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Abstract

The products of interactions between galaxies with a high mass ratio and low orbital
angular momentum are studied. The interactions scatter the material from the smaller
galaxy into structures with distinctive dynamics and morphology, including high local
densities and a simple density profile related to properties of the participating galaxies.
The role of the larger galaxy's tides in creating these structures and their relation
to a well-studied class of mathematical objects motivates us to name them "tidal
caustics".

We study the densities achievable in tidal caustics for a typical merger of this type
using an example from the Andromeda galaxy to determine whether they are sufficient
to produce a detectable gamma-ray signal from self-interactions in the dark matter
component, for likely particle models of dark matter. We find that the expected signal
is an order of magnitude too low to be detected with current instruments.

We also study the constraints that can be placed on the properties of the partici-
pating galaxies by observing the surface brightness profiles of the tidal caustics. We
find that the local gravity and gravity gradient of the larger galaxy, and the energy
spread and initial phase space density of the smaller galaxy, can be jointly constrained
by fitting this profile. The constraints are degenerate but model-independent. We
find that measurements of multiple caustics and the velocity of the material in each
caustic along the line of sight give information about the orbital angular momentum
and the deviations from spherical symmetry in the larger galaxy, though this informa-
tion is somewhat model-dependent. We discuss the main technical difficulty in fitting
the surface brightness profile: determining the inclination angle of the caustic. We
demonstrate that a simple model can successfully recover the necessary parameters
for some cases, and that a simple modification to this model will improve its success
rate.

Thesis Supervisor: Edmund Bertschinger
Title: Professor of Physics
Chair, Department of Physics
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Chapter 1

Introduction

1.1 Dark matter and galaxy formation

Dark matter is an invisible substance that is thought to make up most of the Uni-

verse's mass. Unlike matter comprised of Standard-Model particles like protons,

neutrons, and electrons, dark matter does not interact appreciably with light. All

evidence of its existence to date comes from observing its gravitational influence on

Standard-Model (often called "luminous") matter. The first evidence that a signifi-

cant amount of the gravitating matter in the universe might not interact with light

came from comparing mass estimates based on the velocities of galaxies orbiting each

other in a nearby cluster (the Coma cluster) with an estimate of the total amount of

mass in the cluster based on the galaxies' brightnesses. The two methods disagreed

by several orders of magnitude [1]. The same discrepancy between the inferred mass

from the velocities of orbiting material and the observed mass estimated from bright-

ness measurements was identified in the orbits of galaxies in other groups and clusters

[2] and in the rotation speeds of disk galaxies [3]. Today dark matter is generally ac-

knowledged to be necessary to explain a wide range of well-measured phenomena,

from the small-scale patterns in the cosmic microwave background [4] to the clus-

tering of galaxies in the present-day universe [5] to the rate at which the universe

is expanding [6, 7]. It is thought to make up about 90 percent of the gravitating

mass and 26 percent of the total energy content of the universe [4]. However, despite



its crucial role in shaping our universe's contents and history, no experiment has yet

successfully confirmed dark matter's true identity.

1.1.1 Particle candidates for dark matter and indirect detec-

tion

The nature of dark matter is one of the most compelling questions in physics today,

and countless theories have been proposed though none have yet been confirmed.

The most popular theory at present, and the one that is relevant to this thesis, is

that dark matter is indeed a particle but not part of the Standard Model. Instead

it is thought to be part of the extended hierarchy of new particles proposed under

supersymmetry, a well-studied family of theories in particle physics that seeks to

answer several important questions posed by the Standard Model [8]. In most versions

of the theory, the lightest of the new particles predicted by supersymmetry (called the

"lightest supersymmetric partner", or LSP) has properties that match those of dark

matter. Such a particle is long-lived: being the lightest supersymmetric particle, there

is nothing for it to decay into. Aside from gravitational interactions, an LSP interacts

very infrequently with Standard-Model particles and then only via the weak force. It

is also its own anti-particle, an important property that sets the total amount of dark

matter in the universe. LSPs that have a mass in the range commonly predicted by

supersymmetric theories (50 - 5000 GeV) are produced in the early universe in the

correct amount to account for most or all of the dark matter that exists today [9, 10].

Attempts to detect supersymmetric dark matter particles fall into two categories:

direct detections, where particles of dark matter interact with regular matter (usually

the nuclei of large atoms) in a detector, and indirect detections, which search for

the products of interactions between two dark matter particles. Direct detection

experiments seek to observe dark matter either by creating it (as is being attempted

at the Large Hadron Collider) or by observing it as it passes the Earth [11, 12], while

most indirect detection experiments observe astronomical objects thought to contain a

high concentration of dark matter [13, 14, 15, 16], since the rate of interaction between



dark matter particles scales as the dark matter density squared. The first part of this

thesis evaluates a possible scenario for indirect detection that would avoid one of the

primary challenges of this method: confusion between the products of interacting

dark matter particles (which are high in energy thanks to the relatively large mass

of most candidates) and the products of other common high-energy processes that

involve luminous matter (like the accretion of material onto a black hole). An ideal

situation for indirect detection would have a high density of dark matter but not of

luminous matter. Such situations are rare since the distribution of all kinds of matter

in the universe is primarily determined by gravity.

1.1.2 Dark matter and galaxy formation

Through gravity, dark matter also plays a very important role in the formation of

galaxies. In supersymmetric models of dark matter this role starts in the first moments

of the universe's history. Just as with luminous matter, quantum fiuctuations are

magnified by inflation and imprinted as density perturbations in the dark matter.

These perturbations start to grow in amplitude through gravitational instability while

the luminous matter is still a pressure-supported plasma of photons, electrons and

protons. By the time the electrons and protons assemble into neutral atoms, the dark

matter has already started to form structures-dense patches and rarefied areas-into

which the luminous matter falls [17]. The dark matter gets a "head start" on the

formation of the cosmic web, without which the luminous matter would not have had

time to assemble into the large number of structures we observe in the universe today

[e.g. 18].

Dark matter's extremely small probability of interacting with anything, even other

dark matter, makes it a good candidate for N-body simulations. Compared to sim-

ulations of luminous matter, in which gas pressure, chemistry, phase transitions, the

formation of stars, and the force of gravity must all be somehow taken into account,

dark matter is relatively straightforward to simulate since gravity alone usually deter-

mines its behavior. The exception to this is at extremely high densities where the rate

of dark matter self-interactions is high enough to produce a pressure, but although



such densities might have been attained in some tiny regions in the early universe

[19] we can safely ignore this possibility in simulations of the large-scale structure of

dark matter or of modern-day galaxy interactions.

In an N-body simulation, dark matter is usually represented by a distribution

of bodies, each representing a huge number of dark matter particles, that interact

only via a modified form of Newton's law of gravity. The modification weakens or

"softens" the gravitational force at very small distances, avoiding the divergence at

zero distance and also preventing unphysical close encounters between pairs of bodies

in the simulation. Because this modification is not physical, the results of a dark

matter simulation are valid only at length scales much larger than the scale at which

the force is softened. More information about the technical aspects of simulating dark

matter is provided in Appendix C.

Large-scale N-body simulations of the growth of dark matter structures from small

density fluctuations consistent with those measured in the cosmic microwave back-

ground show the formation of a cosmic web and predict that in today's universe, dark

matter structures have formed at a wide range of scales [e.g. 20]. Roughly spherical,

gravitationally bound structures about the size and mass of a large galaxy are referred

to as "halos", since most of them are thought to contain a galaxy made of luminous

matter [21, e.g.]. They tend to contain both a smooth distribution of dark matter

that increases in density toward the center and a large number of smaller structures

known as "subhalos" that have approximately the same density profile but are much

smaller in mass and size [22, 23]. These subhalos are of diverse origin: some are

formed within the parent, or "host" halo, while others are accreted continuously as

the host halo grows in mass [24]. Based on comparisons with observations of galax-

ies, they are also of diverse content: in our galaxy, for instance, it seems that the

largest subhalos all contain small galaxies (known as "dwarf galaxies" or "satellite

galaxies"; [25]) but simulations also predict many smaller subhalos that either con-

tain very little luminous matter (called "ultra-faint dwarfs", [26, 27]) or none at all

(and are thus virtually impossible to detect). Reconciling the amount of small-scale

structure predicted by simulations of dark matter with the number of galaxies we



observe orbiting the Milky Way is an open question and an important test of both

dark matter's properties and theories of galaxy formation.

1.1.3 Dark halos and tidal streams

The hierarchy of structures of different sizes seen in simulations of dark matter also in-

dicates that a significant portion of the material, both dark and luminous, in a Milky-

Way-sized galaxy came from previously formed structures that merged together. The

latest simulations estimate that the fraction of contributed material is 35-60%, with

approximately half of the contributed material still gravitationally bound in subha-

los and the other half spread across the host halo in gravitationally unbound, but

still spatially or dynamically distinct structures known as "tidal streams" [24]. Tidal

streams are made of material that once belonged to a satellite galaxy but has since

been stripped away by the tide of the host galaxy so that now it orbits the host

instead. At least five tidal streams of stars have been identified in the Milky Way

[28] and about a dozcn more are seen around other nearby galaxies [29, 30]. Besides

serving as evidence that galaxies are indeed assembled by accreting many smaller

structures [31], tidal streams are useful for studying the properties of their host halos

because the material in them behaves like a set of test particles orbiting in the host

halo's gravitational potential. Modeling the orbits can constrain the mass profile

and three-dimensional shape of the host halo. Known tidal streams are usually quite

far from most of the other luminous material in a galaxy (otherwise, they would be

indistinguishable in images), so their orbits are primarily sensitive to the dark halo

[32, 33, 34]: they are one of the few ways to understand the distribution of dark

matter in galaxies.

Unfortunately, it is difficult to construct a model of the interaction that created

a particular tidal stream from the limited data we have in most cases. Because tidal

streams are relatively faint, distant structures even in our own galaxy, it is difficult to

measure all components of the position and velocity of the stream material. Distances

to astronomical objects are nearly always difficult to measure, as are the components

of the velocity in the plane of the sky (the proper motions). The velocity component



along the line of sight, measured by taking a spectrum of the integrated light from the

stars in the stream and determining its Doppler shift, cannot be measured either for

some streams, since they are too faint to obtain a good spectrum. So for many tidal

streams, the only really well-determined measurements are the relative sky positions

of material along the stream. On the other hand, the initial position and velocity

of the satellite galaxy that created the tidal stream and the mass and shape of the

host halo are all virtually unconstrained, and the only way to compare the data with

a model is to perform a computationally intensive N-body simulation of the merger.

Given that the problem is so underdetermined, any model that successfully reproduces

measurements of a tidal stream must be considered only as one of a family of equally

valid solutions in a space of parameters with many partial degeneracies.

These difficulties in modeling tidal streams have led to a search for alternative ways

of studying them. The second half of this thesis presents and demonstrates a new

method for studying tidal streams created in mergers with very little orbital angular

momentum. The symmetry of this type of merger gives rise to structures known as

caustics, for which theoretical tools have already been developed [35, 36, 37, 38, 39].

This thesis applies these tools to the type of merger that is likely to create a tidal

stream.

1.2 Radial mergers and caustics

Images of interacting pairs of galaxies abound in the astronomical literature [40, 41,

29, 42, are some examples]. There is an incredible amount of variety in the features

shown in these images, which range from long tails and wide loops to fan-shaped

or shell-like structures. The type of feature created by a particular merger depends

mainly on the ratio of the masses of the interacting galaxies and on the orbital angular

momentum of the system. This thesis is concerned with studies of the tidal streams

created when a large galaxy accretes smaller ones, so we may assume that the mass

ratio (host to satellite) is large, of order 100 or more. This allows us to simplify the

system by ignoring the response of the host galaxy to the gravitational pull of the



satellite. At the end of this thesis we will show that our conclusions are still valid

even when this simplification is not made. Additionally, in such a system, the spread

of velocities within the satellite galaxy is small compared to the orbital velocity of

the satellite around the host. This means that all the material in the satellite galaxy

starts out in a relatively small patch of phase space compared to the volume of phase

space accessible to all the material in the host galaxy. As the satellite's material

is stripped away by tides and spreads out in space, the velocity spread decreases in

order to conserve the volume of that phase space patch. The material ends up in one

long, thin stream in phase space (Figure 1-1).
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Figure 1-1: Material in a small satellite galaxy (blue points) falling into the potential
of a large host galaxy (not shown) initially has a relatively small spread in both
velocity and position compared to the entire accessible region (left panel). In order
to conserve phase space volume, therefore, the stripped material must reduce its
velocity dispersion as it spreads out in position (right panel). In the right panel, the
satellite has passed near the center of the galaxy once and some material was stripped
while some remains bound to the satellite.

For this work we focus on mergers with low orbital angular momentum, which

have two additional advantages. First, the tidal streams created by such mergers

are distinctive: from certain viewing angles they resemble fans or shells with a sharp

outer edge (Figure 1-2, left panel). Often, as in this example, there are also one or

more long tails that point away from the galactic center. As we will show in this

section, these features are a reflection of the cooling of the stream thanks to phase

space conservation and the particular phase-space path the stream traces out when



very little orbital angular momentum is present. The second advantage is that if

the orbital angular momentum is small, the system can effectively be treated in one

spatial dimension rather than three, since the amount of orbital precession of the

satellite material will be small. This is why in Figure 1-1 and in the right panel of

Figure 1-2 the conservation of phase space volume is apparent even though only two

of the six phase space dimensions are shown. The combination of a large mass ratio

and a small amount of orbital angular momentum gives rise to a particular type of

structure known as a caustic, which is responsible for the sharp edges of the shells.

We will next discuss the mathematics used to describe them and its significance for

the work in this thesis.
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Figure 1-2: Computer simulation of a nearly-radial merger of a small satellite (blue
points) with a large host galaxy (not shown, but the center is marked with a green
target in the left panel). The merger creates distinctive tidal features (left panel) that
reflect the shape of the highly correlated phase-space distribution (right panel). In
this example, the satellite's initial velocity vector was pointed 15 degrees away from
the center of the galaxy (located at the origin) and the response of the host galaxy
was ignored for the reasons stated in the text. The satellite galaxy experienced two
pericenter passages; during the first one about half the material was stripped off by
tides and in the second one the remaining material was stripped. The two tidal tails
extending from the center correspond to the two epochs of stripping.



1.2.1 Caustics

In mathematics, a caustic is a feature of a mapping between an initial and final

state. It denotes the boundary between regions of the map that are one-to-one and

regions in which multiple initial states can lead to the same final state, so at the

caustic surface the derivative of the map with respect to the initial state is ill-defined.

In physics, one instance where caustics can occur is in the map that represents the

dynamical evolution of a system over some time period. The states on which the

map operates consist of the set of phase-space coordinates of the components of the

system at a given time. In our case the map represents the evolution of the positions

and velocities of the material in the satellite galaxy under the influence of gravity.

In some cases, material from multiple initial positions can end up at the same

location later on. A simple one-dimensional example is given in Figure 1-3, which

shows the force-free evolution in time (left to right) of a set of 500 particles with

initially random positions. For this example we will assume that the physical size

of the particles is zero, so that they may change their positions freely. The top row

of the figure shows the phase space distribution (v versus x) of the material. The

second row plots the initial position qx versus the current position x and the bottom

row is a histogram of the particle positions, a proxy for the density p. The position-

velocity relation is contrived so that material from one side of the distribution passes

material from the other side, heading in the opposite direction. Before this begins

to occur the map from initial to final positions is single valued, as shown in the first

three plots of the middle row. After some particles start to pass each other, the map

becomes double-valued: there are two values of qx that could result in the same value

of x for some region in x. The caustic is the point where the distribution becomes

double-valued (where the plots of v and qx versus x are vertical). At the caustic,

a density spike develops (rightmost two plots of the bottom row) as a result of the

conservation of particle number (or mass):

p(x,t)dz = podqx (1.1)
qe-+x



At the caustic location, dx/dqx = 0, so

p (X, t) = =7 PO cOo (1.2)
q |-+dxdq|

as long as p(qx) is larger than zero. The formation of the caustic is a coincidence of the

dynamics of the system (in this case, the fact that we chose the initial velocities so that

particles would pass each other) but its shape and behavior over time are universal.

The existence of a caustic can also be inferred from the phase space picture of the

particles (top row of plots) by noting that regions where the phase space distribution

is vertical have large density when projected onto the x axis. This is because the initial

positions and velocities of the material are correlated. As we discussed previously, the

same is true in a high-mass-ratio galaxy merger because the satellite galaxy initially

occupies such a small patch of phase space. Although the time-evolution of such a

system is much more complicated than this simple force-free example, the phase-space

diagram will still reveal the existence of caustics.

qx

x x x x x

Time

Figure 1-3: An example of the formation of a caustic in a one-dimensional force-free
system. The first column shows the initial state of the system, and time increases to
the right. See the text for a discussion.



1.2.2 Caustics created by gravity

Caustics in systems governed by the gravitational force law have a few important

differences from the simple force-free system used as an example in Figure 1-3. Our

simple example resulted in only one caustic, but since bound orbits in a gravitational

potential are periodic, multiple caustics can form in a gravitating system. The for-

mation of the successive caustics occurs because of a spread in energy in the orbiting

material, which for most potentials corresponds to a spread in orbital periods. The

material with the shortest orbital period eventually catches up with and "laps" the

material with the longest periods, like runners in a long-distance race on an indoor

track. This process is called phase-wrapping, and each time it happens another loop

appears in the projected phase space diagram (the equivalent of Figure 1-2, right

panel). Each loop corresponds to a caustic, just as in Figure 1-3. The loops are

sorted by their orbital phase: outermost loop is made of material on its first orbit

after being stripped, the second-outermost of material on its second orbit, and so

forth.

In a radial merger the caustics form from material that has been stripped by tides

from the small satellite galaxy, so every time more material is stripped, another set

of caustics is formed. Tidal stripping in a radial merger occurs each time the satellite

reaches pericenter, until all the material is unbound. For extremely low values of

orbital angular momentum, the entire satellite can be destroyed after only one or

two pericenter passages. The example phase-space distribution in the right panel of

Figure 1-2 has four caustics: three from the material stripped off after the satellite's

first pericenter passage and a fourth created from the material unbound after the

second pericenter passage, which has been orbiting for a shorter time. In a bound,

nearly-radial orbit the caustics occur roughly, but not exactly, at the outer turning

points (apocenters) of the orbits of the stripped material, corresponding to the edges

of the shells in the left panel of Figure 1-2. This is why we use the term "tidal

caustics" to describe such features.

The caustics in Figure 1-2 do not occur exactly at the turning point (on the r



axis). This is because the phase space distribution does not trace out the orbit of one

test particle, but instead is a snapshot of many particles at neighboring locations in

their orbits, so the point where particles are passing each other is not necessarily at

zero velocity. We will show in this thesis that although the force-laws that produced

the phase space distributions in Figures 1-2 and 1-3 are completely different, the

shape of the distribution in the region of the caustic and the shape of the density

spike are the same in each case.

Caustics produced by gravity have a finite maximum density, contrary to the

prediction of Equation (1.2). This is a result of the extra spatial dimensions in

the three-dimensional case: although dr/dq, might be zero in Figure 1-2, the full

derivative ds/dti cannot be zero because the phase space volume is incompressible.

In fact, the maximum density is determined by the size of the finite phase space

volume: the smaller the initial volume, the "colder" the material and the larger the

maximum density in the caustic. For a typical dwarf galaxy, this maximum achievable

density can be quite high. Although the finite maximum density and width mean the

structure is no longer truly a caustic in the mathematical. sense, its properties change

very little otherwise.

1.3 Goals of this work

The work described in this thesis had two main goals. The first was to assess whether

tidal caustics, thanks to their ability to produce an extremely high density at a large

distance from the galactic center, could provide a confusion-free scenario for detecting

the products of interactions between dark matter particles. For this work we used an

N-body model of a real set of caustics discovered around the Andromeda galaxy, a

close neighbor of the Milky Way. The Fermi gamma ray observatory, now in operation,

can distinguish between high-energy radiation coming from these caustics and that

coming from Andromeda's center, if the signal from the caustics is bright enough to

be detected at all. We used the N-body model to estimate the size of the signal and

compare it to the sensitivity of Fermi. This work is discussed in Chapter 2.



The second goal was to determine what information, if any, about the host and

satellite galaxies in a merger that formed tidal caustics could be gleaned from im-

ages of these features. The theoretical motivation for this portion of the work comes

from the fact that the very existence of tidal caustics restricts the properties of the

merger significantly, and from the fact that the density profile of the caustics depends

very simply on a small number of characteristics of the two galaxies (as presented

in Chapter 3). The practical motivation is that images of such caustics surround-

ing many different types of galaxies already exist, and a method that could reveal

characteristics of these galaxies would allow us to study mergers in a wide range of

environments, whereas the current sample of modeled tidal streams includes only our

galaxy and Andromeda. In Chapter 4 we derive the constraints that can be placed on

the host and satellite galaxies by fitting only the images of the caustics, and additional

constraints that can be gleaned from analyzing multiple shells or from determining

line-of-sight velocities from spectra (the two additional pieces of information most

likely to be obtained). In Chapter 5 we discuss the crucial step in obtaining these

constraints: obtaining the radial density profile by deprojecting the two-dimensional

image.
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Chapter 2

Calculation of the gamma-ray flux

from tidal caustics in the

Andromeda galaxy

This chapter was published as the body of [43]. Appendix C of [43] appears as Chapter

3 in this thesis; Appendices A and B of [43] appear as Appendices A and B in this

thesis.

2.1 Introduction

The nature of the dark matter is one of the foremost questions in astrophysics. Al-

though most astrophysicists agree that it is probably some kind of particle [8], there

are to date no conclusive detections. Countless experiments are attempting to do so,

whether by detecting dark matter particles directly [44, 45, 46, 12, 11, 47, 48], creat-

ing them in the laboratory [49, 50], or observing the standard-model byproducts of

interactions between them [14, 51, 52, 15, 13, 53]. This last method, usually referred

to as "indirect detection", usually assumes that the dark matter particle is its own

antiparticle, so that an interacting pair of dark matter particles self-annihilates to

produce various kinds of standard model particles. This assumption is motivated by

predictions of supersymmetry that the dark matter could be the lightest supersym-



metric partner (LSP) of a standard model particle, and by the cosmological result

that such a particle with a mass of between 20 and 500 GeV would have been pro-

duced in the early universe in sufficient number to resolve the discrepancy between

the energy density of luminous matter observed today and the total energy density

of matter required to explain the gravitational history of the universe [8].

Indirect detection, because it relies on observing the products of pairwise anni-

hilation, has a signal strength that varies as the dark matter density squared. It is

therefore most effective in regions with the very highest number density of dark mat-

ter particles. Because dark matter interacts with luminous matter primarily through

gravity, these are often the same regions where the density of luminous matter is

highest, such as the centers of galaxies [54]. Although the signal from pairwise dark

matter annihilation may be highest in those regions, it also suffers from confusion

with high-energy astrophysical sources like pulsars and X-ray binaries, which tend to

be concentrated wherever the density of luminous matter is high [55]. However, in

some instances the dark matter density can be high while the luminous matter den-

sity is low; for example, in the recently discovered ultra-faint dwarf galaxies orbiting

the Milky Way [56]. Since the dark matter has a lower kinematic temperature than

luminous matter, it may also have more small-scale structure than luminous matter,

increasing or "boosting" the production of standard model particles by pairwise anni-

hilation above the level predicted for a smooth distribution [57, 58, 59, 60, 61, 62, 63].

Cases where there is no confusion between particles produced by pairwise dark mat-

ter annihilation and those produced by high-energy astrophysical sources offer a high

potential for a confirmed indirect detection, provided that the signal is still detectable.

One possible scenario for indirect detection is the debris created by a merger

between a larger host galaxy and a smaller progenitor galaxy on a nearly radial orbit.

[64, 65] showed that in such a case, the mass from the progenitor accumulates at

the turning points of its orbit, producing shells of high-density material at nearly

constant radius on opposing sides of the host galaxy. The dynamics governing the

formation and shape of the shells can be understood in the context of earlier work on

spherically symmetric gravitational collapse. [36] and [35] demonstrated that radial



infall of gravitating, cold, collisionless matter forms a series of infinite-density peaks

at successive radii, known as caustics. [37] extended this case to include warm matter

with various velocity dispersions: the effect of the velocity dispersion is to make the

peaks of finite width and height, so they are no longer caustics in the mathematically

rigorous sense but retain many of the same properties, including the possibility of

extremely large local density enhancements. There have been multiple attempts to

estimate the production of gamma rays through self-annihilation from infall caustics in

the dark matter halos of galaxies [e.g. 66, 67, 68, 69, 60, 70, 71, 72, 73] or to otherwise

determine ways in which dark matter in caustics could be detected [72, 69, 67]. Most

work on the gamma-ray signal has found that caustics enhance the production from a

smooth distribution by a factor of between 10 and 100. In the case of so-called "tidal

caustics" like those seen around shell galaxies, the infall is not spherically symmetric,

but the density is still clearly enhanced in the shells.

