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Weak Lensing Flexion as a Probe of Galaxy Cluster
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by

Benjamin Martin Cain
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Doctor of Philosophy

Abstract

Measuring galaxy cluster total masses and the amount of dark matter substructure
within galaxy cluster haloes is a fundamental probe of the ΛCDM model of structure
formation, as well as the interactions between baryonic and non-baryonic matter.
In this thesis I approach the topic of cluster mass structure in two ways. With a
combination of optical imaging, spectroscopy, and X-ray observations I determine
that the cluster RCS043938-2904.7, while apparently anomalous initially due to its
high optical richness and low X-ray surface brightness, is in fact an association of
structures along the line of sight. Accounting for this structure brings the observed
cluster properties into agreement with known scaling relations. I also present a novel
method for measuring weak gravitational lensing flexion to inform mass measurements
on small scales. While previously published methods for measuring flexion focus on
measuring derived properties of the lensed images, such as shapelet coefficients or
surface brightness moments, my method fits a fully mass-sheet-invariant parametrized
Analytic Image Model (AIM) to the each galaxy image. This simple parametric
model traces the distortion of lensed image isophotes. I tested the AIM method using
simulated data images with realistic noise and a variety of input image properties, and
I show that it successfully reproduces the input lensing fields. I also apply the AIM
method for flexion measurement to Hubble Space Telescope observations of Abell
1689, and detect mass structure in that cluster using only flexion measured with the
AIM method.

Thesis Supervisor: Marshall W. Bautz
Title: Senior Research Scientist/Associate Director, MIT Kavli Institute

Thesis Supervisor: Enectali Figueroa-Feliciano
Title: Assistant Professor of Physics
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Chapter 1

Introduction

1.1 Galaxy Clusters

The largest gravitationally bound objects in the universe are galaxy clusters. They

form in the rare, highest-density regions of the universe and are tracers of the most

massive perturbations of the primordial density field. Because of this, galaxy clusters

are important astrophysical laboratories for cosmological investigations.

The existence of dark matter was first posited after inconsistencies between the

observed luminous mass and the cluster member galaxy velocity dispersions were

observed (Zwicky, 1937), and it was later found to be essential for explaining not only

the structure of galaxy clusters, but also the anisotropies in the cosmic microwave

background radiation (e.g., Dunkley et al., 2009). The observed cosmic expansion

history confirms a much higher matter content in the universe than is observed in

luminous baryons (e.g., Astier et al., 2006; Mantz et al., 2008; Vikhlinin et al., 2009;

Mantz et al., 2010). Measurements of the number density and mass of galaxy clusters

puts significant constraints on cosmological parameters via comparison to the cluster

mass function, and measurements of mass substructure within galaxy clusters test the

ΛCDM paradigm when compared to numerical simulations and theoretical predictions

(e.g., Jenkins et al., 2001; Tinker et al., 2008).

In order to use galaxy clusters as a cosmological probe, it is necessary to measure

their mass. The mass function of galaxy clusters, particularly in the high mass limit,
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is very sensitive to Ωm and σ8 (e.g., Wen et al., 2010, particularly Figure 6). The state

of the field has reached a level of precision where significant discrepancies between X-

ray and gravitational lensing mass estimates have been observed, leading to estimates

of the line-of-sight structure of galaxy clusters (e.g. Peng et al., 2009; Newman et al.,

2009).

In addition to their cosmological significance as a class of objects, galaxy clusters

are also powerful probes for basic physics. By mass, galaxy clusters are dark matter

dominated, and their baryonic mass is dominated by an extremely rarified (ne ∼ 10−3

cm−3), high temperature (kTe ∼ 1− 10 keV), X-ray luminous plasma. Both of these

conditions make galaxy clusters a singular astrophysical laboratory for studying the

interaction between baryonic and non-baryonic matter, as well as a laboratory for

plasma physics in extreme conditions.

The combination of data from multiple techniques (such as the Sunyaev-Zel’dovich

effect, X-ray imaging spectroscopy, gravitational lensing, stellar kinematics, and/or

galaxy kinematics) can constrain the mass distribution over many scales and can

determine the line-of-sight structure of galaxy clusters (Newman et al., 2009; Peng et

al., 2010, and others), and comparing the X-ray surface brightness, cluster member

galaxy distribution and the weak-lensing measured total mass distribution in the

“Bullet Cluster” 1E 0657-558 provided some of the strongest evidence for the existence

of dark matter to date (Clowe et al., 2006).

Galaxy clusters are interesting objects, both astrophysically and cosmologically,

and measuring their mass distributions is an important part of understanding them.

Though the use of Sunyaev-Zel’dovich measurements to measure cluster masses has

grown in recent years (Brodwin et al., 2010; Mason et al., 2010), the primary tools

for studying galaxy cluster mass structure are X-ray imaging spectroscopy and grav-

itational lensing, both of which are topics of this thesis. I will postpone a discussion

X-ray observations, as it is well covered in Chapter 2. In the rest of this chapter I

will describe the formalism for gravitational lensing which will be used in this thesis.
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1.2 Gravitational Lensing

Gravitational lensing is a well described physical process and a full treatment of the

subject is beyond the scope of this thesis. For a more complete overview and a

derivation of the lensing equations presented here starting from the theory of General

Relativity, see the review article by Bartelmann & Schneider (2001). For the purpose

of this thesis, I will discuss only a few major elements which are essential to the

material presented in Chapter 3 and beyond.

Gravitational lensing preserves surface brightness. Because all photons from a

lensed image follow geodesics, the phase-space density of the photons is unchanged

as a consequence of Liouville’s Theorem. This photon phase space density,

f(~x, ~p) =
dN

d3~xd3~p
(1.1)

can be directly related to the surface brightness as a function of the frequency ν,

Iν =
dE

dAdΩdνdt
, (1.2)

by noting that for photons dN = dE/hν, d3~x = dA cdt, and d3~p = p2 dp dΩ =

(h3ν2/c3) dν dt, so

Iν =
h4ν3

c2
f. (1.3)

f is unaffected by lensing, and therefore neither is Iν . This conservation of phase

space density implies that the observed surface brightness of a lensed image at a

given position is equal to the surface brightness that would have been observed at the

corresponding location of that image if there had been no lensing.

It is useful to consider gravitational lensing as a coordinate transformation between

two sky planes - the source plane, which is the image which would have been observed

if there were no lensing, and the image plane, the image which is observed in fact.

A third plane, the lens plane, at the location of the lens, is also useful for relating

the lensing transformation to the mass density of the astrophysical lens. The surface

brightness at a position in the image plane is equal to the surface brightness at the

17



corresponding position in the source plane. If the transformation between the image

plane position ~β and the source plane position ~θ is a well defined function ~β(~θ), then

the observed surface brightness is given by

Iobs(~θ) = Isrc(~β(~θ)). (1.4)

The physics of gravitational lensing are contained in the conservation of surface bright-

ness and in the relationship between the source plane and image plane coordinates.

A diagram of basic gravitational lensing geometry is presented in Figure 1-1.

Gravitational lensing is induced by mass, and for a projected surface mass density

Σ(~θ) the projected lensing potential ψ(~θ) is defined by

ψ(~θ) =
1

π

∫
d2θ′

Σ(~θ′)

Σc

ln |~θ − ~θ′|, (1.5)

where

Σc =
c2

4πG

DS

DLDLS

(1.6)

is the critical lensing surface mass density which depends on the cosmological angular

diameter distances to the source (DS), to the lens (DL) and between the lens and

the source (DLS). See, e.g., Hogg (2000) for formulae to calculate these distances in

a variety of cosmologies. In this formulation is the assumption that the lens can be

approximated as a thin lens at a discrete distance from the observer, meaning that

the significant mass is confined to a region which is much narrower along the line of

sight than any of the distances DL, DS, or DLS. The ratio of the surface mass density

to the critical value is called the convergence, κ(~θ), and is related to the potential ψ

in Equation 1.5 by the two-dimensional Poisson Equation: ∇2ψ = 2κ.

The lensing transformation ~β(~θ) is defined in terms of the lensing deflection

~δ
(
~θ
)

= ∇ψ
(
~θ
)

as

~β
(
~θ
)

= ~θ − ~δ
(
~θ
)
. (1.7)

Equations 1.4, 1.5, and 1.7 describe the effect of lensing from a specific mass distri-

bution on the observed surface brightness profile.
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1.2.1 Complex Formalism

The mathematical description of gravitational lensing, particularly that of weak lens-

ing, is most compactly presented in complex notation. Vector quantities on a two

dimensional plane can be represented as complex numbers, where ~x = x1ê1 + x2ê2

becomes x = x1 + ix2. The complex conjugate is denoted by a starred quantity (e.g.,

x∗ for the conjugate of x). Derivative operations are also be described with complex

operations: The gradient operator ∇ becomes ∂ = ∂1 + i∂2. With this formalism, the

lensing transformation for complex positions β and θ is

β(θ) = θ − ∂ψ(θ) = θ − δ(θ). (1.8)

The convergence is a real-valued field derived from the real valued ψ(θ)

κ(θ) =
1

2
∂∗∂ψ(θ) =

1

2
∂∗δ. (1.9)

In discussing weak lensing (see below) it is useful to define other lensing fields using

derivatives of ψ. These fields have different spin properties. A field f has spin-m if a

local coordinate rotation about the image by an angle φ is equivalent to transforming

f → f ′ = fe−imφ. The conjugate of a field of spin-m is spin-(−m). Vector quantities

(such as position, or the derivative operator) are spin-1, and real valued fields (such

as κ) are spin-0.

1.2.2 Strong Lensing & Weak Lensing

Gravitational lensing in application is usually divided into two regimes - strong lensing

and weak lensing. Strong lensing refers to the regime where light from a single source

(at a single position β) is lensed to form images at multiple image positions θ. With

multiple images of the same source, δ can be constrained. For extended source objects,

such as galaxies, each resolution element that is identified in multiple images provides

further constraint on the positional dependence of δ.

Weak lensing refers to the regime where only a single image of each background
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source is observed. Lensing information is obtained by measuring the shape dis-

tortions of the source objects, and therefore requires the sources to be intrinsically

extended. For weak lensing, the lensing equation (Equation 1.7) is expanded in small

deviations about the observed image center. In weak lensing it is typically assumed

that κ � 1 and the lensing equation is linearized about the image center θ0. Doing

so yields

β(θ) = β(θ0) + ∆β = θ0 − δ(θ0) + (1− κ)∆θ − γ∆θ∗ +O(∆θ2). (1.10)

Here I have introduced γ = 1
2
∂∂ψ, the spin-2 shear field. Both κ and γ are evaluated

at θ0 and are constant with respect to a small position offset ∆θ.

For weak lensing applications, the constant-order solution,

β(θ0) = θ0 − δ(θ0), (1.11)

is satisfied but β(θ0) and δ(θ0) are unmeasurable, as there are no additional images to

constrain the source-plane position. In this case, the second order lensing distortions

are the source of information about the lensing fields. The local lensing equation is

then

∆β = (1− κ)∆θ − γ∆θ∗ +O(∆θ2) (1.12)

and it characterizes the distortion of galaxy image shapes by the lensing potential.

These distortions depend only on the curvature of the lensing potential and affect the

observed ellipticity of the lensed galaxies.

As was introduced by Goldberg & Natarajan (2002) and refined in Goldberg

& Bacon (2005), this expansion can be extended beyond linear-order to include

two additional lensing fields known as flexion1. Expanding the lensing equation to

1Other authors, including Goldberg & Bacon (2005), refer to flexion as “second-order weak
lensing”. To be consistent with a full description of gravitational lensing, I refer to the displacement
of images by a potential gradient as first-order lensing, shear and magnification as second-order
lensing, and flexion as third-order lensing. The order of a lensing effect thus matches the derivatives
of ψ on which it depends.
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quadratic/third-order yields

∆β = (1− κ)∆θ − γ∆θ∗ − 1

4
F∗∆θ2 − 1

2
F∆θ∆θ∗ − 1

4
G(∆θ∗)2 +O(∆θ3). (1.13)

Consider a resolved, circular image. The lensing transformation described in Equation

1.11 displaces the image center, the lensing transformation in Equation 1.12 distorts

the circle into a magnified ellipse, and the lensing transformation described in Equa-

tion 1.13 will additionally distort the ellipse into the familiar “arclet” or “banana”

shape seen in many lensing systems. See Figure 1-2 for images of arclets in an HST

data image of Abell 1689 (the dataset will be described in more detail in Chapter 5).

The flexion field F is called first flexion or 1-flexion, and G is second flexion or

3-flexion. I use the latter designations because the 1 and 3 refer to the spin properties

of the flexion fields: 1-flexion is a vector field and 3-flexion is a spin-3 field. F and

G are the two complex derivatives of the shear field, with F = ∂∗γ and G = ∂γ, and

furthermore the 1-flexion field is the gradient of the convergence:

F = ∂∗γ = ∂∗
(

1

2
∂2ψ

)
= ∂

(
1

2
∂∂∗ψ

)
= ∂κ. (1.14)

This relationship makes the connection between flexion and the mass distribution

very clear. Though the combination of the derivatives is different and not as directly

relatable to the surface mass density, 3-flexion independently constrains the mass

distribution as well, assuming that it is equally well measured (Bacon et al., 2006).

Unlike the shear and convergence fields, the flexion fields are not unitless. Flexion

has the units of inverse-angles, and the product of the image size Θ and the magnitude

of the flexion |F| or |G| is a unitless quantity which characterizes the contribution of

flexion to the coordinate tranformation.

1.2.3 Mass-Sheet Invariant Lensing

Because the source position β is not constrained in weak lensing, the images are

subject to the mass-sheet degeneracy described by Falco et al. (1985). This degeneracy
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implies that measurements of κ can only be constrained to a family of solutions, where

κ′ = λκ+ 1− λ is also valid for any real value of κ, equivalent to rescaling the source

plane relative to the image plane by a factor of λ while maintaining the same critical

curves (locations where κ = 1). Constraints from lensing properties only apply to

quantities which are invariant under such a mass-sheet transformation, and therefore

any weak lensing measurement must be quantified in terms of mass-sheet invariant

parameters. This mass-sheet degeneracy extends to the flexion fields, as well as any

possible higher-order lensing fields which are locally measured. Breaking the mass-

sheet degeneracy and relating the observed lensing fields to the true physical lensing

fields requires the source plane scale to be fixed using information from multiple

images, or by fixing the distance to one or more sources and to the lens. Strong

lensing intrinsically constrains the position of the unlensed source position with the

multiple observed image positions, meaning that the scale of the source plane is fixed.

This breaks the mass-sheet degeneracy.

For both second-order and third-order weak gravitational lensing, the transforma-

tion can be reparametrized to include only those parameter combinations which are

invariant under the mass-sheet transformation. Equation 1.13 has seven parameters

to define ∆β in terms of ∆θ. Instead of referring to the true source plane and its

coordinates, I refer to a rescaled version of it with coordinates ∆β̄ = ∆β/(1 − κ),

following Schneider & Er (2008). Reduced shear (g), and reduced flexions (Ψ1 and

Ψ3) are defined as:

g =
γ

1− κ
, (1.15)

Ψ1 =
F

4(1− κ)
, (1.16)

Ψ3 =
G

4(1− κ)
. (1.17)

With these definitions, the third-order lensing transformation becomes

∆β̄ = ∆θ − g∆θ∗ −Ψ∗1∆θ2 − 2Ψ1∆θ∆θ∗ −Ψ3(∆θ∗)2. (1.18)
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See Figure 1-3 for a depiction of the effect of each of the three lensing fields individually

as well as together. All of the physically measurable shear and flexion information

is quantified in the reduced shear, reduced 1-flexion and reduced 3-flexion, and the

seventh parameter corresponding to the mass-sheet scaling λ has been eliminated.

Ψ1 and Ψ3 can also be defined in terms of g, ∂∗g, and ∂g, though the formulation

presented here is simpler (Schneider & Er, 2008).

From this point forward in this thesis, when referring to shear I will be implic-

itly referring to the reduced shear, and likewise with flexion for reduced flexion. In

referring back to γ, F , or G, I will call them physical shear and physical flexion to

distinguish them. Additionally, from here onward I will assume that on an image-

by-image basis the lensing fields are defined at the origin of the lensing coordinates

and I will only consider a domain of the lensing transformation where the flexion

terms remain small with respect to the image scale Θ. This means that the unitless

quantity Dn = |Ψn|Θ� 1 for both n = 1 and n = 3.

1.3 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 describes my published work

on the measurement of line-of-sight structure in the cluster RCS043938-2904.7 using

a combination of X-ray and optical spectroscopy observations. The remainder of the

thesis focuses on a new method of weak lensing analysis with flexion: the Analytic

Image Model (AIM) method. Chapter 3 describes the AIM method in detail and

its implementation for this work; Chapter 4 describes the process I used to validate

the method with simulated data images; and Chapter 5 describes the application

of the AIM method to a Hubble Space Telescope dataset of Abell 1689. A1689

is an extremely well-studied galaxy cluster across all wavelengths, and serves as an

observational testbed for the AIM method. I show that AIM is successful in measuring

galaxy cluster substructure in A1689 using an adaptation of a flexion aperture mass

statistic. In Chapter 6 I summarize the results and present future goals and directions

to extend the applicability of the AIM method.
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1.4 Figures
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Figure 1-1: A schematic of the geometry of a gravitational lensing system, assuming
that the lensing occurs at a single, thin plane along the line of sight. The solid, bent
line indicates the actual path of a single light ray and the solid horizontal line is the
axis through the center of the lens system. To an observer, the source appears at a
position θ in the image plane (the red dot labelled A), though if there had been no
lensing the source image would have formed at β in the image plane (indicated by
the red dot labelled B). The angular diameter distances DL, DS, and DLS are also
labelled.

24



Figure 1-2: The central region of Abell 1689 has many lensing arcs which are easily
identified by eye. They differ in color (either bluer or redder) and in morphology
(thin and arced) from the large, yellow, elliptical cluster members in this image. For
reference, north is up and east is to the left, and the image is 145′′ on a side.
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Figure 1-3: A decomposition of the effect of each lensing field. Going left to right:
An unlensed, circular image; the circular image with shear; the circular image with 1-
flexion; the circular image with 3-flexion; and the circular image with all three lensing
fields combined. Note that in the 1-flexion and 3-flexion images the field has been
exaggerated to make the effect more apparent on its own.
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Chapter 2

RCS043938-2904.7: A Case Study

in Galaxy Cluster Substructure

2.1 Preface

The content of this chapter was published as Evidence for line-of-sight structure in a

comparison of X-ray and optical observations of the high-redshift cluster RCS043938-

2904.7 (Cain et al., 2008). The paper is reproduced here in full as a motivation for

the importance of accurately measuring mass structure in galaxy clusters.

2.2 Introduction

There is considerable interest in measuring the evolution of the galaxy cluster mass

function with redshift. In principle, such a measurement can test structure formation

and constrain the cosmic expansion history. One of the observational challenges

in such an undertaking is to identify all clusters in a particular volume; the other

is to reliably infer cluster mass from observable cluster properties, over a range of

cluster redshifts. Recent optical surveys, such as the Red-Sequence Cluster Survey

(RCS, Gladders & Yee, 2005); and the Sloan Digital Sky Survey (e.g., Koester et

al., 2007) have found large numbers of clusters at moderate to high redshift, with

0.2 . z . 1 and 0 < z . 0.3, respectively. At the high redshift extent, where
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spectroscopic information can be difficult to obtain on a survey scale, various optical

properties, such as richness or optical luminosity, can be taken to be mass proxies,

and have been shown to be strongly correlated with observables understood to be

related to cluster mass, such as galaxy velocity dispersion and X-ray temperature

(e.g., Yee & Ellingson, 2003; Lin et al., 2003; Popesso et al., 2004; Lopes et al., 2006).

In order to use optical richness (or any other optical property) as a mass proxy,

understanding the evolution of the mass-richness relation is critical to extracting

cosmological information, since any evolution in the relation must be separated from

the evolution of the mass function. In particular, some care must be taken when

attempting to extend the mass/observable relation to high redshift as many of these

relations are computed using local data.

