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Abstract

Until three decades ago, our understanding of the condensed matter systems were based
on two frameworks developed by Russian physicist Lev Landau: his theory of phase transi-
tion, and Fermi liquids. The Landau theory of phase transition and the Fermi liquid theory
together, can successfully explain a wide range of phenomena from ferromagnetism and anti-
ferromagnetism to the conventional superconductivity. However, in the last thirty years,
many experiments including the fractional quantum Hall effect (QHE) have revolutionized
our view of nature. For a system of electrons that is subject to a very strong interactions
and/or strong correlations between electrons, these two frameworks may break down. There
many phases of matter, e.g. spin liquids, that do not break any classical symmetry, but are
separated by phase transition. These states has the so called topological order. Also, many
of these states do not follow predictions of the Fermi liquid theory and have many exotic
behaviors. A rather powerful technique to handle with these issues is the slave particle
method. In the first part of this thesis, using a more general slave particle method we study
the strongly correlated Hubbard model, whose ground state may represent a Fermi liquid
state at two spatial dimensions. We study the phase diagram of this model and show that
the gapped spin liquid can be realized on the both honeycomb and square lattices, within
mean-field. We also investigate the effective low energy theory of these states. Some of
them are subject to compact gauge fluctuations. We study instanton effect in them and
show that instanton proliferation can destabilize some of them.

Another interesting problem in which we are interested in is the copper based high
temperature superconductors (HTSC). The parent state of cuprates materials (undoped
case) is a Mott insulator whose ground state is proposed to be a spin liquid. Upon doping,
many exotic phases appear, from high temperature superconductivity to the pseudogap
~ phase with disjoint Fermi segments (Fermi arcs) instead of a closed Fermi surface, or the
strange metal phase where the Fermi liquid theory breaks down and exhibits very unusual
transport properties. The isotope effect in these materials is also very different from that
of conventional superconductors. In the second part of this thesis we study the above
mentioned problem in detail and explain them by appealing to the slave particle method.

Thesis Supervisor: Xiao-Gang Wen
Title: Cecil and Ida green Professor of Physics
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Chapter 1

Introduction

1.1 Background and Motivation

Until three decades ago, our understanding of the condensed matter systems were based
on two frameworks developed by Russian physicist Lev Landau: his theory of phase tran-
sition, and Fermi liquids. According to the Landau paradigm of phase transition, every
physical phase of matter can be characterized by symmetry breaking. Landau paradigm of
phase transition states that any phase transition can be associated with a symmetry break-
ing. Therefore two states of matter with different symmetries belong to two different phases
and we cannot smoothly transform one to another without phase transition. Within this
picture, the ground state possesses a subgroup H of the symmetry group of the Hamilto-
nian G and the broken symmetry can be described through an order parameter. Therefore,
every phase is classified by the set of (G, H). The second building block of the conventional
condensed matter systems, is the Landau Fermi liquid theory. This framework is based on
the notion of quasiparticles. In this theory, it is assumed that there is a one to one corre-
spondence between the interacting fermion system with a noninteracting fermion systems
and low energy excitations can be described as free fermionic quasiparticles. It is also based
on the validity of the perturbation theory even when the interaction is very strong and much
larger than the level spacing. So we can achieve the groundstate of the interacting system
through turning on the interactions between fermions in the noninteracting system adiabat-
ically. After a long enough time, the groundstate of the noninteracting system evolves to
the groundstate of the interacting one. Since quasiparticles in the former case are fermions,

the excitations of the interacting fermion system are expected to be described by fermionic
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quasiparticles as well and they follow Fermi-Dirac statistics. Therefore the overlap between
the wavefunction of quasiparticles in the interacting system with free fermions in the non-
interacting system is nonzero and quasiparticles carry the same quantum numbers as in the

noninteracting system.

The Landau theory of phase transition and Fermi liquid theory together, can success-
fully explain a wide range of phenomena from ferromagnetism and anti-ferromagnetism to
the conventional superconductivity. However, in the last thirty years, many experiments
including the fractional quantum Hall effect (QHE) have revolutionized our view of nature.
There are many phases in the nature that are indistinguishable in terms of symmetries and
the system has to undergo a phase transition to transform from one phase to another one
with exactly the same (G, H). Additionally, the concept of well defined quasiparticles breaks
down in many systems including Mott insulator, spin liquids and the strange metal phase
of the high temperature superconductors. In all of these examples, an electron experiences
a very strong interactions and/or strong correlations with other electrons in the system. So
the single quasiparticle picture cannot be applied in these cases and we have to develop a
new approaches to such systems. This field has been extensively studied during last thirty
years, but there are still many open problems that need intense effort. For example, the
stability and classification of the spin liquid phases which are proposed to be the ground
state of some frustrated quantum magnets, has not been fully understood yet. For instance,
the staggered flux phase on the square lattice is a very interesting phase, but its stability
is under question. On the other hands, spin liquids do not break any symmetry down to
lowest temperatures, while they can exist in many topologically different phases and they
belong to different topological orders. For such exotic phase we need a complete theory
to classify every phase in the nature, because the Landau paradigm of phase transitions is
incapable of distinguishing these phases, based on symmetry concerns. Moreover, many of
spin liquids are subject to strong gauge interactions and it is important to understand how

gauge interactions modify the meanfield results.

A very rich playground for these problems is the copper based high temperature su-
perconductors (HTSC). The parent state of cuprates materials (undoped case) is a Mott
insulator whose ground state is proposed to be a spin liquid. Upon doping, many exotic
phases appear, from high temperature superconductivity to the pseudogap phase with dis-

joint Fermi segments (Fermi arcs) instead of a closed Fermi surface, or the strange metal
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phase where the Fermi liquid theory breaks down and exhibits very unusual transport prop-
erties. Among these phases, the superconducting state is more conventional, even though its
underlying pairing mechanism is still under debate. In one hand, it originates from a Mott
insulator with strong magnetic interactions, and exhibits many unusual behaviors and has
a rather high transition temperature. On the other hand, the the notion of quasi particles
is applicable up to some extent, or the isotope effect has been observed in HTSC, although
it is very different from conventional superconductors. In addition to these phenomena, the
existence of microscopic inhomogeneities, e.g. charge and spin stipe orders should also be
considered. As of now, there is no comprehensive theory capturing the physics of different

parts of phase diagram.

1.2 Slave particle theory

In strongly correlated electron systems, perturbation theory breaks down due to strong
interaction and/or strong correlation between particles. For example, in the large U/t
Hubbard model, the expectation value of the kinetic term is much smaller than the onsite
Coulomb repulsion and as a result the interaction term cannot be regarded as a perturbation
to the kinetic energy. Because of the large charge gap, it is very costly to create two electrons
at the same site. If we exclude the happening of such doubly occupied sites in the low energy
description of the system, we obtain the ¢ — J model as an effective Hamiltonian for spin
fluctuations, however electron operators are different from their usual representation. The
reason is that we have to project the Hilbert space to the non-doubly occupancy subspace
and electron operators should not mix it with the rest of Hilbert space. So we have to use

the following transformation

cz’d — 6}0 =(1-ni_0) c;r’a. (1.2.1)

It can be easily checked that anticommutation relation ¢; , operator is different from real
electrons. It is actually very difficult to use these projected operators. A brilliant idea is to
consider empty states as a state occupied by a “slave boson” dubbed as “holon”, and the
projected spin celectron operator removes this slave boson and creates a “slave fermion”

with spin o dubbed as “spinon” at that site. Therefore
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&, =

t = flh, (1.2.2)

4,0

where fif, . creates a spin o spinon and h.;f creates a holon. This identity should be considered

with the following local constraint on the number of slave particles

n{T + n{,¢ +nf =1 (1.2.3)

The above constraint implements the non-doubly occupancy constraint and as a re-
sult, the effective Hamiltonian (in this case the ¢ — J Hamiltonian) in terms of new slave
particles, is mathematically equivalent to its original form. The advantage of the slave
particle method is that, although it does not solve the problem, using this approach, we
can study the model Hamiltonian in a systematic way and we can apply many standard
techniques such as perturbation theory to the problem. Within meanfield theory, many
exotic topological phases, e.g. spin liquids, emerge using the slave particle method and the
projective symmetry group (PGS) study of these meanfield state has lead to the classifica-
tion of topological orders beyond Landau paradigm. Many of these states have non-Fermi
liquid behavior, e.g their electric conductance can be different from the T2 behavior of Fermi
liquids at low temperature or in some there is no Fermi surface and no coherent and well

defined quasiparticle description of the low energy theory.

1.3 Mott insulator versus band insulator

Now let us consider a system of atoms with periodic lattice structure and one electron (in
the conduction band) per site, i.e. the half-filling case. According to the Fermi liquid theory
we can find a correspondence between this system and a noninteracting one which can be
studied by band theory. Band theory of solids predicts that in the absence of symmetry
breaking, the ground-state should exhibit metallic behavior. The reason is that the chance
of having neighboring sites where only one of them contains electron with spin ¢ is nonzero
and nothing prevents the electron from hopping. Exclusion principle only bans hopping of

an spin o electron to its neighbor which has a similar electron. So charged quasiparticles can
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hop and we obtain a conducting state. Therefore we expect metallic behavior from band
theory. This theory predicts insulating behavior for the filled case, where there are two
electrons per site. The reason is that electrons cannot hop due to Pauli exclusion principle.
There is for certain one electron with the same spin on the neighboring sites and therefore
the electron cannot hop to that site. Another example is a half filled system with broken
translation symmetry. In this case, the Brillouin zone reduces to half of its original size,
and we obtain two bands. In the presence of translation symmetry breaking, a nonzero gap
opens up between two bands. Since the system is at half filling, the lower band is fully
occupied by quasiparticles at I’ = 0, while the upper band is empty. Because of the nonzero
gap, there is now low energy excitations and the response function for frequencies less than
gap vanishes. So we obtain an insulating system. This is called a band insulator, because
the argument presented was based on band theory.

In 1949, N. Mott introduced another kind of insulator which cannot be described by
band theory. Mott insulators have one electron per atom, and the ground state preserves
all lattice symmetries, so according to the band theory should be a conducting state. It
is however an insulator, not because of Pauli exclusion principle, but due to the strong
onsite Coulomb repulsion between electrons. This is the case in compounds of transition
metals whose valence electrons occupy d or f states. These states are much more localized
than s or p states and therefore the Coulomb interaction between two electrons on d or
f is much stronger. Because of this tremendous repulsion, electrons tend to repel each
other and the most economical state has exactly one electron per site. When the onsite
Coulomb repulsion energy U is much larger than hopping energy ¢, hopping is very costly
and as a result the wavefunction of electrons localizes at their sites and electrons do not
hop up to the first order approximation. In other words, charge excitation is gapped, so
charge cannot transfer through the system and we obtain an insulating phase at half filling

without symmetry breaking.

1.4 Generalized slave particle method

In 1963, J. Hubbard introduced his model Hamiltonian as the simplest model for Mott
transition. This model has two parts, the kinetic part that describes the itinerant (wave-

ness) nature of electrons, and short range potential energy part that represents the onsite
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Coulomb repulsion. The Hubbard model in its simplest form contains only nearest neighbor

hopping and is written as

H=UY sy —t Y. Cl,Cio+He., (1.4.4)

<i,j>,0

where C; , is the annihilation operator of an electron with spin o at site i, 7; » = C’;r’ +Cio
is the number operator of that electron and < 4,5 > means that sites i and 7 are nearest

neighbors of each other.

To study the Mott transition in the Hubbard model, we need a slave particle method
that not only allows magnetic fluctuations, but also contains charge fluctuations. In Eq.
1.2.2; we used a redefinition of projected electron operators in terms of spinons and holons.
At.half filling, holon is absent, because for any empty state, there should exist a doubly
occupied state. So the recipe in Eq. 1.2.2 does not contain charge fluctuation at half filling,
and we need to take “doublon” slave bosons that represents states with two electrons (doubly

occupied states) into consideration. It is easy to check that following decomposition

Ci,(f = f;,dhi + o'f’l',—dd}‘; (1.4.5)

where d! creates a doublon, along with the following physical constraint

n{,T + nzf’l +nf 4 nd =1, (1.4.6)
represent unprojected electron operators and has the right anticommutation relations. This
more general slave particle method can be employed to study the strongly correlated Hub-
bard model and investigate the Mott transition in it, which is the subject of chapters 3,4
and 5.
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1.5 Physics of high Tc

Identifying the underlying mechanism of the high temperature superconductivity in
cuprates is one of the most challenging and outstanding problems in theoretical physics.
Even quarter of a century after the first report of high temperature superconductor by
Bednorz and Muller in 1986, there is still no general consensus on the pairing mechanism
of the superconductivity in these materials. So far, many theories have been developed
to explain the exotic properties of cuprates, but they can explain only a limited number
of experiments and suffer from several limitations. One of the popular proposals is the
preformed Cooper pairs scenario that was first proposed by P.W. Anderson. This theory can
successfully explain many basic properties of cuprates but not all of them. This framework is
based on strong correlation and it does not incorporate phonons in the pairing mechanism.
On the other hand, many experiments have been reported indicating the importance of
phonon mechanism such as the oxygen isotope effect on both the transition temperature
of superconductivity and the London penetration depth. The reported isotope effect on
T¢ is very different from that of the conventional superconductors. For example, the BCS
theory, which is based on phonon mediated attractive interaction, can explain the universal
isotope effect on the transition temperature of conventional superconductors, but it predicts
no isotope effect on the London penetration depth. In cuprates however, not only has the
isotope effect been reported for both of these quantities, the isotope exponents also decrease
as doping increases. More importantly the isotope effect on T, on the overdoped cuprates
is very small and negligible. These experiments indicate the importance of understanding
the electron-phonon interaction in the strongly correlated regime, to unravel the mystery
of cuprates. Therefore, to have a better understanding of the high T, problem, the relation

of the electron phonon interaction and the strong correlation remains to be solved.

Apart from the above mentioned difficulties of the Anderson theory, there are many
difficulties in implementing his idea. So far, several techniques have been developed to im-
plement Anderson’s idea. One of the most successful ones is the U(1) slave boson method.
This method is based on the spin charge separation in the resonating valence bond (RVB)
states. Although this approach achieves a phase diagram similar to the observed phase
diagram of cuprates, it suffers from some serious problems. For example in the supercon-

ducting phase, this method predicts two kinds of vortices. The cheaper one is h/ec, and
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the other one is h/2ec. Experimentally only the latter one has been observed, and the first
one has never been reported thus far which, although the U(1) slave boson predicts its
existence and its stability. Another important limitation which should be mentioned is the
calculation of the linear T coefficient of the superfluid density. Slave boson gives a doping
squared behavior ( 22, z is doping), however, experimentally, it has a weak dependence on

the doping percentage.

These problems should be resolved in a consistent way. There are also many other
important phenomena which are to be addressed in any comprehensive theory. Two of
these are the linear temperature resistivity of the strange metal phase and the existence
of the Fermi arcs in the pseudo-gap phase. Fermi liquid theory predicts T2 dependence of
resistivity in a metallic phase since their lifetime is proportional to 1/€? (e is the excitation
energy of quasi-particles). Therefore linear temperature resistivity means a non-Fermi liquid
whose quasi-particles have a decay rate proportional to their energy. This means we do not
have sharp quasi-particles in this phase. The theory of such phases are called marginal
Fermi liquid. Slave boson method has been applied to this phase but it has not been
able to explain the observed behavior correctly so far. On the other hand photoemission
experiments show Fermi arcs(locus of gapless excitations) instead of Fermi pockets or Fermi
surface. This is a very remarkable observation, because, we always obtain a closed Fermi

surface using standard techniques.

These limitations and difficulties motivate us to look for a more refined formalism and a
more general framework, capable of explaining the physics of the high-temperature super-
conductors on a more solid basis. In last three chapters, we address all of the mentioned
issues and try to explain them within Anderson idea of preformed Cooper pairs and through
U(1) slave boson method. We emphasize on the importance of electron phonon interaction
and argue that it is possible to explain the observed unusual isotope effect and resolve
other limitations in these materials within slave boson approach by slightly modifying the
standard framework of Anderson theory. So it is necessary to take electron phonon interac-
tion in the presence of strong correlations into consideration in order to reconcile Anderson
theory with experimental observations and resolve the limitations of the U(1) slave boson

method.

22



Eq. 1.2.2 is applied to the projected electron operator, where does not allow double
occupation. We can use the idea of the slave particle approach to decompose the unprojected

electron operator as well.

1.6 Statement of the problem

We would like to establish a framework based on a generalized slave particle approach to
study strongly the Mott metal-insulator transition in the Hubbard model on different lattice,
and investigate various properties of meanfield states, in particular their stability. Among
tens of possibilities for the meanfield state, many of them are spin liquid, i.e. do not break
any lattice symmetry down to lowest temperatures. The low energy theory of spin liquids
is usually coupled to a compact gauge filed and we have to deal with this problem to obtain
reliable physical results. We want to study when these gauge fluctuations are gapless, and
when they are not. In case of gapless gauge fluctuations, instanton proliferation becomes
possible due to the compactness of the gauge field. Instanton proliferation changes the
properties of the meanfield state drastically. It is important to study this problem in detail
and determine the fate of meanfield state.

Recently, the Hubbard model on the honeycomb lattice has been studied using the
quantum Monte Carlo (QMC) method. For moderate values of U/¢, a gapped state has been
reported that does not break any symmetry. We would like to see whether our formalism
can realize such a gapped spin liquid phase or not. We are also interested in the possibility
of such phases on other lattices, e.g. square lattice and in other phases, e.g. staggered
flux phase. In previous studies and in the absence of charge fluctuations, this possibility
was ruled for the staggered flux phase, using arguments based on symmetry considerations.
Here we use the more general slave particle approach and reexamine their arguments by
allowing charge fluctuations.

We also would like to take a journey from half filling and study the physics of doped
cuprates within slave boson approach. We are interested in studying the physics of the
strange metal and the pseudogap phases. Both states exhibit non-Fermi liquid behaviors
and have unusual properties. Another problem in which we are interested is how to deal
with electron phonon interaction in the presence of strong correlations. This is a nontrivial

problem, because the electron phonon interaction in the presence of strong correlations has
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a very different behavior and its effect on the properties of high Tc¢ cuprates is very different
from its effect on conventional superconductors. Understanding this problem is crucial in
the phenomenology of high temperature superconductivity in cuprates. The ultimate goal
is to take electron phonon interaction in the presence of strong correlations into account
appropriately, in order to explain a wider range of experiments within Anderson idea of
superconductivity. In other words, we want to show that the strong correlation physics is
the primary cause and the major deriving force of the high temperature superconductivity
in cuprates and the phonon mediated attraction is a secondary effect. Therefore, phonon

related problems should be addressed in a more fundamental attack line.

1.7 Outline

In this thesis, we are going to address the above mentioned problems within the slave
particle approach. In the first few chapters, we limit ourselves to the half filling case and
study the properties of the strongly correlated Hubbard model on honeycomb and square
lattices. The thesis is organized as follows.

In chapter two, we present a brief introduction to the slave particle method and review
standard techniques and known methods for dealing with the systems we are going to study.
In chapter three, we discuss different aspects of the more general slave particle approach.
We derive the phase diagram of the Hubbard model on the honeycomb lattice using this
framework. We discuss the possibility of stable gapped spin liquids on the honeycomb
lattice. In chapter four, we focus on the low energy effective theory of the spin liquid
obtained in chapter three and discuss the confinement/defonfinement problem in detail.
We present a method to calculate different quantum numbers of instanton operators. These
quantum numbers determine the fate of the spin liquid phase. In chapter five, the physics
of the gapped staggered flux phase is discussed. We follow the method presented in chapter
four to compute the transformation properties of the instanton operator under the different
symmetries of the square lattice, to determine the fate of this phase. It is shown that the
gapped staggered flux phase is not stable and the resulting phase breaks translation and
some other symmetries of the square lattice.

In the last three chapters, we apply the U(1) slave boson method to study the physics
of the doped cuprates. In chapter six, we investigate the gauge theory of the doped Mott
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insulator in the strange metal and the pseudogap phases. It is discussed that the linear
temperature resistivity of the strange metal phase and the observation of Fermi arcs in
the pseudogap phase can be successfully explained by calculating the self energy and the
scattering rate of quasiparticles. In chapter seven, we generalize Anderson theory of high
Tc by taking phonons into account. We present a cooperative electronic and phononic
mechanism for the high temperature superconductivity in cuprates. It is shown than within
this generalized framework, we can resolve several limitations of the U(1) slave boson theory.
In chapter eight, we investigate the gauge theory of the doped Mott insulator in the strange
metal and the pseudogap phases. It is discussed that the linear temperature resistivity of
the strange metal phase and the observation of Fermi arcs in the pseudogap phase can be

successfully explained by calculating the self energy and the scattering rate of quasiparticles.
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Chapter 2

A brief review of previous studies

In this chapter we present important results of previous studies for the Hubbard and
t-J models. We start from the meanfield study of the weakly correlated Hubbard model at
half filling on the square lattice. This method obtains the anti-ferromagnetic order for any
positive U, and therefore the ground-state breaks the translation symmetry. As a result
the system is insulator at half filling. Then we review properties of the Hubbard model at
large U limit and present the derivation of the t-J model. We also discuss the gauge theory

of the strongly correlated systems.

2.1 Small U-limit of the Hubbard model

In 1949, N. Mott introduced another kind of insulator which cannot be described by
band theory. Mott insulators have one electron per atom, that according to the band
theory should be metallic. It is insulator not because of Pauli exclusion principle, but due
to the strong onsite Coulomb repulsion between electrons. This is the case in compounds of
transition metals whose valence electrons occupy d or f states. These states are much more
localized than s or p states and therefore the Coulomb interaction between two electrons on
d or f is much stronger. Because of this tremendous repulsion, electrons tend to repel each
other and the most economical state has exactly one electron per site. When the onsite
Coulomb repulsion energy U is much larger than hopping energy ¢, hopping is very costly
and as a result the wavefunction of electrons localize on their sites as do not hop up to the
first approximation. In 1963, J. Hubbard introduced his model Hamiltonian as the simplest

model for Mott transition. The Hamiltonian has two parts, the kinetic part that describes
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the itinerant (wave-ness) nature of electrons and short range potential energy part that
represents the onsite Coulomb repulsion. Hubbard model in its simplest form contains only

nearest neighbor hopping and is written as

H=UY fgziy—~t Y, ClCio+He., (2.1.1)
i <ij>a
where C;, is the annihilation operator of an electron with spin o at site s, g = CJ’GC’,;,U
is the number operator of that electron and < ¢,j > means that sites ¢ and j are nearest
neighbors of each other. For small U/¢ ratios, the kinetic term is dominant and we can
study the above Hamiltonian using standard methods, for instance through perturbation
theory.