Dark matter and luminous matter alike are concentrated in tidal caustics at large

distances from the bulk of the luminous matter in the host galaxy. Shell galaxies [see,

e.g., 41] are beautiful examples of the extreme case of this phenomenon, where the

angular momentum of the progenitor is nearly zero. Unfortunately, all the known

shell galaxies are too far away to indirectly detect the dark matter in the shells:

the flux of gamma rays is too attenuated, incoming charged particles are deflected

by the Galactic magnetic field, and high-energy detectors have insufficient angular

resolution to separate the shells from the host. However, M31 also appears to. have

shells [32], though they are not as symmetric as those in classic shell galaxies, and is

close enough that the Fermi LAT can distinguish their position from that of M31's

center [74]. Furthermore, an N-body model of the shells already exists [33] that can

be used to estimate whether dark matter in them could be indirectly detected.

N-body models of dark matter distributions have been used to estimate standard-

model particle fluxes for indirect detection in the Galactic halo and the factor by

which dark matter substructure could increase the rate of pairwise annihilations [59].

Both these quantities are proportional to the volume integral of the square of the dark

matter density, which we will call the "rate" for short. The rate is estimated from



an N-body representation of the dark matter distribution by substituting a Riemann

sum for the volume integral and inferring the density in each Riemann volume from

the N-body representation by one of many well-studied methods. However, neither

the estimation of the square of the density rather than the density itself nor the

choice of a suitable set of Riemann volumes has been tested. Likewise, the ability to

recover the correct rate when the density distribution is sharply peaked has not been

explored, although this is the scenario that would most likely lead to an observable

signal and the reason that the M31 shells are of interest.

This paper describes tests of a number of well-known algorithms for calculating the

rate and discusses the best algorithm to use in situations where the density gradient is

large (Section 2.2). We then present estimates, using the optimal algorithm, of both

the boost factor from the M31 shells over the smooth distribution of dark matter in

M31's halo and the rate at which gamma rays from pairwise annihiliation would be

seen by Fermi given likely parameters of a supersymmetric dark matter candidate

(Section 2.3).

We find that the best way to estimate the rate from an N-body representation,

whether the density is nearly uniform or has a large gradient, is with the simplest

possible method: a nearest-neighbor estimator with a relatively small smoothing

number to find the density, and fairly small constant Riemann cubes to perform the

integral. This result is surprising, given that so many more sophisticated density

estimators exist. We further find, using this result, that the largest boost factors

from tidal debris in M31 are 2.5 percent in the most concentrated regions of the

shells, and that the gamma rays from the debris are too few to be detected by Fermi

for likely supersymmetric dark matter candidates: the total additional flux in gamma

rays, which is model-dependent, is less than 7.4 x 10-" _y cm- 2 s- 1 for likely dark

matter models.

An ancillary result from our analysis of the tidal caustics, and a consequence of

radial infall, is that the density profile of each shell and the radial spacing of the

shells depend on the radial derivative of the gravitational potential at each shell and

on the mass and size of the dwarf galaxy before infall. This means that information



about the initial qualities of the dwarf galaxy can be inferred from the shells without

requiring a detailed model of the potential of the host galaxy. Assuming that the stars

in the dwarf galaxy are initially virialized (with a Maxwellian velocity distribution),

the density profile can be fit with an analytic function whose width depends on these

properties. We discuss further implications of this result for recently discovered shells

around other nearby galaxies.

2.2 The Optimal Estimator for High Density Con-

trast

The key to the calculation presented in this paper is the estimation of the integrated

squared density,

F = Jp2dV (2.1)

from an N-body rcpresentation of the dark matter mass distribution. The particles

making up the N-body representation are independent observations of the mass den-

sity function p. Generally, probability density functions are defined as those that are

everywhere positive and normalized to one [as in 75, Chapter 4]. The mass density

function sampled by the particles in the N-body representation satisfies the first of

these two conditions, and dividing by the total mass to get a scaled number density

will satisfy the second. So the analysis of estimators for the probability density and

its functionals applies equally to the problem at hand. The development and charac-

terization of estimators for this quantity is a well-studied problem in statistics, in the

context of estimators for probability density distributions [76, 77, 78, 79, 80, 81, 82, 83,

and many others].

Density estimators studied in the literature are divided into two classes: paramet-

ric (in which a particular functional form for p is assumed) and nonparametric (in

which assumptions about the form of p are kept to a minimum). Nonparametric esti-

mators are commonly used with data sets like N-body realizations, where the goal is

usually to discover the form of p and/or calculate other quantities from it [75]. Among



the wide variety of nonparametric estimators available, nearest-neighbor estimators

[84] are one of the oldest and most well-studied varieties. The nearest-neighbor es-

timator uses an adaptive local smoothing length equal to the distance to the Nth

nearest particle to the location where the density is being estimated. The density at

that point is then taken to be NS/V(Ns), where Vd is the volume in d dimensions,

centered on the target location, that encloses N, particles. [85] and [86] showed that

nearest-neighbor density estimators converge to the underlying distribution at every

point as the number of particles in the realization, Np, goes to infinity, provided that

Ns/Np -+ 0 in the same limit. They can also be considered as part of the larger

class of adaptive kernel estimators [87] and are even more closely related when Vd is

replaced by a weighted sum over the N, particles [88]. However, because the function

they return may not be normalizable, nearest-neighbors is more suited to individual

density estimates at a point than to recovery of the entire function [89]. All the esti-

mators we test in this work are based on either the simple nearest neighbors method

or one using a weighted sum, although the shape of Vd varies. We describe them in

detail in Appendix A.

The usual measure of the quality of a nearest-neighbors estimator is its root-mean-

squared (RMS) error,

1 n 21
r.m.s.e. E [ - ftrue , (2.2)

rtrue

The RMS error compares the expectation value of the estimator, in this case the

rate estimator F, with the true value of the rate, rtrue. For the tests in this work,

we used density distributions for which ftrue may be calculated analytically. [77]

demonstrated that, given some constraints on the maximum slope of the underlying

density distribution, the error of a one-dimensional integrated squared density esti-

mator with a kernel of a constant size can converge as Np-1/ 2 ; [82] recently showed

that a simple estimator of this type can be made adaptive using a particular rule to

calculate the kernel size from the data and still converge at the same rate. Most of the

estimators we test in this work use adaptive kernels with a simpler rule than the one



suggested by [82] for two reasons. The first is simply conceptual and computational

simplicity: rules for choosing an optimal kernel size tend to require minimizing the

cross-validation function (a proxy for the RMS error) of the data, which requires an

optimization program, and the resolution convergence even with the optimal kernel

chosen in this way can still be slower than Np-1 /2 . The second is that extending the

result of [82] to several orthogonal dimensions is not trivial [90].

As is common in the literature, we consider the RMS error in two parts: the bias

and standard deviation [91], where

(r.m.s.e.) 2 = b2 + (std(f) 2 . (2.3)

The bias, b, is the difference between the expectation value of the estimator and the

true value of the parameter it is estimating. An unbiased estimator has b = 0, one

for which E(f) > Ftrue has a positive bias, and one for which E(F) < Ftrue has a

negative bias. The standard deviation indicates the size of the spread of individual

estimates around the expectation value. For this work we scale the bias, standard

deviation and RMS error by a factor of Ftrue, SO

__-___ _E(F) -
b =_ E I Itrue = -IF 1(2.4)

( true ) jtrue

and
1 £ F 2

std(f) E [f - E(f))2 (2.5)
rtrue

are consistent with Equations (2.2) and (2.3).

We used numerical experiments to assess the bias, standard deviation, and RMS

error of the various estimators, so we must be clear about how these values are

calculated numerically. For each experiment, 104 random realizations of the density

distribution of interest comprise one sample. The expectation value of a quantity is

then defined as the mean of that quantity over the set of all random realizations. The

random realizations are subject to Poisson fluctuations, so this number of realizations

corresponds to sampling error of about one percent. We take 20 samples of the



expectation value, so the relative error on the mean from these 20 samples is about

0.2 percent.

The number of particles in each random realization (shown as points in an example

in Figure 2-1) is drawn from a Poisson distribution with a specified mean, denoted

in the following sections as Np. This precaution keeps the number of particles in

the density distribution, and in the subset of that distribution used for the volume

integral (the shaded box in Figure 2-1), purely Poisson; the error associated with

using a fixed number of particles depends on Np, so we must eliminate it if we wish

to establish how the estimators behave as Np varies.

The method for estimating the rate has two distinct parts: how to determine

the number and placement of the Riemann volumes making up the sum, and how

to estimate the density in each Riemann volume. We tested five different rate esti-

mators that together use three different well-known density estimation methods and

two different ways of assigning Riemann volumes (adaptive and constant). The rate

estimators are described in detail in Appendix A and briefly summarized in Table

2.1.

We first evaluate and, if possible, eliminate the bias. We constructed rate esti-

mators using density estimators that have a very small or zero bias when used to

estimate the density, but we demonstrate in this section that they do not always

produce unbiased estimates of the rate without further correction. We wish to re-

duce the bias of the estimators when it is possible to do so without increasing their

standard deviations. Bias resulting from the statistics of Poisson point processes,

here referred to as "Poisson bias," can be eliminated this way-analytically for some

of our estimators, and numerically for the others-once it has been measured using

random realizations of the uniform density distribution (Section 2.2.1). We examined

the RMS error of rate estimates for the uniform density distribution, after correcting

for the Poisson bias, to separate the contribution of Poisson processes to the overall

RMS error of each estimator from additional error that arises when the density is not

uniform (Section 2.2.2).

The second step in determining the best estimator is to determine the RMS error



in the case where the density distribution has sharp features with high contrast (like

shells). Discreteness effects will then introduce additional bias that depends on the

resolution, the smoothing number, and the scale of the high-contrast features (Section

2.2.3). To understand when and how this bias contributes, we tested each estimator

using random realizations of a simple caustic density distribution that has an analytic

expression for Ftrue (Section 2.2.4). Finally, we compared the RMS errors of the

estimators for the high-contrast density distribution to determine which one to use

in the calculation of the gamma-ray flux (Section 2.2.5).

2.2.1 Eliminating Poisson Bias

Using Poisson statistics, it is possible to construct a rate estimator F that is unbiased

for a uniform density distribution; that is, one for which E(Pu) = Ftrue (Appendix

A, Equation (A.5)). It uses a constant Riemann volume dV for the integral and the

distance to the Nth nearest neighboring particle, denoted rNs, to estimate the density.

However, this estimator is not necessarily unbiased for non-uniform distributions. If

the density is location-dependent, the integration volume dV must small enough to

accurately sample the density gradient everywhere in the distribution. This choice

of dV can be impractically small for distributions with high density contrast. One

solution is to choose dV adaptively based on the local density of particles (Figure

2-2), using smaller boxes in higher-density regions, but this method introduces bias

because the box dimensions, like rNs, are then subject to Poisson statistics. We

chose f, (Appendix A, Equation (A.6)) to isolate the contribution from choosing dV

adaptively.

Furthermore, the simple nearest-neighbor estimator is not the only option. Many

other density estimation algorithms exist, often optimized for much better perfor-

mance. However, even for these algorithms it is usually the case that E(ii) 2 # E(n2),

especially since the bias and standard deviation are usually optimized for the first mo-

ment (the density) at the expense of the higher moments (including density-squared).

We have chosen two other methods besides nearest-neighbor, both well-studied as

density estimators, to see whether a good density estimator also makes a good rate



estimator (Ff, Equation (A.8), and F, Equation (A.14)). We also include a rate es-

timator based on one of these density estimators that has been used in the literature

to calculate the rate (1A, Equation (A.15)). All the rate estimators are summarized

in Table 2.1.
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Figure 2-1: A three-dimensional random N-body realization of the uniform distri-

bution. All the points (particles in the realization) in the full volume are used to

estimate the density; to avoid edge effects, the volume tessellation and Riemann sum

are performed over the volume indicated by the yellow box.

We calculated the expectation value and standard deviation of each rate estimator

using random realizations of a uniform distribution, as described above. Equations

(2.3) and (2.4) then give the RMS error and bias in terms of these quantities. As

expected, the analytically unbiased estimator It has a numerically confirmed bias

of zero (orange squares in Figure 2-3). Furthermore, using an adaptive Riemann



Estimator Definition

Pu =dVZ~v ' ri2

Fn cx = nZUsidVi

Ff Oc EP (nf,i)2dVi

c EZP1(n 8s(ri))2dVi

Long name
Unbiased nearest-neighbors esti-
mator with uniform box size
Unbiased nearest-neighbors esti-
mator with adaptive box size
FiEstAS estimator [92] with adap-
tive box size
Epanechikov kernel density esti-
mator with adaptive box size
Method from [58]

See equation(s)
A.4, A.5

A.4, A.6

A.7, A.8

A.9, A.13, A.14

A.15

Table 2.1: Various estimators of the gamma-ray emissivity F. See Appendix A for
longer descriptions of the various estimators.

volume does change the bias (green diamonds in Figure 2-3). The more complicated

estimators require even more substantial correction (cyan triangles, blue pentagrams,

and purple hexagrams in Figure 2-3). Interestingly, all the bias curves have the same

overall shape. We use the multiplicative factor that transforms the biased density-

squared estimator into the unbiased one,

(2.6)E[(nb)2] Ns2

E(n2u) (Ns - 1) (Ns - 2)1

generalized to the form

b12
b(Ns)+1 b1N

(Ns - b2 )(Ns -b3)
(2.7)

as an ansatz for the shape of each bias curve. This parameterization evokes the

introduction of an effective N,, but can also adjust for the statistical effect of choosing

adaptive Riemann volumes, and is a good fit to all the bias curves (Figure 2-3).

Fitting E(Fn)/Ftrue to a function of the form in Equation (2.7) determined bn,

the bias from using adaptive Riemann volumes. The results for Ef, 1s, and fd were

fit using the same function to determine bf, b,, and bd respectively, to identify bias

from using a particular density estimation method. The fitted parameters for each

estimator are summarized in Table 2.2. We used the fits to correct for the Poisson



Estimator b1  b2 b3
u 1 2 1
n 1.0001 ± 0.0004 2.81 ± 0.01 -2.99 ± 0.03
f 0.991 i 0.004 1.41 ± 0.03 1.41 ± 0.03
s 0.971 i 0.003 -0.3 i 0.2 4.1 i 0.1
d 1.00024 ± 0.00005 0.60 0.01 1.89 ± 0.01

Table 2.2: Best-fit bias corrections. Error ranges indicate the 95-percent confidence
level. The form of the bias correction is given in Equation (2.7). See Appendix A
and Table 2.1 for descriptions of the various estimators.

bias in all the remaining work discussed in this paper.

2.2.2 Performance of Estimators on the Uniform Distribu-

tion

All the estimators can be corrected to measure Ftrue for a uniform density with an

accuracy of better than one percent, although the f and s estimators have higher-

order uncorrected behavior (Figure 2-4). The typical standard deviation of any of

the estimators is larger than this residual bias by about an order of magnitude, so

it will dominate the RMS error (compare Figure 2-5 to Figure 2-4). We want the

estimator with the best combination of small RMS error and small N,: although the

value of N, is not as important in the uniform-density case, it limits the sensitivity

of the estimator to small-scale density fluctuations if the density is not uniform. We

will discuss this further in Section 2.2.3.

It is not clear that reducing the bias will automatically reduce the RMS error, since

correcting for the bias can change the standard deviation of an estimator. In our case,

for a given N, the bias correction simply multiplies the uncorrected estimator by a

constant factor, so the expectation values are related by

E(Fcorr) = E(Funcorr)/(b(Ns) + 1) (2.8)



and the standard deviations are related by the same factor:

std(corr) = std(Juncorr/(b(Ns) + 1)) = std(Funcorr)/(b(Ns) + 1) (2.9)

From this last expression, we see that if the uncorrected estimator underestimates

rtrue, correcting it will increase the standard deviation. However, all the uncorrected

estimators overestimate ]true (Figure 2-3), so correcting the bias will also reduce the

standard deviation. b(N) + 1 is always close to unity and never larger than 2, so the

change to the standard deviation is slight.

For a given N., the RMS error of the nearest-neighbor-style estimators is generally

smaller than that of the kernel-based estimators and decreases faster with Ns (Figure

2-5). In a kernel-based estimator, because each particle within the smoothing radius

is individually weighted, the estimator must know the location of every one of the

N, particles used in the density estimate, not just the Nath one, and each weight is

less than 1. Ns in the kernel-based estimators must therefore be much larger to get

the same RMS error as in a nearest-neighbors estimator with a given N, as can be

clearly seen in Figure 2-5. To achieve the same RMS error as P" at N. = 10, F,

must use N. ~ 25. The RMS error of fd converges so slowly that although it starts

out with slightly better performance than 7n, it only begins to compete with F, at

Ns > 30. Using such a large N. is a built-in disadvantage for these estimators if one

hopes to retain sensitivity to small-scale density fluctuations, and also significantly

increases the computational load. For this reason we decided not to test the kernel-

based estimators on systems with high density contrast, since the nearest-neighbors

estimators are better suited to our needs.

Using an adaptive Riemann volume with the spherical nearest-neighbor estimator,

as is done in fn, increases the RMS error at low N,. At the same time, Ff uses

the same adaptive Riemann volume and achieves a lower RMS error. This unusual

behavior may be caused by the different shapes of the density estimation volume

(spherical) and Riemann volume (orthohedral) used in f,; we discuss this possibility

in Section 2.2.4. The RMS error of F, may be smaller relative to that of the other



estimators in the case of high density contrast because the adaptive Riemann volumes

can resolve the density gradient better, so we tested it, along with F" and f>, on

samples with high density contrast. These tests are described in the next few sections.

2.2.3 Additional Bias for Systems with High Density Con-

trast

In regions of high density contrast, like caustics, the maximum resolvable density is

limited by the minimum nearest-neighbor distance expected for a given smoothing

number N, and number of particles Np. In the limit that N, and N, are both large,

the expectation value of the minimum nearest-neighbor distance scales as

E(r N,min) O N 1/3 , N, NP > 1. (2.10)

This scaling is derived by calculating the first order statistic of the probability dis-

tribution of nearest-neighbor distances for a three-dimensional Poisson point process

(for a longer explanation, please see Appendix B). The scaling with Np is valid for

Ny >1 102 , but the scaling with N, only approaches the asymptotic limit for values

much too large to be practical (N, > 103). For reasonable values of N, the power-law

index must be determined numerically as discussed in Appendix B:

E(N,min) N N/ y = 0.51 i 0.06 N, > 102 , 10< N $45 (2.11)

The corresponding maximum density then scales as

nmax o Ns 8  N . (2.12)
N,min N

For N, in the range of interest, 3-y - 1 ~ 1/2. As expected, using more particles or

a smaller smoothing number increases the sensitivity to small-scale fluctuations and

the maximum density. The upper limit on the density introduces bias into the density

estimation that also depends on Np and Ns in the combination given by Equation



(2.12). The estimator will perform normally as long as the local density is less than

nmax, but returns nmax for densities larger than nma. Given a density estimator h,

the undersampling-limited density estimator hi,, that incorporates this effect can be

written
h E(h) < nmax

nul = (2.13)
nmax E(h) > nmax

The upper limit on the density changes the way the corresponding rate estimator

works, since now the piecewise function i211 separates regions of the Riemann sum

where the density is less than the upper limit from regions where the density is too high

to be resolved. So given a bias-free uniform-density estimator F, the corresponding

density-limited estimator Fdi is

f'd = fi + "xVn>'max (2.14)
fn<max b + 1

where b is a factor with the form of Equation (2.7) and the appropriate fitted constants

from Table 2.2. There is therefore an undersampling bias, bus, in the rate estimator

that depends on both N, and Ns. The Ny- and N8-dependence enter two ways: in

the criterion for separating the Riemann sum and directly in the rate calculation for

one of the terms:

Edi
bus = d -I

Itrue

E(f) 2
_l<nmax + nmaxVn>nmax _ 1

Ftrue Ftrue(b + 1)

(2.15)

Each of the first two terms is less than or equal to 1 because they are both evaluated

over subsets of the full integration volume. Additionally, their sum must be less than

or equal to 1 because the limiting density is less than or equal to the density in all

the Riemann volumes in that sum. So bus < 0. In the limit where the realization is

fully resolved, the bias should be zero since Vymax = 0, independent of N, and Np.

In general, the Np- and Ns-dependence in Equation (2.15) is complicated since



some unknown fraction of the total volume is under-resolved. To determine the

undersampling bias, we tested F., f, and ff, including their respective corrections

for Poisson bias, on N-body realizations of a one-dimensional caustic for which Ftrue

can be calculated analytically. The caustic has an adjustable sharpness represented in

terms of a velocity dispersion o: the smaller a is, the narrower and taller the peak in

the density. The caustic density as a function of position and time may be expressed

in terms of Bessel functions:

p(x t) = PO C (X(xcz)2 /402 t2
V2?ir 2t2  t

x B -(xC )2 (2.16)
4u2t2

with

[I_1/4(U) + -1/4(U)] z < oc
3(u) = { (2.17)

'T2_[11/4(U) - 11/4(U)] X > ze

where x = 1/4at is the position of the caustic and I is a modified Bessel function

of the first kind. Table 2.3 briefly explains the parameters po, a, and o and the

dimensions for the integration volume, and gives the values used in our tests where

applicable. We derive this result and explain the parameters more fully in Chapter 3.

Equation (2.16) is given in terms of the mass density p, which is easily related to the

number density n. When we construct random realizations of the caustic, we hold

the normalization of the mass density po and the size of the integration volume V

constant as Np changes by setting the particle mass my = poV/Np, so that realizations

with different Np will have the same 1 true.

Given the values in Table 2.3, Etrue can be calculated by performing a single numer-

ical integral (Chapter 3). We can use this simple model to vary the density contrast

and the scale of the density variations, simply by generating N-body representations

of the caustic described by Equation (2.16) for different a.

To make a random N-body realization of the caustic, Np particles are initially dis-

tributed uniformly in their initial three-dimensional positions q. Then a displacement

function x(qx) is applied to the q, coordinate to generate the sample (the set of blue



points in Figure 2-6). The general form of x(qx) is given in Equation (3.6). The form

for a particular sample is determined by setting the parameters a and t, which also

set the location of the peak density of the caustic, xe, and by setting o-, the width of

the normal distribution from which the random components of the particles' initial

velocities are drawn. The values of a, t, and o- we used are summarized in Table 2.3.

The locations of the particles in y and z remain uniform.

It is important to choose the initial range of qx so that the corresponding range of

x values defined by the mapping x(qx) is larger than the integration range in x, since

otherwise the system will be incompletely sampled in x. In practice, we determined

the range in qx by choosing a range in x that is larger than the integration range

and then inversely mapping it to q, under the assumption that the random velocity

contribution is zero (otherwise the mapping is not invertible). This method does not

work for random velocities comparable in magnitude to the bulk velocity, and we

adjusted our method of calculating Itrue to account for the incomplete sampling in

these cases, as noted in Chapter 3.

To test the estimators, we used them to calculate the rate for a set of samples

with a given density contrast and resolution by integrating density-squared over the

integration volume (shown as a yellow box in Figure 2-6). The integration volume

is smaller than the dimensions of the realization to avoid unwanted edge effects, but

extends well beyond the edge of the caustic, which is the feature of interest. Since the

undersampling bias depends on both the resolution and smoothing number, we varied

both these parameters for each set of samples with a given o-. Table 2.4 summarizes

the ranges and step sizes we used to explore this parameter space. Because the

parameter space for these tests was so much larger than in the uniform-density case,

we used 5000 random realizations at each combination of contrast and resolution, so

the expected level of sampling fluctuations is about 1.5 percent.

