equivalent.

To list the solutions for those simplest cases, we may use some known CFTs to construct
the appropriate simple-current algebra that corresponds to the pattern of zeros solutions.
Using this known CFT, we can then write the wavefunction explicitly. However, the wave
function that we write down may not be unique in some cases; there may be several inde-
pendent polynomials that have the same pattern of zeros. This corresponds to there being
several distinct CFTs whose simple-current algebra possesses the same pattern of zeros. In
the following examples., we will make this choice when necessary so that we can explicitly
write down a wave function with a certain pattern of zeros. However note that this issue of
whether the pattern of zeros uniquely specifies a wave function is extremely important for
the question of whether they can describe gapped FQH states. This is an issue that we will
be revisiting later on in this this thesis.

(1 0)

0 1)

These states are all Abelian and correspond to the Halperin (n, n, 1) states. The unit cell
spanned by the 5I consists only of the points (1.0) and (0,1); By translation invariance
S(1,0) = S(0,1) = 0. Thus these states are completely characterized by the matrix m, and are
of the form

4D = (z- z-) m " J7(W, - W)M22 J(z, - W) m 12 . (3.70)
i<j i<j i

The i matrix here is exactly the K matrix that describes all Abelian FQH states (Wen and
Zee, 1992a). We also have hS' = 0 for all of these states the CFT has no simple-currenta
part and corresponds to a U(1) 2 Gaussian CFT.

Although the single-layer hierarchy states, such as the v = 2/5 hierarchy state, do not
have ideal single-layer wave functions., there are ideal multilayer states that have the same
topological orders as those single-layer hierarchy states. For example, the topological order

in the v = 2/5 hierarchy state is described by the K-matrix K = 3 ) (in the symmetric
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basis) (Wen and Zee, 1992a; Wen, 1995a). Such a topological order can be represented by

the ideal bilayer state with n= (= 1) and m = 123). So although the pattern of zeros

construction does not directly classify those single-layer hierarchy states, their topological

orders can still be described by the pattern of zeros approach.

n 1 1
n= 0 2

This choice of n requires that the electron operators in the CFT must take the form

Vei = iei. E. MJ,

Ve 2 = ,e .j M2 .10, (3.71)

where V) 2 = 1 and I has scaling dimension that is integer or half-integer. This latter fact

can be obtained from the condition A3 ((1, 0), (1,0), (1, 0)) = even. One general way of

constructing such a simple-current operator is by expressing it as a set of Majorana fermions

from several copies of the Ising CFT:

(3.72)

where @(( is the Majorana fermion from the 1th Ising CFT. Such an operator has scaling

dimension h, = a/2 and gives rise to the following FQH wavefunction:

<D({z-wj}) = Pf x <Xga. (3.73)

xi represents the coordinates in both layers:

{i z - 1 < 7" < N 1( -4

wi-N1 N1 < < N2

<Dga is defined in (3.65). Note that the simple-current algebra in this case implies # 0
1 -1. That is, these states can all also be viewed as satisfying the cluster condition for

n = 2 0), but with a different choice in. For every pattern of zeros solution found here,
(0 2

there is an equivalent one for n = 02).
(02 0

Later, we will list the solutions with the n 2 cluster structure. Some of those

1u 1
solutions actually have n = 0 2).
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n= 0 1

Here, the electron operators must be of the form

Vei = oeT iZJ 1jo

Ve2 = eiEj M2JJ. (3.75)

The fact that -1 = (1, 1) however also forces @ = 1. Thus in fact the corresponding CFTs
do not have a simple-current part; they all correspond to a U(1) 2 Guassian CFT. All of
these states are therefore Abelian and correspond to the Halperin (m, n, 1) states. Thus, all

pattern of zeros solutions where n - 1 actually also satisfy the cluster condition for

a 1 0).
Using the cluster condition and the fact that S(1,0) = S(0,1) = 0, it is easy to see that the

pattern of zeros for these states are completely characterized by the matrix i and therefore
that these states are identical to the Halperin states.

n = 0 2(1Q 0)

In this case, the electron operators in the CFT must take the form

Vei =E.,i~I,

Ve2 = e6j A1JO, (3.76)

where 02 = 1. From A3((0, 1), (0, 1). (0, 1)) = even, it follows that the scaling dimension of
V) is integer or half-integer. This means that we can in general write it as a product of a
Majorana fermion operators from a independent copies of the Ising CFT. Thus the pattern
of zeros solution for this choice of n includes only two classes of states: the Abelian Halperin
states and the following version of the Pfaffian states:

<b({zj'wj}) = Pf X <(Dga (.7
Z1K Z (3.77)

Such a state spontaneously breaks the discrete Z 2 symmetry associated with interchanging
the two layers.

n 2 . non-Abelian bilayer states

For this choice of n, the corresponding CFTs have two simple current operators, @(o,1) and

which each square to the identity: ~o <1) 1. Thus there are a total of three
distinct primary currents: <-(1,.0), <-(0,1), and <-'(1,1) 9(1,o0)V(0,1). The pattern of zeros can be
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fully specified by specifying the scaling dimensions of these simple current operators, h ,

hg,), and h",j). and the matrix m, which specifies the U(1).' part of the electron operators

in the CFT.

Applying A 3 (d, ', d) = even for this choice of n shows that the simple-current scaling

dimensions are all integer or half integer: 2h . E Z. One general way of encoding these fusion

relations arid the associated scaling dimensions is to write the electron operators in the CFT

using simple-current operators that consist of multiple copies of the su(3)2/u(1)2 parafermion

CFT. The most general choice for the electron operators can be written in the form

Ve; 2  a -c) (a+b-c),i Ej M2J4, (3.78)

where 0" is a simple current from the ath copy of the su(3)2/u(1) 2 parafermion CFT and

o-, and Oi refer to either (1., 0), (0, 1), or (1, 1). Some explicit forms for such correlators of

simple-current operators in the su(3)2/U(1) 2 parafermion CFT were discussed in (Ardonne

et al., 2001). Computing these correlation functions provides one way - not necessarily unique

of constructing a wave function with the desired pattern of zeros.

These pattern of zeros solutions can naturally be grouped into two distinct classes. In

the first class. Ve;i and V- 2 contain only one kind of simple-current., either @(0,1), <(1,0), or

from each copy of the su(3)2 /u(1) 2 CFT. For example, if (i) appears in V;i, then

Ve:2 cannot contain $)W or 00) In such a situation, we can think of "M as being the

Majorana fermion from the Ising CFT. This means that these states can be written in terms

of multiple copies of the Ising CFT . This class of multilayer states can be written by choosing

e;1 =V)(1) ... (a),iE M e ,

Ve;2 - (a-c) .. . p(a+b-c)ei E, M2JJ (3.79)

where p@(a) is the Majorana fermion from the ath copy of the Ising CFT. The wave function

for this class of states is therefore:

<b ({zi, wi}1) =Pf (Z Pf (W j'Pf (iX
z ji -z'tiwi -- ) wy i - j x 12

x fJ(zi - z 2) 2 (w ) T (z2 - y) . (3.80)
i<j i<j

xi represents the coordinates in both layers:

{i zi 1 < i < NI (-1
{Wii 1- N2 (3.81)

wi-NI N1 < i < N2

This is the simplest generalization of the single-layer non-Abelian states to a class of

non-Abelian bilayer states: the interlayer Pfaffian states. The simplest version of this, with
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a = b = c, is closely related to (and identical to for certain choices of m) the spin-charge
separated non-Abelian spin singlet wavefunction proposed in (Ardonne et al., 2002).

The second class of states cannot be written in terms of multiple copies of the Ising CFT
the full su(3)2/u(1) 2 parafermion CFT is necessary. The first class of states, which can

be written only using the Ising CFT, have the property that their pattern of zeros satisfies
A 3 (a, b,5) = even for all choices of a, b, and 5. The second class of states, for which the full
su(3) 2 /U(1) 2 CFT is necessary. satisfies A3 (_, , c) odd for certain choices of -, b, and 5.

Let us compare the simple-current algebra of the su(3) 2 /u(1) 2 parafermion CFT to what
one would obtain using two copies of the Ising CFT. If we used two copies of the Ising CFT, we
could have @(lo) _(1) with scaling dimension 1/2, 7(o,1) = (2) with scaling dimension 1/2,
and $(11) =, 1),(2) with scaling dimension 1. This satisfies A 3 ((1, 0), (0, 1), (1, 1)) = even.
On the other hand, in the su(3) 2 /U(1) 2 parafermion CFT, the only difference is that V)<11)
also has scaling dimension 1/2. Thus in this latter theory, two fermions combine to give
another fermion. This yields A 3 ((1, 0), (0., 1). (1, 1)) - odd. The fact that there are valid
single-valued translationally invariant FQH wavefunctions that arise from unitary CFTs and
that have A 3 (, b, c) = odd for certain choices of 5, b, and E suggests (see Section 3.3.5)
that we should impose A3 (1, b, c) = even not in general but perhaps only if 5, b, and iF are
collinear through the origin.

Let us examine the pattern of zeros for a few of the simplest examples of these non-Abelian
bilayer states. There is a fermionic v = 2/3 state with

2 2

_ 1 _1

v = 2/3 {hI ,O) -- h - 0, h 1 )= }. (3.82)

This is the pattern of zeros for the interlayer Pfaffian state, which is of the form

T ({zj, wj}) = Pf ( ) D(2 ,2,1)({zi, wi}). (3.83)

We use the notation

-=J(zi - z1 ), ]J(w, - my), JJ(z, - ) (3.84)
i<j i<j 4.

There are also fermionic states at v = 4/5 and v = 4/7. These have the following pattern of
zeros:

m = 1) {S(2,o) 0, S(ii) 0, S(o,2) 0}

11 1 1
v =4/5 {hi 0) = , h (1,1 1h } )=2. (3.85)
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m (2 ) {S(2 ,o) = 0, S(m) = 1, S(o, 2 ) = 0}

1 1 1
v 4/7 {hi - =, , hs, =}. (3.86)

The state at v 4/7 is the non-Abelian spin singlet state that was proposed in (Ardonne

and Schoutens, 1999).
Note once again that the pattern of zeros m and {Sj} refer to the pattern of zeros of the

sym m etric polynom ial, <D = - z) -

3.8 Discussion of results and relation to experiment

In single-layer quantum Hall samples, a quantum Hall plateau is seen at v = 5/2, but not at
v = 1/2. The reason is that even though in all of these cases there is a single half-filled Landau

level, the existence of the two filled extra Landau levels modifies the effective interactions

between the electrons in the unfilled level. In the v = 5/2 case, numerical calculations suggest

that the these effective interactions are modified in such a way that a non-Abelian quantum

Hall state may be realized.
Experiments on multicomponent quantum Hall systems should be able to probe an even

wider variety of regimes with distinct effective interactions. For example, for a two-component
FQH system, we can study systems in which the spin degree of freedom is present, two-

dimensional electron systems with two quantun wells, wide single-layer systems in which the

electrons spontaneously form a double-layer system due to Coulomb repulsion. or systems in
which there may be two valleys for the free quasiparticle spectrum (such as in graphene or

SiGe heterostructures), etc. In many of these cases, experimentalists can also tune to some

extent the degree of correlation between the two components. For example, in double layer
systems, application of a parallel magnetic field can tune the tunneling and correlation be-

tween the layers. There may also be some degree of tunability in the relative densities between
the two components in addition to being able to probe FQH states with different numbers
of filled Landau levels. With this greatly increased amount of variability and tunability in
the effective interactions between electrons in the unfilled Landau levels, it is possible that a

non-Abelian state can be realized in a two-component quantum Hall system.

Since the pattern of zeros provides a systematic classification and characterization of a
wide variety of quantum Hall states, it provides us with a general sense of how all of the non-

Abelian bilayer states are related and which ones are simpler than other ones. Just as we know

that the single-layer Pfaffian quantum Hall state is the simplest non-Abelian generalization of

the Laughlin states, we can determine the simplest non-Abelian generalization of the Halperin

bilayer states and therefore single out some of the possibilities that may be experimentally

viable.
In (Barkeshli and Wen, 2009a). we have given an overview of some of the simplest non-

Abelian bilayer states that we find and that occur at filling fractions at which experiments on

two-component FQH systems have already observed incompressible states. Here we briefly
summarize that discussion and supplement details of the calculations of various topological
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properties of the candidate states.

Experiments have so far observed FQH plateaus in two-component systems at v = 2/3,
4/5, 4/7, 4/9, 6/5, 6/7, 1/4, etc (Eisenstein and Stormer, 1990; Eisenstein et al., 1992;
Murphy et al., 1994; Manoharan et al., 1997; Cho et al., 1998; Suen et al., 1991). In some
cases, these plateaus have been observed in both bilayer and spin-unpolarized single-layer
systems, while in others, the plateau has only been observed in one of them. At all of these
filling fractions, there exists also one (or several) candidate Abelian phase(s); in most cases,
it is assumed that these plateaus are described by one of the Abelian phases. However,
the pattern of zeros construction also yields many simple non-Abelian states at these filling
fractions. In some situations, we expect the non-Abelian states to be good candidate states.

There are at least two dimensionless quantities that are important determining factors
for which FQH state is realized. The first parameter is a -- iater/Vintra, where Vinter is
the potential for interlayer repulsion and Vintra is the potential for intralayer repulsion. The
second parameter is y = t/ iatra, where t is the interlayer hopping amplitude. In the limit

a ~ 0 and -y 0, the system will be a FQH state that consists of two independent single-layer
FQH states in each layer. In the limit -y >> 1 and a - 0, a single-layer FQH state may be
observed. But if we keep - ~ 0 and increase a from a ~ 0, then the FQH state formed by
two independent single-layer FQH states in each layer must undergo a phase transition into
either a compressible phase or a new incompressible state. In the latter case, an Abelian
hierarchy state (such as a bilayer composite fermion state) may form, which would in most
cases be a state described by a 4 x 4 or more complicated K-matrix and would have four
or more edge modes. The other possibility is that a non-Abelian two-component state may
form. The pattern of zeros construction yields non-Abelian two-component wave functions
that have zeros when particles from different layers approach each other, indicating that they
can accomodate situations in which a - 1. Additionally, these states generally have less than
4 edge iodes; if we use the number of edge modes as a measure of the complexity of the
state, then the non-Abelian states are simpler and may therefore be realized experimentally.

At v = 2/3, experiments on wide single quantum wells have observed a phase transition
from a bilayer to single-layer state while experiments on single-layer systems have seen a phase
transition from a spin-polarized to a spin-unpolarized state. In the limit a ~ 0 and y ~ 0,
the system should be in the (3, 3, 0) state. As a is increased while -y 0, one possibility is the
(1, 1, 2) state. This wave function appears unphysical, because it has higher order zeros as
particles from different layers approach each other than particles from within the same layer.
Another wave function, which has the same topological order as (1, 1, 2), is a spin-singlet
composite fermion state (Wu et al., 1993). There are two other plausible non-Abelian states
in this situation. One is the following interlayer Pfaffian state (see (3.82) and (3.83) ):

qI2/ 3linter = Pf (@ ) P(2,2,1)({Zi,Wi}). (3.87)
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v/ Proposed States Edge Modes Shift S

(3,3,0) 2 3
(1,1,2) 2 1

2/3 2/3inter (see eqn. (3.87)) 21 3
2/3|intra (see eqn. (3.88)) 3 3
Z4 parafermion 3 3
P-H conjugate of v = 1/3 IR + 1 L 0

4/5 (2/5, 2/510) 4 4
su(3)2 /u(1) 2 (see eqn. (3.89)) 26 3
(2/3, 2/311) 2 R + 2L 0
(2/7,2/710) 4 2
su(3)2/u(1) 2 (see eqn. (3.89)) 26 3

4/75 (2/5,2/511) 4 4

(2/3, 2/312) IR + 3 L 0
(5,5,3) 2 5

1/4 (7,7,1) 2 7
Inter-layer Pfaffian (see eqn. (3.91)) 21 7
Single-layer Pfaffian 1 5

Table 3.1: Proposed explanations for incompressible states at experimentally relevant
filling fractions, v = 2/3, 4/5, 4/7, and 1/4, in two-component FQH systems. The
bilayer composite fermion state (vI, v2|m1) (Scarola and Jain, 2001) refers to the state

-11,J( -w)mY ({z })4 2({w }), where 4b, is a single layer composite fermion state at filling
fraction v. For (2/3, 2/31rn), we have taken the single layer 2/3 state to be the particle-hole
conjugate of the Laughlin state. 1R-+nL indicates that there are nR right-moving edge modes
and nL left-moving edge modes. See Appendix 3.C for details of how to calculate the number

of edge modes and the shift S.

The other is the following intralayer Pfaffian state

(3.88)q2/3inta = Pf (z2 I Z Pf (W I W) '1(2,2,1)({ziwi}),

which has even higher order zeros as particles from different layers approach each other.

qf2/3lintra has a cluster structure n = 2) while I2/3linter has a cluster structure n=

( 0 ) . At v = 2/3 there are also two single-layer possibilities that may be realized as y is

increased. These are the particle-hole conjugate of the v = 1/3 Laughlin state and the Z 4

parafermion Read-Rezayi state.

At v = 4/5, 4/7, and 4/9, we have the following non-Abelian states (see (3.85) and (3.86)
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qj4/5 =P, c(zi, Wi})<DR(22)({zi, wi}),

'P4/ 7 =1s <c(zi, wi})<b2,) ({zi, wi})

94/9 = <bSC({zi, w})4(4 4 1)({zi, wi}), (3.89)

where c = (17 J1,'1(zi)V42(wi)) is a correlation function in the su(3)2/U(1) 2 parafermion
CFT. These states all have 2 edge modes.

The other set of proposed Abelian states are the bilayer composite fermion states (Scarola
and Jain, 2001) (vo, volm), which refer to the wave function

(vo,vo Im) = J(zi - my)m'b45 zi}) ,O ({wi} (3.90)
i~j

Here 4, 0 ({zi}) is a single-layer FQH state at filling fraction vo. These states have 4 edge
modes, indicating that they may be less stable than the alternative non-Abelian possibilities.

Recently, an incompressible state was found at v = 1/4 and it is unclear what phase this
corresponds to and even whether it is a single-layer or double-layer phase (Luhman et al.,
2008). Some possibilites that have recently been considered (Papic et al., 2009) are the
(5, 5, 3) and (7, 7,1) Halperin states and the v = 1/4 single-layer Pfaffian. The pattern of
zeros construction yields many other alternative possibilities., perhaps the most physical (and
simplest) of which is the following interlayer Pfaffian:

'IQ({zi. wi}) Pf ) b(6 ,6 ,2)({zi, wi}). (3.91)
(xi - xJ

In Table 3.1 we summarize some of the filling fractions at which incompressible states
have been experimentally observed in two-component FQH systems. For each filling fraction
we list some of the proposed wave functions that may characterize the topological order of
those phases, the number of edge modes, and their respective shifts on the sphere. We list the
qasiparticles, their electric charges, and their scaling dimensions for the interlayer Pfaffian
state at v = 2/3 in Table 3.2. In Table 3.3, we list the quasiparticles with the minimal electric
charge and their scaling dimensions h for the non-Abelian FQH states discussed in this paper

[see eqns. (3.83), (3.85), (3.86), (3.89), (3.91)]. Those minimally charged quasiparticles may
dominate interedge tunneling and give rise to the following I-V curve: I o V4h-1 in the
T = 0 limit.

In summary, we find many simple non-Abelian bilayer states that occur at experimen-
tally observed filling fractions. For certain effective interactions among the electrons in the
unfilled Landau levels, these states may be more favorable than their Abelian counterparts.
In these cases, the non-Abelian states have larger interlayer correlations and therefore may
be energetically more favorable in situations in which the interlayer repulsion is comparable
to the intralayer repulsion.
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Table 3.2: Quasiparticle operators from the

scalar boson fields #+ and #_ are related to

two layers, respectively. o- is the spin field

1/16.

Interlayer Pfaffian at v = 2/3

Total Charge Scaling Dimension

1

1

2/3

1/3

1/3

2/3

0
0

2/3

1/3

3/2

3/2

1/3

1/3

7/48

31/48

5/16
1/2

5/6

5/6

CFT for v = 2/3 Interlayer Pfaffian states. The

the total and relative density fluctuations of the

in the Ising CFT, which has scaling dimension
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v Charge qmin Scaling Dimension h
2/3|inter 1/3 + - +0
2 / 3 intra 1/6 1+ 2- ± 1

4/5 1/5 + + 

4/7 1/7 +
4/9 1/9 + +±5

1/4 1/8 1 + + 0

Table 3.3: Charge and scaling dimensions of the quasiparticle operators with minimal nonzero
total charge in the non-Abelian bilayer states discussed here. In the scaling dimension, the
first term comes from the non-Abelian part, the second term comes from the total density
fluctuations (the U(1) part), the third term comes from the relative density fluctuations of
the two layers (also the U(1) part).

Table 3.4: Values of (N,, N.) that yield rotationally invariant states on the sphere for various
choices of (N 1, N2) for the v - 2/3 interlayer Pfaffian.

3.8.1 Conditions on filling the sphere

A useful tool for identifying FQH states in numerical studies of exact diagonalization on
finite systems on a sphere is to look at what values of the shift, S = vNe - ND, a ground
state with zero total angular momentum is found. This then limits the possibilities of which
topological phase is realized in the system to those that have that particular value of the shift.
Similarly, in such numerical studies of multilayer systems, one can look for the different sets
(N 1 ,. -, Nf; ND,- , Nf) that yield a ground state with zero total angular momentum.
Each topological phase will have its own list of (N 1 , - - - , Nf; N,, - - , Nff) that let it fill the
sphere; analyzing this can be a useful way of determining which topological phase is obtained
numerically. In Section 3.3.4, we found conditions that N and No should satisfy for the FQH
state to fill the sphere.

For states that have a cluster structure n = 0 2). we find that the condition (3.39)

becomes trivial as long as N = kjnI-, where k1 is an integer. This means that as long as

v = 2/3 Interlayer Pfaffian
Ni

2 4 6 8 10
2 (3,3) (7.5) (11, 7) (15.,9) (19,11)
4 (5,7) (9,9) (13,11) (17.13) (21,15)

N2  6 (7,11) (11.13) (15,15) (19,17) (23, 19)
8 (9,15) (13,17) (17,19) (21,21) (25,23)
10 (11,19) (15,21) (19, 23) (23,25) (27,27)
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Table 3.5: Values of (N, N,) that yield rotationally invariant states on the sphere for various

choices of (N1, N2) for the / = 4/5 su(3) 2 /U(1) 2 parafermion state.

N1 and N2 are even and N ,N- satisfy (3.37), then these states can fill the sphere. In this

case, we find that (3.37) reduces to the form

N, + S) M (3.92)
N4 + S N2)

where Al is a 2 x 2 matrix and S is the shift, which can be calculated using eqn. (3.110).

The states that we have been considering are of the form 4 = 4)c x ( for which

M = a). Tables 3.4 and 3.5 lists some examples.

3.9 Summary

In this chapter, we generalized the pattern of zeros characterization and classification of FQH

states to multicomponent cases. We found that the topological orders in a multicomponent

FQH state can be characterized by the following data: a matrix n that describes the cluster

structure, a matrix m and a sequence {Si} that describes the pattern of zeros.

Our pattern of zeros characterization gives us a general quantitative view on a large class

of Abelian and non-Abelian bilayer FQH states. which allow us to determine which states are

simpler than other states. We find some simplest non-Abelian generalizations of the Laughlin-

Halperin Abelian bilayer states. Those simple non-Abelian states may describe some of the

bilayer/spin-unpolarized FQH states observed in experiments and numerical calculations.

3.A Occupation number characterization

In the single-component pattern of zeros description, there is an occupation number charac-

terization that is a useful way to understand both the ground states and the quasiparticles

in FQH states. The generalization to mnultilayer states does not appear to be quite as simple

or useful, but for the sake of completeness we will analyze it below.

v 4/5 su(3) 2/u(1) 2 parafermion state

N,
2 4 6 8 10

2 (2,2) (6,3) (10, 4) (14,5) (18,6)
4 (3,6) (7,7) (11,8) (15,9) (19,10)

N2  6 (4,10) (8,11) (12,12) (6, 13) (20, 14)
8 (5,14) (9,15) (13,6) (17,17) (21,18)
10 (6,18) (10,19) (14, 20) (18,21) (22,22)
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A convenient set of single-particle basis states for particles in the lowest Landau level are
monomials of the form z', for integer n. Thus, a basis for symmetrized wavefunctions of N,
particles of type I is given by:

N1

{rr,}Z= (zg))1, (3.93)
{P 1 } I i=1

where P is a permutation of the particles of type I, if is an integer, and ji is a vector whose
component n/ is the number of particles of type I that occupy the lth orbit. The polynomial
<D that we are interested in can be expanded in terms of these basis states as:

D= Co}<Di 1}. (3.94)
{Iil }

Now we may ask what kind of boson occupations {;i} will be present in the sum (3.94)
for a polynomial <D with a given pattern of zeros {Sd}. To answer this question, let us set

- = 0 in <D({zf}). Since CD is nonzero when z' = 0 due to translation invariance, there must
be a boson occupation {i} in the above sum that contains at least one boson occupying the
(zl)= 0 orbital. That is, there is a term in the above sum with n' > 0. Now, suppose that we
bring a second particle of the same type, z to 0. The minimal power of 4 in D(0, z,--) is

. z .....z ) ~ "P2(z ...

+ O((z2)D 1 , +1). (3.95)

Thus, among those {ili} that have at least one boson of type 1 occupying the (z')' = orbital,
there must also be an {n} that contains a second boson of type 1 occupying the (z1)l221

orbital where l2EI = DF ge = 32F1 - Sri1 . Next, assume that two bosons occupy the (z)0 and

(Z1)l2"i orbital, and bring a third particle of type 1 to 0; the minimal power of z is D 23.1g:

P2(zA, Z4, ... ~(P)2 3 3(Z4, Z5',--

+ O((ZI)D2 1 i+1±) (3.96)

Thus, among those {i} that have two type 1 bosons occupying the 1 = 0 and 12e, orbitals.
there is a third boson of type 1 occupying the 13, = D2rsi = S3 31 - S 2 1 orbital. Continuing
in this way, we see that there must be a type 1 boson occupying the orbitals ia, = Sari -

S(a-1)K1 for a = 1,- - . N 1. After taking all the type 1 particles to 0, we may begin to take
the type 2 particles to zero. one by one, thus obtaining that there must be a type 2 boson
occupying the orbitals l 2 +N12 = Sae*2+Nii ~ S(a-1)F2 +N12. Continuing this argument for
bosons of every type, we find that there must be a term in the sum (3.94) with occupation
number described by the above sequence of l1 's.

However, in the above argument, we chose a particular sequence in which to take various
particles to zero. We first took all of the type 1 particles to zero one-by-one, and then all
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of the type 2 ones, and so on. But we could just as well have made the argument with any

sequence. Suppose that after taking i particles to the origin, there is a di-cluster at the origin.

Thus {da } is a sequence that describes the order in which we take particles to the origin until

all particles are at the origin. For every such sequence, we may make the above argument

and argue that if 4+1 = di + C1, then there must be a type I boson occupying the orbital

-S- , - Si. If we enumerate all the different sequences {a} by an integer a, then

by considering each a, we see that there must be a term in the sum (3.94) with occupation

number n-. nfs would be the number of i, along the sequence {d}, for which if - 1. Notice

that l must be non-zero. Thus we have the following important condition on Sd:

ia = S - S >-, > 0. (3.97)

The analysis above can be thought of in the following way. Consider an Nf-dimensional

lattice ZNf, where Nf is the number of layers. At every site a of this lattice (aj > 0) we

can associate the nonnegative integer Sa. On each link (a, a -- ), of the lattice we may

also associate an integer li = Sy - Sdg-. Now consider any directed path from the origin

to N (NI is the number of particles of type 1), in which the sum of the coordinates of every

point on the path is one larger than the sum of the coordinates of the point preceding it., and

enumerate the set of these paths by a. To each such path we associate an occupation number

sequence nf where nfi is the number of links along the path a whose li 1. If 1 has a

pattern of zeros {Sd}, then its basis expansion (3.94) must contain a term with occupation

number i. Thus we may rewrite (3.94) as

Z = 4 CaDc + D A({z[}). (3.98)

The two sequences {S5} and {fn'} contain the same information and are one-to-one labellings

of each other. However, {f'} is redundant in the sense that it does not need to be specified

for every a in order to reconstruct Id. The i that appear in the second sum characterize

the subleading terms that appear when coordinates are brought together; thus those {5 1}
correspond to sequences {Sd} where S-j > Sd.

In the single-layer case, {la,} naturally defined an occupation number sequence {n1},
which also described the FQH state in the thin-cylinder limit. In the multi-component

generalization, we have {gi}, which seems to admit no simple generalization of the above

occupation number sequence. Instead, one has such occupation number distributions for

a large number of sequences which we enumerated above by a. We have not analyzed on

general grounds which particular sequences contribute the most weight to the wavefunction

in the thin cylinder limit.

3.B su(3) 2 /U(1) 2 parafermion conformal field theory

Some of the simplest non-Abelian bilayer states are closely related to su(3) 2 /u(1) 2 parafermion

CFT. This CFT has central charge c = 6/5 and has three simple currents, V), 4, and
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Table 3.6: Primary fields and their scaling dimensions in the su(3)2 /u(1) 2 parafermion CFT.

+# ag, all of which square to the identity and have scaling dimension 1/2.

There are four other primary fields, which are associated with the fundamental represen-
tation of su(3). Their scaling dimensions are listed in Table 3.6. The fusion rules for these
fields all follow from the following fusion rule:

a x -= 1 + o. (3.99)

3.C Calculations for candidate states

3.C.1 Number of edge modes

The total number of edge modes is equal to the central charge of the corresponding CFT for
the states that are described by the pattern of zeros. For the hierarchy states, the number of
edge modes is given by the rank of the K-matrix. Furthermore, in the latter case, the number
of right (left) -moving edge modes is given by the number positive (negative) eigenvalues of
the K-matrix.

The interlayer Pfaffian states are described by a CFT that consists of the Ising CFT, with
c = 1/2, and two scalar boson CFTs, each with c = 1. Thus the number of edge modes for
the interlayer Pfaffian is 21.

The intralayer Pfaffian states have two Ising CFTs in addition to the two scalar boson
CFTs, so the total number of edge modes is 3.

The central charge of the su(3) 2/u(1) 2 parafermion CFT is c - 6/5; the two-component
FQH states based on this are described by the su(3) 2/u(1) 2 theory and two scalar bosons.
for a total of 2i edge modes.

For the (m, m, 1) states, the K-matrix is K = . These states have 2 edge modes;

if m > I, all edge modes move in the same direction; if n < 1, then there is one right-moving
and one left-moving edge mode.

Primary fields in su(3)2 /u(1) 2

CFT Operator Scaling Dimension

a 1/10
go aa"r 1/10
Or3 pa0' 6/10

_a+0= a)_+00a 1/10
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For the states (vo, volm,), the K matrix is

K 1  K%2 m 0

K= K21 K22  0 0 . (3.100)m 0 Ki Kf2

0 0 Kji K 2

where K0 is the K-matrix in the hierarchical basis of the state <b),. For the v= 2/5 state,
K0 in the hierarchical basis is

K0= 3 -1 . (3.101)
(-1 2

For the v = 2/7 state. K 0 in the hierarchical basis is

K0 = -2. (3.102)

For the v = 2/3 P-H conjugate of the 1/3 Laughlin state, K0 in the hierarchical basis is

K = 1 1 . (3.103)
(1 -2)

Using this, we find that the P-H conjugate of the 1/3 Laughlin state has edge modes 1 R + 1L,
(2/3, 2/3|1) has edge modes 2 R + 2 L, and (2/3, 2/312) has lR + 3 L-

3.C.2 Shifts on sphere

In the hierarchy basis, the formula for the shift is given by (Wen and Zee, 1992b)

S = Z(K 1)1 1K11. (3.104)

Using this formula, we find S - 0 for the particle-hole conjugate of the V = 1/3 Laughlin

state.

Now consider the bilayer composite fermion state (vo, vol'm):

<b(vo,vo m) = j7(zi - wy "<o ({zi})<Dyv ({wi}). (3.105)
i~j

Let N, be the maximum power of zi in <)D,,({zi }). It satisfies:

N = vO-'N 1 - So, (3.106)

where So is the shift of the state <b,0. The factor ]Hg (zi wj)" increases the power of zi by
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mN 2 . Thus the maximum power of zi in is N,:

Np = volN1 + inN 2 - So. (3.107)

In our cases, Ni = N2 , and the number of flux quanta is the same in each layer, so

(vo- 1 + m)Ni - So, (3.108)

Vi-1 vo + r is the filling fraction in one layer. Thus we see that the shift of @(vovolm) is
also So.

For (2/3, 2/3|m), we take P2/3 to be the particle-hole conjugate of the 1/3 Laughlin
state. (2/3 has shift So = 0. Thus (2/3, 2/3|m) also has shift S = 0. (2/5, 2/51m) has shift
4. because (2/5 has shift 4.

For the Halperin (m, n, 1) states, the K-matrix can be written as K = m ). In this
(I n)

basis, the shift is given by
S = v-' KyjKjj. (3.109)

For the states described by the pattern of zeros. we can use the following formula

S V 1 Ev1(m1j - Si, + Sf,_g,) for bosons (3.110)
v- 1 E, vI(m11 + 1 - Si, + Sr,,- ) for fermions

3.C.3 Electron and quasiparticle operators for su(3) 2/U(1) 2 states

The electron operators for the su(3)2/U(1) 2 FQH states that we discuss are of the form:

Vei=, eiV/*++is$_

Ve 2 = 3e- (3.111)

where s = v/'/2, 1/2, and v7/2 for the v= 4/5, 4/7 and 4/9 states, respectively. The
quasiparticle operators with minimal total charge are of the form:

V,= o-e + +SqpS-, (3.112)

and have scaling dimension hqp = + + (s s) 2 . The total charge of the quasiparticle is
Q = 1/5, 1/7, and 1/9 for the v = 4/5. 4/7 and 4/9 states, respectively. sqp = 1/3, 1, and
1/7, respectively, for these states.
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Intermission

In the last two chapters, we have developed the pattern of zeros approach to characterizing
topological order in the FQH states. Here we would like to take a step back and analyze
the possible successes and failures of this approach. This will help us connect results of
subsequent chapters to the pattern of zeros and it will give us a better overall understanding
of the pattern of zeros approach.

The most important question for the pattern of zeros approach is whether all of the
solutions to the pattern of zeros conditions can describe gapped FQH states. The pattern of
zeros solutions generally fall into two classes. In the first class, there are solutions that can
uniquely specify wave functions and that correspond to wave functions that are unique ground
states of ideal Hamiltonians. Experience shows that these kinds of solutions do correspond
to gapped FQH states. The Read-Rezayi (Zk paraferinion) states, for example, lie in this
class. At v = k/2, these Zk parafermion states are the unique symmetric wave functions of
highest density that vanish when k + 1 particles coincide. The systematic pattern of zeros
classification leads to a small number of other states as well that are probably also in this
class.