Previous work has shown that optically-selected, high-redshift clusters at a fixed

optical richness are typically lower in temperature and underluminous in X-rays when

compared to local clusters (Hicks et al., 2005; Gilbank et al., 2004; Lubin et al., 2002;

Donahue et al., 2001). Since these clusters generally follow the local luminosity-

temperature relationship, the low temperatures and luminosities are interpreted as

an indication that the cluster galaxies are not in virial equilibrium with the X-ray

emitting gas. However, it is important to account for the significant scatter in the

relation between optical richness and X-ray luminosity, as an Eddington-like bias

will scatter points of lower than expected X-ray luminosity into an optically-selected

sample (e.g., Bower et al., 1994). Observing these high redshift clusters is thus an

avenue to study how clusters approach equilibrium.

RCS043938-2904.7 is part of a larger sample of high redshift, high richness RCS

clusters selected for X-ray follow up observations. X-ray properties of the sample as

a whole are described in a forthcoming paper by Hicks et al. (2008). Here we present

Chandra X-ray observations and optical spectroscopy of this apparently rich, X-ray

underluminous object. In §2 we describe the X-ray data reduction and analysis. In

§3 we compare mass estimates from the X-ray data to the known mass-temperature

and mass-richness relations in literature. In §4 we describe the optical spectroscopy,

in §5 we discuss our results and we summarize in §6. Throughout the paper we take
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a standard ΛCDM cosmology with H0 = 70 km s−1 Mpc−1, Ωm = 0.3 and ΩΛ = 0.7.

At the cluster redshift, z = 0.9558, 1′′ corresponds to a metric distance of 6.64 kpc.

Errors are indicated with 90% confidence intervals unless otherwise noted.

2.3 X-ray observations & data analysis

2.3.1 Reduction

The X-ray data consists of two Chandra ACIS-S3 observations. A log of the ob-

servations of RCS043938-2904.7 is presented in Table 2.1. Both observations were

performed in the VFAINT mode, and the CTI correction was applied with a focal

plane temperature of -120◦C. Data reduction was done using CIAO version 3.2 tools

and CALDB 3.3.0 starting with level 2 event lists from the standard Chandra pipeline.

The first observation of RCS043938-2904.7 (obsid 3577) had a highly variable

background and the second observation was kindly provided by the Director of the

Chandra X-ray Center to compensate. This second observation (obsid 4438) had

a low background and was analyzed by standard lightcurve methods to select the

acceptable background rate intervals, keeping 28.7 ks of the total 28.8 ks. More care

had to be taken with obsid 3577 because standard lightcurve methods eliminated

more than three-quarters of the data as unusable.

In order to maximize the useful portion of the data, we took the following ap-

proach. We binned the data into 100-second segments and sorted them from lowest

number of counts to highest number of counts. We assume that the cluster flux is

constant in time. This means that the signal-to-noise ratio is highest in the bin with

the least number of counts and lowest in the bin with the most counts. Suppose then

that there are S signal counts in each bin and Cn total counts in the first n bins.

Since Cn monotonically increases with n, we want to find the lowest value of n for

which
Sn√
Cn

>
S(n+ 1)√
Cn+1

, (2.1)

29



or equivalently,

n >
1√

Cn+1

Cn
− 1

, (2.2)

meaning that adding the data in the (n+ 1)th bin will reduce the total signal-to-noise

ratio in our filtered data set. This determined the time intervals we included in our

final data set independent of the source count rate. In total, 64.6 ks of the total 76.2

ks of data (85%) from obsid 3577 were kept. These data were combined with the

second observation (obsid 4438) using the CIAO script merge all for a total good-

data exposure time of 93.3 ks. The same script was used to create an exposure map

and exposure-corrected image.

The X-ray data were then filtered to the energy range of 0.3-7 keV and point

sources were identified and removed using wavdetect. Pulse-height spectra and as-

sociated response files were created from a 100 pixel (49.2′′) radius circular region

around the X-ray centroid. Background spectra were obtained from another 100

pixel radius circular region over 400 pixels (196.8′′) away from the cluster center,

though still from the same merged image. Care was taken to choose the background

region in a location where the two observations overlapped. Spectral analysis was

performed using XSPEC version 12.2.0 (Arnaud, 1996), and cluster emission was

modeled as an optically-thin thermal plasma (Mewe et al., 1985, 1986). The redshift

was fixed at the value determined from optical spectroscopy and the heavy element

abundance was fixed at 0.3 times Solar abundance (Anders & Grevesse, 1989). An

attempt was made to determine the metal abundances, but the data do not provide

a significant constraint. The spectral model also included Galactic photoabsorption.

The nH FTOOL from NASA’s HEASARC (Dickey & Lockman, 1990) was used to

fix the column density of HI. Spectra were binned so that a minimum of 20 counts

were in each energy bin.
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2.3.2 Temperature, surface brightness, mass profile & gas

mass fractions

The best fit temperature, fluxes and luminosities (with 90% confidence intervals)

are listed in Table 2.2. The bolometric luminosity was estimated by integrating

the model spectra between 0.05 and 50 keV, and over the 49.2′′ radius aperture. The

corresponding metric aperture radius at the cluster redshift is 391 kpc for RCS043938-

2904.7.

We extracted a radial profile of the cluster emission from the exposure-corrected

image. Point sources were removed using the CIAO script dmfilth and a β-model

(Cavaliere & Fusco-Femiano, 1976) was fit to the data. Data for the fit was taken

from a circular aperture with a radius of 98.4′′. This aperture was split into circular

annuli with 4.92′′ thicknesses and fit using the Sherpa program included in the CIAO

software The β-model for the surface brightness is:

I(r) = I0

(
1 +

(
r

r0

)2
)−3β+ 1

2

. (2.3)

We used the observed flux within the 49.2′′ radius spectral aperture to express the

normalization in terms of physical units. We also determine the central electron

density, ne0, using the thermal-plasma emission model discussed above and assuming

that the plasma is isothermal throughout the intra-cluster medium (ICM). The β-

model fitting results and 90% confidence intervals are presented in Table 2.3.

Assuming that the cluster is isothermal and in hydrostatic equilibrium, we can

infer the mass distribution (e.g., Neumann, 2005) of

M(r) =
3βTX
Gµmp

r3

r2 + r2
0

, (2.4)

where µ is taken at 0.59 for fully ionized hydrogen and helium of cosmic abundances.

To test the validity of the isothermality assumption we fit temperatures for two por-

tions of the spectral aperture: A circular region about the center of the emission and

an annulus immediately outside the circle. The border between these sub-regions was
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chosen so that the annulus and the circle each contain roughly the same number of

source counts. Results are consistent with the isothermal assumption but provide no

additional constraint.

We extrapolated the mass profile to obtain rδ, the radius at which the spherically-

averaged cluster density is δ times the critical density at the cluster redshift, and

Mδ, the cluster mass within rδ. We evaluate these parameters for δ =200, 500 and

2500. We detect cluster emission above background to a radius of approximately

r500, meaning that we see cluster emission from the majority of the area inside the

aperture used for obtaining the spectral data (r500 = 38.9′′ versus the spectral aperture

of 49.2′′). Values for Mδ and rδ are listed in Table 2.4. We find that though the

X-ray temperature, and by extension the inferred mass, is low compared to other

RCS clusters of similar richness, the measured core radius is comparable (Hicks et

al., 2008). Lastly, we estimate the cluster gas mass and gas mass fraction at these

three density contrasts by applying our β-model for the gas density and comparing

to our mass estimates. Results from this analysis are presented in alongside the mass

estimates in Table 2.4.

2.4 Relations between observables

2.4.1 Mass-temperature relation

We compare the values of Mδ calculated from the β-model to the mass-temperature

relations for M500 and M2500 determined by Vikhlinin et al. (2006) in Figure 2-1.

This figure also includes data from six other RCS clusters, similarly analyzed, for

comparison. A full treatment of this larger sample will be included in Hicks et al.

(2008). We scaled masses by E(z) ≡ H(z)/H0 to account for redshift evolution

expected in the self-similar model (e.g., Bryan & Norman, 1998). The M–TX relation

is then parametrized as

E(z)Mδ = M0

(
TX

5 keV

)α
1014 h−1

70 M�, (2.5)
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with M0 and α taken directly from Vikhlinin et al. (2006): For δ = 500, M0 =

2.93± 0.16 and α = 1.61± 0.11; for δ = 2500, M0 = 1.28± 0.05 and α = 1.64± 0.06.

RCS043938-2904.7 agrees with the relation (at 90% confidence) for both δ = 500 and

δ = 2500.

An additional mass estimator based on X-ray data which is known to have a tight

correlation with cluster mass is the integrated pressure Yδ ≡ Mg,δTX (Kravtsov et

al., 2006; Nagai et al., 2007). We compare our cluster data to the relation obtained

through simulations done by Kravtsov et al. (2006) and with the relation obtained

from Chandra data by Nagai et al. (2007). Our data agree at the 90% confidence

level with both relations.

2.4.2 Luminosity-temperature relation

We adopt the luminosity-temperature parametrization of a simple power law and

redshift evolution following the self-similar evolution model

E(z)−1LX = L0

(
TX

6 keV

)α
1044 h−2

70 erg s−1. (2.6)

For the temperature dependence exponent and normalization, we take the local

relation determined by Arnaud & Evrard (1999) for luminosity in the 2-10 keV band

extrapolated to r200. This gives log10 L0 = 0.54± 0.03 and α = 2.88± 0.15. Maughan

et al. (2006), who analyzed 11 high-z clusters observed with XMM and/or Chandra,

find this relation to be an acceptable fit to their data as well. Their assumed redshift

evolution includes an additional factor to account for evolution of the density contrast

needed for virialization, but they note that it is dominated by the self-similar evolution

factor. Given the size of the errors in our measurements, we neglect this smaller term.

We compare our extrapolated luminosity in the 2-10 keV band with the relation in

Figure 2-2, which shows that the present data are consistent with the local relation.

Six other RCS clusters, whose complete treatment will be presented in Hicks et al.

(2008), are included in the figure for comparison.
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2.4.3 Mass-richness relation

Optical richness can be quantified using the Bgc parameter introduced by Longair &

Seldner (1979), which has been shown to correlate well with cluster velocity dispersion,

as well as other observables which have been used for cluster mass proxies (Yee &

Ellingson, 2003). See Yee & López-Cruz (1999) for a detailed review of richness

measures. The RCS measures a modified version of this parameter, BgcR, considering

only the red-sequence galaxies in their richness calculation as an attempt to better

estimate the cluster mass (Gladders & Yee, 2005). The mass-richness relation is

parametrized as

M200 = 10ABα
gcR(1 + z)γ 1014 M�, (2.7)

as in Gladders et al. (2007). The measured BgcR value for RCS043938-2904.7 of

1591±494 (h−1
50 Mpc)1.77 (also listed in Table 2.3) was derived from the RCS data using

the method described in Gladders & Yee (2005). We use the relation obtained by

Blindert et al. (2008, in preparation) from a dynamical study of 33 low- to moderate-

redshift (z <0.6) RCS clusters. They found values of A = −5.7±3.4 and α = 2.1±1.2

(68% confidence) and a ±0.46 dex scatter in mass at a constant richness. This is

consistent with the values measured by Yee & Ellingson (2003) for the X-ray selected

CNOC1 sample, over a similar redshift range. The Blindert sample was limited in

redshift and places no constraint on redshift evolution, so we take γ ≡ 0. This is

also consistent with the values and evolution inferred from the cosmological study of

Gladders et al. (2007). In Figure 2-3 we compare our cluster to the Blindert relation.

Assuming that the spherically symmetric β-model is a good representation of the

system, RCS043938-2904.7 is a significant outlier, with far too large a richness mass

for its X-ray mass. Optical spectroscopy measurements of RCS043938-2904.7 show

evidence of significant substructure, as will be described in the next section.
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2.5 Optical spectroscopy

Optical spectra have been obtained for galaxies in RCS043938-2904.7 (Gilbank et

al., 2007; Barrientos et al., 2004). The details of the observations are given in these

papers. Briefly, the datasets comprise 34 spectroscopically confirmed members of

the RCS043938-2904.7 system, with redshifts from LDSS-2 and IMACS on the 6.5-m

Magellan Baade telescope and FORS2 on the VLT. The spectra of Gilbank et al.

(2007) were classified on a scale of 1-5 in terms of redshift quality. For this discussion

we take classes 1-3 to be secure redshifts and class 4 to be lower confidence redshifts.

Redshift measurements were not possible for class 5 spectra. The VLT spectra of

Barrientos et al. (2004) have been reclassified onto the same system. To this sample

we add recent spectroscopy from FORS2 on the VLT, similar to those described

in Barrientos et al. (2004). These data will be presented in Barrientos et al., in

preparation.

As discussed in Gilbank et al. (2007), RCS043938-2904.7 displays a clear double

peak in the redshift histogram at z ∼ 0.96. Figure 2-4 shows a redshift histogram

centered on the mean redshift of the two components, z = 0.9558. Only galaxies

within a radius of 5 arcminutes, corresponding to a projected distance of ∼ 2.0 h−1
70

Mpc, are considered. Fitting a double-gaussian to the peaks yields central locations of

the two peaks which are insensitive to the redshift quality class under consideration.

The separation of the two peaks in the mean rest frame ranges from 3000 km s−1 to

3250 km s−1 depending on the redshift quality chosen. The difference between the

two cases is comparable with the redshift uncertainty on a single measurement (∼ 200

km s−1, Gilbank et al., 2007).

With the new spectroscopy, there are now enough redshifts to attempt to measure

approximate velocity dispersions for the two components. Using all galaxies of redshift

quality 4 or better gives: σ = 1080 ± 320km s−1 for the z=0.9435 component and

σ = 560 ± 160km s−1 for the z=0.9681 component, where the errors are based on

jackknife uncertainties as in Gilbank et al. (2007). Such velocity dispersions would

correspond to masses of 7.5×1014 M� and 1.0×1014 M� respectively (Carlberg et al.,
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1997). However, velocity dispersion estimates based on so few points may be biased

and the formal uncertainties are large enough that the values are consistent with both

components having equal velocity dispersions. We note that both peaks in the velocity

histogram contain approximately equal numbers of galaxies and use this, coupled with

the velocity dispersion uncertainties, to adopt the conservative assumption that both

systems have approximately equal masses. Refined mass estimates from dynamics

will require more redshifts and such work is ongoing. Figure 2-5 shows the spatial

distribution of these galaxies on the sky in a composite R, I and K band image,

overlaid with X-ray contours. Contours begin 1σ, assuming Poisson statistics, above

the average number of counts per pixel in the entire image (which is essentially the

background), and are spaced in 0.25σ intervals. Figure 2-6 shows the same X-ray

contours along with RCS galaxy overdensity contours, starting at 2σ and spaced in

0.25σ increments, as well as the positions of galaxies with measured spectroscopic

redshifts, including field galaxies and galaxies from each of the two redshift peaks.

The two redshift peaks overlap in position on the sky and thus it is not possible

to say for certain which system is responsible for the X-ray emission measured, or

whether both systems contribute, though the latter seems most likely. From Figures

2-5 and 2-6 it can be seen that the peak of the X-ray emission is nearly coincident

with the brightest cluster galaxy (BCG) of the z=0.94 cluster, and that the emission

is elongated in the direction of the z=0.96 cluster’s BCG. This adds further support

to the idea that the observed X-ray emission is likely due to a combination of emission

from each of the two systems.

Figure 2-3, as noted above, shows BgcR plotted against M200 for our RCS043938-

2904.7 and a selection of other RCS clusters. RCS043938-2904.7 lies well outside the

region bounded by the 1-σ scatter, appearing significantly richer than its X-ray mass

would suggest. This is not surprising given that the spectroscopy discussed above

suggests that RCS043938-2904.7 is an extended structure containing two comparable,

less rich systems. Since these systems lie so close together in redshift that their red

sequences overlap, the red-sequence BgcR measurement is the sum of that of both

these systems. A more reasonable estimate of the true richness associated with the
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measured mass X-ray mass, in light of the double-peaked velocity distribution, would

be to halve the measured BgcR. Doing so brings the X-ray mass and the richness mass

into agreement, within the large scatter.

2.6 Discussion

RCS043938-2904.7 has an inferred X-ray mass which is one to two orders of mag-

nitude lower than the mass indicated by its red-sequence richness, assuming that

the X-ray emission is from a single, spherical, isothermal gas distribution and that

the richness is associated with a single cluster (M200,X = 4.6 ±6.0
1.7 ×1013 M� versus

M200,BgcR
= 1.1 × 1015 ± 0.46 dex M�). This is a significant discrepancy for two

reasons. First, as mentioned before, richness is well correlated on average with other

observable properties. Secondly, clusters with masses above 1015 M� are quite rare,

especially at z ∼ 1. This means that if the richness mass estimate of RCS043938-

2904.7 were truly indicative of its size, it would be among the largest overdensities in

the observable universe, while also being very underluminous. Yet the X-ray prop-

erties, which suggest a much less massive object, are consistent with the expected

Mδ–TX and LX–TX relations, meaning that the temperature of the plasma is con-

sistent with its observed distribution. One possible interpretation of these results is

that the red-sequence galaxies used to measure the optical richness and the X-ray

emitting gas trace different volumes. Specifically, while the X-ray luminous plasma is

confined within one or more deep gravitational potential wells, the galaxy population

may occupy a more extended region which is not yet dynamically relaxed. The exis-

tence of such a structure in RCS043938-2904.7 is supported by its two-peaked radial

velocity distribution.

Merging and dynamically active clusters are expected and observed to be increas-

ingly common at higher redshifts (e.g., Jeltema et al., 2005). Thus any cluster sample

will include an increasing fraction of dynamically young systems at higher redshift.

Furthermore, N-body simulations indicate that a significant fraction of cluster samples

selected using broadband color discrimination will be systems whose galaxy members
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are not predominantly associated with a single, large potential well, but rather are

spread amongst a number of smaller, but still physically associated, dark matter halos

distributed along the line-of-sight (Cohn et al., 2007). Simulations of the RCS tech-

nique on mock catalogs tuned to reproduce observables such as the observed galaxy

color distribution and the two-point correlation function show that we expect false-

positive cluster detections to occur at a frequency of ∼5% in the RCS (Gladders,

2002). This agrees with initial results based on a small number of clusters (Gilbank

et al., 2007; Blindert et al., 2007).

Since the red-sequence galaxies used in the RCS richness measurements form very

early (z & 2) in high density regions, overdensities of red-sequence galaxies can be

associated with very large structures which may not be relaxed during the observed

epoch. The X-ray luminous plasma, on the other hand, will be confined to one or

more gravitational potential wells whose size is limited by the collapse timescale. In

the hierarchical collapse paradigm of a ΛCDM universe, the large, virialized wells

seen in local clusters do not develop until long after the galaxies have formed. In this

scenario, for any evolving cluster, there is likely to be an epoch at which the apparent

richness overestimates the virialized mass.

Moreover, the misinterpretation of the X-ray emission from a complex, dynami-

cally young cluster as a single, virialized structure can lead to an overestimate of the

inferred gas mass fraction and an underestimate of the total mass, which can be seen

as follows. Let us consider two models for the X-ray emission seen in RCS043938-

2904.7. Our one-component model (Model I) is the set of assumptions used in our

X-ray analysis thus far: X-ray emission is from a single, spherically-symmetric dis-

tribution of gas in hydrostatic equilibrium with a gravitational potential which is

well-described by a β-model. The two-component model (Model II) assumes that

there are two nominally identical (i.e. with the same values of β, r0 and TX), virial-

ized gas distributions, separated along the line of sight, and that each of the two gas

distributions is responsible for half of the measured X-ray flux. Each component is

assumed to obey the local Mδ–TX and LX–TX relation.

Because it assumes the flux is halved between the two components, the luminosity
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inferred per cluster in Model II is half that of Model I. The luminosity scales as the

square of the gas mass, so since the spatial distribution is the same for each cluster,

the inferred gas mass and thus also the electron density will be reduced by a factor of
√

2 in each of the clusters relative to Model I. Since our total mass estimate for each

cluster depends only on the temperature of the X-ray emitting gas and its distribution

in the plane of the sky, each of the two components in Model II will have the same

total mass as the single component in Model I. This means that the inferred gas mass

fraction will be a factor of
√

2 lower using Model II versus Model I. The total mass,

total gas mass and gas mass fraction results using each of the two models can be

found in Table 2.4.

Similarly, n identical components along the line of sight would reduce the inferred

gas mass per component and the overall gas mass fraction by a factor of
√
n in addition

to reducing the luminosity per component by a factor of n. In principle, luminosity

measurements and the LX–TX relation constrain the number of components allowed,

but our luminosity errors are too large to distinguish between Model I and Model II.