2.2.4 Understanding the Undersampling Bias

We draw conclusions about the behavior of the undersampling bias with various N,

and N, using the results of our tests at various levels of density contrast, represented



Parameter Value Dimension
90 625 [M]/[L]3  Mass density of the sample at t = 0. Particle mass is

adjusted to keep the same mass density at varying reso-
lution.

o varies [L] /[T] Sharpness parameter. A smaller o makes a sharper caus-

a 1/2

t 1
LYL2 0.5

[x_, x+] [-0.5,2]

Table 2.3: Parameters
defined in more detail
they may be scaled as

Parameter
Estimator

Ns
logio Np

logio o-

tic.
1/[L] [T] Describes the displacement function used to generate the

caustic. See Chapter 3, Equations (3.6) and (3.20).
[T] Corresponds to xc = 0.5. See Chapter 3, Equation (3.25).
[L] The rate is integrated from -Ly,z to Ly,z, where y and z

are the dimensions parallel to the caustic. Avoids edge
effects, as illustrated in Figure 2-6.

[L] Limits of the rate integration in the direction perpendic-
ular to the caustic, chosen so that the rate is integrated
across the caustic. Shown in Figure 2-6.

for the analytic one-dimensional caustic. These quantities are
in Chapter 3. The units are given as dimensions only since
needed.

Values Tested

{u,n,f}, corrected for Poisson bias where
appropriate using Equation (2.7) and the
appropriate coefficients in Table 2.2.
10 ... 30, in steps of 2
3... 4.5, in steps of 0.25
-3 ... 0.5, in steps of 0.25

Table 2.4: Parameter space for testing undersampling bias.

Notes



in our model caustic by the parameter o.

As is expected, using higher resolution (a larger Np) leads to better rate estimates

of sharper features (Figure 2-7). Even the highest-resolution realizations we tested

could only resolve moderately sharp features. The estimators using adaptive Riemann

volumes (for example, 1f shown in the right panel of Figure 2-7) appear to require

more particles to obtain the same bias as the constant-Riemann-volume case; this

is partly due to the fact that in the adaptive scheme there is exactly one volume

per particle, but the same number of constant Riemann volumes (about 104) is used

regardless of resolution.

We found that the undersampling bias depends strongly on N, when the features

of interest are marginally or under-resolved, and only weakly when they are fully

resolved (Figure 2-8, left panel). As expected, using a smaller N, leads to a lower

bias because the size of the volume used for density estimation scales with N, as

shown in Equation (2.11), so that a larger N, blurs out more small-scale features.

A lower N8 also leads to a larger standard deviation of the density estimatcs, which

increases the total RMS error, but this effect is small compared to the improvement in

the bias in the under-resolved regime and only very slightly affects the fully-resolved

case (Figure 2-8, right panel).

We found that the algorithm used to determine the Riemann volumes adaptively

was sensitive to the way in which the boundaries of the integration volume were

treated. Boundaries closest to the sharp edge of the caustic (which in our test cases

is parallel to one face of the integration volume) must be trimmed as described in

Section 2.2 of [92] to avoid artificially overestimating the rate: without trimming,

the Riemann volumes on the face of the caustic next to the boundary are artificially

elongated into the region ahead of the sharp edge where the density is effectively

zero. The density estimate in those volumes will then be artificially high because the

density is assumed to be constant over the entire Riemann volume, leading to rate

estimates with positive bias when the distribution is marginally resolved (Figure 2-9,

solid [blue] lines). Such "bleed-over" still occurs with a constant Riemann volume

but is much less significant because the box'size does not depend on the local density.



However, applying the trimming algorithm uniformly to all the Riemann volumes

with one or more faces on a boundary of the integration volume artificially underes-

timates the rate by significantly reducing the total integration volume on the trailing

edge of the caustic, where the density is small but still nonzero (Figure 2-9, dashed

[cyan] lines). In this system, restricting the trimming only to the face nearest the

caustic edge results in the correct bias behavior (Figure 2-9, dot-dashed [green] lines).

Because the choice of how to treat the boundaries appears to depend on the particular

geometry of the system in question, it may be difficult to extrapolate the performance

of estimators that use the adaptive Riemann volumes from our test case to systems

with arbitrary geometry. In particular, it is not immediately clear how this method

would extend to the shells in the dynamical model of M31, which have spherical edges

near several boundaries of the integration volume.

2.2.5 Performance of Estimators on the Non-uniform Distri-

bution

The best estimator; that is, the one with the smallest RMS error, has the best combi-

nation of undersampling bias near zero and small standard deviation for the smallest

o. In the resolution-limited regime the RMS error is dominated by the bias. If the

caustic is fully resolved, the bias is zero and the standard deviation, which is con-

stant for a given Np, dominates the RMS error. We have already established that

a smaller N, improves performance in the under-resolved regime without substan-

tially increasing the RMS error for resolved distributions. Figure 2-10 shows that all

three estimators achieve the convergence rate of N-1/ 2 predicted by [77] and [82] for

sharpnesses that are fully resolved at the highest resolution.

Comparing the RMS errors for sharper and sharper caustics shows that all three

tested estimators have very similar performance (Figure 2-11). The nearest-neighbors

estimator with constant Riemann volume ([red] circles in Figure 2-11) converges

slightly faster than the other two but once the distribution is resolved they are nearly

indistinguishable from one another (Figure 2-11, inset). The FiEstAS method, thanks



to the space-filling tree organizing the particles, is faster than the nearest-neighbors

estimators, so if the distribution is known to be completely resolved (the regime shown

in the inset of Figure 2-11), then this method can be used without loss of performance

to take advantage of its greater speed. However, in situations where parts of the dis-

tribution may be under-resolved and creating a higher-resolution realization is not

possible, f should be used to take advantage of its ability to resolve slightly sharper

features with fewer particles.
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Figure 2-2: Example of adaptive volume tessellation referred to in the text, produced
by the space-filling tree in the FiEstAS estimator. The colors, from red to blue,
indicate the way in which the tree divides the space (the spatial distribution of the
inorder traversal). For clarity, not all the boxes with edges on the boundaries are
shown.
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Figure 2-6: An example of a random N-body realization of the analytic one-

dimensional caustic used to test estimators for undersampling bias. The points are

the locations of the particles in the realization. The yellow box indicates the integra-

tion volume, positioned to include the complete caustic shape and avoid edge effects.

For this sample, Np = 104, o- = 0.01, and the dimensions of the box are given in Table

2.3.
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2.3 Calculation of the Boost Factor and Gamma-

ray Flux

In this section we describe the N-body model of the M31 tidal debris (Section 2.3.1)

and present derivations of formulae for the boost factor and gamma-ray flux (Section

2.3.2) in terms of the numerically estimated rate. We then describe. how we used

the results of the bias calibrations described in Section 2.2 to correct our numerical

estimates of the boost factor and flux (Section 2.3.3), and present the results (Sections

2.3.4 and 2.3.6).

2.3.1 N-body Model

For this work we use the N-body model of the tidal shell system in [32]. The model

uses a Plummer sphere as the progenitor of the tidal debris, orbiting in a static,

3-component representation of M31's potential: a spherical halo and bulge, and an

axisymmetric exponential disk. To construct a model of the potential, the parameters

of the halo, bulge, and disk were first fit to a rotation curve of M31 from several

combined sources, not including the tidal shells and the associated tidal stream [see

93, for details]. Then the orbit of the center of mass of the progenitor satellite was fit

to the three-dimensional position data and radial velocity measurements available for

the stream [33]. Finally, the mass and size of the progenitor were constrained with an

N-body model of the stream using the previously determined orbit [32]. Dynamical

friction and the response of M31 to the merger are ignored since the mass ratio of the

progenitor to M31 is approximately 1/500. [32] emphasize that the N-body model

is not the result of a full exploration of this many-dimensional parameter space, but

for this work we are only interested in the end configuration of the debris, which

acceptably matches the available observations.

We further make the assumption that there is a comparable mass of dark matter

associated with the stellar tidal debris. This assumption is probably generous, since

the dark matter in galaxies is thought to be much more diffuse than the stellar matter



and much of it will have been stripped away by tides before the progenitor of this

tidal debris even reaches the starting point of the simulation. However, for a first

estimate we consider this assumption sufficient, though it is not a strict upper limit

for reasons we will discuss at the end of this paper.

2.3.2 Formulae

In this section we derive expressions for the boost factor and gamma-ray flux in terms

of the estimated rate from the N-body representation.

Boost Factor

To calculate the boost factor, we must assume a halo model because dark matter in

the shell can interact with dark matter in the halo. Denoting the halo dark matter

with h and the shell dark matter with s, there are three terms in the total rate:

7 = nJzotdV

(nh -ns)2dV

nJ + 2 nhns + n2)dV,

-- ha+ "sh + Fss (2.18)

Equation (2.18) shows that the boost factor 3 depends on the halo dark matter

density:

tot - hh - ns(2nh+ n)dV.
hh Fhh

(2.19)

If nh > ns, the additional emissivity from the tidal debris is dominated by the first

term in equation (2.19) and the boost factor scales linearly with the dark matter

density in both the halo and the shell.

For the halo, we use the same density distribution that was used in the dynamical



model of the shells [93] with the addition of a small core with size rcore of half the

size of one Riemann volume. The core eliminates the infinite-density cusp at r = 0.

This halo is spherically symmetric and of Navarro-Frenk-White form [94, 95]:

nh,o
nh(r) =-nO] (2.20)

[(r + rcore)/rh][1 + (r + rcore)/rh]2

where nh,o = ph,o/mP = 3.67 x 103 kpc- 3 and rh = 7.63 kpc are determined by [93]

by fitting a mass model to a set of measurements of dynamical tracers of M31's halo.

We divide the fitted mass density Ph,o by mp, the mass of the simulation particles, to

get consistent number densities nh and n,.

Gamma-ray Flux

We use the notation of [96, hereafter FPS] to present the calculation of the gamma-ray

flux. The differential flux of photons in an infinitesimal band of photon energy E.,

d /dE., can be factored into a contribution from "particle physics" that specifies the

spectrum of the radiation and an achromatic contribution 4cosmo from "cosmology"-

the shape, size, density, and distance of the dark matter-that sets the normalization,

as in eq. 1 of FPS:
d7I = &DsUsY Pcosmo (2.21)
dE, dEy

The rate at which gamma rays would be detected by the Fermi LAT is

dNy - @cosmo [mx d1 sUsY(Ey)Aeff(Ey)dEy (2.22)
dt Eth dEy

where Aeff(Ey) is the effective area of the detector, Eth is the lowest detectable energy,

and mX is the dark matter mass. For the Fermi LAT, Eth is 30 MeV, and above 1 GeV

the effective area for diffuse events is roughly independent of energy to within about

10 percent of the mean value over the energy range of integration [74]. Furthermore,

the supersymmetric calculations of the particle physics contribution in [10], which we

use for this work, take Eth = 1 GeV. So for the remainder of this work we will use

Eth = 1 GeV and assume Aeff is independent of energy. With this simplification we



can work with the total flux for now and later multiply it by Aeff to get the detection

rate in the LAT.

Also following FPS, the particle-physics contribution is

dDsusY _ (o-v) dNy (2.23)
dEy 2m2 dEy

where (ov) is the velocity-averaged cross section and Ny is the yield, called Qy in

[57] and FPS. We have moved the constant factor 1/47r to be part of 4cosmo because

it is most easily understood as part of the attenuation of the gamma-ray flux over

distance.

To evaluate N,, we use a subset of the benchmark models of [9] to span the space

of supersymmetric WIMP candidates. [10] have calculated the gamma-ray yields

above 1 GeV for 10 of the 12 models in [9]: models A' through L' with the exception

of models E' and F'. We use the values given in the table for the number of photons

in the continuum emission times the cross section, Ny~cont (ov), listed in Table 1 of

[10]. The continuum emission is not as diagnostic as the line emission at E, = mx/2,

but the branching ratio for line emission is smaller by a factor of 103.

Compared to Equations (2.22) and (2.23), we find that

SUSY _ X &SUSY dE = N_,cont. 2(o-v) (2.24)
Eth dEy 2m 2

For the models in [10], Ny,cont. (o-v) is in the range 10-29-10-24 cm 3 s-1, and mX is

generally given in GeV. So a useful scaling of this formula in typical units is

SDUSY = 1.54 x 10~ 8cm4kpc-'s-4GeV-2

X Ny cont. (ov) mX _ -2
10- 29 cm-3s- 1  1GeV/

(2.25)

In addition to the benchmarks, we also use the most optimistic value of @sUsY

from FPS. According to their Figure 8, (PSUSY ( 10- for all the models explored,



and the maximum occurs for m ~ 40 GeV or Nycont (ov) ~ 10-2 cm 3 s1. We use

these values to represent the most optimistic estimate of the flux.

The astrophysical factor cosmo depends on the square of the dark matter mass

density p.:
ycosmo _ 2  dVp (x, y, z) (2.26)

where x, y, z indicate physical distances in a coordinate system centered on the object,

and the integral is over the total volume of the object. The factor 1/47rd 2 accounts for

the attenuation in flux over the distance d from the object to the observer. The key

element in calculating the astrophysical contribution to the flux is thus determining

the integral-density-squared f p2dV. We calculate this quantity from the simulation

results, which consist of the locations of the N, simulation particles, each with mass

m,. A numerical density estimator gives the number density n, of the simulation

particles as a function of position, which is related to the mass density px by mass

conservation:

px =m mpn, (2.27)

so that

p dV = mJ ndV (2.28)

and
m 2 m2cosmo P n2 d E (2.29)

47rd 2  d =-47rd2

It is useful to rewrite the expression (2.29) with the units and values used in the

N-body representation. For the simulation of [321, m, = 1.68 x 104MO and d = 785

kpc. E(f) is calculated in units of kpc~ 3. So a useful version of (2.29) for this work



is

Dcosmo = (1.87 x 10-14 GeV2 kpc cm- 6)

(mU o 2 (d) 2

104MO 785 kpc)

(lE(t)
kpc -

(2.30)

The total flux of gamma rays for a given model of dark matter and density distri-

bution, scaled to typical values in the problem, is obtained by combining equations

(2.25) and (2.30):

Ny (o-v)
7 D'" 10-29CMas-1

X M ( )-2 ( )2
1GeV/ 104MOf

X d -2 E(F) (-1x__(2.(31)

7 8 5 kpc) ( kpc-3 >

where CD-,o = 2.88 x 10-22 cm- 2 S-1 = 9.09 x 10-11 m- 2 yr- 1. The effective area of

the Fermi LAT varies between 0.7-0.85 square meter above 1 GeV [74].

2.3.3 Calibration of the Rate Estimate

To calibrate the result from the density-squared calculation, we must estimate the

number of particles in each shell (and thereby Np) and the o that gives the best

approximation to each caustic's shape. Since the shells are located at the apocenters

of the particles' orbits, we can unambiguously determine which particles are in which

shell by counting the number of pericenter passages, Nperi, that each particle has

experienced (Figure 2-12). There are three shells and one tidal stream in the system,

each composed of particles with a different Nperi. Examining the system in a projec-

tion of phase space in the r-v, plane, shown in Figure 2-13, shows the order in which

the shells were formed. The first caustic to form corresponds to the first (outermost)



winding in phase space with the largest apocenter. Particles making up this caustic

at a given moment have the lowest Nperi because this caustic marks the location of the

first turnaround point for bound particles. The most recently formed caustic has the

highest number of pericenters and smallest apocenter distance, and has not yet been

fully filled: the innermost winding is not yet complete because only a few particles

have had time to complete three full orbits. We chose the two oldest shells for analysis

because they contain most of the mass. We will refer to the oldest caustic, whose

constituent particles are shown in green and have undergone two pericenter passages,

as caustic 1 or shell 1. The second caustic, whose constituent particles are shown in

red and have undergone three pericenter passages, will be referred to as caustic 2 or

shell 2.

Since the satellite galaxy's orbit is nearly radial, the caustics are nearly spherical.

However, slight systematic deviations from spherical symmetry, in projection along

r, can slightly increase the perceived width of the caustic and cause -to be overesti-

mated. In order to use our analytical caustic to estimate o for each shell in M31 and

determine the undersampling correction to the result from the density estimator, we

had to correct for the slight asphericity in each shell. To do this we determined the

caustic radius of each shell in projection along the # direction by binning the particles

in r and # and finding the r-bin with the highest number of counts for each slice in

#. The bins were chosen as small as possible for resolution while still being able to

identify the peak r bin for each #. Once the peak r was obtained as a function of #,
we fit this set of points with a polynomial rc(#) and calculated dr = r - rc(#) for each

particle to correct for the asphericity of the shell in #. The polynomial was of the

lowest order possible, since higher orders introduce more spurious spread at the edges

of the fitted region. In all but one case a linear fit was sufficient. The process was

repeated with the corrected particle radii, dr, in the 0 direction to find and subtract

drc(O). Figure 2-14 illustrates this process.

Correcting for the asphericity in this manner determines the radius rc(O, #) of the



Figure 2-12: Sorting particles by the number of pericenter passages, Nperi (the inset

gives the color scheme used here), easily identifies the main dynamical structures in

the tidal debris. This x-y projection shows the N-body model as it would be seen

from Earth, with x and y measured relative to M31's center and aligned with the

east and north directions on the sky, respectively. In this projection the edge of the

younger (red) shell is sharper than that of the older (green) shell, but both are nearly

spherical relative to M31's center.
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orbits.
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caustic surface in two steps, so that

rc(0, #) - rc(#) + drc(0). (2.32)

The bin widths in r used for caustics 1 and 2 in this procedure limit the accuracy

of rc(O, #) to 0.05 and 0.08 kpc, respectively. However, fitting the radial profile with

the analytical caustic determines the caustic radius more accurately, assuming that

re(O, #) has sufficiently corrected the asphericity.

After correcting the caustics for asphericity, we binned the particles in x - r -

rc(9, #) to construct a radial density profile. We used the Wand rule [97] to choose

a starting bin width and fit Equation (3.37) to the density profile to get baseline

parameters, then decreased the bin width until the fit parameters converged. The

final bin width was 0.1 kpc for both caustics, larger than the bins used to correct

for the asphericity, indicating that rc(O, #) adequately represents the caustic surface.

Using smaller bins produced no appreciable change in the fitted parameters.

Having determined the ideal bin width, we fit the model caustic of Equation (3.37)

to each density profile. The model has a total of four parameters: the caustic width

6r, xc, the initial phase space density fo, and the phase-space curvature i, that are

discussed in detail in Chapter 3. As noted there, this density profile is universal for

caustics created by quasi-radial infall of initially virialized material. We allowed all

the parameters except r, to vary in the fit, but checked the fitted values of xc, 6r

and fo by comparing them to estimates. For xc this is trivial; it should be close to

zero after the asphericity correction. We used mass conservation to estimate fo, since

the number of particles in the caustic and its geometry are both known, and energy

conservation to estimate 6r, using Equation (3.36) and about 10-20 percent of the

particles in each shell just around the caustic peak. For reference, the covariance

term in Equation (3.35) was two orders of magnitude smaller than the other terms.

For each caustic, we determined K by fitting a parabola to the phase-space profile

near the peak. The portion of data to fit was determined by the range over which

the parabola was a good fit to the phase-space profile. As a check, we also estimated



K using the local gravity at each caustic, using Equation (3.31). Both are shown in

the table and agree with each other. Keeping the value of r, constant, we then fit

the density profile of the caustic, comparing the fitted values of fo and x, with the

estimated or expected values. The results of the fitting are shown in Table 2.5.

As expected, the model fits the data well all the way through the peak in both

cases (Figure 2-15). The abrupt drop in density behind the caustic (at negative x) is

an artifact of selecting the particles via their phase-space profile. In both cases xc, the

correction to rc from the fit (dashed line), is within a few bins of the value from the

asphericity correction (solid line at zero). xc is not positioned exactly at the peak of

the caustic because the satellite is not totally cold (see Chapter 3 for a more detailed

explanation). The widths of the two caustics are close, but not identical, reflecting

the slight difference in the initial velocity dispersions of the particles creating them.

The estimate of or for caustic 1 is much closer than that for caustic 2; this could be

because the second caustic is at about half the distance of the first and is thus more

affected by the non-spherical portions of the potential. The spread of energies with

r in caustic 2 is certainly both larger and less symmetric than in caustic 1. Both

estimates are slightly high thanks to the simplifying assumptions described in the

appendix.

To finish calibrating the rate calculation, we compared the characteristic widths 6r

and N, of the two caustics with those used in the numerical experiments to determine

whether the rate estimate suffered from significant undersampling bias. The numerical

experiments used t = 1 Myr (we can choose the units of time and length freely).

Caustic 1 has 6r = 0.20 kpc and Caustic 2 has 6r = 0.23 kpc, which correspond to

test distributions with logio o = -0.70 and logio o = -0.63, respectively. According

to Table 2.5, Caustic 1 has logio Np = 4.3 and Caustic 2 has log1 o N, = 3.8. From

the results of the tests in Section 2.2.5, we find that for log1 o Np = 4.25, the RMS

error at logio o = -0.75 is 4.0 percent using N, = 10 with the FiEstAS estimator

and 3.4 percent with the uniform estimator. For log1 o N, = 3.75, the RMS error at

logio - = -0.75 is 5.8 percent using N, = 10 and the uniform estimator. All these

errors are dominated by the standard deviation, not the undersampling bias.
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Figure 2-15: The radial density profiles of caustics 1 (left upper panel; green) and 2
(right upper panel; red) can be fit surprisingly well with the functional form in Equa-
tion (2.16) after they have been corrected for asphericity with the process illustrated
in Figure 2-14. The insets in the upper panels show how well the function fits the
region right around the peak of each caustic, which is the most important region for
determining the true width. The residuals (lower panels) from the data used in the
fit (shown in a darker shade) are evenly scattered around zero in each case, indicating
that the peak's relative height is accurately determined. The fit parameters are given
in Table 2.5.
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Value for caustic 2

19779

rc(0, 4) (kpc)

xc (kpc)

6r, estimated (kpc)

6r, fitted (kpc)

K, estimated, kpc
(km s-')-2
K, fitted, kpc (km
s- 1) 2

fo, estimated, kpc-3
(km s-1)- 1 sr-1
fo, fitted, kpc- 3 (km
s-1)-1 sr-1

38.4 + 0.210 + 0.144

0.228 ± 0.005

0.23

0.201 ±0.005

4.6 x 10- 4

(4.2 ± 0.2) x 10-4

0.37

(0.33 ± 0.01)

6524

26.0 - 1.80 + 0.3402 + 0.34

0.113 ± 0.009

0.39

0.232 ±0.009

2.4 x 10- 4

(2.31 ± 0.04) x 10-4

0.096

(0.086 ± 0.003)

number of particles
in part of caustic
used in fit
as defined in Equa-
tion (2.32)
from fit to density
profile after as-
phericity corrections
using Equation
(3.36)
from fit to density
profile
estimated using
Equation (3.31)
from fit to phase-
space profile
estimated using
mass conservation
from fit to density
profile

Density profile parameters for caustics 1 and 2. Error ranges on fitted
parameters indicate the 95 percent confidence interval.
Table 2.5:

Parameter Value for caustic 1I Notes



2.3.4 Boost factor

Based on the fits in the previous section, we expect the shells to be fully resolved in the

simulation. So we are free to choose any of the three estimators we tested to calculate

the contribution to the total rate from interactions between shell particles, IF,. We

chose to use f for convenience, since choosing a constant Riemann volume whose

size relative to the shells' thickness is consistent with our tests would require at least

107 Riemann volumes to fill the simulation volume, whereas with adaptive Riemann

volumes the large low-density portions require much less computation time. 7sh,

which represents interactions between dark matter from the shell and dark matter in

the halo, was calculated using the density estimator nt (Equation (A.7)) to estimate

ns, and evaluating Equation (2.20) for nh at the same points where n, is estimated.

The core radius was set to half the size of the Riemann volume enclosing the origin;

in practice about 0.1 kpc. Fhh was calculated analytically by integrating Equation

(2.20) over the simulation volume. We find that the boost factor # = 2.4 x 10-3 for

F integrated over the entire simulation volume, independent of the particle physics

model.

By far the largest contribution to Fhh comes from the very center of the halo. To

get a more realistic estimate of the boost factor we recalculated it with this region

excised, which would certainly be done for a real observation given that astrophysical

gamma rays appear to come from the disk. We excluded a square region 1.35 kpc

(0.2 degrees) on a side, centered on M31's center. This choice of exclusion region

corresponds to about twice the resolution limit of the Fermi LAT, and is intended

to be equivalent to excising the central 4 pixels about M31's center. This technique

increases the boost factor by only a small amount, to # = 0.0027 or 0.27 percent.