Now let us we study the properties of the Hubbard model at half filling on the square

lattice. The interaction term can be written in term of the spin operator and we have

- mn; _.+.n
Unmni’i = ——05;.5; + _.L_L'l’

3 5 (2.1.2)

We can ignore the last term, since Y,  n;, = N is a constant number and we can drop it
with out losing any physics. Within the path integral formulation we can use the Hubbard-

Stratonovic transformation to obtain the following action

exp (-2-3‘,1 / dei.sz-) = / Dg¢? exp (—U / dr (gq?,-.qﬂ; —$i.§i)). (2.1.3)

The advantage of this method is that we replaced the U-term which was bilinear in terms
of spin operator with a linear one. We can appeal to the saddle point approximation to
simplify this integral further. By varying the action with respect to ¢; field, we obtain ¢7 =
% (8%). Then we can expand the Hamiltonian around this point and obtain a systematic
perturbative expansion. Since in the classical action, we expect staggered magnetization
along some direction, i.e. S; = m(~1)=+wn (m is called Néel order parameter). 7 can be
any direction, but after symmetry breaking, the system picks up only one direction. We

choose it to be 2 direction. So we have
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4mU i
Heg = ——5— S (yton, —t Y Cl,Cjo+He. . (2.1.4)
2,0 <i,j>,0
Because of (—)="% we lose translation symmetry and we now use the reduced Brillouin

zone (BZ) whose boundary is defined as

| + k| < (2.1.5)

The area of this new BZ is 272 which is half if the translation symmetric case. Going to
the momentum space we obtain the following effective Hamiltonian for small U —Hubbard

model on the square lattice

tr 3—[—}4&0' Ck,a
Heps = 2 [C’I’”’ CHQ] 3Um ’
k.o =ro =ik Ce+Qo
ty = —2t (cos ky + cosky), G=(nmn). (2.1.6)
The energy eigenvalues are
3Um\? 9
Eyo, ==+ (——4—> +tz. (2.1.7)

So there is a finite gap equal to Ey = |1[{l—m | At half filling the lower band (the band
with negative sign) is filled and therefore we have an insulating phase. We can use either
self consistent equation of m = (=)=¥% (S3) or energy minimization obtain the optimum

value for m. Tt can be shown that at small U-limit (but positive) we have [27]

m~ e #0, (2.1.8)

up to the first order and therefore only at U = 0, m is zero and above U = 0, the ground-
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state exhibits antiferromagnetic behavior and the Néel order parameter is nonzero. So the
Hubbard model on square lattice does not show metallic behavior for positive U, and has

an anti-ferromagnetic groundstate at least for small U/t limit.

2.2 Derivation of t-J model

In this section we follow the method by J. Spalek for the derivation of the t-J model
[72, 59]In thestrong correlation limit of the Hubbard model where U >> zt, there is a small
probability for double occupancy. So we assume there is no charge fluctuation in the system.
In the next section we argue that this assumption is misleading in some cases. We now want
to use this assumption to derive t-J model as an effective Hamiltonian describing the physics
of all states without double occupation. To derive t-J model in a rigorous way, we first define
Py that projects the Hilbert space into a subspace without double occupation. Similarly
Py = 1 — P, projects to the rest of Hilbert space. At half filling, the number of empty
sites is equal to the number of doubly occupied sites. Therefore, the absence of double
occupation leads to the absence of empty sites at half filling. Hilbert space contains four
states per site. For each spin we have occupied and occupied state. Therefore we have
113, = 10,1 10,43, 12); = 11,910, 4%, 13); = 10,1); 1L, 4); and [4); = |1,1); |1, 4);. From the
definition of Py we have Py |4); = 0. Since (1 — f; 47, 1) |4); = 0, so we can identify P with

Py =[] —higiy). (2.2.9)
i

It is easy to check that PoPy = PyFy = 0 while P? = Py and Pz%/ = Pn. Now let us

consider the following equation for the groundstate of the Hubbard model

HY = EV. (2.2.10)

We are interested in finding a Hamiltonian whose groundstate is Po¥ and has the same

ground state energy E as the Hubbard model. Therefore we have
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HeprPo% = ERV. (2.2.11)

To achieve our goal, we use the fact that Py + Py = 1. So we have

H (P() -+ PN)\I/ = E(Po + PN) v, (2.2.12)

Multiplying both sides of the above equation by Py and using the fact that Py Py =0,

P? = Py and P% = Py, we have

PyvH (P} +P)¥ = EPyV. (2.2.13)

Rearranging this equation we have

(PvHPy — E)PNY = (PyHP,y) PyV. (2.2.14)
Therefore
1
[ — . 2.
Py¥ PrHPy —F (PvHPy) Py (2.2.15)

Let us plug in the above expression for Py ¥ in Eq. 2.2.12

H-(H - E) = — (PNHPO)} Py¥ = EPy¥ (2.2.16)

PyHPN

Using Po?2 = Py and P% = Py one further time and comparing the above equation with

Eq. 2.2.11, we obtain the following
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1

Hepp= P)HPy — (RHPN — E) PuHPy —E

(PvHP) (2.2.17)

We divide Hubbard model in two parts. The kinetic part Hg that mobilizes electrons

and potential part Hy which represents the onsite Coulomb repulsion.

H=Hg+Hy (2.2.18)

Hg=-t > Cl.Cj, (2.2.19)
<i,j>,0

HU = UZ ;47 | (2.2.20)
i

When Hg acts on £V, at half filling, it creates one doubly occupied and another empty
site. The resulting state is no longer an eigenstate of Py operator. Therefore at half filling we
have PQHK.PO = 0. On the other hand, 5175, Hi (]. — ﬁ’i,Tﬁi,l) = 0, SO HUPO = PoH =0

and therefore we have

PoH Py =0. (2.2.21)
PyHPy = PoHg Py (2.2.22)
PyHPy = PyHk Py (2.2.23)

As we discussed after acting Hg on Po¥ we obtain an state with one double occupancy.
Therefore it the potential energy of this state is U and we have Py HyPy = U. PnHgPy—FE
is of order hopping integral times coordinate number of lattice, i.e. —zt and therefore in
U >> zt limit is negligible compared to Py HyPy. So we can replace (PyH Py — ]:'J)—1 by
1/U up to the first order of 2t/U. So we have the following expression for the effective

Hamiltonian up to the first order of approximation

PyHZ P

Heff:— U ’

(2.2.24)
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where we have used PyHg Py = (Py + Py) Hx Py = Hg Py. Now we only need to simplify
H12< We have

Hy =Py > Cl,0;.Cl ,CrpPo (2.2.25)

<i,j>,<mn>a,8

Since Hg, creates a doubly occupied site, the second Hg has to remove this state and

therefore we have i = m and 7 = n. And we have

H}z( = t2P0 Z C;r’aci“@Cj,aC}’ﬁpo (2.2.26)
<i7j>7a7ﬂ

Since Yop_; 530% 50k, = 264,85,, where o* is k—th Pauli matrix, we have the following

identities

Cl,Cip = bo gl 104 er M 1565 (2.2.27)
CiaCly = 6us (1 - ﬁ”—‘gﬂ) = (2.2.28)
in which we have defined
1
sF=3 > Cl ok 5Cip. (2.2.29)
o,
At half filling n, 4+ +n;, = 1, so we have
2 42 daf & = 0,8 g s P
HK =t“Py Z 5 + Si.O'ﬁ’a - j-Oa,B 0 (2230)
<i7j>)a7ﬁ
1 1
Hy =t'RY Tr { (5 + Zsz"am> (5 -3 S}‘a") }PO (2.2.31)
<i,J m n
1 - =
H?{ = t2P0§; (5 — 251‘.53') p(), (2.2.32)

where we have used Tr(6™) = 0 and Tr (6™0") = 20, . Since spin operator does not
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change the number of electrons, we can remove Py from the above equation and we eventu-
ally achieve the following effective Hamiltonian for the strongly correlated Hubbard model

at half filling

t2 I |
Hers =5 Z (Si.sj - Z) : (2.2.33)
<t,7>
which is nothing but Heisenberg Hamiltonian. So far we assumed half filling. Away from

half-filling we can follow the same procedure and we.obtain

Heg=-t Y PRClLCioP+J Y (8.8 -21), (2.2.34)

~ — 4
<i,7>,0 <z,3>

where J = % This effective Hamiltonian is the sum of the constrained (projected) hopping
model (¢ model), and the Heisenberg model (J model). So it is called ¢t — J model which

includes both hopping and antiferromagnetic exchange interaction of projected electrons.

2.3 Introduction to slave-boson method for t-J model

In derivation of the t-J model, we assumed no double occupancy in the many body
wavefunction. For large U/t ratio, the charge gap is of order U and therefore we can
keep states with at most one electron per site. To derive the standard U(1) slave boson
approach, it should be noted that P, operator which projects the Hilbert space into no-
doubly occupancy, allows only hopping of electrons to the neighboring empty sites. Any

other hopping process involves going away from projected Hilbert space. So we have
PoCliCiaPo = (1= niy) CLiCip (1= my) (2.3.35)
POC';f,le,JrPO = (1 —n43) 01¢Cj,¢ (1—mnj1). (2.3.36)

So we can rewrite the t-J model as
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Hey=-t 3 LGP+ (8.8 -2, (2.3.37)

<i,j>,0 <i,7>

where we have used the following notation
éi#f = (1 - n’i,—a) Ci,a~ (2338)

It is easy to check that projected electrons (C~’,-,(,) do not follow onsite fermionic anti-

commutation relations. For example we have

(€l Cia} =5 (1- ! .Cia) (2.3.39)
{C‘L, ci, l} = 6;;,01.Ciy. (2.3.40)

It is now cleat that projected electron are operators are not fermions and this is the
reason why the Hubbard model is highly nontrivial despite its simple form. Using “tilde”
operators, naturally implements the no-doubly occupancy constraint. The effective Hamil-
tonian in Eq. 2.3.37 does not violate this constraint as well, provided we start from an
allowed state which is eigenstate of Py operator, i.e. satisfies the no-doubly occupancy

which is

NNy = 0, (2341)

for every site. Since this constraint in nonlinear in terms of electron operators, its imple-

mentation is difficult. Note that it is equivalent to the following inequality constraint
nig+ni) <1 (2.3.42)

From classical mechanics, we know that implementing inequality constraints is difficult.
Now we use a trick to turn the above inequality as an equality. To do so, we introduce a

“slave” boson h; which fills all empty sites [15]. We assume this auxiliary particle carries

35



1o spin. So we have

nig+ iy +nip =1 (2.3.43)

Now we can easily implement the above equality constraint using Lagrange multiplier
method. So whenever we annihilate an electron and as a result we obtain an empty site,
a slave boson should occupy that site. On the other hand, whenever an electron wants to
occupies a state empty of electrons but with one slave boson, that site is no longer empty
and therefore there is no for having a slave boson there. These together leads us to write

the following

Ciw = (1= 1-4) Cip = fighl, (2.3.44)

in which we have assumed that f;, is fermion and h; is boson. The slave fermion f; s is
dubbed as “spinon” and slave boson h; as holon. We can interpret the above relation as
fractionalization of the projected electron. It is a composite operator whose spin is carried
by spinon and holon carries its charge !. The constraint in Eq. 2.3.43 can be written in

terms of new slave particles. We have

g+ £ fag bl =1, (2.3.45)

From this constraint it is obvious that slave particles are hard core fermion and bosons.
For example two spinon with opposite spins cannot occupy the same site, however it is
allowed by Pauli exclusion principle. There is actually an infinite onsite repulsion between
slave particles. So despite its simple form, using slave particles does not solve the problem,
because we still have to deal with non-doubly occupancy constraint (we have more of it
now!) . It only make the original problem more tractable.

Spin operator in terms of new slave particle becomes

! Attaching charge to holon (slave boson particle) is a convention. We can also attach it to spinon without
any problem. It can even be distributed between spinon and holon provided en — es = e, where e is the
electric charge of holon and e, is that of spinon.
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S = Cl oG = f1a0 o = 11uoRalis, (23.46)

where in the last step we have used the hardcoreness of slave particles. Similarly, electrons
number operator n;; + n;,, can be written only in terms of spinons and we have n; =
n;f, s+ n{ - Now We are able to transform the t-J model in its new form in terms of slave

particles

Hey=—t Y floliehlhi+d Y (58— "’Z") , (2.3.47)
<ij>a <i,j>

along with the constraint in Eq. 2.3.45. So far there were no approximation in our journey

from the original t-J model in Eq. 2.2.34 to Eq. 2.3.51. As it can be seen from the above

equation, even the hopping term is nonlinear and involves interaction between spinons and

holons. To have a better insight of the problem and use a more systematic approach to

exploit approximations for the t-J model, we appeal to the path integral formalism. We

have

p= /foDthTDh eiS = /DfTDthth e~ Jarl

17} 0
L= fl o fio+hlg-hi+idg+H
gi = f,‘tTfi,T + f:,lfi,l + hih; — 1. (2.3.48)

Integration over auxiliary ); field leads to the physical constraint in Eq. 2.3.45. This

field serves as Lagrange multiplier. Now let us define the following notations

;=3 flotio (2.3.49)

X = hih; (2.3.50)

So the t-J Hamiltonian is
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Hey=—t > L+ 3 (si.sj - "’Zﬂ'), (2.3.51)
<i,j> <i,5>

Now let us focus on the first term. To decouple spinons from holons at the mean field

level we first use the extended Hubbard Stratonovic transformation

ikl X0 :N/Dm Dm e [X{J m Al “] (2.3.52)
;’1 _ mf,’g , _ | (2.3.53)

where N is renormalization constant. Using the saddle point approximation for m{ s mﬁj
k!
and )\; fields, we can ignore fluctuations around classical minimum and replace the above

path integral with the following

giexl 1 o Je[%L(mh ) 1 (md )~ (ml ) (m])] (2.3.54)
oihigi o Mg (2.3.55)
<mﬂl> — <ijh> (2.3.56)
< ;\i> —iXo (2.3.57)

From now on by Xf ¥ we mean <>”<{ Jh> For Heisenberg term we can use a similar method

and we have

sti.sj:—Jl S oxd it fio—d > ALfL A 40 Y flEiastin

<7.,j> o <i,j>,0 <t,7>
Het T X+ S AL AL - T3 > fl.S5.5apfis + classical i2dR58)
1.77 ,j,U’ <'L;]>

where there is an ambiguity in choosing Ji, Ja, J3. Within Hubbard stratonovic method
this ambiguity cannot be resolved. So we can decouple S;.S; into a linear combination
of direct ( fiT f5), exchange ( fiT fi), and pairing terms ( ff f;-‘ ), In Ref. [76], a method has
been presented to resolve this problem. It has been argued that an appropriate choice is

J=Jr= % and J3 = %, provided (S;) = 0.
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Using the above approximation we have

0 0 g
Lesy = fiT,TEfilT + fLé—;fi,l + hzghi + Heyy- (2:3.59)
where
Hyp= =t > Xufl fio—t > X hlhs
<iyj>o <ig>
~h 32 dflotio =B 30 AMflaflo v Y £laSidustis
<i,j>,0 <4,§>,0 <i,5>
—~Xo Z (fitTf"sT + lefi’l + h}hi - 1) + classical terms. (2.3.60)

1

In the above approximation for the ¢ — J model, since we implement the physical constraint
in Eq. 2.3.45 only in average, the approximation can be dangerous and results of mean-
field theory untrustful. Additionally, , the fluctuations of xif: ’;’ fields should be taken into
consideration. The fluctuations of the magnitude of these fields is gapped but their phase
fluctuation is gapless (Goldstone modes). In the following it will be turned out that the
phase of xf,’jf fields is tied up with the fluctuations of A; field which implements the con-
straint, in time. To have a better insight of the situation lets consider the following local

U(1) gauge transformations on slave particles

hi — €%h; (2.3.61)

fio = €% fig. (2.3.62)

It is obvious that the projected electron operator is invariant under these transforma-

tions.

éz',a = f'i,a'h',T d C”’i,aw (2363)

The constraint is also invariant. So the original ¢ — J Lagrangian is invariant under local
gauge transformation as well This fact should be somehow reflected in the meanfield state

as well. Therefore x;; and ); fields should transform in the following way
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X{,}h N ei(ei—ej)xi’;l (2.3.64)

Ai = A — 80 (2.3.65)

Using the above relations, it can be checked that when (5{ ;= 0, the meanfield Lagrangian

in Eq. 2.3.59 is also gauge invariant. Now let us use the following notations

Xig = |Xi,5] €% (2.3.66)
ag (i) = Ai. (2.3.67)

So we have
hi = €%ih; (2.3.68

fio = €% fio (2.3.69

)
)
a;; — @i+ (9,' — 9j) (2370)
)

ag (’L) — AO (7/) - 8791-. (2371

So the A¥ (i) field defined in the following way, is the vector potential of a compact
gauge field.

M= 1,2 . a“ (1,) - ai,H@#, él = .17:, é2 = g (2372)

Compactness originates from the definition of a;; field. a;; is identified with a; ; + 2,

because only €@ is physical. Therefore

@i ~ Qg+ 27. (2.3.74)
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The vector potential is therefore defined on a circle with radius one instead of an infi-
nite line. Although meanfield calculations are rather simple, the study of compact gauge
fluctuations makes the problem difficult. We have two situations. In one regime the gauge
fluctuations are weak so we can ignore the compact nature of the gauge field and approxi-
mate it with a non-compact U(1) gauge field with gaussian fluctuations. This is called the
deconfined phase. In the second regime, gauge fluctuations are strong and we cannot ignore
the compactness of the gauge field. This is called the confined phase. In chapters four and

five we discuss more about the properties of this phase.

2.4 Properties of the t-J model at Half filling

At half filling we have only spinons and there is no holon in the half filled t-J model and
we have particle hole symmetry on bipartite lattices. Let us focus on square lattice for now.
Particle hole symmetry imposes Ag = 0 constraint. Let us assume that there is staggered

magnetization, i.e. the Néel order parameter is zero. Within meanfield we have

H= -0 Y xfldie—R Y, ALfll, + He + dassical termg2.4.75)
<i,j>,(7 <i,j>,0’

This model has been studied extensively in literature. One possible phase is the d-wave

state. In this state 2Jle’j = Xo, ZJQA{,&@ = Ap and 2J2A£ii@ = —Ag. We can rewrite

the Hamiltonian in the Momentum space and we have

e Z [f;I,T, f—k,.L] —x0 (cos (kg ) + cos (ky))  —Aoq (cos (kz) — cos (ky)) fer (ba.76)
k

— g (c08 (ki) — cos (k) +xo (cos (k) +cos (k) | | f1,

With energy excitations

By, = \/x8 (cos (k2) + cos (ky))* + A3 (cos (he) —cos (k)% (24.77)

The energy spectrum is gapless at four inequivalent points in the Brillouin zone which are

E= Z (&, £). Around these points we can expand the energy and we obtain massless dirac
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cones with energy Ko = /Q% + Q2, where Q@ = x0 (¢ + ¢y) and Q_ = Ao (¢ — ¢y)-

Now let us consider a state where x{ i = Xoexp (i(—)="Iv®) where tan ® = xp/A0, and

A{,j = 0. If we go around a plaquette defined by i, i + &, ¢ + & + ¢ and i + ¢, we obtain a
staggered pattern of +4® phases. This state is called the staggered flux phase. This phase
has exactly the energy spectrum as in the Eq. 2.4.77. In fact this property is not accidental.
It is due to a hidden SU(2) symmetry in the t-J model at half filling. To see this more

explicitly let us consider the following operator

Cip  Ciy

Vi = ; ; (2.4.78)
Cip —Cig
The Heisenberg interaction can be written in terms of this new operator as
H=(3/16)3 (swia”). (¢}¢jaT) . (2.4.79)

i3
It is obviously invariant under global SU(2) transformations of the 1; — 1;gax2. It is also

invariant under local SU(2) gauge transformations as ¥; — [hax2]; ¥i. So the Heisenberg

model is invariant under
¥i = hitig, (2.4.80)

transformations. Going back to the slave particle language, it corresponds to the following

local SU(2) particle-hole transformation

fin = oifir + Bifl (2.4.81)
fin = =B} fig+ o sl (2.4.82)

Using an appropriate SU(2) transformation we can map the staggered flux ansatz to

the d-wave ansatz, and these two states become gauge equivalent.
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2.5 Projective symmetry group(PSG) of the Model

A projective symmetry group (PSG) is a property of an ansatz. It is formed by all of
the transformations that keep the ansatz unchanged. Each transformation (or each element
in the PSG) can be written as a combination of a symmetry transformation U (such as
translation) and a gauge transformation Gy. The invariance of the ansatz under its PSG

can be expressed as follows:

GuU(’u,ij) = Uy (2583)

U (U'ij) = uU(i))U(j)’ GU (’U;,’j) = GU (Z) u,'jGL (]), GU (Z) c U (1), for each GuU S PSG .
Every PSG contains a special subgroup, which will be called the invariant gauge group
(IGG). The IGG (denoted by g) for an ansatz is formed by all of the pure gauge transfor-

mations that leave the ansatz unchanged.

g= {Wi|wiu,-j W=y, W; € U(1)} (2.5.84)

If we want to relate the IGG to a symmetry transformation, then the associated transfor-
mation is simply the identity symmetry transformation.

If the IGG is non-trivial, then for a fixed symmetry transformation U, there can be
many gauge transformations Gy such that Gy will leave the ansatz unchanged. If Gy is
in the PSG of w;;, then GGy will also be in the PSG if and only if G € g. Thus for each
symmetry transformation U, the different choices of Gy have a one-to-one correspondence
with the elements in the JGG. From the above definition, we see that the PSG, the IGG,

and the symmetry group (SG) of an ansatz are related as follows:

SG = PSG/IGG

This relation tells us that a PSG is a projective representation or an extension of the

symmetry group.?

2More generally, we say that a group PSG is an extension of a group SG if the group PSG contains a
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Therefore, however the meanfield ansatz may break some symmetries of the lattice, its
meanfield state can preserve all symmetries. For example let us consider translation in the
# direction. The meanfield state |¢) may break this symmetry, but the transformed wave-
function |¢') can be gauge equivalent to the untransformed, ie. |[¢') = []; Gi|¢¥). Since
all gauge equivalent wavefunctions correspond to the same physical state after projection,
these two states are not physically distinguishable. Therefore the physical state (projected
wavefunction) does not break the lattice symmetry. Similarly we can argue that under any
symmetry operation, if the transformed wavefunction is gauge equivalent to the untrans-
formed one, the physical wavefunction preserves that symmetry. The topological orders of
that physical state is represented by the symmetry properties of the corresponding meanfield
Hamiltonian. Therefore we can classify physical states by the set of gauge transformations
needed for each symmetry operation. For example let us consider the staggered flux phase.