However, aside from this small class of solutions to the pattern of zeros conditions, all
other solutions do not uniquely specify wave functions. Do such pattern of zeros solutions
have any hope of describing gapped FQH ideal wave functions? If not, then are all of these
solutions useless? Or do they somehow characterize the topological order of some phases?
We will call these pattern of zeros solutions "problematic."

The difference between these two classes of solutions is simply that those in the first class
correspond to sequences {S} for which S, is small, while those in the second class correspond
to sequences for which S, is large. Intuitively, this is because when the order of zeros is small,
there are few zeros and therefore less data is needed to specify the polynomial. On the other
hand, when Se, is generally large, then there are more zeros in the polynomial, and therefore
more information needs to be specified in order to specify the locations of these zeros. Recall
that a polynomial can be specified completely by specifying the locations of its zeros. For
small enough S,. the sequence {S,} is enough to completely specify the polynomial! It is no
surprise that beyond a certain value of S,, the sequence {S,} is simply not enough data to
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completely specify the polynomial. For example, the Pfaffian wave function.,

Pf ()jJ(zi -zj), (3.113)

is completely determined by its pattern of zeros. Similarly, the square of the Pfaffian wave

function, called the Haffnian, is also completely determined by its pattern of zeros:

Pf ( 1 J1I(zi z )2 . (3.114)
i<J

However, the quasiparticle pattern of zeros for the Haffnian do not uniquely specify their

corresponding polynomials (Lu et al., 2010). As a result, it is believed that the Haffnian

wave function actually describes a gapless state, not an incompressible one. Now consider

the qth power of the Pfaffian (where q is odd):

Pf ( (zi - z) . (3.115)
i<J

This wave function has precisely the same pattern of zeros as

Pf ( (Zz, -j zJ), (3.116)
,<J

yet they are linearly independent.

When the pattern of zeros is not enough data to specify the polynomial, how should we

proceed? This problem has led to the more recent systematic approach using generalized

vertex algebras (Lu et al., 2010). This approach is even closer to the original CFT approach.

though it is an attempt at making the whole construction more systematic and as general as

possible. There, ideal wave functions are specified not just by the pattern of zeros {Sa}, but

also by various structure constants in the operator product expansions of vertex operators.

Nevertheless, we are still faced with the question of whether these kinds of wave functions

could ever describe gapped phases.

The first point to notice is that because of the relation to conformal field theory, the

pattern of zeros can be used just as well to characterize ideal wave functions as it can be used

to characterize the operators in the edge CFTs. However in the latter case, the meaning of

the various consistency conditions on the pattern of zeros becomes unclear. Thus, while the

ideal wave functions associated with a given pattern of zeros may be gapless, the pattern of

zeros may be useful in characterizing the edge CFT, and therefore they may still be useful in

characterizing topological order.

The real answer to the question posed here will emerge in Chapter 6. There we will

find the first known examples of gapped FQH states whose edge theory is described by a

"problematic" pattern of zeros solution. By analyzing the relation to the vertex algebra
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framework, we will find that indeed all pattern of zeros solutions, even the problematic ones,
probably correspond to gapped ideal FQH wave functions, provided the problematic ones are
reinterpreted in terms of multilayer ideal wave functions!
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Chapter 4

Projective construction and
effective field theory for Zk
parafermion FQH states

The content of this chapter is adapted from (Barkeshli and Wen, 2010c).

4.1 Introduction

In the previous chapters, we discussed the ideal wave function approach to constructing FQH
states. This approach has a number of advantages. Practically, the most important feature
is that it provides many-body wave functions that exhibit various topological phases. These
wave functions are useful for numerical studies of FQH systems. Additionally, the existence
of the ideal Hamiltonians shows, by explicit construction, that the phases constructed are
physical in that they can be realized in a system with local interactions.

On the other hand, the ideal wave function approach is currently also limited. There are
only a small handful of ideal wave functions for which we know that the ideal Hamiltoniais
describe gapped, incompressible states. For most of the pattern of zeros solutions for example,
it currently is not clear whether it is possible to write down a gapped ideal Hamiltonian whose
ground state wave function possesses the given pattern of zeros. Even when we do know that
the ideal wave functions describe gapped states, most of the topological properties of the
phase, including the low energy effective theory, are guessed and not derived.

Fortunately, there is another approach to constructing FQH states, called the parton, or
projective, construction. This approach is similar in spirit to slave-particle approaches used in
the theory of frustrated magnetism and the doped Hubbard model. The parton construction
is advantageous because it can be used to derive both the bulk effective field theory and the
edge CFT of FQH states. In cases where there is also an ideal wave function description, it
can be used to obtain the ideal wave function.

The Zk parafermion states at filling fraction v = k/(kM + 2) were first studied using the
ideal-wavefunction/ideal-Hamiltonian approach (Moore and Read, 1991; Read and Rezayi,
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1999). What is the bulk effective theory for such Zk parafermion states? When M = 0.
the edge states of the v = k/2 Zk paraferinion state are described by the SU(2)k Kac-

Moody (KM) algebra. Using the correspondence between CFT and Chern-Simons (CS)

theory (Witten, 1989), it was suggested that the bulk effective theory for the V = k/2 Zk

parafermion state is the SU(2)k CS theory (Fradkin et al., 1998; Cabra et al., 2000). The

guessed SU(2)k CS theory correctly reproduces the (k + 1)-fold degeneracy for the v = k/2

Zk parafermion state on a torus.

However, the SU(2)k CS theory has a serious flaw. The SU(2) charges in the SU(2)k KM

algebra for the edge states are physical quantum numbers that can be coupled to external

probes, while the SU(2) charges in the SU(2)k CS theory are unphysical and cannot be

coupled to external probes without breaking the SU(2) gauge symmetry. This suggests that

the SU(2) in the edge SU(2)k KM algebra is not related to the SU(2) in the bulk SU(2)k
CS theory. This leads us to wonder that the CFT/CS-theory correspondence may not be

the right way to derive the bulk effective theory for generic non-Abelian states. In fact,
when Al 7 0, the edge states for the v = k/(kM + 2) Zk parafermion state are described

by U(1)n 0 Zk CFT, where the Zk CFT denotes the Zk parafermion CFT (Zamolodchikov

and Fateev. 1985) and n = k(kM + 2)/4 (Cabra et al.., 2000). It is not clear what is the

corresponding bulk effective theory. Note that the Zk parafermion CFT can be obtained

from the coset construction of the SU(2)k/U(1) KM algebra (Gepner and Qiu, 1987). This

suggests that the bulk effective theory may be a SU(2)kOU(1)OU(1) CS theory (Cabra et al..

2000). But a naive treatment of such a CS theory gives rise to (k + 1) x integer number of

degenerate ground states on a torus, which does not agree with the ground state degeneracy

for the v = k/(kM + 2) Zk parafermion state. We see that the bulk effective theory for a

generic parafermion state is still an unresolved issue.

In this chapter. we will give a brief review of the projective construction (Wen, 1991a,
1999a) and we show how it can be applied to the Zk parafermion (Read-Rezayi) states.

This leads to a simplified understanding of the Zk parafermion states in terms of the integer

quantum Hall (IQH) states and a different way of computing their topological properties.

We find the bulk effective theory for the v = k/(kA + 2) Zk parafermion state to be the

[U(M) x Sp(2k)]1 CS theory (with a certain choice of electron operators and fermionic cores

for certain quasiparticles). Such a CS theory correctly reproduces the ground state degeneracy

on a torus.

4.2 The projective construction

The projective construction was explained in detail in (Wen, 1999a). The idea is to rewrite

the electron operator in terms of new fermionic degrees of freedom:

Te = E 001 ... V2a Ca I... a,. (4.1)

{a}

There are n flavors of fermion fields, #2, for a = 1'... n, which carry electromagnetic charge

qa, respectively, and which are called "partons." The Ca1 .. 1 are constant coefficients and
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the sum of the charges of the partons is equal to the charge of the electron. which we set to
1: E q0 = 1. The electron operator e can be viewed as the singlet of a group G, which is
the group of transformations on the partons that keeps the electron operator invariant. The
theory in terms of electrons can be rewritten in terms of a theory of partons, provided that we
find a way to project the newly enlarged Hilbert space onto the physical Hilbert space, which
is generated by electron operators. We can implement this projection at the Lagrangian level
by introducing a gauge field, with gauge group G, which couples to the current and density
of the partons. We can therefore write the Lagrangian as

Itio, + 1 t (a - iAiQ)2 ,0 + Tr (j'ag) + - (4.2)
2m

Here, @f = (V., - -- ,), a is a gauge field in the n x n matrix representation of the group
G. A is the external electromagnetic gauge field and Qij = qi6j is an n x n matrix with
the electromagnetic charge of each of the partons along the diagonal. The - respresent
additional interaction terms between the partons and j at = @4a4 6 . (4.2) is simply a con-
venient rewriting of the theory for the original electron system in terms of a different set of
fluctuating fields.

Now we assume that there exists some choice of microscopic interaction parameters for
which the interaction between the partons is such that the low energy fluctuations of the ap
gauge field are weak after integrating out the partons. This means that the gauge theory
that results fromi integrating out the partons can be treated perturbatively about its free
Gaussian fixed point. Since the partons in the absence of the gauge field form a gapped state
I<Dparton) and since we can treat the gauge field perturbatively, the ground state remains to
be gapped even after we include the gauge fluctuations. A possible trial ground state wave
function is of the form

N

<D ({zi (01 HJ e (zi)I<Dparori). (4.3)
i=1

If we assume that the ith parton forms a v = 1 integer quantum Hall state, the partons
will be gapped and can be integrated out to obtain an effective action solely in terms of the
gauge field. The action that we obtain is a CS action with gauge group G, which should
be expected given that for a system that breaks parity and time-reversal, the CS term is
the most relevant term in the Lagrangian at long wavelengths. If we ignore the topological
properties of the parton IQH states, then integrating out the partons will yield (Wen, 1999a)

1 1 T(2
L = Tr(aa) + ATr(Qoa) + A&A +---. (4.4)

4- 2w 47

where AA = PVAA,8,AA and the . -- represents higher order terms. Note that the filling
fraction of the corresponding FQH state is given by v = Tr(Q 2 ) = Ea aqa. Since the partons
do not form a trivial gapped state, but rather a topologically non-trivial one, eqn. (4.4) can
only describe ground state properties of the phase. It can be expected to reproduce the
correct result for the ground state degeneracy on genus g surfaces, for instance, and the
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Quasiparticle Spins in U(I) 3 CS theory Spins in SU(3)1 CS theory

0 0 0
1 1/6 2/6
2 4/6 2/6

Table 4.1: For U(1),, CS theory, the quasiparticles have spins hi = 12/2n. For SU(n)1 CS

theory, the defects have spin given by hA = (A, A+ 2 p)/ 2 (n+1), where A is a weight of SU(n).

p is the Weyl vector of SU(n), and the inner product is taken with respect to the quadratic

form matrix.

correct fusion rules for the non-Abelian excitations, but it cannot be expected to produce all

of the correct quantum numbers for the quasiparticle excitations, such as the quasiparticle

spin,'i unless the partons are treated rore carefully. This can be done in two ways. One way

is to not integrate out the partons and to use (4.2), taking into account a Chern-Simons term

for a, that emerges as we renormalize to low energies. As will be discussed in more detail

in Section 4.5, the quasiparticles will correspond to holes in the parton IQH states which

become non-Abelian as a result of the coupling to the non-Abelian Chern-Simons gauge field.

The other way is to use the pure gauge theory in (4.4) and to put in by hand a fermionic

core for quasiparticles that lie in certain "odd" representations of G. Some quasiparticles

correspond to an odd number of holes in the parton IQH states and the ferinionic character

of these odd number of holes should be taken into account.

Let us make the above discussion more concrete by applying the projective construction

to the Laughlin v = 1/3 state. Laughlin's v = 1/3 wave function is given by

<D3 (zi - zy) 3 . (4.5)
i~j

In the projective construction description of this state, we write the electron operator as

'le = V)10203. (4.6)

where each parton carries charge 1/3 and we assume a mean-field state where the partons

each form a v = 1 IQH state. The bulk theory thus describes fluctuations of these parton IQH

states coupled to an SU(3) gauge field; for energies well below the gap, we may integrate

out the partons to obtain an SU(3), CS theory. However it is known that the v = 1/3

Laughlin state can be described by U(1) 3 CS theory. The relation between these two results

is as follows. Both theories have 3 9 ground states on genus g surfaces, and they both have

3 Abelian quasiparticles. However the defects in pure SU(3)1 CS theory and pure U(1) 3

CS theory carry different spins, as listed in Table 4.1. This difference can be understood in

light of the above discussion. First note that in the bulk topological theory, the spins are

'The quasiparticle spin h is related to the quasiparticle "twist," 0 = e 2,ih. h is equal to the scaling

dimension modulo 1 of the corresponding quasiparticle operator on the edge.
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defined modulo 1, because what is physical is the phase obtained by 27 rotations, which is
e2

cih if h is the spin. The quasiparticles of the v = 1/3 FQH state can be understood in the
parton construction as holes in the parton IQH states. The quasiparticle labelled 1 therefore
corresponds to one hole, while quasiparticle 2 corresponds to two holes. Since the holes are
fermions, the spins obtained from the pure SU(3) 1 CS theory will correspond to the spins
of the FQH states if we include the fermionic nature of the partons in mind. Thus for those
quasiparticles that correspond to an odd number of holes, we should add an extra 1/2 to
the spin obtained from a naive calculation of defects in SU(3)i CS theory. Aside from this
difference of 1/2 for quasiparticle 1, the spins of the two theories simply differ by a minus
sign. The appearance of this minus sign will be understood better when we study the edge
theory, which we turn to next.

Before the introduction of the gauge field, the edge theory is the edge theory for n free
fermions forming an integer quantum Hall state. If each parton forms a v = 1 IQH state,
then the edge theory would be a CFT describing n chiral free fermions, which we will denote
as U(1)". After projection, the edge theory is described by a U(1)"/G coset theory that we
will understand in some more detail when we specialize to the Zk parafermion states.

A more proper way of understanding the edge theory is the following. The electron
creation and annihilation operators, e and 'e, generate an operator algebra that we refer
to as the electron operator algebra. Such an electron operator algebra can be embedded in the
U(1)"/G coset theory. The topologically distinct quasiparticles are then labelled by different
representations of this electron operator algebra. In some cases, the electron operator algebra
coincides with some well-known algebra. For the bosonic Zk parafermion states at V = k/2.
for instance, the electron operator algebra is the same as the SU(2)k KM algebra, for which
the representation theory is well-known.

4.3 Effective theory of parafermion states

Now let us apply the projective construction to obtain the Zk parafermnion states. A crucial
result for the projective construction is that the v = 1 FQH wave function coincides with the
correlation function of free fermions in a 1+1d CFT:

7(zi - zj) = lim z2hN -(-iN0(zo,) (z 1 )... -(zN)). (4.7)
j<j

where @b(z) is a free complex chiral fermion, and 04 = 0fb is the fermion current. The oper-
ator product expansions for @)(z) satisfy @f(z),O(w) 1 w and p(z)P(w) ~ (z - w)@8@(w).

Eqn. (4.7) implies that the wave function (4.3) can also be expressed as a correlation function
in a 1+1d CFT (Wen, 1999a):

<({zi = im z (e-iN(zo) e())(4.8)

where the partons V@i(z) are now interpreted as free fermions in a 1+1d CFT.
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The Zk parafermion FQH wave functions are constructed as correlation functions of a

certain CFT:

z rn z1N -iN#(z)V . e(zN)) (4.9)
Zk -+o0

where V = $ 1 v V1 is a simple-current operator in the Zk parafermion CFT of

Zamalodchikov and Fateev(Zamolodchikov and Fateev, 1985) and 4 is a free scalar boson.

These wave functions exist for v = k+2 for M = 0, the electron operator Ve = O1e V2/k

J+ and Ve 44e-i2/k+ = J- generate the SU(2)k KM algebra:

koab jf 6 sJ(0)
ja(Z)j(o) ~z2 + + - - - , (4.10)

where a, b = 1, 2, 3 and J* = J1 ± iJ 2 . This means that any electron operator that satisfies

the SU(2)k current algebra will yield the same wave function. The crucial result for the

projective construction approach to the Zk parafermion states is that if we take the electron

operator to be

TIe-k = Z1>2a-1V"2a, (4.11)
a=l

then it is easy to verify that W'e;k and TJ also satisfy the SU(2)k current algebra and

therefore the wave function (4.8) is the Zk parafermion wave function. It follows that the Zk

parafermion states at v = k for general M1, are reproduced in the projective construction

for the following choice of electron operator

k

'2k+1 -V2k+MZf V2a-1l-2a, (4.12)
a=1

because including the additional operators V2k+1, V 2k+M, each of which is in a v = 1
IQH state, has the effect of multiplying @z, by the Jastrow factor H< (zi - zy)".

In the case M = 0, the electron operator can be written as TekO) = 0TA, where

T = (01, -, 2k) and A (I0 ~E 2 I is the k x k identity matrix. The group of

transformations on the partons that leaves the electron operator invariant is simply the

group of 2k x 2k matrices that keeps invariant the antisymmetric matrix A. In this case,
this group is the fundamental representation of Sp(2k). Note that Sp(2) = SU(2) and

Sp(4) = SO(5). Thus, we expect the edge theory to be U(1) 2 k/Sp(2k) 1 , and the bulk CS

theory to be Sp(2k)1, as described in the previous section. For general M, the edge theory

becomes U(1) 2 k+MA/[U(M) x Sp(2k)]i and the bulk effective theory is a [U(M) x Sp(2k))1
Chern-Simons theory.

2 To write the electron operator this way, we have renumbered the partons.
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4.4 Ground state degeneracy from effective CS theory

As a first check that this CS theory reproduces the correct topological properties of the Zk
parafermion states, we calculate the ground state degeneracy on a torus. This can be done
explicitly using the methods of (Wen, 1999a; Wen and Zee, 1998); for M = 0. the result is
k + I, which coincides with the torus degeneracy of the M = 0 Zk parafermion states. In
Section 4.A we outline in more detail the calculation in the case M = 1, for which we find
the ground state degeneracy on a torus to be (k + 1)(k + 2)/2, which also agrees with known
results for the Zk parafermion states.

The case M = 1 reveals a crucial point. In this case, we have [U(1) x Sp(2k)]1 CS
theory. Naively, we would think that the extra U(1) 1 part is trivial and does not contribute
to the ground state degeneracy or the fusion rules, and again we might expect a ground
state degeneracy of k + 1, but this is incorrect. The reason for this is that usually when we
specify the gauge group and the level for CS theory. there is a standard interpretation of what
the large gauge transformations are on higher genus surfaces, but this standard prescription
may be inapplicable. Instead, the large gauge transformations are specified by the choice of
electron operator. In particular, for odd k, the extra factor (k + 2)/2 is half-integer, which
highlights the fact that the U(1) and Sp(2k) parts are married together in a non-trivial way.

In the A = 0 case, the standard interpretation of the allowed gauge transformations for
the Sp(2k)1 CS theory is correct, and we can follow the standard prescription for deriving
topological properties of CS theories at level k with a simple Lie group G. In these cases, the
ground state degeneracy is given by the number of integrable representations of the affine
Lie algebra gk, where g is the Lie algebra of G. The quasiparticles are in one-to-one corre-
spondence with the integrable representations of .jk, and their fusion rules are identical as
well. In the case of the A 0 Zk parafermion states, it is already known that the differ-
ent quasiparticles correspond to the different integrable representations of the SU(2)k KNI
algebra, and the fusion rules are the same as the fusion rules of the SU(2)k representations.
In fact, Sp(2k)1 and SU(2)k have the same number of primary fields and the same fusion
rules, and so the Sp(2k)i CS theory has the same fusion rules as the Zk parafermion states
and the same ground state degeneracies on high genus Riemann surfaces. The equivalence
of the fusion rules for the representations Sp(2k)1 and SU(2)k current algebra is a special
case of a more general "level-rank" duality between Sp(2k), and Sp( 2 n)k (Cummins, 1991),
and is also related to the fact that the edge theory for the M = 0 Zk parafermion states
can be described either by the U(1)2k/Sp(2k)1 coset theory or., equivalently, by the SU(2)k
Wess-Zumino-Witten model. For a more detailed discussion, see Section 4.B.

It is also enlightening to look at the spins for defects in pure SU(2)k CS theory as com-
pared with those of Sp(2k)i CS theory, which highlights the fact that in order to understand
the quasiparticle spins using the Sp(2k)1 CS theory, the fermionic nature of the holes in
the parton IQH states must be taken into account. These are listed in Table 4.2. The odd
quasiparticles correspond to an odd number of holes in the integer quantum Hall states; thus
the spins in the Sp(2k)1 CS theory need to include an extra 1/2 for the odd quasiparticles in
order to agree (modulo one and up to a minus sign) with the spins in the SU(2)k CS theory.
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Quasiparticle Spins in SU(2)5 CS theory Spins in Sp(10)1 CS theory

0 0 0
1 5/4 5/4 (~ -5/4 + 1/2)

2 6/7 8/7
3 3/28 11/28 (~ -3/28 + 1/2)

4 2/7 5/7
5 15/28 27/28 (~ -15/28 + 1/2)

Table 4.2: The SU(2)k CS theory and the Sp(2k)1 CS theory both have k + 1 ground states

on a torus. The spins associated with the k + 1 different quasiparticles can be calculated

by calculating the scaling dimensions of the primary fields in the chiral SU(2)k and Sp(2k)1

WZW CFTs. For SU(2)k, this is given by j(j + 1)/(k + 2), where j is half-integer. For

Sp(2k)1, this is given by (A, A + 2p)/2(k + 2), where A denotes a weight of Sp(2k), p is the

Weyl vector, and the inner product is taken with respect to the quadratic form matrix.

4.5 Quasiparticles from the projective construction

We can understand the non-Abelian quasiparticles of the Zk FQH states as holes in the

parton integer quantum Hall states. 3 After projection. these holes become the non-Abelian

quasiparticles and we can analyze these quasiparticles using either the bulk CS theory or

through the edge theory/bulk wave function, all of which we obtained from the projective

construction. The easiest way to analyze the quasiparticles is through the latter approach,
which we describe first. The fundamental quasihole is the one with a single hole in one of the

parton IQH states. We expect the wave function for this excited state to be., as a function of

the quasiparticle coordinate 7; and the electron coordinates {zi},

<(D ; {Zi}) (0|1 le(zi)l4(zoc)@1(7)|<Dparton)

~-l (e -i(N+g1)<p(zoc e(i) 0 7) 4.13)

More general quasiparticles should be related to operators of the form 'Vi'! k--. To

see whether these operators really correspond to the non-Abelian quasiparticles of the Zk
parafermion states, we can study their pattern of zeros (Wen and Wang, 2008b; Barkeshli

and Wen, 2009c). The pattern of zeros is a quantitative characterization of quasiparticles

in the FQH states. In general, it may not be a complete one-to-one labelling of the quasi-

particles, but in the case of the Zk parafermion states, it is; one way to see this from the

projective construction approach is to compute the ground state degeneracy on the torus from

the projective construction, which yields the number of topologically distinct quasiparticles,

3 This is related to the observation in (Cappelli et al., 2001) that the Zk parafermion quasihole wave

functions can be obtained by symmetrizing or anti-symmetrizing the quasihole wave functions of a generalized

(331) state.



4.5. QUASIPARTICLES FROM THE PROJECTIVE CONSTRUCTION

and then to observe that the number of operators with distinct pattern of zeros is the same
as the number of distinct quasiparticles.

The pattern of zeros {ly:a} is defined as follows (Barkeshli and Wen, 2009c). Let V, denote
the quasiparticle operator, and let V;a =iV 7-. Then,

'e(z)Vya(w) ~ (z - W)l;a+1 Vy;a+1 + , (4.14)

where - represent terms higher order in powers of (z - w). From {ly;a} we construct the
occupation number sequence {ny;,} by defining ny;l to be the number of a for which Ly;a = 1.
The occupation number sequences n,;, are periodic for large I and topologically distinct
quasiparticles will have occupation numbers with distinct unit cells for large 1. In Table 4.3,
we have listed pattern of zeros for some of the operators of the form if' - - -. We see that
they coincide exactly with the known quasiparticle pattern of zeros in the Zk parafermion
states, indicating that these operators do indeed correspond to the quasiparticle operators
of the Zk parafermion states. Note that two sets of operators correspond to topologically
equivalent quasiparticles if either they can be related to each other by a gauge transformation
or by the electron operator. In Table 4.3. some of the gauge equivalences are indicated, using
the symbol ~. There are also various operators that are not simply gauge equivalent but that
also differ by electron operators. For example, in the Z 3 states for M - 0, the operators V)1
and 1/ )b 2 Q are topologically equivalent quasiparticle operators; for the Z 2 states at A = 0.
O and Oij k are also topologically equivalent. etc.

The fundamental non-Abelian excitation in the Zk parafermion states is the excitation
that carries minimal charge and whose fusion with itself can generate all other quasiparticles.
In the projective construction point of view, this operator is 4'i, for i = 1. - - - , 2k (they are
all gauge-equivalent), and corresponds to a single hole in one of the parton IQH states. In
the l = 0 Zk parafermion states, this operator has electromagnetic charge Q = 1/2; its
scaling dimension can be found using the stress-energy tensor of the U(1) 2k/Sp(2k) 1 theory

(see Appendix 4.B): he = 1/2 - (2k + 1)/4(k + 2) = 3/4(k + 2), which agrees with the
known results. Notice that for operators with an odd number of parton fields, the U(1)"
contribution to the scaling dimension is half-integer; this is related to the fermionic core that
we put in by hand when we use the pure U(M) x Sp(2k) gauge theory from eqn. (4.4).

One way to understand how the trivial electronic excitations of the parton IQH states
become non-Abelian excitations is by considering the bulk effective theory. The low energy
effective theory is a theory of partons coupled to a U(M) x Sp(2k) gauge field, which im-
plements the projection onto the physical Hilbert space. As we renormalize to low energies,
generically a CS term will appear for the U(M) x Sp(2k) gauge field because it is allowed
by symmetry. The CS term has the property that it endows charges with magnetic flux;
therefore, two individual, well-separated partons carry both charge and magnetic flux in the
fundamental representation of U(M) x Sp(2k). As one parton is adiabatically carried around
another, there will be a non-Abelian Aharonov-Bohmn phase associated with an electric charge
being carried around a magnetic flux. We expect this point of view can be made more pre-
cise in order to compute directly from the bulk theory various topological properties of the
quasiparticles.
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Z 2 states, M - 0, e=1@

Parton Operators

IPe

iV)3 ~ 1 4 ~..

+ 0304

{ni}

20
02
1 1

Q%1
0
0

1/2

Z 2 states, M = 1, Ve = #5(1@2 + 0 3 b4 )

Parton Operators {nI} Q%1
1100 0

13~ -0204~...0110 1/2
jlqNb 3 0~20305~ 0011 0

102 ~ 304 100 1 1/2
1~---~ 4 1010 1/4

15~ -0405~...0101 3/4

Z 3 states. Al = 0, 'e = b102 + V'3V4 + V#5V'6

Parton Operators {ni} Q%1
30 0
2 1 1/2

b14'3 ~ '1V4 ~ 105 ' Pi' 6~ ... 1 2 0

U1)4J 3 b5 ~ 103V)6 ~ ... 0 3 1/2

Z 4 states, M1 = 0, XPe = 0102 + 0304 + V506 + #/7<8
Parton Operators {ni} Q%1

ke 40 0
3 1 1/2

1'03 ~ 004 ~ - - 8 ~ . 2 2 0

V1035 ~ 1 3 6 ~ 1 3 1/2
1030507 ~- b6 '8 ~.. 0 4 0

Table 4.3: We display the pattern of zeros (Wen and Wang, 2008b; Barkeshli and Wen,
2009c) {n1 } for the various parton operators, and their electromagnetic charge, Q, modulo
1. The operators 0j are here chiral free fermion operators in a 1+1d CFT. Normal ordering
is implicit. There are many different operators that correspond to topologically equivalent

quasiparticles. Here we listed the ones with minimal scaling dimension, and ~ indicates

gauge equivalences between various operators. The asymptotic values of the sequence {ni}
for large I classifies each equivalence class. For the M = 0 states, each parton operator 'ti

has electromagnetic charge qj - 1/2. For the M = 1 states, <i has charge 1/(k + 2) for

i = 1,- .- , 2k and $'2k+i has charge k/(k + 2).



4.6. DISCUSSION

Note that in the above discussion, there are several levels of analysis: the bulk effective
field theory, the edge theory, and the relation to wave functions via eqn. (4.13). The relation
to wave functions in (4.13) is specific to the quasiholes; to create quasi-electron excitations
instead (excitations whose charge has the same sign as that of the electron), we need to
create particle-like excitations using states from higher parton Landau levels and subsequently
project onto the appropriate Hilbert space. Given the relation to CFT correlators in (4.13),
it may be possible that the quasi-electron operators discovered in (Hansson et al., 2009) can
also be written in terms of parton operators. In contrast to the wave function analysis, if
the parton operators 0i are interpreted as operators in the edge theory corresponding to

quasiholes, then O may be viewed as operators in the edge theory that correspond to quasi-
electrons. Similarly, the perspective from the bulk effective field theory applies equally well
to quasiholes and to quasi-electrons.

4.6 Discussion

We conclude that the correct and most natural description of the effective field theory for the

Zk parafermion FQH states is the U(M) x Sp(2k) CS theory presented here, for which various
topological properties can be explicitly computed. In this case, the role of the U(M) x Sp(2k)
gauge field is clear: it is to implement the projection onto the physical Hilbert space generated
by the electron operator. In particular, the SU(2) quantum numbers are physical and we
should now be able to couple to them through external probes in the bulk. More precisely.
this means the following. The states in the physical Hilbert space, Nhys, can all be written
in terms of parton operators acting on the vacuum and a projection operator that projects
onto the physical states. The states in (phys therefore admit an action of the group of
transformations. G = O(2M + 4k). that act on the partons. Group elements from the
U(M) x Sp(2k) subroup of G must keep all of the physical states invariant, and the low
energy effective action must preserve this U(M) x Sp(2k) gauge symmetry. On the other
hand, the states in (phys do transform under the subgroup G \ U(M) x Sp(2k), and this
contains the SU(2) subgroup that is a symmetry of the edge U(1) x SU(2)k/U(1) theory. The
low energy effective action - in terms of partons coupled to the U(M) x Sp(2k) gauge field
- can now break this SU(2) symmetry, as can the edge theory, e.g. by coupling to external
fields.

Observe that the electron operator for the Z states is a sum of operators: We = P1 +
T2 + - - - Wk. This implies that the Zk parafermion wave functions can actually be thought of
as a (anti)-symmetrization of a k-layer state, 4z = S{4abl({zf(1 })}, where

Gabl ~ (1 WIz ) (4.15)
i,1

and z1 is the coordinate of the ith electron in the /th layer. S{. . . } refers to symmetrization
or anti-symmnetrization., depending on whether the particles are boson or fermions, respec-
tively. In the case M = 0, Gabl is a k-layer wave function with a v = 1/2 Laughlin state in each
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layer. For M = 1, it is a generalized (331) wave function. The fact that the Zk parafermion

wave functions correspond to (anti)-symmetrizations of these k-layer wave functions was first

observed in (Cappelli et al., 2001).

The case k = 2 corresponds to the Pfaffian, and it is well-known that the Pfaffian wave

function is equal to a symmetrization of the (n, n, n - 2) bilayer wave function, a fact that is

closely related to the existence of a continuous phase transition between the (n, n, n-2) bilayer

wave function and the single-layer Pfaffian as the interlayer tunneling is increased (Read

and Green, 2000; Wen, 2000). These observations suggest a myriad of possibly continuous

phase transitions between various multilayer Abelian and non-Abelian states as the interlayer

tunneling is tuned, which can be theoretically described by gauge-symmetry breaking. For

example, breaking the Sp(2k) gauge symmetry down to SU(2) x -.. x SU(2) would correspond

to a phase transition from a single-layer Zk parafermion state to a k-layer Abelian state.

Breaking Sp( 8 ) to Sp(4) x Sp( 4 ) could correspond to a transition between the Z 4 parafermion

state and a double layer state with a Pfaffian in each layer.

Finally, it is interesting to notice that the two ways of thinking about the edge theory

and the quasiparticle content provide a physical manifestation of the mathematical concept

of level-rank duality. On the one hand, the edge theory is a projection of free fermions by the

gauge group that keeps the electron operator invariant, while on the other hand, it can be

understood by considering the representation theory of the electron operator algebra. The

fact that both perspectives yield the same results is a manifestation of level-rank duality.

4.A Calculation of Torus Ground State Degeneracy for Al 1

Here we calculate the ground state degeneracy on a torus for the U(1) x Sp(2k) Chern-

Simons theory, which is the bulk effective theory for the M = 1 Zk parafermion states. This

calculation highlights the fact that simplify specifying the gauge group and the level are not

enough to fully specify the bulk effective theory; one needs also to specify the allowed large

gauge transformations, which can be done by specifying a choice of electron operator.

For the M = 1 Zk parafermion states, we take the electron operator to be

k

Te = #b2k+1 22-102a. (4.16)
a=1

The gauge field takes values in the Lie algebra of U(1) x Sp(2k), which in this case consists of

(2k+1) x (2k +1) matrices: 0 0 and diag(0, 1, 0,1,- ,0, 1, -1), with T" the generators

of Sp(2k) in the fundamental representation.

To compute the ground state degeneracy on a torus, we follow the procedure outlined in

(Wen, 1999a). The classical configuration space of CS theory consists of flat connections, for

which the magnetic field vanishes: b = eij~iaj = 0. This configuration space is completely
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characterized by holonomies of the gauge field along the non-contractible loops of the torus:

W (a) ='Pei f, ad. (4.17)

More generally, for a manifold M, the gauge-inequivalent set of W(a) form a group: (Hom: r,(M)

G)/G, which is the group of homomorphisms of the fundamental group of M to the gauge
group G, modulo G. For a torus, 7r,(T

2) is Abelian, which means that W(a) and W(#),
where a and 3 are the two distinct non-contractible loops of the torus, commute with each

other and we can always perform a global gauge transformation so that W(a) and W(#) lie

in the maximal Abelian subgroup, Gabi, of G (this subgroup is called the maximal torus).
The maximal torus is generated by the Cartan subalgebra of the Lie algebra of G; in the case

at hand, this Cartan subalgebra is composed of k + 1 matrices. k of which lie in the Cartan

subalgebra of Sp(2k), in addition to diag(0, 1,0, 1, - ,0, 1, -1). Since we only need to con-
sider components of the gauge field a' that lie in the Cartan subalgebra, the CS Lagrangian

becomes

£ = KIja'Oaj, (4.18)
47

where Ki 1 = Tr(p'p') and p1 , I = 1. - , k + 1 are the generators that lie in the Cartan

subalgebra.