Finally, we mapped the spatial variation of the boost factor by using the space-

filling tree in the FiEstAS algorithm. As expected, the largest boost factors come

from the edges of the two shells containing most of the mass, as shown in Figure 2-16;

the maximum is 2.5 percent, independent of the particle physics model.
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Figure 2-16: The largest boost factors, shown in red, are from the edges of the two
shells. The contrast in this figure is independent of the parameters for the particle
physics model (summarized as PssY).



2.3.5 Astrophysical factor

The "astrophysical factor" is the quantity 4cosmo defined by Equations (2.26), (2.29),

and (2.30). For a given model of dark matter, comparing values of @cosmo gives the

relative strength of different mass distributions as sources of high-energy particles

via self-annihilation. As described in Section 2.3.4, we used Ff to calculate Dcosmo

for the shells, both for interactions between two dark matter particles in the shell

material and interactions between dark matter in the shell and dark matter in the

halo (Table 2.6). For comparison we also calculated jcosmo for the dwarf galaxy used

in the N-body model. The dwarf is represented as a Plummer sphere with mass

Mp = 2.2 x 109 MG and scale radius b = 1.03 kpc. Integrating the density-squared

of the dwarf over volume shows that

war = (3M ) (2.33)
bV 8mp

to be used with Equation 2.30. We also compared these values with one calculated by

[56] from measurements of the mass and mass profile of the Ursa Minor dwarf galaxy

in the Milky Way, scaled as if it were located in M31. Ursa Minor has approximately

the same mass as M31's faint satellites AndIX and AndXII [98]. We find that the

shell signal is comparable in magnitude to the signal from this type of dwarf galaxy at

the same distance, and two orders of magnitude less than the signal from the original

Plummer sphere (whose mass is about ten times that estimated for Ursa Minor and

its analogues in M31).

Object 4YOsmo, Gev2 kpc cm-6

shell-shell (using F,,) 9.9 x 10-9

shell-halo (using ]?h) 8.5 x 10-7

Plummer dwarf (using Fdwarf) 4.1 x 10-5

"Ursa Minor" [based on 56] 6.9 x 10-7

Table 2.6: Values of the astrophysical factor jcosmo for various configurations of the
tidal debris, calculated using Equation (2.30).



2.3.6 Gamma-ray Signal

Beyond calculating IF and #, we used Equation (2.31) to estimate the flux of gamma

rays in the Fermi LAT for the various benchmarks in [10]. The results are shown in

Table 2.7 along with the parameters used to calculate Vs in each case.

By using the three-dimensional representation of the density-squared field from

the shell constructed with the FiEstAS estimator as a piecewise definition of the rate,

we can integrate the rate along the line of sight and across pixels of arbitrary size

such that the sum of the flux in all the pixels equals the total flux in Table 2.7. With

this technique we made two-dimensional maps of the expected gamma-ray emission

using the most optimistic value of GSUSY (labeled as "Upper Limit" in Table 2.7).

Using this value, even the center of M31's halo is only barely detectable by Fermi,

if the halo is shaped as we assumed for the dynamical model and the amount of

dark matter in the dwarf galaxy is comparable to the amount of luminous matter,

although the emission from the dark halo completely dominates over that from the

shell (Figure 2-17, left panel). The tidal structure is at least an order of magnitude

too faint to be detected even if the halo component is fitted and removed (Figure

2-17, right panel). Because of interactions between halo and tidal dark matter, the

signal from the tidal debris scales linearly with the mass of its progenitor as long as

Ph > Ps (Equation (2.19)) so the ratio of dark matter to luminous matter in the dwarf

galaxy would need to be several orders of magnitude larger, even after tidal stripping,

for the tidal debris to be detectable with Fermi or for the scaling of the boost factor

to become quadratic in the shell dark matter density. For a smaller progenitor such a

ratio might be plausible, but dwarf galaxies with masses of 109MO or higher tend to

have comparable masses of luminous and dark matter in their centers based on our

understanding of the Tully-Fisher relation at those masses [25].

2.4 Conclusions

We find that unless all the features in a given density distribution are known to

be fully resolved, the best way to estimate the volume integral of the square of the



Table 7
Contributions to the Flux of Gamma Rays Above I GeV from WIMP Self-annihilation, for Various MSSM Benchmarks

- A' B' C' D' G' H' I' J' K' L' Upper Limit

mX GeV' 242.8 94.9 158.1 212.4 148.0 388.4 138.1 309.1 554.2 181.0 40
120 782 195 63.6 1032 86.5 6303 930 7.08 x 104 1.87 x 104 1.30 x 104

0 sUSYb 3.14 134 12.0 2.18 72.7 0.885 510 15.0 356 882 1.26 x 104
Oy.hh~alle, d 3.38 144 13.0 2.34 78.3 0.953 550 16.2 383 950 13530
Oy.sh.alI* 0.00780 0.341 0.0307 0.00554 0.185 0.00225 1.30 0.0382 0.906 2.25 32.0
Oy.ss.aiir <10- 0.00424 <10- <10- 0.0023 <10- 0.0161 <10- 3 0.0112 0.0279 0.398
OY-Mu ag, 0.00810 0.345 0.0310 0.00561 0.187 0.00228 1.32 0.0387 0.917 2.28 32.4
Gy al.ari 3.39 145 13.0 2.35 78.5 0.955 551 16.2 384 953 13560
4'y 1.92 81.8 7.35 1.33 44.4 0.5402 311 9.17 217 539 7672
Oy.sh.nc 0.00509 0.217 0.0195 0.00353 0.118 0.00144 0.827 0.0244 0.577 1.43 20.4

<0y.v <03 0.00362 <10~3 <10-1 0.00196 <10- 0.0138 <10 - 0.00961 0.0238 0.339
Gy.Ate 0.00518 0.221 0.0198 0.00359 0.120 0.00146 0.841 0.0248 0.586 1.46 20.7
Oy.1orate 1.92 82.0 7.37 1.33 44.5 0.542 312 9.19 218 540 7693

Notes. The subscripts hh, sh. and ss refer to the various terms in Equation (18). Ny (arv) has units 10- 29 cm 3 s- . sUsy has units 10~ 1 cm4 kpc -I s~ I GeV 2.
All 0y have units 10~14 y cm-2 s-'. For reference. the Fermi point source sensitivity for photons with E > 100 MeV is on the order of 10' y cm- s-1
(Rando et al. 2009).
a Taken from Table I of Gondolo et al. (2004) except for the rightmost column. which is based on Figure 8 of FPS as described in the text.
b Calculated analytically using Equation (25).
1 Calculated analytically using the same NFW halo as for the dynamical model.
d all: integration is over entire line of sight and covers the region shown in Figure 17 in x and y.
* Calculated by constructing a numerical estimate for nii in each integration volume element. then evaluating nahal analytically at the center of that volume
element and assuming its value is constant over the entire element.

Calculated numerically as described in the text.

hby. tow, 4)?. + +

nc: a central region is excluded from the calculation, as described in the text.
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Figure 2-17: Gamma-ray emission from the dark halo, though faint, dominates over
emission from the shell even at large radius (left panel). If <by, hh is removed, the
remaining emission from the shell is too faint to detect with Fermi even for the most
optimistic parameters in the set of benchmarks (right panel). In these images the
pixels are 0.1 degree on a side to imitate the approximate degree resolution of Fermi
at the energy scale of interest, and the zero of the degree scale is centered on M31's
center.

density (the "rate") from an N-body realization is to use the simple nearest-neighbors

estimator with a constant Riemann volume. If the realization completely resolves

even the sharpest features, all three estimators we tested should agree on the result.

The simplest method for estimating the rate works best for this problem because

the other, more complicated algorithms are optimized for density estimation, not

rate estimation, and because estimators using adaptive Riemann volumes appear to

require slightly more particles to resolve features of a given sharpness. In any case

the estimator should be calibrated for Poisson bias as we describe in Section 2.2.1.

We also find that the improvement in the standard deviation achieved by increasing

the smoothing number is smaller than the increased bias from blurring more small-

scale structure for N, > 10. The correct calibration of the estimator for Poisson

bias can change the estimated result by up to 10 percent for reasonable values of

N,. The correct calibration for undersampling bias can change the result by a factor

of 2 or more if the simulation is under-resolved; rather than attempt to correct for



it, it is better to ensure that the N-body realization has sufficient resolution for the

small-scale features to be resolved.

Using a calibrated estimator and a sufficiently resolved N-body realization, we

calculated the boost factor and signal in gamma rays from tidal debris in M31 that

displays high-contrast features. Although we find as expected that the largest boosts

come from the shell edges, they only increase the total signal by at most 2.5 percent

over the signal from a self-consistent smooth halo. Likewise, the total gamma-ray

flux from the shells is three orders of magnitude lower than emission from the dark

halo, and too low to be detected by Fermi for likely dark matter parameters (Table

2.7). The total signal is comparable to that predicted for an ultra-faint satellite of

M31.

2.5 Future Work

The existence of shell features around M31 provides many avenues other than indirect

detection for learning about the nature, dynamics, and distribution of dark matter.

The very existence of the shells demands that the dwarf galaxy that created them

must have had very low angular momentum relative to M31 because the pericenter

distance is so small. Whereas high-angular-momentum systems like that of the Sagit-

tarius dwarf galaxy in the Milky Way are useful for constraining the shape of dark

halos because the tidal debris explores a large range in angle, low-angular-momentum

systems like the M31 shells and giant stream probe M31's potential over a large range

in radius, and are best suited for constraining the degeneracy between the different

mass components of the host galaxy. They also act as a sensitive probe of the mass

profile of the progenitor, since the combination of relatively cold initial conditions in

the dwarf and a small pericenter distance acts as a kind of spectrometer, spreading

the mass of the satellite galaxy out in space according to its total energy. Because

the shells' relative orientations are a good limit on the projected angular momentum

of the progenitor, variations in the initial position and velocity of the center of mass

are not likely to be degenerate with variations in the shape and phase space distri-



bution of the debris, although this is still being tested. This makes the shapes and

phase space distributions of the shells extremely sensitive to the initial phase space

distribution of the progenitor satellite, and can place limits on the cuspiness of the

mass profile of the dwarf.

The analytical caustic used in this work can also be used as a model for caustics

that form under the much more complicated equations of motion responsible for quasi-

radial gravitational infall. As shown in Appendix 3, the resulting form is identical to

that obtained by [37] in their analysis of those caustics with intuitive identifications of

the normalization, caustic location and distance from the caustic surface, and requires

no numerical integration to obtain the complete profile so it may be easily used for

fitting. Although our model is less general (it does not predict the relative locations

of caustics) it is consistent with the more general case, and more tractable if only the

universal density profile is desired. The height and width of each caustic are sensitive

to the initial phase space distribution of material in the caustic, while the profile

depends on the potential of the host galaxy only through the gravitational force at

the location each caustic-a complete mass model is not necessary. In light of recent

discoveries of shells around many more nearby galaxies besides Andromeda [29], this

technique may provide a way to constrain the properties of luminous matter in dwarf

galaxies by examining the tidal debris they produce. This topic is discussed in the

next two chapters of this thesis.



Chapter 3

Derivation of an analytic,

one-dimensional caustic

In this chapter we derive the density profile stated in Equation (2.16) from a simple,

one-dimensional force-free model (Section 3.1). As discussed in Chapter 1, this profile

can also be used to describe a radial caustic created by a tidally disrupted satellite

galaxy. For this case, we relate the parameters of the density profile to the properties

of the satellite and host galaxies (Section 3.2). In Chapter 2, we used the integrated

density-squared (the "rate") calculated from this density profile to test the perfor-

mance of density estimators on systems with high density contrast. In Section 3.3,

we derive an expression for this quantity in three Cartesian dimensions of which one

contains a caustic.

3.1 Density Profile

Following the notation of [38], we define the Eulerian coordinates F - (x, y, z) in terms

of the Lagrangian coordinates or "initial conditions" q- (qx, qy, qz) for a collisionless

nongravitating ensemble of particles:

q, t) = I+ o(qt (3.1)



where iXo is the initial velocity vector of the particles.

Conservation of mass states that:

p(At)d7= Zpod q (3.2)

where 5(q, t). The sum is taken over all values of q for which particles end up at a

given ?. Assuming a uniform starting density po, the local density p of the distribution

then evolves in time as

p(5, t) = (3.3)
| d/dqj - x 6 ik + t'vo(3

Caustics arise when the determinant in the denominator is zero.

To randomly sample a simple one-dimensional caustic along x in our 3D distribu-

tion, we can choose a uniform distribution in y and z:

y = qy (3.4)

z = qz (3.5)

and an extremely simple displacement rule for x that includes a constant initial ve-

locity vo,X(qx) with a small random component vth(qx) along the dimension of the

caustic and no further interactions:

x = qx + t (vo,X(qx) + vth(qx)) (3.6)

vth(qx) is a random variable drawn from a distribution f (Vth) for each particle in the

system labeled by a unique qx. This "thermal velocity" is included so that the density

will not diverge at the caustic surface. Equation (3.6) is not invertible since the Vth

are random. Furthermore the particle ordering at t > 0 is unknown because of these

random velocities, so the density at some point may now include many streams, since

the initial velocity determines when the particles cross the caustic. To make sure we



include all the streams, we express the sum over streams as an integral over a delta

function (dropping the subscripts on q for clarity):

p[vth(q)](x, t)dx = po dq 6 [x - q - v(q)t] dx (3.7)

where v(q) = vo(q)+ vth(q) includes both the uniform and random parts of the initial

particle velocity. The delta function and integral over q form a sum over all particles

that arrive at the location x from any q at a time t.

We choose to represent the thermal velocities with a Gaussian (Maxwell) distri-

bution with one-dimensional dispersion o-:

f (th)doth e Vth 2 doth (3.8)

vth(q) is thus a function of q in the sense that for each particle, labeled by its q, a dif-

ferent random velocity is assigned. The dispersion o could easily be time-dependent,

but again we take the simplest case and assume it is a constant. We refer to the

Vth as a thermal component because systems in thermal equilibrium have velocities

described by the same distribution, so it is often associated with temperature since

o.2 ~ T in that case.

To make the integral in the expression for p(x) easier to evaluate, we can also

replace the delta function with its limit definition in terms of a Gaussian:

6 [x - q - v(q)t] = lim 1 e-x-q-v(q)t] 2
/2E2 (3.9)

e-+O /27

Combining, we find

P [vth (q) ](, t) -po dq lim exqv~] 2/2.E2 ( 0
-P o c-O 

(.270e)

To get the distribution p(x, t) we must take the ensemble average over vth:

p(x, t) = (p[vth(q)] (x, to)00 dvthp[vth(q)] (x, t)f(Vth) (-
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We reintroduce v(q) = vo(q) + vth(q) and pull out the parts of the exponent containing

Vth:

p(x,t) = po dq lim e - '-q-vo(q)t]/2,2
J___ C-0 2r2 2

0 doth ev2h/2 02 _2{ 2 -2vtht~xqvo(q)t] /2e2

J-o0 Nf2(73ro
(3.12)

For notational simplicity, we temporarily define [x - q - vo(q)t] - A. Regrouping

terms, we find a quadratic expression in the exponent in the inner integral:

J qlim Ie A 2 /2E 2

-00 E02u dvth exp - [Vth

The integral over Vth can be evaluated by completing the square on the quantity in

curly brackets. Setting
1 

2a2  (2o2

we find that the inner integral becomes

I j dvth exp -a 2 (Vth -

t2A2
+404a2 (3.15)

Using the substitution u = a(vth - tA/2e2), we can immediately evaluate the integral

to be:

(3.16)

Replacing this into the equation for the density, we find that

p(x, t) = Po dq lim exp
-00 E-40 7ro.2a22

1(2e241402

Replacing a2 with its definition and simplifying makes the limit easy to take:

p(x, t) = po dq lim 1 eA2/2(<2+2,2)
-0oo E-0 /27 (E2 + o.2t 2)

p(x,t) = po
k(2cT 2 2E2) #Vth

(3.13)

t2

+202 )
(3.14)

tA 2
2)

(3.17)

(3.18)

t2A2 g
I(x, t) = exp442 a2



and finally we are down to the last integral:

p(x,t ) = POj- 2  dq e- -~qvo(q)t] 2 /2a2t2 (3.19)
f27o.2t2 -0

As o or t approaches zero, this expression approaches 3 [x - q - vo (q)t], and we recover

the density in the case of zero dispersion.

To perform the integral over q (that is, to sum over streams) we must choose a form

for vo(q). The simplest form that creates a localized caustic surface is vo(q) = -aq2

p(xt) = PO dq e-[x-q+aq2t] 2
/2,2t2 (3.20)

27ro.2t 2 J

For this form of vo we can evaluate the integral

I(x, t) = j dq e-lx~q+aq2t]2 /2,2t2 (3.21)

in terms of Bessel functions if we make a slightly suspect change of variables. First

we complete the square in q inside the brackets:

I(x, t) = dq exp + q- (3.22)
_,0 2a-2 at 4as2t2 2at

Then we make the substitution

u = q - 1 (3.23)
2at

This change of variables is certainly suspect as t - 0, but we make it anyway, hoping

that since we know the answer at t = 0 we can check the result and verify that it

gives po everywhere. With this substitution

I(x, t) = tdu exp [ . at 4a2t2 + u (3.24)

We now identify the caustic position xe. In the case of perfectly cold initial conditions,

the location of the caustic is determined by setting the denominator of Equation (3.3)



to zero and solving for xc, with the help of Equation (3.1). We use this same quantity

to describe the "position" of the caustic in the warm case, since although the caustic

now has a width, the peak density will still occur near xc. For our choice of vo(q) we

find that this corresponds to
c 1 0 (3.25)

at 4a 2 t2

so that xe = 1/(4at) and

-(1 - zc) (3.26)
at 4at 2  at

for notational simplicity when performing the integral. So now we have a factored

quartic in the exponent:

I(x, t) = du exp [- 2 + u2)2 (3.27)

Expanding this expression and pulling out a constant term leaves us with an integral

that can be evaluated in terms of Bessel functions:

I(2,t) = e-x2/2I,-2 f du exp (- 2u2) (3.28)

Performing the integral, replacing T with its definition, and reintroducing the prefac-

tor, we find that

p(x,t) = 2 XC e-(xc)2 /2t2 3 [(X XC)2  (3.29)
/2wro-2  at3  [4c2t2

with
7[IE-/(U)+-I/4(U)] X < oc

B (u) = 2[(3.30)

'Ti2 [-/(U) - 11/4(U)] X > ze

where I is a modified Bessel function of the first kind. Taking the limit t -+ 0 recovers

po everywhere, and validates our change of variables. This form is the same as that

obtained by [37] for the density profile of a caustic with Gaussian velocity dispersion,

with the substitutions akU, -+ ot, Ax -+ x - x, and Ak = Po/v at. That is, it



describes the same shape as a caustic formed by secondary self-similar infall from an

initial population with Gaussian velocity dispersion, but whose normalization varies

as 1//l and whose position varies linearly with time.

3.2 Gravitational caustic model

The density profile 3.29, with a few slight changes, is universal for any initial pop-

ulation with a Gaussian velocity dispersion and small initial phase space volume,
regardless of the equation of motion of those particles. This is because the shape of

the phase space distribution of particles near the caustic can always be approximated

by a tilted quadratic with curvature r,. For the equation of motion used to derive

Equation (3.29), r, = at 3 ; for motion in a gravitational potential, r, depends on the

radial gravitational force at the caustic:

1d 2 ,
- - - (3.31)

2 dV 2g(rc)

where g(r) is the gravitational field or radial derivative of the potential, OV/Or.

Inspection of Equation (3.29) shows that the curvature r influences the height of

the caustic relative to the initial density, while the product ot determines its sharp-

ness. In a more general case, the spreading of the particles in phase space is not linear

in time and the initial velocity dispersion, and ot can be replaced everywhere in the

density profile by a generic parameter representing the width of the caustic, 6r. The

quantity po/o- - fo in the normalization of the caustic indicates that the physical den-

sity at time t depends on the initial phase space density, with the caveat that in cases

where a caustic forms in one dimension but motion occurs in more than one dimen-

sion, o remains the one-dimensional velocity dispersion while po must be determined

via mass conservation, since the density profile does not account for the behavior of

the population in the neglected dimensions or for the Jacobian associated with the

volume element in non-Cartesian metrics (for example, spherical coordinates).

The caustic width 6r can be estimated using energy conservation. Although each



particle turns around at apocenter where v, = 0, the caustic itself can have a net

positive velocity because its location at a given time depends on the relative periods

of particles on neighboring orbits. Thus the energy at the caustic surface, assuming

spherical symmetry, is:

E = V(r) + - - (3.32)
2r

For two particles on neighboring orbits, their energy difference AE is found by sub-

tracting their energies, so

1,
1E = - - v) + V(r 2) - V(ri) (3.33)

Particles at the very face of the caustic are close in r and far from r = 0, so we can

write r 2 = r1 + Ar, taking Ar/r1 to be much less than 1. We cannot also write

V2 = vi + Av and Av/vi < 1, since the average velocity of particles in the caustic

may not be much larger than zero. Using the condition on ri, the energy difference

can be rewritten in terms of the local gravity (defined earlier):

1
AE = -(v2 - V) - g(ri)Ar (3.34)

2

In reality many particles will comprise the caustic surface; one can use this expression

by taking its variance, realizing that r and v are correlated and assuming g(r)/Ar >>

dg/dr:
12

o 7 = - - g(r)cov(r, v 2) + g(r)2 .x (3.35)

The size of the covariant term is related to the amount of curvature over the region

used to calculate the variances. It can be minimized by taking a region around

the caustic small enough that the curvature is smaller than the radial thickness, or

6v < or/#i. Then the covariance term can be ignored and the equation solved to

give an estimate of the width or:

or = g r 2) (3.36)
g(rc)



With these physically motivated generalizations, the density profile

p(X, t) = e-(xXc) 2 462 - 1 (3.37)
) 2w V rB 46r 2  J

will universally fit the projected radial density profile of any shell near its peak.

Using this relation, we can find the location of the peak by solving dp/dr = 0. The

equation reduces to a linear combination of various Bessel functions, which can be

solved numerically to find rmax. Here we give the result to 10 decimal places, but

more are easily available if necessary simply by increasing the number of iterations

in the root finder.

rmax =Tc - 0.76495086746r (3.38)

Substitution into the density profile gives the maximum density in terms of the phys-

ical parameters. Within a few percent the numerical coefficient is unity:

pmax = 1.0 2 1 13 6 5 8 4 7 fo r (3.39)

The peak density occurs about one characteristic width behind the nominal caustic

surface rc (Figure 3-1).

3.3 Integrated density-squared

Armed with an analytic expression for the density, we can now calculate the integrated

squared density or "rate" F for comparison with estimates from random realizations.

We must integrate the density with finite limits on q and x, since we used the density

estimator on a finite-sized sample of the distribution for the tests described in Chapter

2. Using Equation (3.29) for the density profile of the caustic in the x direction and

assuming a constant density in y and z, the integrated squared density is

1(t) = 4LYLz j p2 (x, t)dx (3.40)
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Figure 3-1: Universal density profile for a one-dimensional caustic from with initial
Gaussian velocity dispersion. The parameters are defined in the text.



with x± the lower and upper edges of the sample in the x direction, and ±LY and

±L2 the sample dimensions in the y and z directions, respectively. Furthermore, we

are now considering only particles that originated in some range [q_, q+], so we must

also recalculate the density function integral, Equation (3.27), over a finite range:

p(2, t) = U+ du exp [ 2 (+ U2)2 (3.41)
N/_27ro.2t2 J_ 2o.2

where

1 q - (3.42)
2at

Technically, we should use this expression for p2 in the rate integral, so that

2L 2zp X_+ "+ ~ 2 2 2
l'(t) = 2LYL~cyg du exp a (z + U2) 2]d] , (3.43)

7o2 t [j_ 12a.2

with

at 3(3.44)a~t

the endpoints of the rate integral about the caustic.

Both these integrals must be evaluated numerically, so we would like to borrow

our analytic solution, Equation (3.29), instead if possible. We can see that this is

sufficient by examining the form of Equation (3.29). The exponential and Bessel

function terms are functions of the quantity

(X - XC)_
=a Xd (3.45)2o-t

which compares the distance from the caustic to the characteristic length scale for dis-

persion, -t. For distances much larger than o-t, the exponential piece approaches zero.

The modified Bessel function /C1/4 = [1- 1/4 (u) - 11/ 4 (u)] also has an exponential

cutoff for (x - xc) > t, or u -+ oo, as seen in its asymptotic series:

K1/ 4 (U) = e--2 3 1 (3.46)
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For x < xc, the leading term in the asymptotic series of p declines as a relatively slow

power-law:

to-2

p(x, t) = po + O(|z - zc|- 5 /2 ). (3.47)ajz - zc|

From examining these limits, we find that for x > xe the density is completely neg-

ligible for distances more than a few times ut from the caustic, and for x < xe it

becomes negligible like a power law. Thus it is unsurprising that substituting the

infinite-range expression for the finite-range one gives the right answer.