Mathiesen & Evrard (2001), using a suite of hydrodynamic cluster simulations,

found that during merger events the ICM spectral fit temperature will underestimate

the mass-weighted ICM temperature by ∼ 20%, because the cool, denser inflowing

gas will dominate the emission over the gas already heated by the merger. This

means that for a dynamically young system, such as RCS043938-2904.7, where even

the most virialized components are likely to have undergone recent mergers, X-ray

mass estimates for those clusters may still be below the virialized masses by several

tens of percent. In a recent detailed study of the cluster Cl 0024+17, Jee et al. (2007)

found a similar underestimation of the true mass distribution due to the assumption

of a single virialized mass structure rather than two components extended along the

line of sight and in a state of ongoing dynamic interaction.

In summary, the assumption of spherical symmetry and virial equilibrium for

a cluster system containing extended line-of-sight structure and dynamic evolution

can lead to overestimation of the gas mass fraction and underestimation of the total

mass. The baryon mass fraction in relaxed galaxy clusters is expected to be a uni-
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versal quantity (e.g., White et al., 1993; Vikhlinin et al., 2003), suggesting that the

comparison of cluster gas mass fractions inferred by assuming spherical symmetry to

canonical cluster values might be used to infer the presence of line-of-sight structure.

As noted by White et al. (1993), the cosmological baryon mass ratio, Ωb/Ωm, provides

an upper limit to the total gas mass fraction. This ratio from the WMAP three-year

data results is Ωb/Ωm = 0.175± 0.012 (Spergel et al., 2007).

Galaxy cluster samples at high redshift are expected to have lower cluster gas

mass fractions than local samples (Hicks et al., 2008; Sadat et al., 2005; Ettori et al.,

2004, e.g.,). Also, a positive correlation between temperature and gas mass fraction

has been observed (e.g., Vikhlinin et al., 2006; Sanderson et al., 2003). This suggests

that a high-redshift cluster with a low X-ray temperature, such as RCS043938-2904.7,

ought to have a correspondingly low gas mass fraction. Instead, we observe a very

high gas mass fraction assuming that it is a single, spherical matter distribution, espe-

cially measured within a large radius. At r500, we find fgas,500 = 0.17±0.07
0.08. We observe

cluster emission to approximately this radius, so this gas mass fraction estimate is

unlikely to have the extrapolation errors that the measurement at r200 might. As-

suming that Model II is more appropriate for the physical state of RCS043938-2904.7

lowers the gas mass fraction towards what is expected.

Would this pair of clusters be physically associated? As an order-of-magnitude

argument, we note that the richness mass (∼1×1015 M�) is roughly equal to that of a

sphere of radius ∼13 Mpc with the cosmic density of z = 0.96. Optical spectroscopy

shows that the redshift separation of the two components in RCS043938-2904.7 is

∆z ≈ 0.005, or a physical separation of about 12 Mpc in the Hubble flow. This

rough agreement supports the conclusion that RCS043938-2904.7 is an incompletely-

virialized system which is still approaching equilibrium, and that the galaxy dis-

tribution traces unvirialized matter extended along the line-of-sight, as well as the

virialized matter traced by the X-ray gas. The free-fall collapse time for the two

components given by the richness mass is approximately equal to the lookback time,

indicating that this cluster would be nearly virialized by about the present epoch.

Additional observations are required to determine the physical state of RCS043938-
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2904.7. Due to the low number of source photons from this cluster, there are large

errors in the X-ray luminosity and temperature. Improvements on both would in-

crease the precision of the X-ray mass estimates and the gas mass fractions. An

independent mass estimate, such as might be obtained from weak lensing, could also

help distinguish which mass estimate (richness or X-ray) is more appropriate, as well

as giving additional insight into the distribution of matter. A weak lensing measure-

ment, though difficult, would be particularly interesting for this system if it could

trace the spatial distribution of cluster mass perpendicular to the line of sight, pos-

sibly revealing more substructure. Additional spectroscopy, currently underway, will

help to further constrain line-of-sight substructure.

2.7 Summary

We present new CXO observations and optical spectroscopy measurements for the

high-redshift galaxy cluster RCS043938-2904.7 detected in the Red-sequence Cluster

Survey. We have obtained a spectral temperature and estimated total mass, gas mass

and gas mass fractions from the X-ray data. The measured X-ray properties and mass

estimates agree well, within errors, to the locally derived LX–TX and Mδ–TX rela-

tions for galaxy clusters, but not with the local M200–BgcR relation. Spectroscopy of

RCS043938-2904.7 shows a two-peaked velocity distribution, suggesting substructure

along the line-of-sight. Assuming that there is a single, virialized mass distribution in

RCS043938-2904.7 results in gas mass fraction measurements which are higher than

others in the RCS, which may also indicate line-of-sight structure. Accounting for

the substructure with a two-component model for the mass distribution brings the

richness mass into agreement with the X-ray mass and the gas mass fractions into

agreement with expected values. Weak lensing measurements, additional X-ray ob-

servations and additional spectroscopy would be useful in further constraining both

the total amount of mass in the system and its distribution.
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2.8 Tables & Figures

Obsids Observation Datesa Livetimeb Countsc

3577, 4438 04/16/2003, 06/06/2003 93.3/105.0 359/2093

Table 2.1: Observation Log. a: Dates are in m/d/y format. b: Livetime is in ks, and
split into good/total amounts. c: Counts are in the 0.3-7.0 keV band, and split into
source/source+background totals.

Redshift TX
a L0.5−2

b L2−10
b Lbol

b S0.3−7
c

0.9558 1.5±1.0
0.4 4.0±3.1

2.7 2.1±1.7
1.4 6.9±4.0

3.5 13.7±7.5
7.0

Table 2.2: Spectral Analysis Results. a: Temperature is in keV. b: Luminosities in
1043 erg s−1. Subscripts refer to the rest frame energy band; the bolometric luminosity
is estimated by the 0.05-50 keV band. c: Measured flux in the 0.3-7.0 keV band, in
units of 10−15 erg cm−2 s−1. All values are from within the 49.2′′ radius spectral
aperture.

I0
a ne0

b r0
c β BgcR

d

3.7±2.5
2.0 3.9± 1.5 14.7± 1.9/117± 15 0.56±0.06

0.04 1591±464

Table 2.3: β-model Results and Optical Richness. a: Central surface brightness, in
10−14 erg cm−2 s−1 arcmin−2. b: Central electron number density, in 10−3 cm−3. c:
β-model core radius, in arcseconds/kpc. d: Optical richness, in (h−1

50 Mpc)1.77, as
measured by the RCS (Gladders & Yee, 2005).
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Model I Model II
δ rδ

a Mδ
b Mgas,δ

c fgas,δ
d Mδ

b Mgas,δ
c fgas,δ

d

200 510±160
70 4.6±6.0

1.7 1.05±0.47
0.34 0.23±0.09

0.11 9.2±12.0
3.4 1.48±0.66

0.48 0.16±0.07
0.08

500 310±110
50 2.6±3.7

1.0 0.45±0.25
0.16 0.17±0.07

0.08 5.2±7.4
2.0 0.64±0.35

0.23 0.12±0.05
0.06

2500 90±65
50 0.33±1.32

0.30 0.03±0.08
0.03 0.09±0.03

0.04 0.7±2.6
0.6 0.04±0.11

0.04 0.07±0.02
0.03

Table 2.4: Total Mass, Total Gas Mass and Gas Mass Fraction Estimates. Mass
values are for a single component in Model I and for the sum of two components in
Model II. a: The physical radii corresponding to each of the three density contrast
radii, in h−1

70 kpc. b: Total mass for each model and density contrast, in 1013 h−1
70 M�.

c: Gas mass for each model and density contrast, in 1013 h
−5/2
70 M�. d: Gas mass

fractions for each model and density contrast, in units of h
−3/2
70 .

Figure 2-1: Mass-Temperature Relation for M2500 (at left) and M500 (at right). The
solid lines are the relation obtained by Vikhlinin et al. (2006). The red square point
on each plot indicates RCS043938-2904.7. The blue triangle points indicate a selec-
tion of other RCS clusters which were similarly analyzed and are provided only for
comparison. A detailed analysis of the set of RCS clusters and their redshift evolution
is beyond the scope of this paper and will be provided in Hicks et al. (2008).
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Figure 2-2: Luminosity-Temperature Relation. Luminosity is in the 2-10 keV band,
extrapolated to the radius r200. Redshift evolution is scaled out according to the self-
similar model. The red square point indicates RCS043938-2904.7. The blue triangle
points indicate a selection of other RCS clusters which were similarly analyzed and
are provided only for comparison. A detailed analysis of the set of RCS clusters and
their redshift evolution is beyond the scope of this paper and will be provided in Hicks
et al. (2008).
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Figure 2-3: The M200–BgcR relation, plotting X-ray mass against richness. The solid
line is the Blindert et al. relation and the dotted lines above and below are the 1σ
scatter (±0.46 dex). The red square point indicates RCS043938-2904.7 assuming that
all the richness is associated with a single component (Model I). The green diamond
point indicates each of the two equal-mass components within RCS043938-2904.7
assuming Model II, with half the observed richness associated with each component.
The blue triangle points indicate a selection of other RCS clusters which were similarly
analyzed and are provided only for comparison. A detailed analysis of the set of RCS
clusters and their redshift evolution is beyond the scope of this paper and will be
provided in Hicks et al. (2008).
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Figure 2-4: Rest-frame velocity histogram centered around the mean velocity of the
RCS043938-2904.7, z=0.9558. Hatched histogram shows secure redshifts and open
histogram shows lower confidence measurements. The overplotted curves show best
double-gaussian fits to these, solid and dashed curves respectively. Uncertainties are
sufficiently large that velocity dispersion measurements for each of the two compo-
nents are consistent with equal velocity dispersions.
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Figure 2-5: Three-color image (Red, green and blue are K, I and R bands, respec-
tively) of RCS043938-2904.7 with overlaid green X-ray contours. North is up and
east is to the left, and the image is 2′ (797 kpc) on a side. The X-ray image was
smoothed using a 0.75′′ gaussian kernel and X-ray point sources were removed us-
ing the CIAO script dmfilth. Contours begin 1σ above the mean counts per pixel
(assuming Poisson statistics) and contours are separated by a 0.25σ spacing.
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Figure 2-6: In red, X-ray contours as in Figure 2-5 and in blue RCS galaxy overdensity
contours, starting at 2σ and increasing in 0.25σ increments. Points indicate galaxies
with measured redshifts from optical spectroscopy. X points indicate galaxies with
which are not within a ±5000 km s−1 window of the mean cluster redshift, box points
indicate galaxies associated with the z=0.94 cluster, and diamond points indicate
galaxies associated with the z=0.96 cluster.
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Chapter 3

The Analytic Image Model

Method for Measuring Flexion

3.1 Measuring Flexion

Techniques for measuring the gravitational lensing fields and inferring the lens mass

distribution are well established for both strong lensing and weak lensing (e.g., Kaiser

et al., 1995; Coe et al., 2008, and others). In recent years, several approaches have

been developed for measuring flexion fields from galaxy images. In this chapter I will

describe each briefly, and then extensively describe the Analytic Image Model (AIM)

method which this thesis focusses on.

3.1.1 Shapelets

Goldberg & Natarajan (2002) introduced a method of improved shear estimation

based on measurements of the octupole moments of the lensed galaxy surface bright-

ness distribution in addition to the usual quadrupole moment measurements. Sim-

ilar work was done independently by Irwin & Shmakova (Irwin & Shmakova, 2005,

2006). Goldberg & Bacon (2005) refined the mathematics of this method and ap-

plied the shapelets image decomposition (Refregier, 2003; Refregier & Bacon, 2003).

The shapelets method decomposes each data image over a set of basis images, and
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characterizes the lensing transformation as a linear operation on this set of basis

functions. The basis functions are the Gauss-Hermite polynomials which describe the

two-dimensional quantum simple harmonic oscillator (QSHO) wavefunctions, and the

linear operation is cast in the well-described mathematical raising and lowering op-

erators of the QSHO. Since the Hermite polynomials are a complete, orthonormal

basis, any image can be decomposed into shapelets.

However, as noted in Leonard et al. (2007), shapelet decomposition can be com-

putationally slow for large images and the appropriate maximum number of required

shapelets coefficients is not well defined a priori and must be determined empirically.

This is because, although shapelets provide a complete set of basis functions, the

shapelets are not the most natural basis functions. Massey et al. (2007) improve

on the Cartesian shapelets by introducing a polar shapelets approach to shear and

flexion estimation which more naturally describes the surface brightness profile of

observed galaxies, though in the case of steep or highly elliptical unlensed galaxy

profiles these basis functions do not accurately reproduce the shear field and under-

estimate it by as much as 20% (Melchior et al., 2010). In the regime where flexion

is a significant effect, the shear magnitude is a non-trivial fraction of unity, mean-

ing that lensed objects have high observed elllipticity, and steep, Sérsic-type galaxy

profiles are commonly observed. This raises significant questions about the validity

of using a shapelet decomposition for the more highly-lensed objects where flexion is

non-negligible.

Additionally, to describe gravitational lensing as a linear operation on the basis

functions, the surface brightness distribution is expanded in a Taylor series, which

adds another approximation to the modeling of the light distribution on top of the

quadratic lens equation approximation. The inversion of this linear operation requires

the assumption that some shapelet coefficients are zero, either individually or as an

average over an ensemble of galaxies. While this assumption is often justified, there

are systematic effects such as the intrinsic co-alignment of galaxies due to large scale

structure which must be considered.

50



3.1.2 Higher Order Lensing Image Characteristics (HOLICs)

It is also possible to characterize the lensing transformation by observing its effect

on moments of the surface brightness profile. As discussed in Chaper 1, gravitational

lensing is a coordinate transformation between the source plane and the image plane.

Moments of the observed surface brightness profile can be measured, and under some

assumptions on the moments in the source plane an inversion can be made to deter-

mine the lensing fields. In many weak-lensing shear measurements this is done using

quadrupole moments to measure the observed ellipticity and relate that to the shear.

These moments are usually calculated using a window function to reduce noise from

high radius but low signal pixels. Irwin & Shmakova (2006) produced an early ap-

proach to measuring what they referred to as “sextupole lensing”, which is now called

flexion. Okura et al. (2007, 2008) adapted the mathematics of the moment approach,

or, as they call it, Higher-Order Lensing Image Characteristics (HOLICs), to be in

terms of the flexion fields defined by Goldberg & Bacon (2005). Assuming that the

intrinsic odd moments of the unlensed images are randomly distributed about zero,

third-order or higher moments of the lensed image can be inverted to yield estimates

of the flexion fields.

The work by Okura et al. does not fully take into account the mass sheet de-

generacy and in many places assumed that the shear was small. This is not a good

assumption for most regions where flexion is measurable, as noted by Schneider &

Er (2008) who modify the HOLICs approach to be fully mass-sheet invariant and

describe the moments and the lensing fields in a consistent mathematical framework

using complex variables instead of indexed tensors.

It is useful to note that the shapelets approach and the HOLICs approach share

the assumption of a zero value (or zero mean value) for the odd-order moments and

shapelet coefficients of the unlensed images. Fundamentally, the shapelets method

is a specialized version of the HOLICs method. The HOLICs approach assumes a

quadratic local lensing transformation and inverts windowed moments to yield shear

and flexion measurements. The shapelets method combines the window function and
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moment orders into the specific combinations which correspond to the QSHO wave-

functions and use a linearized approximation to the surface brightness distribution to

invert the lensing transformation and measure the shear and flexion.

3.1.3 AIM

In the rest of this chapter I describe a new alternative to the shapelets and HOLICs

methods: the Analytic Image Model (AIM) method. This method is a local lensing

measurement, meaning that unlike strong lensing methods it considers each galaxy

image individually, rather than associating multiple images with a single source. It

is a parametrized analytic approach to measuring the lensing transformation which

is fully invariant to the mass sheet degeneracy. The AIM method assumes a generic

analytic model for the unlensed surface brightness profile and a quadratic lensing

transformation. By optimizing a figure of merit, best fit parameters are found and

the flexion can be measured.

3.2 The Analytic Image Model

3.2.1 General Method

As described in Chapter 1, Liouville’s theorem implies that the gravitational lensing

transformation conserves surface brightness. Therefore, the observed surface bright-

ness Iobs at field position θ is

Iobs(θ) = Isrc(β(θ)), (3.1)

where Isrc(β) is the unlensed surface brightness profile and β(θ) is the lensing co-

ordinate transformation. The AIM method imposes an analytic model on both the

lensing transformation and the unlensed surface brightness profile, and by fitting the

analytic model to a data image yields an accurate estimate of the flexion fields at

the location of each lensed galaxy image. Therefore I assume that there is a vector
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of lensing parameters ~pL and a vector of intrinsic source image parameters ~pS. The

observed surface brightness profile can be modelled as

Imodel (θ, ~pS, ~pL) = Isrc (β (θ, ~pL) , ~pS) (3.2)

With a parametrized source surface brightness model and lens model, I solve for

optimal model parameters by minimizing a figure of merit integrated over the image

(with pixels indexed by n)

χ2 =
∑
n

(
Idata

(
θ(n)
)
− Imodel

(
θ(n), ~pS, ~pL

))2

σ2
n

. (3.3)

over a reasonable range of lens and source profile parameters. σn is an estimate of the

error in the image surface brightness, which can be different at each pixel location

θ(n). If the data image in question is background limited, the noise in each pixel will

be well-approximated as Gaussian.

3.2.2 Model Parametrization

In principle, ny parametrized surface brightness profile can be used for the source

image. I choose an elliptical Gaussian profile, characterized by six parameters. A

more complicated analytic profile (e.g. a Sérsic profile) could be substituted, though

additional parameters creates the possibility of complicated parameter degeneracies.

I define the elliptical Gaussian as

I(β) =
S0

2πα2
exp

[
−(1 + EE∗)ββ∗ − (β2E∗ + (β∗)2E)

2α2

]
. (3.4)

In terms of the semi-major and -minor axes, a and b, and the position angle ξ of the

semi-major axis of the 1σ ellipse:

α =
√
ab,

E =
a− b
a+ b

ei2ξ.
(3.5)
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I will refer to the real and the imaginary parts of the ellipticity as E+ and E× because

of the directions of the elongation induced in the 1σ ellipse by each: E+ elongates

along one of the principle coordinate axes (the β1 axis if E+ > 0, else the β2 axis),

while E× elongates along an axis rotated by 45◦ from either the β1 or β2 axis (along

the line β2 = β1 if E× > 0, else along β2 = −β1). The motivation for selecting this

particular definition of ellipticity is that it matches the effect of shear. Neglecting

flexion for the moment, consider the exponential argument in Equation 3.4. Defining

E ′ =



E + g

1 + Eg∗
|g| ≤ 1

1 + E∗g

E∗ + g∗
|g| > 1

(3.6)

and

α′ =


α

|1 + Eg∗|
|g| ≤ 1

α

|E + g|
|g| > 1

(3.7)

this argument can be written as

(1 + EE∗)ββ∗ − (β2E∗ + (β∗)2E)

2α2
=

(1 + E ′E ′∗)θθ∗ − (θ2E ′∗ + (θ∗)2E ′)

2α′2
, (3.8)

where the image size has been rescaled and the new complex ellipticity has replaced

both the shear and the true ellipticity exactly. This substitution highlights a funda-

mental degeneracy between shear and ellipticity (which will be discussed further in

Chapter 4) and indicates that the effect of shear is to produce an image with ellipse

properties E ′ and α′ from one with E and α.

This ellipticity parametrization also puts E = 0, or circular images, in the center

of the ellipticity parameter space with maximally elongated images at the extrema,

rather than both minimal and maximal elongations at extrema, which allows the

fitting algorithm to explore the region near circularity without encountering branch

cuts, such as selection of a “major” axis. I choose the geometric mean of the 1σ semi-

axis lengths to set the scale of the ellipse for two main reasons. The first is that α as
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defined is agnostic to which axis is the major axis, consistent with not requiring branch

cuts. This is particularly important for crossing through zero ellipticity, where the

distinction between the major and minor axes vanishes. Secondly, α is, in a sense, an

“integrated” quantity. The area of the 1σ ellipse is πα2, and therefore α is constrained

by a large fraction of the image and individual pixels are less likely to dominate in

the estimation of the parameter.