There are large gauge transformations U = e2 /L, where xi and X2 are the two coor-

dinates on the torus and L is the length of each side. These act on the partons as

V)-+ U, (4.19)

where = - - , 2k+1). and they take af -+ af + 27r/L. These transformations will be

the minimal large gauge transformations if we normalize the generators as follows:

pI = 6ij(6i,21 - 6i,21- 1), I = 1, - - , k
pk+1 = dag(0, 1, 0, 1, - - - , 0, 1, -1). (4.20)

Thus, for example for the case k = 3, the K matrix is

2 0 0 -1

0 2 0 -1 (4.21)
0 0 2 -1

-1I - 1 -1 k + 1)

In addition to the large gauge transformations. there are discrete gauge transformations

W E U(1) x Sp(2k) which keep the Abelian subgroup unchanged but interchange the al's

amongst themselves. These satisfy

WftGablW = Gab(2i (4.22)
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or, alternatively,

W t PIW = Tijpj, (4.23)

for some (k + 1) x (k + I) matrix T. These discrete transformations correspond to the
independent ways of interchanging the partons.

In this U(1) x Sp(2k) example, there are k(k+1)/2 different discrete gauge transformations
W. k of them correspond to interchanging $2i-1 and 02i, for i = 1, - - - , k, and k(k - 1)/2
correspond to the independent ways of interchanging the k different terms in the sum of
(4.16).

Picking the gauge al = 0 and parametrizing the gauge field as

ai = X2 a' = X27 ,

1  T L1 a2 - L 21 (4.24)

we have

L = 2,rKjXk. (4.25)

The Hamiltonian vanishes. The conjugate momentum to X' is

P2 27rK 1jX. (4.26)

Since Xf ~ Xf + 1 as a result of the large gauge transformations, we can write the wave
functions as

(Z2) = ce 27fd , (4.27)
i

where X 2 = (X2, - Xk+1) and n- is a (k + 1)-dimensional vector of integers. In momentum
space the wave function is

<pfl2) Zc Pk-2 - 2,T-1)

n

~ ciok+1(i -n) (4.28)
n

where ok+1(z) is a (k + 1)-dimensional delta function. Since Xj ~ Xj + 1, it follows that
ct = cr, where (n')' = n' +K~j, for any J. Furthermore, each discrete gauge transformation
We that keeps the Abelian subgroup G,bl invariant corresponds to a matrix T (see eqn. 4.23),
which acts on the diagonal generators. These lead to the equivalences cj = cas. The number
of independent cij can be computed for each k; carrying out the result on a computer, we
find that there are (k + 1) (k + 2)/2 independent wave functions, which agrees with the known
torus ground state degeneracy of the Zk parafermion states.



4.B. LEVEL-RANK DUALITY

4.B Level-rank duality

To understand the level-rank duality better, let us examine the equivalence between the

U(1) 2 k", CFT, which is the CFT of 2kn free fermions, and the Sp(2k), x Sp(2n)k WZW model.

Evidence for the equivalence of these two theories can be easily established by noting that

they both have the same central charge, c = 2kn, and that the Lie algebra Sp(2k) B Sp(2n)

can be embedded into the symmetry group of the free fermion theory, O(4knr) (Francesco

et al., 1997a). The possibility of this embedding implies that we can construct currents,

A raTA T O ja a ,(4.29)

where the {r/a} are Majorana fermions, which are related to the complex fermions as #'i
T2i ± i/ 2 i. {TA} and {Ta} are mutually commuting sets of 4kn x 4kn skew-symmetric
matrices that lie in the Lie algebra of SO(4kn) and that separately generate the Sp(2k)

and Sp(2n) Lie algebras, respectively. These currents satisfy the Sp(2k), x Sp(2n)k current

algebra, as can be seen by computing the OPEs:

jA B TnAB 2 ifABcJC(w) +

(z -,w)
2  z-w

ja (Z)Jb(W) kab ifabcJc
J zJ~) + +--

Ja()JA(W) ((Z - W)0). (4.30)

To compute the levels n and k, we have normalized the generators in the conventional way,
so that the quadratic Casimir in the adjoint representation is twice the dual Coxeter number

of the corresponding Lie algebra. The stress-energy tensor for the Sp(2k), x Sp(2n)k theory,
defined as

T(z) = y JAJA + E"Jaja (4.31)
2(k + n + 1) ( /

therefore satisfies the same algebra as the stress-energy tensor of the free fermion theory:

TU(1)(z) = }1 ria&rla. Thus, for the U(1) 2k/Sp(2k) 1 edge theory of the M = 0 Zk
parafermion states, we can take the stress tensor to be:

TZk(Z) =Tu(1) (Z) 1 S EjAJA (4.32)
2(k + 2) A

We can use this stress tensor to compute the scaling dimensions of the quasiparticle operators

in the edge theory.

The level-rank duality should hold for general M as well, however in that case the edge

theory is more complicated. It is not a gk WZW model where g is a semi-simple Lie group;

instead, the edge theory can be thought of as a certain Z 2 orbifold of the Zk parafermion
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CFT and a U(1) Gaussian CFT.4

4 See e.g. (Milovanovic and Read, 1996) for a discussion of this in the case of the Pfaffian.



Chapter 5

U(1) x U(1) x Z2 Chern-Simons
theory

The content of this chapter is adapted from (Barkeshli and Wen, 2010e).

5.1 Introduction

In the previous chapters. we discussed the two main approaches to understanding topological

order in non-Abelian FQH states: the ideal wave function approach and the parton/projective

construction. Another way to improve our understanding of topological order in the fractional

quantum Hall states is to study phase transitions between states with different topological

order. While much is known about phase transitions between phases with different patterns

of symmetry breaking, much less is known about phase transitions between phases with

different topological order. Aside from its intrinsic interest, such information may be useful

in identifying the topological order of a certain FQH state, which is currently a significant

challenge. The experimental observation of a continuous phase transition in a FQH system

may help us identify the topological order of one of the phases if we know theoretically which

topologically ordered phases can be connected to each other through a continuous phase

transition and which cannot. Ultimately, we would like to have an understanding of all of the

possible topological orders in FQH states and how they can be related to each other through

continuous phase transitions.

We may hope to understand a phase transition between two phases if we have a field

theory that describes each phase and we know how the field theories of the two phases are

related to each other. In the case of the fractional quantum Hall states, it is well-known that

the long-distance, low energy behavior is described by certain topological field theories in 2+1

dimensions (Blok and Wen, 1990b), called Chern-Simons theories. For the Laughlin states

and other Abelian FQH states, such as the Halperin states, the hierarchy states, and Jain

states, the long wavelength behavior is described by Chern-Simons theories with a number

of U(1) gauge fields (Blok and Wen. 1990b; Wen, 1995b; Zhang et al., 1989).

For the non-Abelian FQH states, the corresponding Chern-Simons theory has a non-
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Abelian gauge group (Fradkin et al., 1998; Wen, 1999b). The most well-studied examples
of non-Abelian FQH states are the Moore-Read Pfaffian state (Moore and Read, 1991) and
some of its generalizations, the Read-Rezayi (or Zk parafermion) states (Read and Rezayi.,
1999). As discussed in Chapter 4 the Zk parafermion states at filling fraction v = k/(kM+2)
are described by [U(M) x Sp(2k)]1 Chern-Simons theory (Barkeshli and Wen., 2010c).

In this chapter, we will study Chern-Simons theory with gauge group U(1) x U(1) x Z 2 , and
we will see that for a certain choice of coupling constants, it describes the long-wavelength
properties of the Z 4 parafermion Read-Rezayi FQH state. The significance of this result
is that there is a bilayer state, the (k, k, k - 3) Halperin state at v 2k-3, which may
undergo a bilayer to single-layer quantum phase transition to the Z 4 parafermion state as the
interlayer tunneling is increased (Rezayi et al., 2009). The bilayer phase is described by a
U(1) x U(1) Chern-Simons theory. This new formulation of the Chern-Simons theory for the
Z 4 parafermion state may therefore be useful in understanding the phase transition because
the gauge groups U(1) x U(1) x Z 2 and U(1) x U(1) are closely related, and because the fields
in the U(1) x U(1) x Z 2 theory are more closely related to physical degrees of freedom of the
electron fluid than they are in the alternative [U(M) x Sp(8)1 CS theory.

In addition to aiding us in understanding this phase transition, this study shows how
to compute concretely various topological properties of a Chern-Simons theory with a dis-
connected gauge group. For Chern-Simons theories at level k, where the gauge group is a
simple Lie group G, there is a straightfoward prescription to compute topological properties.
The different quasiparticles are labelled by the integrable highest weight representations of
the affine lie algebra yk, where g is the Lie algebra of G, while the quasiparticle fusion rules
are given by the Clebsch-Gordon coefficients of the integrable representations of yk (Witten,
1989). In contrast, when the gauge group is disconnected, and is of the form G x H, where H
is a discrete automorphismn group of G, it is much less straightfoward to compute the topo-
logical properties of the Chern-Simons theory directly. One reason for this is that discrete
gauge theories are most easily studied (and defined) on a lattice, while it is difficult to formu-
late lattice versions of Chern-Simons theories. This complicates the study of Chern-Simons
theories with disconnected gauge groups.1

In the case where the gauge group is U(1) x U(1) x Z 2 , we show how to compute the
ground state degeneracy on genus g surfaces and how this yields the quantum dimensions of
the quasiparticles. We find that the Z 2 vortices carry non-Abelian statistics and we show how
to compute the degeneracy of states in the presence of n pairs of Z 2 vortices. The results,
for a certain choice of coupling constants, agree exactly with results obtained in other ways
for the Z4 parafermion FQH state.

5.2 Motivation and Background

One interesting way of obtaining the Pfaffian quantum Hall states is by starting with a
bilayer (k, k, k - 2) quantum Hall state and taking the interlayer tunneling to infinity. The

One way to mathematically define these theories is through the use of the cohomology of the classifying
space of the gauge group (Dijkgraaf and Witten, 1990).
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bilayer state is at a filling fraction v = k and is described by the wave function 1P=

<D({zi}, {wi})e- Z(Ei ZI2 +WuI2 , with

N N N

<D = (z -zj)k J(w - w)k 1(z, -wg )k- 2 . (5.1)
i<j i<j ij

Here, zi = xi + syi is the complex coordinate of the ith electron in one layer and wi is the

complex coordinate for the ith electron in the other layer.

As the tunnelling is taken to infinity, we effectively end up with a single-layer state. The
particles in the two layers become indistinguishable and so we might expect that the resulting
wavefunction is the (k, k, k -2) bilayer wavefunction but (anti)-symmetrized between the {zi}
and {wj} coordinates. The resulting wavefunction happens to be the Pfaffian state:

1 )2N

'Ipf ({zi}) = Pf i - (zi - zJ)k1

= S{"'({zi}. {wi})}, (5.2)

where S{- - - } refers to symmetrization or anti-symmetrization over zi and wi depending on

whether the particles are bosons are fermions. Here we have set ZN+i Wi- Indeed, the

(k. k., k - 2) bilayer states undergo a continuous quantum phase transition to the single-layer
ii = Pfaffian states as the interlayer tunneling is increased (Read and Green, 2000; Wen,k =
2000).

In a similar fashion, the (k, k, k - 3) bilayer wave functions, when (anti)-symmetrized over

the coordinates of particles in the two layers, yield the Z 4 parafermion states at filling fraction

v = 2k 3 (Rezayi et al., 2009; Read and Rezayi, 1999). One way to verify this statement
is through an operator algebra approach that also naturally suggests U(1) x U(1) X Z2' as

the appropriate gauge group for the corresponding Chern-Simons theory (see Section 5.3).
This observation suggests that as the interlayer tunneling is increased, there may be a region
of the phase diagram where there is a phase transition from the bilayer (k, k, k - 3) state

to the single-layer non-Abelian Z 4 paraferinion state. For k = 3, this is a phase transition

at v - 2/3, the phase diagram of which has attracted both theoretical and experimental

attention.

Given this perspective, we might expect that we can understand the low energy effective

field theory of the Pfaffian and Z 4 parafermion states by gauging a discrete Z 2 symmetry

associated with the Z 2 symmetry of interchanging the two layers. The effective field theories

for the bilayer states are the U(1) x U(1) Chern-Simons theories with the field strength of

one U(1) gauge field describing the electron density for one layer and the field strength of the

other gauge field for the other layer. This perspective suggests that the topological properties

of these non-Abelian states can be described by a U(1) x U(1) X Z 2 Chern-Simons theory.
This is a U(1) x U(1) Chern-Simons theory with an additional local Z 2 gauge symmetry.

The semi-direct product x here indicates that the Z 2 acts on the group U(1) x U(1); the Z 2

group element does not commute with elements of U(1) x U(1). In other words, elements
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of the group are (a, p), where a E U(1) x U(1) and p E Z 2 , and multiplication is defined by
(ai, pi) * (a2, p2) = (aipia2pi, pip2). This expectation for U(1) x U(1) x Z 2 Chern-Simons
theory turns out to be correct for the Z 4 parafermion states but not quite correct for the
Pfaffian states, as we will discuss.

The fact that such a Chern-Simons theory might describe the Pfaffian and/or Z 4 parafermion
FQH states might also be expected from another point of view. It is known that the Z 4

parafermion conformal field theory, which is used in constructing the Z 4 parafermion FQH
states, is dual to the rational Z 2 orbifold at a certain radius (Dijkgraaf et al., 1989). The
rational Z 2 orbifold at radius R is the theory of a scalar boson <p compactified on a circle
of radius R, i.e. <p ~ <p + 27rR, and that is gauged by a Z 2 action: <p -p. Furthermore,
the Z 2 orbifold at a different radius is dual to two copies of the Ising CFT, which is used
to construct the Pfaffian states. The Chern-Simons theory corresponding to the Z 2 orbifold
CFT has gauge group 0(2), which we can think of as U(1) X Z 2 (Moore and Seiberg. 1989c).
This line of thinking is what led the authors of (Fradkin et al., 2001) to first mention that
U(1) x 0(2) Chern-Simons theories are related to the Pfaffian and Z 4 parafermion states.
For the Z 4 parafermion FQH states, the relation to U(1) x 0(2) is suggestive but incomplete
because the U(1) and the 0(2) need to be "glued" together in an appropriate way; we elab-
orate more on this point in Appendix 5.A. The proper formulation is the U(1) x U(1) X Z2
theory that we present here and for which we compute many topological properties.

Let us first discuss the U(1) x U(1) Chern-Simons theories that describe the (k, k., k - 1)
bilayer states. These are defined by the Lagrangian

L - (aa + 585) + I(a& + da). (5.3)
4r 47r A

where M is a two-dimensional manifold and a(x, y, t) and &(x., y, t) are two U(1) gauge fields
defined on A x R. Al describes space and R describes time. The electron current/density in
the top and bottom layers, j. and j,, respectively, are given by:

1 E WA~vaA,

27r

j p = "vaA. (5.4)

In the U(1) x U(1) x Z 2 Chern-Simons theory, we package the two gauge fields in the
following way:

A, = , 00 . (5.5)0 ail'

The gauge group G = U(1) x U(1) x Z 2 consists of the U(1) x U(1) part, which we can write
as

eU 0
U =i (5.6)
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and the Z 2 part, which contains the identity and the non-trivial element a-I:

0= 1 0 .(5.7)

Thus, in addition to the usual U(1) x U(1) gauge symmetry associated with the two gauge
fields, there is a local Z 2 gauge symmetry, which can be thought of in the following way. The

space of physical configurations at a certain space-time point (x, y, t) is to be described by
the unordered pair (a,(x, y, t), 5,(x, yt)). The action of the Z 2 is to interchange a. (x, y, t)
and 5,(x, y, t) at the point (x, y, t). Physically, we may perhaps envision this as an electron
from one layer and an electron from the other layer being interchanged. In order to define
a sensible action, we need to be dealing with differentiable gauge fields. So, we require the

gauge fields to be smooth functions on M, thus automatically gauge-fixing the local Z 2 and
leaving behind a residual global Z 2 symmetry associated with interchanging a and a at every

point in space-time. In this sense, we can use the action given by eqn. (5.3) to describe our

U(1) x U(1) X Z 2 Chern-Simons theory.
Although the U(1) x U(1) Chern-Simons theory and U(1) x U(1) x Z 2 Chern-Simons

theory formally share the same Lagrangian, their gauge structure is different. This is why

the same Lagrangian actually describes two different theories. This example demonstrates
that the Lagrangian is not a good symbol for a one-to-one labelling of different topological
field theories.

5.3 Motivation for U(1) x U(1) x Z2 CS theory from the pro-
jective construction

Here we explain from the point of view of the projective construction (Wen, 1999a), how

to understand that the (k, k, k - 3) bilayer wave function, upon symmetrization, yields the

Z 4 parafermion wave function at v - 2k3 and the reason for why we expect that the

corresponding Chern-Simons theory should have the gauge group U(1) x U(1) A Z 2 .

Recall that in the projective construction approach, one writes the electron operator

(which is either bosonic or fermionic, depending on whether we are interested in FQH states

of bosons or fermions) in terms of several other fermionic fields, $1, - - referred to as

"partons:"'

Te = )ai - Va Cca, (5.8)

where C ...*c are constant coefficients. The continuum field theory that describes interacting

electrons in an external magnetic field can then be rewritten in terms of the partons and a

gauge field. The introduction of the partons expands the Hilbert space, so the gauge field is

included in order to project the states onto the physical Hilbert space, which is generated by
the electron operator. If the partons form a state l}partart). the electron wave function may

be expected to be the projection onto the physical electronic Hilbert space:

(5.9)
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If G is the group of transformations on the partons that keeps the electron operator
invariant, then the continuum field theory description will be partons interacting with a
gauge field with gauge group G, which ensures that physical excitations, which are created
by electron operators, will be singlets of the group G. Since the partons are assumed to form
a gapped integer quantum Hall state, they can be integrated out to obtain a Chern-Simons
theory with gauge group G.

For example, as discussed in Chapter 4, if we choose the electron operator to be

pe;1/3 = 01V)2)3, (5.10)

then Qe;1/3 is an SU(3) singlet. If we assume that the partons each form a v = 1 integer
quantum Hall state, then the electron wave function is

De;1/ 3 (z1.-- , ZN) =7(zi zj) 3 , (5.11)
i<j

which is the Laughlin v = 1/3 wave function. The continuum field theory is a theory of
three fermions coupled to an SU(3) gauge field. Integrating out the partons will yield a
SU(3) 1 Chern-Simons theory. This theory is equivalent to the U(1) 3 Chern-Simons theory

(see Chapter 4), which is the topological field theory for the v = 1/3 Laughlin state.

If we choose the electron operator to be

'Peipf ?P1 2 + '34b4, (5.12)

and assume the partons form a v = 1 IQH state, we can obtain the wave function after
projection by using the following observation. The v = 1 wave functions are equal to free
chiral fermion correlators of a 1 + 1-dimensional CFT:

DV= 1 =(0| 1 $l0(zi)|vZ- = 1) = rj(zi - zy )

N

~ (eiN#(zo ) rl 0(zi)), (5.13)
i=1

where in the first line., O(zi) is a free fermion operator that annihilates a fermion at position
zi and |v = 1) is the v = 1 integer quantum Hall state for the fermion 0; in the second line,
,O(zi) is interpreted as a free chiral fermion operator in a 1+1-d CFT and A0b = $t@ is the
density of the fermions. From this, it follows that the wave function (5.9) with the electron
operator We;pf can be obtained by taking the correlator

N

De;pf , (e-iN#(zo,) Wep z),(5.14)

where XPe-pf = 01'02 + V304 and #~i(z) is now interpreted as a free complex chiral fermion in
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a 1+1d CFT. The operator product algebra generated by the electron operator in this case

can be checked to be reproduced if we instead write the electron operator as

pe;pf = $n, (5.15)

where q is a Majorana fermion and 0 is a free chiral fermion. The correlation function with

N insertions of this operator is known to yield the y = 1 Pfaffian wave function. The gauge

group that keeps "'epf invariant is Sp(4), and thus the Chern-Simons theory for the v = I

Pfaffian is a Sp(4)1 Chern-Simons theory (Wen, 1999a).

Now consider a bilayer wave function, where we have two electron operators, one for each

layer, and the wave function is given by:

N

<D({zi}, {wi}) ~ (e- iN$(z) JJei (Zi)4e 2 (Wi)). (5.16)

i=1

The single-layer wave function that can be obtained by symmetrizing or anti-syminetrizing

over the electron coordinates in the two layers can be obtained by choosing the single-layer

electron operator to be q'e = qei + XIe2:

<D({z})= S{<}({zp}, {( w })}
2N

(eiN#(zo) fJ(eI(Zi) + 'Ie 2 (Zi))), (5.17)
i=1

where we have set ZN+i Wi.

In the case of the Pfaffian, this shows us that the (220) state, when symmetrized, yields

the Pfaffian wave function. If we instead consider xPei = b10203 and XFe2 = ) 4 v 5 96, we

obtain the (330) state. The (330) state, when symmetrized, will therefore be given by

<D{z})~(e--iN#(zo,) HWe ({zi})), (5.18)

with Ie = '0 102'03 + 4 '0 5 '06 . It can be checked that the operator product algebra generated

by this electron operator is also generated by the operator e = <De 312, where 4Do is a

simple-current operator in the Z 4 parafermion CFT and # is a scalar boson. Thus, this wave

function is the wave function of the Z4 parafermion FQH state at v = 2/3. Furthermore, the

gauge group that keeps the electron operator invariant is SU(3) x SU(3) X Z 2 , so we expect

that the corresponding Chern-Simons theory for this phase should be SU(3)1 x SU(3) 1 x Z2

Chern-Siions theory, which we expect to be equivalent to U(1) 3 x U(1) 3 X Z 2 Chern-Simons

theory. One would then guess that the generalization to the (k, k, k - 3) states and the

y = 2k-3 Z 4 parafermion states is the U(1) x U(1) x Z 2 Chern-Simons theory described in

this chapter.
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5.4 Ground state degeneracy for U(1) x U(1) x Z 2 Chern-Simons
theory

The first check that a field theory correctly describes a given topologically ordered phase
is whether it correctly reproduces the ground state degeneracy of the system on surfaces of
higher genus. Accordingly, we begin our study of U(1) x U(1) x Z 2 by calculating the ground
state degeneracy on a torus. We then calculate the degeneracy on surfaces of arbitrary genus,
from which we deduce the quantum dimensions of the quasiparticles. Finally, we study the
quasiparticles.

Gauge theory with gauge group G on a manifold M is most generally defined by starting
with a principal G bundle on M and defining the gauge field, locally a Lie algebra-valued
one-form, as a connection on the bundle. Often, one is concerned with situations in which
M = R", in which case there is a global coordinate system and the gauge field can be written
in coordinates everywhere as a dx", where a is a Lie algebra-valued function on R". In
these cases, we do not need to be concerned with the more general fiber bundle definition
in order to compute quantities of interest. The situation is more complicated in general,
when M does not have a global coordinate system, in which case we can only locally define
a = a,,dx in any given coordinate chart. In these situations. it is often convenient, when
possible, to view the gauge field as a function defined on R", where n is the dimension of Al,
and to impose suitable periodicity conditions. This allows us to work in a global coordinate
system and may simplify certain computations. For example, for U(1) gauge theory on a
torus, we can choose to work with a gauge field a,(x, y) defined over R2 , but with periodic
boundary conditions:

a,(x,y) = a,(x + Lx,y) - a(x, y + Ly). (5.19)

In the case where G = U(1) x U(1) x Z 2 , the Z 2 gauge symmetry allows for the possibility
of twisted sectors: configurations in which the gauge field is periodic up to conjugacy by
an element of Z 2 . On a torus, there are four sectors and the ground state degeneracy is
controlled by the degeneracy within each sector. In more mathematical terms, there are four
distinct classes of U(1) x U(1) x Z 2 bundles on a torus, distinguished by the four possible
elements in the group (Hom : 7r1 (T 2 ) -* Z 2 )/Z 2 , which is the group of homomorphisms from
the fundamental group of T 2 to Z 2 , mod Z 2 . Thus, we can think of A,,(x, y, t) as defined on
R3 , with the following periodicity conditions:

A,(x + L,, y) - o3 A,(x, y)o4g

A,(x, y + Ly) = oY" A.(x, y)o-'y, (5.20)

where c, and cy can each be 0 (untwisted) or 1 (twisted). Furthermore, in each of these
sectors, the allowed gauge transformations U(x, y) take the form (time index is suppressed)

U(x, y) eif(XY) i) (5.21)

136



5.4. GROUND STATE DEGENERACY

and must preserve the boundary conditions on A,:

U(x + LX, y) =ox U(x, y)oIX

U (x, y + LY) =" o"U (x, y)o-?"y. (5.22)

These transform A, in the usual way:

A, -> UAU- 1 + iU, 1U-1 . (5.23)

The formulation of the theory on higher genus surfaces is similar. On a genus g surface,
there are 229 different sectors, characterized by whether there is a Z 2 twist along various non-
contractible loops. Across these twists, the two gauge fields a and 5 transform into each other.
The gauge transformations also obey these same twisted boundary conditions; this implies
that the boundary conditions on the gauge fields are preserved under gauge transformations.

The connection between this formulation and the definition of a principal G-bundle on a
compact Riemann surface can be made more precise by considering local coordinate charts,
transition functions, etc , but here we do not pursue any further mathematical precision.

5.4.1 Ground state degeneracy on a torus

As mentioned above, there are four sectors on a torus, one untwisted sector and three twisted
sectors. We now proceed to compute the ground state degeneracy in each sector. We follow
the approach in (Wen and Zee, 1998), which was applied to continuous and connected gauge
groups.

Untwisted sector

In the untwisted sector, the ground states are the Z 2 invariant states of a U(1) x U(1) Chern-
Simons theory with the Lagrangian of eqn. (5.3). We partially fix the gauge by setting
ao = do = 0. The equations of motion for ao and do, act as constraints that require zero
field strength: f = Bay - Bya, = 0 and f = 0,dy - 8, = 0. This implies that gauge-
inequivalent configurations are completely specified by the holonomies of the gauge fields
around non-contractible loops of the torus, f a - dl and f 5 - dl. This is a special case of the
more general statement that flat G-bundles are characterized by (Hom : 71(M) -- G)/G. We
can parameterize this configuration space in the following way.

a1(x,yt) = X(t) 5(x,y,t) = (t)

a2(x,y,t) = -- Y(t) 52(x,yt) = - (t) (5.24)
L L

The large gauge transformations a - a + iU-1U with U(x, y) = e2imnx/L+2xiny/L take
(X, Y) -> (X + m, Y + n). Thus (X, Y) and (X, Y) take values on a torus. Substitution into
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the action yields, up to total time derivatives,

L = 2,rk(XY + XY) + 2,r(k - l)(XY + XY). (5.25)

The Hamiltonian vanishes. The momenta conjugate to Y and Y are

6L
py 2,rkX + 21r(k - l)X,

6Y
6L

p - - 2,rkX + 2,r(k - l)X. (5.26)
6Y

The wave functions for this system can be written as a sum of plane waves:

$(Y, Y) cn,mei2xniY+i2xnl. (5.27)
n,m

In momentum space, the wavefunction becomes

#(py,pg) Zcmo(pY -2n)6(py - 27rm), (5.28)
nn

or. equivalently,

<p(X,X) = c,r6(kX + (k - 1)k - n)6(kk + (k -i)X -r). (5.29)

Using the fact that X X + 1 and X ~X + 1, we find that

Cnm, = Cn-krm-k+1 = cn-k+lm-k (5.30)

There are 1 l(2k- 1)1 independent coefficients Cn,m, which explains why the (k, k, k-i) quantum

Hall state has a degeneracy of 11(2k - I)| on a torus.

We can label the quantum states by In, mn). The ground states in our U(1) x U(1) X Z2
theory will be the Z 2 invariant subspace of this Hilbert space; it will contain the diagonal

states In, n) and ones of the form In, m) + im, n). A simple count of the Z 2 invariant states,
using the identifications (5.30) yields a total of

(111 + 1)12k - ll/2 (5.31)

states in this untwisted sector.

Twisted sectors

There are three Z 2 twisted sectors, corresponding to twisting in either the x direction, the

y direction, or both. Since modular transformations. i.e. diffeomorphisms that are not

continuously connected to the identity, are symmetries that can take one twisted sector to
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another, we expect that all twisted sectors should have the same degeneracy. This can be

verified explicitly by computing the degeneracy in each case. Here we will only consider the

case where the gauge fields are twisted in the y direction. More precisely this means that the

gauge fields obey the following boundary conditions:

a (x, y + L) =di(x, y)

ai (x + L, y) ai (x, y)

5i(x, y + L) = ai (x., y)

di(x + L, y) = hi(x, y)

Given these twisted boundary conditions, we can consider a new field c,1(x, y) defined on

a space that is doubled in length in the y direction:

( a, (X, y)c(,y) = {i, (x, y - L)
0 < y < L
L < y < 2L

Observe that c has the periodicity

c,1(x, y) = c,(x + L, y) = c, (x, y + 2L).

The allowed gauge transformations that act on c are of the form

VV(x., y) need only be periodic on the doubled torus:

W(x + L, y) - W(x, y + 2L) = W(x, y)

c transforms as a typical U(1) gauge field:

(5.36)C -* C - Oh.

27rm 27r

In particular, there are large gauge transformations W(x, y) = eL x 21 . that change the

zero-mode of ci:
27rm 27rn

ci - ci + +
L 2L

(5.37)

In terms of c, the Lagrangian becomes

L = dx dy(--coc + c(x, y)&c(x, y - L))
L 2 47 47

(5.38)

Note that this lagrangian is actually non-local in the field c, but this

additional difficulty. We can set temporal gauge co = 0, i.e. ao = 50

equation of motion for co as a constraint that forces the field strength for

the gauge-inequivalent configurations can be parameterized as

ci(x, y,t) = Xi(t),
Li

does not pose any
= 0, and view the

c to be zero. Thus,

(5.39)

where L 1 = L and L 2 = 2L. Inserting this expansion into the Lagrangian gives, up to total

(5.33)

(5.34)

W(x,y) = eih(x-y) where

(5.35)
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time derivatives.

L = 27r(2k - l)XIX 2 . (5.40)

Due to the existence of the large gauge transformations, we find that the zero-modes Xi take
values on a torus:

(X 1 , X 2 ) ~ (X 1 + 1, X 2 ) ~ (X 1 , X 2 + 1). (5.41)

Thus, using the same techniques used in the previous section, we conclude that the ground
state degeneracy in this sector is 12k - l. There are three different twisted sectors, so we find
in total

312k - l1 (5.42)

states in the twisted sectors of the U(1) x U(1) x Z 2 theory.

Total ground state degeneracy on torus

Adding the degeneracies from the twisted and the untwisted sectors, we find that the total
ground state degeneracy on a torus in U(1) x U(1) x Z 2 theory is

Ground State Deg. on Torus = (lI + 7)12k - ll/2. (5.43)

For I - 2, the filling fraction is y = k' and the above formula gives 9(k - 1) states

on a torus. Compare this to the torus degeneracy of the v = k1 Pfaffian state, which is
3(k - 1). We see that the U(1) x U(1) x Z 2 Chern-Simons theory for I = 2 has a torus ground
state degeneracy that is three times that of the Pfaffian state. So the U(1) x U(1) A Z2
Cheri-Simons theory for I = 2 cannot directly describe the Pfaffian state. In Appendix 5.A,
we argue that, for I = 2, U(1) x U(1) x Z 2 Chern-Simons theory describes the Pfaffian state
plus an extra copy of the Ising model.

For 1 = 3, the filling fraction is v = 2k3 and (5.43) gives 5(2k - 3) ground states on

a torus. The v 2k2 3 Z 4 parafermion state also gives rise to same torus degeneracy of
5(2k - 3). Thus, we would like to propose that the U(1) x U(1) X Z 2 Chern-Simons theory
for 1 = 3 describes the Z 4 parafermion quantum Hall states. As a more non-trivial check on
these results. we now turn to the calculation of the ground state degeneracy on surfaces of
arbitrary genus.

5.4.2 Ground state degeneracy for genus g

The ground state degeneracy on a genus g surface of the Z 4 parafermion quantum Hall state
at filling fraction v - 2k2 is given by (Barkeshli and Wen, 2009c)

(k - 3 / 2 )929'[(3f + 1) + (2 2g - 1)( 3 9-1 + 1)]. (5.44)

Note that the second factor, 2 9-1[(39 + 1) + (2 2g - 1)(39-1 + 1)], is the dimension of the
space of conformal blocks on a genus g surface in the Z 4 parafermion CFT (see (A.7)). The
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Figure 5-1: Canonical homology basis for E1.

degeneracy for the corresponding quantum Hall state is (k - 3/2)9 = v~ 9 times this factor.

Let us consider the ground state degeneracy on a genus g surface for the U(1) x U(1) X Z2

Chern-Simons theory. Let {ai} and {bi}, with i = 1, - - - ,g be a basis for the homology cycles

(see Figure 5-1). The ai (b.) do not intersect each other, while ai and bJ intersect if i j.
That is, the ai and bi form a canonical homology basis. There can be a Z 2 twist along any

combination of these non-contractible loops. Thus there are 229 different sectors; one of them

is untwisted while the other 229 - 1 sectors are twisted. Let us first analyze the untwisted

sector.

It is known that the (k, k, k -1) bilayer FQH states, which are described by the U(1) x U(1)

Chern-Simons theory of eqn. (5.3) have a degeneracy of IdetK 9 . where the K-matrix is:

K = k k -1 (5.45)

Thus the degeneracy for these bilayer states is 119(2k - 1)91. These states may be written as:

®9 \ni, mi), (5.46)

where the ni and m4 are integers, i = 1,--. , g, and with the identifications (see (5.30))

(i, in) - (ni + k -1, mi + k) ~ (ni + k, mi + k - 1) (5.47)

for each i. The action of the Z 2 on these states is to take

o9i Ilni, mni) -+ 0i Imi, ni). (5.48)

We must project onto the Z 2 invariant states. There are 12k - 119 diagonal states of the form

Dilni, ni). These are invariant under the Z 2 . There are 119(2k - 1)91 - 12k - 119 off-diagonal
states, and exactly half of them are Z 2 invariant. This gives a total of

(\l|9 + 1)12k - 1|9/2 = (|l|9 + 1)\k - l/2\929-1 (5.49)

different states, which for I = 3 corresponds to the first term of (5.44).

Now consider the twisted sectors. To begin, suppose that there is a Z 2 twist along the ag
cycle, and no twists along any of the other cycles. Let Eg refer to the genus g surface. Let us

consider the double cover E 29 -1 of Eg, which is a genus 2g - 1 surface. It can be constructed

as follows. Take two copies of Eg, referred to as E and E2 , and cut both of them along their
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(a)
ag

(b) (2)

Figure 5-2: (a) A single twist along the ag direction. (b) Take two copies of E, cut them
along the ag cycle, and glue them together as shown. This yields a genus 2g - 1 surface. For
the case g = 3, we see explicitly that a genus 5 surface is obtained.

a.q cycle. Gluing them together in such a way that each end of the cut on one copy lands on
the opposite end of the cut on the other copy leaves the 2g - 1 surface E2g-1 (see Figure 5-2).
The sheet exchange R is a map from 12g-1 to itself that satisfies R o R =1 and which takes
E -_> E2 and vice versa (Amano and Shirokura. 1992). We can now define a new, continuous

gauge field c on E2g-1 as follows:

cap(p) = G (5.50)d(R(p)) p E E

Notice that because the gauge transformations get twisted also, c now behaves exactly as
a typical U(1) gauge field on a genus 2g - 1 surface. In particular, there are large gauge
transformations which change the value of J c - dl or f c - dl by 27.