Thus, as long as x - x, > ort at the endpoints, we can safely write

_(t) = 4L Lz I 2 2 - Xc e2(x-c/4 2 tB2 [4 -2  dx (3.48)

Practically speaking, the approximation is sufficient for our needs as long as 2 > 500

at the endpoints. If this condition isn't satisfied we must do the two numerical

integrals in Equation (3.43).

We change variables to td. Inserting the form for B breaks the integral up into

two parts:

T t =4LY LzPo je-22 __ 2dza(t) 4Ltdp {j [-T- 12 k/ 4  d~ + 11/4 (_t2)] 2 -d

+ lded [1_1/4 ( ) - 11/4 (_d)]2 di} (3.49)

where we have assumed that we are integrating across the caustic so that the new

endpoints,

z 2ut , (3.50)
2o-t

are such that Td_ < 0 and Td, > 0. This final integral must be performed numerically.
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Chapter 4

Constraining properties of dark

matter halos with tidal caustics

4.1 Introduction

Evidence that galaxies interact with one another has been seen for a long time, and the

creation of streams of stars through tidal interactions is an established field of study.

It has also long been known that tidal debris comes in many shapes and sizes, from

the huge tidal arms created by interacting, roughly equal-mass galaxies to the fainter

features observed around nearby galaxies that are thought to come from interactions

with much smaller satellites, called minor mergers. Evidence that minor mergers

occur in nature is an important link to our understanding of cosmological history,

since cosmological simulations of dark matter predict that many more small galaxies

exist than larger ones, and that minor mergers should therefore occur frequently [for

example, 31]. Minor mergers are also useful as a way to constrain the shape and mass

of the large galaxy, since the material unbound from the satellite galaxy behaves as

test particles in the relatively undisturbed potential of the large galaxy. Observing and

interpreting minor mergers helps relate the dark components of galaxies, predicted

with great accuracy by cosmological models and simulations, to the luminous matter

in them, which is more difficult to predict.

Some minor mergers create patterns of tidal debris that look like shells or umbrel-

101



las. The first such debris was identified around elliptical galaxies by [41]; these galax-

ies were called "shell galaxies" because of these distinctive features. [99, 100, 64, 65]

showed that the shells were probably created by a minor merger on a nearly radial

orbit. This explains the alternate spacing of the shells on either side of the host galaxy

since they are formed as material from the satellite piles up approximately at turning

points: the satellite material initially had a distribution of energies that is reflected by

the different radii of the shells. More recently, similar features have been discovered

around nearby disk galaxies [101, 30, 29]. The vast improvements in imaging since

shell galaxies were first identified, and the relative proximity of these objects, has re-

vealed more of their structure than had previously been observed. In some cases the

objects are even close or bright enough that velocity information could be obtained.

Additionally, since the first numerical experiments to model shell galaxies were per-

formed, computational capacity has increased exponentially to allow a much broader

exploration of parameter space with more sophisticated models. Finally, at the time

that shell galaxies were being studied, the concordance cosmological model (LCDM)

had not yet been proposed, let alone experimentally verified, and dark matter was

not necessarily thought to form a significant part of the mass distribution of galaxies.

All these advances in theoretical understanding and technical capability suggest that

shell galaxies are worth another look.

Shells from nearly radial mergers are particularly special because there is a direct

correlation between the kinematic properties of debris and its location relative to the

host galaxy. Thanks to the near-symmetry of the encounter, the system can be con-

sidered in a two-dimensional projection (r, v,) of the full six-dimensional phase space

without much loss of information. In this two-dimensional projection, the initially

cold satellite material, once unbound, forms a thin stream that winds through phase

space, so that for any spatial location r there are a small, finite number of possible

speeds v,. The dynamics governing the formation and shape of this stream are closely

related to earlier work on spherically symmetric secondary infall of matter accreting

onto dark matter halos. As shown in [36] and [35] radial accretion of gravitating, cold,

collisionless matter forms a series of infinite-density peaks at successive radii, known
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as caustics. [37] further showed that for warm matter with a finite velocity dispersion,

the peaks take on a finite width and height, but although they are no longer caustics

in the mathematically rigorous sense they retain many of the same properties. This

prior work was motivated by cosmological simulations and so considered the radial

collapse of spherically distributed matter, but [43] show that the results apply equally

well to a small, initially self-bound satellite falling radially into the static potential

of a larger host galaxy. For this reason, in this work we will refer to shells as "tidal

caustics", a term which emphasizes the high degree of symmetry and the correlation

of positions and velocities.

This chapter describes a method to estimate both the local gravitational field near

a tidal caustic and the original velocity dispersion of the dwarf galaxy that created it.

These quantities can be constrained using only images of the host galaxy and merger

debris, and estimated independently if kinematic information and a rotation curve

of the host galaxy are available. Construction of a full N-body model of the merger

is not necessary. The constraints or estimates are made possible by exploiting the

universality of the one-dimensional density profile of the material in the caustic. In

Section 4.2 we present the universal density profile and explain its parameters. In

Section 4.3 we describe a set of numerical experiments to determine qualitatively

how radial a merger must be to use our techniques, and what such tidal debris will

look like. In Section 4.4 we discuss how the model may be used to set limits on the

host and satellite galaxies in a radial merger if only photometric data in projection is

available, and in Section 4.5 we discuss a simple geometric model for determining the

projection angles. In Section 4.6 we extend to cases where line-of-sight velocities are

available. Section 4.7 discusses additional information that is given in systems with

multiple visible shells. In Section 4.8 we demonstrate that the conclusions drawn in

this chapter still apply when the gravitational response of the host halo is accounted

for. In Section 4.9 we discuss the next step in applying this model to real data, and

in Section 4.10 we summarize.
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4.2 A universal density profile

In Chapter 3, we derived a simple analytical form for a one-dimensional caustic formed

from a system with initial random velocities drawn from a Maxwellian distribution

(Figure 4-1, left panel). In the case where this system is a small, gravitationally

self-bound satellite galaxy falling radially into the center of a static host galaxy, the

one-dimensional density profile of the caustic, as a function of the galactocentric

radius r, can be written in terms of four physical parameters 6r, re, r,, and fo:

pr = v/|r - , e-) 2 /46,2 B - rc[( 2

pkr) = ___ - r.1  L 2  J(4.1)
V/27r 4Jr2

where B is a piecewise combination of modified Bessel functions of the first kind:

B3(U) f" [-E 1/4(u) + 11 /4(u)] r < rc(4.2)

-[ 1/4 (u) - 11/4(U)] r > rc

p m ax -------------------------- --------- A.7 vr-----

(r0,v.)

0

re- 1 06r rc-56r rc-26r rc r
r

Figure 4-1: Left: Universal caustic form for radial infall from a population with initial
Gaussian velocity dispersion. rc and 6r are defined and formulae for the peak radius
and density are given in the text. Right: An example phase space distribution taken
from a simulation of a minor merger. Near the peak of one of the caustics (black), the
phase space distribution follows the curve r = rc - K(Vr - Vc) 2 (dashed line), where
vc is the radial velocity of particles at the caustic surface. K is defined in the text.

In Equation (4.1), 6r is the characteristic width of the caustic surface, which

depends on the initial velocity dispersion of the dwarf galaxy that created the caustic.

A perfectly "cold" distribution, in which all particles had the same velocity, would
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give rise to a true caustic, with zero width and infinite density. We refer to caustics

in a less rigorous sense: they have finite density and width but still exhibit a large

local density enhancement thanks to the same dynamical processes. The width 6r is

related, by conservation of energy, to the variance in energy per unit mass, or, and

in velocity-squared, a 2 , of the matter making up the caustic. It also depends on the

local gravity of the host galaxy at the caustic, g(r) -d<D/dr:

2 122
E 2 v.

6r - g r) (4.3)

Although all the particles forming the caustic are near apocenter, the net radial

velocity at the caustic surface is not necessarily zero because the spatial overlap of

their orbits depends on their orbital periods. The velocity of the caustic surface can

be determined by requiring dr/dE = 0 for some given time t after the matter becomes

unbound, where r(E) is determined implicitly by the equation

l' 
dr'

t = r(4.4)
o /-2 [E - <b(r)]

This expression depends on the entire mass profile of the host galaxy, not just the

local gravity. The assumption of spherical symmetry only holds at large radius, but

this is where the particles spend most of their time, so this relationship, even in

realistic potentials, is an integral constraint on the mass profile.

The radius of the caustic surface is denoted rc. It is close to, but not equal to,

the radius of peak density, rm,, because of the thickness of the caustic, induced by

the nonzero velocity dispersion of the material. For a perfectly cold initial population

rc = rma and the peak density is infinite, but for a system with nonzero velocity

dispersion the peak density is finite,

pmax = 1.021 fo , (4.5)
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and rc is related to rma by

rmax = - 0.765 6r. (4.6)

The numerical factors come from solving dp/dr = 0 numerically (necessary because

of the Bessel functions) and can be determined to arbitrary precision.

Although in general galaxies are not thought to have a spherical mass distribution,

especially near the disk, we make this simplification at the large radii where the

caustics are usually detected (several times the scale length of the disk or more). A

nearly spherical mass distribution will give rise to a caustic surface that is well fit as a

segment of a sphere spanning some solid angle Q. The appearance of the caustic on the

sky is then modified by projection along the viewing angle; deprojection is necessary to

determine rc correctly and avoid overestimating 6r. We discuss deprojection methods

further in the next section.

The local curvature of the phase space distribution of the particles at the caustic

surface is denoted r,. Because by definition the surface is located where the phase

space distribution is vertical, near the surface the its shape may always be approxi-

mated by a quadratic function. The curvature , is related to the local gravity at the

caustic surface by

1 d2r 1 v 2 dg (47)
2 dv2 2g(re) g(r)2 dr

where the derivative d2 r/dV2 is taken along the projected (r, v,) phase space curve

traced out by the debris. The second term in the square brackets is usually smaller

than 1 at large radius because the gravity gradient of the host galaxy and the radial

velocity at the caustic surface are both small.

The one-dimensional average phase space density of the material in the caustic,

once its self-gravity can be neglected, is fo. In a typical collision with low angular

momentum, the dwarf galaxy remains self-bound until its first pericenter passage,

after which the potential of the host galaxy dominates the evolution and the self-

gravity of the dwarf can be ignored. Even if this is not true for all the material,

it is so for anything that ends up in caustics. To use fo to estimate of the true
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average phase space density, the motion in r must dominate over the angular motion

so that the projection of the full phase space into the r-vr plane captures most of the

spreading in phase space. We discuss this further in Section 4.3.

In a spherically symmetric system, fo can be estimated by using mass conservation:

/rc+Ar
Mshell = / r"drp(r) (4.8)

where Q is the solid angle spanned by the caustic, tAr describes a symmetric slice in r

centered on the caustic surface, Mshell is the mass in that region, and the density profile

p(r) is given by Equation (4.1). Changing variables to u - r - rc and substituting

the function p,

Mshell Qf I(Ar) (4.9)
V2 7r K

where

I(Ar) A du(u + rc)2  -u2 /46B (4.10)

Given an estimate for Mshell, the pseudo-phase space density is

fo Mshell 27rs (4.11)
0 2I(Ar)

4.3 Initial conditions

In order to use the universal density profile, two assumptions must be valid: the

potential in which the debris material is moving must be dominated by the potential

of the host galaxy, and the orbits of the material must be sufficiently radial that the

phase space can safely be collapsed into the r-vr plane. We conducted a brief series

of numerical experiments to illustrate the type of merger that can give rise to a good

candidate set of caustics. The host galaxy in these experiments is represented by a

spherical isochrone potential with scale mass Mh = 2.71 x 1012 solar masses and scale

radius bh = 8.02 kpc. The satellite is represented as a Plummer sphere with scale

radius r, = 1 kpc and mass ratio mS/mh = 5.27 x 10-4. We start the satellite at

a distance of 40 kpc from the host's center with a total speed equal to the circular

107



speed at that radius, 438 km/s. The direction of the satellite's velocity vector (and

therefore its angular momentum) is parameterized by the angle d between the velocity

and radius vectors of the satellite's center of mass. V is zero for a perfectly radial

orbit and 90 degrees for a circular orbit.

From examining a projection of the spatial distribution of the debris (Figure 4-2),

we see that caustics are distinguishable in the debris for V up to 45 degrees. However,

examining the r-v, projection of phase space shows that ignoring the angular motion

of the debris begins to introduce significant spread into the projection at much lower

angles.
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4.4 Spatial distribution

Given only the density profile and deprojected image of a caustic, one can use the

relations between the four parameters determining the density profile to constrain

the structure of the statellite galaxy. Fitting the density profile measures 6r, rc, and

fo/v 2r,, from which I(Ar) can be calculated by integrating over the observed region

Zr around rc. Mshell and Q for the same region can be estimated from the deprojected

image with an appropriate assumption about the mass-to-light ratio. Then Equation

(4.11) relates fo, the initial spread in the projected phase space, to the potential of

the host at rc:

Mshell -__[_ 27r dg - -1/2

Izr)= fo E g 1c - rc) (4.12)QI(,Ar) g (rc) g(r)2 dr

The term including the gravity gradient dg/dr is always positive. Since the potential

of the host galaxy is not known, we can obtain an upper limit instead:

Mshell o -g(rc) (4.13)
QI(ZAr) w V 27

Using Equation (4.3) allows us to eliminate g(rc) to obtain a constraint on the initial

energy spread and phase space density, and the final radial velocity spread, of the

material in the satellite:

27r6r sher 2 - 0 2 (4.14)

4.5 Accounting for projection effects

In order to obtain limits on the satellite galaxy's structure from images alone, it is

necessary to account for projection effects in the image of the caustic. Fortunately the

high symmetry of the system again simplifies the analysis. The edge of the caustic

can be approximated as a spherical segment that spans some solid angle, and the

angular extent of the debris can be modeled as a cone. The system thus has three

angles that describe the shape and orientation of the debris: the angles 6c and c of
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the cone relative to the line of sight and the opening angle a of the cone (Figure 4-4).

The solid angle enclosed by the cone is Qc = 27r(1 - cos a). The angles are defined

in the standard way for spherical coordinates, so that (0c, #c) = (0, 0) corresponds to

a cone opening directly away from the observer along the line of sight. If the caustic

has a sharp edge in projection, this means that 6c must be close to ir/2, in which case

initial guesses for #c and a can be estimated directly from the projected image.

The equations for the edges of the cone in Cartesian coordinates can be obtained by

rotating the standard cone equations. We defer the full discussion of these equations

to Section 5.2.1 of the next chapter, where the deprojection procedure is discussed

in detail. Then the projected surface brightness, assuming a constant mass-to-light

ratio T, is

/ z rn (x ,y )
E(x, y) = TJ p x2 + y2 + z2) dz (4.15)

zei(x,v)

where p is given by Equation (4.1) and zmin and zmx are the limits of the cone for a

given x and y. The method for determining zmin and zmx is also described in Section

5.2.1.

Given a particular pair of orientation angles (0c, #c) and opening angle a, the

projected surface brightness can be derived from Equation (4.1). An example is

shown in Figure 4-5. The integral along the line of sight (Equation (4.15)) must be

done numerically, but thanks to the finite number of measurements of the surface

brightness for a given cone, it need only be done for a finite number of lines of

sight. Additionally, since the expressions for Zmin and zmax are analytic in 0c, #c,
and a, standard minimization routines can be used to find best fit values based on

the natural x2 from comparing the calculated and measured profiles. The necessary

derivatives are also given in Section 5.2.1.

4.6 Phase space distribution

For some extragalactic tidal caustics, line-of-sight velocities can be obtained. Using

the coordinate system and projection angles discussed in the previous section, the
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x

Figure 4-4: Angles describing the orientation of a cone representing the spatial extent
of the tidal debris relative to the line of sight (z axis). As in standard spherical polar
coordinates, 0c is the angle between the line of symmetry of the cone and the positive
z axis, which points away from the observer, and <pc is the projected angle of the line
of symmetry in the x-y plane (the plane of the image). a is the opening angle of the
cone. If 0c is near ir/2, a can be approximately measured in the x-y plane.
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D

Figure 4-5: Using the simple geometric model described in the section (top), the

surface brightness profile in a given direction (red dashed line in top panel) for a given

orientation of the cone with respect to the line of sight can be derived analytically

(bottom). The model pictured has a = 0.5, 0c = 1.3, #c = 3.4, and 6r/rc = 0.3.
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line-of-sight velocity is

vios= V =, cos Oc - vo sin Oc (4.16)

For the caustic to have a sharp edge in projection, Oc must be close to ir/2; therefore,

measurements of the line-of-sight velocity for such caustics will primarily constrain

vo and therefore the angular momentum of the tidal debris. If multiple shells are

observed, their relative angles on the sky, combined with the shell orientations esti-

mated using the mass profile, can constrain the angular momentum of the satellite

galaxy and the degree of flattening of the host potential. This method is discussed

in the next section.

If v, can be measured, either by constraining and removing vo from the line-of-

sight velocities or by some other means, then the host galaxy's potential can also be

constrained by using the shape of the phase space distribution near the caustic edge.

Now I, Vr(rc), and o are also known, leading to a new set of constraints. First,

we can get a lower limit on the magnitude of the gravitational force at the caustic

surface:
1

Ig(rc)| > - (4.17)
2K

Using this approximation, we can also verify that the second term in Equation 4.7

is much less than the first, by approximating dg/dr by 1/(2rrc) and g(rc) with the

limit above. Combined with the measured v,(rc) we get the condition

2vr(rc)2 < 1 (4.18)
rc

If this condition is satisfied, we can acceptably use the lower limit on g(rc) as a

measurement of the local gravity of the host galaxy.

Second, having measured K we can now compute fo directly using the value ob-

tained for fo/v/27r from the fit to the density profile, or from conservation of mass

using Equation (4.11). Both approaches should yield the same value for fo, a useful

consistency check.

114



Finally, we can get a lower limit for the energy spread of the material in the

satellite galaxy by using Equation (4.3) and the limit on g(rc) derived above:

a 2 + 2 (4.19)

4.7 Multiple caustics

If multiple caustics are observed around the same galaxy, the angular momentum of

the satellite galaxy can be estimated from the relative angles of the caustics (and/or

tidal stream, if one is observed). As discussed in Chapter 1.2.2, the caustics from

a single stripping event can be placed in order of orbital phase by comparing rc;

the caustic with the smallest phase has the largest radius. The possibility of multiple

episodes of tidal stripping complicates this picture, but if the tidal tail from each strip-

ping event can be detected, then the shells from each event can still be phase-ordered.

Both the angular momentum of the satellite and the additional precession caused by

the aspherical potential of the host galaxy contribute to the angular separation of the

shells.

Although the material in the satellite galaxy spans a range of angular momenta

and energies, a suitable first approximation to the contribution made by the intrinsic

angular momentum to the relative angles of the caustics is the angular deflection of

the center of mass of the satellite given the radial profile, V(r), of the host galaxy

potential and the total energy E and angular momentum f of the satellite. Using the

energy equation

E = r2 + 2r 2 + V(r), (4.20)

and conservation of angular momentum to change variables to the angle 0 rather than

the time t, the resulting differential equation is separable with solution

ffmax dr

rmin r 2  2 (E - 2 - V(r))

where rmin is the pericenter distance and rmax is the apocenter distance (for E < 0) or
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infinite (for E > 0). As usual, rmin and r.m are the two positive roots of the equation

E = 2r2 + V(r). (4.22)

In a spherical potential, this approximation works well for the tidal stream and the

first few caustics (Figure 4-6), which are at the largest radii and therefore the most

likely to be seen. As discussed in the previous section, measurement of the line-of-

sight velocity at the caustic surface constrains the angular momentum of the debris.

V(r) can be interpolated from the rotation curve of the host galaxy; this avoids

introducing a full mass model of the host.

Additional angular separation between the caustics is due to deviations from

spherical symmetry in the potential that cause the orbit to precess. To account

for flattening of the potential, the orbit of the center of mass of the debris must be

integrated numerically. This introduces new parameters: the amount of flattening

and the angle of the flattened halo relative to the initial orbital plane, so that the

interpolated potential V(r) is replaced by the flattened version V[rq(#, -Y)], where

rq(#, Y) = V/x'(, Y)2 + y'(, 7)2 + z'(#, -) 2/q 2  (4.23)

and r' = (x', y', z') = R(3, y)r' is the orbital position rotated into the plane of the

potential. The variable q ranges from 0 to 1 and describes the flattening. Further

tests will be needed to determine how well these parameters can be constrained by

measurements of the shells, but / and y can be estimated from the image and spectra

of the host galaxy if they are available, and the center-of-mass integration is sufficient

to predict the relative angles of the caustics (Figure 4-7).

4.8 Simulations with a live halo

It is possible that some of the effects we see may be different for simulations that use

a live halo; that is, one that is comprised of self-gravitating particles and can respond

to the influence of the satellite galaxy. [102] performed numerical experiments with
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Figure 4-6: In a spherical potential, the scattering approximation can successfully
predict the approximate relative angles of the tidal stream (red), first caustic (orange),
and second caustic (green), although by the third caustic (blue) the additive errors in
angle begin to dominate. Here the mass profile of the host is the isochrone potential.
As discussed in the text, the second tidal stream (the orange material extending
beyond the shell) is an indicator that two stripping episodes took place; here we
consider only material stripped in the first episode.
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Figure 4-7: An N-body simulation of a minor merger in a flattened cored isothermal
potential, V(r) = io n (Re2 + x2 + y2 + z 2/q2 )+±Vo, with lines showing the predicted
angles of the debris at each time based on the center-of-mass orbit, shows that this
technique successfully predicts the relative angles of caustics. The potential in this
example had the parameters vo = 450 km/s, Vo = -0.4 kpc 2 Myr-2 , R = 8 kpc,
and q = 0.5, and is oriented as if the host galaxy were face-on (the x-y plane is the
plane of the sky). The same parameters were used for the N-body simulation and
the integration of the center of mass motion. Notice that the shells are no longer all
equally sharp, thanks to the oscillation of the orbit in the z direction (along the line
of sight).
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live halos and found that for nearly radial encounters, the material in the satellite

galaxy still forms phase-wrapped shells. They also found that depending on the

density of the satellite galaxy, tidal heating and dynamical friction cause significant

orbital decay that affects the locations and numbers of shells. Significantly, they show

that the Chandrasekhar formula for dynamical friction is not a good model for the

highly eccentric encounters that create shells: the "wake" of particles that the formula

assumes is the primary source of friction is in fact subdominant to interactions with

the core of the host galaxy for nearly radial orbits. Instead, restricted three-body

methods must be used instead for analytical work.

The simulations of [102], limited by the computational capabilities at the time,

used less than 2 x 10' total particles, whereas much larger simulations are possible

today. More recent simulations of individual systems with live halos by [31] and

[103], at significantly higher resolution, also show the formation of shells, but do not

systematically study their properties. Based on this prior work, and on the shells

observed in nature, we expect that the shell phenomenon is not destroyed by the

inclusion of a live halo. Since the shape of the radial density profile is a direct result

of the creation of the shells by phase-wrapping, we expect that the shells will still

have the same profile even when a live halo is used.

We investigated the effect of a live halo using the self-consistent halo model of

[104] known as the lowered Evans model. The Evans model [105] refers to the analytic

phase space distribution function fEv(E, L2), a function of the energy E and the axial

angular momentum Lz, that corresponds to the axisymmetric logarithmic potential

<baxi(R, z) = 2v 0log (Re + R2 + z 2 q2 ) (4.24)

where (R, p, z) are cylindrical coordinates, vo is a characteristic velocity, and Rc the

core radius. The oblateness parameter q is less than 1 for an oblate potential, 1

for a spherical potential, and greater than 1 for a prolate potential. The model is

physical for values of q between 1/V2 and about 1.08 [105]. As is well known, this

potential corresponds to a mass distribution that diverges at large r so that the total
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mass is infinite. As a result a self-consistent N-body representation of a halo with

this potential, which is necessarily finite in mass and extent, cannot be constructed.