I parametrize the peak brightness of the image by the logarithm of the total

integrated flux of the unlensed Gaussian, logS0 in Equation 3.4. Like α, this is an

integrated quantity and is well constrained by the whole image, rather than being

dominated by a few pixels at the center. I choose the logarithm of S0 as a parameter

rather than the linear flux to allow for a larger dynamic range during fitting.

The remaining parameters required to fully define the elliptical Gaussian are the

center position coordinates of the Gaussian in either the source plane or the image

plane. Rather than defining a center position βc in the source plane, I define θc,

the center of the image in the observed image plane. Because the transformation

between the source and image coordinates is uniquely defined, these two are entirely

interchangeable, and I choose the image plane center because it allows the fitting

to converge more robustly. Instead of fitting for the center position of the unlensed

image, I fit for the position in the image plane which maps to the center of the

unlensed image.

The lensing transformation is described by six parameters, defining the three

complex reduced lensing fields g = g1 + ig2, Ψ1 = Ψ12 + iΨ12, and Ψ3 = Ψ32 + iΨ32.

These fields define β(θ) using equation 1.18.

3.2.3 Additional Model Elements

For each galaxy image, in addition to the analytic profile described above, I assume

as given an estimate of the noise in each pixel, the background surface brightness,

and the point-spread function (PSF). The noise image can be a constant (as for

background-dominated noise), be proportional to the square-root of the model image

(as with Poisson statistics), or some other, externally defined error specific to the
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dataset being used. I assume that both the background and the PSF are constant

over the individual galaxy image. For a background surface brightness IB and a PSF

P (θ), the final model image is then given by

β(θ) = (θ − θc)− g(θ∗ − θ∗c )

−Ψ∗1(θ − θc)2 − 2Ψ1(θ − θc)(θ∗ − θ∗c )−Ψ3(θ∗ − θ∗c )2,
(3.9)

I(β) =
S0

2πα2
exp

[
−(1 + EE∗)ββ∗ − (β2E∗ + (β∗)2E)

2α2

]
, (3.10)

and

Imodel(θ) =

∫
d2θ′ P (θ − θ′)I(β(θ′)) + IB. (3.11)

This image, Imodel, is compared to the data image using Equation 3.3. By minimizing

χ2 over the twelve free parameters (logS0, θc1, θc2, α, E+, E×, g1, g2, Ψ11, Ψ12, Ψ31,

Ψ32) I find the best fit lensing parameters while accounting for the unknown intrinsic

shape of the source image.

3.3 Implementation of the AIM Method

The software implementing this method has been written in the Interactive Data

Language (IDL) and is compatible with version 7.11. Though I have written the

majority of the code, there are some functions and procedures from the NASA IDL

Astronomy User’s Library2. Additionally, minimization of χ2 is performed using the

MPFIT function, which is a robust IDL implementation of the Levenberg-Marquardt

non-linear least-squares minimization algorithm (Markwardt, 2009). In this section I

will outline the functions written for the AIM implementation of single-image fitting.

Where I indicate pixel-referencing conventions in these functions, it is important to

recall that IDL is “zero-indexed”, meaning that the first pixel in an array is labelled

by 0. In some places I use pixel indices as coordinates, so this detail could lead to

pixel offsets if not considered.

1IDL is produced by ITT Visual Information Solutions: http://www.ittvis.com
2The NASA IDL Astronomy User’s Library is available at: http://idlastro.gsfc.nasa.gov
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3.3.1 AIM MK IMAGE

This function creates an image model to compare with the data image. The required

inputs are the model parameters (as a 12-element array), the background surface

brightness (in flux per square pixel units), a PSF image (normalized to have unit

integral), and a window image. The window image defines the size of the output

model image (and therefore should be the same size as the data image), and it defines

the set of pixels which are to be used to calculate χ2. This window image can be used

to mask out bad pixels, impose a particular aperture, or to variably weight pixels.

The model parameters are indexed from 0 to 11, ordered logS0, θc1, θc2, α, E+, E×,

g1, g2, Ψ11, Ψ12, Ψ31, Ψ32.

For a window of dimensions L1 × L2 pixels, the model image is created using the

analytic form described above in an array of dimensions (L1 +D)×(L2 +D), where D

is the largest dimension of the PSF. The extra border is to prevent edged effects due

to the PSF convolution, since the pixels along the edge of the image are convolved

with pixels off the edge for a finite PSF width. After convolution, the central L1×L2

section of the image is excised, multiplied by the window function and returned.

There is one important convention with regards to the data image: the image

center position (θc) is defined as an offset from the center of the image, meaning that

a model without lensing and θc = 0 will return an elliptical Gaussian centered at pixel

position [(L1 − 1)/2, (L2 − 1)/2].

AIM MK IMAGE also allows for additional intrinsic image models to be substituted

for the standard elliptical Gaussian. For the definition of

r2 =
(1 + EE∗)ββ∗ − (β2E∗ + (β∗)2E)

α2
(3.12)

the profiles which are currently implemented include the Sérsic profile:

I(r) ∝ exp(−rn/2), (3.13)
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with the additional model parameter n; a Moffat profile:

I(r) ∝ (1 + r2)−b, (3.14)

with the additional model parameter b; and a pseudo-Gaussian profile:

I(r) ∝ (1 + x+ k1x
2/2 + k2x

3/6 + x4/24)−1, (3.15)

with x = r2/2 and additional model parameters k1 and k2. These more general

models have more degrees of freedom and therefore caution must be used if fitting

with them in addition to fitting for lensing parameters. Note that this version of the

Sérsic profile defines the index n as the inverse of the canonical Sérsic index. This

is done to make the fitting convergence more straightforward, as a linear parameter

exponent is better behaved than the inverse, and less likely to make the numerical

derivatives which go into the curvature matrix in MPFIT singular.

3.3.2 AIM START PARS

This function returns a set of parameters as an initial guess of the shape of the ellipti-

cal Gaussian based on the data image. It takes as required inputs the data image, the

background surface brightness, and a window image. As additional, optional input

the function also takes a background-subtracted threshold below which pixels will be

ignored for the purposes of determining parameters, and a limit on the maximum

magnitude of the initial ellipticity that will be returned. By default, the pixel thresh-

old is set to zero (meaning all pixels which are above the background are considered),

and the full range of 0 ≤ |E| < 1 is available.

To determine initial parameters, the background level is subtracted from the data

image and all pixels below the threshold are set to zero. The center position θc is set

to the image centroid, and the size and ellipticity are derived from centroid-subtracted
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second order moments:

Mjk =

∑
n In(θj − θcj)(θk − θck)∑

n In
, (3.16)

α =
(
M11M22 −M2

12

)1/4
, (3.17)

E =
(M11 −M22) + 2iM12

M11 +M22 + 2
√
M11M22 −M2

12

. (3.18)

Here n indexes the pixels above the threshold. The initial estimate of logS0 is set by

the sum of the thresholded pixels

logS0 = log

(∑
n

In

)
, (3.19)

though this is usually an underestimate of the true flux. This function always returns

the lensing parameters as zero.

3.3.3 AIM IMAGE DEVIATE

This function is where the AIM code interfaces with MPFIT, which calls AIM IMAGE DEVIATE

repeatedly during the fitting process. In order to deal with the large range in typical

values for the model parameters, I rescale each parameter by the allowed parameter

range so that AIM IMAGE DEVIATE takes in a 12-element array of parameters between

−1 and 1. This allows the MPFIT algorithm to compare derivatives of χ2 with respect

to α, which has a typical scale of one to a few arcsec, with derivatives with respect to

Ψjk, which has a typical scale of . 0.1 arcsec−1. Depending on the pixel scale, this can

lead to many orders of magnitude between the parameter values in the pixel-based

units that this AIM implementation uses. The difference will scale by the square of

the pixel scale.

AIM IMAGE DEVIATE takes in the scaled parameters, the parameter centers and

ranges, the data, window, and PSF images, and the background surface brightness as

required parameters. By default, the function will assume that the error in χ2 (see

Equation 3.3) σn =
√
Imodel (θ(n)). This error estimate can be scaled by an arbitrary
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factor, or overridden by a user-defined error estimate (either as a single value, or as

a noise image).

The function returns a linear array of values ∆n, where

∆n =
Idata

(
θ(n)
)
− Imodel

(
θ(n), ~p

)
σn

. (3.20)

Here I have combined the intrinsic shape parameters and the lensing parameters into

one vector (as they are in the code), and n indexes all pixels for which the window

image is non-zero. The values Imodel

(
θ(n), ~p

)
are obtained by calling AIM MK IMAGE.

∆n is what is required by MPFIT. Note that
∑

∆2
n = χ2,and as an additional option

AIM IMAGE DEVIATE can return χ2 instead of ∆n.

3.3.4 AIM FIT IMAGE

This function combines AIM IMAGE DEVIATE and MPFIT and returns a set of fit model

parameters. It takes as required input the data, window, and PSF images, and the

background surface brightness. Additional optional input parameters include a noise

level scaling, or an error estimate (either a single value or a full noise image), a subset

of parameters to fix and corresponding values to fix them at (all parameters are free

by default), and the maximum number of iterations allowed for the fitting.

AIM FIT IMAGE returns a the parameters of the best fit, including the values of

any fixed parameters. Other, secondary output which can be caught in variables

are the χ2 value of the best fit, the number of degrees of freedom of the fit, the

covariance matrix of the χ2 function at the best fit parameters, error estimates for

each parameter (from the diagonal elements of the covariance matrix), a “failure flag”

for fits that exceed the maximum number of iterations and/or have singularities, and

a “pegged flag” for parameters which become locked at the maximum or minimum

parameter range. These flags are zero if no fit parameters peg or fail, and are valued

at

FLAG =
∑
p

2p (3.21)
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where p ranges over the IDL indices of the failed or pegged parameters. AIM FIT IMAGE

assumes an elliptical Gaussian model for the fitting ansatz, but any of the other mod-

els implemented for AIM MK IMAGE can be used instead if desired. There will be 12 fit

parameters (+1 for the Sérsic and Moffat profiles and +2 for the pseudo-Gaussian)

that MPFIT will minimize over, and reasonable default parameter ranges for all im-

plemented image profiles are included.

This function sets the parameter ranges, calls AIM START PARS to retrieve initial

parameters, scales each of the parameters to the (−1, 1) range, and calls MPFIT with

AIM IMAGE DEVIATE. MPFIT returns the (scaled) best fit parameters, parameter er-

rors, and covariances, the χ2 value and the number of degrees of freedom. The MPFIT

output is then rescaled to the original parameter ranges, and the pegged/failed pa-

rameters are identified and the flags are computed as described above, then the fit

parameters are returned.

As an example, Figure 3-1 shows an example of a simulated arced data image

(constructed using AIM MK IMAGE) and the model image fit to it using AIM FIT IMAGE.

Chapter 4 delves more deeply into quantitative testing of the AIM method.

3.4 Discussion

The AIM lensing profile is a well defined analytic image model which accounts for

the mass-sheet degeneracy with only one major assumption on the unlensed surface

brightness profile: that it can be well-modeled as an elliptical Gaussian. The validity

of this approximation when the lensed image is non-Gaussian is an issue that will

be discussed in Chapter 4, but I proceed with this justification: The major reason

that Gaussian surface brightness profiles are disfavored in modeling galaxy images

is that they do not adequately and simultaneously match the galaxy cores and the

slope of the extended light distributions. However, such a match is not the goal of the

AIM method. Rather, I use a Gaussian profile to model the lens-distorted shape of

the intrinsic galaxy isophotes, which are assumed to be elliptical prior to the lensing.

With this in mind, it is a much more plausible approach than it might initially seem.
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The best fit model is the one which best matches the shape of the lensed image

isophotes, and it is this shape that contains the lensing information.

Though I have implemented the AIM method with several specific choices (an

elliptical Gaussian source, a constant background, etc.), many of these choices are

flexible in principle. However, it is important to be cautious of parameter degenera-

cies. Overwhelming the data with too many degrees of freedom, even if there are

formally enough pixels for a χ2 minimum to be well defined, leads to unreliable con-

vergence and/or erroneous fit results. I attempted to use some of the other source

profiles in fitting, hence their implementation here, but the fitting procedure was no

longer robust. Fits failed to converge 20-30% of the time during testing, so until there

is a better understanding of the type of profile required to converge successfully and

robustly, the elliptical Gaussian will remain the primary choice.

3.5 Figures

Figure 3-1: Example of data and fit images. Left: A high signal data image. Right:
The AIM fit to that data image.
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Chapter 4

Testing the AIM Method

4.1 Introduction

This chapter describes the methodology for and results of testing the AIM method

described in Chapter 3. In general, models with a large number of parameters will

not converge to accurate solutions if there are parameter degeneracies which have

not been constrained. By generating simulated data images with well-defined input

properties and fitting for the known lensing fields, I test the robustness of the fitting

algorithm and the AIM assumptions. Reliable retrieval of known lensing field values

from simulated data is a prerequisite for application to observational data.

In creating simulated data images, the properties of these images are motivated by

the Hubble Space Telescope Advanced Camera for Surveys Wide Field Camera (HST

ACS WFC) data set described in Chapter 5. I use a pixel scale equivalent to the

HST ACS pixel scale, 0.′′05/pixel. The scale of data images is set by the typical scale

of lensed galaxy images, meaning scales of tens of pixels. The background level, PSF

size, and noise properties of the images are also selected to echo the values determined

in Chapter 5.

I create six sets of 1000 images and find the best fit parameters using AIM. The

intrinsic parameters are selected similarly in each dataset, as described below in §4.2.

The lensing parameter selection is slightly more complicated. For datasets where the

parameters are selected randomly from a given range, the image is generated using
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the AIM, and the dataset will test how robustly the AIM technique fits to itself.

However, if an analytic lens model is used for determining the true lensing parame-

ters, then the lensing transformation can be exactly determined using Equation 1.11.

This creates an image which is analytically lensed without approximations. In this

case, the “true” lensing parameters are the shear and flexion fields which correspond

to the AIM approximation of the lensing transformation at that point. Four of the

datasets have lensing parameters selected from a range, and the other eight use a

Singular Isothermal Sphere (SIS) lens model and are lensed without approximation.

All datasets use a PSF with full-width at half maximum (FWHM) of 1.8 pixels and

no background surface brightness (akin to a real dataset that has been accurately

background-subtracted). Noise is added to each image pixel from a normal distri-

bution, with σIMG = 1.3 × 10−3 (arbitrary units). The noise level is chosen to be a

realistic match to the HST ACS background surface brightness noise (in e−/s) de-

scribed in Chapter 5, as are the intrinsic galaxy shape parameters. Finally, two of

the datasets (5 and 6) use an intrinsic Sérsic image profile, rather than a Gaussian,

though the AIM profile used in fitting remains a Gaussian. The Sérsic profile is de-

fined in Equation 3.13, and the specific property combinations for each dataset are

listed in Table 4.1.

4.1.1 The Shear-Ellipticity Degeneracy

As indicated in Section 3.2.2, my choice of ellipticity parametrization is equivalent

and interchangeable with the shear, meaning that in the absence of constrained flexion

these two complex fields are completely degenerate. This is a well understood fact

of the lensing transformation, and it is the basis of the shear measurements made

using standard weak lensing techniques. Locally averaged galaxy ellipticities can be

used to estimate the reduced shear and measure the mass distribution, as in the KSB

weak lensing method (Kaiser et al., 1995). This degeneracy is problematic for robust

convergence of the fitting algorithm. Initial tests of the fitting with the ellipticity

and shear both unconstrained did not always converge and produced flexion results

with errors much larger (factors of 10 or more) than with either shear or ellipticity
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fixed. Correlation coefficients between the flexion parameters and the shear/ellipticity

parameters (when all are free) take typical values of ρ ∼ 0.7. While this is not an

extremely large correlation, in conjunction with the complete (ρ ∼ 1) shear-ellipticity

prevents measurement of the flexion to any precision. To constrain the fitting problem

further, the four-dimensional ellipticity-shear parameter space must be constrained

in order to better determine the flexion.

Because the shear and ellipticity are spin-2 fields, whereas the flexions are spin-1

and spin-3 fields, there ought not be a similar correlation between the flexion and

the shear or ellipticity, so the source of the degeneracy is expected to be in the

shear/ellipticity pairs. The flexions are, in a sense, orthogonal distortion effects to

the shear. I choose to constrain the space of ellipticity and shear by fixing the shear

to be a constant. Since α, E+, and E× are free fitting parameters, I hypothesize that

the errors in the input shear field will be absorbed into incorrect measurements of E

and α, while the flexion will be largely unaffected. This hypothesis is tested with the

set of simulated data fits described in this chapter and errors in the shear model are

well-compensated by the freedom in the ellipticity parameter while still allowing for

an accurate flexion measurement.

The choice of fixing the shear instead of the ellipticity is motivated by the ability to

choose an input shear which is physically motivated by empirical data. In application

to a cluster of galaxies, a tentative shear model can me assumed based on an estimate

of the mass of the cluster (e.g., from X-ray observations or optical richness). There

is no specific a priori constraint on the ellipticity of individual galaxies. Once the

flexion fields are measured, the shear derivatives across the entire cluster image field

can be calculated and integrated to inform and update the input shear model. This

could be used to create an iterative joint solution for the shear and flexion fields,

where the input shear is corrected based on the output flexion and reused as a new

input.

Despite the fact that fits do not converge reliably without fixing either the shear

or the ellipticity, an incorrect input shear model does not preclude an accurate flexion

measurement, as I will show in these simulations. Half of the datasets described above
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fix each shear parameter to the input shear value, and the other half assume a shear

value drawn from a normal distribution about the input value with σg = 0.1.

4.2 Intrinsic Parameter Selection

I select the true unlensed elliptical Gaussian parameters uniformly from the ranges

described in Table 4.2. The flux ranges from 0.1 to 10 counts/time (the flux units

are arbitrary). The image size α ranges from 1.5 pixels (FWHM∼0.′′25) to 8 pixels

(FWHM∼1.′′2). The magnitude of the ellipticity is drawn from a distribution where

p(|E|) =
1

πσ2
E

exp(1/σ2
E)

exp(1/σ2
E)− 1

exp

(
−|E|

2

σ2
E

)
. (4.1)

The spread in ellipticity σE is set at 0.2. This distribution is the same as is used in

Schneider (1996) for testing the generalized method for shear lensing aperture den-

siometry with a realistic distribution of galaxy axis ratios. Ellipticities with |E| < σE

are nearly uniformly distributed, and large ellipticities are exponentially disfavored.

The phase of the ellipticity is drawn from a uniform distribution between 0 and 2π.

The center offset θc is not selected randomly, but rather the lensed data image is

created such that the centroid of the image located at the image center.

In the datasets using an intrinsic Sérsic profile, the index is selected uniformly

from 0.2 to 5, which is a wide range that includes most of the plausible galaxy image

profiles of this type, as profiles with smaller indices become very sensitive to errors in

background due to large wings, and profiles with larger indices are sharply truncated

for r > α (e.g., Peng et al., 2010).

4.3 Lensing Parameter Selection

For the datasets with randomly selected lensing parameters, each lensing parameter

is selected from the circular regions with |g| < 0.5, |Ψ1| < 1 × 10−3 pixels−1, and

|Ψ3| < 1 × 10−3 pixels−1: for HST pixel scale, this limits the flexion to be less than

0.02 arcsec−1. The phase of each complex field is selected uniformly from 0 to 2π.
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The limit on the flexion fields maintains the approximation of the flexion be-

ing a small correction to the lensing transformation. The effect of flexion scales as∑
n |Ψn|α, a dimensionless quantity that should be much less than unity across the

data image. This dimensionless figure of merit is less than 0.02 for the parameter

ranges included. At the limits of the parameter range in the random parameter selec-

tion cases (datasets 1 and 2) there will be some aphysical simulated images produced,

as some combinations of shear, flexion, and ellipticity push the bounds of the ap-

plicability of the AIM for lensing measurements. However, for real data the more

extremely distorted objects are those which are identified for strong lensing studies

and are not the ideal candidates for AIM analysis. Table 4.3 shows the fraction of

fits converged for each dataset, along with several other figures of merit.

The limit on shear prevents the magnification from becoming singular. Adapted

from Schneider & Er (2008) Equation (13), the determinant of the lensing transfor-

mation Jacobian (the inverse of the magnification) is given by

det J = 1− gg∗ − ηθ∗ − η∗θ, (4.2)

where θ is the usual complex image plane position and

η ≡ 4 (Ψ1 + 2(gΨ∗1 + g∗Ψ3)) . (4.3)

If the product of the flexion and the image scale is constrained to be small, |η| will

be small. From the parameter ranges described above, α|Ψn| . 0.02. Therefore,

the main consideration for preventing a singular magnification is the magnitude of

the reduced shear. By restricting the shear magnitude to be away from unity, the

determinant will be non-zero and the magnification will not become singular.