In terms of c. the action (5.3) becomes

L Jc(p)Oc(p) + 1c(p)c(R(p)). (5.51)
_, 47r 47r

In terms of c, the Lagrangian is non-local, however this poses no difficulty. Fixing the gauge
co = 0, the equation of motion for co is a constraint that enforces c to have zero field strength;
that is, c is a flat connection.

Let {ci} and {/3#} be a basis of canonical homology cycles on $2g-1, with i = , 2g -1.
We can choose ai and 13 in such a way that the sheet exchange R acts on these cycles as
follows:

Rai = ai+g-1, R0,g =#+ 3 g-1

Ra2.q-1 = ae2g-1, R/32g-1 =02g-1, (5.52)
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where i = 1, - -- , g - 1. The dual basis is the set of one-forms wi and ri, which satisfy

/ f gj = ij Wy = 0,

Ii =0 f = 6j . (5.53)

Since c must be a flat connection, we can parametrize it as

c = cdx I + c2 dx 2 = 2rr(xiwi + yin77) (5.54)

Two connections c and c' are gauge-equivalent if

z'9 - X' = integer ,y' - y' = integer . (5.55)

Furthermore, from the definition of c (eqn. 5.50), we see that the Z 2 action is the same as

the action of the sheet exchange R:

(x', y,) -> (X R(i) R(i)), (5.56)

where
i-+ .- 1 for i = 1, - - - 1

R(i){ i - g + 1 for i=g,--- .2g 2 (5.57)

2g - 1 for i = 2 g - 1

Substituting into the action (5.51) and using the fact that f: 2g 1 wj A 7k = ojk and f 21  A

owk ft2f q A % = 0. we obtain

L = 21rky'i + 27(k - l)yizR(i). (5.58)

Apart from the variables with i = 29 - 1, this action looks like the action for a bilayer

(k, k, k - 1) state on a genus g - 1 surface. Therefore, we can easily deduce that quantizing

this system before imposing the invariance under the Z 2 action gives 1119-1 l2k - 119-1 x 12k - li

different states. The extra factor 12k - 11 comes from the variables with i = 2g - 1, which

independently behave as the zero-modes of a U(1)2k-I C.S. theory on a torus. We can write

the states as

n2g-1) &i Ini, nR(i)), (5.59)

for i = 1,- , g - 1 and with the identifications

n2g-1 ~ n2g-1 + 2k - 1, (5.60)

(ni, nR(i)) ~ (ni + k, nR(i) + k - 1)

(5.61)~ll (ni + k - 1, nR(i) + k).
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Figure 5-3: Canonical homology basis for E9.

Note the ni are all integer. Now we must project onto the Z 2 invariant sector. The action of
the Z 2 is to take

In2g-1) &i |ni. nR(i)) --+ |n2g-1) ®i InR(i), ni). (5.62)

Suppose ni = naR(i) for each i. Such states are already Z 2 invariant; there are 12k - 11 x 12k -
ll9-1 of them. The remaining states for which ni 7' nR(i) for at least one i always change
under the Z 2 action. The Z 2 invariant combination is

In2g-1) 0i (|ni-, nR(i)) + InR(i), ni)). (5.63)

There are 12k - 11 x 11- 112k-1 1-12k-119 of these. In total therefore. there are

2k -- 11|1 =1g- + |k - 1|2|9(||1--1 + 1)2.q- (5.64)
2

states in this particular twisted sector.
Now it turns out that each of the 229 - 1 twisted sectors (which generically has many Z 2

twists along many different non-contractible loops) yield the same number of ground states
as the sector in which there is a single twist along just the a9 cycle. One can understand
this by considering the modular group, or mapping class group, of E9. This is the group of
diffeomorphisms on E9 modulo those that are continuously connected to the identity. They
are generated by "Dehn twists," which correspond to cutting the surface along some non-
contractible loop, rotating one side by 2 7, and gluing the two sides back together. The
mapping class group of E. can be generated by Dehn twists along the loops ai, bi, and ci,
shown in Figure 5-3. Elements of the mapping class group are symmetries of the topological
field theory, which means that they are represented by unitary operators on the quantum
Hilbert space. In particular, the dimension of the space of states for a given twisted sector
is equivalent to that of a different twisted sector if they can be related by the action of an
element of the mapping class group.

In the following we sketch how. using Dehn twists, one can go from any arbitrary twisted
sector to the sector in which there is a single Z 2 twist along only the a9 cycle.

First note that a Z 2 twist along some cycle -y is equivalent to having a Z 2 twist along
-y, and that a Z 2 twist along -y + -y is equivalent to having no Z 2 twist at all. Since we
are here concerned only with the properties of the Z 2 twists, we use these properties in the
algebra below. In other words, the algebra below will be defined over Z 2 because we are only
concerned with Z 2 twists along various cycles.

Let us call Ai, Bi, and Ci the Dehn twists that act along the ai. bi, and ci cycles. Notice
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that a Z 2 twist along ai and ai+1 is equivalent to a Z 2 twist along ci. Let us consider the
action of Ai, Bi, and Ci on Z 2 twists along the ai and bi cycles.

Ai :ai -+ai

bi- ai + bi,

Bi ai -- ai + bi

bi -+bi.

Ci ai - ai

bi -bi + ci bi + ai + ai+1

ai+ - j+1

bji -+bi+ + c i =--: bi+1 + ai + ai+i (5.65)

Z 2 twists along all other cycles are left unchanged. Notice in particular that A 'Bi: ai -+ bi,
so that a Z 2 twist along ai is equivalent to one along ai + b, which is also equivalent to one
along bi. As a result, we can see that the configuration of Z 2 twists can be labelled only
by considering which of the g handles have any twists at all. Furthermore, since we can
rearrange the holes without changing the topology, the configuration of Z 2 twists is actually
labelled by considering how many of the g handles have twists.

Suppose that two of the g handles have Z 2 twists. Since we have freedom to rearrange
the holes. we can consider the situation in which two neighboring handles each have a Z2

twist. Since twists along aj, ai + bi, and bi are all equivalent, let us suppose that one handle
has a twist along its b cycle, while the other handle has a twist along its a cycle. That is, we
are considering the situation in which there is a twist along bi + ai+1. Now, performing the
Dehn twist C, we have:

Ci : bi + ai+1 - bi + ai + ai+1 + aj+1

=bi + a. (5.66)

Thus we see that the case with Z 2 twists for two handles is equivalent to that for a Z 2 twist
along a single handle. From this, it follows that the case with n handles having Z 2 twists is
equivalent to the case where only a single handle has a Z 2 twist.

Therefore, under actions of the Dehn twists, any arbitrary twisted sector goes into the
sector in which there is a single twist along the a. cycle. This means that the dimension
of the Hilbert space is the same for each of the (2 2g - 1) twisted sectors, and in particular
is equal to that for the sector in which there is a single twist along ag. We computed that
situation explicitly (see eqn. 5.64), so we can conclude that the number of ground states on
a genus g surface for the U(1) x U(1) x Z 2 Chern-Sinons theory is:

Sg(kl) =|k - 1/2929- [(|l|- + 1) + (229 _ 1)( 1 1g 1 + 1)1. (5.67)

For 1 = 3, this corresponds to the degeneracy of the Z 4 parafermion quantum Hall state that
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we expect from a CFT calculation (see eqn. 5.44). When 1 = 2, we get

Sg (k, 2) = |k - 1 19[2 9-1( 2 9 + 1)]2, (5.68)

which corresponds to the degeneracy of the v = k11 Pfaffian quantum Hall state times an

extra factor of 29-1( 2 9 + 1), which is the dimension of the space of conformal blocks of the
Ising CFT on a genus g surface. This again confirms the notion that for I = 2, this theory
corresponds to the Pfaffian state with an extra copy of the Ising model.

5.5 Quantum dimensions of quasiparticles from ground state
degeneracy

In the last section we found the ground state degeneracy, S9, of the U(1) x U(1) x Z 2 Chern-
Simons theory on a surface of genus g. From S, we can deduce some topological properties
of the quasiparticles. It is well known for example that S1, the ground state degeneracy on
a torus, is equal to the number of topologically distinct quasiparticles. Here we show that
from Sg we can also obtain the quantum dimensions of each of the quasiparticles.

The quantum dimension d- of a quasiparticle denoted by -y has the following meaning.
For n quasiparticles of type -y at fixed positions., the dimension of the Hilbert space grows
as d'. For Abelian quasiparticles at fixed positions, there is no degeneracy of states, so the
quantum dimension of an Abelian quasiparticle is one. The quantum dimension d, can be

obtained from the fusion rules of the quasiparticles. N,: d/ is the largest eigenvalue of the

fusion matrix N,, where (N,)1 = N-,. From the quantum dimensions d,, we can obtain
Sg through the formula(Verlinde, 1988; Barkeshli and Wen, 2009c)

N-1

Sg = D 2(g-1) d72(g-1), (5.69)
-Y=0

where N is the number of quasiparticles, d- is the quantum dimension of quasiparticle -y and

D = d2 is the "total quantum dimension." Remarkably, this formula also implies that

if we know S for any g, then we can uniquely determine all of the quantum dimensions d-.
To see how, let us first order the quasiparticles so that d,+ 1 > d,. Notice that the identity
has unit quantum dimension: do 1, and suppose that di = 1 for i = 0, ,io(io > 0),
dio+1 > 1. Now consider

lim Sq - D 2 lim io + N)+ d-2
g-cc S9  - N-1 d- 2(g-1)

1 q o+ E7=to+1

=D2 . (5.70)

We see that the total quantum dimension D can be found by computing limg- Oc S . Now

146



5.5. QUANTUM DIMENSIONS FROM GROUND STATE DEGENERACY

define
N-I

5 D2 - 1 d -,1

-Y=1

147

(5.71)

and suppose that di, - -, di, all have the same quantum dimension. Now consider the fol-

lowing limit.

lim 5+1
g,o 1)

lim d2g
g +0 2(g-1) (

SN- 1 d7-29)
N- +1d7-2(g-1)

(5.72)

We see that dl can be determined by computing lim 9  .S9,, This allows one to define
9

N-1
( () ) - 2g 1-(-)

5 5 9 d -
y=2

(5.73)

and in turn we find d 2 lim_, L. Proceeding in this way,

define
N-i

- - d 2(g-1)

and then compute di+1 from 5 +1)

one can obtain di, then

(5.74)

5(i+1)
d - = lim g+1 .

i+i ---* oo (~l
g~q

Thus we can see that in this way all of the quantum dimensions of the

obtained from the formula for the ground state degeneracy on a genus

(5.75)

quasiparticles can be
g surface.

Carrying out this procedure for the U(1) x U(1) x Z 2 Chern-Simons theory, we find that

the quantum dimensions of the quasiparticles take one of three different values. 212k - 11
of them have quantum dimension 1, 212k - 11 of them have quantum dimension ViII, and

the remaining (1ll - 1)12k - 11/2 of them have quantum dimension 2. The total quantum

dimension is

D2 = 411(2k - 1)1. (5.76)

For I = 3 this coincides exactly with the quantum dimensions of the quasiparticles in the

v = 2 Z 4 parafermion FQH states.
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5.6 Quasiparticles

When we refer to quasiparticles in a Chern-Simons theory, we are referring to topological
defects in the configuration of the gauge fields. For instance, for a Chern-Simons theory
at level k with a simple Lie group G, a quasiparticle is represented by a unit of flux in
an integrable representation of the affine Lie algebra yk, where g is the Lie algebra of G.
The partition function of the Chern-Simons theory in the presence of external sources of
quasiparticles is

Z({Ci, Ri}) JDA W, (C)eScs.E[A], (5.77)

where the Wilson loop operator WR(C) is defined as

WR(C) = TrRPei fc Adl. (5.78)

TrR is a trace in the representaton R, P refers to path-ordering, and C is a loop describing
the world-line of the quasiparticle. Furthermore, the action of the quantum operator WR, (C)
is to take one ground state to another when C is a non-contractible loop in space.

In the U(1) x U(1) x Z 2 Chern-Simons theory, there are several types of quasiparticles
to consider. Some of the quasiparticles are related to the Wilson loop operators for the U(1)
gauge fields; some are neutral under the Z 2 gauge field while others carry Z 2 charge. There
are also Z 2 vortices, which we explicitly analyze in the following section.

5.6.1 Z 2 Vortices

One basic excitation in a theory with a Z2 gauge symmetry is a Z 2 vortex. In the context of
U(1) x U(1) x Z2 Chern-Simons theory, a Z2 vortex is, roughly speaking, a point around which
the U(1) gauge fields transform into each other. Here we compute the degeneracy of states
in the presence of n pairs of Z 2 vortices at fixed positions; we find that this degeneracy grows
like Ill", and therefore the Z 2 vortices can be identified with the non-Abelian quasiparticles
with quantum dimension ,[II. We can in fact obtain the formula for the degeneracy more
precisely and find that it agrees exactly, for I = 3, with results from the Z 4 parafermion FQH
states.

The basic idea is that a sphere with n pairs of Z 2 vortices can be related to a U(1)1 Chern-
Simons theory on a genus g = n - 1 Riemann surface. We will find that the Z 2 invariant
subspace of this theory has (Ill"~- + 1)/2 states while the Z 2 non-invariant subspace has

(Iln-1 - 1)/2 states when 1 is odd.

We may define a pair of Z 2 vortices more precisely as a one-dimensional closed sub-
manifold y of our spatial 2-manifold M0 . The two boundary points of -y are thought of as the
location of the Z 2 vortices. The gauge field A. is defined on M = Mo\-y, with the following
boundary conditions along y:

lim A,,(p) = lim a-1 A,(p)o-1  (5.79)
TP---+POp-po
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(xi,yO) (x2,y) f,

f- - f- f2

Figure 5-4: Consider the diffeomorphism f, which takes the neighborhood of a pair of Z 2

vortices to the end of a cylinder. We can imagine f as a composition of two maps, the first

which expands the cut -y to a hole, and a second one which maps the result to the end of a

cylinder.

for every point po C -y. The limit p -+( ) means that the limit is taken approaching oneP0
particular side (or the other) of -y.

Consider the action of a diffeomorphism f : I - Al, which takes p -+ p' = f(p). The

Chern-Simons action is a topological invariant and is therefore invariant under diffeomor-

phisms. However, the gauge fields transform along with the coordinates, which means that

the boundary conditions at the boundary of A = Ao\'y will change. Let us determine how

the boundary conditions on A change under the action of the diffeomorphism f, which acts

in the way indicated in Figure 5-4 in the neighborhood of a pair of Z 2 vortices connected by

7.

Choosing a coordinate chart in the neighborhood of a pair of Z 2 vortices, we can write

the action of f as:

a. a', = a.. (5.80)

Let us choose the coordinates x1' such that (see Figure 5-4)

- = {(x, yo)|zi x < x2}. (5.81)

The two Z 2 vortices are located at the two ends of 7 and f maps the neighborhood of these

Z 2 vortices to the end of a cylinder; the boundary M in this neighborhood gets mapped to

a circle. In terms of the new coordinates x'l', this neighborhood of M gets mapped to

(, )Iy' < yI, x' E R % 27r}. (5.82)

The location of the Z 2 vortices in the new coordinates is taken to be at (0, y') and (7r. yb).
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(a)

f = f3- f2 f

V--- \/

I I I I

Figure 5-5: Two pairs of Z 2 vortices on a sphere. This sequence of diffemorphisms illustrates
that this situation is equivalent to M being a cylinder.

Fix some small c > 0. Let us choose an f that takes

(Xo yo ) -(xo, Yo (5.83)

for x1 < Xo < x 2 . It is easy to see that as e is taken to zero, we have:

8rn ax'&-*o+&x~ (xo,yo~e)= Foj. (5.84)

Applying (5.80),
additional minus

we can immediately see that the boundary conditions for A', acquire an
sign:

A' (±x', 1y) -o-1A' (-Fx', yo)o-1. (5.85)

Let us now study the cases n = 1 and n = 2 for Mo - S 2 before attempting to generalize
to arbitrary n.

We begin by considering the case n = 2, the case of two pairs of Z 2 vortices on a sphere.
Consider also the diffeomorphism f shown in Figure 5-5. Clearly, the situation with two pairs
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of Z 2 vortices on a sphere is equivalent to having the gauge field A,, defined on the space

M= {(x, y) I 0 y < L,x E R % L}, (5.86)

for any L, with the following periodicity/boundary conditions:

A,(x + L, y) = A,(x, y),

A,(x, L) = o-i A,(- x, L) ai,
A,(x,0) = -oiA,( X,0)o-1, (5.87)

and with the action of (5.3). We can now define a new, continuous field c. defined on

M = {(x,y)|x E R%L,y E R%2L}

as follows:

c(x. y) =
a, (x, y)
-d,(- x, 2L - y)

0 < y < L
L < y < 2L

where now c, is doubly periodic:

c,(x, y) = c,(x + L, y) = c,(x, y + 2L). (5.90)

Recall that the U(1) x U(1) gauge transformations on A, are of the form

0)
e'9

These gauge transformations must preserve the boundary conditions (5.87) on A,.
implies that U obeys the following boundary conditions:

U(x + L, y) = U(x, y),

U(x, L) =1U-1(-x, L)o-1,

U(z, 0) = r o-U-1( , 0)o-1.

(5.91)

This

(5.92)

Just as we defined c, from Ap, we can define the gauge transformation that acts on c. in the

following way:

h(x, y) - f (X1Y)
-g(-f, 2L - y)

so that the gauge transformation U acts on c,, as:

cp -+ c, - O[th

0 < y < L
L < y < 2L

(5.93)

(5.94)

So we see that cp behaves like a typical U(1) gauge field defined on a torus. In particular, the

(5.88)

(5.89)
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only condition on h(x, y) is that ed'iy) be doubly periodic, which allows for the possibility
of large gauge transformations along the two non-contractible loops of the torus.

In the A0 - 0 gauge, the Lagrangian can be written as:

L e i/d2f [- (aij +&didy) + - i (ai +didy)], (5.95)
S 47r 47

where the integration is over the region 0 < x., y < L. In terms of c.:

f L IL 
L 2L

dj dy (ai&j + did') = dx dy cidy. (5.96)
0 0 0 0

Using d (x,y) c (-x, 2L - y), we see:

jj d2x ain = - djL1 Lyd (z L )

0 0 0 0
LJLd2X a = - jdx 2 dy ci(x, y) (-x, 2 L - (5.97)

0 0 0 L

Therefore we can write the action in terms of c. as:

L = ei dx dy [ cij - k cjj(-x, 2L - y)]. (5.98)
fL 2L 4T ~ 47

The equation of motion for c0 serves as a constraint for zero field strength, which implies
that we can parameterize ci as

c(r, y, t) = 2Xi(t) + & (x, y, t). (5.99)

The large gauge transformations take Xi -+ Xi +iiteger. The topological degeneracy is given
by the degeneracy of this zero-mode sector. The action of the zero-mode sector is found upon
substituting (5.99) into the action (5.98):

L = 27lX 2 X 1 . (5.100)

Now we must make sure that we project onto the Z 2 invariant sector. The Z 2 exchanges a
and 5, so it takes c(., y) -* -c(r, y + L) if y < L and c(x, y) -- -c(x, y - L) if y > L. Thus,
the action of the Z 2 is to take the zero-modes to minus themselves: Xi -+ -Xi. The states
can be labelled by In), where n is an integer and with the identifications In) = in + 1). Thus,
before the projection, there are 11I states. If 1 is even, then there are two fixed points of the
of the Z 2 action, so in all there are 11/2 + 1 Z 2 invariant states. If I is odd, there are only
(1ll + 1)/2 Z 2 invariant states.

Consider now the case of a single pair of Z 2 vortices on a sphere and the diffeomorphism
f shown in Fig. 5-6. Clearly, the situation with a single pair of Z 2 vortices is equivalent to
having the gauge field A, defined on a hemisphere, but with modified boundary conditions
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f1

f = f2 fj 
f

Figure 5-6: A single pair of Z 2 vortices on a sphere. This sequence of diffemorphisms illus-
trates that this situation is equivalent to M being a hemisphere, but with a different set of
boundary conditions on Ap.

on the A,. Let the angular coordinates (0, o) be defined so that the locations of the two Z 2

vortices are (/2. 0) and (7r/2, -) for the left and right vortices, respectively. The south pole
is at 0 = w. As in the previous case with two Z 2 vortices, the boundary conditions on A, at
O = 7r/2 are as follows:

A,(7r/2, p) = -o-1A,(wr/ 2 , -o)o-i (5.101)

As a result, we can define a new, continuous gauge field c, on a sphere as follows:

CA(0, Ot) = ~ -- (5.102)
S-6U(7r - 0,-) 0 < 0 < r/2

It is easy to see that in this case, there is no possibility for large gauge transformations or
holonomies around non-contractible loops. The Lagrangian will be given by an expression
similar to (5.98), but this time the degeneracy will be 1.

We now tackle the case for general n. Suppose that there are n pairs of Z 2 vortices on a
sphere. We will define the new gauge field cA on a genus g = (n - 1) surface in the following
way. From Figure 5-7, we can clearly see that the situation with four pairs of vortices is
equivalent to having a gauge field AO defined on the surface shown in the lower left of Fig
5-7a and Fig. 5-7b, with modified boundary conditions. The generalization from four to n is
obvious. Consider the space shown in Figure 5-7c, which contains two copies of the original
space. Parametrize this doubled space with the coordinates r= (x, y). We will refer to the
copy on the left side, which has x < 0, as Ml1 ; the copy on the right side, which has x > 0,
will be referred to as M2 . Suppose that the length in the x direction of each copy is LX, so
that the total horizontal length of the doubled space is 2L2.

Consider a map R defined on this doubled space with the following properties: R takes
Al to M 2 and A 2 into M1 in such a way that R o R 1., it has unit Jacobian, and it maps
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(a)

.............. K

f = f3 f2. f,

f3

x=0 x =Lx

I I I

Figure 5-7: Four pairs of Z 2 vortices on a sphere. (a) This sequence of diffeomorphisms shows

that we can think of the situation with this many vortices as a gauge field defined on the
surface shown in the lower left figure, which looks like half of a genus g = 3 surface. (b)
The figure in the lower left of (a) can be cut open as shown here. The arrows on the figure
indicate how the points on the boundaries should be identified. (c) Two copies of the figure
in (b). (d) Gluing together two copies along their boundaries gives a genus g = 3 surface.
For general n, this procedure gives a surface of genus y - n - 1.

I L
x=-Lx
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the boundaries of Mi and M2 into each other. The way it maps 0Mi and OM 2 into each
other is illustrated in Figure 5-7d; if we identify BM 1 and 3M2 using the map R, then we
obtain a surface of genus g = n - 1, which we call M. In the coordinates illustrated in Figure
5-7c, this way of mapping OM1 and &M2 results in the following boundary conditions on A,,:

A,(x, y) o-1 A,,(R 1 (x, y) - Lx, R 2 (x, y))o-1, (5.103)

for (x, y) c 0Mi and where R2(x, y) is the ith coordinate of R (note that A,,(x, y) is only
defined for -Lx < x < 0). This allows us to define a continuous gauge field cr,, defined on
the doubled space MV, in the following way:

c,(x, y) a, (x, y) x < 0 (5.104)
-adi,(R (x, y)) x ;> 0

We now rewrite the various terms in the action in terms of c,1.

d2 a, - d2X-i(R(x, y))n j(R(x.y))

1= 2 d2x ci (5.105)

The cross terms give a nonlocal term in the action:

j dx ajnj - d2 x c(xy)a(R(x.y))

j d2 x &dj j d2x cj (x, y)a &(R(x,y)) (5.106)

Thus the Lagrangian is:

L ifd2X [--cjk - ci(x, y)d j(R(x, y))). (5.107)L c f d 47r Cii 47

As usual in pure Chern-Simons theory, the equation of motion for co implies that the gauge
field must be flat. It is therefore characterized by the value of f c-dl along its non-contractible
loops. To parametrize the gauge field. as is typical we introduce a canonical homology basis
ai and (3, such that the a (0i) do not intersect while a and #3 intersect if i =. Then we
introduce the dual basis wj and %, which satisfy:

jr 13= 0 1 7j = 6ij - (5.108)
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Since c must be a flat connection, we can parametrize it as

c = cidx + c2dx 2 = 27r(xwi + yqi). (5.109)

Two connections c and c' are gauge-equivalent if

z's - X' = integer , y/' - y' integer. (5.110)

Notice that here, the action of R is trivial on the canonical homology cycles. This is because
of the way the genus n - 1 surface was glued together from its pieces (see Figure 5-7d). This
is in contrast to eqn. (5.52), which we obtained when we were analyzing the ground state
degeneracy on higher genus surfaces. Therefore, the action in terms of the X" and y' becomes
simply

L = 27rlxyV, (5.111)

for I = 1. - ,n - 1. However, the Z 2 action here is not exactly the same as the action of

the sheet exchange map R. This is because the Z 2 exchanges a and d, so it takes c(x, y) -+
-c(R(x, y)). Thus, the action of the Z 2 is to change the sign of the x' and y': x1 -* -x? and

y- -y' for every i, under the action of the Z2 . Before projection, it is clear that we have

Ill1-- states. These can be labelled in the following way

0i IMO), (5.112)

where mrti is an integer and mi ~ mi + 1. The Z 2 action takes mi -+ -mi. So if 1 is odd, there
is one state that is already Z 2 invariant: the state with mi = 0 for all i. There are III'-' - 1
remaining states, and exactly half of them are Z 2 invariant. Thus if I is odd, the degeneracy
of (Z 2-invariant) states in the presence of n pairs of Z 2 vortices on a sphere is (11 1n-1 +1)/2.
For I = 2, mi) = 10) or 1), which are both Z2 invariant, so for I = 2 the degeneracy in the
presence of n pairs of Z 2 vortices on a sphere is 2 "-1. One may ask also about the number
of states that are not Z 2 invariant. These may correspond to a different set of quasiparticle
states that carry Z 2 charge. We see that there are (3 -1 - 1)/2 Z 2 non-invariant states for
l = 3 if there are n pairs of Z 2 vortices on a sphere.

These calculations indicate important information about the fusion rules of the Z 2 vor-
tices. Suppose that -' represents a Z 2 vortex and - its conjugate. Then, the above calculations
imply

(' x -Y)" = anEI + +n.] - , (5.113)

where j represents a Z2 -charged quasiparticle, a, is the number of ways to fuse to Z 2 invariant
states, #n is the number of ways to fuse to Z 2 non-invariant states, and ... represent other
quasiparticles that may appear in the fusion. The calculations above show that:

- J(ll"~-1 + 2"~ 1)/2 for N even, (5114)
(ll"~ 1 + 1)/2 for N odd.
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No. Z 2 vortex pairs No. Z 2 inv. states No. Z 2 non-inv. states

n (3"~-1 + 1)/2 (3 n-1 1)/2

1 1 0
2 2 1
3 5 4

4 14 13
5 41 40

6 122 121

Table 5.1: Some values of the Z 2 vortex degeneracy for 1 = 3 for the Z 2 invariant states,
given by (3"-1 + 1)/2, and for the Z 2 non-invariant states (3n-1 - 1)/2.

(-1 - 2)-1)/2 for N even, (5.115)
O (1ll"- - 1)/2 for N odd.

5.6.2 Comparison to quasiparticles in Z4 parafermion and Pfaffian FQH
states

Let us now compare the results from the previous section to the quasiparticles in the Pfaffian

and Z 4 parafermion FQH states.

The topological properties of the quasiparticles in FQH states can be computed through

the pattern of zeros approach (Barkeslili and Wen, 2009c; Wen and Wang, 2008a,b) or through

their connection to conformal field theory (Moore and Read, 1991; Read and Rezayi, 1999).

In the Pfaffian quantum Hall state, there are two main types of quasiparticles, corresponding

to two different representations of a magnetic translation algebra (Barkeshli and Wen, 2009c).

These two classes of quasiparticles are commonly labelled in the following way:

eCN o-e ' (5.116)

where ip is the Majorana fermion and o is the spin field of the Ising CFT. Q is the charge of

the quasiparticle and v is the filling fraction of the quantum Hall state. The ones made of @
are Abelian; there are 2q of them when the filling fraction is v - 1/q. The ones made of o

are non-Abelian; there are q of them and their quantum dimension is v'2. In the presence of

n pairs of the o- quasiparticles, the Pfaffian state has a degeneracy of 2"~1 on a sphere. This

follows from the fusion rules of the conformal primary fields in the Ising CFT:

-1

oau= 1 + '

4'o- =o. (5.117)

Similarly, the quasiparticles of the Z 4 parafermion state form three different representa-
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tions of a magnetic translation algebra, and these three classes are commonly labelled as

eiQ , <bi 1 , <b2ei/V. (5.118)

When the filling fraction is v = 2k-3, there are 2(2k - 3) Abelian quasiparticles, 2(2k - 3)
of the <1) quasiparticles and 2k - 3 of the Ip quasiparticles. The <I quasiparticles have

quantum dimension ' and the < quasiparticles have quantum dimension 2.

The parafermionic primary fields in the Z 4 parafermion CFT have the fusion rules:

<bo x <I + <b,

<x -= + <+<b,

<x < - + <b3. (5.119)

The fusion rules imply:

1(ibi)2 = < + 24 +3<

(<bp14)3 = 9(<b + 4<(J + 51)
(<II(bI)4 27<b2 + 13<D + 14<bO

(<bbi)5 = 81(b + 40(<b + 41<D0
(<ibi)6 243<4 + 122<b + 121<bo (5.120)

There appears to be a connection between the <b' quasiparticles and the Z 2 vortices. First,
notice that one member of a pair of Z 2 vortices should be conjugate to the other member.
This is because a pair of Z 2 vortices can be created out of the vacuum on a sphere. Suppose

that we identify one member of a pair with the operator V, = (be and the other

member with its conjugate V& = <b e . From eqn. 5.120, we see that the number of
ways to fuse to the identity for (VV&)" = 0 2n(<b (b1)" is as displayed in Table 5.2. Notice
that this agrees exactly with the number of Z 2 invariant states for n Z2 vortices on a sphere

(see Table 5.1)!

Notice that the number of ways for (VV&)" to fuse to the quasiparticle (DO is exactly
equal to the number of Z 2 non-invariant states that we obtain from n pairs of Z 2 vortices

(see Table 5.2 and 5.1)! This shows that the Z 2 non-invariant states have a meaning as well.
These states carry non-trivial Z 2 charge, so we interpret this as a situation in which there
are n pairs of Z 2 vortices and an extra Z 2 charged quasiparticle. The above fusion indicates
that we should associate this Z 2 charged quasiparticle to the operator <.

Based on this quantitative agreement between the properties of the Z 2 vortices and results
from the Z 4 parafermion FQH state, we conclude that for a pair of Z 2 vortices, one of

them should be associated with an operator of the form <bIe /Q and the one to which

158



5.7. CONCLUSION

n No. of ways to fuse to <D -1 No. of ways to fuse to 400 = 14o fwy ofs o#
1 1 0
2 2 1

3 5 4
4 14 13

5 41 40

6 122 121

Table 5.2: Number of ways of fusing to the identity or to (D for the fusion of (VV&)', where

V =<ei QD and V& = <k e j aV.

it is connected by a branch cut should be associated with <kieQ . Furthermore, the

possibility of Z 2 non-invariant states should be interpreted as the possibility for the Z 2 vortices

to fuse to an electromagnetically neutral Z 2 charged quasiparticle, which we associate with

the operator <bo.
We have not seen how to understand the quantization of electromagnetic charge, Q, for the

Z 2 vortices. The external electromagnetic field couples to the field a+ = a + 5, so we expect

electromagnetically charged quasiparticles to carry flux of the a+ field. The quantization

of charge for the quasiparticles generally arises from the constraint that quasiparticles are

mutually local with respect to electrons. We should be able to see how the Z 2 vortices must

carry certain quantized units of a+ flux, but this is difficult to see in this pure CS theory. In

Chapter 6, we will provide a certain lattice regularization of this CS theory, which will allow

us to resolve the singularity associated with the Z 2 vortex and compute the electric charges

that it is allowed to carry.

5.7 Conclusion

In this chapter, we have computed several topological properties of U(1) x U(1) X Z 2 Chern-

Simons theory and discussed its relation to the Pfaffian and Z4 parafermion FQH states. For

the 1 = 3 U(1) x U(1) x Z 2 Chern-Simons theory, many topological properties agree with those

of the Z 4 parafermion state, which strongly suggests that the Chern-Simons theory correctly

describes all of the topological properties of this state. This identification also suggests that

the phase transition between the (k, k, k -3) bilayer state and the Z 4 parafermion FQH state

can be continuous and may, for instance, be described by a Z 2 transition in 2+1 dimensions.

In the simplest case, for k = 3, this would be a continuous Z 2 transition at V = 2/3 between

the (330) state and the non-Abelian Z 4 parafermion state. We discuss this transition further

in Chapter 6
More generally, the methods in this Chapter may be extended to compute topological

properties of Chern-Simons theories with disconnected gauge groups of the form G x H,

where G is a connected Lie group and H is a discrete automorphism group of G. There may

be other situations also in which an n-layer FQH state passes through a phase transition to
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an m-layer FQH state, where the Chern-Simons gauge theories for each of the phases will be
G x H, and G x Hm, respectively, and the phase transition will be described by a discrete
gauge symmetry-breaking of H, to Hm. We expect that such a scenario may be possible if
the central charges of the corresponding edge theories are the same for the two phases. In
this paper, for example, we found that even though there is a phase transition between the
(k, k, k - 2) bilayer states and the Pfaffian states as the interlayer tunneling is increased, the
l = 2 U(1) x U(1) x Z 2 theory does not describe the Pfaffian state. In contrast, there is
a possible phase transition between the (k, k, k - 3) bilayer states and the Z 4 parafermion
states, and in this case the l = 3 U(1) x U(1) x Z 2 theory does correctly describe the
Z 4 parafermion state. One way to understand why simply gauging a Z 2 symmetry does
not describe the Pfaffian state is that the central charges of the edge theory changes as the
interlayer tunnelling is tuned through a phase transition from the bilayer (k, k, k -2) phase to
the Pfaffian state, which indicates there is additional physics taking place that this approach
does not capture here. The parent bilayer Abelian phase has c = 2, as does the edge theory
of the Z 4 parafermion state, while the edge theory of the Pfaffian state has c = 3/2.

5.A More detailed discussion of the ground state degeneracy

Here we like to discuss the the ground state degeneracy of the U(1) x U(1) x Z 2 Chern-Simons
theory in more detail. For I = 2, the filling fraction is v = 1 and the formula (5.43) gives

9(k - 1) states on a torus. Compare this to the torus degeneracy of the V - 1 Pfaffian state.k 1
which is 3(k -1). We see that the U(1) x U(1) x Z 2 Chern-Simons theory for l = 2 has a torus
ground state degeneracy that is three times that of the Pfaffian state. The origin of this factor
of 3 can be thought of in the following way. It is known that 0(2)21 Chern-Simons theory
has l+ 7 ground states (Moore and Seiberg, 1989c) (see Appendix 5.B). So. U(1)k-1 x 0(2)4
has 9(k - 1) ground states on a torus. Furthermore, the gauge group U(1) x 0(2) is similar
to U(1) x U(1) x Z 2 if one considers the positive and negative combinations of the two U(1)
gauge fields: if one considers a+ - a + d and a- = a - 5, the gauge group can be thought of
as U(I) x 0(2) because the action of the Z 2 is to take a- -+ -a~. Now, 0(2) Chern-Simons
theory at level 21 is known to correspond to the Z 2 rational orbifold conformal field theory
at level 21, which for l = 2, is known to be dual to two copies of the Ising CFT.(Moore and
Seiberg., 1989c; Dijkgraaf et al., 1989) The Ising CFT has three primary fields, and the CFT
corresponding to the Pfaffian is one that contains an Ising CFT and a U(1) CFT. In this sense
our theory has an extra copy of the Ising model, which accounts for the extra factor of three
in the torus degeneracy. We can see this another way by noticing that the central charge
of the Ising CFT is 1/2 and the central charge of the CFT that corresponds to the Pfaffian
state is c = 3/2. Meanwhile, the CFT corresponding to the U(1) x U(1) X Z 2 Chern-Simons
theory has c = 2, which corroborates the fact that it has an extra copy of the Ising model.