The lowered Evans model addresses this problem by cutting off the phase space

distribution fEv at E = 0:

fLEv LEv(E, L) E < 0 (4.25)
0 E > 0

guaranteeing that all the matter in the resulting distribution is bound. In this sense

the lowered Evans model is a generalization of the spherical King model. For this

modified phase space distribution the potential is close to, but no longer exactly,

<Dj; the potential and spatial density (obtained by integrating fLEv) must be solved

for iteratively using the Poisson equation. The program GalactICs, which constructs

a self-consistent N-body realization of the lowered Evans model [104], represents the

potential and density with multipole expansions for the iterative solution and outputs

the expansion coefficients of the final model along with the N-body representation.

This allowed us to directly compare simulations with live and static versions of the

same host halo, and isolate the effect of the host halo's gravitational response.

To perform the N-body integrations, we used GADGET for the live halo and a

serial tree code for the static halo. More information on both N-body integrators

and on GalactICs is available in Appendix C. We set the integration parameters

(softening, maximum timestep, tree opening angle) to be as consistent as possible

given the differences in the two codes.

The effect of the gravitational response of the host is seen primarily in the effect

of dynamical friction on the bound portion of the satellite (Figure 4-8, left panel),

which reduces the successive apocenter distances of the bound mass remaining after

each pericenter passage. However, it does not qualitatively change the phase space

distribution of the unbound tidal stream, which still forms a tightly correlated caustic

(Figure 4-8, right panel).

Both caustics are fit to obtain the physical parameters for comparison. First, r,

was obtained by fitting a quadratic polynomial to the plot of r - v, in the region of
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the caustic and using Equation 4.7. Then Equation 4.1 was fit to the density profile

to obtain 6r, rc, and fo/v/27r. The fit parameters are summarized in Table 4.1. The

radial density profile of the shell formed in the encounter with the live halo is both

wider and taller than that formed in the static potential, but we obtain consistent

results in both cases for re, r,, and fo. In this fit we did not allow rc to vary as was

done in Chapter 2, but the degree of variation in rc along the caustic was comparable

in the live and static cases and comparable to Caustic 1 in Chapter 2.

Parameter Live halo Static halo
Mass in shell (10' MD) 1.6 1.1

Jr, kpc 0.49 i 0.04 0.33 0.04
fo, Myr kpc-2 14 1 14 2
K, Myr 2 kpc-' 251 t 2 249 3

rc from density fit, kpc 26.46 t 0.03 26.57 0.04
rc from phase space fit, kpc 26.4 ± 0.4 26.6 ± 0.5

Table 4.1: Comparison of fit parameters for a caustic in a live versus a static halo.

The larger normalization of the caustic in the live case indicates that more mass

was stripped from the satellite at its first pericenter passage in the live halo than in the

static case; in this case about 40 percent more. Mass loss can be larger in the live halo

for two reasons. First, as the satellite passes pericenter it deepens the potential of the

host galaxy and attracts more material from the host into the center. This increases

the tidal force, leading to more stripping. Second, drag from dynamical friction can

strip additional mass from the satellite's edges when it is far from pericenter. The

two processes may be distinguished by considering substructure in the density profile

of the caustic. At pericenter, mass is stripped catastrophically and could come from

anywhere in the satellite, which is entirely deformed by tides, so its initial spread

in velocities is likely to be large. In contrast, dynamical friction strips material

preferentially from the outskirts of the satellite where it will have near-zero velocity

relative to the satellite's center of mass. So the material stripped at pericenter will

be hotter than that stripped by dynamical friction, and a caustic containing both

kinds of material will exhibit a thinner peak on top of a wider structure. In future,

the contributions to mass loss from each of these processes can also be estimated
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analytically.

The additional width indicates that the energy spread of the stripped material is

larger in the case of the live halo. The larger energy spread can be traced back to the

same root causes as the change in the amount of mass stripped. If a larger amount

of material is stripped at pericenter, the energy spread of the material will be wider,

since the increased tidal force can liberate material that was more tightly bound to

the satellite. The larger energy spread will lead to a broader caustic. In addition, the

satellite will heat up in response to the drag from dynamical friction, further adding

to the energy spread of stripped material. Both these effects are evidence of the host

galaxy's response to the merger, but they are not large enough to completely destroy

the phase space structure that produces the shells.

The radii of the shells are consistent with one another. This is evidence that

the differences in the shells between the live and static cases for this time-snapshot

are due to the pericenter interaction rather than dynamical friction, since significant

drag from dynamical friction would also have reduced the apocenter distances of the

material, leading to a discrepancy in rc. Additionally, consistent results are obtained

for fo, indicating that the phase space distribution of the satellite was not significantly

altered before the first pericenter. Shells that develop from later pericenter passages,

on the other hand, could exhibit both effects as friction has more time to act.

4.9 Future work

In order to apply this technique to real data, the surface-brightness measurements

must be deprojected to obtain the radial density profile of the material. It is by

no means clear whether this is possible in practice. On one hand, even if a simple

geometry like the one suggested in Section 4.5 is sufficient to represent one of the

shells, there is a geometric degeneracy between the inclination angle 0c of the cone

and the width 6r of the caustic. This degeneracy may be partially broken by the

fact that the surface brightness profile changes differently when 0c is changed than

when 6r is manipulated, but further work is necessary to determine how correlated
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Figure 4-8: Comparing the result of a simulation with a live host halo (blue points)
with one using a static halo (red points), we see that dynamical friction affects the
orbit of the material still bound in the satellite, but does not disrupt the streaming of
the unbound material. The relative sizes of the two bound structures differ because
the particles in the live halo were plotted using larger points to highlight them; in
fact a comparable amount of mass is stripped from the satellite in both cases.
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Figure 4-9: The density profile of the caustic from the live halo (blue points) is wider
than that in the static halo (red points), but both can be fit with the same density
profile (blue and red lines). The points used in the fit are shown in a darker shade.
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these parameters are. There is also a possibility that the simple model suggested

here, which takes r, to be a constant, is not sufficient to describe the geometry of

the system. We saw in Section 2.3.3 that the caustic radius varies with angle in the

N-body model of those shells. Failing to account for this variation may significantly

affect the quality of the fit. In Chapter 5, we will implement a fitting procedure for

the surface brightness and test it on various sample data to determine the practical

exigencies related to deprojection. Only after this is done will it be possible to attempt

a fit of real surface brightness data.

4.10 Conclusion

Thanks to the high symmetry of nearly radial minor mergers, we have developed a

new framework that can constrain several parameters of the merger based only on

images of the shells. Measurements of the line-of-sight velocities improve or break

degeneracies in those constraints, and measurements of the relative angles of multiple

shells can further constrain the total angular momentum in the system. These results

are equally applicable to spherically symmetric potentials (examples in Figures 4-2

and 4-3), axisymmetric potentials (example in Figure 4-7), and realistic mass models

of galaxies that include a disk, bulge and halo (example in Figure 4-1). Our conclu-

sions also hold when the gravitational response of the host halo is included. In fact,

the relative angles of the shells may be able to restrict the magnitude of departures

from spherical symmetry in the total potential. The approach described in this pa-

per also requires no full N-body simulations to produce these constraints, but instead

directly links particular types of additional data with particular refinements of the

constraints using the minimum number of parameters. Therefore, in contrast with

other techniques for modeling merging galaxies, this technique is not hampered by

incomplete exploration of the parameter space. We expect this approach, although

limited, to be of use in studying minor mergers for a wide range of galaxies of different

morphological types for which minimal kinematic information is available, extending

tests of hierarchical accretion beyond the study of Local Group galaxies.
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Chapter 5

Constraints on halo mass profiles

from surface brightness

measurements of tidal shells

5.1 Introduction

In Chapter 4, we showed that some constraints on the mass profiles of interacting

galaxies can be obtained by fitting the surface brightness profiles of tidal shells pro-

duced by the merger. The crucial step in obtaining these constraints involves the

deprojection of the surface brightness profile; that is, determining the angle at which

the shell is oriented along the line of sight. In this chapter, we discuss the techni-

cal and practical aspects of deprojection. We first derive the equations necessary to

model the surface brightness profile (Section 5.2.1). We then implement the fitting

procedure and test its ability to recover the input parameters given a surface bright-

ness map generated from an N-body realization of the model (Section 5.2.2). This

test also identifies possible systematic degeneracies between parameters in the model.

Finally, we test the same fitting procedure on the N-body models of the two tidal

shells in M31 (Section 5.3). These structures were produced via tidal stripping rather

than directly sampled from the model, so this test determines how well we expect
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our model to fit real data and whether additional parameters should be added. In

Section 5.4 we discuss possible sources of real data, and in Section 5.5 we summarize

the work described in this chapter.

5.2 Deprojection of two-dimensional measurements

5.2.1 Equations for cone approximation

Tidal shells are formed by material stripped from a small satellite galaxy on a nearly

radial orbit around a large host galaxy. The stripping of material happens nearly

instantaneously each time the satellite passes pericenter. The newly unbound mate-

rial, whose angular momentum and energy distributions have been scrambled by the

sudden rapid changes in the gravitational potential, then fans out into a shell as it

heads toward apocenter. The edge of the shell can be approximated by a section of a

sphere, its density by Equation (3.37), and its angular distribution by a cone. In this

section the equations necessary to fit this model to surface brightness measurements

are presented.

Surface brightness profile

A cone of height h and opening angle a, with its point at the origin and its axis of

symmetry along the z axis has the parametric equations (in Cartesian coordinates)

x = (h - u) cos V tan a (5.1)

y = (h-u)sinotana (5.2)

z = h-u (5.3)

where the parameter u E [0, h] describes the distance from the base of the cone and

the parameter V E [0, 27r] describes the azimuthal location on the cone. If the cone is

rotated so that its axis of symmetry points along the unit vector

n = sin Oc cos O$c + sin Oc sin $c9 + cos Oc (5.4)
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then the equations become

x = (h - u) {cos V [1 - cos2 # (1 - cos 0c)] tan a

- sin V [cos #c sin #c tan a (1 - cos 0c)]

+ sin 0cos #c} (5.5)

y = (h - u) {- cos [cos #c sin #c tan a (1 - cos 0c)]

+ sin 9 [1 - sin2  (1 - cos 0c)] tan a

+ sin 0c cos #c} (5.6)

z = (h - u) [- cos (V - #c) sin 0c tan a + cos 0c] (5.7)

To determine Zmin and zmax as a function of x and y, we solve the system of the x and

y parametric equations to obtain the parameters u and 9. The system can have zero,

one, or two solutions depending upon the values of x and y: zero solutions for lines

of sight that do not intersect the cone, one solution for lines of sight that intersect

the cone once, and two solutions for lines of sight that intersect the cone twice. In

cases where there is one solution, the other limit can safely be taken to be ±oo, where

the plus sign is taken if the bulk of the cone is in front of the intersection point (the

solution is the lower bound of z), and the minus sign is taken if the cone is behind the

intersection (the solution is the upper bound of z). The system can always be solved

analytically and we present the solution here. First we will define some auxiliary

quantities to make the notation simpler. We extract the 0c, #c, and a dependence

of Equations (5.5-5.6) into coefficients that need only be calculated once for a given
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cone:

Ax = tan a [1 - cos 2 #c (1 - cos 6c)] (5.8)

Bx = tan a cos #c sin #c (1 - cos 0c) (5.9)

Cx = sin 0c cos #c (5.10)

AY= B2 (5.11)

By= tan a [1 - sin 2 #c (1 - cos 0c)] (5.12)

C = sin 0c sin #c, (5.13)

so that Equations (5.5-5.6) become

x = (h - u) (A cosV - Bx sin9 + C) (5.14)

y = (h-u)(-Aycos9+By sin9+Cy) . (5.15)

We can solve for V by dividing the two equations, noting that if x = 0 or y = 0 then

we are at the point of the cone (u = h) and V is degenerate. We obtain an equation

for 79 in terms of the ratio r; - x/y:

S sin'd - C cos79 + C = 0, (5.16)

where

C Ax +r/Ay (5.17)

S Bx + r/By (5.18)

K a -Cx + r/Cy. (5.19)

Equation (5.16) can be recast as a quadratic equation for either sin t or cos V. To

avoid using inverse trigonometric functions (and the associated difficulties in choosing
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the right branch) we simply solve for both and use them in the rest of the solution:

KCC k SD
(cos7)+ C2 + S2 (5.20)

(sin79) KS±kCD (.1
C2 + 82

where D 2 is the discriminant

D2  C21-S 2-_ 2 . (5.22)

As usual, if D 2 < 0 the point is outside the cone and the equation has no real roots;

otherwise it has two real roots. When two solutions exist for 9, one or both of them

may lead to a value of u outside its allowed range.

Having determined 19 either Equation (5.5) or Equation (5.6) can be used to

determine the quantity h - a that is necessary to find the limits on z:

(h-u), 
X

Ax (cost +) - Bx (sinV)+ + Cx

Y (5.23)
--A (cos t)± + B, (sin 0)+ + C

The quantity h - u should be in the range (0, h]-if it is not, that value of V is

discarded as a root and one of the limits in z goes to ±oo.

Finally, the limits zi are given by plugging in the valid solutions for u and V:

z± = (h - u)± {cos 6c - sin 0c tan a [(cos V)± cos #c + (sin 79)± sin #c] } (5.24)

By inspection, we see that Zmin is not always equal to z_ and zmax is not always z+

since both (cos 7)+ and (sin 7d)± can take any sign: the roots must be compared and

the smaller assigned to Zmin. If one root is out of range in u, its out-of-range z value

can still be calculated (for this work the height h of the cone is arbitrary because the

density function effectively cuts off the cone along a spherical segment) and compared

to the value of the in-range root to determine whether the out-of-range limit is Zmin

or zma.
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Partial derivatives

In constructing a fitting routine, the partial derivatives of E with respect to the

projection parameters a, 0c, #c and to the density profile parameters rc, 6r, ', fo may

be needed although not for the fitting routine we use in this work. In the following,

we define the shorthand

[cos(79 - #c)]ma (cos V)ma cos #c + (sin V)ma sin c

[sin(7) - #c)]m. (sin 7O)ma cos #c - (cos V)ma sin #c

where (cos d)ma and (sin d)ma are taken to be the roots that lead to the value of

zmax, and likewise

[cos(V - #c)]min (cos 9)min cos #c + (sin d)min sin #c

[sin() - #c)]min (sin ?)min cos - (cos d)min sin c

for the roots leading to the value of Zmin. A similar notation is used to denote the

appropriate root of (h - u). We also use the shorthand

P(Zmax) p( X2 + y2 + z4a) (5.25)

in the following, since x and y are understood to be constant. With these definitions,

the derivatives with respect to the projection parameters are:

__ E sinOB sec2ca
CT sn se {p(zmin) [cos( 9 - #c)]min (h - u)minBa T

-p(zmax) [cos(79 - #c)]m. (h - u)max} (5.26)

4 {p(Zmin) [(h - U) min sin 0c + [cos(V - #c)]min cos 6c tan a]86c T
-p(zmax) [(h - u)max sin Oc + [cos(,d - #c)macos 0c tan a]} (5.27)

BE sinO6 tan a
S si tana{p(zmin)(h - U)min [sin(7 - #c)]min

00c T

- p(zma)(h - u) ma [sin(79 - #c)]max} (5.28)
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The derivatives with respect to the profile parameters are all integrals of the

derivatives of the density, of the form

-E- - -ax dz (5.29)
ai T zmin 8i

for a given parameter 7ri, since the limits of the integral and the variable being inte-

grated over do not depend on any of the ri and the function p, although defined as a

piecewise function in Equation 3.37, is continuous over the entire integration range.

To compactly write derivatives of p with respect to the parameters, we expand the

definition of B to include other Bessel functions:

'T [( 2n+l)/ 4 (u) + -E( 2n+1)/ 4 (U)] r < rc
Bn (U) 2 (5.30)

(-1)n+1 [I(2n+l)/4 (U) - -( 2n+l)/ 4 (U)] r > rc

with u = (r - rc)2/45r 2 as before. The definition used in Equation 3.37 is equivalent

to 1 in this new notation. With this simplification, the derivatives Op/7i are:

Op _ fo _/_r -U rc- 1
A e-" rr u [2Bo(u) - B2(u) - B1i(u)] B(u) (5.31)

arc , r - rc 2

=p - f e~uv/|r -rc| u [2Bo(u) - B2 (u) - B1(u)] (5.32)
06r v12rK 6r

-- = - P(5.33)
Ofo fo

-P = - P(5.34)
aK 2K

5.2.2 Example fit and limitations of the model

Degeneracies in the proposed model may lead to multiple minima in the merit function

of a fitting routine. In this case there are three partial to complete degeneracies

between parameters that are introduced by the projected geometry. To identify and

illustrate them, we perform a fit to sample data generated from the model, comparing

the fitted parameters to their true values. We will also discuss the identifiability of

the parameters and the reliability of the fit, including the best method for estimating
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the confidence intervals on the parameter estimates.

Sample data

To generate the sample data, we use an N-body representation of the mass in the

shell. The N-body representation is generated as follows. First, the r-coordinates

of the particles are randomly sampled from the scaled mass distribution function

(the CDF) of the caustic model (which depends on the parameters re, 6r, and the

normalization fo/v/27rK). We use N, = 20000 for the N-body realization. Then cos 0

is chosen for each particle from the uniform distribution on [cos a, 1) and 4 is chosen

from the uniform distribution on [0, 27r). This distributes the particles in a cone with

the correct opening angle and radial distribution. The coordinates are converted to

Cartesian and rotated to the appropriate orientation angles Oc and #c. The final

N-body realization used the parameters listed in Table 5.1, and is shown in Figure

5-1.

To imitate measurements of the surface brightness E, the FiEstAS density estima-

tor (Section A.2) is used to integrate the number density of particles in the N-body

realization along various lines of sight, each defined by a square "pixel" of side length

A in the plane of the sky. For the tests, we define the surface brightness in pixel i to

be

E. = N (5.35)
A 2

where Ni refers to the number of bodies in the volume along the lines of sight spanned

by pixel i. The surface brightness is considered to be evaluated at the center of a

pixel. This calculation has an associated error that results from Poisson fluctuations

in Nj:

O N 9 /A 2 . (5.36)

A is chosen so that o-/Ei < 0.3 over most of the cone (i.e., Ni > 10) and less than 10

percent for the crucial pixels nearest to the caustic radius (Ni > 100). For the fit, we

select only the pixels with enough resolution that the error is less than the measured

value; that is, those for which the density could actually be estimated. The final set
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Figure 5-1: N-body realization of the model described in the previous section. One-
fifth of the particles are plotted. The parameters used to generate the realization are
given in Table 5.1.
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of sample data, and the error bars, are shown in Figure 5-2.

Table 5.1: Parameters for sample data. The choice of units is arbitrary for this test
data, but dimensions are given in the table.

Parameter Value
3.0
0.1

1/V2F

Dimension
[L]
[L]

a, <., 0c 0.5, 3.4, 1.5
N, 2 x 104

A 0.1
Nai, 544

5 0 *0 P0 g00 g0 0

00~0: .0 *e eSO60000

-0.5k

-1.5k

00014: :o e w o o~oo oo o o

*6.0 : p 0 0 0 0

.00000

-$5 -3 -2.5 -2 -1.5 -1 -0.5 0

5- *0:00000:0000 Go 4 e 0 0:0 6 is 0 64 4 4
00:0000000000 ::::::::so
0 0:9 a 0 0 0.0

0=00000000:. 0:0
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Figure 5-2: Sample data used to test the fitting program. On the left, the color bar
shows the magnitudes of the measured "surface brightness" (definition is in the text).
On the right, it shows the relative error.

Fitting algorithm

To perform the fit, we used the implementation by [106] of the downhill simplex

method [107] to minimize the chi-squared function

2Np .

X ~- (5.37)
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by manipulating the fit parameters d {rc, or, fo/ 2ir, a, #, Oc}. This definition of

x compares the measured values E of the surface brightness at sky positions s to
the model E(zi, a) evaluated at the sky positions of the data points for the current

fit parameters. The data points are weighted by the associated Poisson error o-. To

improve the performance of the fit, we scale all the parameters a -+ d' by twice the

initial guesses so their absolute values are of order 1 to start. If an initial guess

was particularly bad and the absolute value of the parameter ranges far from 1, the

parameters are rescaled to values near unity before the fit proceeds further.

The downhill simplex method was chosen because it is particularly well suited to

understanding the behavior of the fit: it requires a fast method for evaluating x2 at

many different points in the parameter space, starting values for the parameters, and

sizes for the initial perturbation of each parameter. Although it converges much more

slowly than directed-descent methods like Levenberg-Marquardt, it doesn't require

computation of the first derivatives of X2, which are problematic for our model since

they all go to zero outside the area of the projected cone. The slow convergence

has the additional advantage that watching the algorithm converge can help build

intuition about possible degeneracies in the parameter space, since the convergence

tends to slow down and stall around these degeneracies. For more information on the

simplex method, see Appendix C.

The fit converges to the input parameters, although sometimes the fitting algo-

rithm terminates prematurely at a false minimum. This possibility is indicated by

the large value of X2 per degree of freedom, and means that the fit should be restarted

with the final parameters to reset the search radius. A representative fit trajectory,

including one restart, is shown in Figure 5-3 for initial guesses chosen by referring to

Figure 5-2. In particular, the maximum measured surface brightness was the initial

guess for the normalization, guesses for rc, 6r, a, and #c were determined by eye from

the plot, and 6e was started at about 7r/2 since the shell is fairly well-defined on the

sky. The initial guesses, final recovered parameters, and 68% confidence intervals are

compared in Table 5.2. The best-fit model is within one or two error bars of the data

for nearly the entire data set (Figure 5-5), which is as expected since the sample data
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were drawn from a random representation of the model.

-0.5

-2.5

-3
0 100 200 300 400 500 600 700 800

0-

3

0 I. ... .. . .

0 100 200 300 400 500 600 700 800
Iteration #

Figure 5-3: Example of convergence of the fitted parameters for the sample data
shown in Figure 5-2. The dashed line indicates the restart of the fit after a false
minimum. A large value of x 2 per degree of freedom, as shown in the bottom panel,
indicates that a false minimum may have been identified and the fit algorithm should
be restarted to check.

Figure 5-3 shows that the last parameters to converge for this particular fit tra-

jectory are the caustic width 6r and the normalization, which are the most difficult

parameters to fit. The fastest parameter to converge (and one of the easiest to fit)

is the angle #, which is defined in the plane of the sky and therefore very well con-

strained by the image in the first place. a and 0c are adjusted in order to get the

final convergence of Jr and the normalization. The common behavior of some groups

of parameters suggests the existence of correlations between them. To identify the

correlations we study the shape of X2 around its minimum.
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Starting Starting
Guess Search

Length.
2.7 0.1
0.2 0.01
1.0 x 10-3 0.3 x 10-3
0.55 0.314
3.8 0.314
1.57 0.314

Final Value

3.00
0.10
1.0 x 10- 3

0.493
3.41
1.51

Standard Error True Value

0.03
0.03
0.3 x 10- 3

0.008
0.01
0.06

3.0
0.1
0.997 x 10-3
0.5
3.4
1.5

Table 5.2: Summary of fit to sample data. Standard error
(5.41). For error contours for correlated parameters, see

0.0014-

0.O0012C

00010

0.0008

is calculated using Equation
Figure 5-4.

0.10
6r (kpc)

Figure 5-4: Estimates and error contours for correlated parameters 6r and fo/v.\
The cross indicates the true values of the parameters; the ellipse shows the 68%
confidence interval.
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Figure 5-5: Fit residuals scaled by the error on the data points for the best-fit model.
The fit is within a few sigma of the data points for nearly the whole fitted region,
except at the edges where the surface brightness is least well-determined.
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Identifiability and reliability of the parameter estimates

The question of the correlation of parameters in a fitted model is referred to in

the statistical literature as the identifiability problem; the related question of how

well the fit can recover certain parameters is called reliability. Both questions can

be answered using some tools borrowed from the techniques of maximum-likelihood

estimation (MLE).

In MLE, the best-fit parameters are identified by maximizing the log-likelihood L,

which is analogous to minimizing x2 with the identification L - in x2. Information

about the shape of the minimum in MLE comes in the form of the Fisher information

matrix, which corresponds to the Hessian of the x2 function evaluated at the scaled

best-fit point do:

Sa2_L_(d) 1 a 2 2 ( ') Hij(do)
I = -= (5.38)

Oa'a8a x2(d'0) Da'a&a X2 >

since we are presumably at the minimum of the x2 function where its first derivative

is zero. For the fits in this work, the Hessian was calculated by first-order finite

differencing with a relative step length of 1% in each scaled parameter. We calculate

The Hessian approximates the shape of the x2 function near do. Taking a Taylor

series of x2 about d' gives

x2(g0 2(a') + f 6a'Hij(do)6a + 0 [(6a')3] (5.39)

where 6a' = d' - d' is the deviation from the best-fit point. This approximation tells

us how the eigensystem of the Hessian can be used to better understand the fit and

the recovered parameters. Most simply, since we are at a minimum, the surface must

be concave up in all directions in the parameter space; that is, the Hessian matrix

must be positive-definite. This test can be used to confirm that the fit algorithm has

stopped at a minimum, rather than at a maximum or saddle point.