In the other two thirds of the datasets (3–6), the lensing parameters are derived

from a SIS lens model, where for an Einstein radius θE and lensed image position

θ0 = r exp(iφ) from the lens centered at the origin, the lensing fields are

g =
θE

2r − θE
ei2φ, (4.4)
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Ψ1 = − θE
8r2 − 4rθE

eiφ, (4.5)

Ψ3 =
3θE

8r2 − 4rθE
ei3φ. (4.6)

A derivation of the physical shear and flexion field definitions can be found in Lasky

& Fluke (2009) and combined with Equations 1.15–1.17 to give these results. For

specific parameter values, I draw each of the lensing parameters as before and use

them to determine values for θE, r and φ in Equations 4.4–4.6 as follows: |g| defines

r/θE, Ψ1/|Ψ1| defines φ, and |Ψ3|, combined with the value of r/θE determined from

g, defines θE. Then g, Ψ1, and Ψ3 are recalculated using the SIS lens model and

the original values for the lensing fields are replaced. This procedure maintains the

same overall lensing field parameter limits while imposing a randomly selected SIS

lens model.

4.3.1 Data Image Generation

The data images are created as follows. For all datasets, an initial image is created

using a window image of radius seven times that of the true, input semi-major axis

size A = α
√

(1 + |E|)/(1− |E|). From this initial image, AIM START PARS is used

to estimate the apparent ellipse parameters and the centroid of the image. Then a

smaller data image is extracted from the initial image using a window with radius

1.5 times the apparent semi-major axis size. The choice of the factors 7 and 1.5 is

motivated empirically - the former is large enough to include the entire lensed image

for the ranges of parameters considered, and the latter is motivated similarly to the

Gaussian window function size in Goldberg & Leonard (2007). The radius of 1.5A

includes the majority of the flux from the image without including excess area with

only noise, and corresponds to a diameter slightly larger than the FWHM.

For the randomly selected lensing parameter datasets (1–2), the initial image is

created using the AIM described in Chapter 3. However, for the SIS lensing datasets

(3–6) the lensing transformation is known exactly. Therefore, the image can be cre-

ated using Equation 1.11. In terms of the small image offsets in the source and image
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planes, β and θ, and image center θ0, the exact lensing transformation is

β(θ) =
θ − (δ(θ0 + θ)− δ(θ0))

1− κ(θ0)
, (4.7)

where δ(θ) = θEθ/
√
θθ∗. This lensing transformation, if expanded in θ about θ0 yields

the quadratic expansion in Equation 1.13 with the shear and flexion fields defined

above. This lensing transformation sets the true value of the fitting parameter θc = 0

by construction. With this exact lensing model, I create the large initial data image

and extract a smaller stamp as described above.

4.4 Fitting

Each data image is fit using AIM FIT IMAGE with the error estimate for each pixel

set to the constant input value of the image noise. Statistics on the convergence

and the quality of the fits in broad strokes can be found in Table 4.3. Overall,

the convergence rate is extremely high, and the failures are in cases where the true

parameter combinations yield extremely distorted lensed images. Inspection of the

failed fits show large axis ratios and/or small curvature radii, or very low surface

brightness, none of which correspond to the objects where the AIM is an intended to

be a successful lensing measurement method.

The mean and median number of iterations to convergence shows that the fitting

procedure arrives at a solution efficiently and that if a fit happens to proceed to the

maximum number of 500 iterations, then that is a true non-convergence, since the

maximum is well above the usual convergence value. The mean and median χ2 per

degree of freedom values show that the figure of merit in Equation 3.3 is a good

statistical measure of the data-model deviations, and that most of the fits converge

to χ2/D.o.F∼ 1. A typical data image has 500-1000 degrees of freedom.
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4.5 Fit Results

Figures 4-1–4-6 show the fit parameters as compared to the true input parameters

for each dataset, along with a line indicating unity. The fit results plotted are

a randomly-selected subset of those converged results where χ2/D.o.F < 1.5 and√
σ(Ψ11)2 + σ(Ψ12)2 > 1× 10−5 pixels−1. I remove those fits where the flexion errors

are extremely small because in roughly 1% of the fits the flexion parameters become

very large and become trapped in local minima of the χ2 surface. This seems to be

due to the noise instance and the particular set of parameters in some combination,

though it bears further investigation. Since it is a small fraction of the fits, I simply

remove them as failures.

From the figures it is clear that overall, even in the case of a Sérsic input profile,

the intrinsic parameters are well reproduced. The few major exceptions are the fits

where logS0 and α are overestimated for the Sérsic profile. These parameter are over-

estimated together, meaning that for cuspy Sérsic profiles there is a greater sensitivity

to the peak surface brightness, as the core of the Sérsic contributes a larger fraction

of the total flux than for the Gaussian. The ellipticities show a larger variance when

the shear parameters are erroneously fixed, with σ(En) ∼ σ(gn), as is expected due

to the shear-ellipticity degeneracy. The ellipticity parameters compensate completely

for the erroneous shear input.

The one major discrepancy in the shape parameters is in regard to the image

center position. The center positions Xc and Yc show a systematic pixel rounding

error. This is due to a code bug in the simulation script when the “true” center

position is recorded after selecting the region of the large (7A radius) image which

will be cut out for the data image to be fit. This is not an error in the fitting. Because

of the bug, there is a discontinuous offset in the difference between the true and fit

parameters near the origin, though none of the fit parameter values are affected. This

bug can be seen in the Xc/Yc panels of Figures 4-1–4-6.

Table 4.4 contains the error-weighted RMS variation of the shape parameters after

the quality cuts described above. All of the RMS values are quite small with respect

70



to the parameter ranges, meaning that both the fitting is accurate and the errors

returned by the fits yield an accurate quantification of the confidence level of the

parameter estimate. The similarly weighted means are all consistent with zero.

Figure 4-7 shows the effect of the point-spread function on the flexion error as a

function of the ratio of the image size to the PSF FWHM. The data are presented

for three different flux bins: logS0 > 0.5, 0.5 > logS0 > 0, and 0 > logS0. The error

estimate depends minimally on the relative size of the object to the PSF size, so long

as the image size is greater than the PSF (when α/FWHMPSF > 1).

Figures 4-8–4-13 and Table 4.5 show the same results for the flexion parameters,

after removing obvious outliers. The plots for the flexions are in residual (Fit – True)

values. These plots show that the accurate fits successfully reproduce the input

flexion values for all six datasets. Table 4.6 lists the slopes and their errors for linear

regressions between the true and fit parameter values for each of the datasets. The

constant offset in each regression is consistent with zero.

4.6 Discussion

The AIM described in Chapter 3 is a 12 parameter model with two pairs of parameters

which are nearly completely degenerate. These simulations show that as long as the

shear is constrained, the flexion can be determined even with errors in the input

shear field. Furthermore, even with a variety of non-Gaussian input profiles, the

fitting still converges accurately. This is because the AIM fitting traces the overall

shape of the surface brightness profile, not its innermost slope. The flexion signal

arises from those regions where there is significant surface brightness away from the

image center: A zero size object cannot produce a flexion signal. The extent of an

object is its lever-arm for flexion measurements.

These simulations show that the AIM method for measuring flexion in gravitation-

ally lensed objects with realistic input intrinsic object properties and lensing fields is

a viable technique. There are no fatal parameter degeneracies provided that the shear

and flexion are appropriately constrained, and the resulting parameter fits are still
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accurate. The next step is to apply this method to observational data and to attempt

to measure mass structure in a real lensing system. In Chapter 5 I will describe my

application of the AIM method to HST observations of the galaxy cluster Abell 1689.
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4.7 Tables & Figures

Dataset Image RMS True Profile Lens Shear Error

1 1.3× 10−3 Gaussian Random 0.0
2 1.3× 10−3 Gaussian Random 0.1
3 1.3× 10−3 Gaussian SIS 0.0
4 1.3× 10−3 Gaussian SIS 0.1
5 1.3× 10−3 Sérsic SIS 0.0
6 1.3× 10−3 Sérsic SIS 0.1

Table 4.1: Parameter selection method and error properties for each of the generated
datasets. Each dataset uses a PSF FWHM of 1.8 pixels.

Parameter Minimum Maximum Note

logS0 -1 1 Units: log(counts/time)
α 1.5 8 Units: pixels
|E| 0 1 See Equation 4.1
arg(E) 0 2π –
n 0.2 5 n = 2 is Gaussian

Table 4.2: Parameter ranges for intrinsic image shapes. The true center position is
zero by construction. The background level is set at 0 and the PSF FWHM is 1.8
pixels. Note that n is only applicable to datasets 5 and 6.
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Dataset %Converged Mean/Median Fit Iterations Mean/Median χ2/D.o.F.

1 99.7 13.5/8 1.11/1.01
2 94.4 15.6/8 1.10/1.01
3 99.8 13.6/8 1.02/1.01
4 99.6 18.4/8 1.28/1.01
5 99.7 15.0/11 3.71/1.17
6 99.7 20.7/11 2.68/1.15

Table 4.3: Overview of the convergence properties for each dataset, including the
fraction converged, the mean and median values for the number of iterations needed
to converge, and the mean and median χ2 per degree of freedom of the converged fits.

Dataset logS0 Xc Yc α E+ E×

1 0.02 0.23 0.22 0.01 0.01 0.01
2 0.04 0.12 0.08 0.09 0.10 0.06
3 0.02 0.05 0.70 0.07 0.03 0.08
4 0.04 0.38 0.05 0.12 0.12 0.11
5 0.08 0.11 0.27 0.87 0.02 0.01
6 0.17 0.07 0.22 1.12 0.12 0.14

Table 4.4: For each dataset, the error-weighted RMS deviation between the input
parameter value and the fit parameter value for the intrinsic ellipse shapes. logS0 is
in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are unitless.

Dataset Ψ11 Ψ12 Ψ31 Ψ32

1 5.0 9.2 8.8 4.6
2 6.8 2.4 2.0 10.8
3 4.0 9.2 4.6 13.2
4 3.2 5.2 2.6 5.6
5 9.0 3.6 3.4 3.6
6 4.4 2.4 6.2 6.0

Table 4.5: For each dataset, the error-weighted RMS deviation between the input
parameter value and the fit parameter value for the flexion fields. The values are in
units of 10−3 arcsec−1, assuming a HST ACS pixel scale of 0.′′05.
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Dataset 1 2 3 4 5 6

Ψ11 0.97± 0.04 1.06± 0.04 0.96± 0.06 0.91± 0.07 0.91± 0.07 0.94± 0.08
Ψ12 1.03± 0.03 0.97± 0.04 1.09± 0.06 1.11± 0.07 1.08± 0.07 1.00± 0.07
Ψ31 0.90± 0.05 1.00± 0.06 0.94± 0.06 0.96± 0.06 1.17± 0.08 0.90± 0.08
Ψ32 1.02± 0.06 1.01± 0.07 1.03± 0.05 0.92± 0.06 1.12± 0.05 1.18± 0.08

Table 4.6: Linear regression slopes for true/fit flexion parameters and their errors.
Exact reproduction of the flexions would result in a unity slope. The is no significant
constant bias between the true and fit parameters.

Figure 4-1: Dataset 1: Intrinsic shape results. The converged fit values are plotted
against the true input values for each shape parameter. The error bars are those
returned by AIM FIT IMAGE. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line is a unity line (y = x), not a fit to the
data. logS0 is in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are
unitless.
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Figure 4-2: Dataset 2: Intrinsic shape results. The converged fit values are plotted
against the true input values for each shape parameter. The error bars are those
returned by AIM FIT IMAGE. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line is a unity line (y = x), not a fit to the
data. logS0 is in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are
unitless.
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Figure 4-3: Dataset 3: Intrinsic shape results. The converged fit values are plotted
against the true input values for each shape parameter. The error bars are those
returned by AIM FIT IMAGE. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line is a unity line (y = x), not a fit to the
data. logS0 is in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are
unitless.
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Figure 4-4: Dataset 4: Intrinsic shape results. The converged fit values are plotted
against the true input values for each shape parameter. The error bars are those
returned by AIM FIT IMAGE. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line is a unity line (y = x), not a fit to the
data. logS0 is in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are
unitless.
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Figure 4-5: Dataset 5: Intrinsic shape results. The converged fit values are plotted
against the true input values for each shape parameter. The error bars are those
returned by AIM FIT IMAGE. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line is a unity line (y = x), not a fit to the
data. logS0 is in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are
unitless.
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Figure 4-6: Dataset 6: Intrinsic shape results. The converged fit values are plotted
against the true input values for each shape parameter. The error bars are those
returned by AIM FIT IMAGE. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line is a unity line (y = x), not a fit to the
data. logS0 is in arbitrary units, Xc, Yc, and α are in pixels, and E+ and E× are
unitless.
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Figure 4-7: Flexion Error as a function of α/FWHMPSF. The different colors are flux
bins: black is logS0 > 0.5; red is 0.5 > logS0 > 0; blue is 0 > logS0. The errors
are in arcsec−1, assuming a HST ACS WFC pixel scale of 0.′′05/pixel. Note that the
flexion errors increase sharply as the PSF becomes larger than the object size.
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Figure 4-8: Dataset 1: Flexion residuals. This dataset has a Gaussian input profile,
randomly selected lensing parameters, and correctly fixed input shear. The converged
fit values are plotted against the true input values for each flexion parameter, with
error bars are those returned by AIM FIT IMAGE. The flexion is in units of arcsec−1,
assuming a 0.′′05/pixel scale. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line indicates y = 0, not a fit to the data.
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Figure 4-9: Dataset 2: Flexion residuals. This dataset has a Gaussian input profile,
randomly selected lensing parameters, and fixed input shear with σ(g) = 0.1. The
converged fit values are plotted against the true input values for each flexion param-
eter, with error bars are those returned by AIM FIT IMAGE. The flexion is in units of
arcsec−1, assuming a 0.′′05/pixel scale. For clarity, I have only plotted a randomly
selected subsample of the full 1000 fits. The red line indicates y = 0, not a fit to the
data.
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Figure 4-10: Dataset 3: Flexion residuals. This dataset has a Gaussian input profile,
SIS selected lensing parameters, and correctly fixed input shear. The converged fit
values are plotted against the true input values for each flexion parameter, with
error bars are those returned by AIM FIT IMAGE. The flexion is in units of arcsec−1,
assuming a 0.′′05/pixel scale. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line indicates y = 0, not a fit to the data.
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Figure 4-11: Dataset 4: Flexion residuals. This dataset has a Gaussian input profile,
SIS selected lensing parameters, and fixed input shear with σ(g) = 0.1. The converged
fit values are plotted against the true input values for each flexion parameter, with
error bars are those returned by AIM FIT IMAGE. The flexion is in units of arcsec−1,
assuming a 0.′′05/pixel scale. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line indicates y = 0, not a fit to the data.
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Figure 4-12: Dataset 5: Flexion residuals. This dataset has a Sérsic input profile, SIS
selected lensing parameters, and correctly fixed input shear. The converged fit values
are plotted against the true input values for each flexion parameter, with error bars
are those returned by AIM FIT IMAGE. The flexion is in units of arcsec−1, assuming
a 0.′′05/pixel scale. For clarity, I have only plotted a randomly selected subsample of
the full 1000 fits. The red line indicates y = 0, not a fit to the data.
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Figure 4-13: Dataset 6: Flexion residuals. This dataset has a Sérsic input profile, SIS
selected lensing parameters, and fixed input shear with σ(g) = 0.1. The converged
fit values are plotted against the true input values for each flexion parameter, with
error bars are those returned by AIM FIT IMAGE. The flexion is in units of arcsec−1,
assuming a 0.′′05/pixel scale. For clarity, I have only plotted a randomly selected
subsample of the full 1000 fits. The red line indicates y = 0, not a fit to the data.
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Chapter 5

Application of the AIM method to

Abell 1689

The rich galaxy cluster Abell 1689 is one of the most-studied galaxy clusters in the

universe. It is located at a redshift z = 0.1872 (Frye et al., 2007) and has a mass

M200 ∼ 1015 M�(Peng et al., 2009). There is some disagreement in the literature

regarding the exact mass of this cluster and its distribution. Andersson & Madejski

(2004) observed and asymmetry in the X-ray luminous baryon temperature distribu-

tion, suggesting either substructure or merger activity. Numerous lensing studies have

also observed asymmetrical convergence maps (e.g., Broadhurst et al., 2005; Saha et

al., 2007; Okura et al., 2008; Coe et al., 2010). Since flexion traces shear variations,

flexion is sensitive to mass variations on smaller scales than is the standard weak

lensing approach.

Furthermore, A1689 has become the observational test case for nearly every flex-

ion measurement method to date. Leonard et al. (2007) used Hubble Space Telescope

(HST) data to measure flexion with shapelets and detect mass substructure in A1689

with a parametric mass model. They also revisit these data using a mass aperture

statistic technique (Leonard et al., 2010). Okura et al. (2008) measure similar struc-

ture in A1689 using flexion from HOLICS and ground-based Subaru observations. I

apply the AIM method to HST observations of A1689 described below.
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5.1 The Data

The data are HST Advanced Camera for Surverys (ACS) images obtained using the

Wide Field Camera (WFC). I have obtained data in each of four filters (F475W,

F625W, F775W, F850LP) from the HST Legacy Archive (HLA)1. These data have

been reduced by a standard pipeline to create deep mosaic images of all HST observa-

tions of A1689. See Table 5.2 for the total exposure for each filter. The HLA mosaics

are background subtracted and photometrically calibrated. I also use a coadded four-

filter sum image which provides an extremely deep image for object detection.

The observed field is 3.4′ (4100 pixels) on a side and square. The angular scale of

the cluster is 3.1 kpc/′′ assuming a concordance cosmology, meaning the field is 0.64

Mpc on a side. The pixel scale is 0.′′05/pixel and the point-spread function FWHM

is 0.′′09 (1.8 pixels). Photometric zero-points for each filter are taken from Sirianni et

al. (2005).

5.1.1 Mosiac Image PSF

As noted by Leonard et al. (2007) and Leonard et al. (2010), time-domain effects such

as a varying PSF are negligible for flexion measurements. This is expected because

of the way flexion is influenced by the PSF. The induced flexion due to an imperfect

PSF in terms of the flexion signal in the PSF shape itself is

F induced ∼ FPSF

((
Θsrc

ΘPSF

)4

+ 1

)−1

, (5.1)

where Θsrc and ΘPSF are the scales of the source object and the PSF, respectively

(Leonard et al., 2007). This means that for well-resolved images (ΘPSF < Θsrc) with a

small intrinsic flexion shape, the PSF-induced flexion is negligible. This is particularly

true for the small HST ACS WFC PSF, which has a FWHM of approximately 0.′′09

(1.8 pixels). This means that by choosing source galaxies which are larger than the

PSF, the fine-scale structure of the PSF can be neglected. For source galaxies at

1The Hubble Legacy Archive can be found at: http://hla.stsci.edu/
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redshifts of z ∼1-2, 1′′ corresponds to ∼8 kpc. A source galaxy whose intrinsic size is

only a few kpc will be well resolved. It is therefore a reasonable approximation that

the PSF does not contribute any significant systematic flexion so long as an explicit

cut is made on the size of the source objects considered. Since I do not attempt to

accurately measure the ellipticity of the intrinsic galaxy shape, any ellipticity induced

by the PSF is also unimportant. As in Chapter 4, I use a circular Gaussian PSF with

a FWHM of 1.8 pixels when fitting the A1689 source images.

5.2 Data Reduction

In order to extract measurements of the flexion field, there are several steps which

need to occur:

1. Generate an initial catalog of objects in the field.

2. Match catalog objects to known foreground or cluster member objects.

3. Use the size of the detected objects to reject of galaxies which are too small to

be fit with AIM.

4. Remove the source flux due to each of the foreground/member objects.

5. Generate a catalog from the cleaned image of objects to be used for AIM fitting.

I will describe the details of this cleaning and catalog generation process in this

section.