If we translate this state in the # direction for instance, the meanfield ansatz changes as

X'{;j = xoexp (i(—)=Tv®) — X{Jri’“j = xoexp (i(=)=T1Hvd) = x{,j*. (2.5.85)

However we can use the following gauge transformation

f"f 5 Gr, (i) f’f* , (2.5.86)
iy fiy

where
Gr, (i) =i (=)=, (2.5.87)

where 71 is the first Pauli matrix, it goes back to X{, e Therefore the ansatz and as a result
the meanfield Hamiltonian is invariant under Gr, T, not T. Similarly it can be shown that
the ansatz is invariant under Gr, Ty (translation in the § direction),Gp, Pr (parity under
axis where (z,y) — (—=,y) ),Gp, P (parity under y axis where (z,y) = (z,—v)),G Py Puy
(reflection under x=y line where (z,7) — (y,z)) and GrT (time reversal operator where

t — —t) is invariant where

normal subgroup IGG such that PSG/IGG=8G.
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Gr, (i) = i(=)="h7!, Gp, (i) = Gp, (i) = 7°
Gp, (i) =i(-)=twr!,  Gr()=7° (2.5.88)
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Chapter 3

Phase diagram of the Hubbard

model on honeycomb lattice

In this chapter we study the phase diagram of the Hubbard model on honeycomb lattice.
We start from the non-interacting tight binding model which is a good approximation for
some physical systems, e.g. graphene. At half-filling we obtain semi-metallic phase whose
Fermi surface shrinks to two isolated points in the Brillouin zone. The energy spectrum
near these two points is linear in momentum and can be approximated as two Dirac cones.
Using this approach, we develop an effective continuum model describing this phase. Then
we consider small U-limit of the Hubbard model. We discuss that for small U /¢ ratios, the
onsite Coulomb repulsion is irrelevant in the renormalization group sense and the semi-metal
phase is robust and stable against weak and short ranged interactions. For moderate values
of U/t, we use rotor slave particle approach to study this phase. For higher values of U, Mott
transition into insulating phase is expected. To study this phase transition, we generalize
the slave-particle technique to study the phase diagram of the strongly correlated Hubbard
model on honeycomb lattice which may contain charge fluctuations. For large U, we have
antiferromagnetic order phase. As we decrease U below Ucp =~ 3t, the system undergoes a
first order phase transition into a gapped spin rotation invariant phase. Within meanfield
theory, this state preserves all symmetries of the lattice and exhibits the staggered compact
U(1) gauge fluctuations. Because of the compactness of the gauge field, we expect instanton
proliferation a therefore a confined phase in 2 + 1D. Under a semiclassical approximation

of the slave-particle approach, we find that such phase breaks the translation symmetry,
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the time reversal and the lattice rotation symmetry. However, beyond the semiclassical

approximation, a Z, spin liquid that does not break any lattice symmetry is also possible.

3.1 Introduction

Hubbard model[30, 27] is believed to describe the physics of many strongly correlated
systems e.g., Mott insulator[58, 31] and high temperature superconductors(13, 8, 46]. It is
the simplest model one can write capturing the strong correlation physics. So far many
theoretical[26, 50] and numerical techniques[56, 21, 51] have been developed to study this
model. Among them is the slave particle[92, 19, 49, 68] theory which was motivated by the
RVB state first introduced by P.W. Anderson[7]. One of the interesting phases that have
been studied and is strongly supported by the slave particle approach is the Z spin liquid
phase[64, 83, 84] which does not show any long range order down to zero temperature.
Unfortunately this phase has not been experimentally verified but recently Meng et al[56]
have studied the Hubbard model on honeycomb lattice at half filling using the quantum
Monte Carlo (QMC) method and have reported the existence of a spin liquid phase for a
range of U/t. Fortunately QMC does not have sign problem on bipartite lattices at half
filling so we can trust its results. For small U-limit they have reported the semi-metallic
phase. At U, ~ 3.5t they have seen a phase transition to the spin liquid with nonzero spin
excitation gap (gapped spin liquid). At U the charge gap opens up and therefore this
transition point is associated with the Mott metal-insulator transition. For a larger value
of U, ~ 4.3t they have obtained the anti-Ferromagnetic (AF) order in which the charge
gap is still nonzero but the spin excitation is the gapless Goldstone mode.

In this chapter, we generalized the slave-particle method[92, 46] to capture charge
fluctuations[49] to study the Hubbard model on honeycomb lattice. we have obtained a
similar phase diagram (see Fig. 3-1 and 3-2) as in [56] but with different numerical values
for U,y and Ug. We obtained a superconducting phase (instead of the semi-metal phase) for
small U/t and a AT phase for large U/¢. At the meanfield level, our phase between Ue; and
U, is a spin liquid with finite charge/spin gap that do not break any symmetry. However,
the meanfield state is unstable. Under a semiclassical approximation, we show that phase
between Uy, and Uy is a charge/spin gapped state that breaks translation and lattice rota-

tion symmetry but not spin rotation symmetry. On the other hand, in the presence of the
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Figure 3-1: Spin and charge excitation gap.— Spin excitation gap (blue line) and
charge excitation gap (red dots)
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Figure 3-2: Néel order parameter.— Staggered magnetization, m (=) S.(i)), as a
function of ¥. There is a phase transition to the antiferromagnetic order at U/ /t = 3.

second neighbor hopping, the meanfield state may become a Z3 spin liquid state[64, 83, 84]
that does not break any symmetry and has finite charge/spin gaps. All phase transitions
are first order which agrees with experiments[31].

We would like to point out that the slave-rotor method is the other method to include
charge fluctuations which give rise to a nodal spin liquid between 1.68t < U < 1.74t.
The slave-rotor method is more reliable for small U/t and gives rise to the correct semi-
metal phase. Our method is quite unreliable at small U/t and gives rise to a (wrong)
superconducting state.

In the large U/t limit, the Hubbard model can be approximated by the Heisenberg

model and we expect strong AF order in it. This model has been extensively studied by
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different methods [57, 81, 52, 62, 63, 20, 89]. Here we use a different approach to study the
antiferromagnetic phase. It is shown that the spin/chrage gapped phase has an instability

towards antiferromagnetism.

3.2 RG flow of small-U Hubbard model on honeycomb lattice

Let us consider the tight binding model on the honeycomb lattice at half filling. Since
the unit cell contains two atoms, we label electronic operators by sublattice indices A and
B, CJ} Ao Creates one spin o electron on sublattice A and C:‘ B, creates a spin o electron

on sublattice B. The tight binding Hamiltonian with only nearest neighbor is defined as

H=-t Y cl,,Cips+He. . (32.1)

<i,j>,0

Consider the Fourier transform of electronic operators defined as follow

1 .
CIZ,A,O’ - \/—N- Z €Xp (sz’l) Cit,A,aw
i

1 .
Clp, = v S exp(ik.Ri) Cl 5., (3.2.2)
i
where N is the number of sites on sublattice A. The Hamiltonian in this basis is

0 ¢ C
_ t t k kA0
H= Z [Ck,A,a’ C;;,B,g} ) ; (3.2.3)
k.o tk 0 Ck,B,a

where t; is defined as

. ik k
ty = b — eiky | 9¢7" cos \/52 = (3.2.4)

The energy spectrum of this system is
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+ 4cos

3k, 3y
*/; s2 ‘/; . (3.2.5)

k
Ep =%t = i\/l +4cos3Tycos

At half filling the chemical potential is zero at /' = 0. So we should fill all negative
bands. From the band structure it can be seen that we have two inequivalent gapless points

in the Brillouin zone, corresponding to

_ 4 o Am (L3
K_g—\/?_)(l,o), K—3\/§<2, 2). (3.2.6)

Since we have obtained isolated Fermi points instead of a closed Fermi surface, the ground-

state is “semi-metal”. The Hamiltonian can be expanded around these points and we obtain

5, 3t ,
c=K +q: tgiq= ) (—gs +igy) Hgiq= Vpgro! +'quy02(3.2.7)
S 3t )
=K't tkg= -5 (@ tiey)  Hiwg= ~0pz0" +vpqy0”, (3.2.8)
where v, is the fermi velocity of low energy excitations. In the remainder of this section

= A, B denotes the sublattice index and v = K, K’ denotes valley index. Now let us use

the following continuum wavefunctions defined as

2 Lo
Q/)V,p.,d (1:') = L1L2 /d27" € *e- Cv+q,y,a, (329)

where L  is the length of the system in the z and y directions. The continuum Hamiltonian

can be written in terms of these wavefunction and we have

H = —iv, /d27’" ) (B o ®0%, + 10 @12 ®0%9y) ¢ (r). (3.2.10)

From the above expression we can construct Lagrangian and using S = [ d¢tL definition

of action, we have
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S = i/d2f’dt Pt (r) (8 — v © V' ® 0%0: + v’ @12 @09, ¢ (r).  (3.2.11)

Now we want to investigate properties of this phase under renormalization group (RG)
flow. Since action is invariant under z — e tz, y — ety and t — e~!t transformations,
we conclude that wavefunction should changes as ¥ — ey, Now let us add the onsite
U Ei’f M My, term to the tight binding Hamiltonian to obtain the Hubbard model.
For small U/t limit which is connected to the U = 0 case, the tight binding model is
a good starting point. We can replace n;, . by ¢T1—+§1“—31i2’”—31/1 within the continuum

approximation. So we have:

1+03 1-—03

58S ~ U / d27dt T (r) 5 ¥ (r) ot () 5 W (r). (3.2.12)

Since we already showed that under RG flow ¢ — etlyp, we conclude that

U—e'u (3.2.13)

So the onsite term is an irrelevant perturbation and does not gap out the system. As
a result the semi-metal phase is robust for small U/t limit of the Hubbard model on the
honeycomb lattice. Any other short range interaction can be replaced by a similar quartic

term as in Eq. 3.2.12 and is therefore an irrelevant perturbation.

3.3 Intermediated U/t limit of the Hubbard Model

3.3.1 Introduction to the Rotor Slave Boson Method

In slave rotor model, electron operator is decomposed in to parts. The first part creates
spin and the second one creates charge of spin. The spin is attached to a fermionic object
while charge is attached to a quantum rotor. In rotor model, the L, and X operators are

defined in the following way

52



Li=idp, X! =é® (3.3.14)

L; can be viewed as number operator, while X;‘ is creation operator. To see this more
explicitly, note that |I), = exp (il6;) is an eigenstate of L; with quantum number equal to
l. By acting X : = e | changes to |+ 1. So X; is the creation operator for L; eigenstates.
Now let us identify L; operator with the fluctuations of electric charge at site i. So [ runs
from to —1,0, +1. —1 corresponds to the doubly occupied state, 0 to a state with only one
electron and +1 corresponds to the empty state at site . On the other hand, let us consider
fita operator which creates a neutral spin o fermion at site :. Therefore f;r’ X, ;‘ creates a
neutral spin ¢ fermion and adds one quantum of electric charge at site 1. So we can identify

this operator with the electron creation operator at site ¢ and we have

Cio = fioXi. (3.3.15)
It should be noted that for doubly occupied site L; = 1— f;r 1 fir— f;” . fi,, = —1. For singly

occupied sites L; = 1—f§’Tfi,T—f1¢f,-,¢ = 0 and for empty site L; = 1_f{1fi,T_fz’t¢fi,l = +1.

So for physical states we have to implement the following constraint at each site

Li=1—flifir — 1, fin- (3.3.16)

At half filling, 3=, nigniy = > nit n"’w(lwn"f)(l‘"i‘i) . On the other hand, ni‘”(l_";’)(l—"“) =

L2. So the Hubbard model can be written in terms of slave particles as follows

H=UML-t > fl XX, (3.3.17)

<i,j>,0

The above Hamiltonian should be considered along with the local constraint in Eq.
3.3.16. To implement the constraint we can use the Feynman path integral formulation,

with the following action
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A 9 1
- t b ) f 4 )2
S = /0 dr ;a fis (aT + zh,) fio + 5T Ei (0-0; + hy)

—t 3 (L) i3 k| (3.3.18)
<iyj>o i

in which we have used h; field to implement the local constraint in Eq. 3.3.16. Integration
over h; leads to the constraint. The above action has been studied by several authors.
S.S. Lee and P.A. [49] Lee have developed a U (1) gauge theory for this model. They have
studied the phase diagram of the Hubbard model on honeycomb lattice and triangular
lattice within slave rotor formalism. On the honeycomb lattice and for the nearest neighbor
hopping Hubbard model, below the phase transition the excitation energy for slave rotors
is gapless, while it is gapped above Mott transition. ”For nearest neighbor hopping, the
fermion dispersion is characterized by 2 inequivalent Dirac cones at the Brillouin zone
corner. On the insulating side of the Mott transition, the rotor is again gapped and the

problem reduces to 2N Dirac cones coupled to a compact U(1) gauge field with N = 2”.

3.4 Strongly correlated Hubbard Model

3.4.1 Anderson Zou Slave Particle Method

The Hubbard model is defined as the following:

H=UY niniy—t > ClCio+hec. (3.4.19)
i (i,j)lo

Here (i,7) means site j is one of the nearest neighbors of site i. We know that Hilbert
space of Hubbard Hamiltonian has four sates per site. |0y);,[1);,[1);,|14);. Let’s name
each state as follows: |holon), = h;‘ |vac), = |0),, |spin up spinon), = if,T [vac), = [1);,
|spin down spinon), = ;f ,Ivac); = |{);, |doublon), = d} |vac);, = |t]); in which |vac) is
the vacuum, an unphysical state which contains no slave particles even holons. Using this

picture we can rewrite the electron creation operator as
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cl,=flhitodfi o=1h dl] S (3.4.20)

It should be mentioned that the physical Hilbert space contains only four states: empty
state (holon), one electron (spinon) and two electrons (doublon) on each site. So we always
have one and only one slave particle on each site. So we conclude that we should put the

local constraint
nf+nl 4l +nf =1, (3.4.21)

to get rid of redundant states. This is the physical constraint which should be satisfied on
every site. We could also obtain this result by noting that the electron operators are fermion
and should satisfy the anticommutation relations. From the definition of CJ - it is obvious
that it is invariant under the following U(1) gauge transformations (We require h; and d;
to remain bosonic operators i.e., preserve their statistics after transformation, otherwise we
would have SU(2) gauge invariance. However at U = oo we have only fermions and only in

that case we have SU(2) gauge symmetry).

fio €% fic,  hi—oePhy,  di—e 4, (3.4.22)

It is worth noting the above equation tells that all the slave particles carry the same
charge under the internal U(1) gauge. Since the constraint as well as the Hubbard Hamil-

tonian are gauge invariant, so is the action of the Hubbard model.
In terms of new slave particles, the Hubbard Hamiltonian can be written as:
H=Y Udld—t> (8, + 1AL + he) (3.4.23)
(i’j)

In which we have used these notations X,f, i = 2 fit ofio ng = h;‘hj - d;rdj , A{’ ;=
>oo0f-0ifio s Ai",j = d;h; + hid; . To implement the constraint we appeal to the path

integral and the Lagrange multiplier methods, in which we use the following identity
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/ Dac #%:05 — §(0). (3.4.24)

where A field serves as the Lagrange multiplier in the classical mechanics. So we have

P= / D DFDRIDRDA DA e J 47€

0 0 0
L= fl o fio +dlo-di + bl = hi + iXigi + H,
T or T

gi = flafur + £1 foy + Rlhs + did — 1. (3.4.25)

The above motivates us to define the effective Hamiltonian as Hepp = H +14 ), Aig;. Now
by using the Hubbard-Stratonovic transformation we can decouple spinohs from [hard-core]
bosons at the mean field level. To do so we just replace x; ; and other operators with their
average. For translational invariant systems we can assume: (xi;) = (xi—j) and so on.
From now on x stands for the average of x operators and so on. Moreover (iA;) = Ao.
By these assumptions we can obtain unknown parameters in the effective Hamiltonian
from self-consistency equations. Now, let us focus on the effective Hamiltonian of bosons.
As long as Ay is nonzero, the pairing between holons and doublons is nonzero, and they
form bound state. Using the Bogoliubov transformation we can show that the ground-
state wave-function of bosons is a paired state which is completely symmetric between
holons and doublons. Therefore, as long as this state represents the ground, we have
<h};’Ahk,3> = <d};,Adk,3>, and as a result: xp = <h;f,Ahj,B - d;‘,Adj,B> = (. Spinons cannot
hop in this case and the system is insulator. Self-consistent equations show that x; = 0 as

well and therefore the following Hamiltonians describe the low energy theory of this phase:

) - tAz frar
HAB _ Z f frp ” (3.4.26)
—k,B,L
! p [ kAt ] —tAz + fik,B,l
U-X  —tAl k.4
HP =3 [ dea  hrB ] fo * . (3427
k ’ —tAk - X h—k,B

where AS? (E) =>s Ag’b ¢*3 and & connects two nearest neighbors. We have similar
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equations for H f A and H, bB A, Using the Bogoliubov transformation we can diagonalize the

above Hamiltonians. The energy excitation for spinons is
2
El = /22 + (tAl)?. (3.4.28)

For bosonic part we obtain

U U—2Xx)\2 2

At half filling, in order to excite a charge we need to annihilate two spinons and create
a pair of holon-doublon. So we can define the charge excitation gap as the sum of the
excitation energy of a holon and a doublon. When the charge gap is nonzero then the

paired holon-doublon state is stable because exciting quasi-particles on top of this state costs

2
energy. For this state, the charge gap is Ef = minE, * +minE, *= 2\[<y—_22—>‘0) — (3tAh)?,

Therefore, as long as U —2Xo > 6tAj, charge gap is finite and we are in the insulating phase.

On the other hand, when the charge gap closes, the paired holon-doublon state becomes
unstable and free holons and doublons proliferate. In this state, doublons and holons
condense independently (single boson condensation) such that (d; 4) = — (d; ) and (h; 4) =
(hi,B), and therefore xp = 2 (h; 4)* = 2np # 0, therefore spinons can hop freely and the
ground state is no longer an insulator. Since doublons condense at sublattice A and B
with opposite signs, we show that Ay = 0 and as a result Ay = 0. we relate the onset of
single boson condensation, i.e. the critical point below which charge gap closes, to the Mott
transition. It should be mentioned that x;; as well as A, ; jump at this point, so we obtain
a first order phase transition in this way, which is consistent with experiments. We like to
point out that since dfh operator that carries 2e electric charge, condenses in this state, we

indeed obtain a superconducting state instead of a semi-metallic phase.

The ground state of Hpyr is the tensor product of |g), and |g),. But because of the
constraint on the physical states, at each lattice site there should be only and only one slave
particle. Thus we need to put a projection operator Pg behind the ground state to impose
the constraint exactly[23]. In our calculations we relax this constraint for simplicity. So in

general the ground state has the following form.
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l9) = Pc |9}y l9) 4 (3.4.30)

3.5 Phase diagram

In the following subsections we discuss the three phases that we have obtained from the

slave particle method.

3.5.1 Superconducting phase

Now let us approach the Mott transition point from below i.e. from superconducting
side. In this phase both As and Ay are zero and therefore the charge excitation gap as well as
the spin excitation gap vanishes. Gapless charge excitation implies : minE,‘;’ k+minEg, =
U —2X — 6x; = 0. This condition can be satisfied up to U, = 2\ + 6txy = 2.2t. At
this point the Mott transition happens. In terms of physical electrons, we obtain an s-
wave superconducting state with gapless charge and spin excitations. The pairing order
parameter changes sign under parity and 60 degrees rotation and transforms trivially under
all other symmetry transformations. It should be mentioned that at small U limit, the Bose
gas of holons and doublons becomes very dense and there is strong interaction between
them. So the mean-field results are unreliable in this regime and the superconducting state
is a fake result. However, our method captures two important right features of the system
below the phase transition, because we obtain zero spin excitation energy as well as zero

charge excitation energy.

3.5.2 Charge/spin gapped phase

For U > U we have xp = 0. So the quasi-particle weight of spinons are zero and
they cannot hop since for any ¢ and j arbitrary sites: < f}ia fm> = 0. Therefore this
state is like a superconductor with infinite carrier’s mass m ~ 2}17, — co. Now let us find
Uci. To do so we assume that: Ay, (5) = Afp. So we have Ay, (E) = Af,bn(l_c'), where
n(E) Y 2e—i%uc033§kx and therefore the energy spectrum of spinons and bosons
are 1/ A2 + [tAy (k)|* and £U/2 + \/(U/Z — N)? — [tAf (k)|? respectively. From the energy

dispersion of bosons, one can read that the charge gap closes when Uy = 2A + 6tAf. Our
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numerical results show that near the phase transition, Ay ~ .5 and A ~ —.4 and the Mott
transition occurs at Ug /t = 2.2. For large U/t limit: Ay — 53 , Ay~ &, A~ (5)3Ln%
and ny ~ Ag ~ (%)2 It is clear from the energy spectrum of spinons that in the spin liquid
phase, there is a gap in their spectrum equal to: E_"; = |A|. Note that in the spin-charge
separation picture, the physics of spin is determined by that of spinons. Therefore the spin
excitation gap is also Ej = |A|.

Now let us focus on the gauge theory of this phase. In this phase the effective action of

spinons is of the following forms:

Hs - A Z f;r’a'f’i,‘r,d

1,0,T

—t Y MGG oS4 flp o+ he (3.5.31)
<i§>0,T

Now if we transform operators as: f; 4o — €*fi a0 and fip, — € ““fi o for any
arbitrary phase «, i.e. assuming a staggered global gauge transformation, then the effective
Hamiltonian does not change. Therefore the invariant gauge group (IGG) of the Hamilto-
nian is the staggered U(1). The reason is that there is no hopping term due to the nonzero
charge gap and the gauge transformation of two neighboring sites have opposite phases,
the total phase change of the pairing term becomes zero and therefore gauge fluctuations
are described by staggered compact U(1) instead of compact U(1) gauge theory. This is
equivalent to assuming positive unit charge on sublattice A and negative unit charge on
sublattice B for slave particles under the internal gauge transformation.