The eigenvectors of the Hessian describe the correlations between the parameters

near the minimum and determine which ones are independently identifiable. For a
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system with fully independent parameters, the matrix of eigenvectors will be diago-

nal. Correlations between parameters appear as off-diagonal terms in the matrix of

eigenvectors. The matrix of eigenvectors for the sample data (Figure 5-6, left panel)

shows that the fit parameters are nearly independent except for Jr and the normal-

ization, which are extremely correlated: the eigenvectors in this subspace are very

nearly (6r ± norm)/vx/. This is to be expected, since the ability to determine 6r is

limited by the spacing of the sample points in the data set A (Table 5.1), which is

of order 6r. As A is changed, the values recovered for 6r and fo//27r can both

change, but the total mass around the peak of the caustic (that is, the number of

bodies making up the realization) does not. The total mass is proportional to the

product of the two quantities, so that the combination p+ oc (fo/ 27rr, + 6r) and the

orthogonal combination p_ oc (fo/ 27rr - 6r) should form independent parameters in

the estimate. The fluctuations in p+ should be directly related to Poisson fluctuations

in the total mass and scale as 1/vA, independent of A. The fluctuations in p_ are

sensitive to the ratio between the width and height of the peak instead of its product,

and this quantity changes with A because Poisson fluctuations in the bins along the

peak's leading edge will tend to widen the peak as A increases. So fluctuations in p_

should scale as A/ N.

An alternative measure of correlations between parameters is the so-called cor-

relation matrix R, which compares the scales over which x 2 changes (given by the

inverse of the Hessian) in the cross-derivative directions to the scale in the parameter

directions:

R. -s i a .(5.40)
H 1 H71

where Hi, denotes the ith diagonal element of the matrix (not the trace). Like the

Hessian, this matrix is symmetric; the off-diagonal terms are the correlation coef-

ficients between parameters. Parameters with correlation coefficients above 0.9 are

considered to be significantly correlated (Figure 5-6, right panel).

The relative magnitudes of the eigenvalues of the Hessian give information about

how sensitive the fit is to the various parameter combinations described by the eigen-
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Figure 5-6: Two different tests for correlations between parameters, the matrix of
eigenvectors of the Hessian (left) and the correlation matrix R (right), are defined
and discussed in the text.

vectors. A large eigenvalue indicates that the corresponding parameter or combina-

tion is very well constrained since a small departure in that direction will produce

a large change in x2. A small eigenvalue indicates that the fit is not very sensitive

to that combination of parameters. For multiparametric nonlinear fits, the range of

eigenvalues can be very large: the matrix can be ill-conditioned if this range spans

more orders of magnitude than the precision of the numerical calculation. In the

fit to the sample data the eigenvalues range over four orders of magnitude (Figure

5-7), easily within the capabilities of double-precision representation. As expected,

the two correlated parameters are most difficult to determine: the lowest eigenvalue

corresponds to the linear combination p_-; the next-lowest eigenvalue is for p+. Com-

paring Figures 5-7 and 5-3 shows that the size of the eigenvalues tracks very closely

with the order of convergence.

The standard error on the parameter estimates, as given in Table 5.2, is also

determined from the Hessian:

og = V2H%1 . (5.41)

The standard error is equivalent to the 68% confidence interval for the independent

parameters in the fit (for a few hundred degrees of freedom, the normal distribution
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Figure 5-7: Eigenvalues of the Hessian for the sample data.

is a suitable approximation to the chi-squared distribution). In the context of the

properties of the Fisher matrix, this is a lower limit on the error (the Crimer-Rao

bound). For the correlated parameters, the error contours are shown in Figure 5-4.

Restricted fits

The fit can be made to converge faster if the dimensionality of the parameter space

can be reduced. In these tests it was noticed that for 0c close enough to r/2 that

the structure looks like a shell in projection, some of the parameters can be fairly

accurately estimated from the projected image. In particular, guesses for a and <,

from the image are usually correct within about 10 percent. Furthermore, rc can be

estimated fairly accurately as well by comparing the projected surface brightness pro-

file with the shape of the deprojected density profile. Holding these three parameters

constant during the fit help it converge faster and more reliably, especially rc since it

is slightly correlated with the two most crucial parameters to fit correctly, 6r and 0c.

The peak surface brightness varies roughly as the square root of the caustic width, so

the normalization cannot be held constant. However, it helps if a normalized version

of the image data is fitted rather than using absolute values, since the fractional vari-

ation in the norm can be much larger than that of 6r and 0c, causing it to dominate
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the behavior of the X2 .

5.3 Fitting an N-body model of two tidal shells

We used the restricted fitting method discussed in the previous section to fit the

projected mass density (for a constant mass-to-light ratio, this is proportional to

the surface brightness) of the two tidal shells around M31 using the existing N-body

model. This test is meant to be an intermediate step between testing the ability of

the model to recover input parameters, as demonstrated in the previous section, and

fitting real surface brightness measurements. In this demonstration, the shells are

produced by gravitational interaction, not sampled directly from the model, so we do

not expect the model to be a perfect fit. This test is intended to determine how well

it can still recover the right parameters. In this section we present the results of the

fit and the analysis of the Hessian eigensystem for each shell. We also compare the

results to the fits from Section 2.3.3, which used the full three-dimensional structure

of the shells. As in Section 2.3.3, we refer to the older shell as Caustic 1 and the

younger one as Caustic 2.

5.3.1 Preparation of sample data

The orientation of the M31 shells with respect to our line of sight is such that only

one of them looks like a shell in projection. However, looking down on the system

from "above" (in our coordinate system, the line of sight along the y axis) produces

a projection with two clear shells. We use this line of sight for the fit in order to

have two shells to fit, allowing us to test whether fitting becomes easier or harder

as the system evolves. The data is obtained by integrating the estimated density of

the N-body representation along this line of sight in the same way as for the sample

data in the previous section. The pixel size is chosen so that Poisson errors are about

20-30 percent or less in the region around the edge of each shell.

Once the surface brightness of each shell is obtained, a small amount of additional

work is necessary before fitting. We saw in Chapter 2.3.3 that only the region right
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around each shell is expected to fit the universal profile, as illustrated in Figure 2-

15. So a cut in projected-radius is made to the surface brightness image for each

shell to select only the region around the edge. The selection radii are determined

by comparing the various surface brightness profiles (versus projected radius) to the

universal profile. Finally, we removed points with Poisson errors larger than 100

percent and normalized the remaining data to its maximum value (a step which helps

the performance of the fitting program). The data sets submitted to the fitting

program are shown in Figure 5-8.

118-1P 0.9

16 - 0 .8 .. .... ..... ...

-0.7OW
140. .::: 0.8

0.6
0 12...

0.5 6-1510 -: -:ii MAINE 0
0.4 So 0

8 EU.. . E E0.4
0.3 -20lso

E20ma U I.E.

-38 -36 -34 5 10 15
z (kpc) Z (kpC)

Figure 5-8: Data sets for Caustics 1 (left) and 2 (right) submitted to the fitting
program, with the cuts made as described in the text. The color bar now indicates
the normalized surface brightness.

5.3.2 Fitting the reoriented shells

We first tried, unsuccessfully, to use the full six-parameter fit to the shells. The fit

was not very successful for either shell using this algorithm: the slight systematic

unidentifiability of some of the parameters demonstrated in the previous section is

compounded by practical unidentifiabilities resulting from imperfect measurements

and the assumption that the debris is cone-shaped and spherical. This second as-

sumption was demonstrated to be false in Chapter 2.3.3, where a linear or quadratic
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fit in 0 and # was used to correct for the asphericity of both shells. As a result, the

values of 6r and 6c will be more uncertain than for the sample data drawn from the

model; in particular we expect 6r to be overestimated. The fitter was not always

able to find a local minimum and could not distinguish between the true minimum

(the set of parameters measured in Chapter 2.3.3) and other minima; in fact, the true

parameters had a larger value of X2 than some other combinations, indicating that

the range of sensitivities in x2 to the various parameters was too large. This was

borne out by the range of eigenvalues of the Hessian matrix at the various minima,

which often included several that were smaller than the condition number.

The restricted fit using constant estimates of re, a, and #c was more successful.

The values held constant were estimated using the surface-brightness data only, not

the three-dimensional data. Based on these results we attempted an iterative fit to

all six parameters as follows. Once the fit had converged for 6r, the normalization,

and 0c, those parameters were then held constant at the fitted values and the other

three were fitted. As a third step, we then allowed all six parameters to vary using

the restricted fit results as starting points. The progress of the fits is shown in Figure

5-9, and the final results of each fit after all three steps are given in Tables 5.3 and

5-13.

As expected the eigensystem of the Hessian matrix and R for each shell both

indicate that there is a significant correlation between 6r and the normalization (Fig-

ures 5-11 and 5-12, respectively). This correlation is worse than in the fit to sample

data generated from the model, as might be expected since a larger value of the pixel

size A relative to 6r was used. The matrices of eigenvectors show that an additional

correlation between the angles a and Oc has started to develop, though its correlation

coefficient is not high enough to be of concern (Figure 5-12).

5.3.3 Comparison with full three-dimensional fit

Examining Tables 5.3 and 5.4, we see that the performance of the fit is variable. The

width 6r is systematically overestimated and the caustic radius rc is systematically

underestimated. These systematic errors are a failure of the model to fully represent
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Figure 5-9: Progress of the iterative fit method for Caustics 1 (left) and 2 (right).
Successive restarts are denoted with vertical dashed lines. In the first two steps, half
the parameters are held constant and the other half allowed to vary; in the final step,
all the parameters are allowed to vary. All parameters are compared to the values
given in the last column of Tables 5.3 (for Caustic 1) and 5.4 (for Caustic 2) except
for the normalization, which is compared to its final value.

Final Value

0.4
0.036
1.49
38.9
0.239
2.82

Std. Error

0.2
0.015
0.06
0.2
0.009
0.02

True Value

0.2
n/a
1.31
39.3
0.280
2.73

Table 5.3: Fit information for Caustic 1. The uncertainties for the fitted parameters
are calculated from the Hessian as described in the text. Contours for the correlated
parameters are shown in the left panel of Figure 5-10. True values of the parameters
were calculated using the full N-body representation in three dimensions.
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Parameter

6r

6c
rc
a
<Oc

Starting
Guess

0.3
1.0
1.6
39.0
0.22
2.8

Starting
Search
Length
0.1
0.3
0.5
1.0
0.05
0.5

I

1

-



Final Value

0.65
0.040
1.78
23.9
0.50
5.24

Std. Error

0.38
0.022
0.09
0.3
0.03
0.04

True Value

0.23

n/a
1.53
25.7
0.41
5.27

Table 5.4: Fit information for Caustic 2. The uncertainties for the fitted parameters
are calculated from the Hessian as described in the text. Contours for the correlated
parameters are shown in the right panel of Figure 5-10. True values of the parameters
were calculated using the full N-body representation in three dimensions.
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Figure 5-10:
in Caustic 1

68% confidence ellipses for the correlated parameters or and
(left) and Caustic 2 (right).
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Parameter

6r
fo/V"27r
Oc
rce

Oc

Starting
Guess

1.0
1.0
1.6
24.5
0.3
5.2

Starting
Search
Length
0.5
0.5
0.5
1.0
0.1
0.5

fo//27 rr



Figure 5-11: Matrices
1 (left) and 2 (right).
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Figure 5-12: Correlation matrices R for Caustics 1 (left) and 2 (right).
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Figure 5-13: Eigenvalues of the Hessian at the best-fit point for Caustics 1 (left) and
2 (right).

the structure of the shells: this problem and its solution are discussed in the next

section. The angles 6c, #c, and a are not always successfully recovered, which may be

partially due to the irregular distribution of the material along the shell (Figure 5-14).

Recovery of these parameters is better when the material is more evenly distributed:

in caustic 2, #c and a are recovered accurately but 0c is not since it is forced to

pick one of the two density peaks. The algorithm also has better success when the

ranges of 0 and # spanned by the caustic are comparable, so that they can both be

represented with the single parameter a. Caustic 1 spans nearly double the range in

0 as it does in #, leading to difficulty in recovering both parameters properly given

only one angle a. The same is true for Caustic 2, but since the fit has selected one

of the two density peaks (each of which have roughly half the width of the whole

distribution), it can more easily recover both 6 (for that peak) and # since these two

widths are comparable. This discrepancy in the angular span of the caustic is another

symptom of the model's failure to fully describe the shape of the shell.

5.3.4 Systematic error: the tilt

In the N-body model, neither caustic is perfectly spherical: rc varies linearly or

even quadratically with angle, as illustrated in Figure 2-14. In fitting the caustics

using three-dimensional data we corrected for the asphericity by fitting a model to rc
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Figure 5-14: Recovery of the orientation angles of the caustics is sensitive to irregu-
larities in the distribution of material, which is also seen in Figure 5-8. The recovered
values (solid vertical lines, with uncertainties denoted by dotted lines) are often off-
set from the midpoint (dashed line) thanks to the irregular distribution of material.
The angular extent a (delimited by dot-dashed lines) is assumed in the model to be
the same in 0 and #, but in reality the two ranges differ. The recovered value must
intermediate between them and generally leans low.
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and calculating distances from this model, but in the two-dimensional case we have

assumed that rc is a constant. This leads to a systematic error that overestimates Jr.

This systematic error can account for the entire discrepancy between the fitted values

of 6r in Tables 5.3 and 5.4. If the difference in rc over the span of each caustic is

calculated using the fitted equations from Table 2.5, and added to the true width of

each caustic from the three-dimensional fit, we see that the combined width matches

or exceeds the fitted 6r in the two-dimensional case (Table 5.5). In the case of Caustic

2 we saw that the fit picked out one of two density peaks rather than fitting the entire

envelope, so the result is closer to half the total width.

To truly estimate the caustic width from a two-dimensional image, therefore, the

model must be amended to allow for a tilted caustic surface. The physical reason

for this tilt suggests that this could be done by including one additional parameter.

The deviations from a spherical caustic result from the variation in energy over the

angular span of the shell, as shown in Figure 5-15. Thanks to this correlation, a

single variable related to the energy spread of the material should be able to account

for the tilt. This variation in energy AE corresponds to a spread in radius Ar of

approximately

Arc AE (5.42)
g(rc)'

where g(re) is the local gravity at the caustic radius, that can account for the entire

span of rc (Table 5.5).

Parameter Caustic 1 Caustic 2
6r, fitted (from Tables 5.3 and 5.4) 0.4 kpc 0.65 kpc

Arc, calculated from Table 2.5 line 2 0.43 kpc 1.1 kpc
AE (see Figure 5-15) 1.0 x 10-3 (kpc/Myr)2  2.5 x 10-3 (kpc/Myr) 2

Arc, estimated from Equation 5.42 0.8 kpc 1.1 kpc

Table 5.5: Energy variation and corresponding radial variation in caustics 1 and 2,
compared with fit results.
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Figure 5-15: Energy (in (km/s)2 ) varies in Caustics 1 (left) and 2 (right) as some
function of the angles 0 and <$, producing a variation in rc.

5.3.5 Fit to Caustic 2 in its original orientation

We also attempted to fit Caustic 2 in the orientation corresponding to our actual

view of the structure. This fit was more problematic than those attempted in the

rotated orientation. The surface brightness of the caustic in the N-body model in this

orientation exhibits a bifurcation that is the main cause of the trouble (Figure 5-16,

left panel); this bifurcation is an artifact of the N-body model that is not seen in the

star-count map of the shells [32]. This caustic also displayed the larger asphericity

of the two (Figure 2-14). In the end the fit failed to recover the parameters of the

caustic, but we include it anyway for two reasons: first, we had hoped to use it as a

proxy for real data; second, the fit fails in a characteristic way that demonstrates the

model's limits and how the fitting procedure attempts to cope with them.

We prepared the data for fitting in the manner described in Section 5.3.1; addi-

tionally, we subdivided the data in the x-y plane with a simple cut at y = 0 so that we

could also consider each surface-brightness maximum separately. This was motivated

by examining the surface-brightness profile, which appears to be a superposition of

two peaks (Figure 5-16, right panel).

We attempted a fit of the entire structure first, using the method described in
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Figure 5-16: The surface brightness map of the N-body model of Caustic 2, viewed in
its proper orientation with respect to the observer, has a bifurcation in the shell edge
that is not observed in the data used to create the model (left panel). In addition
to attempting a fit of the entire shell, we also tried to fit the upper and lower pieces
(delineated by the dashed line in the left panel) separately. This was motivated by
the double-peaked structure in the surface brightness profile (right panel).
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Section 5.3.2. The partially restricted, iterative method converged to a saddle point

rather than a minimum when given reasonable guesses for re, a, and 4c. We also

attempted the fit allowing all the parameters to vary. In this case the fit identified a

solution that is more or less uniform across the entire data set.

We also tried fitting each subset of data separately even though this would obvi-

ously give conflicting results. This was slightly more successful but the fit was not

able to reproduce the shape of the bifurcation in either case, settling instead on a

solution that reproduced the shape of the background (Figure 5-17). As expected,

most of the parameters are not reliably recovered by the fit. In both cases the eigen-

value for the normalization is much larger than any of the others, causing the Hessian

matrix to be so ill-conditioned that none of the other eigenvalues are larger than the

condition number. It seems that, unable to suitably reproduce the exact shape of

either half, the fit relies on adjusting the normalization to reduce the X2 value. This

is characteristic of the model's failure to account for the asphericity or the bifurcation

in this example.

The bifurcation that is primarily responsible for the failure to recover the parame-

ters in this example would probably also prevent good recovery even if the asphericity

was accounted for. Good candidate images for this type of analysis should therefore

display a minimum of additional structure at the shell surface.

5.4 Future work

In order to use the method demonstrated in this chapter to constrain real mergers, the

model should be changed to include a parameter that accounts for shell asphericity.

Then the fitting procedure should be re-tested to make sure that no new structural

degeneracies have arisen in the model. We expect that adding an asphericity param-

eter will actually improve the ability of the model to recover the various parameters

from real caustics, since the asphericity exacerbates the correlations between param-

eters. After this step the model will be ready to use to fit real surface-brightness

data.
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Figure 5-17: The fit to each half of the caustic attempts to fit the background density
rather than account for the structure in the shell. The top row shows the upper half
of the caustic; the bottom row shows the lower- half (as in Figure 5-16). The leftmost
column shows the surface brightness data being fitted on a normalized scale from 0
(blue) to 1 (red). The center column shows the "best-fit" model on the same scale.
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to 3 (red), with zero colored green.
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Once the model is ready there is plenty of real data to be fit. Semi-analytic

modeling suggests that observations must reach a depth of at least 26 magnitudes

per arcsecond to see the brightest tidal streams [31]. Space-based observations can

easily reach this depth and have been used to study systems of tidal caustics around

several elliptical galaxies [e.g. 42]. The catalog of [41] includes many bright examples

of elliptical galaxies that show these features, some of which have been re-observed

from space or the ground. More recently, ground-based observations have reached

this brightness threshold and observed systems with tidal caustics, including a large

number of elliptical galaxies in the co-added Stripe 82 in the Sloan Digital Sky Survey

[40] and 7 spiral galaxies observed by [29] with a consortium of wide-field amateur

telescopes. Any of these data sets would be good places to look for candidates; in

particular, the spiral "Umbrella Galaxy" NGC 4651 and the elliptical galaxy NGC

3923 have already been extensively observed. The approach described in this work

can be applied to galaxies with a wide range of morphologies as long as the surface

brightness profiles of the shells can be obtained. In future work we will choose and

analyze some systems of shells observed around galaxies as a pilot study for the

method.

5.5 Conclusion

In this chapter we have discussed how the deprojection of the shells can be modeled

and implemented, and demonstrated a few examples of the quality of the fits achieved

by a simple implementation. The most difficult parameters to fit are the width 6r

and the inclination angle 0c, which are somewhat correlated systematically. For real

shells the correlation is exacerbated by the slight asphericity of the shells, leading to

difficulty in determining the ill-defined caustic radius and an over-estimation of 6r.

This shortcoming of the model should be corrected in order to recover the correct

6r; fortunately the asphericity can probably be accounted for by adding only one

new parameter to the model since it arises from smooth variations in the energy and

angular momentum of material along the caustic.

156



Chapter 6

Conclusions

In this thesis we have developed and demonstrated the use of a new formalism for

describing tidal structures created by merging galaxies with low orbital angular mo-

mentum. Because of their special properties, we chose to call these structures "tidal

caustics." Here we summarize our results.

In Chapter 2, we described how the high densities achieved in tidal caustics mo-

tivated us to test whether they were a likely source of gamma-ray radiation from

self-interacting dark matter particles. We tested estimators for the integrated density-

squared in regions where the density contrast is high by comparing analytic calcula-

tions to numerical estimates of this quantity for a one-dimensional caustic. We found

that unless all the features in the density distribution are known to be fully resolved,

the best estimator uses a simple nearest-neighbors method to find the squared den-

sity and a constant Riemann volume to perform the integral. We used this method

to estimate the signal from the tidal caustics, finding that the total gamma-ray flux

from the shells is three orders of magnitude lower than emission from the dark halo,

and too low to be detected by Fermi.

In Chapter 3 we presented the full derivation of the density profile for a one-

dimensional caustic in a system with an initially Gaussian velocity dispersion and

force-free motion starting from correlated initial positions and velocities. We found

that the form of the density profile is insensitive to the details of the motion and is

an equally good description of caustics created by the radial motion of material in a
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gravitational potential. The reason for this remarkable universality is the underlying

similarity in phase space: the profile is valid as long as the initial distribution is

confined to a tiny fraction of the available phase space and the subsequent evolution

conserves phase space volume. For the case of the tidal disruption of a satellite galaxy

on a radial orbit, we related the shape parameters of the density profile to the initial

energy spread of the satellite galaxy and the local gravity and gravity gradient of the

host galaxy. We also derived an expression for the integrated squared density of the

caustic.

In Chapter 4, motivated by the distinctivc shapes of tidal caustics in images,

we determined how to constrain parameters of the mergers that create them based

only on the information available from the surface brightness profile of one caustic.

We found that two joint constraints on the parameters identified in Chapter 3 could

be obtained if the surface brightness profile could be deprojected. If multiple shells

or line-of-sight velocity information is available, some information about the orbital

angular momentum of the merger and the flattening of the host potential can be

obtained, though this is more model-dependent than the density profile information.

In Chapter 5 we discussed how to deproject the surface brightness profile using

a simple cone-shaped model of the caustic. We found that the width 6r and the

inclination angle 6c are systematically correlated in this model; the slight aspheric-

ity of the caustics exacerbates the problem, leading to difficulty in determining the

ill-defined caustic radius and an over-estimation of 6r. However, despite these lim-

itations we found that the deprojection method could still recover parameters from

surface brightness profiles of caustics from a realistic N-body model. Furthermore, we

demonstrated that the asphericity of the caustics can be accounted for by introducing

a single extra parameter to the model; this is outlined for future work.

Radial mergers, from their discovery as shell galaxies nearly 30 years ago, have

promised to better our understanding of galaxy formation and its connection to cos-

mology. The work in this thesis has demonstrated the advantages inherent in ex-

ploiting the symmetry of these mergers to make the most of limited information. The

results open up 30 years of spectacular images to dynamical analysis, connecting shell
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galaxies to the great cosmic web and gravity's slow shaping of all the structures in it.
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Appendix A

Rate Estimators

Here we describe the five rate estimators tested in this work. They are based on three

types of density estimators (spherical and Cartesian nearest-neighbor algorithms and

a spherical smoothed kernel method) and two methods for determining Riemann

volumes (constant size and adaptive tessellation).