5.2.1 SExtractor

The catalog generation steps are performed with SExtractor (Bertin & Arnouts, 1996)

in a two-pass strategy for object detection motivated by that of Rix et al. (2004),

though modified for this application. For the first pass, I set the SExtractor input

parameters DETECT THRESH and ANALYSIS THRESH to both be 0.75σI , where σI is the

overall RMS background variation of the entire image as estimated by SExtractor,
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and DETECT MINAREA set to 500 pixels. I want to find the largest objects and identify

object pixels down to the noise level. The large minimum area above the detection

threshold prevents spurious small-object or noise-peak detections that would fill the

full image.

I run SExtractor in its two-input-image mode. For the detection image I use the

coadded four-filter image, and use one of the individual filter images for photometry.

This makes the catalog object detection and numbering uniform across all filters.

Included in each filter’s catalog is the location, magnitude (using MAG BEST), the

apparent semi-major axis, the semi-minor axes, the ellipse orientation angle, and

a local estimation of the background level at the object location. SExtractor also

produces three other useful data products: a background image, an object image,

and an RMS image.

The background image is a map of the background estimate across the field.

Though overall the images have little background, there is some variation over the

field, due in large part to intra-cluster light (ICL). Because the ICL is not what I

am trying to measure, I want to be sure that it is removed from the smaller image

“postage stamps” that I will extract from the full images for AIM fitting.

The object image is the full image with the background map subtracted and any

pixels below the detection threshold set to zero. It is a map of only the signal counts

from the detected objects. I use this image for cleaning the data image of unwanted

foreground and cluster member galaxy objects.

Similar to the background image, the RMS image is a map of the root-mean

squared variation of the image about the background across the field. I use this map

to define the pixel-by-pixel error σn in Equation 3.3, and also as a noise estimate to

replace the values of the signal subtracted in the cleaned images.

5.2.2 Known Object Identification

To remove known foreground objects or cluster member galaxies which have been

identified spectroscopically, I have compiled a rejection catalog from literature. This

includes objects identified by Duc et al. (2002), Coe et al. (2010), or otherwise com-
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piled in the NASA/IPAC Extragalactic Database (NED)2. All objects with redshifts

z < 0.2 are included in the rejection catalog. This redshift limit includes the cluster

mean of z = 0.187 and the spread due to the cluster member velocity dispersion. Any

non-member galaxies included in this overlap to higher redshift would give minimal

lensing signal regardless, and are well ignored.

I match the positions of objects from the rejection catalog to objects in the SEx-

tractor catalog. Any SExtractor object which has a rejection catalog object within a

radius of 1.5αSE = 1.5
√
ASEBSE of the object center is flagged to be cleaned.

5.2.3 PSF-Dominated Object Selection

As noted in §5.1.1, objects which are too small with respect to the PSF are not good

candidates for flexion analysis. Therefore I impose a size floor of 2 pixels. Any objects

which have α < 2 pixels are flagged to be cleaned.

5.2.4 Image Cleaning

Using the rejection catalog, the object, background and RMS images from SExtractor,

and the original image,I create a “cleaned” data image as follows. For each object in

the catalog, I select the SExtractor background image pixels which are both non-zero

and connected to the object center pixel via a friends-of-friends algorithm, namely

that pixels are friends if they adjoin on a side (but not corners).

The object counts are subtracted from the original image in these “dirty” pixels

and replaced with a value drawn from a normal distribution centered on the back-

ground image value and with a standard deviation equal to the RMS image value. A

new error image is also created. This new image is equal to the RMS image except

where the pixels have been modified in the cleaned image. The cleaned pixels have

an error value which is twice that of the RMS image, slightly more than the formal

error-propagation value, to account for any systematic uncertainty in these modified

areas due to the subtraction.

2The NASA/IPAC Extragalactic Database can be found at: http://nedwww.ipac.caltech.edu/
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5.2.5 Final Catalog Generation

With the cleaned image produced, I return to SExtractor and generate a catalog of

objects in that cleaned image which are at least 2σI above the background (note that

σI is recalculated for the second pass) and DETECT MINAREA set to 25 pixels. This

generates a catalog of faint galaxy sources to be used for AIM analysis. Because

of the low detection threshold, there will be some spurious detections, particularly

near the edges of the regions where member galaxies were cleaned. However, these

will be easily removed with size and peak surface brightness cuts. I cut out any

objects with α < 2 pixels. After fitting, I will remove any objects with a fit surface

brightness S0/(2πα
2) of 5 × 10−3 electrons per square pixel (the calibrated units of

the mosaic image). I perform this latter cut after fitting because raising the detection

threshold on SExtractor eliminate a similar amount would cut out ∼ 30% of the

usable objects as well. The background galaxies desired for this catalog are low-

surface-brightness objects which are extended. A larger number of usable background

galaxies is obtained by being more inclusive initially and applying quality cuts to the

objects after the fitting process.

5.3 Fitting

The selection process described above produces a catalog of 764 objects to be fit using

the AIM method described in Chapter 3. I excise “postage stamp” images from the

full HST mosaic which are windowed to a radius of 1.5αSE. Initial parameters are

determined with AIM START PARS and the fitting is performed with AIM FIT IMAGE.

The input shear model is a simple non-singular isothermal sphere (NIS) mass model,

with

κ(θ) =
θe√

θθ∗ + θ2
c

(5.2)

and

γ =
θeθ

2√
θθ∗ + θ2

c

[
2θc
√
θθ∗ + θ2

c − θθ∗ − 2θ2
c

(θθ∗)2

]
(5.3)
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I use θe=49.′′5 and θc=17′′, corresponding to a typical redshift for background sources

of z ∼ 1− 3, following results of Broadhurst et al. (2005). In that work, the authors

note that there is enough uncertainty about the mass structure of A1689 that it

is difficult to determine whether a NIS profile is more or less appropriate than the

Navarro-Frenk-White (NFW) model (Navarro et al., 1997) typically used in cluster

applications.

After fitting, additional cuts are made to the object catalog. First, as in the simula-

tions in Chapter 4, I remove any fits where χ2/D.o.F > 1.5 or
√
σ(Ψ11)2 + σ(Ψ12)2 <

1× 10−5 pixels−1, and as mentioned above I remove any objects where S0/(2πα
2) <

5 × 10−3 e−/s. This leaves 301 objects in the field, a density of 26.6 objects per

arcmin2. These objects have the set of measured flexion values which I will use to

reconstruct a mass structure signal. Figure 5-1 shows the distribution of these 301

objects over the A1689 field. Figures 5-2, 5-3, and 5-4 show representative pairs of

galaxies images where the fits were very good (1.0 < χ2/D.o.F.< 1.1), marginally

acceptable (1.4 < χ2/D.o.F.< 1.5), and (1.5 < χ2/D.o.F.), respectively. Most of the

unacceptable fits are either marginal detections (extremely low signal to noise ratio),

or are closely separated pairs of objects. In these latter situations, the fit typically

attempts to match the larger object, even if it is located far from the center of the

postage stamp, and neither object is well fit (as is the for both galaxies in Figure

5-4).

The precision of the flexion measurements increases with surface brightness, as can

be seen in Figure 5-5, though there is also a significant contribution to the accuracy

from α, as is expected and can be seen in Figure 5-6.

Appendix A contains an example correlation matrix from one of the A1689 fits

showing the typical parameter correlations. Additionally, the appendix contains the

full fit parameters and errors for the 100 objects with the best constrained 1-flexion.
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5.4 Mass Signal Reconstruction

The inversion of lensing field data to galaxy cluster mass maps in weak lensing, partic-

ularly for shear analysis, has converged on a primary method of mass measurements:

the aperture mass statistic. Schneider (1996) described a method by which a weighted

integral of the scaled surface mass density,

m(x0) =

∫
R2

d2x κ(x)W (|x− x0|), (5.4)

where W (z) is the window function, could be related to a similar integral of the shear

field:

m(x0) =

∫
R2

d2x γT (x;x0)Qγ,W (|x|), (5.5)

where Qγ,W is the appropriate weight function for shear determined by the choice of

W and

γT (x;x0) = γ(x)

(
(x∗ − x∗0)

|x− x0|

)2

(5.6)

is the component of the shear at position x which is tangential to x− x0. Schneider

(1996) provides a full derivation of these formulae. This aperture mass statistic

approach to mass reconstruction allows structure to be detected at a scale set by the

weight function, which goes to zero beyond some radius, and is useful for both cluster

mass estimates and for measuring the power spectrum of cosmologically induced shear

(Schneider et al., 1998).

Leonard et al. (2009) adapted this approach to flexion, creating a mass-aperture

signal for 1-flexion. Similar to shear, the weighted convergence integral can be related

to an integral of the flexion:

m(x0) =

∫
R2

d2x FE(x;x0)QF ,W (|x|), (5.7)

where

FE(x;x0) = F(x)

(
(x∗ − x∗0)

|x− x0|

)
(5.8)
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is the curl-free, or E-mode 1-flexion with respect to x0 and QF ,W is the appropriate 1-

flexion weight function determined by the choice of W . See Leonard et al. (2009) for a

full derivation. Leonard et al. (2009) also describe two families of weight functions QF
which are appropriate for flexion inversion, though these families are by no means

exhaustive. This approach to mass reconstruction is a two-dimensional extension

to the divergence theorem, though using a weighted window function instead of an

infinitely thin surface to account for the discrete sampling of the flexion field by the

background galaxy locations.

There is one problem: this aperture mass statistic assumes that the physical

flexion is known and, due to the mass-sheet degeneracy, this is not possible until an

inversion is performed and κ is measured. Leonard et al. (2007) and Leonard et al.

(2010) both note significant systematic “B-mode”, or divergence free, signals in their

measurements. These B-modes are attributed to erroneous shapelet inversions, but

it is possible that some of their error comes from not recognizing the significance of

the mass-sheet degeneracy in the flexion regime.

However, this approach is not entirely without merit. The strength of this method

is to isolate the flexion signal at a particular scale with the choice of the weight

function, and measure the component of the flexion which is oriented towards a

point (x0) in the observed field. Ψ1 can trace such a signal as well. Because the

spin symmetry is the same, the E-mode signal of F and Ψ1 are coaligned or anti-

aligned, depending on the sign of 1−κ. The mathematical description of m(x0) works

analogously for Ψ1, except that the statistic is MK(x0), where

MK(x0) =

∫
R2

d2x Ψ1,E(x;x0)QF ,W (|x|) =

∫
R2

d2x K(x)W (|x− x0|), (5.9)

where

K(x) = −1

4
log |1− κ(x)|. (5.10)

So instead of an weighted integral average of the surface density, it is a weighted

integral average of the logarithm of the difference between the convergence and unity.

But because it is a function of the surface mass density, K will trace the same mass
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structure as κ.

For my selected, well-fit objects, I create a discrete version of this quantity (fol-

lowing Leonard et al., 2010):

MK(θ(n)) =
∑
j

Ψ1,E(θ(j); θ(n))Q(|θ(j)|; l, R)wn. (5.11)

Here θ(j) indicates the position of the jth fit object, θ(n) indicates the nth point in a

500×500 point grid of points which I build the reconstruction on, wn is a weighting

by the inverse square of the flexion error, and Q(|θ(j)|; l, R) indicates the polynomial

weight function

Q(r; l, R) = −A2 + l

2π
x

(
1− x2

R2

)1+l

A =
4√
π

Γ(7/2 + l)

Γ(3 + l)
(5.12)

from Leonard et al. (2009). As in Leonard et al. (2009) and Leonard et al. (2010),

I use three values of l and four values of R: 3,5, and 7, and 45′′, 60′′, 75′′, and 90′′,

respectively. The peak signal arises from objects located near 0.2R−0.3R, depending

on l, and the weighting is narrower in r with increasing l. See Figure 5-7 for a plot

of Q(r; l, R) for several values of l. The variety of scales and cutoff powers is useful

for separating out the signal from noise instances.

I therefore create twelve maps of the MK statistic, one with each of the filter

functions. Because the systematics of the MK statistic are not well investigated to

date, it is more appropriate to compare the observed signal from the 1-flexion to the

distribution MK maps expected from the measurements of the flexions and their

errors. This sort of “significance map” approach is common for shear aperture mass

measurements. The signal map is divided by the standard deviation of a set of maps

generated by randomly reorienting the measured ellipticities, in effect comparing the

measured mass map to the error signal expected from randomly oriented ellipticities.

Since the systematic particulars of such an approach using flexions remain to be

investigated fully, I will refer to my maps as “pseudo-significance maps”.

To turn the MK map into a pseudo-significance map, I follow a procedure that
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differs from Leonard et al. (2010). Rather than randomly reorienting the flexions,

I create the error maps by adding a normally distributed random value to each of

the measured flexions components with a standard deviation equal to the estimated

flexion parameter error, and construct a new MK map. I repeat this 100 times

to measure the standard deviation of the randomized maps. I then construct the

pseudo-significance map

S(θ(n)) =
MK(θ(n))

σMK(θ(n))
(5.13)

for each filter.

The twelve MK maps, grouped by l values, are presented in Figures 5-8–5-10 as

contours overlaid on the A1689 four-filter mosaic image. In all twelve MK maps,

there are structures which are coincident with observable galaxy overdensities. More-

over, these structures are persistent between different window indices l and different

aperture radii R, indicating that they are a real signal in the data.

5.5 Discussion

What should be made of these results? The application of the flexion mass aperture

statistic as I’ve done here seems to be workable in principle, due to the similarities

in the derivative relations between the input flexion field F/Ψ1 and κ/K. However

there may be some underlying restriction to this sort of straightforward application

of theory. The aperture mass statistic is a relatively new development in the field

of flexion analysis, and as such it does not have a well-formulated set of caveats and

conditions for appropriate use, nor is there a solid verification of the mass calibration.

Alternatively, these data do show a good agreement between the S map structure and

the observable substructure in the cluster member galaxies.

Figure 5-11 shows a recent high-accuracy mass map from Coe et al. (2010) pro-

duced using a strong lensing analysis of multiply imaged galaxies. The figure has

been rotated to be similarly aligned to my mass maps. In a broad sense, the mass

maps are similar, though both suffer from a lack of data outside the displayed fields,

so structures at the extreme edges of the images are tentative. It seems that there
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may be some systematic offsets in the location of the S peaks near the edges of the

field when compared to the structure visible in the optical. Within the convex hull

of the Coe et al. map, the overdensities in the flexion maps are roughly aligned with

the peaks of the strong lensing map. As noted by Coe et al., the strong lensing map

presented is one of a family of valid lensing solutions (see the caption of Figure 5-11),

so it is unclear what degree deviation between the flexion and strong lensing maps is

expected.

A direct comparison of the two techniques and a full validation/calibration of flex-

ion mass maps will require further investigation of the appropriate window functions

and their systematics, and of the effect of the discrete distribution of background

galaxies for which flexion is measured. Since the different window functions extract

information about the flexion at different angular scales, a combination of measure-

ments with different windows will likely be necessary for an accurate conversion of

MK to κ.

Overall I deem this a qualified success for the AIM method of flexion measure-

ment. The goal of this chapter was to use real observational data to produce a flexion

measurement result using the AIM method, and to that end this is a successful mea-

surement that shows good correlation to other indicators of mass structure. Further

work needs to be done to convert the the mass reconstruction to a true, calibrated

mass map, and ensure that the measurements can be made in a format that works

well with standard weak lensing shear and strong lensing measurements.
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5.6 Tables & Figures

Filter Total Exposure (ks)

F475W Mosaic 9.5
F475W Mosaic 9.5
F475W Mosaic 9.5
F850LP Mosaic 16.6

Total Mosaic 45.1

Table 5.1: The filters and corresponding total exposure times in kiloseconds for the
HST ACS WFC mosaic images used.

DETECT THRESH DETECT MINAREA σI Nobj

Pass 1 0.75 500 1.38× 10−3 1006
Pass 2 2.00 25 1.28× 10−3 1736

Final catalog – – – 764

Table 5.2: SExtractor Catalog Summary. These are the important catalog input
variables and the resulting number of objects detected. The final catalog is produced
by removing detections from the pass 2 catalog which are too small.

Mean/Median Fit Iterations Mean/Median χ2/D.o.F.

Pre-cut 28.1/19 5997/1.33
Post-cut 22.9/18 0.911/0.936

Table 5.3: Overview of the convergence properties for each dataset, including the
fraction converged, the mean and median values for the number of iterations needed
to converge, and the mean and median χ2 per degree of freedom of the converged fits.
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Figure 5-1: Distribution of flexion sources. Each red X marks the location of one
of the objects which provided a flexion measurement suitable for use in the mass
reconstruction.
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Figure 5-2: Two of the best fit galaxy images in the A1689 field. From left to
right, presented are data, fit, and residual images. Both of these objects has 1.0 <
χ2/D.o.F.< 1.1. The color scales are constant horizontally, though they have been
changed between the upper and lower objects to emphasize any structure.
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Figure 5-3: Two of the galaxy images in the A1689 field which are just below the
selection cutoff of χ2/D.o.F.< 1.5. Both of these objects has 1.4 < χ2/D.o.F.< 1.5.
From left to right, presented are data, fit, and residual images. The color scales are
constant horizontally, though they have been changed between the upper and lower
objects to emphasize any structure.
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Figure 5-4: Two of the galaxy images in the A1689 field which exceed the selection
cutoff of χ2/D.o.F.< 1.5. From left to right, presented are data, fit, and residual
images. The color scales are constant horizontally, though they have been changed
between the upper and lower objects to emphasize any structure.
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Figure 5-5: Measured flexion error versus observed F775W magnitude, calibrated to
standard HST zeropoints. The black points are for σ(Ψ1) =

√
σ(Ψ11)2 + σ(Ψ12)2,

and the blue points are for σ(Ψ3) =
√
σ(Ψ31)2 + σ(Ψ32)2. Note the drop in error by

a factor of nearly 4 from F775W=26 to F775W=25, as well as the systematic larger
error on Ψ3 as compared to Ψ1. Flexion errors are in units of arcsec−1.

Figure 5-6: Measured flexion error (as in Figure 5-5) versus α. The black points are
for σ(Ψ1), and the blue points are for σ(Ψ3). Note the systematic larger error on
Ψ3 as compared to Ψ1. Flexion errors are in units of arcsec−1 and α is in units of
arcseconds.
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Figure 5-7: Mass reconstruction window functions. As a function of the fraction of
the window aperture radius, the window functions are plotted for l =3, 5, 7, and 9.
Note that the window contribution peaks at approximately 20–30% of the aperture
size, and the width about that peak narrows for increasing l.
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Figure 5-8: S mass reconstruction pseudo-significance contours with l = 3 overlaid on
the four-filter A1689 mosaic image. Aperture radii are 45′′ (top left), 60′′ (top right),
75′′ (bottom left), and 90′′ (bottom right). Contours start at S = 5 and increase by
steps of 2. In each image, celestial north and east are up and left.
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Figure 5-9: S mass reconstruction pseudo-significance contours with l = 5 overlaid on
the four-filter A1689 mosaic image. Aperture radii are 45′′ (top left), 60′′ (top right),
75′′ (bottom left), and 90′′ (bottom right). Contours start at S = 5 and increase by
steps of 2. In each image, celestial north and east are up and left.
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Figure 5-10: S mass reconstruction pseudo-significance contours with l = 7 overlaid
on the four-filter A1689 mosaic image. Aperture radii are 45′′ (top left), 60′′ (top
right), 75′′ (bottom left), and 90′′ (bottom right). Contours start at S = 5 and
increase by steps of 2. In each image, celestial north and east are up and left.
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Figure 5-11: Strong lensing mass map from Figure 5 of Coe et al. (2010), rotated to
be similarly aligned with the rest of the A1689 images presented. Original caption:
Mass map contours in units of κ∞ = 1/3 laid over the 3.′2 by 3.′3 STScI ACS g’r’z’
color image. The outermost contour, κ∞ = 0, was also plotted in the previous figure.
Pink squares indicate the 135 multiple image positions all perfectly reproduced by our
model, and the white line indicates the convex hull. Outside this region, our solution
should be disregarded. This solution is not unique but was the “most physical” we
found.
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Chapter 6

Summary

Reconstructing the mass distribution of galaxy clusters is a difficult process. As with

any measurement, the method used imposes restrictions and systematic biases on the

inferred mass. In many cases, this is because the specific mass tracer being used only

probes a certain scale or physical regime. For example, using the hot intra-cluster

medium to measure the mass can lead to differing estimates depending on whether

the plasma is measured with X-ray surface brightness or by the Sunyaev-Zel’dovich

decrement. The former signal is dominated by the dense gas nearer to the cluster

core, while the latter signal receives a much more significant contribution from the

large volume of plasma away from the cluster center (e.g., Motl et al., 2005). As

shown in Chapter 2, structure along the line of sight can further complicate mass

estimates, particularly when the signal is low.