So, at mean field level, the charge/spin gapped phase has a neutral spinless U(1) gapless
mode as its only low energy excitations. However, it is well known that U(1) theory in 2+1D
is confined due to instanton effects. So let us assume that the U(1) fluctuations are weak
and use the semiclassical approach to study the U(1) confined phase where the U(1) mode
is gapped. In the next chapter we show that these instanton operators, e (in the dual
XY model), carry a non-trivial crystal momentum. Also, under 60 degree lattice rotation
and time reversal, an instanton is changed to an anti-instanton, ¢ — ¢=®_ The instantons
carry trivial quantum numbers for other symmetries. However, a triple instanton operator

cos(36) carries trivial quantum numbers for all symmetries. This allows us to conclude that

the neutral spinless U(1) mode is described by L = 2—19 (86)? + K cos(30). In the semiclassical
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limit (the small g limit), (e®) # 0 and we obtain a phase that breaks the translation, the
time reversal and the 60° rotation symmetries, but not spin rotation symmetry [78].

We like to point out that in the presence of second neighbor hopping in the Hubbard
model the charge /spin gapped phase can be spin liquid that do not break translation, parity,
60 degree lattice rotation, and spin rotation symmetries. It is because we can break the
staggered compact U(1) gauge symmetry down to a Z one by Anderson-Higgs mechanism.
If we add second neighbor hopping to the Hubbard model, within slave particle approach,
this term generates pairing terms of the form f, J, ralf }m_g, i.e. it induces the same sublattice
pairing and the Hamiltonian is no longer invariant under the staggered global U (1) gauge
transformation. In this case the staggered compact U(1) gauge symmetry is broken down
to a Z, gauge symmetry. The U(1) gauge fluctuations are gapped and thus our mean filed
state is stable and we can trust our meanfield results. Therefore we obtain a spin liquid

phase.

3.5.3 Antiferromagnetic phase

In this part we show that the charge/spin gapped phase is unstable towards antiferro-
magnetic order above Uz = 3t. To obtain Neel order in the t-J model we simply assume
that <qu, A> = - <5"z B> = m. But how can one implement this idea in the Hubbard model
within slave particle approach? In the Neel order phase, translation symmetry is broken
and there is an asymmetric situation between sublattice A and B. For example we can
obtain a antiferromagnetic phase by assuming Ay 5 = (fj,1fi.a1) 7 (F5,41fi81) = Doy
This assumption simply means that the chance of finding a spin-up spinon on sublattice
A and another spin-down spinon on sublattice B is more than finding the opposite one, so
this method introduces staggered sublattice magnetization and leads to the Neel order. If
there is a Neel order in the system then the chance of creating one holon-doublon pair from
annihilating a spin-up spinon on sublattice A and a spin-down spinon on sublattice B is
more than the other process. Therefore the excitation energy of spinons for up-spin on A
and down-spin on B is E}(k) = m while for down-spin on A and up-spin on
Bis E]%(k) = /AT +[tAs,(k)[?. On the other hand, since we are not interested in CDW,

we need a symmetric situation between sublattices A and B for the charge sector. So the

energy excitation of bosons is Ey(k) = \/ (U/2 = X)? — [tAf(K)|?. Using these assumptions

we lead to the following self-consistency equations:
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3.5.32
El f(k) ( )
In(k)|2Aq

3.5.33
Z EQf k) ( )
Ap—Aust Az,f (3.5.34)

A A k)[?
1A f + 2,bA2,f Z In(k)| Af (3.5.35)

Arp+ Az Ey(k)

By solving the above equations we find that above U, = 3t, m # 0. So we conclude
that for U > Uy we obtain AF order. It is interesting that in this phase, the gap of spinons
is very small and negligible (for example at U=4, it is —2 x 10~7). So in this phase we can
assume that spinons are massless quasi-particles.

To conclude this chapter, we have used a generalized slave particle method to derive
the phase diagram of the Hubbard model at half filling on the honeycomb lattice. Within
the mean field approximation we can decouple fermions from bosons to achieve the effective
Hamiltonian that describes the low energy physics of the system. The physics of the Mott
transition is discussed and it turns out to be a first order phase transition. It is shown that
the phase transition occurs when the charge gap opens up. Above the critical point, within
meanfield theory we obtain a spin liquid phase. But after including gauge fluctuations of
the emergent spin liquid and investigating the instanton effect, we argue that this phase
is unstable and we finally obtain a spin/charge gapped phase that breaks the translation
symmetry. For large U limit, a new approach to study antiferromagnetic phase within the
- slave particle picture has been developed. It is shown that the gapped spin liquid phase has

an instability towards antiferromagnetism.
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Chapter 4

Gauge theory of the Hubbard
Model on the honeycomb lattice

and its instanton effect

In this chapter we investigate possible spin disordered phase in the Hubbard model on
the honeycomb lattice. Using a slave-particle theory that include the charge fluctuations, we
find a meanfield spin disordered phase in a range of on-site repulsion U. The spin disordered
state is described by gapped fermions coupled to compact U(1l) gauge field. We study
the confinement/deconfinement problem of the U(1) gauge theory due to the instantons
proliferation. We calculate all allowed instanton terms and compute their quantum numbers.
It is shown that the meanfield spin disordered phase is unstable. The instantons proliferation

induce a translation symmetry breaking.

4.1 Introduction

In previous chapter, we studied the phase diagram of the Hubbard model on the
honeycomb lattice (see Fig. 3-1 and 3-2) using the generalized slave-particle technique
[92, 19, 49, 68] which include charge fluctuations. Within meanfield approximation, we
found a Mott phase transition to the insulating phase at U;; ~ 2.2t above which charge
gap opens up and we obtained the gapped spin liquid phase (spin/charge gapped phase).

There is also another phase transition between the spin liquid and the anti-ferromagnetic
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order phases at U ~ 3t. In this phase, in contrast to the the gapped spin liquid phase,
the mass of spinons is very small and negligible. In the case of nearest neighbor hopping
Hubbard model, which is a bipartite system, the gauge theory of our meanfield spin liquid
phase is the compact staggered U(1). In this phase, all excitations are gapped except gauge
fluctuations. These results are within mean-field and due to the compactness of the U(1)
lattice gauge theory, stability of such mean-field states are under question. In compact
U(1) gauge theories, instanton (anti-instanton) configurations are allowed and when they
proliferate, spinons become confined and the results of the mean-field are no longer valid.
Therefore studying the fate of this gapped spin liquid is necessary.

In this chapter we find that instanton configurations are relevant. instantons have
nonzero fugacity and we do obtain a confined phase. More importantly, instanton operators
carry a non-trivial crystal momentum. Also, under 60 degree lattice rotation and parity, an
instanton is changed to an anti-instanton. However, the instantons carry trivial quantum
numbers for other symmetries. Since a triple instanton carries trivial quantum numbers for
all symmetries, so triple instanton can proliferate whiéh leads to a confined phase. Since
single instanton carries non-trivial crystal momentum, this allows us to conclude that the
U(1) confined phase is a phase that break translation symmetry but not spin rotation
symmetry. Therefore we finally obtain an insulating phase at half filling that breaks the
lattice translation symmetry! On the other hand, in the presence of second neighbor hopping
in the Hubbard model the charge/spin gapped phase can be spin liquid that do not break

translation, parity, 60 degree lattice rotation, and spin rotation symmetries.

4.2 Symmetry transformations on the honeycomb lattice

Since the unit cell of the honeycomb lattice has two sites in it, and we can label them by
A and Bor s = 0, 1, any lattice point can be represented as R = z1@1+xod2+s§ = (21,72, 8),
where @ = v/3a(1,0) (a is the lattice spacing between A and B atoms), d; = V3a (%, 3@)
and s takes 0 and 1 values. The basis vectors of the reciprocal lattice are G, = é—g (é, 1)
and G, = %—’; (0,1) (see Fig. 4-1). Type A atoms are connected to type B atoms by the
following three vectors: by = a(0,1), by =a (@, _Tl) and b3 = a (%@, ‘Tl) Honeycomb
lattice is invariant under five symmetry transformations: time reversal, parity (o : (z,y) —

(z,—y)), 60 degree rotation (C), translation along d; and @z (T1 and T). It is easy to
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Figure 4-1: Lattice structure of the honeycomb lattice.— Honeycomb lattice and
basis vectors of reciprocal lattice. (a), Honeycomb lattice in real space. Blue dots represent
atoms on sublattice A and the red dots represent atoms on sublattice B. R, and Ez are
basis vectors of the honeycomb lattice. (b), Brillouin zone. G and Gy are basis vectors of
reciprocal lattice. In the absence of A, energy dispersion has two inequivalent nodal points
at K and K’. It is clear form this figure that under Cg (60 degrees rotation) K — K’ and
K’ — K, while they do not change under parity o.

check these symmetry operations act on the lattice as the following:

11 0 (z1,20,8)  — (z1 4+ 1,29,8) (4.2.1)

Ty @ (x1,22,8) —  (z1,22+1,5) (4.2.2)

T : (z1,22,8) — (1,22, 8) (4.2.3)

o (z1,22,8) —  (z1+2,—22,1—5) (4.24)

Cg: (z1,22,8) — (l—s—=zg,z1+2za+s—1,1-5). (4.2.5)
4.3 Method

In the Anderson-Zou slave particle method, electron operators are represented as:

1l
o=l htodfio=[n dl| " | (4.3.6)

C‘rfi,—a

where f;, ., Creates a state with a single electron on it (a spinon), h.g creates a state with no
charge on it (a holon), and df creates a state with two electron on site i (a doublon). It should
be mentioned that the physical Hilbert space contains only four states: empty state (holon),
one electron (spinon) and two electrons (doublon) on each site. So we always have one and

only one slave particle on each site. So we conclude that we should put the local constraint
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nh +n{ T+"{, . +ng = 1, to get rid of redundant states. This is the physical constraint which
should be satisfied on every site. We could also obtain this result by noting that the electron
operators are fermion and should satisfy the anticommutation relations. From the definition
of Cg’ , it is obvious that it is invariant under U(1) gauge transformation (We require h; and
d; to remain bosonic operators i.e., preserve their statistics after transformation, otherwise
we would have SU(2) gauge invariance. However at U = co we have only fermions and only
in that case we have SU(2) gauge symmetry). It is worth noting that all the slave particles
carry the same charge under the internal U(1) gauge. Since the above constraint and as a
result the Hubbard Hamiltonian are also gauge invariant, so is the action of the Hubbard

model.

Using this slave technique the Hubbard Hamiltonian can be rewritten as the following:

_ t f b Ft AL
H= ZUdidi —t Z (Xi,jkj,i + Ai,in,j + h.c.)
<%,j>
AAFLfig + FL foy + bR+ dldi — 1), (4.3.7)

in which we have used these notations X{ = > fla fio s xi?,j = h}hj - dIdj , A{’ ;=
>o0f-0ifio s A?,j = d;hj + hid; . Within mean field and by using Hubbard-Stratonovic
we can decouple spinons and bosons and obtain a mean field state. In our numerical studies
we have obtained three phases. At small U/t limit we obtain a semi-metallic phase. At
large U/t limit we obtain AF order and for moderate values of U/t we obtain a spin liquid

phase.

4.4 Instanton proliferation and confinement

Now let us focus on the spin liquid phase. In this phase: xif, ’;‘ = 0. Therefore the

effective Hamiltonian of spinons in this phase is of the following forms:

Hy=AS fl_ _firo—t Ay (i) ofl g flg o +he.. (4.4.8)
10y » k) ]l 3

4,0,T <i,j>,0,7

Now let us use the following ansatz: A, (5) = Ap. So we have Ay (E) =A fﬂ(’;), where
n(E) = ety 4 2e+1% cos %—gkm is the structure factor of the honeycomb lattice. Therefore

the energy spectrum of spinons are: /A2 + [tA, (k)|%. From the energy spectrum we see
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that spinons are gapped. But what if we include the effect of instantons? To answer this

important question, we first study the gauge theory of this mean-field state.

In the above effective Hamiltonian we transform operators as: f; 4o — et fiAe and
fiBs — € *“fipo for any arbitrary phase o, ie. assuming a staggered global gauge
transformation, then the effective Hamiltonian does not change. Therefore the IGG of the
Hamiltonian is staggered U(1). The reason is that there is no hopping term due to the
non-zero charge gap and the if we the gauge transformation of two neighboring sites have
opposite phases, the total phase change of the pairing term becomes zero and therefore
gauge fluctuations are described by staggered compact U (1) instead of compact U(1) gauge
theory. This is equivalent to assuming have positive unit charge on sublattice A and negative
unit charge on sublattice B for slave particles under the internal gauge transformation. So,
at mean field level, the charge/spin gapped phase has a neutral spinless U (1) gapless mode
as its only low energy excitations. However, it is well known that U (1) theory in 241D
is confined due to instanton effects. So in the latter part of this chapter, we will assume
that the U(1) fluctuations are weak and use the semiclassical approach to study the U (1)
confined phase where the U(1) mode is gapped.

We like to remark that it is possible to break this staggered compact U(1) down to
a Za [53, 87, 75, 44, 66] one by Anderson-Higgs mechanism. If we add second neighbor
hopping to the Hubbard model, within slave boson this term generate pairing terms of

the form f t

fT
i,7,04j,7,—0?

i.e. it induces the same sublattice pairing and the Hamiltonian is
no longer invariant under the staggered global U (1) gauge transformation. In this case
gauge fluctuations are gapped and thus our mean filed state is stable and we can trust our
results. Therefore for this case spin liquid phase is physical. On the frustrated lattices
like the triangular lattice the gauge theory is Z> because we cannot dive the lattice in two

sublattices, A and B.

Tt is useful to do particle hole transformation on sublattice B, so that we can see the

gauge theory of the transformed Hamiltonian manifestly:

Hy = Z A (fitA,Gfi7A»‘7 - Fit,B,aFinﬂ) -t Z Ab (27 ]) G 'ZA,UFJI,B,—O' + h.c. . (449)

: =
20,7 4,0,0,T

In the absence of X energy band of spinons has two nodal points around K= 33/’%& (1,0)
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and K’ = % (%, @) (see Fig. 4-1).If we expand the 7 around these two points we have:

n(K+q = %ﬁ (—¢o +igy) (4.4.10)

o 3a ,
0 (K'+d) = 5 (4= +iqy), (4.4.11)

where ¢ = (qz,qy). So we have 8 flavors of spinons depending on their physical spin degree
of freedom, sublattice index, and wether their momentum is around K or K’ !, Therefore we

define the 8 component spinor as:

‘IIT (:ZJ) - (f}l,K,T ('7:) ) FL,K}T (1;) 7fj{}[(,,j, (CL’) k] FL,KJ (:l:) ’fLsK';T (w) ’ F;sK/xT (1?) ’fL,K’,T (CU) 3 F;,K/’T (IEO§412)

Using the linearized Hamiltonian around K and K it is straightforward to show that the

continuum model can be written as:

H= /dza: i (z) [z\;ﬁ @0 e - i?;—aAbam,ul @m0 ®18 - i%Abayu2 @m0 ® 1/0} W) 13)

b are Pauli

where u? (a =0,1,2,3) are Pauli matrices acting on the sublattice indices, T
matrices acting on the physical spin, and v° are Pauli matrices that act on the valley
indices. It is known that if filled band has a nontrivial total Chern number, then instanton
effects can be ignored, since the nontrivial Chern number lead to a Chern-Simons term for

the U(1) gauge field. So we need to calculate the Chern number of the filled band.

We will calculate the Chern number through the Dirac nodes. Each Dirac node con-
tribute +1/2 Chern numbers (see appendix), and each filled band have an even number of
Dirac nodes. So adding the contribution from all the Dirac nodes, we obtain an integer

Chern number for the filled band.

Let us consider the following two by two Dirac theory:
3
H= / d?z ! (z) [mag + gAb«pf (z) (—io'dy + ia2ay)} ¥ (z), (4.4.14)

where o® are Pauli matrices. The mass of the above Hamiltonian is by definition m. It

has been shown that each massive Dirac cone with mass m has C = 2‘|"1:T| nontrivial Chern
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number [34, 35]. Now let us consider following Hamiltonian:
3
H= / d*z ¢t (z) [ma3 - §A,, (=io'd, — io2ay)} ¥ (z). (4.4.15)

If we us the following transformation: ¢ — ¢’ = ol4, then the above Hamiltonian can be

rearranged as the following:
H= /d2x ' (x) [—ma?’ + 3—;Ab (—ic'8, + iazay)} ¢ (z). (4.4.16)

Therefore the mass of this Hamiltonian is —m, and therefore it has C = —5%' nontrivial

Chern number.

Using the above arguments it can be shown that the mass of the two Dirac cones at
k=K is A < 0 and they contribute C' = f% Chern number. The mass of the two other
Dirac cones at kK = K’ is —A > 0 and they contribute C = 3 Chern number. Therefore
the total Chern number of our theory is 2 x —1/2 + 2 x 1/2 = 0. So the coefficient of the

Chern-Simon action is zero, and it does not constraint the proliferation of instantons.

On the other hand since we have a massive Dirac theory, instant-instanton correlation
function at large distances DOES NOT decay exponentially. Therefore nothing prevents
instantons from proliferation. They will proliferate and gap out the gauge particles. So
the U(1) gauge theory is in the confined phase. Now we should compute the quantum
numbers[22, 5, 88, 9, 10, 43] of instantons, in order to understand the symmetry properties

of the U(1) confined phase. To do so let us first derive the instanton operators.

Since instantons (instantons) in the presence of the Chern-Simon action with chern
number C, create C fermions, therefore the instanton operator creates 2 x —1/2 = -1
fermions at k = K (i.e. annihilates 1 fermion at K), and creates 2 x 1/2 = 1 fermions at
k = K'. Therefore, we obtain many different possibilities for the instanton operators, which

include:
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¢ = fL’T,KlfA,T,K
¢2=Fh . wiatrk = foixfat
$3=f :[1, e fatk

$a =T g‘,l,K’ fark = Btk fatrk

¢5 = fhywoFonie = fhaxfhn
$6 = Fh 1 xr Fork = Bk fh ) ko
1= TFhxbean = Th ofh

¢8 = F;,l,K/ FB)T)K = fBiT’KfL!'L!K,

P9 = fL,T,K'fA,l,K
$10 = FLT?,T,K'fA,l,K = fBykfalk
11 = fL,¢,K'fAyl,K

¢12=Fh | fask = Fokfask

13 = Fhq o Pk = Fhp i fhg o
14 = F;,T,K'FB,LK = fB’l’Kffti"T’K’

1
15 = fA,¢,K'FB,¢,K = f:t,.l,,K’f;,T,K’

P16 = ffa,i,xff*}z,¢,x = feakf ;,T,K”

cause a confinement of the U(1) theory.
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(4.4.17)
(4.4.18)
(4.4.19)
(4.4.20)

(4.4.21
(4.4.22

)
)
(4.4.23)
(4.4.24)

(4.4.25)
(4.4.26)
(4.4.27)
(4.4.28)

(4.4.29)
(4.4.30)
(4.4.31)
(4.4.32)

It is obvious that all the above operators carry nonzero crystal momentum which is
equal to K’ — K. Since the microscopic Hubbard Hamiltonian does not break translation
symmetry, therefore the single instanton operator cannot appear in the path integral. On
the other hand since 3 (I? 'K ) = (0, 0), triple-instanton is not forbidden and will appear

in the path integral. So the the path integral contain a triple-instanton gas, which will



T1 T2 T 22 Cs
faok (@) | €73 fBax (Tiz) e ook (Toz) | afa—ax (@) | fBak(02) | fBok (Cox)
Bk () | €3 faak (Ti2) | €3 faok (T2) | afp ax (@) | faex (02) | faek (Coz)
faax (@) | €7 fox (112) ¢35 fporr (1hx) | afa ok (@) | fBok (02) | fBak (Cox)
foox (@) | €3 fanx (12) | €7 faax (1) | ofp ok (@) | faex (02) | faex (Coz)

Table 4.1: Symmetry transformation rules of spinon operators under translation, time re-
versal, parity and 7/3 rotation.

4.5 Quantum number of instantons

Now we like to compute other nontrivial quantum numbers of the above instanton

operators. To do so, let us first comment on the transformation of the continuum wave-

function. Using transformation rules in Table 1, we obtain following relations:

Physical spin rotation around z azis by angle 6 : S,¥  — 02 (z) .

Physical spin rotation around y axis. by angle 8 : S,¥  — eiOn*eT? /2 (z).

Translation Ty : T7'¥¢v  — iEv (/).

Translation Ty : THh¥ — Ty (@).

Time reversal : T¥ — it? vV ().

Parity

s ol o plert e (2).

Ce : Ceg¥ —pleriev¥().

where z’ is the transformed = under each symmetry transformations.
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4.5.1 Symmetry transformations on instanton operators

Using symmetry transformation of continuum wavefunction, we can read the correspond-

ing transformation of monopole operators. Under /3 rotation (Cg) we have:

Parity operator o where takes y to —y acts on monopole operators as following:

Co : ¢i— —pli

¢1 = —¢1s, 2 = —b12, ¢3 = —Ps,
¢5 = — 15, b6 = — P11, ¢7 = —dbr,
b9 = —d14, $10 = —d10, P11 —~ —9s,
$13 = — P13, d14 = — 9, 15 = — s,
Under time reversal 1" we have
b1 46, ool s —4,
¢s = —dly g6 +ols,  dr— +ok,
do— —¢h, b0 ol eu o+l
$13 — +¢>){07 b1a— —¢ly, b15 = —bh,

Monopole operators transform under translation along Rl as
27
T, : ¢r—exp (z?> Pk-

Similarly for translation along Ry we have

T : ¢ —exp <—z2—w> bk

3

And finally rotation around z axis by 6 angle:
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bs = —P4
¢ = —¢3

d12 = —do

16 = — 1.

bq — +¢J§
b = —

¢12 = —¢5t,

b16 — +¢I;-

(4.5.33)

(4.5.34

~—

(4.5.35
(4.5.36

~— S~ N

(4.5.37

(4.5.38
(4.5.39

(4.5.40

~ S~

(4.5.41

(4.5.42)

(4.5.43)



$1 — 91, $2 — 2, $3 — exp (i0) ¢3, ba — exp (i0) pa (4.5.44)
¢5 — ¢, ¢6 — b6, ¢7 — exp (i8) 7, ¢g — exp (i0) ps (4.5.45)

¢9 — exp (—ib) g, ¢10 —> exp (—18) 10, d11 — d11, P12 —> P12

(4.5.46)

$13 — exp (—if) ¢13, P14 — exp (—i0) 14, S15 — 15, P16 — P16. (4.5.47)

The instanton operators should have the same symmetry as the microscopic Hamiltonian

and therefore they carry trivial quantum numbers. Using the above transformations, it is

easy to see The following term is invariant under all transformations:
50— g [ o (¢ @)+ 6" @),
where ¢ is defined as the following:

¢ =¢a—d1at+d5— 15

= fykfark — fBrxfask + fIl,T,K'fI?,,L,K’ - fL,L,K’fL,T,K"

This operator has the following symmetry properties:

o ¢ — ¢

T: ¢ — ¢

Co: ¢ — ¢

T ¢ > exp (—z%’r) 6
Iy: ¢ — exp (+z?3z> b.