A.1 Nearest Neighbor

An N-body representation of a continuous number density distribution n(y) is a

Poisson point process with a spatially varying mean. As such, all estimators (e.g.,

h) of the density and its higher moments (n2 , n3 , etc.) obey the statistics of point

processes. In the case of a uniform distribution, these are simply the well known

Poisson statistics, and the simplest estimator calculates the density in terms of the

distance to the Nth particle, called the nearest neighbor distance. For a given value

of the smoothing number N, there is a particular nearest neighbor distance rNs for

each particle, and the density near the particle is estimated using

3Ns
n. = 3 (A.1)

Ns
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However, if we compute E(nb) by integrating over the probability distribution de-

scribing the distances between particles, we find that

E(iib) = N n, (A.2)
Ns - 1

indicating that the estimator is biased since E(nb) # n. This is a result of the

random fluctuations in the distance TNs from particle to particle, which obey Poisson

statistics. Even in cases where the density is not uniform a similar effect is present.

The Poisson bias of the estimator (A.1) can be easily eliminated in the case of the

uniform distribution by noting that E(nb) differs from n by a constant factor only.

Dividing by this factor produces the estimator

3(N - 1)
n- 4 3 , (A.3)

47r TNs

which has E(n) = n.

We wish to construct a minimally biased estimator for the rate, F = f n 2dV.

It is well known that in a Poisson distribution E(i), the expectation value of the

square of the unbiased density estimator in equation (A.3), is not equal to n2 ; still,

an unbiased estimator for n2 in the case of the uniform distribution does exist:

3 2
n 2 = (N8 - 1)(N- 2) 433 (A.4)

47 Ns

with N, and TNs defined as before. Then E(n 2 ) n2

Using n 2 , we can construct an unbiased estimator for F by using a Riemann sum

over NV identical volumes dV to approximate the volume integral, so that

Nv

fu = dV n'2 ,, (A.5)

where n 2u, is given by evaluating Equation (A.4) at the center of subvolume i, and

the total volume V = NydV. Using Equation (A.5), E(fu) = Ftrue. This estimator

provides a useful check that the code is functioning properly.
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We also tested the same density estimation method with an adaptive Riemann

volume, in which each particle occupies its own box (Nv = Np). Each particle's

Riemann volume contains all the space closer to that particle than any other. The

size of such a Riemann volume is also affected by Poisson statistics, so this rate

estimator will not be unbiased even if Equation (A.4) is used to calculate the density-

squared. For simplicity, we represent the N, dependence of the additional bias from

the adaptive box size as a prefactor, to be determined numerically, and use Equation

(A.4) to estimate the density-squared:

Fn = p n2 ,idV (A.6)1 + bn(Ns) i=1

A.2 FiEstAS

A variation on the nearest-neighbor estimator is implemented by Ascasibar and Bin-

ney (2005) in their algorithm FiEstAS. We refer to this estimator as f. It too uses

the Nath nearest neighbor, but instead of a spherical volume considers the volume of

the Cartesian box enclosing Neparticles when calculating the density, so that for a

particle i:
Ns
N= "(A.7)

VNs,i

Conveniently, the construction of the tree used in calculating dVi also chooses the

Riemann volume adaptively in the same manner as for the estimator n. Now there

are two contributions to the bias: the Poisson bias from using (nyf,,) 2 to estimate

the density-squared and the Poisson bias from determining the adaptive Riemann

volumes. For simplicity, we represent the N-dependence of both contributions with

a single prefactor, so the rate estimator is

f b() (n,) 2dV (A.8)1 + bf (Ns).
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A.3 Kernel-based

We also tested two kernel-based rate estimators. Kernel-based density estimators use

a weighted sum to smooth over the N, nearest particles, so that the estimated density

at location S is
N,,

ns(#)= E W(x - I, h) (A.9)
j=1

The smoothing vector h is a generalized nearest-neighbor distance. The vector has

length IN - . For a one-dimensional spherical kernel h rNr and the kernel

function W is nonzero when I Y - | < rN. For a three-dimensional kernel, h XN, -X

and W is nonzero when I j - z| < Ihl.

The type of kernel chosen can have a significant effect on the bias and variance.

[108] have tested the bias and variance of density estimators with a variety of kernels

on uniform density distributions, and we use their notation here. The one-dimensional

kernel can be written in the form

_# f W(u)
W ) = (A.10)Vh

where r' is the distance from the target location, u is the scaled distance

U = r/h, (A.11)

f is the kernel normalization

= W(u)47ru2du, (A.12)

and Vh is the volume enclosed by the smoothing length h.

[108] found that the Epanechnikov kernel

1 - U2 0 < U <
W(U) = (A. 13)

1 0 otherwise
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has the smallest bias and variance in estimating the density in the case of a uniform

distribution. We use this density estimator and an adaptive Riemann volume for the

rate estimator s, and again collect the N8-dependence of the bias in a prefactor:

I Np1
IS - [bn(Ns)Z[ts (ri)]2 dVi (A.14)

Again, 1/(1 + b,) is the bias when using a constant Riemann volume.

[58] used an adaptation of the kernel-based method to estimate the rate from sim-

ulations of the Milky Way's dark halo and halo substructure. Starting with Equation

(A.14), they make the substitution nh(rj)dV = 1 (there is one particle per Riemann

volume). We examine this variation of the kernel-based method, referred to as esti-

mator d. We include a bias-correcting prefactor that is equal to 1 in [58]:

1 Np i(A 151Fd = n > (ri) (.51 + bd(Ns) _(

From a Poisson-statistics standpoint, the substitution implicitly assumes that E(h)2

E(n 2), yet the estimator itself is linear instead of quadratic in the density. For this

reason it is expected to behave differently than the rate estimator (A.14).
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Appendix B

Calculation of the Minimum

Nearest-neighbor Distance

In this appendix we derive an expression for the expectation value of the minimum

nearest-neighbor distance, E( Ns,min), in the case of a uniform density distribution of

particles. The scaling of this value with the smoothing number N, and the number

Ny of particles in the simulation subsequently determines the maximum density that

can be both represented in an N-body realization with Np particles and calculated

using the nearest-neighbor estimator with N, nearest neighbors. E(Ns,min) is the first

order statistic of the estimator rNs, which is related to the nearest-neighbors density

estim ator t by

Ns = ( )3Ns . (B.1)

We start with the PDF of the nearest-neighbor distance,

PiN, (p)dp = exp(-47rnp3/3) 473rnp N- (B.2)
(N8 - 1)! (3 3

which can be derived from directly integrating over the joint PDF for the nearest N,

particles. The PDF for each particle is Poisson. To calculate the first order statistic
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we also need the CDF of the nearest neighbor distance,

1 [[(N) - F (N4 /3)] = 1 _ F (N, 47rnp 3 /3)
PN( =(Ns - 1)! [S, 47np/3) F(Ns)

(B.3)

where F(N) and F(N, x) are the complete and incomplete gamma functions, respec-

tively.

The PDF of FN5 ,min is that of the first order statistic of the PDF of the nearest-

neighbor distance:

P Ns,min(v)dv = NP {1 - PNs(VP Ns (v)du. (B.4)

Substituting the expressions for the PDF and CDF of the nearest-neighbor distance,

47ni 3) Ns-1

3 f/3) ( F (N, 47rnp3/3) Np-1

F(N)
d ( 3

(B.5)

Changing variables to y = 4rnp 3/3 gives us a simpler expression:

(N) Np-1

F (Ns) _
dy. (B.6)

y represents the average number of particles in a sphere of radius p.

The expectation value of ?Ns,min is then determined by weighted integration over

its PDF:

(3 )1/3

47rn
E(Ns,min) =

_ _ e-Yy N-2 1 3 [F (N., y)]NP-1 dy,
[(Ns - 1)!]Np JO

(B.7)

using the definition of y in terms of y and the fact that PfNs,min(y)dy = PNs,min ( *)dbI.

We now use two approximations for the gamma function. The first is the asymp-

totic expansion for the incomplete gamma function at large y:

F(N, y) ~ e - [yN-1 + 0 (YN-2)] ; (B.8)

the second is Stirling's approximation for the complete gamma function at large
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argument N:
Ne-N.

F(N+1)=N!.N e

Using the asymptotic expansion, we may rewrite the integral:

= 3)1/3E(f N,,min) = ( /

4,7rn

0
e-Npy Np(N-1)+1/3dy

[(Ns - 1)!]Np 0y

Making the change of variables t = Npy, we find

[(N - 1)!INPNNp(N- 1)+ 4/ 3

00

ettNp(N-1)+1/3 dt
0

which, using the definition of the complete gamma function, is

3 1/3 F[N,(N, - 1) + 4/3]
/wri [(N - 1)!]NpNp(Ns-)+1/

3

3 
)\ /

[Ny(Ns - 1) + 1/3]!

[(N - 1)!]NpNNp(N-1)+1/
3

(B.12)

Now we use Stirling's approximation to simplify the factorials in the ratio. We

define Na = Np(N - 1) to keep things shorter:

(Na + 1/3)!

[(N - 1)!]Np

(Na + 1/ 3 )Na+1/3-(Na+1/3)

[(N 8 - 1)Ns -1e(N-1)]Np = (N8 - 1)Na-Na

Substituting these two approximations back into the expression for E(Ns,min), we

find

E(T Ns,min) = ( 34?rn

1/3 (Na + 1/3)Na+1/3 e-(Na+1/3)

Na+1 1 3 (N 1)Nae-Na
S(3(Ns - 1))1/3

47ne )
Na + 1/3) N+1/3

Na )
(B.15)

In the limit Na > 1/3, the second term approaches el/ 3 , so to leading order, E(Ns,min) 0C

(B.16)

The minimum expected distance to the Nth particle is roughly equal to the average

expected distance to the (N - I)th particle, in the limit where both N, and Np are
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much greater than 1.

Although the criterion N, > 1 is generally satisfied, we are interested in values of

N, that do not satisfy the criterion N, > 1: in fact, we wish to use the smallest value

of N, possible while retaining a good RMS error. We must therefore estimate the

scaling with Nin our region of interest by tabulating values of the integral in Equation

(B.7) at various values of N, and Np. The scaling in the region of interest can then

be approximated by fitting the values in the region of interest to a power law whose

index is a free parameter. We find that for 2 < logio Np < 5 and 10 < N, 50, the

N8-dependence roughly obeys a power law i^Ns,min OC NY7 with index y = 0.51 ± 0.06,

where -y depends slightly on Np. We confirm that the scaling of E(Ns,min) with Npis

suitably consistent with the prediction (Figure B-1).

a) b)
s 0

2 E

.S 3

2

2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.2 1.4 1.6 1.8 2.0
Log1N, Log10N,

Figure B-1: The N8-dependence of E(Ns,min) (a, thick line) is not close to the asymp-
totic prediction (dashed line) in the range of interest, and varies somewhat with Np.
We take an average slope of 1/2 (solid thin line) for the power law index in N,. How-
ever, the Np-dependence of E(Ns,min) (b) is close to and approaches the asymptotic
prediction (dashed line), so we use the asymptotic slope of -1/3 for the N, scaling
relation.
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Appendix C

Technical information

This appendix contains technical details about the various algorithms, computer pro-

grams, and numerical methods used in this thesis.

C.1 N-body integration

In this work, the dynamics of systems of dark matter particles and/or stars is sim-

ulated using N-body integration. Numerous different methods for carrying out such

integrations exist, but the ones used in this thesis all have a few things in common.

C.1.1 Smoothing

In all cases in this thesis the gravitational force between two bodies in the simulation

is calculated using a smoothed version of Newton's law. At distances smaller than the

smoothing length, the force is modified to avoid the singularity at zero distance as

well as unphysical interactions between pairs of bodies (since in all cases each body in

the integration represents many stars or dark matter particles). A simple version of

this modification replaces Newton's force law with this form, known as the Plummer

model:
- Gmim2FG ~ (d 3 12 (-1)

(d2 + S)/
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where G is the gravitational constant, mi and m 2 are the masses of the two bodies,

d12 is the distance between them, and c, is the softening length. In the limit c -± 0,

and for d12 > ,, this expression is equivalent to the unmodified force law.

C.1.2 Force computation

Computing the forces between all Np bodies in a simulation pairwise is prohibitively

time-consuming in large simulations since the effort of this procedure scales as N 2

In practice, most simulations of more than a few thousand bodies compute pairwise

forces only between bodies that are very close together, and approximates the force

contributions from more distant bodies with a multipole expansion. All the simula-

tions in this thesis use a method that organizes the force computation with a data

structure known as a Barnes-Hut tree [109]. Each node of the tree corresponds to

a region in space, and the nodes are linked together in levels by repeatedly dividing

the region in half in each dimension. The top level consists of one node representing

the whole simulation volume, while at the lowest level are N, "leaves" that each rep-

resent a region containing one body. To decide how accurately to compute the force

on one of the bodies, the algorithm considers the solid angle subtended by the region

associated with each node in the tree from the point of view of the body. If the solid

angle subtended by a given node is large, the algorithm descends to the next level

of subdivisions and checks again. For the closest bodies it subdivides all the way to

the leaves and computes forces pairwise; otherwise, it subdivides until the solid angle

subtended by a node is smaller than some threshold #, usually called the "opening

angle", and then computes the force on the body in question from a multipole expan-

sion of the gravitational force from all the mass in that node. Using this algorithm,

the forces on all the particles can be calculated more efficiently, so that the time to

perform the calculation scales as Np ln N,. To put this in perspective, a simulation

with 1 million particles will run 10' times faster using a tree code than it will using

direct summation! Compared to the amount of error introduced by using a softening

length, the error from this approximation is usually fairly small for standard values

of 0 around 0.4 (about 20 degrees).
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C.1.3 Time integration

The N-body system is advanced forward in time by integrating the equations of

motion in discrete steps of some length At. The simulations in this thesis use an

integration method that staggers the advancement of the positions and momenta of

the bodies by At/2. In this method, incrementing the momenta is called a "kick"

and incrementing the positions is referred to as a "drift". The timestepping scheme

starts by kicking for At/2 to offset the steps, and finishes by kicking for half a step

to catch up. Starting with initial conditions (xO, po), the integration for each body,

simplified to one dimension, proceeds as follows:

Kick half a timestep: p(At/2) = po + F(xo)At/2 (C.2)

Drift one timestep: x(At) = Xo + p(At/2)At (C.3)
m

Kick one timestep: p(3At/2) = p(At/2) + F[x(At)]At (C.4)

Repeat the last two steps: : (C.5)

Drift one timestep: X(tf) = x(tf - At) + p(tf - At/2)At (C.6)

Kick half a timestep: p(tf) = p(tf - At/2) + F[x(tf)]At/2. (C.7)

where m is the mass of the body and F is the force. If At is the same for all bodies

over the entire integration time, this algorithm (known as "kick-drift-kick") has a

truncation error in the energy of order At 2 even though the integration is only to

first order in At (Gadget 2 paper). Furthermore, the discrete equations of motion

used for this time-integration scheme can be derived from a Hamiltonian (different

from the continuous Hamiltonian), so the error in the integration is a Hamiltonian as

well. This means that the errors on conserved quantities in the real physical system

(like the energy, angular momentum, and Poincar6 invariant) are bounded. These

features have led to widespread use of symplectic integrators like this one in N-body

simulations.

In practice, the wide range of densities (and therefore timescales) encountered

in a typical N-body simulation make it impractical either to use the same value
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of At for all particles in the system or to use the same value for the duration of the

simulation. The symplectic algorithm described above can be modified to use different

timestep lengths for each particle as long as they are all related by factors of two:

it is no longer exactly symplectic, but still performs better than standard methods

for integrating differential equations [110]. Changing the length of the base timestep

as the simulation proceeds also destroys the exact symplecticity of the algorithm but

the real deviations are again fairly slight. The usual criterion for the timestep length

is that the distance over which the particle is accelerated during one timestep must

be smaller than one softening length:

1 2e~(C8
-a|At 2 < q21s, or At < 2c, (C.8)2 |a1

C.2 Computer programs used in this thesis

C.2.1 Serial tree code

For small-scale numerical simulations, we adapted an N-body code written by Will

Farr. The code used a Barnes-Hut tree for force calculations and a single adap-

tive timestep length for all particles in the system following the criterion in Equa-

tion (C.8), advancing the particles with the kick-drift-kick symplectic scheme. The

computationally-intensive parts of the code were written in the C programming lan-

guage and called from a wrapper program written in Scheme. The code was modified

to include an analytic part in the force calculations that could represent the static

potential of the host galaxy. This program was written to be run on only one CPU

at a time.

C.2.2 Axisymmetric potentials

To represent a realistic galactic potential for the host galaxy, we used the "GalPot"

library of functions accompanying [111]. These functions construct multipole expan-

sions of axisymmetric potentials that are used to compute the force at any point.
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There are three types of potentials represented that are intended to correspond to

the density distribution in different parts of a typical spiral galaxy. All of them de-

pend mainly on the modified radius variable p, defined in terms of the equatorial

radius R and the height z out of the equatorial plane, and the flattening parameter

q, so that for a given component i,

si -- V/R2 + z2/qi. (C.9)

The flattening parameter is 1 for a spherical distribution, between 0 and 1 for an

oblate distribution, and larger than 1 for a prolate distribution.

The bulge or nucleus component, which is thought to dominate at small galacto-

centric radii, is represented by an exponentially truncated power law in density with

central density Pb,o, truncation radius rb, scale radius ab, and power-law index ab:

Pbulge(R, z) = Pb,o - e-Ab/b (C.10)
(ab)

The disk component is intended to represent the density distribution in the disk of

a spiral galaxy (though without the spiral arms). Old stars, young stars, and gas all

seem to form disks with different scale heights Zd, lengths Rd, and surface densities

Ed, but all display an exponential drop-off in both R and z. A multi-component disk

can be constructed by superposition of the form:

(a-R | z|
pdisk(R, z) =- Exp R ) (C.11)

The halo component, intended to represent the distribution of dark matter in the

galaxy, is represented by a double power-law in density, with indices ah and #h,
central density Ph,o, and scale radius ah:

Phalo(Rz) Ph,o - 1 ) (C.12)
a as h

The NFW profile [95, 94], which adequately describes the density profiles of dark
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matter halos in cosmological simulations, corresponds to ah = 1, Oh = 3.

The code to calculate the forces from these density distributions is written in

C++. We modified the serial tree code described in the previous section to include

forces calculated with this library to the interbody gravitational forces calculated

with the tree.

C.2.3 Self-consistent N-body realizations

A few of the simulations done for this thesis used an N-body realization of the host

halo as well as the satellite galaxy, in order to estimate the magnitude and type of error

introduced by ignoring the gravitational response of the host galaxy. Using a "live"

host halo is extremely computationally costly because of the inherent instability of

discrete representations of smooth density distributions. To avoid unphysical effects,

we use the rule of thumb that the number of bodies used to represent the halo must be

at least large enough that the relaxation time of the halo is several times longer than

the run time of the simulation. The relaxation time is derived by calculating the rate

of close encounters between bodies within the halo and estimating how many close

encounters would be needed to change a typical body's velocity significantly [112],

so it essentially measures the time over which the discreteness of the halo would

start to have large-scale effects on its phase space distribution. We focus on the

core of the halo because in our case, we are simulating mergers in which the satellite

galaxy has multiple close encounters with the host's core, so it is crucial that these

close encounters are not affected by large-scale discreteness effects. Thus in the cases

studied in this thesis we use

rei ~.N -- (C. 13)tre In NI-e

for the relaxation time, where rc refers to the halo's core radius and o to the velocity

dispersion in the core, so the ratio approximates the time it takes for a body in the

core of the halo to make one orbit. For a simulation that runs for one billion years, a

halo with the characteristic size and mass of the Milky Way must use 5 to 10 million

particles (Figure C-1).
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Figure C-1: Relaxation time in the core of a Milky-Way-like halo as a function of
resolution.

An additional difficulty in using a live halo is in generating a self-consistent random

realization. Most plausible models of the density distribution of dark matter halos

are infinite in extent; truncating them at some finite radius to construct a random

realization does not work because the phase space distribution function (DF) for the

infinite version is then inconsistent with the density distribution. Instead, a DF for

the truncated version must be constructed from scratch and used to generate the

random realization. For this work we used the DF for the lowered Evans model [104],

which is a truncated version of the cored axisymmetric logarithmic potential

I(p) = 2 In 2 (C.14)
rh

with characteristic velocity o-, core radius re, and scale radius rh [113]. GalactICs,

a program that constructs random realizations of this model, as well as a multipole

expansion of the associated self-consistent potential, force, and density functions, was

publicly released by [114]. We used this program, written in a combination of Fortran

and C, to generate random realizations of a host halo for use in our simulations.

C.2.4 GADGET

Because such high numbers of particles are required for a successful simulation with

a live halo, we chose to use the publicly released parallel N-body integration code
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Gadget-2 [115]. This program has multiple modes for different types of integrations;

we used it in mode 1 (vacuum boundary conditions, flat Newtonian space), which

uses a Barnes-Hut tree as described above but also parallelizes the force calculations

by distributing them over multiple processors. Gadget-2 uses a kernel to smooth the

gravitational force instead of Equation (C.1); the kernel is normalized so that the

smoothing length E, is consistent with its meaning in Plummer-smoothed simulations

but the force is exactly Newtonian for d12 > 2.8E2. The criterion for subdividing a

region of the tree is also slightly different: instead of a constant opening angle the

code estimates the relative force error produced by treating a given node as one point

mass and adjusts the opening angle to keep this relative error constant. This criterion

made the force calculation more efficient [115]. The integration is performed with the

kick-drift-kick scheme, with adjustments for individual and adaptive timesteps. To

check for consistency we compared small-N simulations using Gadget-2 and the serial

tree code and obtained the same result with both codes.

C.2.5 Beowulf Cluster

Parallel simulations were run on the Beowulf cluster co-sponsored by the MIT Kavli

Institute for Space Research and the Astrophysics Division of the Department of

Physics. Computer programs running on the cluster are scheduled using the Plat-

form Lava job management software (http://www.hpccommunity.org/section/lava-

5) installed as part of the Kusu "Platform OCS" 5 cluster management software

package (http://www.hpccommunity.org/section/kusu-45). The cluster consists of

24 Linux machines (worker nodes) with 8 CPUs each for a total of 192 cores, con-

nected by gigabit Ethernet cables, and a server machine (queen node) running Red

Hat Enterprise Linux Server release 5.3. 15 of the machines have 2.0 GHz CPUs and

the remaining 9 have 2.5 GHz CPUs. Gadget-2 performs best on a homogeneous

cluster, so for this work we used the 9 2.5-GHz machines only (72 cores). Parallel

Gadget-2 uses the Message Passing Interface (a copy of the standard is available at

http://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/mpi2-

report.htm) to send commands between cores; the work in this thesis was run using the
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Lam-MPI implementation of the interface (version 7.1.2; http://www.lam-mpi.org).

The author thanks Paul Hsi for administration of the cluster and for troubleshooting

assistance (this was the first time that the current incarnation of the cluster was used

for a massively parallel application).

C.3 Downhill Simplex Optimization Method

Downhill simplex optimization, also known as the Nelder-Mead method [107], is a

method of optimizing a merit function without computing its derivatives. The method

is particularly useful when the merit function is relatively quick to evaluate and the

derivatives are not well-behaved. It does not converge efficiently but is very robust.

"Simplex" refers to the geometrical object comprising a vertex in N-dimensional

space (in this case, a particular set of N parameters) and the edges leading to N

neighboring vertices. In the case of this method, the edges are oriented along the N

directions in parameter space. The simplex is initialized with a guess (the starting

vertex) and initial edge lengths in each parameter direction (search radii for each

parameter). In the algorithm, the simplex is represented as a set of N + 1 points in

parameter space. The figure of merit (the thing being minimized) is calculated at each

of these points and they are sorted from lowest to highest; then the edge leading to the

highest point in the simplex is reflected through the face containing the lowest point

(that is, the simplex is aimed "downhill") and the procedure is repeated. In practice,

this step is taken as a trial; if it does not reduce the figure of merit the simplex is

also contracted or expanded. Calculating the figure of merit at a set of neighboring

points is equivalent to a very rough estimate of the local partial derivatives of the

merit function by finite differencing; through this procedure, edges of the simplex

along steeply sloped directions are contracted while those along shallow slopes are

expanded to improve the convergence.

One shortcoming of most multidimensional minimizers is their tendency to stop

before finding a true local minimum, especially in cases where there is a long shallow

''valley" in the merit function (this corresponds to a degeneracy between two or more
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parameters). In the case of the downhill can be addressed by restarting the optimizer

from the convergence point with re-initialized edge lengths.

We used the implementation of the downhill simplex method from [106], called

"amoeba". Originally written in Fortran, we used the version translated into C with

two modifications: an increase in the floating-point precision of the optimizer (from

float to double!) and the addition of a monitoring function that printed the current

best-fit parameters and figure of merit at each step taken by the optimizer.
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