The same is true of gravitational lensing. Weak lensing shear mass reconstructions

are good estimators of total cluster mass at large radii, but there is a resolution

floor below which there aren’t enough source galaxies per solid angle to overcome

the shear signal noise of the intrinsic galaxy ellipticities. Strong lensing provides

small scale information, however it can be dependent on the particular alignment

of background galaxies with the cluster and it can be very observationally intensive

to confirm observed objects as multiple images of the same source. There is also a

concern that many strong lensing measurements are biased by line-of-sight structure

that may not be directly associated with the cluster.
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One solution to these problems is to approach mass reconstruction with numerous

techniques valid on overlapping scales so as to maximize the amount of information

obtained about the mass distribution while controlling for systematic effects. The

specific sources of error for different techniques and the assumptions necessary to

apply them to the cluster in question vary, such as hydrostatic equilibrium for X-

ray observations, or a lack of significant line-of-sight structure unassociated with the

cluster. Comparisons between techniques are necessary to find sources of systematic

errors, as the signal dependences will vary.

It is in this context that third-order weak gravitational lensing, flexion, is a power-

ful tool for galaxy cluster mass measurements. The flexion signal is localized near the

cluster core, where the weak lensing approximation of γ ∼ g breaks down and where

there are too few galaxies and the lensing potential is varying too quickly to measure

an accurate averaged shear signal. Flexion analysis also applies to a larger fraction

of the area of the cluster than strong lensing. Though the strongly lensed images are

larger than those images used for flexion analysis, strong lensing requires the source

images to be located radially interior to the caustics of the lensing potential, whereas

the background galaxies for flexion need not be on or immediately near any caustic,

a region comprising a much larger fraction of the solid angle of the cluster. Fur-

thermore, flexion does not require the identification of multiply imaged sources and

so is less observationally expensive, as accurate strong lensing maps usually require

extensive spectroscopy. Flexion analysis bridges the gap between strong lensing and

weak lensing, in principle allowing a more detailed and accurate mass mapping than

with either alone.

Flexion analysis is a growing subfield, and the specific analysis tools necessary

for robust flexion measurements are still being developed. Current methods in the

literature, such as shapelets and HOLICs, draw on the rich base of work already done

in the strong and weak lensing communities. However, there are drawbacks to each

and the best solution has yet to be found.

In order to explore an alternative path, I have developed another method for

flexion analysis - the Analytic Image Model. Rather than making assumptions on the
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values of derived quantities like shapelet coefficients or surface brightness moments,

I instead assume that the lensed image can be well approximated by an analytically

lensed elliptical Gaussian. This elliptical Gaussian is a proxy for the image isophotes,

which are assumed to be roughly elliptical prior to lensing. The lensed model images

are created using a mass-sheet invariant parametrization and the model is optimized

over the space of possible model parameters. To validate the method, I have created

simulated images with a variety of realistic noise, shape and lensing properties, and

shown that the AIM method accurately reproduces the input lensing fields.

And finally, I have applied the AIM method to HST images of Abell 1689. This

well-known galaxy cluster is the canonical testbed for flexion. Though the relation-

ship to the physical mass of the cluster is not exact, I apply a modified version of

the aperture mass statistic for flexion and measure substructure within the core of

the galaxy cluster. This substructure is not newly discovered: it is traced by a local

concentrations of cluster member galaxies and has been identified in several previ-

ous lensing studies. However, detecting it using this new technique is an important

benchmark for validating the AIM method.

There is a great deal of work yet to be done in this field. Though I have shown the

AIM method capable of detecting mass substructure in a galaxy cluster, I do not yet

have a rigorous estimator of the statistical significance of this detection. Additional

testing and simulations will need to be done to understand the statistics of flexion,

both as a physical phenomenon and as a tool for mass reconstruction. Additional

probes into what sorts of lensed images create problems for the AIM fitting procedure,

either in terms of non-convergence or erroneous flexion estimation, as well as direct

comparisons to the other methods to understand the strengths and weaknesses of

each flexion measurement technique are needed to add robustness to this method of

mass structure estimation. Window function optimization for the flexion aperture

mass statistic and a thorough evaluation this method in comparison to other mass

structure measurement techniques (such as parametric mass models) is necessary to

determine the best approach for using flexion to detect substructure in galaxy clusters.

Weak gravitational lensing flexion is an extremely sensitive probe of small scale
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substructures in galaxy clusters, and is an important ingredient for the next gener-

ation of high-resolution mass maps of galaxy clusters. The AIM method is a good

alternative to shapelets and HOLICs as it avoids some of the systematic problems of

each while still accurately measuring flexion.
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Appendix A

Detailed AIM Results

In this appendix I present a sample correlation matrix for one of the fits in the 301

used for the mass reconstruction in Table A.1. As is typical for models with a large

number of parameters, there are several moderate correlations between parameters.

The largest of these is the well-known correlation between size and total flux. There

are a few correlations between flexion parameters and ellipse parameters, but none of

them are so large as to be problematic for the fitting procedure.

Also in this appendix are the detailed fit parameter for the 100 best AIM fit

objects, as determined by their 1-flexion signal-to-noise. Tables A.2–A.7 list the fit

shape parameters and their errors. Tables A.8–A.10 list the fit flexion parameters and

their errors. The right ascension and declination of each object is also listed in Tables

A.2–A.4. Each object can be identified with the catalog numbers in each table. The

objects are sorted by the 1-flexion signal-to-noise estimate

SNR =

(
Ψ2

11 + Ψ2
12

σ(Ψ11)2 + σ(Ψ12)2

)1/2

,

from high to low values of SNR with increasing object number. The SNR for each

object is listed in Tables A.8–A.10.
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logS0 Xc Yc α E+ E× Ψ11 Ψ12 Ψ31 Ψ32

logS0 1 0.074 0.261 0.751 -0.028 0.140 -0.196 -0.660 0.160 -0.050
Xc – 1 0.115 0.086 0.035 -0.021 -0.343 -0.237 -0.242 -0.184
Yc – – 1 0.252 0.186 0.064 -0.292 -0.176 -0.017 0.054
α – – – 1 -0.016 0.155 -0.204 -0.608 0.276 -0.031
E+ – – – – 1 -0.059 0.044 0.343 0.018 -0.383
E× – – – – – 1 -0.319 -0.379 0.386 0.036
Ψ11 – – – – – – 1 0.561 0.405 0.604
Ψ12 – – – – – – – 1 -0.161 0.155
Ψ31 – – – – – – – – 1 0.382
Ψ32 – – – – – – – – – 1

σ 0.012 0.003 0.005 0.003 0.017 0.018 0.010 0.007 0.019 0.016

Table A.1: Sample correlation matrix typical of the Abell 1689 object fits. The
matrix has been normalized by rows to the diagonal elements and since the matrix is
symmetric, the elements below the diagonal have been removed for clarity. The last
row lists the paramter errors for this particular fit.
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Object RA Dec logS0 σ(logS0) Xc σ(Xc) Yc σ(Yc)

1 13:11:31.53 -1:20:37.0 -0.301 0.0152 -0.011 0.0037 -0.128 0.0061
2 13:11:28.49 -1:20:59.9 -0.104 0.0116 0.009 0.0031 -0.076 0.0050
3 13:11:34.52 -1:19:32.1 0.077 0.0071 -0.049 0.0019 -0.086 0.0001
4 13:11:28.63 -1:20:31.7 -0.393 0.0223 0.031 0.0063 -0.107 0.0075
5 13:11:25.32 -1:19:57.7 -0.295 0.0154 0.006 0.0048 -0.050 0.0065
6 13:11:28.84 -1:20:13.4 -0.081 0.0001 -0.074 0.0053 -0.046 0.0036
7 13:11:29.87 -1:19:01.4 -0.424 0.0160 0.062 0.0001 -0.025 0.0001
8 13:11:32.36 -1:20:37.2 -0.183 0.0131 -0.032 0.0054 0.022 0.0048
9 13:11:25.38 -1:21:16.2 -0.159 0.0258 -0.091 0.0102 -0.023 0.0105
10 13:11:22.56 -1:21:02.1 -0.046 0.0219 -0.054 0.0145 -0.129 0.0157
11 13:11:35.83 -1:20:59.6 -0.194 0.0147 0.081 0.0058 -0.174 0.0065
12 13:11:33.55 -1:21:06.7 -0.383 0.0133 -0.024 0.0036 -0.113 0.0046
13 13:11:31.18 -1:19:00.1 -0.422 0.0224 0.049 0.0143 -0.022 0.0114
14 13:11:22.66 -1:21:01.2 -0.192 0.0190 -0.066 0.0099 -0.066 0.0191
15 13:11:24.16 -1:20:33.9 -0.479 0.0190 -0.048 0.0061 0.053 0.0069
16 13:11:30.52 -1:22:10.5 0.106 0.0292 0.021 0.0158 -0.080 0.0095
17 13:11:29.88 -1:19:51.4 -0.242 0.0152 -0.090 0.0052 -0.049 0.0074
18 13:11:28.25 -1:20:03.8 -0.401 0.0236 -0.072 0.0077 0.078 0.0100
19 13:11:26.62 -1:20:08.5 -0.072 0.0127 -0.113 0.0049 0.023 0.0061
20 13:11:22.48 -1:21:12.8 0.159 0.0089 0.008 0.0058 0.055 0.0037
21 13:11:33.69 -1:20:18.8 -0.185 0.0382 -0.031 0.0082 0.054 0.0199
22 13:11:36.81 -1:20:36.8 -0.313 0.0139 0.011 0.0042 -0.054 0.0048
23 13:11:26.11 -1:19:43.0 -0.234 0.0001 0.013 0.0035 -0.087 0.0043
24 13:11:33.52 -1:19:11.3 -0.293 0.0247 0.115 0.0142 0.014 0.0078
25 13:11:38.36 -1:19:32.9 0.049 0.0077 0.012 0.0036 -0.053 0.0023
26 13:11:28.57 -1:19:11.2 -0.134 0.0086 0.005 0.0032 -0.064 0.0027
27 13:11:25.12 -1:20:51.8 0.057 0.0388 -0.106 0.0126 -0.130 0.0211
28 13:11:34.64 -1:20:15.9 -0.266 0.0104 -0.056 0.0024 0.021 0.0035
29 13:11:24.09 -1:19:49.7 -0.029 0.0087 0.000 0.0034 -0.032 0.0092
30 13:11:29.75 -1:18:30.9 -0.298 0.0331 -0.103 0.0167 -0.046 0.0078
31 13:11:27.84 -1:20:34.3 0.221 0.0051 -0.025 0.0021 0.011 0.0022
32 13:11:27.07 -1:18:39.8 -0.133 0.0090 -0.069 0.0036 -0.040 0.0037
33 13:11:30.50 -1:22:10.7 0.216 0.0212 -0.278 0.0156 0.100 0.0095
34 13:11:28.20 -1:20:07.3 -0.103 0.0192 -0.088 0.0098 -0.040 0.0114

Table A.2: Sky location, fit and error values of logS0, Xc and Yc for the 100 objects
in the A1689 field with the best flexion estimates used in this analysis. The right
ascension and declination coordinates are for the J2000 epoch.
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Object RA Dec logS0 σ(logS0) Xc σ(Xc) Yc σ(Yc)

35 13:11:23.94 -1:21:09.0 -0.460 0.0213 0.009 0.0090 -0.043 0.0069
36 13:11:32.88 -1:19:17.9 -0.220 0.0173 -0.083 0.0108 0.005 0.0072
37 13:11:34.92 -1:20:12.8 -0.401 0.0184 0.001 0.0054 -0.041 0.0171
38 13:11:26.85 -1:19:26.4 -0.462 0.0232 -0.013 0.0092 -0.076 0.0084
39 13:11:30.11 -1:19:34.5 -0.172 0.0500 0.440 0.0354 0.095 0.0092
40 13:11:33.34 -1:19:09.2 -0.255 0.0117 0.020 0.0047 -0.010 0.0038
41 13:11:30.69 -1:21:33.6 -0.177 0.0208 -0.037 0.0121 -0.084 0.0090
42 13:11:32.47 -1:21:20.8 -0.274 0.0128 0.013 0.0039 -0.040 0.0042
43 13:11:31.70 -1:19:56.8 -0.070 0.0130 0.028 0.0046 -0.025 0.0064
44 13:11:23.47 -1:20:17.1 -0.225 0.0126 0.019 0.0036 -0.060 0.0059
45 13:11:23.01 -1:20:50.9 -0.195 0.0173 0.061 0.0098 -0.048 0.0059
46 13:11:30.06 -1:21:06.4 -0.033 0.0126 -0.142 0.0060 -0.034 0.0053
47 13:11:34.34 -1:19:46.4 -0.434 0.0209 -0.058 0.0062 -0.056 0.0100
48 13:11:34.26 -1:21:47.7 0.229 0.0112 -0.077 0.0099 -0.077 0.0124
49 13:11:24.26 -1:19:32.9 -0.183 0.0143 -0.057 0.0051 -0.102 0.0059
50 13:11:26.59 -1:19:16.4 -0.236 0.0154 -0.066 0.0051 -0.034 0.0080
51 13:11:27.91 -1:19:22.5 -0.073 0.0091 0.001 0.0045 -0.006 0.0028
52 13:11:34.59 -1:19:45.8 0.156 0.0064 0.000 0.0043 0.006 0.0043
53 13:11:22.98 -1:20:55.6 -0.300 0.0141 -0.032 0.0067 -0.088 0.0038
54 13:11:34.08 -1:19:01.6 -0.416 0.0001 -0.004 0.0137 -0.012 0.0065
55 13:11:25.34 -1:21:16.2 0.126 0.0347 0.028 0.0211 -0.028 0.0124
56 13:11:34.71 -1:20:21.8 -0.344 0.0171 -0.016 0.0083 -0.050 0.0049
57 13:11:28.05 -1:19:06.3 -0.302 0.0177 -0.094 0.0066 -0.097 0.0071
58 13:11:26.47 -1:20:56.1 0.028 0.0098 -0.071 0.0065 -0.017 0.0041
59 13:11:22.73 -1:21:19.8 -0.400 0.0001 -0.043 0.0073 -0.084 0.0231
60 13:11:33.34 -1:21:59.1 -0.126 0.0169 -0.040 0.0087 -0.014 0.0124
61 13:11:32.81 -1:19:12.4 -0.239 0.0187 -0.088 0.0090 -0.067 0.0069
62 13:11:27.42 -1:21:22.7 -0.235 0.0189 -0.017 0.0102 0.014 0.0079
63 13:11:22.75 -1:21:22.9 -0.034 0.0100 -0.054 0.0060 -0.060 0.0036
64 13:11:34.41 -1:21:32.2 -0.085 0.0115 -0.068 0.0078 -0.017 0.0025
65 13:11:23.55 -1:20:51.6 -0.384 0.0151 -0.040 0.0034 0.052 0.0054
66 13:11:22.10 -1:21:03.8 -0.036 0.0196 0.020 0.0155 -0.037 0.0130

Table A.3: Same as Table A.2.
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Object RA Dec logS0 σ(logS0) Xc σ(Xc) Yc σ(Yc)

67 13:11:32.89 -1:20:34.5 -0.089 0.0109 -0.030 0.0059 0.018 0.0044
68 13:11:37.86 -1:19:37.4 -0.158 0.0102 -0.027 0.0039 0.013 0.0033
69 13:11:36.16 -1:20:36.1 -0.140 0.0119 -0.022 0.0049 -0.074 0.0043
70 13:11:35.63 -1:19:27.7 -0.151 0.0097 -0.031 0.0051 -0.070 0.0031
71 13:11:25.06 -1:19:41.8 0.339 0.0192 -0.025 0.0067 -0.141 0.0175
72 13:11:30.35 -1:20:08.9 -0.368 0.0342 -0.053 0.0118 0.041 0.0178
73 13:11:34.24 -1:19:02.6 -0.175 0.0178 0.017 0.0186 -0.056 0.0048
74 13:11:36.86 -1:19:45.6 0.026 0.0102 0.002 0.0040 0.049 0.0054
75 13:11:29.20 -1:21:31.4 -0.044 0.0182 -0.048 0.0102 -0.084 0.0125
76 13:11:29.63 -1:21:14.1 -0.487 0.0265 -0.024 0.0118 0.020 0.0088
77 13:11:26.57 -1:18:44.3 -0.101 0.0117 -0.033 0.0034 0.093 0.0063
78 13:11:34.97 -1:19:58.0 0.038 0.0080 0.002 0.0038 -0.027 0.0036
79 13:11:26.94 -1:21:29.0 -0.095 0.0116 -0.033 0.0048 0.004 0.0045
80 13:11:32.76 -1:22:18.7 -0.404 0.0299 0.010 0.0182 -0.043 0.0117
81 13:11:30.67 -1:20:03.0 -0.158 0.0170 0.018 0.0076 -0.043 0.0067
82 13:11:36.47 -1:19:19.1 0.109 0.0077 -0.013 0.0036 0.026 0.0038
83 13:11:27.33 -1:19:50.0 0.063 0.0106 -0.021 0.0067 -0.072 0.0050
84 13:11:31.69 -1:21:16.6 -0.087 0.0155 -0.071 0.0084 -0.029 0.0076
85 13:11:26.68 -1:18:32.7 -0.165 0.0157 0.021 0.0111 0.002 0.0097
86 13:11:35.09 -1:19:13.4 0.164 0.0068 0.036 0.0037 -0.015 0.0035
87 13:11:34.24 -1:19:30.6 -0.155 0.0155 -0.009 0.0059 0.028 0.0076
88 13:11:34.07 -1:20:07.2 -0.139 0.0121 -0.037 0.0045 -0.048 0.0054
89 13:11:25.10 -1:21:24.6 0.229 0.0040 -0.014 0.0025 -0.049 0.0014
90 13:11:24.30 -1:20:55.4 -0.290 0.0157 -0.017 0.0055 -0.015 0.0068
91 13:11:26.33 -1:19:30.9 -0.189 0.0130 -0.014 0.0052 0.015 0.0058
92 13:11:34.72 -1:19:41.2 0.027 0.0097 0.010 0.0045 -0.024 0.0050
93 13:11:25.24 -1:18:59.8 -0.067 0.0108 -0.068 0.0028 0.022 0.0056
94 13:11:36.03 -1:20:21.9 0.088 0.0084 -0.068 0.0033 -0.043 0.0077
95 13:11:33.40 -1:22:03.3 -0.360 0.0160 -0.057 0.0038 -0.100 0.0064
96 13:11:31.25 -1:19:45.5 -0.367 0.0259 -0.059 0.0093 0.016 0.0172
97 13:11:31.83 -1:21:18.6 -0.299 0.0193 -0.026 0.0185 -0.069 0.0123
98 13:11:35.20 -1:20:06.1 -0.232 0.0177 -0.040 0.0078 0.075 0.0082
99 13:11:22.51 -1:20:20.6 0.499 0.0079 -0.026 0.0092 -0.099 0.0058
100 13:11:26.46 -1:20:26.4 -0.196 0.0156 0.003 0.0067 -0.039 0.0057

Table A.4: Same as Table A.2.
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Object α σ(α) E+ σ(E+) E× σ(E×)