(4.5.48)

(4.5.49)
(4.5.50)

(4.5.51)
(4.5.52)
(4.5.53)
(4.5.54)

(4.5:55)

It can be easily checked that ¢ operator is also invariant under rotation z and y axes.

4.6 Discussion and conclusion

We have found a triple-instanton operator that has all symmetries of the microscopic

Hamiltonian. Therefore this term is relevant and has a non-zero fugacity. Because of
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Figure 4-2: Possible groundstates of the Hubbard model on the honeycomb lat-
tice. Two possible valence bond solid (VBS) states in honeycomb lattice that break the
translation symmetry. Bold line indicates the stronger bonds and narrow line the weaker
links. The bond operator in our case corresponds to the exchange energy ie. A, (4,7).
R"i = 3ﬁ1 and R"2 = f?l + H’,g are new basis vectors of the lattice. The area of the unit
cell is three times bigger than the translation symmetric case and contains six atoms in
it. (a), Honeycomb lattice with broken translation symmetry, while Cs and time reversal
symmetries are unbroken. This phase corresponds to # = 0. # can correspond to the flux of
the hexagon. (b), Honeycomb lattice with broken translation, Cg rotation and time reversal
syminetry (center of rotation is yellow hexagons). This state corresponds to 8 = 333 The
phase with # = —2 is related to this by Cg or 7. From this figure it is clear that in this

3
case Cg breaks down to (3.

74



instanton proliferation, the U(1) gauge fluctuations are now gapped out. On the other
hand, since single instanton operator carries nonzero crystal momentum, the translation
symmetry breaks spontaneously. To have a better insight of the situation, we can use
the duality between U(1) gauge theory and the nonlinear sigma model. If we identify ¢
operator with exp (i0), then g (¢® (z) + ¢ (z)) = 2gcos (30). The U(1) gauge theory with
triple-instantons can be described by the following dual theory:

L= 6%~ £ (V9) +2gcos (30). (4.6.56)

Therefore I' and Cg transformation are equivalent to 6 — —6, o is trivial and 1) and
Ty are equivalent to 6§ — 6 — 2—375 and 8 — 6 + %’r respectively. This model has three
inequivalent ground states determined for § € {0, %", 47" (see Fig. 4-2). Therefore the
ground-state degeneracy of our model is also three. This happens because we lose the
translation symmetry along @; and & direction. The reason is that ¢ operator carries
nonzero crystal momentum. But it is easy to show that ¢ is invariant under 1% and 1175
transformation. So the basis vectors of the new lattice are B, = (3,0) = 3R; and R} =
(1,1) = Ri + R,. The area of the unit cell is three times bigger and it contains six atoms
in it.

In summary, if we treat the U(1) gauge field as a semi-classical field (i.e.Gaussian ap-
proximation), by analogy to the nonlinear sigma model, instantons proliferate, gauge field
gaps out and lattice symmetry spontaneously breaks. What we finally obtain is a band
insulator instead of a spin liquid phase. We want to mention that if gauge fluctuations are
strong, other possibilities may happen. Among them, the Z> spin liquid is of more inter-
est. This phase can be obtained if strong gauge fluctuations generate hopping term to the

nearest site or a nonzero pairing amplitude to the second neighboring site. The presence of

any of these two terms breaks U(1) down to Z; gauge theory which is stable.

4.7 APPENDIX: Hall conductance of an insulator

Conducting fermionic systems possess Fermi surface as a locus of gapless excitations.
So if we couple these systems to an external electromagnetic field, low energy excitations
is allowed and the system responses by exciting particle-holes across the Fermi surface (in

some cases, e.g. in honeycomb lattice, Fermi point). For insulator the valence band is fully
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occupied by fermions and there is no Fermi surface and as a result there is finite gap for
particle-hole excitation. Due to the absence of low energy excitations, the imaginary part

of response function is zero for w < Ey, where E; is the minimum energy gap.

Now we want to couple such an insulating state to the electromagnetic field. As a result,

the Lagrangian of the system is

L (f, ff) + Lgauge (4,) (4.7.57)

where A, is the electromagnetic gauge potential. The first part is the lagrangian for inter-
acting fermions in the presence of the external electromagnetic field and the second part is
the Lagrangian for the electromagnetic field itself. The first part is assumed to be invariant

under the following gauge transformation

faky = e¥@e (), A, - A, + 8, (aH). (4.7.58)

We can obtain an effective action only in terms of gauge field by integrating out fermions.
Since the electromagnetic is couple minimally to fermions, i.e. is coupled to their current,
upon integrating fermion we obtain an effective Lagrangian in terms of current-current

correlation function of fermion as follows

Leﬂ: (A'u) = Lgauge (A#) + 5Leﬂ‘ (A“)
0L (An) = —% / dzdz’ A, (z) P* (z —2') A, (¢'), (4.7.59)

where PH (z — 2’) is the current-current correlation function. Since the original La-
grangian in Eq. 4.7.57 is gauge invariant, dLog(A,) should be gauge invariant as well.
Electric and magnetic fields are the only local function of A, which are invariant. So

dLog (Ay) contains the following term

1 .. .,
6Leff,1 =73 (Bz'X”Bj + Ez'P”Ej) . (4.7.60)
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In 2 + 1 dimension, §L.g may also contain the following Chern-Simons term

Ky 17
OLefry = - AudvAxe” A, (4.7.61)
where p, v, A = 0,1,2 and €V is the fully antisymmetric tensor. Although this field can-

not be written in terms of the electric and magnetic fields, it is invariant under gauge

transformation, since after

Ay —> Ay +0up, (4.7.62)
the Chern-Simons action changes as follows

K
Sc_s = / OLeffg — S +f dSH(]S——a,,Axel’W'\, (4.7.63)
- Jv ’ S=8v 4n

where V is the space-time volume and S is its boundary. For closed space-time that does
not have boundary, the surface integral vanishes and therefore the Chern-Simons action is
gauge invariant on such systems. By varying the Chern-Simons action respect to the gauge

potential we can obtain the linear response current as follows

K K K
Jr = %’E!h Jy - —ZT-EI’ P = %B’ (4'7'64)

where p is the change in the density of fermions. From the above relations we see that %
is the offdiagonal conductivity of the system. To compute K explicitly, we consider the

following gauge field configurations

Ay = Ay = Ao =0, (4.7.65)

where L o is the size of the system in the = and y directions. OLesg = 6L, + 0L, in

terms of these new variables becomes
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6Leﬁ — Z;gigje’l] + gz.png‘ (4766)

This can be viewed as the Lagrangian of a particle whose coordinates are #; and 5.
Therefore the above Lagrangian describes the motion of a particle in 2 spatial dimension in

a uniform magnetic field.

éLeﬂ: = a; (9) 0.1' + éipijéj,
Ky . b=29, Boya1 = (4.7.67)
ar 2 az = ar 1V2, = 0p, @2 6,31 — 47\’. -l

ay — —

It can be shown that 6; ~ 8; + 2, therefore the above Lagrangian in fact describes
the motion a particle on a torus 72. It should be noted that § 6Less is the action for the

adiabatic evolution of |6 (¢)). So it should be related to the Berry phase and therefore

f(SLeff = fdt%{),-éje“ = f"b (0 (t)] % 16 (¢)) . (4.7.68)

If we go around the lattice, i.e. using (0,0) — (=,0), (7,0) — (x,7), (x,7) = (0,7)
and (0,7) — (0,0) (let us call this path C), we have

?{ dtg—ﬁiéjeij _K x 2 x Area of loop C = 27K. (4.7.69)
47 4
So we have
1
K= ——?{ dt (0 (t)}i0s 16 (t)) - (4.7.70)
271' C

Now let us consider the Hamiltonian of a Band insulator. In real space, (in some cases after
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some transformations) it can be written in the following way
H= Zf tijfj = Z FIM (k) fr (4.7.71)

where f; has n components, and ¢;; is an n X n matrix that depends only on % —j and M (k)
is the Fourier transform of ¢;;. After turning on the electromagnetic field, the Hamiltonian

changes and we have

Z fltyeA =D g, = Z Fime (k (4.7.72)

We can diagonalize M (k) matrix to obtain eigenvectors ¢Z , Where a = 1,...,n, labels

ath eigenvector. Now we identify |0) with the filled lowest band, i.e.

|6) = ®x M,k) : (4.7.73)

Using Eq. 4.7.70, we can calculate the Hall conductance of this insulator. The following

identity can be easily verified

1

K 27 dh. ] o

T or /dzk ' [(ak”d){’k) (O, Y1) (aky'/’lf,k) (akm%,lc)] ) (4.7.74)

where Cy, is a loop around each momentum. For example let us consider the following Dirac

Hamiltonian

"6k (mo® + ka0t + mkyo®) e = = > YL Br G (4.7.75)
k k

The above Hamiltonian for each k, is mathematically equivalent to the Hamiltonian of a
spin in the presence of By. For (mkz)2 + (ngky)2 < m?, the pseudo-magnetic field By is in
the m2 direction, while for (m ks)? + (ngky)2 > m? it is in the  — y plane. So by changing

E and as a result changing By we span Half of a sphere, i.e. £27 solid angel. The sign of
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angel, depends on a = sgn (mmn2), because when o > 0, By evolves counterclockwise and
therefore we span +27 solid angel and when « > 0, By evolves clockwise and therefore we

span —27 solid angel. Berry phase is related to the solid angel in the following way

Q
O = 5 = sen (mipm2) . (4.7.76)

From Egs. 4.7.74 and 4.7.76, we have K = 21—7rsgn (mmne) w. So the Chern number of a

massive Dirac band is

.1
K = 25en (mmmna) . (4.7.77)
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Chapter 5

Fate of m-flux state in Hubbard

model on square lattice

In this chapter we investigate the fate of the w-flux spin liquid phase in a Hubbard
model on the square lattice. We argue that, in the U — oo limit, such a spin liquid
are a gapless spin liquid described by QCD3 with massless Dirac fermions coupled to an
SU(2) gauge theory. For finite U, we use a generalized slave particle approach to the
strongly correlated Hubbard model that allows charge fluctuations in addition to the spin
fluctuations. The generalized slave particle approach has only an U (1) gauge symmetry. In
this case, we find that, a mass term for the Dirac fermion is allowed that respect all the
symmetries and the U(1) gauge symmetry. Therefore, the 7-flux spin liquid phase have an
instability to open an energy gap when there are charge fluctuations. The gapped 7-flux
contain strong U(1) gauge field fluctuations which is confining. By calculating the U(1)
gauge instanton quantum number, we argue that such a gapped wm-flux phase breaks the

translation symmetry and correspond to some kind of valance bond solid.

5.1 Introduction

The slave-particle approach is a quite effective approach to study quantum spin liquid
phases [85, 79]. In particular, within an SU(2) slave-particle approach for the Heisenberg
model, the 7-flux phase is a very interesting gapless spin liquid[1, 2, 25, 24, 6, 41, 82]. The
low energy effective theory of the m-flux phase is described by QCD3 with massless Dirac

fermions coupled to an SU(2) gauge theory. It was argued that the masslessness of the Dirac
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fermions is protected by symmetry within the Heisenberg model[85, 46]. In this chapter,
we study the m-flux phase in the Hubbard model. We used a generalized slave-particle
construction that allows both spin and charge fluctuations. The generalized slave-particle
approach also has a w-flux phase with massless Dirac fermions. However, such a n-flux
phase now only has a U(1) gauge symmetry. We show that, in this case, a mass term of
the Dirac fermions can be generated without breaking any lattice symmetry and the U(1)
gauge symmetry. This suggests that, in the presence of charge fluctuations, the gapless

n-flux phase is unstable. The charge fluctuations will open an energy gap for m-flux phase.

The gapped 7-flux spin liquid contain a U(1) gauge field which fluctuates strongly. One
way to include the strong U(1) gauge fluctuation is to project the mean-field slave particle
state to physical spin states. We find that after projection, the projected physical spin
wave function does not break the translation symmetry on even by even lattice and have
a zero crystal momentum. However, such a result does not necessarily imply that the
translation symmetry is unbroken. It may simply means that a particular superposition
of the degenerate ground states of the gapped n-flux phase does not break the translation

syminetry.

To understand the symmetry properties of the gapped w-flux phase, we need to under-
stand the dynamics of the U(1) gauge field. Because of the compactness of the gauge theory,
instanton configurations are allowed. We study the confinement/deconfinement problem of
the U(1) gauge theory due to the instantons proliferation. In particular, we studied in de-
tail the symmetry properties of the instanton operators using field theory. We find that the
instanton operators always carry a crystal momentum (7, 7). This suggests that the gapped
n-flux phase break the translation symmetry and corresponds to some kind of valence bond
solid. We also perform some direct numerical calculations of the crystal momentum quan-
tum number of the instantons on lattice. The numerical result is consistent with the field

theory result.
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5.2 Slave-particle approach with charge fluctuations

In the Anderson-Zou slave particle method for strongly correlated Hubbard model, the

electron operators are represented as:

1
fz',a'

0 Ji,—c

ol =flhitodfio={h d] (5.2.1)

where fg’ _ creates a state with a single electron on it (a spinon), h;r creates a state with no
charge on it (a holon), and dI creates a state with two electron on site 1 (a doublon). It should
be mentioned that the physical Hilbert space contains only four states: empty state (holon),
one electron (spinon) and two electrons (doublon) on each site. So we always have one and
only one slave particle on each site. So we conclude that we should put the local constraint
nf+nzf T+n,{, s nd = 1, to get rid of redundant states. This is the physical constraint which
should be satisfied on every site. We could also obtain this result by noting that the electron
operators are fermion and should satisfy the anticommutation relations. From the definition
of C’;r’ , it is obvious that it is invariant under U(1) gauge transformation (We require h; and
d; to remain bosonic operators i.e., preserve their statistics after transformation, otherwise
we would have SU(2) gauge invariance. However at U = oo we have only fermions and only
in that case we have SU(2) gauge symmetry). It is worth noting that all the slave particles
carry the same charge under the internal U(1) gauge. Since the above constraint and as a
result the Hubbard Hamiltonian are also gauge invariant, so is the action of the Hubbard

model.

Using this slave technique the Hubbard Hamiltonian can be rewritten as the following:

_ t J b o AfEAL
H= ) Udldi—t}, (Xri:ij,i + A A+ h-c-)
<i,j>
XS] fir + £ f + Bl + dldi — 1) (5.2.2)

In which we have used these notations X{, ;= > fitg fio > xi?’j = h;.rhj — d;.fdj , A{ i =
>o0f-cific s Ai?’j = d;h; + hid; . Within mean field and by using Hubbard-Stratonovic
we can decouple spinons and bosons and obtain a mean field state. In our numerical studies

we have obtained three phases. At large U/t limit we obtain AF order and for moderate
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values of U/t we obtain a meanfield spin liquid phase. From now on we choose ¢ = 1.

Now let us focus on the meanfield spin liquid phase. In this phase: X{, ’;1 = 0. Therefore

the effective Hamiltonian of spinons in this phase is of the following forms

Hy=-XY Sl ofine— > MNo(id)ofl, flp o+ He (5.2.3)
i <ij>0
where 1 = {A, B}. But what if we include the effect of instantons? To answer this important

question, we first study the gauge theory of this mean-field state.

In the above effective Hamiltonian we transform operators as: f; 4 o — el fi,ao and
fiBo — € fip, for any arbitrary phase «, i.e. assuming a staggered global gauge
transformation, then the effective Hamiltonian does not change. Therefore the invariant
gauge group (IGG) of the Hamiltonian is staggered U(1). The reason is that there is no
hopping term due to the non-zero charge gap and the if the gauge transformation of two
neighboring sites have opposite phases, the total phase change of the pairing term cancels
out. Therefore gauge fluctuations are described by staggered compact U(1l) instead of
compact U(1) gauge theory. This is equivalent to assuming we have positive unit charge on
sublattice A and negative unit charge on sublattice B for slave particles under the internal
gauge transformation. So, at mean field level, the above charge/spin gapped phase has a
neutral spinless U(1) gapless mode as its only low energy excitations. However, it is well
known that U(1) theory in 2+1D is confined due to instanton effects. So let us assume
that the U(1) fluctuations are weak and use the semiclassical approach to study the U(1)

confined phase where the U(1) mode is gapped.

It is possible to break this staggered compact U(1) down to a Z; one by Anderson-Higgs
mechanism. If we add second neighbor hopping to the Hubbard model, within slave boson

this term generate pairing terms of the form f;ﬁ o f; u i.e. it induces the same sublattice

—a
pairing and the Hamiltonian is no longer invariant under the staggered global U(1) gauge
transformation. In this case gauge fluctuations are gapped and thus our mean filed state is
stable and we can trust our results. Therefore for this case spin liquid phase is physical. On
the frustrated lattices like the triangular lattice the gauge theory is Z because we cannot

dive the lattice in two sublattices, A and B.
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Let us define the spinon doublet operator as on the A and B sublattice as

fix
b= Y (5.2.4)

fi;l

The meanfield Hamiltonian of spinons in the insulating phase can be written as
H=> 9lU i+ He. (5.2.5)
2

where U; ; = u;?ij“, where a = 0, ..,3 and 7* are Pauli matrices. Here u?’j is imaginary and
ui’fﬁ are real in order to have the spin rotation symmetry. The A term becomes U; ; = -7,

Tt can be easily checked that the mass term does not break any symmetry and opens up

gap in spinon excitation energy.

In the absence of charge fluctuations and at half filling, the number of spinons at each
site is exactly one. This can be implemented in average by choosing A = 0. On the other
hand, if we allow charge fluctuations, number of spinons is no longer necessarily equal to one
due to the presence of holons and doublons. Therefore A < 0 to make sure that there are
other slave particles than spinons. One may wonder whether this term breaks the particle-
hole symmetry at half-filling or not. The answer is no. Because the mass term of spinons

is originated from the following term
(i + £ i+ Blbs+ dldi - 1) = 5 (€1, Cia +CioCl, - 1)(5.26)
it i4did 3 Chatd 2 3,0 00 1O 4.0 e

which is obviously particle-hole symmetric. In terms of electron operators this term is zero,

though in the slave particle approach, we have to keep it in order to kill unphysical states.

To summarize, non-zero charge fluctuations generate a non-zero A. A non-zero A in

general gaps the spinon excitations at mean-field level.
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5.3 Mean-field ansatz and its symmetry for gapped n-flux
phase

Let us consider a concrete example described by the following ansatz

_ iy A1 _ 1 .3
Uiive = —(=)VAym,  Uisg = =7, Uiy = =A77,

3

Apliyi+2) = (=)"As,  Bp(i,i +8) = Ay (5.3.7)

When A = 0 the above ansatz describe the gapless w-flux state. The ansatz is invariant
under the following symmetry transformations followed by the corresponding U (1) gauge
transformations Gr,T:, G1,Ty, Gp,Pr, Gp, Py, Gp,, Py, and GTT. Here the symmetry
transformations are two translations 1, : ¢ — i+ &, Iy : i — 7 + g, three parities P, :
(13, ty) = (—tzrty), Py : (ig,iy) = (iz, —iy), Pay : (iz,iy) = (iy,iz), and a time reversal

1: fio =+ 0fi—o. Wefind
GTz = 17 GTy = (_1)zm’ GPa; = 17 GP’y = 17 Gsz - (_1)1’.,@7 GT =1 (538)

So the ansatz (5.3.7) does not break any symmetry. The ansatz is invariant under any gauge
transformation of the form Gy (¢) = exp (z (—)i”iy 07-3).

The above ansatz, represents the gapped m-flux phase. To see this more explicitly,
we only need to divide the square lattice into sublattice A and B and do particle hole
transformation only on sublattice B. So we have

i F; 1
(L DR U I R (5.3.9)

3 € A \I/i = t 1
fi, Fm fi,T

Now let us rewrite the meanfield Hamiltonian in terms of new operators. We have

)

Hy= A (2w, - A, Y [(_)iu\p} N L H.c.] (5.3.10)

For A\ = 0, we recover the conventional n-flux state, and for nonzero A we achieve the
gapped 7-flux state. The above Hamiltonian is clearly invariant under the global U(1) gauge
transformations. The U(1) gauge transformation for the transformed spinon operators is

equivalent to the staggered U (1) gauge transformation of the original spinon operators. It is
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worth mentioning that we can similarly obtain the gapped staggered flux phase by choosing
Ay (4,1 + &) = exp (i(—)i%%) Ay, Ap (5,0 +G) =Dy (5.3.11)

which represents the staggered ¢ flux phase with E, = 2 |A| gap.

Now let us consider the meanfield Hamiltonian in Eq. 5.2.3 using ansatz 5.3.7. To find

energy spectrum of the m-flux Hamiltonian, we use the following notations:

fopo =Y exp(ik.Ri) fig, iz +iy=2m (5.3.12)

Fipo=Y exp(ikR)Fip =Y exp(ikRi)fl_,, io+iy=2m+1(53.13)
% i

Using these operators we can rewrite Hamiltonian in Eq 5.3.10 in the momentum space

H, = Z \Il;fw [—)\00 ® 0% — 20 cos (kz) ol ® ol — 20 Ay cos (ky) o ® al] Uy, +(5.3.14)
E
, i T
q}k,a = (fk,A,a ) ﬁk,B,a s fk-{—@,A,a » bk-i—Q,B,a) . (5315)

where § = (0, m)and k is in the reduced Brillouin zone defined as

0<k, < , 0<Zky<m. (5.3.16)

For later purposes we need to transform ¥y, in the following way to make the Hamil-
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tonian block diagonal.