For I = 3. the filling fraction is v = 2k3 and (5.43) gives 5(2k-3) ground states on a torus.
Compare this to the v = 2k3 Z 4 parafermion state. which also has a torus degeneracy of
5(2k-3). This might be expected from the fact that 0(2)21 Chern-Simons theory corresponds
to the Z 4 parafermion CFT when l = 3. However, there is a crucial issue that needs to be
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addressed here. In the case I = 2, we could see that U(1)k_1 x 0(2)4 Chern-Simons theory
gives the same number of ground states on a torus as the U(1) x U(1) x Z 2 theory did,
implying that we could perhaps think of the U(1) sector of the theory as separate from the
0(2) sector. This fails in the 1 = 3 case. We would be tempted to write U(1)k-3/2 x 0(2)6,
because (k - 3/2) x (3 + 7) gives the right ground state degeneracy. This fails because the
ground state degeneracy of U(1)k-3/2 Chern-Simons theory is not (k - 3/2). U(1)q Chern-
Simons theory is typically defined to have integer q, but the quantization procedure may also
be applied in cases where q is not an integer. In these latter cases, the quantum states do not
transform as a one-dimensional representation under large gauge transformations. One may
wish to reject a theory in which the quantum states are not gauge invariant, in which case

U(l)q is not defined for non-integer q. On the other hand, if these situations are allowed,
then it can be shown that U(l)q Chern-Simons theory, for q = p/p' (where p and p' are
coprime), has a torus degeneracy of pp'. 2 Therefore, U(1)k-3/2 Chern-Simons theory, to the
extent that it is well-defined, has degeneracy 2(2k - 3). In either case, it is clear that the
U(1) and 0(2) sectors cannot be disentangled and that the correct definition of the theory
is the U(1) x U(1) x Z 2 Chern-Simons theory presented here.

To summarize, for 1 = 2, U(1) x U(1) x Z 2 Chern-Simons theory describes the Pfaffian
state but with an extra copy of the Ising model, while for I = 3, the U(1) x U(1) x Z 2 theory
gives the same ground state degeneracy as the Z 4 parafermnion quantum Hall state.

5.B 0(2) Chern-Simons theory and Z2 rational orbifold con-
formal field theories

Here we summarize previously known results from 0(2) Chern-Simons theory and the Z 2
orbifold CFT and apply the Z 2 vortex analysis of this paper to the 0(2) Chern-Simons
theory.

Moore and Seiberg (Moore and Seiberg, 1989c) first discussed Chern-Simons theories with
disconnected gauge groups of the fori. P x G, where G is a connected group with a discrete
automorphism group P, and the connection of these Chern-Simons theories to G/P orbifold
conformal field theories. As a special example, they discussed the case where G = U(1) and
P - Z 2 . In the 2d conformal field theory, this is known as the Z 2 orbifold and it was explicitly
analyzed in (Dijkgraaf et al., 1989). It is the theory of a scalar boson p compactified at a
radius R, so that p ~ p + 27R, and with an additional Z 2 gauge symmetry: p -p.

The claim of Moore and Seiberg was that 0(2) Chern-Simons theory at level 2N corre-
sponds to the Z 2 rational orbifold CFT at level 2N. The first step in showing this is to show
that the degeneracy of this theory on a torus is N + 7. This is done in the following way. The
classical configuration space of pure Chern-Simons theory with gauge group G consists of
flat G bundles on a torus. Flat 0(2) bundles can be split into two classes, those that can be
considered to be SO(2) = U(1) bundles, and those that cannot. In the first case, we simply
need to take the space of states in U(1)2N Chern-Simons theory and keep the Z 2 invariant
states. This leaves N + 1 states.

2 See e.g. G. Dunne, "Aspects of Chern-Simons Theory," from Les Houches Lectures 1998.
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In addition to these, there are flat, twisted bundles. Flat bundles are classified by

hoin (7 1 ( M) -* G)/G. This is the space of homomorphisms of the fundamental group of

the manifold M into the gauge group G, modulo G. Let us study the space of flat, twisted

0(2) bundles. We first write the gauge field as

A , a, 0 . (5.121)
0 -a.

The group is composed of U(1) elements, which we write in terms of the Pauli matrix 0 3 :
eimo. We write the Z 2 element as the Pauli matrix o1. The Z 2 action is therefore A,
c1AgAi = -A,. We can write a Lagrangian for this theory:

2 NT
L = d2a~a. (5.122)

47r M

We are concerned with the case where M is the torus, T 2 . wri(T 2 ) is generated by two

elements, a and b, the two non-contractible loops of the torus. We must study the homo-

morphism h : 7ri(T 2 ) - G. 7r1(T 2) is an Abelian group, and since I is a homomorphism, we

must have:
h(aa + /b) = a/h(a)h(b) = aih(b)h(a). (5.123)

Suppose we are twisted in the a direction only. Then, we have

h(a) = aiC3 h(b) = eO-. (5.124)

Modding out by the group 0(2), we find that ~ - + 27rm ~ 0 + 2a, for any a. The

first equivalence comes from modding out by the Z 2 element. while the second element comes

from modding out by the U(1) element. Similarly, # -# + 27n. n and m are integers.
The constraint h(a)h(b) = h(b)h(a) further implies that # 0 or 7r. The distinct solutions

to these relations are therefore that

(0,) (0, 7r) or (0, 0). (5.125)

A similar analysis shows that the cases in which the bundle is twisted in the b direction only

or along both a and b also each admit only two distinct bundles. Therefore, there are a total

of 6 distinct, twisted flat 0(2) bundles. Each corresponds to a single quantum state, for a

total of N + 7 states in the 0(2) Chern-Simons theory on a torus.

5.B.1 Z 2 vortices in 0(2) Chern-Simons theory

This section is essentially an application of the analysis of Z 2 vortices in the case of G =

U(1) x U(1) x Z2 to the case G = 0(2).
In this case, a Z 2 vortex takes the gauge field to minus itself. With n pairs of Z 2 vortices,

we again deform the manifold on which the gauge field A, is defined, consider a double copy,
and glue the two copies together to obtain a genus g = n - 1 surface.
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The analog of eqn. (5.104) in this case is:

cP( y)= a, (x, y) x < 0 (5.126)
' a,(R(x, y)) X > 0

and in terms of c,, we immediately see that the action is that of a U(1) Chern-Simons theory

at level N:

L N d2xa(a = -- d2xcOc. (5.127)
47 g 47r 1XI

On a genus g = n - 1 surface, there are N" 1 states. But we need to project onto the Z 2

invariant sector.The action of the Z 2 is to take c -+ -c. We count (N"-' + 1)/2 Z 2 invariant

states when N is odd. If N = 2, all of the N" 1 states are Z 2 invariant.

How does this relate to the corresponding conformal field theory, which is the Z 2 rational

orbifold at level 2N? Let us examine a few cases. When N = 1, this theory is the same as

U(1)s CFT, which is abelian and which therefore should have degeneracy 1 for all n.

When N = 2, the orbifold CFT is the same as two copies of the Ising CFT. The Ising

CFT has a single non-Abelian field, o. The space of conformal blocks corresponding to 2n a

fields on a sphere in the Ising CFT is 2 "4, which agrees with our above analysis for N = 2.

However, a theory with two copies of the Ising CFT would have many non-abelian fields:

a & o-. (5.128)

The space of conformal blocks corresponding to 2n of either o-I, oo 04, 10o , or @@a will

have dimension 2 "-4. However, the dimension of the space of conformal blocks corresponding

to 2n a 0 o- fields will be different. Thus Z 2 vortices in the 0(2) Chern-Simons with N = 2

are closely related to the fields a 0 E, o- 0 7P, I® a, and 7P 0 a.

When N = 3, the orbifold CFT is dual to the Z 4 parafermion CFT of Zamolodchikov and

Fateev. We expect the Z 2 vortices to correspond to the <b' fields, and in fact we obtain the

correct number of states in the presence of n pairs of Z 2 vortices, as discussed earlier.
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Chapter 6

Bilayer quantum Hall phase
transitions and the orbifold FQH
states

The contents of this chapter are based on (Barkeshli arid Wen, 2010ba).

6.1 Introduction

In the previous chapter, we studied the U(1) x U(1) x Z 2 Chern-Simons theory with integral

coupling coefficients (k, 1). We found that when I = 3, this theory likely describes the long

wavelength behavior of the Z 4 paraferinion FQH states at filling fraction v = 2/(2k - 3).
Without the extra Z 2 gauge symmetry, this is a U(1) x U(1) CS theory that describes the

(k. k, k - 1) Abelian bilayer states.
This observation raises a number of questions. First, is there a continuous phase transition

between the (k, k, k - 3) bilayer Abelian states and the Z4 parafermion states? The fact that

the U(1) x U(1) x Z 2 CS theory and the U(1) x U(1) CS theory differ by a Z 2 "gauge symmetry"

indicates that these two phases may be separated by a Z 2 Higgs transition. Second, does the

U(1) x U(1) x Z 2 CS theory also describe valid FQH states for other values of 1? If so, how

do we understand these novel non-Abelian states? Finally, there were certain quantities that

we could not compute directly from the U(1) x U(1) x Z 2 CS theory, such as the allowed

electric charges of the Z 2 vortices. Is there a way to provide a proper UV-completion, or

lattice regularization, of this theory that will help us calculate these topological properties

as well? In this chapter. we will address all of these issues.

As the story in this chapter unfolds, we will see the emergence of novel FQH states - the

orbifold FQH states - that we do not know how to fully describe through any one framework.

Neither the pattern of zeros, nor conformal field theory techniques, nor Chern-Simons theory,
nor slave-particle frameworks, are currently powerful enough to completely understand the

full topological order of these phases. It is only with the powerful confluence of all these

approaches that we can catch a glimpse of the underlying structure and establish our results.
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These new states are therefore interesting not only because they provide a new series of
continuous topological phase transitions between Abelian and non-Abelian states, but also
because they push the boundaries of the current theoretical understanding of topological
order in non-Abelian FQH states.

6.2 Slave Particle Gauge Theory and Z2 Fractionalization

In this section, we show how the U(1) x U(1) X Z2 CS theory can arise from a slave-particle
formulation, which adds strong evidence to the possibility of these states being realized in
physical systems with local interactions. The slave-particle formulation provides us with
candidate many-body wave functions that capture the topological properties of these phases.
It also provides a UV-completion, or lattice regularization, of the U(1) x U(1) X Z 2 CS theory.
This is useful for computing certain topological properties, such as the electric charge of the
Z 2 vortices, which we were unable to calculate directly from the U(1) x U(1) X Z 2 CS theory
alone. Finally, this slave-particle formulation provides us with an example in which Z 2
electron fractionalization may lead to non-Abelian topological phases.

Consider a bilayer quantum Hall system, and suppose that the electrons move on a lattice.
Let Wi, denote the electron annihilation operator at site i; o- =, refers to the two layers.
Now consider the positive and negative combinations:

T 1 = (iW ± tII ). (6.1)
V 2

We will use a slave-particle decomposition to rewrite T± in terms of new bosonic and
fermionic degrees of freedom, including appropriate constraints so as not to unphysically en-
large the Hilbert space. Such slave-particle decompositions allow us to access novel fractional-
ized phases. In the following section, we will introduce a slave Ising construction that interpo-
lates between the bilayer Abelian (ppq) states and the states described by the U(1) x U(1) X Z2
CS theory. In Appendix 6.C, we will introduce a slave rotor construction, which can describe
these two phases with the advantage of including a larger set of fluctuations about the slave-
particle mean-field states.

Slave Ising

We introduce two new fields at each lattice site i: an Ising field sf = ±1 and a fermionic field
cl_, and we rewrite Ti_ as

Td+ s ci+y , asi- = Sicio. (6.2)

This introduces a local Z2 gauge symmetry, associated with the transformations

s -4 -- s, c -+ -c (6.3)
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The electron operators are neutral under this Z 2 gauge symmetry, and therefore the physical
Hilbert space at each site is the gauge-invariant set of states at each site:

(11T) + |11)) & Inc_- 0),

(i T) - |1)) & Inc_ 1), (6.4)

where | I) (f 1)) is the state with sz = +1(-1), respectively. In other words, the physical
states at each site are those which satisfy

(sx + 1)/2 + nc, = 1. (6.5)

If we imagine that the fermions ci+ form some gapped state, then we would generally
expect two distinct phases (Senthil and Fisher, 2000): the deconfined/Z 2 unbroken phase,
where

(s4) = 0, (6.6)

and the confined/Higgs phase, where upon fixing a gauge we have

(si) /0. (6.7)

We seek a mean-field theory where the deconfined phase corresponds to the orbifold FQH
states, and the confined/Higgs phase corresponds to the bilayer (ppq) states. To do this,
observe that in the Higgs phase, we have

'i+ = cia, (6.8)

since we may set sz = 1 in this phase. In such a situation, we can use the parton construction
(Wen, 1991a, 1999a) to obtain the (ppq) states. For example, to obtain the (330) states, we
rewrite the electron operators in each layer in terms of three partons:

1pil = 4i'04@6i, (6.9)

where l/)a carries electric charge e/3. We can then rewrite the theory in terms of the original

electrons in terms of a theory of these partons, with the added constraint that

ni1i - n2i = n3i, 'n4i = nJ5i = nt6i, (6-10)

where nai = Vaaoj, in order to preserve the electron anti-commutation relations and to avoid

unphysically enlarging the Hilbert space at each site. The (330) state corresponds to the case
where each parton forms a v = 1 integer quantum Hall state.

Recall that when N = p - q = 3., the U(1) x U(1) x Z 2 CS theory, which is described by
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the Lagrangian

E = P(a~a + 585) + q (a~d + d~a), (6.11)
47 47

describes the Z4 parafermion state.1 Therefore, to interpolate between the Z 4 parafermion
state and the (330) state at v = 2/3, we write:

+ (VJii@2i) 3i + V/4iV)5iV)6i),

1i-= (@is42i@3e - 4@5ifs). (6.12)

More generally, to describe the (ppq) states and the orbifold FQH states, we set

Pi+ = ci+, i- i
1(N 2N 2N+q

C (f 72= 1 ± b i i b-2Ni (6.13)
a=1 a=N+1 b=2N+1

where N = p - q (note that we assume p> q) Furthermore, we assume that the interactions
are such that the partons each form a v = 1 IQH state.

Topological properties of the Z 2 confined and deconfined phases

In what follows, let us focus on the case q = 0. When (s) = 1, we can write

N 2N

11 (flai + fj'ai (6.14)
a=1 a=N+1

The low energy theory will thus be a theory of 2N partons, each with electric charge e/N,
and coupled to a SU(N) x SU(N) gauge field:

E - ± 1 i)o + Tt (d - iAjQ)2 @ + Tr (j"a) +- , (6.15)
2m

where a is an SU(N) x SU(N) gauge field, @ t (@4, -- ,2N ab =abe/N, A is the

external electromagnetic gauge field, and j'b = a0"Obb. If the partons form a v - 1 IQH
state, then we can integrate out the partons to obtain a SU(N)1 x SU(N) 1 CS theory as the
long-wavelength, low energy field theory. This SU(N) 1 x SU(N) 1 CS theory reproduces all of
the correct ground state properties, such as the ground state degeneracy on genus g surfaces,
and the fusion rules of the quasiparticles. The quasiparticle excitations are related to holes
in the parton integer quantum Hall states. The SU(N) 1 x SU(N) 1 CS theory needs to be

'Note the change in notation as compared with Chapter 5. To make contact with the integers (k, 1)
introduced there, notice that I = N = p - q and k = p.
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supplemented with additional information about the fermionic character of an odd number
of holes in order to completely capture all of the topological quantum numbers (see Section
4.2). This can be done by using the U(1)N x U(1)N CS theory instead, which is known to
be the correct low-energy effective field theory of the bilayer (NNO) states.

Now consider the Z2 deconfined phase, where (s) = 0; what is the low energy effective
theory? Since the partons still each form a v = 1 IQH state and are coupled to an SU(N) x
SU(N) gauge field, integrating them out will yield a SU(N) 1 x SU(N)i CS theory, and using
the arguments outlined above, we are left with a U(I)N x U(1)N CS theory. Suppose that we
also sum over the Ising spins {sf}. Since there are no gapless modes associated with phases
of the Ising spins, we expect a local action involving the Z2 gauge field coupled to the U(1)
gauge fields. We do not know how to explicitly write this action down, because the CS terms
are difficult to properly define on a lattice, while the discrete gauge fields require a lattice
for their action. Nevertheless, we consider the theory on general grounds: observe that the
Z 2 gauge transformation interchanges #a and *',+N; thus in the low energy theory involving
only the gauge fields, the Z 2 gauge symmetry interchanges the current densities associated
with the two U(1) gauge fields. This is precisely the content of the U(1) x U(1) x Z2 CS
theory. Thus, we may think of the Z2 deconfined phase of this slave Ising construction as
providing a UV-completion of the U(1) x U(1) x Z2 CS theory. In a sense, we can even think
of this slave particle gauge theory as the complete definition of the U(1) x U(1) x Z2 CS
theory.2

Now let us further study the low energy excitations of this Z2 fractionalized phase. In
this phase, the Ising spin s' can propagate freely and is deconfined from the partons. This
is an electrically neutral excitation that is charged under the Z2 gauge symmetry and that
fuses with itself to the identity. The phases described by the U(1) x U(1) X Z2 CS theory all
have precisely such a Z 2 charged excitation; (5.115) and (5.113) yield the number of ways for
n pairs of Z2 vortices to fuse to precisely this Z2 charged excitation, which was denoted j.

The other novel topologically non-trivial excitation in the Z2 deconfined phase is the Z 2
vortex. Since the Z2 gauge field is coupled to the partons, the Z 2 vortex is non-Abelian.
This is not an obvious result: in the low-energy U(1) x U(1) X Z 2 CS theory the Z 2 vortex
corresponds to a topological defect around which the two U(1) gauge fields transform into
each other. A detailed study of the Z2 vortices in the U(1) x U(1) x Z2 theory shows that
there is a topological degeneracy associated with the presence of n, pairs of Z2 vortices at
fixed locations, which reveals that the Z2 vortices are non-Abelian quasiparticles.

Electric charge of Z2 vortices

Can we understand the allowed values of the electric charge carried by the Z 2 vortices? We
believe the U(1) x U(1) x Z2 CS theory, for certain choice of coupling constants, describes the
Z4 parafermion state. The Z4 parafermion state has a fundamental non-Abelian excitation
that carries a fractionalized electric charge; at v = 2/3 for example, the electric charge of
the fundamental non-Abelian excitation comes in odd multiples of e/6. Since we believe that

2 An alternative, mathematical definition of CS theory for disconnected gauge groups is given in (Dijkgraaf

and Witten, 1990).
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the Z2 vortices in this theory correspond to the fundamental non-Abelian excitations, an
important check on this slave Ising description will be whether it can account for these values
of the fractionalized electric charge.

To calculate the electric charge, let us define the following parton operators, which are
superpositions of the parton operators V),a:

1

The local Z2 gauge symmetry corresponds to the transformation:

ST -j I

a 4-+a+N, a = 1,.--,N. (6.17)

Thus. 4a+ is Z2-neutral while 0, is Z 2-charged. Furthermore, since ?$a each form a V = 1
IQH state, then /a+ and V)- also each form v = 1 IQH states. The particle/hole excitations
of the states formed by Oa_ carry electric charge e/N (recall we set q = 0 in (6.13)). The Z2
vortex acts as a r-flux for . Thus in the low-energy field theory, the interaction between
the excitations of the 'a- IQH state and the external electromagnetic gauge field A, and the
Z2 vortices is described by

N

Eint: = Z(A, + by)j_ (6.18)
a=1

where a Z2 vortex is associated with 7 flux of the U(1) gauge field by. jaf_ is the current
density associated with the V/'_ partons. Integrating out the partons, which are in a V = 1
IQH state, will generate a Chern-Simons term:

Lijnt;- Z (-A + b)D(QA + b)
a=1

1 e2 N e
- A&A + -bOb + A&b. (6.19)47 N 47r 27r

Notice that the interaction between the V'a+ current and the external electromagnetic gauge
field will contribute another term I e2A&A to the action, from which we see that the filling
fraction is v = 2/N. Furthermore, because of the coupling of b to the external gauge field A,
we see that a 7r flux of the b. gauge field will carry charge e/2. Therefore, depending on how
many holes, m, of the parton integer quantum Hall states are attached to the Z2 vortices,
the Z2 vortices can have electric charge of

Qz 2 vortex = e(2rm + N)/2N. (6.20)

When N = 3, this result agrees exactly with properties of the Z4 parafermion state, which is
that the electric charge of the fundamental non-Abelian quasiparticles comes in odd multiples
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of e/6. More generally, when N is odd (even), we see that the Z 2 vortices can only carry
electric charge in odd (even) integer multiples of e/2N. In Section 6.4, we will again see
precisely these results through a totally different description of this phase!

Slave Ising projected wave functions

The slave-particle approach naturally suggests trial wave functions that capture the essential
long-wavelength properties of the phase. First we have the mean-field state of the partons
and the Ising spins:

|<bmf) = {})|{Ia}), (6.21)

where the partons ipa form a v = 1 IQH state. The Z 2 confined/Higgs phase, which describes
the Abelian (ppq) states, will be associated with an ordered state of the Ising spins. The Z 2
deconfined phase will be described by an unordered, paramagnetic state of the Ising spins.
The quantum state of the electrons will be given by a projection onto the physical Hilbert
space:

11p) = plbmj), (6.22)

where

P ,. plinq~r (6.23)

The projection operator for the Ising sector is (see eqn. 6.5):

pI sing =) .((s-+1)/2+ncs )],(624

where nc = c _ ci_ is written in terms of the partons as

1 1
nc_ - (nli + ni) - - [(i -Ni)t (4N+1i * 9.. 2N) + h.c.). (6.25)

nrt and nit are the number of electrons in the top and bottom layer, respectively, at site i.
The projection operator for the parton sector is:

N 2N
PParton = J[1 - (ni - nai)23 ] (1 -- (nil - nai)2], (6.26)

a 1i
a=1 a=N+1

which implements the constraint nii nNi 'niT and nN+1i = n2Ni = nil.

Alternatively, we can work with the spatial wave function. The amplitude of the electron
wave function to have NT electrons in one layer and N, electrons in the second layer is given
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by

NT N

T ({rj, r'}) = (0J' J 1<Dm41), (6.27)
i=1 i=1

where IV,. is given in terms of the partons and the Ising spins through (6.1) and (6.13). Here.,

10) = |0)partonf{s = 1}) is the state with no partons and an eigenstate of s' with eigenvalue

1.
This wave function is important because currently it is the only wave function we have

for these non-Abelian FQH states (for N > 3). As we will discuss later, there is currently no

corresponding ideal wave function for these states. The projected wave functions presented

here can be used for numerical studies in order to determine which phases are most likely

under realistic physical conditions.

6.3 Edge theory of the orbifold FQH states

One use of the U(1) x U(1) x Z 2 CS theory is that it can be used to study the edge theory of

the associated topological phases. It is known that the U(1) CS description of the Abelian

quantum Hall liquids leads to the chiral Luttinger liquid edge theory (Wen, 1992). More

specifically, an n-component Abelian quantum Hall liquid can be described by a CS theory

involving n U(1) gauge fields (Wen and Zee, 1992a):

1 1
L = -K 1 jai+aj + A a, (6.28)

47 2(

where K is an n x n symmetric invertible matrix and A is the external electromagnetic gauge

field. As a result the edge theory is described by n chiral free bosons (Wen, 1992):

Ledge = K1 j 81$8,# j- V &0qlj&pqpj, (6.29)

where V1j is a positive definite matrix that dictates the velocity of the edge modes and

depends on microscopic properties of the edge.

We therefore expect that the edge of the phases described by U(1) x U(1) x Z 2 CS theory

will be described by two free chiral bosons, vi and 02, with the Lagrangian given above, and

with an additional Z 2 gauge symmetry associated with the transformations

(P1(z), p2(z)) - (02(z), 1(z)) (6.30)

at each spacetime point. Such a CFT is called an orbifold CFT, because the symmetry

U(1) x U(1) of the original free boson theory is gauged by a discrete Z 2 symmetry. Thus we

refer to this theory as the [U(1) x U(1)]/Z 2 orbifold CFT. That the U(1) x U(1) x Z 2 CS
theory should correspond to this edge CFT may be expected in light of Witten's CS/CFT

correspondence (Witten, 1989; Moore and Sciberg, 1989c; Dijkgraaf and Witten, 1990).

As a check, we may perform a simple counting of the operator content of such a chiral CFT
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by following the considerations of (Dijkgraaf et al., 1989). In that reference, it was argued
that the number of primary operators (primary with respect to the orbifold chiral algebra)
in a G/Zk orbifold CFT is related to the number of primary operators in the un-orbifolded
CFT, with symmetry group G, by the formula

No. of operators = nk 2 +rn. (6.31)

Here, m is the number of groups of k operators in the original un-orbifolded theory that
are cyclically permuted by the Zk action; together, they lead to m operators that are Zk
invariant. n is the number of operators in the original un-orbifolded theory that are fixed
under the Zk action.

In the case of the orbifold states with p - q = N and q = 0, the primary operators are
labelled as

Vab(z) = eia/ N1(z)+ib/ /N 2 (z) (6.32)

The Z2 action exchanges a and b, so we have n = N and m = N(N - 1)/2. This leads
to N(N + 7)/2 primary operators, which agrees exactly with the number of quasiparticles
expected from the analysis of the torus ground state degeneracy of the U(1) x U(1) X Z 2 CS
theory. Carrying out the calculation for general q f 0 yields

No. of operators - (N + 7)|p + qI /2, (6.33)

again agreeing with the analysis from the U(1) x U(1) X Z 2 CS theory (see eqn. (5.43)). This
highly non-trivial consistency check suggests that this is indeed the correct edge theory.

In order to obtain the full topological properties of these FQH states using the edge
theory, we would need to obtain the scaling dimensions of each of the primary operators and
their fusion rules. This can be done by first computing the characters of the chiral CFT,
which are given by

Xi(r) - Tr ojqLQo-c/ 24. (6.34)

The trace is over states in the module labelled [Oj), where Oi is a primary field of the chiral
algebra. For FQH states, the O label different quasiparticle sectors. Lo is the generator of
scale transformations, q = lriT and c is the central charge. The scaling dimensions and
fusion rules of the primary fields can be obtained by studying the transformation rules of the
characters under the modular transformations S : T -+ -1/T and T : T -+ T + 1 (Francesco
et al., 1997a).

Using the chiral characters, we would also be able to obtain the full edge spectrum for
the FQH states on a disk. The spectrum of edge states at each angular momentum in the

topological sector labelled by 0, are given by the coefficients a.) in the expansion

Xi(r) - a q". (6.35)
rio
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Here, a$) is the number of edge excitations with energy En cx n on a disk with the quasipar-
ticle created by (9 at the center of the disk.

Unfortunately, obtaining the characters is a highly non-trivial task. In known examples
of orbifold CFTs, one common way to proceed is to first compute the torus partition function
of the non-chiral theory, which includes both holomorphic and anti-holomorphic sectors of
the CFT. The partition function is related to the chiral characters through

Z(T, r) = xi(q)Mijj(q),. (6.36)
ii

where M is a matrix that specifies how to glue together the holomorphic and anti-holomorphic
sectors. Sometimes it is possible to take the "holomorphic square root" and guess the chiral
characters Xi (T) from the partition function Z(T, -r). This is done, for example, for the
U(1)/Z 2 orbifold CFTs at c = 1 (Dijkgraaf et al., 1989; Francesco et al., 1997a). In the case
of FQH states, Z(T, f) may be used to compute the edge spectrum on a cylinder by expanding
in powers of q and q.

In the case of the [U(1) x U(1)]/Z 2 orbifold CFT, it is possible to compute Z(T, t), but we
do not know at present how to take the holomorphic square root and thus derive the scaling
dimensions and fusion rules of the operators in the edge theory. In spite of this shortcoming,
we can develop a prescription for computing the scaling dimensions and fusion rules of the
operators in this CFT. We will perform many highly non-trivial checks with both the slave
particle gauge theory and with results of the U(1) x U(1) x Z2 CS theory in order to confirm
that the prescription given yields correct results. This prescription is necessary because it is
currently the only way we have of computing all of the topological quantum numbers of the
orbifold states. While the slave Ising and associated U(1) x U(1) x Z2 CS theory descriptions
are powerful and can be used to calculate many highly non-trivial topological properties, we
do not currently know how to use them to compute all topological properties of the orbifold
states, such as the spin of the Z 2 vortices or the full set of fusion rules.

First observe that if we consider the following combination of the chiral scalar fields:

( + (V1 i 02), (6.37)

Then the action becomes equivalent to the action of a free chiral scalar field, 0+, and that
of the U(1)/Z 2 orbifold, described by V_. However, the edge theory is not simply a direct
product of these two independent theories. The reason is that the fields W1 and W2 are
compactified: in the case q = 0, we have

Vi ~ <pi + 27rR. (6.38)

The compactification radius R is related to N through R 2 = N.

The spectrum of compactified bosons includes winding sectors; on a torus with spatial
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length L, the bosons can wind:

oj(x + L, t) (x, t) + 2-rR. (6.39)

As a result., the fields o+ and p_ are not independent and instead are tied together by their

boundary conditions. We may think of such a theory, which is equivalent to the [U(1) x
U(1)]/Z 2 as a theory denoted by U(1) @ U(1)/Z 2 . The 0 indicates the non-trival gluing

together of the U(1) theory and the U(1)/Z 2 orbifold theory. Let us consider the gluing
together of these two theories from the point of view of the chiral operator algebra.

Observe that the edge theory for the (NNO) states is generated by the electron operators

Wei(Z) - e N , e2(z) 'P 2 (Z) = ei*2(z), (6.40)

where #1 and #2 are free scalar bosons in a 1+1D chiral CFT. In terms of o±, we have

'ei = e I',++_) e2 = e /2( + . (6.41)

p+ describes the electrically charged sector of the edge theory, while p- describes the neutral

sector of the edge theory. More generally, for the (ppq) states, the electron operators in the

top and bottom layers are:

4 'el 1 N/2i9~eip+gq

XPe2 = e2 5 * (6.42)

where recall N = p - q > 0.

The chiral algebra of the [U(1) x U(1)]/Z 2 theory should be the Z 2 invariant subalgebra

of the U(1) x U(1) chiral algebra. Therefore we expect it to be generated by

Te+ 0c T1 + 9e 2 oc cos( N/2p_)e V *. (6.43)

Studying the chiral algebra of WPe+ should yield the spectrum of edge states; representations

of this chiral algebra should yield the topologically distinct sectors in the edge theory and

should correspond to the topologically inequivalent quasiparticles in the bulk. The OPE

+(z)Te+(uw) contains only operators even in p_. In particular, it contains the operator

cos(v2No), which is known to generate the chiral algebra of the U(1) 2N/Z 2 orbifold CFT
(Dijkgraaf et al., 1989). Note that the level 2N is related to the compactification radius of

the boson see Appendix A for a review. The chiral algebra of this orbifold CFT is denoted

AN/Z2, where AN is the chiral algebra of the U(1)2N Gaussian theory. AN is generated

by the operators {e }, and AN/Z2 is the Z 2 invariant subalgebra of AN, which is

generated by cos(v2No). Focusing on the neutral sector of these FQH edge theories, we see

that the electron operators at the edge of the (ppq) states can generate the algebra AN, while

the operator Te+ can only generate the algebra AN/Z 2.
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The operator cos( N/2tp) is difficult to work with for our purposes, but it is very closely
related to the primary field #1 in the U(1)/Z 2 orbifold CFT (see Appendix A for a detailed
discussion of the operator content in the U(I)/Z 2 CFT), which motivates us to use the
following operator as the electron operator:

I'e (Z) = #1(z)eiV(p+q)/2c(z). (6.44)

This describes a FQH state at filling fraction v = 2/(p + q). # is a primary field of the Z2
orbifold chiral algebra with scaling dimension N/4 and its fusion rules with other primary
fields is known, so it is more convenient to work with #1 than with cos( N/2<p). We expect
that both operators could in principle be used to generate the same edge spectrum. The
chiral algebra of the electron operator will be referred to as Ae; note that it contains the
entire orbifold chiral algebra as a subalgebra: AN/Z2 C Ae

Now we make the following conjecture for the edge theory. The properties of the chiral
operators in the [U(1) x U(1)]/Z 2 theory can be obtained by studying operators in the
U(1)/Z 2 x U(1) CFT that are local - i.e. have a single-valued OPE - with respect to the
electron operator (6.44). Two operators are topologically equivalent if they can be related
by an operator in the electron chiral algebra. Practically, this means that the topologically
distinct quasiparticle operators V, are of the form

V = iQ0,e , (6.45)

where O is a chiral primary operator from the U(1)2N/Z2 orbifold CFT and determines
the non-Abelian properties of the quasiparticle, and Q- determines the electric charge of the
quasiparticle.

The quasiparticle operators in the edge theory yield all the topological properties of the
bulk excitations. The scaling dimensions h, = ho0  + Q2/2v of the quasiparticle operators
in the CFT are related to an important topological quantum number of the bulk excitations:
the quasiparticle twist, O'Y = e27cih, which specifies the phase accumulated as a quasiparticle
is rotated by 27. The fusion rules of the quasiparticles in the bulk are identical to the fusion
rules of the quasiparticle operators in the edge theory.

To summarize, the conjecture is that the properties of the chiral primary fields in the
[U(I) x U(1)}/Z 2 CFT can be obtained by instead considering the electron operator (6.44)
and embedding the electron chiral algebra Ae into the chiral algebra of the U(1) 2 N/Z 2 x

U(1) CFT. This allows us to study representations of Ae in terms of primary fields in the

U(1) 2N/Z 2 x U(1) CFT.

6.4 Quasiparticle content and topological quantum numbers
of orbifold FQH states

Using the above prescription for finding the topologically inequivalent quasiparticle operators
in CFT, we obtain the complete topological quantum numbers that such an edge theory
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Charge Scaling Dim. Quantum Dim.
Al 21/N 12 /N 1

Bi 1/N, N even N
(21 + 1)/2N, N odd

Cmn (m+n)/N (m 2 +n 2 )/2N 2

Table 6.1: General properties of quasiparticles in the orbifold FQH states for q = 0. The
quasiparticles are labelled here as Al and B1 for l = 0, .., 2N- 1, and Cm,, for m., n = 0, .., N-1
and m > n. The A, and Cmn quasiparticles are closely related to the Abelian quasiparticles
of the (NNO) states, while the B, quasiparticles are the Z 2 vortices in the U(1) x U(1) x Z2

CS theory.

describes.