1 0.1208 0.0030 -0.261 0.0215 -0.178 0.0191
2 0.1346 0.0027 -0.235 0.0172 0.027 0.0180
3 0.1482 0.0019 -0.187 0.0088 0.541 0.0085
4 0.1039 0.0039 -0.091 0.0374 -0.121 0.0397
5 0.1325 0.0036 -0.138 0.0232 -0.288 0.0236
6 0.1139 0.0017 0.231 0.0001 0.478 0.0163
7 0.1138 0.0035 0.531 0.0231 0.063 0.0001
8 0.1463 0.0034 0.041 0.0221 0.100 0.0219
9 0.2043 0.0077 -0.013 0.0366 0.071 0.0278
10 0.2204 0.0075 -0.051 0.0214 0.482 0.0264
11 0.1356 0.0036 -0.071 0.0176 -0.506 0.0187
12 0.1013 0.0025 -0.153 0.0229 -0.254 0.0234
13 0.1627 0.0055 0.117 0.0362 0.341 0.0298
14 0.2058 0.0059 -0.295 0.0253 -0.305 0.0269
15 0.1180 0.0040 -0.093 0.0315 0.234 0.0323
16 0.2053 0.0082 0.256 0.0205 -0.420 0.0270
17 0.1524 0.0041 -0.126 0.0252 -0.043 0.0253
18 0.1467 0.0060 -0.107 0.0374 -0.168 0.0359
19 0.1722 0.0038 -0.051 0.0201 -0.011 0.0206
20 0.1823 0.0027 0.155 0.0123 0.223 0.0130
21 0.2039 0.0111 -0.313 0.0420 0.151 0.0381
22 0.1183 0.0029 -0.061 0.0247 0.022 0.0239
23 0.1039 0.0015 -0.168 0.0163 -0.440 0.0154
24 0.1597 0.0066 0.346 0.0259 0.385 0.0262
25 0.1362 0.0018 0.179 0.0124 0.032 0.0122
26 0.1192 0.0019 -0.054 0.0146 -0.093 0.0152
27 0.2638 0.0138 -0.214 0.0354 0.295 0.0346
28 0.1003 0.0019 -0.133 0.0180 -0.001 0.0174
29 0.1482 0.0023 -0.472 0.0112 -0.265 0.0115
30 0.1822 0.0088 0.281 0.0495 0.048 0.0329
31 0.1179 0.0011 -0.036 0.0086 -0.168 0.0082
32 0.1184 0.0019 0.002 0.0155 -0.295 0.0139
33 0.2332 0.0075 0.308 0.0176 -0.516 0.0184
34 0.1973 0.0064 -0.028 0.0271 0.258 0.0283

Table A.5: Fit and error values of α, E+ and E× for the 100 objects in the A1689
field with the best flexion estimates used in this analysis.
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Object α σ(α) E+ σ(E+) E× σ(E×)

35 0.1352 0.0051 0.093 0.0364 0.101 0.0361
36 0.1613 0.0048 0.198 0.0272 0.261 0.0242
37 0.1451 0.0044 -0.482 0.0226 0.171 0.0248
38 0.1438 0.0058 0.016 0.0368 -0.174 0.0379
39 0.2255 0.0163 0.487 0.0497 0.189 0.0394
40 0.1014 0.0023 0.211 0.0001 0.412 0.0001
41 0.1963 0.0069 0.094 0.0296 -0.145 0.0332
42 0.1122 0.0027 0.006 0.0205 -0.305 0.0205
43 0.1511 0.0034 -0.117 0.0209 -0.137 0.0208
44 0.1293 0.0029 -0.252 0.0203 0.090 0.0206
45 0.1714 0.0051 0.214 0.0268 0.065 0.0248
46 0.1661 0.0036 0.094 0.0189 0.144 0.0197
47 0.1397 0.0049 -0.170 0.0344 -0.084 0.0321
48 0.2529 0.0048 -0.096 0.0158 -0.382 0.0145
49 0.1317 0.0033 -0.131 0.0227 0.211 0.0230
50 0.1549 0.0041 -0.137 0.0240 0.023 0.0256
51 0.1294 0.0021 0.132 0.0143 0.121 0.0149
52 0.1692 0.0019 0.034 0.0098 -0.271 0.0107
53 0.1196 0.0031 0.223 0.0221 0.220 0.0236
54 0.1570 0.0042 0.387 0.0345 0.077 0.0355
55 0.2950 0.0140 0.167 0.0456 -0.021 0.0253
56 0.1347 0.0040 0.183 0.0272 -0.071 0.0284
57 0.1527 0.0047 -0.013 0.0289 0.139 0.0279
58 0.1627 0.0027 0.272 0.0133 0.236 0.0137
59 0.1383 0.0041 -0.609 0.0229 0.334 0.0244
60 0.1851 0.0053 -0.151 0.0245 -0.346 0.0224
61 0.1638 0.0053 0.077 0.0307 0.011 0.0286
62 0.1665 0.0054 0.081 0.0281 -0.205 0.0297
63 0.1459 0.0025 0.175 0.0159 -0.103 0.0159
64 0.1793 0.0038 0.417 0.0001 -0.368 0.0151
65 0.1063 0.0030 -0.287 0.0251 0.008 0.0249
66 0.2283 0.0073 0.094 0.0250 -0.315 0.0274

Table A.6: Same as Table A.5
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Object α σ(α) E+ σ(E+) E× σ(E×)

67 0.1487 0.0028 -0.003 0.0172 -0.190 0.0171
68 0.1229 0.0022 0.040 0.0185 -0.059 0.0167
69 0.1401 0.0029 0.023 0.0192 -0.051 0.0195
70 0.1249 0.0021 0.178 0.0164 0.085 0.0160
71 0.2797 0.0075 -0.385 0.0164 0.156 0.0285
72 0.1787 0.0102 -0.169 0.0487 0.103 0.0505
73 0.1754 0.0052 0.511 0.0211 0.112 0.0197
74 0.1667 0.0029 -0.166 0.0144 0.011 0.0160
75 0.2236 0.0068 -0.090 0.0281 -0.160 0.0248
76 0.1401 0.0066 0.075 0.0442 0.066 0.0449
77 0.1464 0.0030 -0.364 0.0158 0.085 0.0161
78 0.1436 0.0020 0.009 0.0127 0.052 0.0130
79 0.1386 0.0028 0.055 0.0185 -0.079 0.0184
80 0.1444 0.0073 0.235 0.0351 -0.470 0.0321
81 0.1592 0.0046 0.095 0.0247 -0.138 0.0268
82 0.1572 0.0021 -0.060 0.0115 0.082 0.0122
83 0.1849 0.0033 0.104 0.0156 0.061 0.0168
84 0.1802 0.0047 0.059 0.0230 0.190 0.0233
85 0.1839 0.0049 0.030 0.0234 -0.340 0.0224
86 0.1580 0.0018 0.120 0.0102 0.206 0.0101
87 0.1654 0.0044 -0.122 0.0226 -0.022 0.0247
88 0.1384 0.0029 -0.116 0.0182 -0.135 0.0195
89 0.1097 0.0008 0.301 0.0068 0.011 0.0063
90 0.1355 0.0037 -0.108 0.0264 0.087 0.0260
91 0.1386 0.0031 -0.098 0.0205 0.114 0.0209
92 0.1633 0.0027 -0.017 0.0148 -0.032 0.0154
93 0.1150 0.0023 -0.254 0.0159 -0.235 0.0176
94 0.1689 0.0024 -0.396 0.0118 0.163 0.0108
95 0.1122 0.0033 -0.324 0.0251 -0.072 0.0252
96 0.1623 0.0072 -0.246 0.0368 -0.225 0.0387
97 0.1560 0.0052 0.232 0.0244 -0.504 0.0226
98 0.1636 0.0050 -0.118 0.0275 -0.197 0.0255
99 0.2722 0.0036 0.157 0.0123 -0.112 0.0110
100 0.1482 0.0040 0.104 0.0235 -0.006 0.0252

Table A.7: Same as Table A.5
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Object Ψ11 σ(Ψ11) Ψ12 σ(Ψ12) Ψ31 σ(Ψ31) Ψ32 σ(Ψ32) SNR

1 0.1019 0.0135 0.4372 0.0062 0.3110 0.0176 -0.0305 0.0132 30.1
2 -0.0713 0.0101 0.3445 0.0073 0.0681 0.0189 0.3160 0.0157 28.3
3 0.2676 0.0065 -0.0604 0.0078 -0.0627 0.0220 -0.2778 0.0136 26.9
4 -0.3025 0.0117 0.2579 0.0125 -0.2602 0.0271 -0.1786 0.0264 23.2
5 -0.3541 0.0100 0.0433 0.0146 0.1906 0.0319 -0.1743 0.0234 20.1
6 0.2244 0.0086 0.0910 0.0090 -0.0506 0.0050 -0.3528 0.0281 19.4
7 -0.1636 0.0100 0.2755 0.0132 -0.2280 0.0541 -0.2752 0.0167 19.4
8 0.1307 0.0142 -0.2938 0.0115 0.1758 0.0274 -0.0908 0.0304 17.6
9 0.4037 0.0116 -0.0753 0.0209 0.2279 0.0284 0.0664 0.0314 17.2
10 -0.1285 0.0124 0.2814 0.0136 -0.0690 0.0230 0.3090 0.0226 16.8
11 0.0262 0.0116 0.2795 0.0137 -0.0507 0.0239 0.1544 0.0236 15.6
12 0.2194 0.0152 0.2718 0.0168 0.2696 0.0387 -0.0568 0.0497 15.4
13 -0.2660 0.0180 0.3183 0.0202 -0.0668 0.0340 0.2092 0.0365 15.3
14 0.3533 0.0129 0.1412 0.0214 -0.0213 0.0294 0.1777 0.0286 15.2
15 0.1253 0.0209 -0.3322 0.0129 0.1769 0.0415 -0.1401 0.0366 14.5
16 0.3458 0.0187 0.0250 0.0163 -0.2031 0.0216 -0.3518 0.0403 14.0
17 0.2856 0.0125 0.1105 0.0180 -0.0733 0.0339 -0.1225 0.0295 14.0
18 0.2427 0.0138 -0.2188 0.0189 0.3237 0.0378 0.1050 0.0330 14.0
19 0.2483 0.0108 -0.0691 0.0153 -0.0779 0.0278 0.1781 0.0284 13.8
20 -0.0164 0.0136 -0.2294 0.0098 -0.1063 0.0208 -0.0134 0.0228 13.7
21 0.1209 0.0154 -0.3352 0.0219 0.4371 0.0384 0.0825 0.0407 13.3
22 -0.2941 0.0179 0.1769 0.0186 0.0412 0.0414 -0.2071 0.0337 13.3
23 -0.2787 0.0176 0.0240 0.0118 0.2315 0.0592 -0.1165 0.0337 13.2
24 -0.2974 0.0118 0.0888 0.0204 0.1984 0.0217 -0.0249 0.0352 13.2
25 -0.1878 0.0137 0.1518 0.0123 0.0593 0.0297 -0.2750 0.0278 13.1
26 -0.0135 0.0230 0.3117 0.0075 -0.0589 0.0324 0.0965 0.0254 12.9
27 -0.0467 0.0187 0.3443 0.0199 -0.2444 0.0393 0.0198 0.0254 12.7
28 0.1819 0.0148 -0.2698 0.0217 0.3238 0.0271 -0.2128 0.0412 12.4
29 -0.2491 0.0135 -0.0714 0.0165 -0.0634 0.0281 -0.2922 0.0282 12.1
30 0.2823 0.0198 -0.2490 0.0241 0.4248 0.0469 0.0513 0.0357 12.1
31 -0.1858 0.0156 -0.1703 0.0141 0.0781 0.0293 -0.0488 0.0288 12.0
32 0.1937 0.0172 0.2272 0.0182 0.0734 0.0405 0.0033 0.0381 11.9
33 0.1441 0.0174 0.2118 0.0128 -0.1850 0.0159 -0.1086 0.0253 11.8
34 0.2747 0.0127 -0.0885 0.0216 -0.0702 0.0321 -0.0090 0.0331 11.5

Table A.8: Fit flexion parameters and their errors for the 100 best A1689 1-flexion
objects. The fixed input shears used for the image fits are included for reference.
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Object Ψ11 σ(Ψ11) Ψ12 σ(Ψ12) Ψ31 σ(Ψ31) Ψ32 σ(Ψ32) SNR

35 -0.1396 0.0253 0.3110 0.0161 -0.1695 0.0438 0.0333 0.0484 11.4
36 0.1976 0.0202 -0.2281 0.0174 -0.0699 0.0362 0.1195 0.0357 11.3
37 -0.3574 0.0117 0.0873 0.0304 -0.1769 0.0332 0.1083 0.0338 11.3
38 -0.0099 0.0224 0.3127 0.0172 -0.2097 0.0492 0.2316 0.0381 11.1
39 -0.0631 0.0217 -0.2864 0.0155 -0.2332 0.0321 0.1420 0.0232 11.0
40 -0.3045 0.0117 0.1145 0.0298 0.1972 0.0284 0.0228 0.0510 10.2
41 0.0404 0.0215 0.2661 0.0157 0.0730 0.0388 0.1218 0.0377 10.1
42 -0.3210 0.0196 0.0928 0.0267 0.1237 0.0461 -0.1647 0.0285 10.1
43 -0.2462 0.0172 -0.1020 0.0200 0.0287 0.0394 0.1390 0.0413 10.1
44 -0.2832 0.0244 0.0936 0.0169 0.1417 0.0513 -0.1088 0.0383 10.1
45 -0.1834 0.0190 0.1914 0.0188 -0.0169 0.0391 -0.1522 0.0352 9.9
46 0.2217 0.0138 -0.0147 0.0179 -0.2007 0.0282 -0.2163 0.0360 9.8
47 0.2613 0.0154 0.1638 0.0282 0.3524 0.0542 -0.1181 0.0366 9.6
48 0.1407 0.0123 0.1309 0.0161 0.1023 0.0247 0.1262 0.0217 9.5
49 -0.1030 0.0266 0.2677 0.0152 -0.0304 0.0474 0.1991 0.0399 9.4
50 0.2632 0.0162 -0.0545 0.0245 -0.0638 0.0429 0.0844 0.0436 9.2
51 -0.0407 0.0243 -0.2622 0.0161 -0.0596 0.0375 0.0340 0.0398 9.1
52 -0.1099 0.0115 -0.1256 0.0147 0.1264 0.0248 -0.2951 0.0259 8.9
53 -0.0382 0.0260 0.3045 0.0228 0.0169 0.0541 0.1426 0.0555 8.9
54 -0.1122 0.0137 -0.2069 0.0234 -0.1217 0.0713 0.4128 0.0506 8.7
55 -0.2830 0.0210 -0.0518 0.0261 -0.3456 0.0495 0.0639 0.0349 8.6
56 -0.0478 0.0297 0.2916 0.0178 -0.1781 0.0529 0.0172 0.0499 8.5
57 0.2255 0.0187 0.1110 0.0230 0.0287 0.0491 -0.2523 0.0420 8.5
58 0.1826 0.0127 -0.1022 0.0211 -0.1775 0.0265 -0.0787 0.0333 8.5
59 -0.2361 0.0230 0.1662 0.0251 -0.2261 0.0633 0.2519 0.0503 8.5
60 0.1538 0.0170 0.1877 0.0231 0.2001 0.0436 0.1187 0.0351 8.5
61 0.1749 0.0261 0.1951 0.0184 -0.0224 0.0432 -0.2290 0.0436 8.2
62 -0.0805 0.0268 -0.2600 0.0202 0.0262 0.0473 -0.1102 0.0472 8.1
63 0.1348 0.0228 0.1732 0.0162 -0.1529 0.0403 -0.1907 0.0378 7.8
64 -0.0141 0.0024 -0.1296 0.0166 0.2121 0.0403 -0.0579 0.0094 7.8
65 0.0595 0.0363 -0.2991 0.0153 0.1365 0.0646 -0.2469 0.0458 7.7
66 -0.0874 0.0216 -0.2257 0.0230 -0.0198 0.0380 -0.1731 0.0403 7.7

Table A.9: Same as Table A.8
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Object Ψ11 σ(Ψ11) Ψ12 σ(Ψ12) Ψ31 σ(Ψ31) Ψ32 σ(Ψ32) SNR

67 -0.0054 0.0308 -0.2513 0.0115 0.1194 0.0351 0.2302 0.0373 7.6
68 -0.1392 0.0222 -0.1750 0.0191 -0.3176 0.0409 0.3845 0.0512 7.6
69 -0.0566 0.0235 0.2244 0.0194 -0.2064 0.0465 0.0990 0.0464 7.6
70 -0.0020 0.0246 0.2381 0.0196 0.3534 0.0483 -0.0244 0.0376 7.6
71 -0.1555 0.0189 -0.1559 0.0221 0.3727 0.0346 -0.0110 0.0314 7.6
72 0.1279 0.0260 -0.2609 0.0289 0.1964 0.0528 -0.2083 0.0600 7.5
73 -0.1098 0.0266 0.2165 0.0189 -0.0365 0.0475 -0.2428 0.0344 7.4
74 -0.0086 0.0205 -0.1864 0.0144 -0.0063 0.0345 -0.1848 0.0314 7.4
75 0.1590 0.0204 0.1375 0.0204 0.0576 0.0382 -0.0371 0.0383 7.3
76 0.1060 0.0414 -0.3162 0.0205 0.1026 0.0596 0.0009 0.0635 7.2
77 0.0786 0.0302 -0.2191 0.0117 0.0042 0.0398 -0.1252 0.0294 7.2
78 -0.0894 0.0203 0.1769 0.0187 0.0316 0.0370 0.0988 0.0369 7.2
79 -0.2117 0.0215 -0.1107 0.0258 0.0784 0.0473 0.1061 0.0471 7.1
80 -0.0207 0.0327 0.2765 0.0216 -0.3449 0.0444 0.0471 0.0687 7.1
81 -0.2330 0.0207 -0.0527 0.0278 0.2003 0.0463 -0.0058 0.0508 6.9
82 -0.0594 0.0197 -0.1636 0.0161 0.0646 0.0316 -0.1059 0.0310 6.8
83 -0.0139 0.0190 0.1732 0.0176 0.0059 0.0348 0.0631 0.0348 6.7
84 0.1828 0.0215 -0.0984 0.0229 -0.1155 0.0421 0.1206 0.0450 6.6
85 -0.1582 0.0273 -0.1530 0.0193 0.1705 0.0422 0.1138 0.0469 6.6
86 -0.1588 0.0125 0.0146 0.0211 -0.0465 0.0295 0.0726 0.0277 6.5
87 -0.0650 0.0242 -0.1993 0.0217 -0.1092 0.0470 -0.2157 0.0462 6.4
88 0.0660 0.0269 0.2113 0.0214 0.0317 0.0515 0.2176 0.0467 6.4
89 -0.0197 0.0157 0.1715 0.0222 0.1659 0.0320 -0.2067 0.0315 6.4
90 -0.2351 0.0293 -0.0164 0.0231 0.1881 0.0490 0.4242 0.0656 6.3
91 0.1010 0.0304 -0.2173 0.0230 -0.0210 0.0528 -0.1619 0.0505 6.3
92 -0.1712 0.0188 0.0433 0.0211 0.0678 0.0379 -0.0682 0.0375 6.3
93 0.2826 0.0327 -0.0087 0.0328 -0.0296 0.0505 0.0079 0.0594 6.1
94 0.1702 0.0235 0.0173 0.0154 0.1003 0.0314 -0.2146 0.0306 6.1
95 0.0634 0.0422 0.2708 0.0174 0.0332 0.0645 0.2354 0.0510 6.1
96 0.2667 0.0245 0.0014 0.0365 -0.0319 0.0629 0.2073 0.0618 6.1
97 0.0799 0.0316 0.2231 0.0231 -0.3264 0.0420 0.0869 0.0575 6.1
98 -0.1041 0.0370 -0.2261 0.0179 -0.1269 0.0462 0.0921 0.0507 6.1
99 0.0148 0.0139 0.1073 0.0113 0.0013 0.0210 -0.1288 0.0210 6.0
100 -0.2200 0.0234 -0.0410 0.0293 0.1956 0.0512 0.1602 0.0566 6.0

Table A.10: Same as Table A.8

127



128



Bibliography

Anders, E. & Grevesse, N. 1989, GeCoA, 53, 197.

Andersson, K.E., & Madejski, G.M. 2004, ApJ, 607, 190.

Arnaud, K. A. Astronomical Data Analysis Software and Systems V, eds. Jacoby, G.
& Barnes J. 1996, ASPC, 101, 17.

Arnaud, M. & Evrard, A. E. 1999, MNRAS, 305, 631.

Astier,P., et al. 2006, A&A, 447, 31.

Bacon, D.J., Goldberg, D.M., Rowe, B.T.P., & Taylor, A.N. 2006, MNRAS, 365, 414.

Barrientos, L. F., Gladders, M. D., Yee, H. K. C., Infante, L., Ellingson, E., Hall, P.
B. & Hertling, G. 2004, ApJ, 617, L17.

Bartelmann, M., & Schneider, P. 2001, Phys. Reports, 340, 291.

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393.

Blindert, K., Yee, H. K. C., Ellingson, E., Gladders, M. D., Gilbank, D. G. & Barri-
entos, L. F., 2007, ApJS, submitted.

Blindert, K. et al. 2008. In preparation.

Bower, R.G., Lucey, J.R., & Ellis, R.S. 1992, MNRAS, 254, 601.
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