“I;k,a' - Uk\I’k,a (5317)

(Uklyxa = ( e (ig—ak) S (~i§9k) ) (5.3.18)

2
vy, €XPp (i%@k) ug €Xp (—i?@k)

ug = sgn (cos (ky)) 1/ % (1 + cos 6) (5.3.19)
v =4/ % (1 — cosby) (5.3.20)

 cos(hy)
cos () = N ACAERTI Ak (56.3.21)

w

w

after which the Hamiltonian becomes

H, = Z \iJL,a [<X° + 204 cos (kz) v' — 20 Ap cos (ky) ¥ Vo (5.3.22)
k

Upo = (fk,l,A,a , Fe1,Bo > fepac Fk,2,B,a)T (5.3.23)
fr1,40 =exp (H%k) [kak,A,a +oefy g, Aa] (5.3.24)
Fi1,o = exp (_29_;> [uka,B,a + ka"kJrQ,Bya] (5.3.25)
fr2,A0 = €Xp (ﬂ%) [ukfk+Q',A,a - kak,A,a] (5.3.26)
FyoBo = exp (—z%) [uka+Q,B,a - kak,B,(,] , (5.3.27)

where 7° = 6® ® 03, 4! = 0® ®@ 0! and 42 = ¢° ® o? are Dirac matrices. The energy

dispersion relation of this Hamiltonian is

Eio = £4/22 + 4A7 (cos? (kz) + cos? (ky)). (5.3.28)

From the above expression, the emergy gap in the spectrum is E; = 2X. The energy

dispersion has a minimum at

R = (12’. g) , (5.3.29)

We can expand the Hamiltonian around this momentum after which we obtain a massive
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Dirac Hamiltonian. We have

Hio =y Wl [-2° = 0fugr’ +208097°] ¥cig0 (5.3.30)
q

. . . . . T

YKigo = (fK+q,1,A,a' » Frig1,Bo » fr1g240 FK+q,2,B,a) . (5.3.31)

with dispersion

Eqp =4/ + 487 (k2 + K2). (5.3.32)

Since the Chern number is a topological number, we can deform the block diagonal
Hamiltonian smoothly without changing this number, provided it remains block diagonal.
So we can drop exp (:!:i%BOk) factor in the definition of U;. Now Let us define continuum

wavefunction in the following way

U, (&) = / d*qexp (iq.2) Vi » () (5.3.33)
b, (2) = (fA,l,a (@) , Fp10(@) . fage @) . Fpao (a’:‘))T. (5.3.34)
Fane @ = R0y, , (2) + B+ E0, (5.3.35)
fope @) = e KECp ., (x)+ e H(R+Q)EC, (5.3.36)
fane (@) = K30, (x)+ e (EQ) 20, (5.3.37)
fB20 (&) = —64[2'50_'5,—,0 (z) + emi(K+Q) & CB 4.0 (5.3.38)

in which we have used the following notations

Carol@) = upexp (f:z oo (5.3.39)
k

Ca_p(x)= ka exp (zEa‘c' fre, Ao (5.3.40)
k

Cp,10(x) = Y wnexp (iK2) Fip, (5.3.41)
k

Cp o (2) = vpexp (z £2) Fo o (5.3.42)
k



Gr, Ty GTy Ty Gp Py Gp, Py Gp,, Pry GrT
fare | ifB1e | ifBae | €™ fate | €™ faro | €™ fare | 0™ fa1,—0 ()
fBlo | ifaie | ifB2s | €™ fB 10 | €™ Bl fBlo €™ fp o o (2)
fase | ifBos | 1fB2o | €™ fage | €™ fage | €™ fase | 06™2 fa2 o (z)
fB2o | ifage | ifB20 | €™ fBoo | €™ fB20o fB2o 0€™2 fp o o (z)

Table 5.1: Symmetry transformation rules of spinon operators in the staggered flux phase.

Gr,T, | Gr,T, | Gp,P, Gp, P, G oy Pry GrT
61| ¢ | =g [y [mGimlg [ g | gem(m2 gy ()
o2 —¢J{ —¢y | em(#m2) g, eim(ei-=) g, €L by oe™(#2772) g, (z)
b5 | —¢h | —¢s | @Ry | mEm)gy [ em(m-at)gy | geimleaah)g) (o)
o] —¢b | —pu | Emdg [ mCinlg, | g0 [ o og (o)

Table 5.2;: Symmetry transformation rules of monopole operators.

Using the above definitions we achieve the two following continuum Dirac models

Ha = gl,a' S2 +E{2,U

0, = /dz‘i’{p (z) [-)o3 — 2i0 Apdy09 — 2i0 Apdyo1] ¥ 4 (2)
H2,a = /d2‘i/;a (z) [—/\0'3 — 2i0 Ap0-09 + 22'O'Abam0'1] ‘i’z,g (:II)
- - - T

¥, @) = (Faro (@), Fr10 (@)

¥, () = (fA,z,a (2), Fpa0 (w)>T :

5.4 Quantum number of instantons

(5.3.43)
(5.3.44)

(5.3.45)

(5.3.46)

(5.3.47)

Now we should compute other nontrivial quantum numbers of the above instanton oper-

ators. To do so, let us first comment on the transformation of the continuum wave-function,

we have:

5.4.1 Symmetry transformations on instanton operators

We are now ready to study instanton effect. From now on we closely follow our method

presented in Ref. [80] to calculate quantum numbers of instanton operator and its trans-

formation properties. An instanton by definition adds 27 internal U(1) gauge flux to the

system. Because of nonzero Hall conductance of Dirac cones, this nonzero flux can induce

charge transfer between the above two Dirac cones. We only need to compute the Hall
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conductance of each band. To evaluate Hall conductance of the above bands we consider

the following 2 x 2 Dirac Hamiltonian

= / Ll (£) (mos + i || Bpor + ima [ta] 0,02) ¥ (3), (5.4.48)

where 7; can be +1 or -1, and o123 are Pauli matrices. The Hall conductance for this

system is known to be 0y = <, where

1
C= 2580 (mmn2), (5.4.49)

is the Chern number of the energy band. Using this equation, we can read the Chern
number and therefore the Hall conductance of each band. Noting the fact that A < 0, We

have

1
Co= +3 (5.4.50)
Cop = ~% (5.4.51)

Since Chern number of each band is independent of spin, after each instanton configu-
ration, its magnetic flux induces 2 x ! = —1 fermions at the first band and 2 x ; at the
second band. Therefore each instanton annihilates 1 fermion from the first band and cre-
ates 1 fermion on the second band. So there is a charge transfer between two bands. Using
this argument the monopole operator can be written as a linear combination of following

operators

fj{,lyg‘ (z) fA,2,a' () F},"Lg (z) FB,2,0’ ()

fhio@Fpaw(@) , Fhy, @) fase (=) (5.4.52)

Since monopole operator should be invariant under spin rotation around z axis, we
have to choose o/ = 0. Now let us go back to untransformed spinon operators by using

fB,(, = F};.’_a. So the monopole operator is a linear combination of following operators
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o z i f f
Jm, Fhro (@) faze @), Jim, foa o () Fp 0 (@)

lim, fl,, @) o (@) lim, foyo (o) fane () (5.4.53)

Now let us consider the following operators that are invariant under all spin rotation

operators

d1(2) = lim, fl1 4 (2) oy (&) = Fhay (@) Fh o (o) (5.4.59)
¢2(x) = Iim fp11 (2) fazs (@) = o1 () Fhoy @) (5.4.55)
¢3 (z) = lim, f;&m (z) fazy (') + f;,u (@) fazy (2') (5.4.56)
¢4 (z) = lim, Foan @) Fhor (@) + Foa @) flsy, (@) (5.4.57)

It should be noted that although all of the above operators are odd under Gr,1y. So
every instanton term breaks the translation symmetry in the y direction. In order for
the instanton operator to be a relevant perturbation, it should have all symmetries of
the meanfield Hamiltonian. Since we have obtained spin liquid phase within meanfield
calculation and spin liquids respect all lattice symmetries by definition, we should find a
combination of the above operators that is invariant under all symmetries of the meanfield

Hamiltonians. It is easy to check that the following instanton term has the desired property.

5L = X / 5 (3 (@) + 63 (2) + Hee.) (5.4.58)
5Ly = % F;ﬁ G / &2z ((¢1 + pha) + v (qs{ n Ms;)f (5.4.50)

Using symmetry considerations, it can be shown that there is no other allowed instanton

operator and the above terms are the only relevant perturbations.

5.4.2 Discussion and conclusion

We have found a double-instanton operator that has all symmetries of the microscopic

Hamiltonian. Therefore this term is relevant and has a non-zero fugacity. Because of the
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instanton proliferation, the U(1) gauge fluctuations are now gapped out. On the other
hand, since single instanton operator carries nonzero crystal momentum in the = direction,
the translation symmetry breaks spontaneously. To have a better insight of the situation,
we can appeal to the duality between U (1) gauge theory and the nonlinear sigma model.
If we identify £ (QS? (z) + d);ﬂ (’E)) = gcos (20), then we have a dual description of the U(1)

gauge theory with instanton:
L= %92 - g(vof + gcos (26) (5.4.60)

If g is not very small, we are n the phase < # >= 0. In such a phase < ¢; ># 0.
Since all ¢; carry a crystal momentum (7, ), so the < ¢; >7# 0 phase at least break the
translation symmetry. Therefore we conclude that the n-flux spin liquid phase is not stable
after including instanton effects. We would like to point out that the basis vectors of the
resulting state are (1,1) and (1, —1), because the symmetry between A and B sublattices is
spontaneously broken due to instanton effect. The area of the unit cell is two times bigger
and it contains two atoms in it.

In summary, if we treat the U(1) gauge field as a semi-classical field (i.e.Gaussian ap-
proximation), by analogy to the nonlinear sigma model, instantons proliferate, gauge field
gaps out and lattice symmetry spontaneously breaks. What we finally obtain is a band
insulator with a nonzero gap for spin and charge excitations, instead of a spin liquid phase.
We want to mention that if gauge fluctuations are strong, other possibilities may happen.
Among them, the Zy spin liquid is of more interest. This phase can be obtained if strong
gauge fluctuations generate a hopping term to the nearest site or a nonzero pairing ampli-
tude to the second neighboring site. The presence of any of these two terms breaks U(1)

down to Z, gauge theory whose gauge fluctuations are gapped and therefore is stable.

5.5 Numerical results

We have studied the effect of instantons numerically. We start from the meanfield
Hamiltonian of the gapped n-flux state. Then we add a single instanton to the system
and measure the crystal momentum of the resulting many body wavefunction. Because
of the nonzero gap the problem is well-defined. For gapless case there is an ambiguity

in occupying zero mode states. In our case we fill all negative state energies with no
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Figure 5-1: Crystal momentum.— Phase change of the many body wavefunction for

U(Ry+1,..., B+ Ry +7h,..., RN+ By .. .
= (Rrtr - (%:ilg?‘ﬁ}sz)wl‘iﬁm» Wavefunction is invariant
after T, Ty, T, T, !, while acquires nonzero phase after T,, and T,. (a), ® (&) = ® (§), which
v y ] Y)s

100 samples. exp (1P (171))

implies ¥ (Rt +4— :f:) =V (Rl) The value of ® however is very sample dependent. (b),

while ® (£) can be anything, ® (% +¢§) = 0, which reflects the periodicity of many body
wavefunction by & + g.

ambiguity. We can find the average number of spinons per lattice site and we obtain
< fi"’T fir + fi‘: . fi, ¢> = ny < 1. Because the Hamiltonian in Eq. 5.2.3 contains pairing,
the ground state is superposition of many configurations with different number of spinons.
According to the weak law of large numbers, in thermodynamic limit, the most probable
configurations contain n; spinons per site. So we generate a random configuration that has
ny fermions per site. We can easily compute the many body wavefunction in real space
corresponding to this configuration by evaluating the Slater determinant. Then we translate
this configuration by one lattice in the 2 or y direction followed by the corresponding Gr,
and G, gauge transformations. We see that the wavefunction does not change in this case.

So in the absence of instantons, groundstate carries no crystal momentum.

Then we add an instanton to the system by adding a quantum flux of magnetic field 2z
to the lattice. We investigated the evolution of instanton and we saw that we can safely
assume the resulting magnetic flux is uniform. Due to nonzero magnetic flux, the phase of
the hopping amplitude changes as Ay (4,7) — Ap (4, 7) exp (z fz’? [f.dl), where Vx A = B is
the magnetic field of instanton. Again, we generate a random configuration and evaluate the
many body wavefunction. Then we translate that configuration and we evaluate the new

many body wavefunction. Absolute value of wavefunction never changes. Its phase however
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changes if we translate in the £ or ¢ directions. This phase vanishes if we translate the system
in £+9¢, £ -1, 22 and 2¢ directions. We have presented the results for 100 samples in Fig 3-
1. Tt shows that ¥ (R‘l &, 0 Rt 2, .. Ry +§:) — exp (i® (1,0)) ¥ (él, B, RN),
v (Rl T, Bt d, ., Ry +gz) —v (Rl Gy B+ G, By + y) and

¥ (1?1 tE4 g, B+ E+q,.. By + 3 +g) -y (Rl, R, ...,R’N), where ¥ is many
body wavefunction. These relations implies that the many body wavefunction is invariant
under 73T, but not Ty or T;. Therefore after taking the effect of instantons into consider-
ation, the lattice symmetry breaks spontaneously and the new basis vectors are (1,1) and
(1, —1). Unit cell doubles and Brillouin zone reduces by a factor of 1/2. So our numerical

calculation verifies our theoretical prediction.

5.6 APPENDEX: Self-consistent equations and the uniform
RVB state

For the uniform RVB, x{’ ’;.’ = 0 and Azf’ ’;’ = Af® —constant. We also assume that
A; = A=constant. By solving the following self-consistent equations, we can obtain the
phase diagram of the meanfield state. The values of Af* and A can give us a hint about
physics of the Hubbard model at large U-limit. We can also compute the average number of
slave particle and in particular the number of doublons using them. We have the following

self-consistent equations

NLZ (f—k1fr 1) (coslks] — cos[ky]). (5.6.61)
kK
L > (h_dy) (cosfks] — cos[ky]) . (5.6.62)
N, &
NL Z <fk I, o.> (coslkz] + cos[ky]) . (5.6.63)
8 k.o
1
— " (hlhy — dldi ) (coslks] + coslky]) . (5.6.64)
N, ;< k ’“> g
NLS 3 <h " — dkdk> =z. (5.6.65)
k
Niz<f“f“+fuf“+h hic+ dld) = 1. (5.6.66)
Sk
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At I' = 0 we have

tAp |cos[ks] — cosky]| '

(Fok1frt) = —lugve| = — B (5.6.67)
<f]I,Tflc T> = <f1k Sk, ¢> = Jug[%,
_1 n A+ p+ 2txp (coslkg] + cos| y] (5.6.68)
2 2E]
2tAy |cos| 7D] cosk. y]|
h_gdi) = 5.6.69
(h_gdk) B, 1 B, ( )
(hihe) = (dldi ) = na
1 Ut
=5 s (5.6.70)
k
Let us use the following approximations
y = 2 (cos[ky] — coslky]) . (5.6.71)
Bl = (02 + (tAw)*. (5.6.72)
b+ By = (U —20)% — (2tA ). (5.6.73)
iz—> . TINEN (5.6.74)
N, s @ ~3/. Y. .6.

Using the above assumptions we can rewrite the above self-consistent equations as

+4
A 1 (5.6.75)
tAy, 32 \/—-m
+4
b - dy. (5.6.76)
tAs 16/ \/U 20)% — (2tAy)?
(5.6.77)

+4
—1== d
A /—4 N (tAby)2 !

+4
ny+1= %/ v-22 dy (5.6.78)
VU =20 = (2tA)?

By using the following integrals we have
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dz
—_— 2
/ - Ln<z+ 1+z) (5.6.79)
22da z\/l+z2—ln(z+\/1+z2)

v 5 (5.6.80)
% = sin~?! (y) (5.6.81)
—Z
2
\/;~clz_2 = % (sin_1 (2) —2v1-— 22) (5.6.82)
-2
So we have
N Xiv/1T+ X7 - Ln (X, +v/1+X7) .
f — QX% . V.
in 1 — Xor/1 — X2
A, =22 (X2)2X)2‘2 uty (5.6.84)
2
~1
nf_l:_nszf_lln (X1+\/1+X12) . (5.6.85)
1
m+1=2—n;=—sin"'(Xy). (5.6.86)
X2
A 8tA
X, = M / (5.6.87)

N 2T U—ox

If we assume X; > 1 and X3 < 1 i.e.; for U > U, we can simplify the above equations

and we will get

A<0.
A= % - L")g‘;(l) (5.6.88)
Ap = % ~ :—[tj. (5.6.89)
np=1- L”gle) —1- SL/X;, In <4ﬁ"> . (5.6.90)
np = %g ~ g (—5—)2 (5.6.91)
nb+nf—1:'-L"'2(XL‘IXI)_§(5>2. (5.6.92)
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We see that the number of doublons scales with (%)2, and Ay with £. X scales with

t (5)3/(111 t/U)) and is very small at large U.
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Chapter 6

Self-consistent calculation of the
single particle scattering rate in

high T'c cuprates

The linear temperature dependence of the resistivity above the optimal doping is a
longstanding problem in the field of high temperature superconductivity in cuprates. In
this chapter, we investigate the effect of gauge fluctuations on the momentum relaxation
time and the transport scattering rate within the slave boson method. We use a more
general slave treatment to resolve the ambiguity of decomposing the Heisenberg exchange
term. We conclude that this term should be decomposed only in the Cooper channel. This
results in the spinon mass inversely proportional to the doping. It is showed that solving the
equation for the transport scattering rate self-consistently, we find a crossover temperature
above which we obtain the linear temperature dependence of the electrical resistivity as
well as the single particle scattering rate. It is also shown that this linear temperature
dependence of the scattering rate in the pseudogap region explains the existence of the

Fermi arcs with a length that linearly varies with temperature.

6.1 Introduction

It has been emphasized by many authors that the physics of high temperature super-
conductivity in cuprates [13] should be viewed as a doped Mott insulator [8, 46, 69]. This
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proximity to the Mott insulating phase at half filling, sheds some light on the underlying
pairing mechanism of the superconductivity. One of the useful and rather successful treat-
ments of the doped Mott insulator is the slave particle method [15, 92, 79]. It is well-known
that this method results in the emergent internal gauge field that is strongly coupled to
slave particles. Indeed it is the dressed slave particles by gauge bosons that is physical and
observable.

Since slave particles are strongly interacting with gauge bosons, the effect of gauge
interactions on the physical properties of electrons should be taken into consideration in
any realistic model. This effect has been extensively studied in the past three decades. For
example, loffe and Larkin [32] have studied how the physical properties of electrons, e.g,
their electrical conductivity, are related to the corresponding properties of slave particle, in
the presence of the gauge field. Also, many authors [47, 69] have studied the effect of gauge
fluctuations on the transport properties of electrons. Here we follow their method but with
two modifications. First of all, we argue that the mass of spinons is inversely proportional
to the doping, instead of being almost independent of it. As a result, the Fermi velocity of
electrons should scale with doping outside the superconducting phase. The second difference
is that we solve equations self-consistently. We show that either a simple scaling argument
or exact numerical calculation, results in the transport scattering time that is linear in T

above a crossover temperature, 7 that scales with the doping.

6.2 Linear temperature dependence of the resistivity

From the Fermi liquid theory we expect T2 dependence for the electrical resistivity.
This reflects the stability of this phase at low temperatures. On the other hand, in the
normal state above the optimal doping (strange metal phase of the hole doped cuprates),
the resistivity exhibits a linear dependence on temperature instead of the expected parabolic
dependence [13, 46, 16]. For temperatures comparable to the Debye temperature and higher,
this linear dependence can be explained through electron phonon interaction. The Debye
temperature is several hundred Kelvin while this behavior remains down to much smaller
temperatures. So this is a fundamental issue that cannot be explained only through simple
electron phonon interaction. In slave boson approach, holons and spinons are strongly

interacting with the internal gauge field. One popular notion is that this interaction can
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Figure 6-1: Scattering rate.— Self-consistent calculation of the transport scattering rate
~t and momentum relaxation scattering rate «y versus temperature in the absence of external
magnetic field. We assume that Cooper pairs are killed so we can study the crossover
between the Fermi liquid and the strange metal phases. At low enough temperatures, holon
gas condenses and we obtain FL phase. At high enough temperatures, we obtain linear
temperature dependence for ;. and + signaling the strange metal phase. (a), Reduced
inverse transport lifetime /. = %’:((,}")) at = = 0.15. Temperature is in units of Kelvin. Below
the crossover temperature 1™ ~ 100K, holons undergo Bose Einstein condensation and we
obtain Fermi liquid behavior, v, ~ T2. Above T™*, we obtain marginal non-Fermi liquid
with v ~ T'. Interestingly T scales with doping x, like the BEC transition temperature

of the holon gas. (b), Reduced inverse momentum relaxation time v* = J(g:';)) at £ = 0.15.

explain the desired behavior. By calculating the self energy of electrons due to scattering
off the gauge field at finite temperature, we can compute the transport lifetime, as well as

the momentum and energy relaxation time of quasiparticles resistivity.

Some authors have studied the effect of gauge fluctuations on the transport properties
of cuprates, and they find 1'%/3 temperature dependence for the resistivity [47, 69]. Here we
closely follow their method, but with two important differences. First of all they assume
the mass of spinons has a weak dependence on the doping and is inversely proportional to
the exchange energy J. Using the more general Anderson-Zou slave boson method [92, 79),
we obtain a different behavior. In this method, the spinon mass is inversely proportional to
the doping. This for instance means that the Fermi velocity outside the superconducting
phase e.g. in the Fermi liquid phase, is proportional to the doping. The doping dependence
of the spinon mass should be observed in the density of states at Fermi level. The second
difference is that the problem should be solved self-consistently. In the rest of this chapter,
we have provided the details of calculation and we have presented an integral expression for

the transport scattering rate ;. that depends on itself. If we keep . inside the integral,
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along with the assumption 1/m} ~ z, we obtain a temperature scale 1'* above which we
find linear temperature resistivity. Surprisingly 7* scales with doping x, the same behavior
that we expect for the crossover temperature between the Fermi liquid and strange metal
phases. Below this temperature scale, holons condense and we recover the results of the
Fermi liquid theory [70]. We have solved the self-consistent equation for +; and we verify
I behavior for the resistivity at low temperatures in the Fermi liquid phase and linear

temperature resistivity above T™ in the strange metal phase. Fig. 1 summarizes our result.

6.3 Method

Hubbard model is the simplest model that captures the physics of the Mott insulators.
The Hamiltonian of the Hubbard model is defined as,

H=U Z ni4ng | —t Z c}acw + h.c. (6.3.1)
1’ (ilj> 70

Here (¢, 7) means site j is one of the nearest neighbors of site i.