Remarkably, the topological properties obtained through this CFT prescription agree

exactly with all the properties that we can compute from the U(1) x U(1) x Z 2 CS theory and
the slave Ising theory through completely different methods. Below, we will first illustrate

a simple way of understanding the results obtained from this edge theory in terms of the
U(1) x U(1) x Z 2 CS theory and in ternis of the quasiparticle content of the (ppq) states. We

will then proceed to study some specific examples in more detail.

General properties

To illustrate the main ideas, we set q = 0. When q = 0, the orbifold FQH states have
N(N + 7)/2 topologically inequivalent quasiparticles (see eqn.(5.43)). 2N quasiparticles have

quantum dimension 1, 2N have quantum dimension N, and N(N - 1)/2 have quantum

dimension 2.

Label the d = I and d = v quasiparticles as A, and B,, respectively, for 1 =,--- , 2N -
1. Let us label the N(N - 1)/2 quasiparticles with d = 2 as Cmn, where m, n = 0, ..., N - 1

and m > n. These quasiparticles have the properties listed in Table 6.1. We find that

when N is even, the non-Abelian quasiparticles B, have charge i/N, and when N is odd, the

non-Abelian quasiparticles B1 have charge (21 + 1)/2N.

Now consider the bilayer (NNO) states, which have N 2 Abelian quasiparticles that can

be labelled by two integers (in, n), and where (m, n) ~ (m + N, n) ~ (m, n + N) all refer to

topologically equivalent quasiparticles. The electric charge of these quasiparticles is given by
(m + n)/N and the scaling dimension is given by (m 2 + n 2 )/2N.

The quasiparticle content of the orbifold FQH states can now be interpreted in the follow-

ing way. A, for 1 = 0.,.., N - 1 is the same as the quasiparticles (1, 1) from the (NNO) states:
they are all Abelian, and A, carries the same charge and statistics as (1, 1). Furthermore, the

orbifold FQH states have an additional neutral, Abelian boson that squares to the identity.

In terms of the U(1) x U(1) X Z 2 CS theory, it can be interpreted as the quasiparticle that
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carries Z2 gauge charge. The Z 2 charged quasiparticle can fuse with the A, for 1 = 0,.., N - 1
to yield the Al for I = N, ..., 2N - 1. The quasiparticles Cmn correspond to the Z2 invariant
combinations of (m, n): Cmn (m, n) + (n, m), for m : n. This is clear in the edge theory,
where these quasiparticle operators take the form cos(1o_/ 2N)eQ 0.

Finally, the quasiparticles BI correspond to Z 2 vortices in the U(1) x U(1) X Z2 CS
description. Alternatively, in the edge orbifold theory, they correspond to twist operators.
There is a fundamental Z 2 vortex, say B0., and the other B can be obtained by fusing with
the A or C quasiparticles. Note that when N is odd, the minimal quasiparticle charge in the
orbifold states is carried by a Z2 vortex and is given by 1/2N. This is half of the minimal
quasiparticle charge in the corresponding (NNO) states.

Examples

One of the simplest examples of the above properties is shown in Table 6.3, which describes
the quasiparticle content for (N, q) = (3, 0). When N = 3, the orbifold FQH states are the
same as the Z4 parafermion FQH states at filling fraction v = 2/(2q+ 3). In this example, we
clearly see three different families of quasiparticles, and each family forms a representation of
a magnetic translation algebra. Notice that the quasiparticle j ~ 8p is odd under the ~ -
transformation of the orbifold CFT, which is one way of seeing that this quasiparticle should
carry Z2 gauge charge in the U(1) x U(1) A Z2 CS description.

In Tables 6.2 and 6.4 we list the quasiparticle content for the cases (N, q) = (2,0) and
(4, 0). These states are slightly more complicated than the N = 3 case because there are more
than three representations of a magnetic translation algebra and there is not a one-to-one
correspondence between the pattern of zeros sequences {nj} and topologically inequivalent
quasiparticles. We study these features further in Section 6.6.

In Tables 6.2-6.4, we have also listed the occupation sequences {nj} of each quasiparticle,
which are defined as follows. If e is the electron operator and V, is a quasiparticle operator,
we obtain a sequence of integers {ly;a} from the following OPEs:

Fe (Z)Vy;a(W) ~ (z - w)1;a+1 Vy;a+1 + , (6.46)

where Vra = V, is a bound state of a electrons and a quasiparticle. The ... indicate terms
of order O((z - w)lY;a+1+1), The integer iy;l is defined as the number of a such that lya= 1.
In the limit of large 1, n;l is periodic and it is the unit cell that characterizes a quasiparticle.

For N = p - q = 1, the orbifold FQH phase is an Abelian phase. The Z2 vortices, which
are non-Abelian excitations for N > 1, have unit quantum dimension when N = 1 (see eqn.
5.114). The ground state degeneracy on genus g surfaces is [4(2p - 1 )]9, which shows that in
fact all quasiparticles have unit quantum dimension. Moreover, the U(1) 2 /Z 2 orbifold CFT
is actually equivalent to the U(1) 8 CFT (Dijkgraaf et al., 1989), which does not contain any
primary operators with non-Abelian fusion rules.

Since this is an Abelian phase, it must exist within the K-matrix classification of Abelian
FQH phases (Wen and Zee, 1992a). What is the K-matrix of the N = 1 orbifold states? The
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Quasiparticles for N
Z 2 Orbifold Label

4 -ie'i2 vc

5 riesi/ 2 V4k(

- 2 orbifold FQH state

{ni} hpf + hga
20 0+0
02 1/2+0

02 1+0
20 1/2+0= 1/2

(V = 1)
q. dim.

1
1

1
1

1 1 1/16+1/8

1 1 9/16+1/8

2 0
0 2

8 cos(-j)eii/ 2
V e

1/16 + 0
9/16 + 0

1 1 1/8+1/8

Table 6.2: Quasiparticle operators of the

v = 1.
(N. q) = (2. 0) orbifold states, with filling fraction

K-matrix and charge vector q are:

(6.47)

In Section 6.6 we will explain how to arrive at this result. Notice that this phase is actually

a two-component bilayer state, so we expect that the edge theory would contain two electron

operators, while in eqn. (6.44) we only listed one electron operator. We will further explain

this situation in Section 6.6 as well.

These N 1 Abelian states are interesting because two-component Abelian states are all

described by U(1) x U(1) CS theories:

L = I Kjjal8aj + 2eq1aw
47r 27r

(6.48)

Therefore, for

Chern-Simons

U(1) X Z2 CS

the K-matrix in (6.47), we have found that there is a different yet equivalent

theory that describes the same phase. This other CS theory is the U(1) x

theory with the Lagrangian in (5.3) and with p - q = 1.

q = .
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Quasiparticles for N = 3 orbifold state (v = 2/3)
Z 2 Orbifold Label {fni} hpf + hga q. dim.

0 ]I~# e 111001 0+0 1

1 ei2/3 c3/2 p 111100 0+1 I

2 e 4/ 3 
c3/2, 011110 0+4 1

3 jr~-OPr 001111 1+0 1

4 .jre2/3 
c3/2( 10011 1 1+ 1

5 jrC4 / 3 3 /2 pc 110011 1+4 1

6 aie i/ 6 /2  110101 + v5

7 1ie1/6  
c 111010 3+ 2

8 o-ie 9 6 3 / 2
c 011101 +2 3

9 Tei/6 
c

3 2  101110 + v
10 rie65/6 3 2 pc 010111 j+2 v3

11 Tei9/6 c3/2,p 101011 A + v

12 cos(' )c1/3  c32 101101 1 + 1 2

13 cos( )e 312p, 110110 +3 2

14 cos( )eio/ 3i c
3 / 2

y 0 11 0 11 1 +25 2

Table 6.3: Quasiparticles in the (N, q) = (3,0) orbifold FQH state, at v = 2/3. This state
is also called the Z4 parafermion FQH state. The different representations of the magnetic
translation algebra (Barkeshli and Wen, 2009c) are separated by spaces. Q is the electric
charge and hpf and hy, are the scaling dimensions of the orbifold primary field and the U(1)
vertex operator eiaPc, respectively. pc is a free scalar boson that describes the charge sector.
{nj} is the occupation number sequence associated with the quasiparticle pattern of zeros.
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Quasiparticles for N - 4 orbifold FQH state (V = 1/2)
CFT Label {n-} sc. dim. q. dim.

0 I 2000 0+0 1

#N

#eil/2vic0

Ci 1

oTI /

Ti

j2 e e il/v 1

o-2 ei3/4  ec

T2e

T2e C3/4Vvec

cos( )e de

cos(- )e 3 / 4 V4c

cos( )e/ dv e

cos( ,)e 3/4 V $c

cos( )

cos(2)eii/2v 4cV

0200
0020

0002

0 +1/4
1+0

1 + 1/4

1+0
1 + 1/4

1+0

1 + 1/4

1/16+0
1/16 + 1/4

9/16+ 0

9/16+ 1/4

1/16 + 1/16

1/16+9/16

9/16 + 1/16

9/16 + 9/16

1/16 + 1/16

1/16 + 9/16

9/16 + 1/16

9/16 + 9/16

1/4 + 0

1/4 + 1/4

Table 6.4: Quasiparticles for the (N, q) = (4, 0) orbifold FQH states, at v = 1/2

1
1

1
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6.5 Phase transition from orbifold FQH states to (ppq) bilayer
states

The phases described by the U(1) x U(1) x Z 2 and U(I) x U(1) CS theories differ by an extra
Z 2 gauge symmetry, which suggests that the transition between these two phases is described
by a Z 2 "gauge symmetry-breaking" transition. In this section we further elucidate this idea.

First, consider the slave Ising construction presented in Section 6.2. There, we found
that the difference between the Z 2 confined and deconfined phases is associated with the
condensation of a Z 2 charged scalar field, sz. When (s') = 0, the system is in the Z 2

deconfined phase and the low energy theory is the U(1) x U(1) x Z 2 CS theory. When

(sf) ) 0, the low energy theory is the U(1) x U(1) CS theory. This analysis suggests that
these two phases are separated by a continuous phase transition and that the critical theory
is simply a theory of the Ising field s' coupled to a Z 2 gauge field. This transition has been
well-studied (Fradkin and Shenker, 1979) and is known to be in the 3D Ising universality
class.

Now let us arrive at the above conclusion through totally different arguments as well.
From the CFT prescription for computing the quasiparticle operators, we observe that the
orbifold FQH states always contain an electrically neutral., topologically non-trivial Abelian
quasiparticle with integer scaling dimension. In the edge CFT., this quasiparticle is denoted
j ~ - 0_. j has trivial braiding properties with respect to itself because of its integer scaling
dimension and is therefore a boson. It is another way of viewing the deconfined Ising spin s,
so we expect it to carry Z 2 gauge charge. What happens when j condenses? The condensation
of j drives a topological phase transition to a state with different topological order. Based
on general principles (Bais and Slingerland, 2009), we can deduce that the topological order
of the resulting phase is precisely that of the (ppq) states. This works as follows.

Upon condensation, j becomes identified with the identity sector of the topological phase.
Any topologically inequivalent quasiparticles that differed from each other by fusion with j
will become topologically equivalent to each other after condensation. Furthermore, quasi-
particles that were not local with respect to j will not be present in the low energy spectrum
of the theory after condensation. They become "confined." Finally, if before condensation a
quasiparticle -y fused with its conjugate to both the identity and to j, then after condensation
y splits into multiple topologically inequivalent quasiparticles. Otherwise, since j is identified

with the identity after condensation, there would be two ways for y to fuse with its conjugate
to the identity, which is assumed to not be possible in a topological phase.

Applying these principles, we can see that the condensation of j yields the (ppq) states.
As a simple example, consider the cases where q = 0. Some of the topological properties of
the q = 0 orbifold FQH states were described in Section 6.4. When j condenses, we find that
Al becomes topologically identified with Al+N. The quasiparticles labelled by B1 become
confined, because the OPE of the operator j with the operators B1 in the edge theory always
have a branch cut and so the B1 are nonlocal with respect to j. Finally, the quasiparticles Cmn
each split into two distinct quasiparticles. This leaves a total of N 2 Abelian quasiparticles
whose topological properties all agree exactly with those of the (NNO) states.

From the results of the U(1) x U(1) > Z 2 CS theory, we find that .j carries Z 2 gauge
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charge, proving that it is indeed associated with sz in the slave Ising description. We arrive

at this result by first studying the number of Z 2 non-invariant states in the presence of

n pairs Z 2 vortices at fixed locations on a sphere (see eqn. (5.115) ). We observe that this

number coincides exactly with the number of ways for n pairs of the fundamental non-Abelian

quasiparticles and their conjugates to fuse to j. That is, we can use the CFT prescription to

calculate the fusion rules

(BI x 5 ) aJI + brjj ± - - , (6.49)

and we observe that b, agrees exactly with the {, in eqn. (5.115). This shows that j carries

Z 2 gauge charge. This makes sense from the perspective of the low energy theory, because

the condensation of j yields a Higgs phase of the Z 2 sector and leaves us with the U(1) x U(1)

CS theory, which describes the (ppq) states. Moreover, in the edge theory, j - 89_ is odd

under the Z 2 transformation p- -> -W_, which is consistent with the fact that j carries

the Z 2 gauge charge in the bulk; the Z 2 in the orbifold sector of the edge theory is the

"same" Z 2 as the Z 2 gauge transformation that interchanges the two U(1) gauge fields in the

U(1) x U(1) x Z 2 CS theory.
As the energy gap to creating excitations of j is reduced to zero, the low energy theory

near the transition must be that of a Z 2 gauged Ginsburg-Landau theory and the transition

is therefore in the 3D Ising universality class (Fradkin and Shenker, 1979).

This close connection between the topological properties of the orbifold FQH states and

those of the bilayer (ppq) states provides additional strong evidence for why the CFT pre-

scription presented in Section 6.3 is correct and describes the same topological theory as the

U(1) x U(1) x Z 2 CS theory. From the U(1) x U(1) xi Z 2 CS theory, we know that there must

be a Z 2 Higgs transition to the (ppq) states, and so the topological quantum numbers of the

orbifold phase must agree with the condensate-induced transition to the (ppq) states. The

CFT prescription presented in Section 6.3 provides us with such a consistent set of topological

quantum numbers.

We note that while the edge between the orbifold FQH states and a topologically trivial

phase will have protected edge modes, we do not expect protected edge modes at the edge

between the orbifold states and the corresponding (ppq) states, because they differ by a Z2

transition. As a simple check, note that the edge CFT for both states has central charge

c = 2, so the edge between these two states would have zero thermal Hall conductance.

Anyon condensation and transition from (ppq) states to orbifold FQH states

The above discussion showed that we may understand the transition from the orbifold FQH

states to the (ppq) states through the condensation of an electrically neutral boson, ultimately

leading us to conclude that the the transition is continuous and is in the 3D Ising universality

class.

An interesting, though currently unresolved, question relates to how we should understand

this phase transition from the other direction: starting from the (ppq) states and ending with

the orbifold FQH states. Perhaps this transition can be understood as the condensation of
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the Abelian anyons of the (ppq) state into some collective state and driving a phase transition
to a more complicated topological phase.

In order to gain some insight, let us first study the quantum phase transition from the
(pp,p - 2) states to the Pfaffian states (Read and Green, 2000; Wen, 2000), which until the
discovery of this orbifold to (ppq) transition had been the only known example of a continuous
quantum phase transition in non-Abelian FQH states.

In a (ppq) bilayer FQH state, a type of excitation, called a fractional exciton (f-exciton),
may play an important role. An f-exciton, carrying fractional statistics, is a bound state of
a quasiparticle in one layer and an oppositely charged quasihole in the other layer. As we
increase the repulsion between the electrons in the two layers, the energy gap of the f-exciton
will be reduced. When the energy gap at k = 0 is reduced to zero, the f-exciton will condense
and cause a phase transition (Wen, 2000). Such a phase transition can be described by the

0 - # 0 transition in a Ginzburg-Landau theory with a CS term:

E - |(&o + iao)# 2 -v 2 |(Oi + iai)#I - f l 2 - g# 4  -1a,0,axE4" , (6.50)
0 47

where 0 is the statistical angle of the f-exciton. Such a transition changes the Abelian (ppq)
FQH state to another Abelian charge-2e FQH state (Read and Green, 2000; Wen, 2000).

In the presence of interlayer electron tunneling, the number of f-excitons is conserved only
mod p - q. A new term, of - t(#M)P-'+ h.c. must be included in eqn. (6.50), where M is
an operator that creates 27r flux of the U(1) gauge field a,. With this new term, what is the
fate of the # = 0 - # 0 transition?

When p - q = 2, the f-excitons happen to be fermions (ie 0 = ir). In this case, we can
map the L + 6L theory to a free fermion theory and solve the problem (Wen, 2000). The
interlayer electron tunneling splits the single continuous transition between the (p, p, p - 2)
and the charge-2e FQH states into two continuous transitions. The new phase between the
two new transitions is the non-Abelian Pfaffian state. When p - q / 2, the problem is so hard
that we do not know where to start. Nevertheless, this analysis suggests that the transition
between the (ppq) states and other non-Abelian FQH states may also be understood in terms
of some kind of condensation of the f-excitons. As the gap of the f-excitons is tuned to zero.
a new collective state may emerge that leads to the non-Abelian orbifold FQH states.

6.6 Ideal wave functions and the vertex algebra approach to
the orbifold FQH states

In the sections above, we have introduced and developed a theory for a novel series of non-
Abelian FQH states: the orbifold FQH states. These are parameterized by two integers,
(N, q). They occur at filling fraction v = 2/(N + 2q) and are separated from the (ppq) states
(where N = p - q) by a continuous Z 2 phase transition.

For N = 3, these states are equivalent to the Z 4 parafermion states, which have an ideal
wave function description (Read and Rezayi, 1999). In other words, if we take the electron
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operator in (6.44), and evaluate the following correlator:

K(zi}) ~ (Ve(Zi) ... Ve(ZN)), (6.51)

we will obtain a wave function that describes an incompressible FQH state. However, carrying
out this construction for N : 3 will not yield a wave function that describes an incompressible
FQH state. In fact, for N > 3, the pattern of zeros of the electron operator Ve corresponds
to certain problematic, or sick, pattern of zeros solutions: pattern of zeros solutions whose
relevance to describing gapped topological phases had been uncertain because their associated
ideal wave functions always appear to be gapless (Lu et al., 2010).

In the following, we will study the orbifold FQH states from the pattern of zeros and
ideal wave function point of view. The main conclusion to draw is that the problematic
pattern of zeros solutions are still relevant to quantitatively characterizing topological order
in FQH states, even when naively it appears as though the corresponding ideal wave function
is gapless! In the analysis below, we will see how the orbifold FQH states provide profound
lessons for the theoretical foundation of the pattern of zeros/vertex algebra approach to
constructing ideal wave functions.

6.6.1 Review of the vertex algebra/conformal field theory approach

As discussed in the first part of this thesis, a wide class of FQH states can be described by ideal
wave functions that are exact zero-energy ground states of Hamiltonians with interactions
that are either delta functions or derivatives of delta functions. Such ideal Hamiltonians
select for certain properties of the ground state wave functions, such as the order of the zeros
in the wave function as various numbers of particles approach each other.

The ideal wave functions that we currently understand can all be written in terms of a
correlation function of vertex operators:

T({zi}) ~ (Ve (Zi) ... Ve (ZN)), (6.52)

where V, is a certain operator in a 2D chiral CFT, called the electron operator. The wave
function TI({zi}) can be specified by simply specifying the operator algebra generated by the
electron operator:

V(z)Ve(w) Ceco,(z - W)1- 2he0 +-

Ve(Z)01(W) ~ Ce010 2 (Z - w)h0 2 -he -h102 +---

(6.53)

This operator algebra is called a vertex algebra. Using this vertex algebra, the correlation
function (6.52) can be evaluated by successively replacing products of two neighboring oper-
ators by a sum of single operators. In order for the result to be independent of the order in
which these successive fusions are evaluated, there need to be various consistency conditions
on the vertex algebra. In some cases, specifying the scaling dimension he and the filling
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fraction v is enough to completely specify the vertex algebra, because the structure constants

Cabc can be obtained through the various consistency conditions (Zamolodchikov and Fateev,
1985). In these cases, an ideal Hamiltonian that selects for the pattern of zeros is believed

to have a unique zero energy wave function of highest density. Otherwise, one needs to find

a way to use the Hamiltonian to select also for a certain choice of structure constants Cabc.

The quasiparticle wave functions can also be written as correlators:

T I, (T; { zi}) ~ (V (7) Ve (zi) -.-. Ve (zn)), (6.54)

where V, is a "quasiparticle" operator and q is the position of the quasiparticle. To evaluate

these wave functions, we need to specify the operator algebra involving the quasiparticle op-

erators. In order for the quasiparticle wave function (6.54) to be single-valued in the electron

coordinates, the allowed quasiparticle operators must be local with respect to the electron

operators - their operator product expansion with the electron operator must not contain

any branch cuts. Two quasiparticle operators are topologically equivalent if they are related

by electron operators. By solving the consistency conditions on the vertex algebra, we can

obtain the constraints on the allowed quasiparticles. In the vertex algebra approach to FQH
states, we take all solutions of the consistency conditions to be valid quasiparticle operators.
so there can be a finite number of quasiparticles only if the number of solutions to the con-

sistency conditions is finite. This is equivalent to the expectation that ideal Hamiltonians

cannot selectively pick some of the quasiparticle vertex algebra solutions as allowed zero-

energy states and not others. This expectation is fulfilled in all known FQH states that can

be described by ideal Hamiltonians and ideal wave functions.

When the ideal Hamiltonian can uniquely select for the zero energy wave function of high-

est density, and when there are a finite number of solutions to the quasiparticle consistency
conditions. we believe that these model wave functions belong to an incompressible FQH
phase, provided that the vertex algebra is unitary. Its topological properties are dictated by
the properties of the quasiparticle operators in the CFT. Such is the case for the Read-Rezayi
states and some of their generalizations. Remarkably, it is also the case that the edge CFT
is the same as the CFT whose correlation function yields the ideal wave function.

For some other choices of vertex algebra, there are an infinite number of solutions to the

associativity conditions for a quasiparticle (Lu et al., 2010). Such a situation means that the

corresponding ideal wave function likely does not describe a gapped phase.

The orbifold FQH states are interesting because if we try to use their edge CFT to

construct single-component ideal wave functions, we find that for N > 3, the corresponding

ideal wave function is gapless. The vertex algebra of the electron operator allows for an

infinite number of quasiparticle solutions, indicating the gapless nature of the ideal wave

function (Lu et al., 2010). The case N = 3 is special: the pattern of zeros of the electron

operator uniquely fixes the ground state wave function and there are a finite number of

quasiparticle solutions for the vertex algebra this corresponds to the Z 4 parafermion FQH
states and it possesses a well-behaved single-layer ideal wave function. For N = 1, 2, we find

that the single-layer wave function is gapped but does not have the topological properties

of the orbifold states; in order to have a description of these states in terms of ideal wave
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functions we are forced to view the orbifold FQH states as double-layer states.

In order to shed light on the pattern of zeros/vertex algebra approach to constructing
FQH states, we study the orbifold FQH states from this point of view. The analysis below
suggests that while some of the apparently sick pattern of zeros/vertex algebra solutions may
not describe gapped FQH phases, they lie near a critical point and can be driven to a nearby
incompressible phase the orbifold FQH state - by applying certain perturbations to the
ideal Hamiltonian. In the vertex algebra framework, this corresponds to enlarging the vertex
algebra by adding additional local operators.

6.6.2 Orbifold FQH states viewed through vertex algebra

In Section 6.3 we explained that the electron operator in the orbifold FQH edge theory is
given by the operator

Ve (z) = #O(zeiv 1 (6.55)

where #1 is an operator from the U(1)2N/Z2 CFT and has scaling dimension hi = N/4.
When N is even, we have the following fusion rule

#1 x #1 =f. (6.56)

When N is odd, we have

#, x #, = j, j xj = (6.57)

These fusion rules denote fusion between representations of the orbifold chiral algebra Ag/Z 2.
The identity representation still contains an infinite set of Virasoro representations, labelled
by the Virasoro primary fields cos(lv 2Np), for integer 1.

Our task will be to study the pattern of zeros of these electron operators, V, compare
with results from the pattern of zeros approach (Wen and Wang, 2008a,b; Barkeshli and Wen,
2009c,a) and with the vertex algebra approach (Lu et al., 2010), and try to make sense of any
discrepancies. Since the discussion depends on the choice of N, we will study various choices

of N individually. We note that the pattern of zeros that we calculate from the electron

operator, using the prescription of Section 6.3, assumes that the highest weight field appears

in the OPEs if they are allowed by the fusion rules. In other words, the structure constants

involving the highest weight fields are assumed to be nonzero. This is consistent with cases

in which the Z 2 orbifold vertex algebra is known (e.g. for N = 3 because of the relation to Z4

parafermion CFT), and can perhaps be viewed as a consequence of the naturality theorem

for rational CFTs (Moore and Seiberg, 1989b).
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N = 1

Here the electron operator is given by:

V (z) =1 #esi/2+qOc(z),(.8

and #4 has scaling dimension 1/4. The pattern of zeros associated with Ve(z) is the pattern
of zeros of the Laughlin v = 1/(q + I) wave function, which describes a state with a different
topological order than the N = 1 orbifold FQH states. An ideal Hamiltonian that selects for
such a pattern of zeros will actually yield the Laughlin v = 1/(q + I) state and not the N = 1
orbifold FQH state.

In order to obtain an ideal wave function for the orbifold FQH state, we need to reinter-
pret the system as a bilayer system. This means that we need to specify a second electron
operator. The second electron operator will resolve the difference between ei/-q+c(z) - whose

correlation function yields the Laughlin states and Ve(z) =# 1/2+qc(z) because these

two operators will have a different pattern of zeros as viewed by the second electron operator.
Another way to think about this is in terms of the ideal Hamiltonian. When the Hilbert space
is enlarged into that of a double-layer system, the original ideal Hamiltonian which only
selects for the way wave functions go to zero when one flavor of particles comes together - will
be gapless. It can be modified by adding additional terms that also select for the pattern of
zeros involving the other flavor of particles. This modified Hamiltonian may then be gapped.

Returning to the vertex algebra language, notice that it suffices to add an electrically
neutral bosonic operator V to the chiral algebra: then the composite operator VeVo will be
considered as the second electron operator. In order to do this, it is helpful to observe that
the U(1) 2 /Z 2 CFT is actually dual to the U(1)s CFT, whose chiral algebra is generated by

the operators e\idn(z), where #, is a free chiral boson. The operators #1 and 4 are

then equivalent to the operators e ±iO,/v2, both of which have scaling dimension 1/4. This
suggests that we should seek an operator of the form

V =e(6.59)

because for any integer I it is local with respect to e±i+,/veiV1/2+q0c and it is bosonic.

For each 1, we can design an ideal bilayer Hamiltonian so that the bilayer wave function

'I'({zi}, {wi}) ~J7JVei(zi)Ve2 (Wi)) (6.60)

is an exact zero energy ground state and the unique one of highest density. Here, Vi =

e "2-(z) e'i/2+qc(z) and Ve2 VeiV o = " 1(z)Cigi/2+q c(z). These states correspond to
bilayer Abelian states with K-matrix and charge vector

K = (q+j+ 1 12) q = (6.61)
q+1+1 q+1+21+2 I
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The case 1 = 1 corresponds to the (ppq) states, while the case I = 2 corresponds to the

orbifold FQH states with N = 1. We comment on other choices of 1 in Appendix 6.A.

The 1 = 1 (ppq) state and the 1 = 2 orbifold state with N 1 are connected by a

continuous phase transition. In the 1 = 2 orbifold state, the operator eiv0n is a topologically

non-trivial neutral boson that squares to V0, which lives in the identity sector. When this

neutral boson ev2d0n condenses., it is added to the identity sector and we obtain the (ppq)

states.

Therefore, we see that the original gapless ideal Hamiltonian can be perturbed to many

different incompressible phases. The critical point contains many different bosons that can be

condensed; condensing a particular one will yield a particular gapped FQH state. From the

vertex algebra point of view, there are many different bosonic operators that can be added to

the vertex algebra. One particular choice (1 = 2) will yield the N = 1 orbifold states, while

another choice (I = 1) will yield the (ppq) states.

N = 2

The case N = 2 is similar to the case N = 1 in that these orbifold states also need to be

interpreted as bilayer states in order for the ideal Hamiltonian to yield the orbifold FQH

phase. If we take the electron operator

Ve(Z) = #(z)e2 T+(z) (6.62)

for N = 2, then we see that it has the same pattern of zeros as the Pfaffian ground state wave

function at v = 1/(q + 1) (see e.g. Table 6.2). In order to construct an ideal wave function

for the orbifold FQH phase, we need to reinterpret the system as a two-component phase,

which again means adding a second electron operator to the chiral algebra. We leave this

analysis for future work.

N = 3

For N = 3, we find that the electron operator

Ve(Z) = 0k(z)eiv/3/2+q$(z) (6.63)

has the same pattern of zeros as the Z 4 parafermnion wave functions, which are known to

be exact ground states of single-layer ideal Hamiltonians. The topological order of the Z 4

parafermion states is that of the orbifold states with N = 3. Thus for N = 3, the ideal wave

functions and ideal Hamiltonians do properly describe the orbifold phases.
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N = 4

The N - 4 case is the first highly non-trivial example that we encounter. The pattern of
zeros of the electron operator

Ve(Z) = #1(z)e +q$(z) (6.64)

corresponds to the pattern of zeros associated with multiplying a v = 1 Pfaffian wave function
by a v = 1/(q + 1) Pfaffian wave function. For q = 0, the pattern of zeros is simply that of
the square of the v = 1 Pfaffian wave function, which is called the Haffnian wave function:

<bHaffnian = P.f ( I )) (zi - z)2

= SQ -j2) (zi - zj) 2. (6.65)

Here, S denotes symmetrization: S(Miy) = EpMP(1)P(2) - MP(N,-1)P(Ne), where E is
the sum over all permutations of Ne elements. This pattern of zeros was studied in detail
through the vertex algebra framework in (Lu et al., 2010); the vertex algebra there was
named Z 2 |Z2 vertex algebra. It was found that the structure constants for one class of
quasiparticles come with a free continuous parameter, indicating that the ideal wave function
is likely gapless. This conclusion of gaplessness is corroborated from a totally different analysis
(Green, 2001): the Haffnian wave function corresponds to a critical point of d-wave paired
composite fermions.

However, the N = 4 orbifold FQH states indeed exist as gapped FQH states, and in
particular from Table 6.4 we see that many of the quasiparticle pattern of zeros are repeated
- there is not a one-to-one correspondence between the pattern of zeros and the topologically
distinct quasiparticles. In the following, we describe how to understand these results through
the vertex algebra framework.

From (Lu et al., 2010) we learn that one set of sequences {n;l} are associated with
operators whose structure constants can take on any continuous parameter, a. For certain
discrete values of a, the associated quasiparticle is a boson, ie it is local with respect to itself,
and may also be local with respect to the electron operator. In such a case, this operator can
and should be added to the chiral vertex algebra and treated as a second electron operator.
From the point of view of the ideal Hamiltonian, this is like adding a perturbation so that
the system is driven away from the critical point and into a nearby incompressible phase.
The perturbation should be viewed as driving the condensation of a bosonic operator, which
adds a second component to the FQH state.

Since this nearby incompressible phase should now be viewed as a two-component state, it
thus should have an ideal wave function description in terms of a double-layer state, described
by the enlarged chiral algebra. Note that there may be several different, mutually exclusive
choices for which operator to add to the chiral algebra; equivalently, there may be several
different directions in which to perturb the ideal Hamiltonian, each of which leads to a
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different incompressible phase. When the chiral algebra is enlarged in such a way, then the

continuous set of quasiparticles described by a will not all be allowed and instead only a

finite, discrete set of them will be distinct and local with respect to both the original electron

operator and the second electron operator. From this point of view we can now understand

why the pattern of zeros for the other quasiparticles may appear multiple times, even when

there was a unique solution for the structure constants: there is now an additional electron

operator that may resolve the difference between two quasiparticles that the first electron

operator could not distinguish between.

Let us study this more concretely for the case q = 0 using the vertex algebra framework.

The vertex algebra generated by the electron operator (6.64) contains two pieces, the "charge"

part, described by the U(1) vertex operator ev20,, and the "neutral" part, described by the

operator #1 . For N = 4, 41 is an operator with unit scaling dimension, and its vertex

algebra is equivalent to the vertex algebra of the current operator j ~ p in a free boson

theory. Thus as far as the vertex algebra of the electron operator is concerned, the electron

operator may be written as

Ve=je . (6.66)

In order for an operator 0 to be an allowed representation of the vertex algebra, it has to

satisfy various consistency conditions, such as the generalized Jacobi identity. In (Lu et al..

2010), the allowed representations of the algebra generated by j were systematically studied

(without embedding it into a free boson theory). It was found that there is one operator, u-,
with scaling dimension 1/16, and another continuous set of quasiparticles with continuously

varying scaling dimensions. These operators are familiar when the algebra is embedded into

a free boson theory: o- is the well-known twist operator, whose insertion at a point in space

induces a branch cut around which p -- > -o. The continuously varying set of operators

correspond to the operators esP. We see that p is uncompactified, because all operators

of the form enW are local with respect to .j and therefore correspond to distinct, allowed

representations of the electron chiral algebra.

Now notice that eW is bosonic when it has integer scaling dimension: h, = a 2 /2 E Z.

Suppose that we add the bosonic operator cos(V8-W) to the vertex algebra. Intuitively, we

expect that this will cause only a discrete set of the operators eiW to now be local with

respect to the enlarged vertex algebra, and only a finite set of them will correspond to

distinct representations of the algebra. Put another way, inclusion of cos(Vdp) into the

vertex algebra has the effect of essentially compactifying the boson p, which then quantizes

the possible values of a. To find all of the allowed, distinct quasiparticles, we want to

find all solutions to the consistency conditions (Lu et al., 2010) for allowed quasiparticle

operators for this enlarged algebra. Here, we will not solve these conditions and instead save

this analysis for future work. Instead, we will verify this picture semi-rigorously using the

following arguments.

The operator cos(v"dp) is known to generate the chiral algebra of the U(1) 8 /Z 2 orbifold

CFT. The operator content of the U(1) 8 /Z 2 CFT is known, so we will assume that such anl

operator content is in one-to-one correspondence with the distinct, allowed operators that
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satisfy the consistency conditions of the vertex algebra generated by cos( 8dO). This is a
reasonable assumption, however it has not been verified because the operator content of
the U(I)/Z 2 orbifold CFT was derived using considerations of modular invariance, and not
through directly studying the representation theory of the chiral algebra by solving consis-
tency conditions. For example, the U(1)/Z 2 CFT contains two twist fields o- and U2 (and
their counterparts T1 and T2, where j x o-i = ri). The fact that there must be two twist fields
can be understood through considerations of modular invariance of the torus partition func-
tion, which includes both holomorphic and anti-holomorphic sectors of the theory. That there
should be two sets of twist fields is less obvious from the point of view of solving consistency
conditions of the vertex algebra.