Now let us employ a more general slave boson approach to the Hubbard model [69, 92,

79]. In this approach an electron operator decomposes in the following way

Cio = fioh} +of]_,d;. (6.3.2)

where fi‘:a is spinon creation operator (assumed to be fermion), h;‘ is holon creation
operator and d;.f is doublon creation operator. We assume spinons are fermions and obey
Fermi Dirac statistics and are electrically neutral, while holons and doublons are bosons
and have +e and —e electric charges respectively. Spin ¢ spinon corresponds to a site with
only one electron with spin up, holon represents an empty site and doublon corresponds
to a doubly occupied site. As it is clear from the above definition, electron operator is
invariant an under internal compact U(1) gauge transformations (i.e. if we multiply each
creation operator by a local phase ezp(i6;)), provided all slave particles carry the same
internal gauge charge(i.e. 6; is the same for all slave particles at site ). Note that we must

keep the bosonic statistics of holons and doublons after gauge transformation, otherwise we
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had SU(2) gauge freedom. In order to have fermionic statistics for electron operator, we
have to implement f;r,T fix + fit Jid h:-r hi + d;rd.i = 1 constraint at each site. On the other
hand, doping implies <hI h; — dz di> = x constraint.

Since in the Mott insulator where onsite Coulomb repulsion is very large (U < t), the
double occupancy is very costly, and these states can be removed in the low energy studies
of cuprates. In other words, for large U/t limit of the Hubbard model, charge excitation
gap is of order U and therefore we can integrate out doublons to obtain an effective action
for spinon and holons. This process provides a systematic way to recover the t-J model and

naturally reduces to the famous slave boson theory of the t-J model.

In the t-J model, there is at most one electron at each site. To implement this constraint
in the slave boson method, as we discussed before, empty states are treated as the charged
bosonic particles, dubbed as holon. So we can take the non-doubly occupancy constraint by
using the Lagrange multiplier method. The physical Hilbert space, contains three states at
each site, occupied state with spin up or down and unoccupied state (empty sites). However,
the Hilbert space of the slave boson method is much larger as we can have as many holons
per site as we want and the constraint is implemented only in average. Therefore the
meanfield description of the slave boson method is incomplete and redundant. In the next
section, it is shown that this redundancy is responsible for the emergent U(1) gauge field.
Although at the beginning there is no kinetic term for the gauge field, upon renormalization
and by integrating out the slave particles, this term will be generated and the gauge field
will have its own dynamics in that case. Slave particles are interacting strongly with this
gauge field and their scattering off gauge potential gives them a finite lifetime. The single
particle scattering rate is computed in section VI and we show that it is results in a transport

scattering rate that is linear in temperature.

One ambiguity in the t-J model is how to decompose the exchange term JS;.S;, where
S; is the spin operator. Most authors, decompose this term in direct and Cooper channels

symmetrically. Within meanfield approximation, they rewrite J Ei,j S;.5; as

~3/83 5 (xL;) il i + hec.

Z?j)a

-3/8J% <A{ j> ofl 11, +he.

13,9
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w33 (| () + (L)), (6:3.)

where \d' = > fza fjo and A{ ;= Y0 0f—0ifio. At small dopings, the above hopping
implies 1/m* ~ Jx;; which has a weak dependence on the doping. However, if we use
the more general slave boson approach, it resolves the above mentioned ambiguity and we
have only one choice. In this formalism, the exchange term only decomposes in the Cooper
channel. Using the Eq. [2], within the meanfield approximation, the Hubbard model can

be rewritten as

H =Y vdld;—tY (xijnds + ALAL +he)), (6.3.4)
(i,3)
in which we have used these notations Xf,j = h}‘hj - dzdj and Ai?’j = d;h; + hid;. By
integrating out doublons, it can be shown that (xp) ~ z, and (Ay) ~ t/U. Af’in?’j repre-
sents the exchange term and after integrating out doublons it decouples only in the Cooper
channel (we replace the exchange term by <Af} j> Afj~ % fift+ H.c. form). Therefore the
hopping term for spinons is —¢ (xp) 3_; ; f;{a fj.o and as results they have a mass 1/m} ~ 2¢z.
As we approach the half filling (undoped material), the effective mass of spinons diverges
signalling the metal-Mott insulator phase transition.
So we end up at the the t-J model starting from the large U limit of the Hubbard model.
It is believed that the t-J model captures the essential physics of the strongly correlated
systems. This model is defined as the following

H,_;=-t Z PGCI,UCJ}UPG -+ JZSA',"SA'J', (635)
(i,5),0 4,J

where Pg is the Gutzwiller projection operator that removes doubly occupied states.

Within the slave boson formalism, after removing doubly occupied states, electrons can
o

o

fitahi along with the physical constraint on each site: h;r hi +

Yo fita fie = 1 which implements the Gutzwiller projection. Whenever c}ﬂ acts on an

be decomposed as ¢

empty site, it annihilates one holon and creates a spinon with spin o. We cannot act

since this operator has to kill a holon, but there is no

—a?

further on the resulting state by c;[’
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holon anymore at that site. If we act ¢;» on a site that contains a spinon with spin o, the
operators annihilates the spinon and creates a holon at that site. So by acting projected
electron operator we always annihilate one type of slave particle and create another one
and therefore the number of slave particles at each site is conserved. Now we can rewrite
the t-J model in terms of the new slave particles. Within meanfield approximation and
by using Hubbard-Stratonovic transformation, we can decouple spinons (spin sector) from

holons (charge sector) and we obtain the following effective Hamiltonians for each sector

Hy=— Y txshihj =Y unhihy. (6.3.6)
<i,j> i
Hy, = - Z tth,'T,gfj,a' - Zﬂsfita.fi,a,
<4,j>0 1,0
=0 GG (Flghy - ) + he, (63.7)
<i,j>

where the following notations have been used

xu = (Bl shi). (6.3.8)

Xs = <Z fz.lg’a_fi,a> - (639)
1

Ay Gig) = 5 {fhetly — Htls). (6.3.10)

At low temperatures, most of holons occupy the groundstate with momentum k = 0,
therefore xp ~ . This model has been extensively studied in the literature and it is
well known that this model leads to the d-wave pairing symmetry for spinons [46], i.e.

Ag (£2) = Ay and Ay (£7) = —A,.

6.4 Single particle scattering rate

Now, we discuss the effect of gauge fluctuations on the transport properties of cuprates
in the strange metal phase. Here we closely follow the method used by Lee and Nagaosa
[47] and a more recent approach by Senthil and Lee [69].

In the continuum approximation, the hopping part of the action of spinons and holons
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are written as

[ s (@) (=io — V/2m; — ) £ (@),
+ / dzdth! (z) (—id, — V2/2m;, — pp) b (z) . (6.4.11)

As we pointed out before, the slave boson formalism has U(1) gauge theory. Under the
gauge transformation, f;, — € f;, and h; — €h;. So xf”;-l — ¢i0;—6:) xf]h If we define
ag (i) as xi,; = |xi;l €95 where 6 = R; — R;, we have ag (i) — ag (1) +6; — 6;. This implies
that in the continuum model, a, (z) — a, (z) — 8,0 (). Therefore we should add modify

the continuum model in the following way to obtain a gauge invariant model

[ s} @) (=i - D2 ) £ 2)

+ / dzdth! () (=iD; — D}/2m;, — pp) b (z), (6.4.12)

where D, = 0, — ieinta,/c, where e is the internal gauge charge. We scale a, so that

€int = €.

To obtain an effective action for gauge particles we can integrate out spinons and holons.
By expanding D, in terms of 9, and a,, it is clear that in the continuum model, the vector
potential is minimally coupled to matter field, i.e. the gauge field is coupled to the current
carried by quasiparticles and we have the following interaction between gauge field and

spinons
e / dadtJ* (z,1) a, (2, 1), (6.4.13)

where o = (¢, az,a,) and J* = (n, J,, J,), where n, = ftf, J, = ift (6/27713) f+Hec
. We have a similar term for holons. Now we use the gauge freedom to set ¢ = 0 and
choose the Coulomb gauge V.@ = 0. Up to the second order perturbation theory the above

interaction terms leads to an following effective action for the gauge field proportional to
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the following form,

/dxdea:'dT’ai (z,7){J* (2,7), JI (@', 7)) a; (=,t). (6.4.14)

This is only the contribution coming from paramagnetic response. There is a simi-
lar contribution from the diamagnetic part. Lee and Nagaosa have studied this problem
in detail. Following their method, we can find the gauge field propagator D, (r,7) =
(Tray (r, T) a, (',0)). it can be shown that the gauge field propagator can be written as
D;; (q) = (IIs + llh)” , where

U9 = — (1, [T (r,7) JI(0,0) — 8jned (r) 6 (7)]), (6.4.15)

and similarly for HZ’ In the Coulomb gauge the spatial part of the gauge field is transverse

and can be written as
Dij (g,w) = (65 — qig;/4%) DT (g, w), (6.4.16)
where we have defined D7 (g,w) as
DT (q,) = [If (g,w) + I (q,)] " (6.4.17)
For small ¢ and w we can use the following approximation
17 (g, w) = iwoT (q,w) — xPq* — psc (T), (6.4.18)

where o7 is the transverse conductivity and x2 is the Landau diamagnetic susceptibility of
the spinon system, which equals 1/247m, in 2D fermion systems. p, . is the condensation
fraction of the spinon system in the paired state and in the normal state it is zero. Similarly

for holons we have

7 (q,w) = i |w|of (g,w) — XP ¢* — miphc (T) (6.4.19)

where xP = n (0) /48mm, in which 7 (0) is the occupation number of the ground state and

ph.c is the superfluid density of holons, which is zero in the strange metal phase as well as
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the pseudogap phase. We see that the propagator of the gauge field that determines the
transport scattering rate of spinons, depends on the optical conductivity of spinons. On the
other hand, optical conductivity itself depends on the transport scattering rate, since we
have 0, (q,w) = v kp/ /47E + v2q%. If we neglect 7, in the o, (¢,w), we recover the results
of the Ref. [47], except that since the spinon mass is much larger in our case, the crossover
temperature is smaller. In Ref. [47], Lee and Nagaosa have calculated the scattering rate of
holons due to interaction with the gauge field and they report a linear temperature behavior
above the BEC transition. They have also studied the transport scattering rate of spinons
and they report 1'%/ in the strange metal phase, which is slightly different from the linear
temperature behavior.

Now let us calculate the self energy of spinons due to their interaction with the gauge
field. Then by looking at its imaginary part we can deduce the scattering rate. According
to Senthil and Lee, up to the first order approximation, the self energy of spinons due to

their scattering off the gauge field is described by the following expression

% (K, 9 = 0) = = [ dody (vp x ) D" (g,),
xA (K — q,—w) (ngy (W) + npp (W), (6.4.20)

where n,, and n,, are Bose Einstein and Fermi-Dirac distribution functions respectively.

Near the Fermi surface the above integral reduces to

f)/:m;FKF/dw /qu" (g,w), (6.4.21)

1
sinh Sw

where D" (q,w) = Im (iwol, — xPg® — ,oc)—1 in which ¢ = o5 + op, X = xP + xP and

2
Pe = Pe,s + pe,p- To compute vz, we should multiply D” (g, w) by (qu‘) . So we have

_ 1 a\*,.
'ytr—ﬂvFKF/dwm/dq (KF) D" (¢,w). (6.4.22)

Let us assume that v, ~ Kp/m} ~ 2tzK, and at small dopings, K, ~ n. When

q < Yir/Vp, 05 (q,w) = vpkp/Yr. On the other hand, in the absence of holon and spinon
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1/2
condensation, wo (¢,w) ~ x”¢%, s0 ¢ ~ K, F( w ) . Therefore the ¢ < ¢* ~ /v,

2'Yir
region contribution to the integral over ¢ is of order K. (vir/v F)l/ 2

. For ¢* comparable to a
fraction of 7 this is the leading order contribution. This corresponds to v (T') x v,  tz.

As long as this is satisfied we have

1/2

3/2 -9 w
Yir O(’MJFAF/dwsinhﬂw' (6.4.23)

A simple scaling argument verifies that -y, ~ I’ satisfies the above self-consistent equa-
tion for ;.. The crossover temperature can be found from " (T*) ~ v, o tz. Therefore
T* & tz, which is the expected behavior for the crossover temperature between the Fermi

liquid phase and the strange metal phase.

Numerically, we solved this self-consistent equation exactly and we again we obtained
linear T' dependence of ;- above a temperature scale T* (z) that scales with doping z
(see Fig. 6.2). On the other hand the BEC transition temperature of holons scales with
doping as well. In summary, above a temperature scale comparable to the Bose Einstein
transition temperature of holon gas, we obtain linear temperature transport scattering rate.
It should be mentioned that the scattering rate of holons is linear in 1" even in the previous
calculations [47]. To obtain the physical quantities from the corresponding quantities for
spinons and holons, we should recombine them in a particular way, that is called Ioffe-Larkin
formula. This formula tells us that the physical conductivity is related to that of holons and
spinons in the following way 0~ = ¢;! + o, 1. For dc conductivity we have o = ne’n,/m
and 73 = 1/ Since the scattering rate of holons and spinons are both linear in 7', the dc
conductivity is is linear in temperature as well. In Fig. 1 we have presented our numerical

results.

On the other hand, below the BEC transition temperature, p. 5 # 0. Numerically, we
obtain 12 behavior for the 4z, in this phase, which is the right sign and is expected for the

Fermi liquid phase.
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Figure 6-2: Length of the Fermi arc.— Length of the Fermi arc. In the pseudogap
region, we obtain disjoint Fermi segments, at which excitations are gapless. The length of
these segments increases with temperature and the scattering rate . (a), The length of the
Fermi arc vs. normalized temperature (T'/T*). The blue line our theoretical calculation
and red triangles are experimental data taken from Ref. [36]. Below the superconducting
transition temperature T,, the scattering rate + is very small due to the condensation of
quasiparticles. Therefore only very near nodal points we have gapless excitation. Above 1,
there is macroscopic condensation and the scattering rate varies linearly with temperature.
As « increases, the length of the Fermi arc increases. At T, we obtain closed Fermi
surface. (b), The length of the Fermi arc vs. scattering rate . Below the superconducting
transition temperature T, the scattering rate v is very small due to the condensation of
quasiparticles. Therefore only very near nodal points we have gapless excitation. Above 1,
there is macroscopic condensation and the scattering rate varies linearly with temperature.
As « increases, the length of the Fermi arc increases. At T*, we obtain closed Fermi surface.
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6.5 Observation of Fermi arcs

In the underdoped cuprates and above the superconducting region, the state of matter
is very unusual. In one hand, it is a metallic phase, confirmed by transport experiments.
On the other hand, there is no closed Fermi surface. Along some directions and segments
of the Fermi surface, excitations are gapless, while on other directions, excitations are
gapped [36, 60, 14]. c-axis transport measurements also show a gap in the excitations that
implies a bound state of Fermions. It has been discussed by Norman et al [60] that if
the scattering rate of quasiparticles v varies linearly with temperature, one can explain
the observations. As we discussed in the previous paragraph, gauge fluctuations can cause
such a behavior. Some authors [14] have discussed that the electron phonon interaction
may play an important role here and result in the linear I' dependence of v above some at
high enough temperatures. Here we show that the interaction of slave particles with gauge
bosons and the scattering of the quasiparticles from the d-wave potential results in such an
exotic behavior. Using the method introduced in the previous section, we can compute the
scattering rate of electrons in the superconducting region as well as the pseudogap phase. In
the superconducting phase, the scattering rate is very small due to the condensation of both
spinons and holons. In the pseudogap phase however, it is comparable to the pseudogap,
varies linearly with /' and cannot be neglected. In this region we assume that there is a
local pairing potential that electrons scatter off. This assumption leads to the following

expression for the electrons Green’s function:

A2
Gw l=w-— oy — ——— 6.5.24
(k,w) W — €k + iy prr— ( )

where, v (T') is the scattering rate at temperature 7', energy of free quasiparticles. We
have assumed d-wave pairing, i.e. Ag(T) = A(T) (cos(kz) —cos (ky)). Using the above
expression we can compute the spectral function and from the position of its peak we can
read the energy of interacting quasiparticles. When ¢, = 0, it can be shown that as long as
v > v/3Ag (1), the maximum is at £ = 0 and as a result we have gapless excitations along
that direction. At nodal points Ax = 0 and we can always satisfy this equation at that point.
Since v (1') < A (1') in the superconducting phase, this condition is only satisfied very near

nodal points and the length of Fermi arcs is negligible. If we parameterize A by the angle,
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we have A(¢,T) = A(1')cos(2¢), and nodal points are located at ¢ = {£w/4,+3x/4}.
Therefore the length of arc is L (T) = 8sin™! (y(T) /v/3A (T)). The crossover temperature
of the pseudogap phase, T*, can be found by solving v (T*) = v/3A (T*). Fig. 2 summarizes
our results.

In conclusion, we reexamined the effect of gauge fluctuations on the single particle
scattering rate. Using the mass of spinons proportional to the doping and doing a self-
consistent calculation for the self-energy of quasiparticles scattering off the gauge field,
we found the linear temperature dependent transport scattering rate of electrons above
a crossover temperature that scales with the doping. Below this crossover temperature,
we obtained T2 behavior for the transport scattering rate that recovers the Fermi liquid
behavior. We also found a scattering rate that is linear in I’ above the crossover temperature.
We showed that the linear dependence of the scattering rate explains the existence of the
Fermi arcs in the pseudogap phase. The success of our model emphasizes on the importance
of including gauge fluctuations in understanding the underlying physics of cuprates. We

predict that the Fermi velocity in the Fermi liquid phase varies linearly with the doping.
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Chapter 7

Cooperative Electronic and
Phononic Mechanism of the High
Temperature Superconductivity in

Cuprates

In conventional superconductors, phonons glue two electrons with opposite spins to form
Cooper pairs and condensation of these pairs leads to the superconductivity. Identifying
the underlying mechanism of the high temperature superconductivity in cuprates is among
the most important problems in physics. Even quarter of a century after the first report of
high temperature superconductor by Bednorz and Muller in 1986, there is still no general
consensus on the pairing mechanism of superconductivity in these materials. So far, many
theories have been developed to explain the exotic properties of cuprates, but they can
explain only a limited number of experiments. In this article, we present a new pairing
mechanism that incorporates both strong correlation and phonon mediated interaction on
an equal footing to produce superconductivity. In this framework, strong correlation and
anti-ferromagnetic interaction between electrons, create RVB pairs and phonons provide
the phase coherence between these RVB pairs. Both of these are required in this approach

to obtain the superconductivity. This approach resolves three limitations of the U(1) slave
b

3¢ vortices and the
€C

boson method. We achieve a better estimation of 1, we only predict

linear T coefficient of the superfluid is not sensitive to the doping. This formalism provides
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a framework that connects Anderson’s idea of preformed Cooper pairs and phonon based

theories.

7.1 Introduction

One scenario for the high temperature superconductivity in cuprates [13] is the pre-
formed Cooper pairs idea that was first proposed by Anderson [8]. This theory is based
on the strong correlation effects and it does not incorporate phonons in the pairing mecha-
nism. On the other hand, many experiments have been reported indicating the importance
of electron phonon interaction in understanding the physics of high Tc cuprates, such as
the oxygen isotope effect on both the transition temperature of superconductivity and the
London penetration depth [77, 91, 39, 61, 90, 67].

Observation of the strong isotope effect in cuprates has led many authors to employ the
strong limit of the electron phonon interaction as the primary cause of the superconduc-
tivity in these materials [3]. For example, some workers have applied bipolaron theory of
superconductivity to the high temperature superconductivity problem. This theory requires
the breakdown of the Migdal-Eliashberg theory and is based on the non-adiabatic limit of
the electron phonon interaction, where phonons have a much larger energy than electrons.
Experimentally, a typical energy of electrons is around the exchange energy J ~ 130 meV
[46], while the energy of optical phonons is 40 — 70 meV [33]. On the other hand, the break-
down of the Migdal-Eliashberg theory [54] in any phonon based theory is crucial, because
isotope experiments in cuprates are very different from conventional superconductors that
are explained by the BCS theory [11] and its generalization, i.e. Migdal-Eliashberg theory.

Some authors emphasize on the importance of the microscopic inhomogeneity, charge
and spin stripes in understanding the mechanism of the superconductivity [18, 42]. The
idea is that the phase segregation can save kinetic energy of holes and the exchange energy
of spins. Stripe models are based on the competition between this phase and other states
of matter. Tt is noteworthy that static stripes have been observed only in LagSCuO4 family
near r = %, not in YBCO family, but dynamical stripes are expected even away from = = é
[45].

The idea of Anderson can be implemented using the slave particle method [46, 15, 47,
65, 79, 55]. The U(1) version of this method explains many basic properties of cuprates
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successfully. However, this method has several limitations. For example, the U(1) slave
boson method overestimates the transition temperature of the superconducting state by an
order of magnitude. Although in experiments only % vortices have been observed, this
method predicts another e—hc vortices as well. For clean d-wave superconductors, the super-
fluid density decreases linearly with temperature up to the leading order. Experimentally
the coefficient of this linear term is not very sensitive to the doping, while the U(1) slave
boson treatment predicts a 2 doping dependence, where z is the doping percentage. In
this chapter we argue that phonons can mediate attractive interaction between holons and
therefore we find a paired holon state. We show that this assumption resolves the three

mentioned limitations of the U(1) slave boson approach.

Here we extend the Anderson theory of high T'c which is based on the resonating valence
bond(RVB) state, by adding Holstein Hamiltonian such that the model Hamiltonian include
the effect of electron phonon interaction. RVB state is the superposition of all possible
singlet states between any two sites. The idea of RVB state can be quantified using the slave
boson method, and naturally leads to the spin charge separation in two spatial dimensions.
The low energy excitations of this state are described by the charged spinless quasiparticles
which are called holon and are treated as bosons, and the neutral spin 1/2 quasiparticles

which are called spinon and are treated as fermions. This can be implemented by writing
t

the creation operator of physical electrons c;

t

1,0

as the product of a fermionic operator f:’ -
and a bosonic operator h;. Therefore ¢, = fifphi. This assumption comes along with
the nondoubly occupancy constraint due to very large onsite repulsion between electrons
in cuprates. In terms of slave particles sz fir + fz‘T, . Jiy + h:.r h; =1 at every site. Therefore
at each site, we have either a holon or a spinon. Using this relation, the density of holon
gas is set by doping z, and the density of spinons is equal to the density of electrons
1 — 2. Spinon pairing forms Cooper pairs in the system and holon condensation provides
the phase coherence for these pairs and the superfluid density of the superconducting state
is controlled by the condensation fraction of holons. Therefore, to obtain superconducting
phase, both holon gas and spinon gas should condense. In case of spinons, we need a pairing
mechanism due to their fermionic nature. Strong antiferromagnetic interactions in cuprates
can result in such a pairing potential and as a result the transition temperature of spinon

paired state is controlled by the exchange energy J which is quite large. This large gap in

excitation spectrum of spinons is the origin of the pseudogap phenomenon in cuprates.
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On the other hand, due to the bosonic nature of holons, they do not need a pairing
mechanism and they can undergo Bose Einstein condensation(BEC). Although this can be
in general true, we discuss in the following sections that the phenomenology of cuprates sup-
ports the holon pair condensation scenario. This assumption immediately resolves several

limitations of the Anderson theory.