In light of the above assumption, it is now clear what we should do. The allowed quasi-
particles will be of the form

V= Oe ve, (6.67)

where 0 is a primary operator from the U(1)2N/Z 2 orbifold theory. We need to find all
possible operators V, that are local with respect to the operators Ve = je \V'c, and cos( 8y).
All operators of the form (6.67) are already local with respect to cos(x/8p) because they form
representations of the algebra generated by cos( 8w), so we only need to worry about their
being local with respect to Ve = e 'v2,. Remarkably, carrying this out yields all of the
topological properties of the N = 4 orbifold states! In particular, we obtain the same results
as we did using the prescription used earlier in Sections 6.3 and 6.4 (see Table 6.5 and
compare with Table 6.4). Note that while the CFT labelling of the operators is different.,
the two prescriptions yield exactly the same topological properties. This agreement is highly
non-trivial and only works for N = 4, because only for N = 4 is the algebra of jeV20e the
same as the algebra of #1e"de.

This adds evidence to the picture presented here, where the orbifold FQH states can be
interpreted through the vertex algebra language as though an additional bosonic operator has
been added to the chiral algebra. In order to more rigorously confirm this picture, we would
need to systematically solve the consistency conditions on the vertex algebra generated by
je\/'20e and cos(v8 o) and show that the quasiparticle solutions and their properties coincide
with those presented here.

Note that since we now have two electron operators, the full pattern of zeros character-
ization should be described by the sequence {Sd}, where a is now a two-dimensional vector
(Barkeshli and Wen, 2009a). Therefore, the results of Table 6.5 do not display this full pat-
tern of zeros/vertex algebra data and instead only display the pattern of zeros as seen by the
electron operator jetVe.

Now that we have two electron operators, we should be able to obtain a double-layer
ideal wave function for these N = 4 states and an associated ideal Hamiltonian. We save an
in-depth study of these issues for future work. Based on the considerations presented here,
we expect that the vertex algebra generated by the two electron operators has a unique,
finite set of solutions for the quasiparticle structure constants, and therefore that there is a
corresponding gapped ideal Hamiltonian.
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U(1)2N/Z 2 Orbifold FQH
CFT Operator

ei1 /2 c v'p

eldc

e23/2v/c(p,

N

#2 Ci1/2v/--cp

{nz}

2000
02 00
00 20
00 0 2

states, with
h"e + hga

0+0
0 + 1/4

0+ 1
0 + 9/4

e jeWV2 c

Quantum Dim.
1
1
1
1

1+0
1 + 1/4
1+0

1 +1/4

#1

#leiI/42v2c

T71
riei3/4V2Wc

o-2e il/4v2W,

72 ei3/4 \12W
TF2 C 3/4v/2c p

#2

42 ei1/2v'2c

1/16+0
1/16+ 1/4

9/16+0
9/16 + 1/4

1/16
1/16
9/16
9/16

1/16
1/16
9/16
9/16

1/16

9/16
1/16

9/16

1/16
9/16
1/16
9/16

1/4+0
1/4 + 1/4

Table 6.5: Quasiparticles obtained for N = 4 orbifold states by embedding the vertex algebra
into the U(1)/Z 2 x U(1) orbifold CFT.
which is set to be Ve je, 3 . and the

This vertex algebra contains the electron operator,
operator cos(v5<p).

193



194 CHAPTER 6. BILAYER PHASE TRANSITIONS AND THE ORBIFOLD STATES

N - 5

The v = 2/5 orbifold FQH state, with (N, q) = (5,0) is a fermionic state; a bosonic analog

can be constructed at u = 2/3. In Tables 6.6 and 6.7, we list the properties of these states.

The electron operator is

Ve = #Nvq+5/26, (6.68)

where now 41 has scaling dimension hC 5/4. The pattern of zeros of this electron operator

has also been studied in detail in (Lu et al., 2010), in the context of so-called Z 21Z4 simple-

current vertex algebra. We briefly discuss this N = 5 case because it contains some novel

features that did not arise in the N = 4 analysis. In this N = 5 case, we see that several of

the quasiparticle pattern of zeros solutions that are allowed by consistency condition (Wen

and Wang, 2008b) do not appear (compare Table 6.6 with Table VII of (Lu et al., 2010))!

This may be interpreted in the following way. The single-layer ideal wave function with

the pattern of zeros of the operator in (6.68) is gapless, for the same reason that the N = 4

case was gapless: the structure constants of the vertex algebra for quasiparticles have a

continuous set of solutions. Driving the ideal wave function away from the critical point, as

discussed in the N = 4 example, corresponds to adding additional perturbations in the ideal

Hamiltonian and, from the perspective of the vertex algebra, amounts to adding additional

local operators to the chiral algebra. The quasiparticles must all be local with respect to this

enlarged vertex algebra, however certain quasiparticle pattern of zeros solutions may become

illegal as a result. Put another way. certain quasiparticle pattern of zeros solutions that were

allowed when the system was thought of as a single-component system, may be illegal if the

chiral algebra is self-consistently enlarged in a certain way to get a multi-component system.

Conclusion

This concludes our analysis of the orbifold FQH states from the point of view of ideal wave

functions and the vertex algebra/pattern of zeros approach. The orbifold FQH states provide

the first concrete examples in which the operators of the edge CFT have "sick" pattern of

zeros solutions. As a result, we find that these states yield profound insights into the vertex

algebra framework. Namely, when a certain pattern of zeros solution appears to describe a

gapless state (due to a continuum of solutions to the quasiparticle structure constants in the

vertex algebra), this means that generically there may be a way to self-consistently enlarge

the vertex algebra, which physically corresponds to condensing new operators and driving

the ideal Hamiltonian away from a critical point. Then the newly enlarged vertex algebra

may have a finite number of quasiparticle solutions and there may be a multilayer ideal wave

function that captures the topological order of the resulting states. Thus all of the pattern of

zeros solutions, even when they naively appear to be describing gapless phases, are ultimately

relevant in describing incompressible FQH states!

An important direction now is to put the above ideas on a more concrete footing in

the vertex algebra framework in order to, for instance, derive the incompressible ideal wave

functions that do capture the topological order of the orbifold FQH states.
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Quasiparticles for N = 5 orbifold state (v- 2/3)

{ ng} sc. dim. quantum dim.
0 Tf 202000 0+0 1
1 es2 / 3 

"4c0 020200 0+1/3 1

2 #2N Ci4l/ 3v c 0 0 2 0 2 0 5/4+1/12 1
3 j 000202 h=1+0 1
4 jei2 /3 $c 2 0 000 2 0 1+1/3 1

5 #iles1/3v Tvc 020002 5/4+1/12 1

6 #ieil/ 3 V 1c- 2002 00 1/20+1/12 2
7 #4 020020 4/5 2

8 #4e 2/3  
c 00 20 0 2 4/5+1/3 2

9 #2 1 0 1 1 0 1 1/5+0 2

10 #2e 2/3 V 11 0 1 1 0 1/5+1/3 2

11 #3eii/ 3 v 1Tc 0 1 1 0 1 1 9/20+ 1/12 2

12 o-iefi/ 2v 1c 1 1 1 0 1 0 1/16+3/16 v'5

13 o-2eii/ 6  0 1 1 1 0 1 1/16+1/48 v/5
14 -2es 6  4c 1 0 1 1 1 0 1/16 + 25/48 v/5

15 Te"i/ 2v7 T c 0 1 1 1 9/16+3/16 VS
16 T2eil/ 6v5 T1c 1 0 1 0 1 1 9/16+1/48 V5
17 T2ci 5 /6 c 1 1 0 1 0 1 9/16+25/48 vr5

Table 6.6: Properties of the bosonic (N, q) = (5, -1) orbifold states, at v = 2/3. Compare
this to results from the Z21Z4 simple-current vertex algebra and pattern of zeros solutions
studied in (Lu et al., 2010). #k = cos(k/ 2Np).
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Quasiparticles for N = 5 orbifold
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state (v - 2/5)

sc. dim.
0+0

0+ 1/5
0+ 4/5

5/4 + 1/20

5/4 + 9/20
1+0

1 + 1/5
1 + 4/5

5/4 + 1/20

5/4 + 9/20

1/20 + 1/20

1/20 + 9/20
4/5 + 0

4/5 + 1/5

4/5 + 4/5

1/5 + 0

1/5 + 1/5

1/5 + 4/5

9/20 + 9/20

9/20 + 9/20
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1/16

1/16
1/16

1/16
9/16

9/16

9/16
9/16

9/16

0.113

0.613
0.012

0.312
1.012

0.113

0.613
0.012

0.312

1.012

Table 6.7: Properties of the fermionic
cos(kv2Nep).

(N, q) = (5, 0) orbifold states, at v = 2/5. #k =

q. dim.
I

1

1

1

1
1

1

1

1

1

2

2
2

2

2

2

2

2

2

2

V5f

v/5

V5

-5

/5

V5

V5

/5

/5



6.7. RELATION TO EXPERIMENTS AND RELEVANCE TO v = 8/3 AND 12/5

6.7 Relation to experiments and relevance to v = 8/3 and 12/5

In both double-layer and wide single-layer quantum wells, several of the (ppq) states, such as

the (331) and (330) states, have been routinely realized experimentally (Lay et al., 1997). The

study presented here suggests that by varying parameters such as the interlayer tunneling

and the interlayer thickness, it could be possible to tune through a continuous quantum phase

transition into a non-Abelian FQH state.

Since the transition is driven by the condensation of an electrically neutral boson, the

charge gap remains nonzero through the transition, which would make detection of the tran-

sition difficult through charge transport experiments. Some possible experimental probes are

as follows.

The most obvious physical consequence of this transition is that the bulk should become

a thermal conductor at the transition, because while the charge gap remains, a neutral mode

becomes gapless at the critical point. This would also have a pronounced effect on edge

physics; near the transition, the velocity of a neutral mode approaches zero, until at the

transition it becomes a gapless excitation in the bulk. Thus this transition should also be

detectable through edge tunneling experiments. Furthermore, the fluctuations of the neutral

boson correspond to interlayer density fluctuations, which carry an electric dipole moment.

One way to detect these critical fluctuations may be through surface acoustic phonons.

One useful physical distinction between the bilayer Abelian states and the orbifold non-

Abelian states are that when N - p-q is odd, the minimal electric charge of the quasiparticles

becomes halved in the orbifold phase. Thus, for example the quasiparticle minimal charge

can be measured as the interlayer tunneling and interlayer thickness are tuned in a two-

component (330) state. An observation of a change in the minimal quasiparticle electric

charge from e/3 to e/6 would indicate a transition to the non-Abelian phase.

Another implication of the results here applies to the single-layer plateaus that have been

observed at v = 8/3 and v = 12/5 (Xia et al., 2004). Currently, it is believed that the FQH
plateaus seen in single layer samples at v = 8/3 = 2 + 2/3 and v = 12/5 = 2 + 2/5 might be

exotic non-Abelian states (Choi et al., 2008). There are a number of candidate states, includ-

ing the particle-hole conjugate of the Z3 parafermion (Read-Rezayi) state (Rezayi and Read,
2009) and some hierarchy states formed over the Pfaffian state.(Bonderson and Slingerland,
2008; Bonderson et al., 2009)

Our study suggests another set of possible states. The orbifold states presented here are

neighbors in the phase diagram to more conventional states, such as the (330) and (550)
states. These states can exist at v = 8/3 and 12/5, respectively in fact, experiments on

wide single layer quantum wells have seen plateaus at v = 8/3. The fact that the orbifold

FQH states are neighbors in the phase diagram to these more conventional bilayer states

means that in single-layer samples, the orbifold FQH states should be considered as possible

candidates to explain the observed plateaus. Note that the orbifold FQH states can be

interpreted as multi-component single-layer states, in the same way that the hierarchy states

and Jain states are multi-component single-layer states.
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Bulk Theory Edge Theory

U(1) x U(1) A Z2 CS Theory [U(1) x U(1)]/Z 2 CFT

Slave Ising Gauge Theory U(1)/Z 2 x U(1) CFT Embedding

Figure 6-1: Here we try to illustrate the different ways of describing the topological order
of the orbifold FQH states and how they are related. The U(1) x U(1) x Z2 CS theory is
a bulk topological field theory, but we do not know how to compute all of the topological
properties from this theory. Closely related is the slave Ising theory gauge theory presented
in Section 6.2, which we believe provides a lattice regularization of the U(1) x U(1) x Z2 CS
theory. The spectrum of the edge theory for these bulk topological theories is conjectured
to be generated by the electron operator Te = cos( Np2)e'I/(v+q)/2 c. We also conjecture
that this edge theory is equivalent to what one would obtain for the edge theory by taking
the electron operator to be Te = 1 e(P+)/ 24c and embedding it into the holomorphic half
of the Z 2 orbifold xU(1)charge CFT.

6.8 Summary and conclusions



No. of QP Quantum dimensions Charges Fusion rules Scaling dimensions 7

Bulk U(1) x U(1) X Z2 Some Some Some
Slave Ising theory

U(1)/Z 2 x U(1) CFT prescription V/
Edge [U(l) x U(1)]/Z 2 CFT Some

Table 6.8: Summary of the successes of various descriptions of the orbifold FQH states.
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In this chapter, we have introduced a set of FQH phases, dubbed the orbifold FQH states,
and studied phase transitions between them and conventional Abelian bilayer phases. The
orbifold states are labelled by two parameters (N, q) and exist at filling fraction v = 2/(N +
2q). The bulk low energy effective field theory for these phases is the U(1) x U(1) x Z2 CS
theory. Their edge CFT is a [U(1) x U(1))/Z 2 orbifold CFT with central charge c = 2. These
orbifold phases contain an electrically neutral boson whose condensation drives a continuous
quantum phase transition to the bilayer (ppq) states. In the U(1) x U(1) x Z2 CS theory,
this neutral boson carries Z2 gauge charge and so the effective theory near the transition is
a Z2 gauged Ginzburg-Landau theory, which implies that the transition is in the 3D Ising
universality class.

We introduced a slave-particle gauge theory formulation of these states, which shows how
to interpolate between the Abelian bilayer states and the orbifold states. This description
provides an interesting example in which Z2 fractionalization leads to non-Abelian topological
phases. Finally, we saw that the existence of these states sheds considerable light on the
pattern of zeros/vertex algebra framework for characterizing ideal FQH wave functions. The
orbifold states provide the first examples in which the sick pattern of zeros solutions are
actually relevant for describing incompressible FQH states.

The calculation of the full topological quantum numbers of the quasiparticles relies on
a prescription in which we embed the electron operator in the U(1)/Z 2 x U(1) CFT. We
have not proven rigorously that the results are equivalent to the [U(1) x U(1)]/Z 2 CFT. Let
us briefly summarize the successes of the various descriptions of the orbifold FQH states,
as shown in Table 6.8. The bulk U(1) x U(1) x Z2 CS theory can be used to compute to
the number of quasiparticles and the quantum dimensions of all of the quasiparticles. which
can yield the ground state degeneracy on genus g surfaces. Based on the relation to the
neighboring (ppq) states, we can deduce the charges and twists/scaling dimensions of the
quasiparticles that have quantum dimension 1 and 2, but not those of the Z 2 vortices. This
relation to the (ppq) states also allows us to deduce certain properties of the fusion rules.
Furthermore, by studying the Z 2 vortices in detail, we can deduce some information about
their fusion rules as well from the U(1) x U(1) x Z 2 CS theory. The bulk U(1) x U(1) X Z2 CS
theory is closely related to the slave Ising theory introduced in Section 6.2, which allows us
to compute the charges of the Z 2 vortices. However from these bulk theories we do not know
how to compute the twists of the Z2 vortices or all of the fusion rules of the quasiparticles.

The edge theory of the orbifold states is the [U(1) x U(1)J/Z 2 CFT, and the electron

operator is TIe= cos( N/2p_)e' (V+q)/2++. However, using this operator we currently
can only compute the pattern of zeros of the electron operator, which yields the scaling
dimensions of the Abelian quasiparticles in the theory (Wen and Wang, 2008b; Barkeshli
and Wen, 2009c). Based on a close relation to the Z2 orbifold chiral algebra, we conjecture
that the topological order can be completely described by setting the electron operator to be
<1 et "' and embedding the electron operator into the U(1) 2N/Z 2 x U(1) CFT. From this
prescription, we can compute all topological properties, and they agree with all quantities
that can be computed in any other ways.
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6.A ZN transitions between Abelian states

Our analysis of the N = 1 orbifold states in Section 6.6.2 revealed a series of Abelian FQH
states that can apparently undergo Zm phase transitions to other Abelian FQH states.

In particular, consider the following two-component states with K-matrix and charge
vector q given by

K (2m2 +) q = () (6.69)

For m > 1, these states have a neutral boson # with the fusion rule

# m . (6.70)

To see this, observe that # can be described by the integer vector 1T = (2m, 1). From
the formula Q0 = qTK-16 = 0 we find that # is electrically neutral. while from 04/7r
ljK'le, = even we find that # is a boson. Finally, from the fact that mlj = (2m 2 .m),
which is the first row of the K-matrix, we find that #m is a local excitation, ie #m

Based on the analysis in Section 6.6.2, we expect that the condensation of # will yield
the m = 1 states and that the transition is in the Zm universality class. In the case m = 2.
these are the N = 1 orbifold FQH states, which have non-Abelian analogs for more general
N. Also, in the case m = 2 there is a U(1) x U(1) x Z 2 CS description that makes the
appearance of this discrete Z 2 structure explicit.

We currently do not know whether for M > 2 there are also non-Abelian analogs that are
separated from a bilayer Abelian phase by a Zm transition. We also do not know whether
there is a way to describe these states in terms of a CS theory with a gauge group that iuakes
the Z, structure explicit, as there is for n = 2.

6.B Slave Ising mean-field approximation

In terms of ci± and s', the Hamiltonian is:

H = Z(tij + + j + T,*)c +cj+ + E(tij + tj - Tij - T,*)ss% c

We~~~~~ potlt a grun stteofthfrm

ii i

+ I 1(Uij + 1Kj,) : (Pi±nj+ + 'n.,±nj +njnj +~~ Ti- n~-):
2

1 (j zz),8(t C ~C+C t c C±-cjc+. + tC +j+ t Ct Cj-
+2 i +i +j i +j cL-iLjc +icc+_j )

(6.71)

W~e postulate a ground state of the form:

(6.72)
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where the partons form a v = 1 IQH state. We would like to see what kind of |') minimizes

the average energy, ('FHTI'), subject to the constraint ((sx + 1)/2 +nc_) = 1. Thus we will

minimize (TIH - A(sx/2+nc,_ )IT). A is a Lagrange multiplier; its value is fixed by imposing

the constraint on average.

Can the minimum energy state satisfy (TIsf II) = 0? Such a situation would imply that

the Z 2 deconfined phase may be physically realized. In this extremely crude approximation,
we find that indeed both phases may be realized, but the only parameter than tunes between

them is the average density nc . To see this, observe that A acts as a transverse magnetic

field for the Ising sector. When A = 0, the Ising spins are in a Z 2 symmetry breaking phase;

the effective model for the Ising spins will be

E Ji-jsfs], (6.73)
ii

which we expect will generically be in either a ferromagnetic or anti-ferromagnetic phase. In

such a limit, (s') ~ 0, which from the constraint means that

(nc 1-) = (I (niT + nil)) = 1/2. (6.74)

As the effective transverse magnetic field A increases, so does (s'), until a critical point at

A = Ac is reached, at which point there is a phase transition in this transerve field Ising model

to a paramagnetic phase. The paramagnetic phase describes the orbifold FQH states, and will

be obtained in this approximation when (nc, ) is small enough, which will self-consistently

determine A to surpass Ac. In the limit A -> oo, all the spins will point in the ±-direction.

so that (sT) = 1, which will happen when (nc ) = 0. Thus in this approximation, both

the (ppq) states and the orbifold FQH states can be accessed. When (nc,_) = 1(nif + nit)
is near 1/2 we obtain the Z 2 broken states, which describes the (ppq) FQH phase. When

(nc, ) = 1(ni1 + nil) is far away from 1/2, e.g. close to 0 or 1., we obtain the disordered

phase where (sf) = 0. This phase corresponds to the orbifold FQH states.

Note that the mean-field analysis outlined above is extremely crude, because we are

imposing the constraint on average instead of enforcing it on the quantum Hilbert space.

Thus, the state 1I) may, strictly speaking not lie in the physical Hilbert space. Furthermore,
we are only including a specific set of fluctuations about the mean-field states. A way to

include more fluctuations is through the slave rotor approach that we present in the following

section. However, such extremely crude approximations do sometimes capture some of the

physics.

In this case. we see that we find some hint that the orbifold FQH phases may be realized

in a physical model. However, the result that the competition between the (ppq) states and

the orbifold states is determined solely by the density of electrons and not by parameters like

the interlayer repulsion or interlayer tunneling is incorrect.

Nevertheless, the fact that this crude approxmation shows that the orbifold FQH states

may be favorable over the (ppq) states in some regime provides some motivation to perform

more reliable approximations, such as a serious numerical calculation involving fully projected
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wave functions, using either the above slave Ising formulation or the slave rotor formulation
that we present below.

6.C Slave Rotor

While the slave Ising construction presented above is sufficient to describe the bilayer Abelian
(ppq) states and the non-Abelian orbifold FQH states, it is a "minimal" slave-particle gauge
theory in the sense that it only captures the minimal amount of fluctuations about a given
mean-field state in order to see the possibility of the two phases. It is possible to improve the
slave-particle description by including more of these fluctuations about the mean-field states
and probing a larger part of the Hilbert space. This can be done by promoting the above
slave Ising theory to the following slave rotor description.

We rewrite the electron operators in the following way:

,Pi+ =ci+,

i = e c . (6.75)

In such a construction, we have a U(1) gauge symmetry associated with the following local
transformations:

#i --- #i + a, ci-+ e-mici_ .(6.76)

This means that the physical states must satisfy

eiL -i"an, 1 , (6.77)

for any a (there is an arbitrary U(1) phase factor that we have set to unity here). The
angular momentum Li cx i0i is conjugate to the field #i. (6.77) implies

Li - nc- = 0 (6.78)

Note that we will actually want to do a further slave-particle decomposition into partons,
as in (6.13). For example, for q = 0, we decompose c+ as

I(N 2N

C~ -7 (fJ'oai 1 ii ai) (6.79)
a=1 a=N+1

In this case, the gauge symmetry associated with translating #N is actually only a Z 2 sym-
metry:

Oi - Oi+ 7, V4'j+ QN±~.(680 (6.80)
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In this case, the constraint on the rotor is actually Li - ng_ = even. Or, alternatively:

(-1) +ncs_ = 1. (6.81)

Let us set bi ei . Substituting into the Hamiltonian, we obtain:

Hkin + Hun =((t j + t> + Tij + Tji )c +cj+ + ±(tij + t j - Ti - T*)bbc _c _)

I -+ i i c cii

±in = I (Uj + Vj):(in++n~j + nin++ in-
ii

+ b*b*ctictj c+jc+i + bib~ ct+ictci) (6.82)

Note that the above Hamiltonian does not preserve a global U(1) symmetry associated with
arbitrary translations of #j; there is only a Z 2 gauge symmetry. Thus there are only two
distinct phases. The first one is smoothly connected to a situation in which

(eCi) / 0, (6.83)

and the second one is smoothly connected to a situation in which

(e26) / 0. (6.84)

The first possibility breaks the Z 2 gauge symmetry, while the second one preserves it. These
two possibilities describe precisely the same two phases as the slave Ising theory described
above. In the first case, suppose we set e-e = 1. Then, we are left with the parton construction
for the (ppq) states. In the Z 2 unbroken phase, we may set e 2m = 1, so that ei = ±1 = sz.
Thus, these two phases that we can access in the slave rotor approach are the same phases
that we can access from the slave Ising approach. The Z 2 broken phase corresponds to the
bilayer (ppq) states, while the Z 2 unbroken phase corresponds to the orbifold FQH states.
The slave rotor approach has the advantage of probing more fluctuations around the mean-
field states because more of the Hilbert space is being accessed in this decomposition. This
may allow for more reliable calculations of the phase diagram.

As in the slave Ising construction, this slave rotor construction also provides trial projected
wave functions, but provides a larger space of possible trial wave functions that capture the
behavior of each of the two phases.



Chapter 7

Twisted ZN topological phases

The contents of this chapter are based on (Barkeshli and Wen, 2010d).

7.1 Introduction

In the previous chapter, we studied a series of phase transitions in bilayer FQH systems

between some well-known Abelian states - the Halperin (ppq) states - and a new class

of non-Abelian states - the orbifold FQH states. While the (ppq) states are described by
U(1) x U(1) CS theory, the orbifold states are described by U(1) x U(1) x Z 2 CS theory. We

also introduced a slave particle gauge theory description of these phases, which accomplished

two tasks. First. it showed that these phases can in principle be stabilized in a physical

system of particles with local interactions, thus showing that these FQH phases are physical

even though there is no known ideal wave function description of them. Second, it provides

a lattice regularization, and even a more complete definition, of the U(1) x U(1) x Z 2 CS
theory.

While the above discussion applies to phases of matter that strongly break time-reversal

symmetry - the quantum Hall states, which occur in cases where the number of flux quanta

is on the order of the number of particles an interesting property of U(1) x U(1) CS theory

is that it can also describe time-reversal invariant systems that do not have protected gapless

edge modes. In particular, the following so-called mutual Chern-Simons Lagrangian describes

a time-reversal invariant system

= (aB5 + 58a), (7.1)
4ir

where a and & are two U(1) gauge fields. This kind of CS theory actually describes the

topological properties of the deconfined phase of ZN gauge theory (see, e.g., (Kou et al.,

2008)).
The U(1) x U(1) x Z 2 CS theory therefore presents a way to introduce a certain "Z 2

twisting" of ZN gauge theories. In particular, the Z 2 in the gauge group U(1) x U(1) X Z 2

essentially interchanges electric and magnetic charges, so that in a sense this Z 2 twisting is
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like gauging electric-magnetic duality.1

In this chapter, we will further study this Z 2 twisted ZN gauge theory. This theory de-
scribes a novel non-Abelian topological phase that is separated from the Abelian ZN phase by
a continuous 3D Ising phase transition. We will begin by developing a novel parton construc-
tion for ZN gauge theory, where the mean-field ansatz only includes partons forming IQH
states. This new parton construction will allow us to apply the theory of Z 2 fractionalization
from Chapter 6 in order to develop a description of these twisted ZN phases. Using the
relation to CFT, we will postulate a possible set of topological quantum numbers for these
phases that agrees with all the results that can be calculated from the U(1) x U(1) x Z 2 CS
theory.

7.2 Parton construction for ZN topological order

In this section we show how to construct a state with ZN topological order by projecting
from v = 1 IQH states.

We begin with two flavors of bosons, b, and b,, and decompose them in terms of 3N
partons as follows:

N 3N

bt-fl~i Ul V
i=1 j=2N+l

2N 3N

bj 1 71 H V 5 (7.2)
i=NI+ j=2N+l

Note that the partons $b2N+1, . 3N are shared between bT and b1 . We can rewrite the
original theory of these two flavors of bosons in terms of a theory of these partons coupled to
a gauge field. The gauge field projects the expanded parton Hilbert space onto the physical
Hilbert space. which is generated by the physical operators bT and b1 .

Next, we assume a mean-field ansatz where V1, ... , V)2N form a v = 1 IQH state, while

)2N+1, ---,9'3N form a v = -1 IQH state. The maximal gauge group that respects this mean-
field ansatz is SU(N) x SU(N) x SU(N) x U(1), which we will write as SU(N) 3 x U(1).

In order to motivate the above construction, note that bilayer (NNO) FQH states can
be obtained through the parton construction by decomposing the electron operator in each
layer as

Tel = V91 .. V) 'N,

Tel ='0N+1 * - -'02N, (7-3)

and assuming a mean-field ansatz where the 9bi each form v = 1 IQH states. It can be shown

1Actually this observation applies to the orbifold FQH states as well. The topological quantum numbers of
the (ppq) FQH states all have a discrete Z 2 symmetry, and the orbifold FQH states are essentially gauging that
symmetry. In CFT, such a procedure is called "orbifolding." One may wonder in general how to "orbifold" a
topological phase with a certain discrete symmetry in order to obtain a different topological phase.

206



7.2. PARTON CONSTRUCTION FOR ZN TOPOLOGICAL ORDER

that the low energy field theory for such a state is U(1) x U(1) CS theory with K-matrix K =(N 0~
0 N ). In order to describe more general bilayer FQH states such as (N + m, N+ m, m),

we simply multiply each electron operator by an additional set of operators:

'eT = 0 1 ... ON X 4 '2N+1 4' 2N+m,

el =0N+1 '2N X 02N+1 - -2N+m, (7.4)

and we assume again that all of the partons 4'i form a v = 1 IQH state. At the level of

the wave functions, this has the effect of multiplying the (NNO) wave function by a Jastrow
factor to give the (N + m, N + m, m) wave function:

<b(N+rn,N+mrr,m) =(NNO) (mrnm)- (7.5)

Since the ZN gauge theory is described by a K-matrix

Kz--0 N) =N N) _N 0(76
(N 0 N N 0 N '

a natural guess is the decomposition in (7.2), where V)2N+1, ''' , 3N are assumed to form

v = -1 IQH states.

The low energy theory for such a state will involve the partons interacting with a gauge

field from the gauge group SU(N) 3 x U(1). It is not at all clear that such a complicated field

theory, with many non-Abelian gauge groups, has simply the ZN topological order.

In Appendix 7.A, we compute the ground state degeneracy of the SU(N) 3 x U(1) theory

on a torus. We find that it is given by

Torus Degeneracy N 2  (7.7)

which agrees with that of the ZN topological order.

Unfortunately, besides the torus ground state degeneracy, it is extremely difficult to com-

pute any other topological properties of a theory with such a complicated non-Abelian gauge

group. In order to proceed, we choose a mean-field ansatz for the partons that breaks the

gauge group down to the center of SU(N) 3 x U(1), which is U(1) 3N- 2 . One way to do

this, for example, is to assume various condensates such that in the low energy field theory,
the partons all have different masses, while still forming the IQH states described above.

Since the gauge group is now Abelian, it is possible to compute all topological properties

of the resulting states. In the following section, we show that such a gauge theory coupled

to the partons describes the topological properties of the ZN phase and directly yields the

U(1) x U(1) mutual CS theory as its low energy effective field theory.
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Mutual U(1) x U(1) CS theory from parton construction

The effective field theory is described by the Lagrangian:

E=ito@ + 2 (0- iAQ) 2 ,0 + Tr (jualp') +-000' + V 2 (7.8)

where V$T = (VI1, - -. , '3N), Mab = ma 6 ab and ma is the mass of the ath parton, A describes

a magnetic field seen by the partons, job - #/a8"/b describes the current of the

is the gauge group, and the 3N - 2 generators of the gauge group U(1)N- 1 x
U(I)N-1 x U(1) are given by the matrices pl:

pf = xy i,~1 - 6i',+1),

ply =6ij (6iI+1 - Ji,1+2)

p -= i(6i,1+2 - 6i,1+3),

partons, ap
U(I)N-1 x

I=1, -- - , N - 1,

I-N,... ,2N - 2.

I 2N - 1, -.. ,3N - 3,

i 6ij(6i,1 + 6i.N+1 - 6i,2N+1), I = 3N - 2. (7.9)

Since the partons are in v = 1 IQH states. their action is each given by a U(1) 1 CS theory;
because of the gauge constraint they will be coupled to the gauge field as well:

L = tpartor + tconstraint

I2N

Lparton

l=1

1 3N
biOb' - 4 = 21

i2N+l

(7.10)Lconstraint =j' p ija,

where b' is a U(1) gauge field describing the current density of the ith parton:

-1.
=-b" 8b. (7.11)

From the definition of the pi, we see that integrating out the a gauge fields enforces the
constraints:

ji - _ N

2N+1 _ 3N

*N+1 _ 2N

32N+1 _ N+1 -1

Therefore, the effective action becomes:

L = N (bbN+1 bN+l bl), (7.13)
47

which is exactly the action for the mutual U(1) x U(1) CS theory description of ZN topological
order. Actually this analysis is essentially the same analysis that we intuited by analyzing
wave functions in (7.4) - (7.6).
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When the masses of the partons are all equal, we see that the theory has the enhanced
SU(N) x SU(N) x SU(N) x U(1) gauge symmetry. Since the number of states on the torus
does not change when this gauge symmetry is broken to its Abelian subgroup by assuming
different mean-field masses for the partons, we conjecture that it also describes the topological
properties of the ZN phases. This is a surprising result, for it provides an example in which
gauge symmetry breaking does not actually change the topological properties of a state.

7.3 Slave Ising description

The parton description presented in the previous section yields the mutual U(1) x U(1) CS
theory at long wavelengths in a way that is amenable to a certain Z 2 "twisting."

To do this, we follow the slave-Ising construction presented in the previous chapter in the
context of the orbifold non-Abelian FQH states. We start with two boson operators defined
on a lattice. bia, and we consider the positive and negative combinations:

bi+ (bit + bi). (7.14)

We introduce two new fields at each lattice site i: an Ising field s' = ±1 and a bosonic field
d-, and we rewrite bi_ as

bi+ -- dit, bi_ = sdi_ . (7.15)

This introduces a local Z 2 gauge symnietry, associated with the transformation

Si - -s, d-_ - -di_. (7.16)

The electron operators are neutral under this Z 2 gauge symmetry, and therefore the physical
Hilbert space at each site is the gauge-invariant set of states at each site:

(I T) + I L)) o Ind_ = 0)

(11t) - I 1) G) Ind_ = 1), (7.17)

where I) (j J)) is the state with sz = +1(-1), respectively. In other words, the physical
states at each site are those which satisfy

(si + 1)/2 + nd_ 1. (7.18)

If we imagine that the bosons di± form some gapped state. then we would generally expect
two distinct phases (Senthil and Fisher, 2000): the deconfined/Z 2 unbroken phase, where

(s) =0, 
(1
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and the confined/Higgs phase, where upon fixing a gauge we have

(si) # 0. (7.20)

We seek a mean-field theory where the deconfined phase has the properties described by the

U(1) x U(1) x Z 2 CS theory, and the confined/Higgs phase corresponds to the ZN topological

phases. To do this, observe that in the Higgs phase we have

bit= di± , (7.21)

since we may set s' = 1 in this phase. Now for this to describe the ZN phases, we use the

parton construction of Section 7.2:

1
dit = (di I± d 2),

v2

dil = bli ... ' Ni 2N+1,i '' 3N,i,

di 2 ='0N+1,i... * 2N,i'2N+1,i ' - 0' 3N,i, (7.22)

and we assume that Q1,...,@2N form a v = 1 IQH state while #b2N+1, ---, 03N form a v - -1

IQH state.

Clearly, the low energy field theory of the confined phase is the mutual U(1) x U(1) CS

theory, describing the Abelian ZN topological order. In the deconfined phase, we see that

the parton sector is still described by a U(1) x U(1) CS theory, but that there is also an

additional Z 2 gauge symmetry associated with exchanging the two U(1) gauge fields. This is

precisely the content of the U(1) x U(1) x Z 2 CS theory (Barkeshli and Wen, 2010e), which

we therefore expect to describe the topological properties of this Z 2 deconfined phase.

Since the transition between these two phases is induced by the condensation of the Ising

spin sz, which is coupled to a Z 2 gauge field, we see that as the gap to the sz excitations is

reduced, the low energy field theory is simply a real scalar field coupled to a Z 2 gauge field.

Such a theory was analyzed in (Fradkin and Shenker, 1979), where it was found that the

transition is continuous and in the 3D Ising universality class. Therefore, the Abelian ZN
and its Z 2 fractionalized neighbor, the "twisted" ZN states, are separated by a continuous

quantum phase transition.

A useful property of this slave Ising formulation is that standard methods of constructing

projected trial wave functions will, when applied to the Z 2 deconfined phase, yield possible

trial wave functions for these non-Abelian twisted ZN states.

7.4 U(1) x U(1) x Z2 CS theory and topological quantum num-
bers of twisted ZN states

The U(1) x U(1) x Z 2 CS theory was studied in detail in Chapter 5. In this section, we review

the results for the choice of coupling constants that is relevant here.
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The U(1) x U(1) x Z2 CS theory is described by the Lagrangian

k k- i
L = -(aa + d85) + (a&& + dJa), (7.23)

47r 47r

where a and - are two U(1) gauge fields. Formally, this is the same Lagrangian as that of
the U(1) x U(1) CS theories, although here we also have an additional Z 2 gauge symmetry
associated with interchanging the two U(1) gauge fields at each space-time point. This
allows, e.g., for the possibility of Z 2 vortices - configurations in which the two U(1) gauge
fields transform into each other around the vortex and twisted sectors on manifolds of
non-trivial topology.

In order to describe the twisted ZN topological phases, we choose k = 0 and 1 = N. In
Chapter 5, we found that such a theory has N(N + 7)/2 topologically distinct quasiparticles.
The ground state degeneracy on genus g surfaces is

Sg(N) = (N"/2)[N" + 1 + (22g - 1)(Ng-l + 1)]. (7.24)

From Sg (N) we can obtain the quantum dimensions of all the quasiparticles. The total
quantum dimension is

- 4N 2 . (7.25)

There are three classes of quasiparticles: 2N quasiparticles with quantum dimension d = 1.
2N quasiparticles with quantum dimension d = N, and N(N - 1)/2 quasiparticles with
quantum dimension d = 2.

The fundamental non-Abelian excitations in the U(1) x U(1) X Z 2 CS theory are Z2

vortices. In Chapter 5, we studied the number of degenerate ground states in the presence
of n pairs of Z 2 vortices at fixed locations on a sphere. The result for the number of such
states is:

{ (N"-1 + 2n-1)/2 for N even, (7.26)
" (N" 1 + 1)/2 for N odd.

This shows that the quantum dimension of the Z 2 vortices is d = N. We can also compute

the number of states that are odd under the Z 2 gauge transformation. The number of these

Z 2 non-invariant states turns out to be an important quantity, because it yields important

information about the fusion rules of the quasiparticles. The number of Z 2 non-invariant

states yields the number of ways for n pairs of Z 2 vortices to fuse to an Abelian quasiparticle

that carries Z 2 gauge charge. The ground state degeneracy of Z 2 non-invariant states in the

presence of n pairs of Z 2 vortices at fixed locations on a sphere was computed to be

(Nn 1 - 2n-1)/2 for N even, (7.27)
(Nn- - 1)/2 for N odd.

Thus if -y labels a Z 2 vortex, these calculations reveal the following fusion rules for -y and its
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conjugate ':

(7 x-7)" = a- + nj + --- (7.28)

where j is a topologically non-trivial excitation that carries the Z2 gauge charge. The -
represent additional quasiparticles that may appear in the fusion.

Note that the above is true also for U(1) x U(1) x Z 2 CS theory with coupling constants
(k, 1) = (N, 0), which applies to bilayer FQH states. This indicates a close relation between
the FQH phases with (k, 1) = (N, 0) and the non-quantum Hall ones with (k, 1) = (0, N)

The above gives us much information about the topological order of the twisted ZN states,
but we have not been able to compute the full topological order of these states directly form
the U(1) x U(I) x Z2 CS theory. However, since we know that the twisted ZN states contain a
Z2 charged boson - labelled s' in the previous section and j here - whose condensation yields
the Abelian ZN states, we can deduce even more topological properties of the quasiparticles.

In our case, the two phases are separated by the condensation of a topologically non-trivial
bosonic quasiparticle, j, that fuses with itself to a local topologically trivial excitation. Based
on general considerations (Bais and Slingerland, 2009), we expect the following regarding the
topological quantum numbers of such phases. Upon condensation of j, quasiparticles that
differed from each other by fusion with j become topologically equivalent. Quasiparticles that
were non-local with respect to j before condensation become confined after condensation and
do not appear in the low energy spectrum. Finally, quasiparticles that fused with their
conjugate to the identity and j will, after condensation. split into two topologically distinct
quasiparticles. The spins of the quasiparticles remain unchanged through this process, which
allows us to obtain information about the spins of some of the quasiparticles in the twisted
ZN states from knowledge of the spins of the quasiparticles in the Abelian ZN states.

In the case of the twisted ZN states, we have the following. The 2N Abelian quasiparti-
cles, which contain the quasiparticle j, become N Abelian quasiparticles after condensation.
The Z 2 vortices are clearly non-local with respect Z2 charges, so they become confined. Fi-
nally, the N(N - 1)/2 quasiparticles with quantum dimension 2 each split into two distinct
quasiparticles. This yields the N 2 quasiparticles of the Abelian ZN states. The natural inter-
pretation is that the N(N - 1)/2 quasiparticles correspond to the Z2 invariant combinations
of quasiparticles in the Abelian states: (e, m) + (m, e) for e f m., while the 2N Abelian
quasiparticles of the twisted ZN states consist of the N diagonal quasiparticles (1, 1), and
their N counterparts that differ by fusion with j. Therefore we can infer the spins of these
two classes of quasiparticles. The results are listed in Table 7.1.

We still have not been able to compute the spins of the Z 2 vortices or the complete fusion
rules of the quasiparticles. In the following section, we will present a prescription that enables
us to calculate all of the topological properties of these twisted ZN states.

7.5 Conformal field theory construction at c - - = 0

The use of CFT techniques to compute topological quantum numbers for FQH states has
been very powerful. Physically, this is possible because the edge theory is described by CFT,
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Spin Quantum Dimension
A, 1/N 1

B, - N

Cmn mn/N 2

Table 7.1: Some topological quantum numbers for quasiparticle excitations based on con-

siderations of Section 7.4. A, for I = 0,-- , 2N - 1, labels the 2N Abelian quasiparticles.

B1, for 1 = 0,- , 2N - 1, labels the Z2 vortices. Cmnn, for m, In = 0, , N - 1 and rn < n,
labels the N(N - 1)/2 quasiparticles with quantum dimension 2. Note that the quasiparticles

(e, m) in the Abelian ZN states have spin em/N. Also note that the spin is meaningful only

modulo 1.

and there is a correspondence between the spectrum of states in CFT and the topological

properties of quasiparticles in the bulk of FQH states. The prescription in those cases is

to identify an appropriate set of CFTs, choose an appropriate electron operator, and then

the quasiparticles are those operators that can be constructed that are mutually local with

respect to the electron operator. Two quasiparticles that are related by electron operators

are topologically equivalent. The topological spin of the quasiparticles then is believed to

follow from the scaling dimension of the quasiparticle operator in the CFT, while the fusion

rules of the quasiparticles are equivalent to the fusion rules, with respect to the electron chiral

algebra, of the quasiparticle operators in the CFT.

In the case of the twisted ZN states, we do not expect to have protected edge modes, so

in general there is no CFT that describes the edge. Nevertheless, such a prescription can

still be used to yield possible full sets of topological quantum numbers. Physically, we can

think of this as the CFT that describes gapless edge excitations for these states, although

it is unstable to opening up a gap. In this section, we will give a prescription to compute

the topological properties from CFT. While we cannot prove that the topological quantum

numbers are precisely those of the U(1) x U(1) x Z 2 CS theory, they are consistent with all

of the highly non-trivial results of the previous section. Additionally, based on the relation of

these twisted ZN states to their FQH counterparts, the orbifold FQH states (Barkeshli and

Wen, 2010b), we have even more reason to believe that the prescription given here is correct

one. We expect it possible to prove that the topological quantum numbers found using this

prescription are in fact the unique consistent set that are also consistent with results that

can be deduced from the U(1) x U(1) x Z2 CS theory.

The construction is analogous to the orbifold FQH states (Barkeshli and Wen, 2010b),
except we take the anti-holomorphic part of the Z 2 orbifold as the non-Abelian part of the

CFT instead of the holonorphic part; the "charge" part is the c 1 chiral (holonorphic)

scalar field. Thus the total central charge of the CFT is ctot = c + c 2, while the difference

in central charges is crel = c - -= 0; this indicates that such a phase would have 0 thermal

Hall conductance, as expected from the fact that it does not have protected edge modes (see
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Section 7.7.3).

We could also take the holomorphic part of the Z 2 orbifold as the non-Abelian part, and
the "charge" part to be anti-holomorphic. This would yield the time-reversed counterpart of
this phase.

We take the "electron" operator to be:

Ve(z, f) = < 1(E)ei (z) (7.29)

where v = 2/N. The quasiparticle operators V are those operators that are mutually local
with respect to the electron operator:

V(z, z) - O(z)e2Q V(z). (7.30)

The OPE of V with V is:

Vq (w, )Ve(z, ) ~ (w - z)Q/v(w - z)to2 '02 . (7.31)

Thus for V, to be local w.r.t to Ve, we require:

Q/v - (h 0 2 - h 0 - h ) integer. (7.32)

Two quasiparticle operators are topologically equivalent if they can be related by the electron
operator. Proceeding in this fashion, we find topological orders that agree with the results of
the previous section. This construction allows us to obtain all of the topological information
of the twisted ZN phases. In the next section we list examples of results that we obtain from
this construction.

7.6 Examples

N=3

See Table 7.2.

N = 2

Here, we have 9 quasiparticles. as summarized in Table 7.2. It appears that this coincides
with the Ising x Ising topological order. Condensation of the boson '0 9,0 = j yields the
Z2 topological order.
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CFT Label quantum dim. spin
0 I 1 0

1 ei2/ 3 13/1 0+1/3 1/3

2 #Neil/ 3 I3 /2Y -3/4 + 1/12 ~ 1/3
3 j 1 -1+0~0

4 jei2/ 3 3/21 -1+ 1/3~ 1/3

5 #jei 1/ 3 3/2V 1 -3/4 + 1/12 ~ 1/3

6 o-eil/ 2 5/23 -1/16 + 3/16 = 1/8

7 -2 e 1 / 6 532 --1/16 + 1/48 = -1/24

8 o-2ei 6  53/2 -1/16 + 25/48 = 11/24

9 rieiI/ 2 53/ -9/16 + 3/16 - 5/8

10 72Ctl/
6 3/2, v3 -9/16 + 1/48 - 11/24

11 T26 5/ 6 3/2v 3 -9/16 + 25/48 = -1/24

12 #1e 
1/3 3/2, 2 -1/12 + 1/12 = 0

13 4 2 em 3/2W 2 -1/3+ 0 ~2/3

14 #2ei2/ 3 32p 2 1/3 - 1/3 = 0

Table 7.2: Quasiparticle operators for CFT construction of twisted Z 3 phase.

CFT Label q. dim. spin Ising x Ising fields
0 I 1 0+0=0 I01
1 #1 1 -1/2+0=1/2
2 j 1 -1+0~0
3 o2 1 -1/2+0~1/2 0

4 o-eii/2d v/V -1/16 + 1/8 = 1/16 o
5 o-2  V2 -1/16 + 0 = -1/16 - 0

6 T2 v/2 -9/16 + 0 = -9/16 f@

7 riefi/2v2 v/2 -9/16 + 1/8 ~ 9/16 @@

8 #ie i/2 V 2 -1/8 + 1/8 = 0 o (9

Table 7.3:
equivalent

twisted Z2 phase. Note this isQuasiparticle operators for CFT construction of
to Ising x Ising.

215



CHAPTER 7. TWISTED ZN TOPOLOGICAL PHASES

7.7 Discussion

7.7.1 Transition to twisted ZN topological phases

Let -y denote an anyon with statistical angle 0 = 27r/N, and let m control the mass of, or
energy gap to creating, -y. As we tune m, 'y may condense and drive a phase transition to
a new phase. This transition can be described by the (#) = 0 -> (#) # 0 transition in a
Chern-Simons Ginzburg-Landau theory:

E = |(o + iao)#12 - v2|(a, + iai)# 2 _ -1012 4 
-r a.- ,ac"AE'. (7.33)

0 47

In the case where -y is only conserved modulo N, there will be an additional term in the
Lagrangian:

L = t(#AI)N + h.c. (7.34)

In our study of bilayer quantum Hall phase transitions in the previous chapter, it was
suggested that this transition, in the presence of the 6f term, may be dual to a 3D Ising
transition. In those cases, one starts from an Abelian bilayer FQH phase and obtains the
orbifold FQH states by tuning the interlayer tunneling and/or interlayer repulsion. We may
obtain a similar situation in the context of Zv gauge theory if we reduce the energy gap to
the (1, 1) quasiparticles (the bound state of a single electric and a single magnetic quasipar-
ticle). The (1, 1) quasiparticles are conserved only modulo N, because there is no additional
conserved U(1) charge as in the FQH phases. This implies the possibility of an analog of
the bilayer (NNO) FQH phase transitions studied earlier but for a system in the absence
of a magnetic field and with no protected edge modes. The (1, 1) quasiparticle plays the
role of the f-exciton, both of which have statistical angle 0 = 27r/N. Tuning the interlayer
repulsion is equivalent to tuning the attraction between the minimal electric and magnetic
quasiparticles.

Note that while the ZN phase can be obtained in a time-reversal invariant system, con-
densing the (1, 1) quasiparticle breaks time-reversal for N > 2.

Therefore, consider starting with the Hamiltonian that gives deconfined ZN, and adding a
term that can tune the attraction between the minimal electric and magnetic quasiparticles.
This will reduce the energy gap to their bound state, and may be used to tune through a
3D Ising phase transition. The phase that appears after the transition, in analogy to the
bilayer FQH cases, may be the twisted ZN gauge theory, described by U(1) x U(1) XZ2
Chern-Simons theory.

7.7.2 Time-reversal invariance

We see that for N > 2, the topological quantum numbers break time reversal symmetry
there is no way that a topological phase with these quantum numbers can preserve time-
reversal symmetry. In fact, we saw that we had a choice of whether to pick the holomorphic
part of the Z 2 orbifold and the anti-holomorphic part of the U(1) sector, or vice versa. This
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fact at first appears worrisome, because these phases are separated from the ZN Abelian
phases through a 3D Ising transition, and the ZN phases are time-reversal invariant phases.
In the following we outline reasons to believe that indeed these twisted ZN phases are not
time-reversal invariant for N > 2.

First, observe that for N > 2, the number of quasiparticles in these phases is not a perfect
square. Typically, almost all time-reversal invariant topological phases are "doubled" theories
in the sense that mathematically they are described by G & C modular tensor categories,
where G is itself a modular tensor category and C is its time-reversed partner. More in
depth considerations also suggest that for N > 2, there is no consistent topological phase
that is time-reversal invariant and that has N(N + 7)/2 quasiparticles with the quantum
dimensions described in Section 7.4.

In addition to general considerations of what mathematically consistent time-reversal
invariant topological phases can exist, also note that the only way that we currently know
how to describe the U(1) x U(1) x Z 2 CS theory from a microscopic starting point is through
a slave-Ising/parton construction, where partons are put into V = ±1 IQH states. Such a
UV-completion necessarily breaks time-reversal symmetry, so it is consistent to find phases
that cannot exist in the presence of time-reversal symmetry. In the case of the ZN Abelian
phase, there are other microscopic realizations of such topological order that do preserve
time-reversal symmetry.

Finally, note that the picture that we developed for the transition from the ZN phase to
the twisted ZN phase involved the condensation of a particular anyon that has spin 1/N.
Thus for N > 2, putting this anyon into into some collective state will necessarily break
time-reversal symmetry, unless the anyon with spin -1/N is treated on exactly the same
footing.

7.7.3 Protected edge modes

The ZN Abelian phase does not have protected gapless edge modes in the absence of any
symmetries, and here we have seen that it is separated from the twisted ZN non-Abelian
phases by a Z 2 transition. Viewed from the twisted phase, the transition can be thought
of as the condensation of a boson j that squares to a topologically trivial excitation. On
general grounds, we expect that the boundary between two topological phases will not have
protected gapless edge modes if the two phases are related by a ZN boson condensation
transition. Since the ZN phase does not have protected gapless edge modes at a boundary
with the vacuum, this means that the twisted ZN phase will also not have protected gapless
edge modes at a boundary with the vacuum.

We expect that the above discussion can be made more concrete by studying the edge
through the U(1) x U(1) x Z 2 CS theory and the slave-Ising theory and showing that all
possible gapless edge modes can be gapped out by allowed perturbations.
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7.8 Summary, Conclusion, and Outlook

We have seen that the deconfined phase of ZN gauge theories has a neighboring non-Abelian

phase, the twisted ZN states. These two phases are separated by a continuous quantum

phase transition and the non-Abelian states can be accessed, for N > 2, only by breaking

time-reversal symmetry.

In this paper, we have studied the full topological order of these non-Abelian states. Much

of the topological order can be deduced directly from the U(1) x U(1) x Z 2 CS theory and the

fact that it is separated from the conventional ZN states by the condensation of a Z2-charged

boson. We found a way to compute the rest of the topological properties that we could not

calculate directly, although those results rely on additional assumptions.

In addition to deriving the topological order of these states, we presented a parton con-

struction that allows us to describe the ZN topological order in terms of fermions in band

insulators with Chern number ±1. This description of the ZN states then allowed us to de-

scribe the non-Abelian twisted ZN through a slave Ising theory of Z 2 fractionalization. Such

a construction provides trial projected wave functions and helps establish that these phases

are physical in that they can be realized in bosonic systems with local interactions.

There are two main conceptual issues lacking in our understanding of these states. First,

we should be able to prove more rigorously that the full topological quantum numbers pre-

sented here coincide with those of the U(1) x U(1) x Z2 CS theory and the associated slave

Ising description. Second. and more importantly, we would like to understand better how

to access these non-Abelian states by starting from the Abelian ZN states. We know little

besides the fact that the energy gap of the (1, 1) quasiparticles should probably be tuned

through zero.

In the case of the ZN topological order, we found a way through field theoretic and slave-

particle constructions to essentially gauge the electric-magnetic symmetry of the topological

quantum numbers. However, conceptually we do not know how to extend these ideas to

other discrete gauge theories. It would be interesting to develop more general theoretical,

physical descriptions that allows us to "twist" the symmetries of the topological quantum

numbers of a phase. In CFT. such a procedure is referred to as orbifolding. In the context of

bulk 2 + 1-dimensional states of matter, we do not have any physical understanding of how

this can be done more generally. One starting point would obviously be to try to develop

Chern-Simons descriptions of discrete gauge theories, in the way that the mutual U(1) x U(1)

CS theory describes ZN gauge theory.

7.A Ground state degeneracy on a torus for SU(N) 3 x U(1)
gauge theory

A procedure for calculating the ground state degeneracy on a torus for states obtained through

the projective construction was described in (Wen, 1999a). This procedure works for gauge

groups that are connected, while gauge groups of the form G x H., where G is connected and

H is a discrete group, require further analysis.
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The classical configuration space of CS theory consists of flat connections, for which the
magnetic field vanishes: ej~j&aj = 0. This configuration space is completely characterized by
holonomies of the gauge field along the non-contractible loops of the torus:

W(a) = Peif4-dI. (7.35)

More generally, for a manifold M, the gauge-inequivalent set of W(a) form a group: (Hom: r1 (M) -

G)/G, which is the group of homomorphisms of the fundamental group of M to the gauge
group G, modulo G. For a torus, 7r1(T 2 ) is Abelian, which means that W(a) and W(3), where
a and 3 are the two distinct non-contractible loops of the torus, commute with each other
and we can always perform a global gauge transformation so that W(a) and W(#) lie in the
maximal Abelian subgroup, Gabi, of G (this subgroup is called the maximal torus). The max-
imal torus is generated by the Cartan subalgebra of the Lie algebra of G; in the case at hand.
this Cartan subalgebra is composed of 3N - 2 matrices, 3(N - 1) of which lie in the Cartan
subalgebra of SU(N) x SU(N) x SU(N), in addition to diag(I, 0, ..., 1, 0. -1, 0,...). Since
we only need to consider components of the gauge field a' that lie in the Cartan subalgebra.
the CS Lagrangian becomes

£ = KIja'Oaj, (7.36)
47

where KIj = Tr(p'pJ) and pi, I = 1.- - , k + 1 arc the generators that lie in the Cartan
subalgebra.

There are large gauge transformations U = e2p/L, where xi and X2 are the two coor-
dinates on the torus and L is the length of each side. These act on the partons as

-> U', (7.37)

where @T = ('01, ** , 63N)- and they take a' -> a' + 27r/L. These transformations will be
the minimal large gauge transformations if we normalize the generators as follows:

p3, = 6jj(6jj - fj,j+ 1 ), I = 1, - , N - 1,

pij = 6ij(6iI+1 - 6i,1+2), I =N,--. , 2N - 2,

pi'j = 6ij~i,+2 - 6iI+3), I = 2N - 1,. 3N - 3,
3N-2 g.x N

p3N- = 6ij(6i,1 +i,N+1 - i,2N+1) (7.38)

The effective K-matrix is of the form

A 0 0 v

K = (7.39)
0 0 -A v 

where A is the Cartan matrix of SU(N) (an N - 1 x N - 1 matrix), and v is an (N - 1) x 1
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column vector with 1 on the first entry and Os everywhere else: vT - (1 0, ..., 0). For example,
for N = 2 the above K-matrix is

0 0 I
2 0 1
0 -2 I
I 1 1!

(7.40)

For N = 4, it is

2
-1
0
0
0
0
0
0
0

\1

(7.41)

In addition to the large gauge transformations. there are discrete gauge transformations

W E SU(N) x SU(N) x SU(N) x U(1) which keep the Abelian subgroup unchanged but

interchange the al's amongst themselves. These satisfy

WtGablW - Gabl, (7.42)

or, alternatively,

W t pW = TjjpJ, (7.43)

for some (3N - 2) x (3N - 2) matrix T. These discrete transformations correspond to the

independent ways of interchanging the partons and they correspond to the Weyl group of

the gauge group. The Weyl group for SU(N) is SN. These can be generated by pairwise

interchanges of the partons.

Picking the gauge ao = 0 and parametrizing the gauge field as

aI= 27r XI
L

I 27r XIa 2 - L (7.44)

we have

L = 2,rKijXX . (.)(7.45)
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The Hamiltonian vanishes. The conjugate momentum to Xf is

P2 = 2-FK1;X,. (7.46)

Since X' - X2' + 1 as a result of the large gauge transformations, we can write the wave
functions as

V)(X 2 ) = cie 2 x2, (7.47)
n

where X2 = (X2, -- X2N-3) and 1 is a (2N-3)-dimensional vector of integers. In momentum
space the wave function is

#(p-) Ec (2 N- 3 )(p-2 - 27)
Ii

~ Ec( 2 N- 3 )(KZ1 - n), (7.48)
i

where 6(2N-3) (y) is a (2N -3)-dimensional delta function. Since Xf ~ Xf +1. it follows that
ca = ci. where (n-')' - n1 +K 1 , for any J. Furthermore, each discrete gauge transformiation
Wi that keeps the Abelian subgroup Gabl invariant corresponds to a matrix T (see eqn. 7.43).
which acts on the diagonal generators. These lead to the equivalences ci = cTa.

Carrying out the result on the computer, we find that Det K is always equal to N 2, and.
remarkably, we find that the Weyl group. ie the group of discrete transformations that keeps
the Abelian subgroup unchanged, acts trivially in the sense that it does not lead to any
identifications among the states. This suggests that the K-matrix is a complete description
of the theory on a torus!
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Chapter 8

Summary and Outlook

In this thesis we studied various approaches to characterizing topological order in non-Abelian
FQH states. We began with the ideal wave function approach, which historically was first
developed beginning with Laughlin's wave function and subsequently by relating trial FQH
wave functions to conformal blocks of 2D CFT. More recently, the pattern of zeros approach
was developed, which is an attempt at developing a more systematic and physical charac-
terization of ideal FQH wave functions. The quasiparticle pattern of zeros reveals useful
and important ways of understanding the structure of quasiparticles in non-Abelian FQH
states, such as the way they form representations of a magnetic algebra, with members of a
representation differing by Abelian quasiparticles (e.g. by inserting flux quanta in the QH
fluid).

However the pattern of zeros is not a one-to-one labelling of wave functions, and in fact
for most pattern of zeros solutions, it was unclear in what sense they are useful in describing
gapped, incompressible FQH states. This is a question that we were able to address by
developing the theory of the orbifold FQH states. The orbifold FQH states present examples
in which the pattern of zeros of the electron operator in the edge theory naively corresponds
to a gapless ideal wave function. The fact that the orbifold states do exist as incompressible
FQH states shows that the corresponding pattern of zeros are indeed useful in characterizing
topological order, but the ideal wave function interpretation needs to be revised. As far as the
ideal wave functions are concerned, we found that the proper interpretation is that the ideal
Hamiltonian lies at a critical point, and can be perturbed to a nearby incompressible phase.
From the vertex algebra/CFT point of view, this corresponds to self-consistently enlarging
the chiral algebra by additional electron operators, and suggests that such phases may have
multilayer ideal wave functions.

We discovered the orbifold FQH states by first analyzing the U(1) x U(1) X Z 2 CS theory.,
which we had reason to believe was, for some choices of coupling constants, the low energy
effective theory of the Z 4 parafermion states. Since the gauge group U(1) x U(1) xZ2
contains a disconnected component, it is highly nontrivial to derive the topological properties
of such a theory; even mathematically defining this theory requires advanced methods from
group cohomology. Without entering into the advanced mathematical constructions, we were

able to deduce many highly non-trivial properties of this CS theory. Using a slave Ising
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construction, we were then able to give a UV-completion of this CS theory, compute more

topological properties, find possible trial wave functions, and show that the orbifold FQH
states are allowed physical states in principle.

Many of these theoretical considerations have some experimental consequences as well.

The multilayer pattern of zeros construction allows us to identify the simplest bilayer non-

Abelian generalizations of Halperin's (mnl) states, which helps identify candidate non-Abelian

states that have the greatest chance of being realized experimentally in multicomponent sys-

tems. Furthermore, some of the orbifold FQH states may also have experimental relevance

because of their close proximity in the phase diagram to the bilayer (ppq) states, which are

routinely experimentally realized. An important direction for future research is to try to

determine what values of microscopic parameters favor the formation of the orbifold FQH
states.

The orbifold states are also important for yet another reason: they provide examples

of phase transitions in non-Abelian FQH states, of which we have very few. The orbifold

states provided an example in which the theory contains a topologically non-trivial bosonic

quasiparticle that squares to the identity, and the condensation of this boson was found to

yield a Z 2 transition. This immediately suggests that more generally, the condensation of a

boson # in a topological phase that satisfies 4 = If will have a phase transition described

by a Z, gauged Ginsburg-Landau theory. Such a statement can even be generalized to the

condensation of a non-Abelian boson and the order of the phase transition deduced simply

from the fusion rules of the boson. An interesting question that we currently cannot answer

at all is how to view these transitions from the other side of the phase transition, where it

appears that they should be viewed as some kind of anyon condensation.

Our current understanding of the orbifold FQH states still has many gaps. First, we

should be able to calculate the twists of the Z 2 vortices from either the U(1) x U(1) X Z2

CS theory or from the slave Ising description, but currently we cannot. Furthermore. we
should be able to compute the spectrum of the edge states for these phases and find the ideal
multilayer wave functions that are in the same topological phase as these states.

Finally, in the last chapter of this thesis, we found that the parton construction and the
U(1) x U(1) x Z 2 CS theory can also describe non-FQH topological phases. In particular, we

were able to find a description of ZN topological phases using only integer quantum Hall states

of partons, which suggests that perhaps all topological phases, regardless of whether they

break time-reversal or have protected edge modes, can be described in a parton construction

where partons are put into integer quantum Hall states! Since the parton construction is in

some way also closely related to the pattern of zeros and vertex algebra construction, this

means that perhaps the pattern of zeros approach can also be used to classify non-FQH

topological phases in 2+1 dimensions! In such a case, it would be even a more powerful

classification and characterization of topological order than originally thought.

Throughout this thesis, we saw the limitations of our ability to theoretically understand

non-Abelian FQH states. The ideal wave function approach currently is still not powerful

enough to fully classify non-Abelian FQH states, although there is hope that the current

extension to pattern of zeros and vertex algebras will ultimately reach that goal. The other

general method, the parton/projective construction, is probably powerful enough in princi-
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ple to describe all topological phases, at least the FQH states, yet currently we have very
limited tools to actually analyze the topological order obtained in these constructions. The
only quantity that we do know how to systematically compute in general from the parton
construction is the ground state degeneracy on a torus and the pattern of zeros of the electron
operator in the edge theory. This is only a small part of the full topological quantum numbers
of a topological phase and we need to be able to develop tools to derive other quantities as
well. Through developing these tools further, we will be able to describe a wider variety of
non-Abelian topological orders and have a deeper physical understanding of their topological
properties.
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Appendix A

Rational Z2 Orbifold CFT

Since much of the work of this thesis uses the properties of the rational Z 2 orbifold CFT,
here we will give a brief account of some of its properties. The information here is taken from
(Dijkgraaf et al., 1989). where a more complete discussion can be found.

The rational Z 2 orbifold CFT. at central charge c = 1, is the theory of a scalar boson 0,
compactified at a radius R, so that - + 27rR. and with an additional Z 2 gauge symmetry:

-y. When jR2 is rational. i.e. R 2  p/p', with p and p' coprime. then it is useful to

consider an algebra generated by the fields j =iD, and e±i , for N pp'. This algebra
is referred to as an extended chiral algebra. The infinite number of Virasoro primary fields in
the U(1) CFT can now be organized into a finite number of representations of this extended
algebra AN. There are 2N of these representations, and the primary fields are written as

Vk = eik(/ 2N, with k = 0,1, -, 2N - 1. The Z 2 action takes Vk --+ V2N -k-

In the Z 2 orbifold, one now considers representations of the smaller algebra AN/Z 2. This
includes the Z 2 invariant combinations of the original primary fields, which are of the form

k = cos(k/ v2N); there are N +1 of these. In addition, there are 6 new primary fields. The
gauging of the Z 2 allows for twist operators that are not local with respect to the fields in the
algebra AN/Z2, but rather local up to an element of Z 2 . It turns out that there are two of
these twisted sectors, and each sector contains one field that lies in the trivial representation
of the Z 2 , and one field that lies in the non-trivial representation of Z 2 . These twist fields
are labelled o1, Ti, o-2, and T2. In addition to these, an in-depth analysis (Dijkgraaf et al.,
1989) shows that the fixed points of the Z 2 action in the original U(1) theory split into a
Z 2 invariant and a non-invariant field. We have already counted the invariant ones in our
N + 1 invariant fields, which leaves 2 new fields. One fixed point is the identity sector,
corresponding to V, which splits into two sectors: 1, and j = iov. The other fixed point
corresponds to VN. This splits into two primary fields, which are labelled as # for i = 1, 2
and which have scaling dimension N/4. In total, there are N + 7 primary fields in the Z 2
rational orbifold at "level" 2N. These fields and their properties are summarized in Table
A.1.

This spectrum for the Z 2 orbifold is obtained by first computing the partition function of
the full Z 2 orbifold CFT defined on a torus, including both holomorphic and anti-holomorphic
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Label

li

01
pN

o2

72Ti

T2

Scaling Dimension

0
1

N/4
N/4

1/16
1/16
9/16
9/16

k2 /4N

Quantum Dimension

1
1
I
1

vI
vN
v/N
vWI

2

Table A.1: k = 1, .. , N - 1

parts. Then, the partition function is decomposed into holomnorphic blocks, which are con-

jectured to be the generalized characters of the AN/Z 2 chiral algebra. This leads to the

spectrum listed in Table A.1. The fusion rules and scaling dimensions for these primary

fields are obtained by studying the modular transformation properties of the characters.

The fusion rules are as follows. For N even:

j x< j - 1,

9X =

N X #N -

As mentioned in (Dijkgraaf et al., 1989), the vertex operators #k have a fusion algebra

consistent with their interpretation as cos ko.

k X Ok' =k k' + Ok-k' (k' , k, N - k),

/k X kk 1 +J +02k,

ON-k X Ok 2k - N N

j X $k = -.

oTi x ori =+ 0v + #,
k even

a1 X o-2 = k,
k odd

X oi = -

(A.1)

(A.2)

(A.3)
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For N odd, the fusion algebra of 1, j, and #N is Z 4 :

j x j
Nx # 1

The fusion rules for the twist fields becomes:

~i)<0U '/N ± S
k odd

Ci X 02 =1+ # Ok.
k even

The fusion rules for the operators #k is unchanged.
The dimension of the space of conformal blocks on a genus g

following formula: (Verlinde, 1988)

N-1 g~1 N-1

dim V,=Tr E Ni = S - 9 -.

(i=0 
n=0

The S matrix was computed for the Z 2 orbifold in (Dijkgraaf et al.,
diately calculate the above quantity in this case. The result is:

(A.4)

(A.5)

surface is given by the

(A.6)

1989). so we can imme-

dim V = 29-1[29 ± ( 2 2g - 1)N 9 -1 + N 9] (A.7 )

For N = 1. it was observed that the Z 2 orbifold is equivalent to the U(1)s Gaussian theory.

For N = 2. it was observed that the Z 2 orbifold is equivalent to two copies of the Ising CFT.
For N = 3, it was observed that the Z 2 orbifold is equivalent to the Z 4 parafermion CFT of
Zamolodchikov and Fateev (Zamolodchikov and Fateev. 1985).

In Tables A.2 and A.3 we list the fields from the Z 2 orbifold for N = 2 and N = 3, their

scaling dimensions, and the fields in the Ising2 or Z 4 parafermion CFTs that they correspond

to.
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Z 2 Orb. field Scaling Dimension, h Ising2 fields

1 0 0

1/2 li@

1/2
#1 1/8 uou
oi 1/16 0, x
U2 1/16 E 0 0
Ti 9/16 a @

T2 9/16 0@Ou

Table A.2: Primary fields in the Z2 orbifold for
fields from Ising2 to which they correspond.

N =2, their scaling dimensions, and the

Z2 Orb. field Scaling Dimension. h Z4 parafermion field

1 0
1

3/4D
01 3/4

1/12
02 1/3 <b1

01 1/16 <b
92 1/16 '(_
Ti 9/16 <b1
T2 9/16 <b1

Table A.3: Primary fields in the Z2 orbifold for N = 3, their scaling dimensions, and the Z 4
parafermion fields that they correspond to.
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