In order to pair holons, like in the BCS theory, we need a pairing mechanism. In our
theory, electron phonon interaction can cause such a pairing instability. As we have shown in
Ref. [77], this assumption can also explain the observed phonon experiments successfully. In
summary in this framework spinons form RVB pairs and holons are also paired by phonons.

Both of these are required for the superconductivity in cuprates.

This approach, gives a phase diagram similar to the phase diagram of the conventional
U(1) slave boson treatment of the t-J model, except that the superconducting state has Z»
gauge symmetry, and we obtain a better estimation of T, closer to the experimental data(see
Fig. 7-1). We have also shown in Ref. [79], that at least at half filling, the antiferromagnetic
order in the Hubbard model can be achieved by including a nonzero triplet component in
the pairing amplitude besides the singlet component [79]. Now let us briefly comment on
the experimental consequences of our theory. In appendix, we present more details and

derive equations.

7.2 Better estimation of T,

In the underdoped cuprates, both the slave boson theory and the phase fluctuation stud-
ies of superconductors [74] predict that the transition temperature of the superconducting
state is controlled by the superfluid density. Using Ioffe-Larkin recombination formula (see
Appendix C for derivations and discussions), it can be shown that at small dopings, the
superfluid density is mostly determined by that of holons. Therefore T, is determined

by the BEC transition temperature 1|

ueo: Of holon gas. In the single holon condensation

theories we obtain TS . = %’f Although this gives a good doping dependence, it is an

order of magnitude higher than the superconducting transition temperature [48]. In the

pair condensation scenario, we obtain the following expression for T, (see Appendix B for
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xopt X

Figure 7-1: Phase diagram.— Schematic phase diagram of cuprates from our theory.
Topt is the optimal doping percentage which is typically around %15. It corresponds to the
optimum transition temperature which is typically around 100 Kelvin. SC is the supercon-
ducting state in which we obtain spinon pair condensation and holon pair condensation.
PG is the pseudogap phase where spinons are paired but holon gas in not condensed. FL
is the Fermi liquid phase where we obtain single holon condensation but no spinon pair
condensation. SM is the strange metal in which neither holons nor spinons condense. In
this approach, spinons form RVB pairs due to anti-ferromagnetic interactions and holons
are paired by phonons. Both of these are required to obtain the superconducting phase
in cuprates. We have not shown AF order in this phase diagram, however we have shown
in Ref. [79] that it can be achieved by adding a nonzero triplet component to the pairing
amplitude near half filling.
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derivation)

- Ts
12 (57) = W o 2D

where V = V A2, where tA; is the pseudogap energy, is the renormalized coupling constant
of the phonon mediated holon holon attraction, and N(0) = %& is the density of states.
In Ref. [77], we had to chose V = 1222, where wy, is the energy of optical phonons, to fit
theory and experiment. In cuprates, 12w, ~ t and therefore V ~ A2 (1.) < 1. Because of
the extra factor in the denominator, 7P is much smaller than T3 . and is closer to the

experimental data.

7.3 Vortices

In the single holon condensation scenario, two kinds of vortices are allowed, ﬁ and &
Studies show that the energy of the latter is much smaller, so it should be more stable and
visible in experiments. In experiments however, only 2%6 vortices have been observed [46].
Absence of eﬂc vortices, challenges the assumption of single holon condensation in cuprates.

R

In the holon pair condensation scenario we always obtain 5= vortices from both (hh) or

(f1fy) order parameters. This in fact reflects the Z; structure of our theory.

7.4 Linear T coefficient of the superfluid density

Another important limitation of the single holon condensation scenario, is the calculation
of the linear temperature coefficient of the superfluid density. This scenario predicts a
parabolic doping dependence behavior, while experimentally it has a weak dependence on
the doping percentage [48, 86]. The reason is that within this assumption, the current
carried by quasiparticles is j = aev,, where v, is the Fermi velocity of nodal quasiparticles
and a ~ z (see Appendix D for details). Since holons are charged particles, they couple to
both the external gauge field (A¢z:), and the induced internal gauge field Asn,;. Within single
holon condensation scenario and using loffe-Larkin formula, it can be shown that when both
spinons and holons condense, we have A;,; ~ —zAey:. Since spinons are electrically neutral,
they only couple to the internal gauge field and therefore they see —xAcy:, so their effective

electric charge is —ze. Now we can estimate the value of o by computing the Green'’s
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function of real electrons. In the single holon condensation scenario, the diagonal part of
the Green’s does not respond to the gauge field, because it depends on <h,T> (h}. Therefore
only spinons couple to internal gauge field which is by factor of —z smaller and this is why
a = z in this case. In the pair condensation scheme, since (h) = 0, the diagonal part of
holons Green’s function depends on <h}hi>. So it responds to the external as well as the
internal gauge field. From convolution it can be checked that the real electrons respond to
the whole external electromagnetic field and there quasiparticles have effective charge —e
(see Appendix D for details). So we obtain a = 1 in this case, in consistent with the linear
temperature coefficient of superfluid density measurements.

In Ref. [77], we have investigated the isotope effect on the superfluid density and the
transition temperature of the superconducting phase by considering the effect of electron
phonon interaction and have achieved a good agreement between theory and experiment.

It is worth mentioning that boson gas in a purely attractive potential is unstable. It
collapses and phase separation happens in that case. However in our model, we deal with
holons which are hardcore bosons, i.e. there is an infinite on-site repulsion between them.
The phonon mediated attraction is also screened by the presence of spinons. These two can
make the paired state of holons stable. We speculate that under some certain conditions,
holons may become meta-stable and form stripes due to the phonon mediated attraction.
Moreover as we mentioned earlier, the phase segregation saves the kinetic energy of holes
and exchange energy of spinons. This can further stabilize stripe order phase. Therefore,

the phonon mediated attraction between holons may enhance the stripe formation.

7.5 Conclusion

In this chapter, we have extended the Anderson theory of high T'c to take phonons
into consideration. Phonons are engaged in the pairing mechanism by mediating attractive
interaction between charged spinless quasiparticles (holons). This attraction destabilizes
the single holon condensation state and gives rise to the paired holon state. Assuming the
paired holon phase immediately resolves several limitations of the U(1) slave treatment of
the Anderson theory. First of all, we achieve a better estimation of the superconducting
transition temperature. Moreover, since both spinons and holons are paired, we only find

% vortices. Finally we showed that the effective electric charge of nodal quasiparticles
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is —ze when we have single holon condensation, so they carry xev, current, while the
the effective electric charge of nodal quasiparticles is —e and they carry ev, when holons
condense in pairs. We have shown that in the latter case, the linear temperature coefficient
of the superfluid density is almost independent of doping, consistent with experimental

observations.

APPENDICES

In the following, we provide detailed derivations of formulae in the main text concerning
the expression for T, Toffe-Larkin formula and Linear temperature coefficient of superfiuid
density. In Appendix A, we provide a brief introduction to the slave boson method. In
Appendix B, we derive an expression for the transition temperature of the superconducting
state. In Appendix C, we derive loffe Larkin formula which serves an a powerful tool
in relating physical quantities to the corresponding properties of the slave particles. In
Appendix D, we present an argument to calculate the linear temperature coefficient of the

superfluid density.

APPENDIX A: METHOD

Let us start from the t-J model as our starting point. It is believed that this Hamiltonian
captures the essential physics of the strongly correlated systems. We finally add the Holstein
Hamiltonian to take the effect of electron phonon interaction into consideration. t-J model

is defined as the following

Hey=~t Y Pacl,cjoPa+JY_5i.8; (7.5.2)

(i.d)e 1]
where Pg is the Gutzwiller projection operator that removes doubly occupied states.
Within the slave boson formalism, electrons can be decomposed as cza = fit »hi along with
the physical constraint on each site: h:-rhi +>, f;r’ »Jio = 1 which implements the Gutzwiller
projection. f particles are fermions and we call them spinon and h particles are bosons and

we call them holon. Spinon corresponds to a state with only one electron and holon to

an empty site. The definition of the projected electron operator along with the constraint,
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says that we have always one slave particle per site and two slave particles cannot sit on
t

the same site. On the other hand, whenever c; , acts on an empty site, it annihilates one

holon and creates a spinon with spin 0. We cannot act further on the resulting state by
]

Cz-,_

»» since this operator has to kill a holon, but there is no holon anymore at that site.
If we act ¢, on a site that contains a spinon with spin o, the operators annihilates the
spinon and creates a holon at that site. So by acting projected /electron operator we always
annihilate one type of slave particle and create another one and therefore the number of
slave particles at each site is conserved. Now we can rewrite the t-J model in terms of the
new slave particles. Within meanfield approximation and by using Hubbard-Stratonovic

transformation, we can decouple spinons (spin sector) from holons (charge sector) and we

obtain the following effective Hamiltonians for each sector

Hyp== Y txahihj — > pnhlhi. (7.5.3)
<i,j> i
H,=— z tthZa-fj,a - Z/‘sf@tgfi,aa
<i,j>,0 W0
=3 2860 (Ffly - fly) + he, (7.5.4)
<i,j>

where the following notations have been used

Xh = <hT +5~hi>~ (7.5.5)
Xs = <Z f;gﬂfi,a> . (7.5.6)
B Gg) =5 (Fily = Fu ) (757)

At low temperatures, most of holons occupy the groundstate with momentum k£ = 0,
therefore x5, ~ z. This model has been extensively studied in the literature and it is
well known that this model leads to the d-wave pairing symmetry for spinons [46], i.e.

Ag (£2) = As and Ay (£9) = —A,.

Now let us consider the electron-phonon interaction. Since the typical energy of electrons

is around J and is much larger than wy, we can apply the BCS theory in our case. Within
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BCS theory, electron phonon interaction, leads to the following pairing term:

=D Viw < CL,TCT—k',l > C—k,\Ch,t- (7.5.8)
e k!

By translating the above term to the slave boson language in real space, and using the

mean-field approximation, we can substitute ¢; jc;+ = fi | fj,Thzh,} by the following terms:

An (i,9) firfig + D (i,3) RIRY — Ag (4, 5) An (i, 5), (7.5.9)

where Ap, (i,7) = (hih;) ~ z (doping). Now assuming a very short range interaction,

we obtain the following effective interaction:

Hy o= VALY As(id) fi ) + hee (7.5.10)
<i,j>

Hj_p=-VAL Y An(i,j)hlhl +he. (7.5.11)
<i,j>

in which V = ﬁ@g and ~yp is the bare electron phonon interaction coupling constant,
and wy, is the energy of optical phonons. Let us assume that VA2 ~ V22 < J, so we can
neglect this phonon mediated pairing term and therefore, the d-Wave nature of the spinons
does not change. From the above we see that the coupling constant of phonon mediated
spinon spinon attraction is renormalized by A2 factor and that of holons by A? due to strong
correlation effects. It is easy to show that, V oc v2, where + is the electron phonon coupling
constant. Therefore, we can interpret these renormalization factors as the renormalization
of the coupling constant of spinon-phonon interaction to A+ 4 and that of holon-phonon
interaction to Ay 4. In Appendix C, using Ioffe-Larkin recombination formula, we present
another physical argument to justify this result. Now let us focus on the charge sector
(holons). We have studied the effect of holon-phonon interaction on the holon mass in Ref.
[77]. Since we treat charge sector as a Bose gas, we have shown the holon-phonon interaction
is in the non-adiabatic limit and the small polaron picture can be applied. The mass of

holons enhances by an exponential factor and we have: mj, (T') = 2;{,,1(T) = 9" M my,, where
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2
g (1) = ¥L50

APPENDIX B: CALCULATION OF T.

Taking the mentioned mass renormalization into account, the following continuum model

describes the low energy physics of holons:

Hy, = Z (ek + |u)) h;rchk — VAh Z th,k. + h.c. (7.5.12)

k k
where € = %, Ap = Y hxh_k, and V= VA2, Tt has been shown that in 2D, no
matter how small V is, we have a bound state of bosons and then the double condensation

is energetically favorable. Using the Bogoliubov transformation, we can find the energy

- 2
eigenvalue which is Ej = \/ (e + |u))* — (VAh) and the energy eigenvectors. On the
other hand, we should choose p such that z = % Yok hlhk. The two mentioned constraints

lead to the following self-consistency equations:

€ +
Z(1+2nBE (Ex, ))-’f@lﬂ. (7.5.13)

> 1+ 24, (Bi, T)) 3By (7.5.14)
k

<Iw
2|’—‘ l\DIo—‘
2|

in which ng, (K1) = W is the Bose Einstein distribution function. The
first constraint can be solved exactly by & 3, — 5= [ dk = N (0) [ dex, where N (0) =

/ N 2 _
3:;5[ After integration we obtain: E, = T (VAh) = —2’1'111{@} where

y = exp (M) and 1y = 2Z2. At 1" = 0 we always have ¥, = 0 in consistent with
h

Hugenholtz-Pines theorem. For small values of V', we have :

E4(T) = Texp (ME_;—%) , (7.5.15)

which is diminishing very rapidly and we can neglect it up to the first order approximation.
Therefore, at small enough temperature energy excitations are sound-like an are of the form

Ej, = ck where ¢ = /2L At TP, A, = 0 and therefore E; = ¢ + |u| and Ey = |u|l =

mp
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1Pexp (M—zp@) ~ IPexp (——%‘g’s) The second constraint can be written in the following

way:

cot;h EH"I
7.5.16
N(O v / : + 1;4 (7.5.16)
p P
2 5 de =~ 2qs _ = 2exp (L?,) . (7.5.17)
N(O (e + ul)? |l T:
To 2T
17 = = = . 7.5.18
¢ 2NV ln{MV*Ag} ( )
h mj,

Using the paired state and assuming gapless excitations (Ey = 0), we can show that up
to the first order, <h:-r’thj,0> = Tpc, Where zp. is the ground-state macroscopic occupation
number (condensation fraction), though (h;:) = 0. If we replace every operator by minus
itself the effective Hamiltonian and all order parameters remain the same, and therefore we
have Z; gauge freedom and the low energy theory is described by a Z; gauge theory. As
long as T' < T¥, the condensation fraction is nonzero and T' = 0, zp. = z, where z is doping

(number of holons).

APPENDIX C: IOFFE-LARKIN FORMULA

One important question that should be addressed is how to relate the physical quantities
to the corresponding quantities of spinons and holons? For example, given the conductivity
of spinons and holons, what is the conductivity of real electrons? To answer this question
we should note two things. First of all, since at each site we should have one slave particle,
therefore if one spinons hops from site i to site 7, it should be accompanied by a hopping
of one holons from site j to site ;. So we conclude that the current carried by spinons is
equal but opposite to the current carried by holons and they add up to zero. Since electron
operator at site ¢ with spin o, is written in terms of slave particles as C!,cr = flghi, it is
invariant under U(1) gauge transformation, provided spinons and holons carry the same
charge under this transformation. On the other hand, we assume spinons to be electrically
neutral and assign +e electric charge to holons (we could also assume neutral holons and

assign —e electric charge to spinons). By scaling the internal gauge field we can assume

eint = €. As we discussed we should satisfy the following constraint
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Js+Jp, =0. (7.5.19)

Since only holons carry electric charge we have

=

Jon = Jh = —Js. (7.5.20)

Above two equations tells us that nonzero external gauge field (electromagnetic field)

induces internal gauge field. Because we have

—

Js = ecsEins. (7.5.21)
j;l = eop, (Ee:ct + E-ims) . (7.5.22)
Solving Eq. 7.5
___ %
FEint = ot on Eept. (7.5.23)

and as a result j;,h = eai’f:h Eeqt. Equivalently

Ohp0g

Oph = e (7.5.24)

Now let us consider two important cases. Fermi liquid phase and the Superconducting

phase.

7.5.1 Fermi Liquid Phase

In the Fermi liquid (FL) phase, holons are condensed but spinons are not. So we have
(h) # 0 and A, = 0. Since in this case, o > 05, we have Ejnt ~ —Fegg, 0pp =~ 05, and

-

Jph 2 e0gEert. Now let us define the effective electric charge of spinons and holons as
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Jph = —esUsEezt = ehahEemt' (7525)

Therefore in the Fermi liquid we have e; ~ —e and therefore they have nonzero overlap
with physical electrons and carry the same charge. On the other hand e, ~ 0 and we can
safely assume that holons are electrically neutral in the FL phase. This can bee directly

seen from ¢ ~ (h) fit - One important result of this argument is that in the absence of the

i

pseudogap (i.e. when Ay = 0), condensed holons do not couple to phonons, since phonons
only couple to electrically charged quasiparticles. In other words, phonons create local
electromagnetic field and this field induces another (internal) gauge field. Holons couple
to the sum of these two fields. When A, = 0, but holons condense (i.e. at low enough

temperatures) these two fields cancel out each other and as a result holons do not couple

to phonons.

7.5.2 Superconducting Phase

In the superconducting (SC) phase , both holons and spinons are condensed. So we
have A, = (hh) # 0 and A; # 0. In this case, %’: = ‘;—Zf, where pp and pcs is the
condensation fraction of holon and spinon gas respectively. At zero temperature all holons
and spinons condense and therefore %1'; = 1= and we have Eint ~ —2Feqt, oph ~ 05, and
J;,h ~ zeosEege. We can compute the effective charge of spinons and holons and we obtain
e =~ —xe and ey ~ (1 — z) e respectively. Therefore in the superconducting state, spinons
only respond to the z fraction of the electromagnetic field. Since holons are effectively
charged quasiparticles in this state, (or since the internal gauge field does not cancel out
the local electromagnetic field of phonons completely) they couple to phonons. The larger
pseudogap value, the stronger interaction between holons and phonons. This is an intuitive
way to justify our recipe for renormalization of the electron phonon coupling constant from
the brae value ~, to the effective value A,v. Using this expression and since A, decreases
with doping, we can easily explain why the isotope effect is a decreasing function of doping
as well. Moreover, in the overdoped region, A; = 0 at the transition temperature and

therefore holons do not interact with phonons and as a result we do not expect isotope

effect on the T,. However at T = 0, Ay # 0 even in the overdoped region and the mass
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of holons enhances in an isotope dependent way and this explains the nonvanishing isotope

effect on the superfluid density and the London penetration depth in this region.

APPENDIX D: LINEAR T COEFFICIENT OF THE SU-
PERFLUID DENSITY

Another important limitation of the single holon condensation scenario, is the calculation
of the linear temperature coefficient of the superfluid density. This scenario predicts a
parabolic doping dependence behavior, while experimentally it has a weak dependence on
the doping percentage [48, 86]. The reason is that within this assumption, the current
carried by quasiparticles is j = aev,,, where v, is the Fermi velocity of nodal quasiparticles
and a ~ z. Lee and Wen have shown that the linear temperature dependence of a d-Wave

superconductor is given by the following expression

ps(T) _z 22 , (&) T (7.5.26)

m m ™ vy

where vy is the velocity of the d-wave SC quasiparticles in the direction perpendicular
to v,. Now let us give a simple argument on how to compute «. Since holons are charged
particles, they couple to both the external gauge field (Aesz:), and the induced internal
gauge field A;,;. Within single holon condensation scenario and using Ioffe-Larkin formula,
it can be shown that when both spinons and holons condense, we have A;p: ~ —zAegt.
Since spinons are electrically neutral, they only couple to the internal gauge field and
therefore they see —z Ay, so their effective electric charge is —re. Now we can estimate
the value of o by computing the Green’s function of real electrons. Green’s function can
be calculated by convoluting the Green’s function of holons with that of spinons. Within
the single holon condensation scenario ge (k +eAez/c,w) = Zcgs (k + eAint/c,w), where
z. is the condensation fraction of holon gas. This expression means that the physical
quasiparticles only response to the induced internal field Ajn; ~ —Aeq, and therefore
their effective electric charge is —ze. Therefore they carry zev, current and this leads to
a = z. On the other hand, in the double condensation scenario, as it has been discussed

by Lee and Wen [48, 86], we have g, (k + eAezt/c,w) = Tpcgs (k + €Aest/c,w). Therefore,
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in this case, quasiparticles see the whole external field and we obtain o = 1 in consistent
with the linear temperature coefficient of superfluid density measurements. Let us do more
serious calculations now. In the pair condensed scenario, since zp. (T') holons per lattice
site condense at the ground state with energy £, (which we showed before is exponentially

small), we can write the diagonal part of the holons Green’s function as

igh (k,w) = xpcd (k) 8 (w — Eg) + ign (k,w) . (7.5.27)

where §j, denotes the uncondensed part of the system. The Green's function of spinons is

igs (k,w) = 0 G 7 (7.5.28)
’ w Ly — 0T w— by, —i10"
iA (b w) = —kk Uk Tk (7.5.29)

WA Eop —i0T  w— Egj — 0"

Now let us choose the Coulomb gauge in which Ap = 0 and V.A = 0. Since holons are
charged quasiparticles, they couple to the both internal and external gauge fields. Since
we have assumed pair condensation, the diagonal part of Green’s function responds to the

gauge fields and we have

igA,h (ka w) = ghn (k —€ (Aint + Aext) /C, w) . (7530)

In the presence of the gauge field only the diagonal part of the spinons Green’s function
responds to the gauge field and the off-diagonal part does not change. Since spinons are

electrically neutral, they only couple to the internal gauge field
gas (k,w) = gs (k — eAint/c,w) (7.5.31)

t

Frome; . = f;r ,hi it can be read that the Green’s function of the real electrons is related

to the Green’s function of holons and spinons by convolution.

2
d—(%g/;,s k+ Qw +9)gan (@.9Q). (75.32)

gne(kw) =i /

128



Let us separate the coherent and incoherent parts of the Green’s function g (k,w) =

h (k, w) + gi"¢ (k,w). For the coherent part we immediately conclude

9Tk (k,w) = g2 (k + eAeat/c,w) (7.5.33)

which clearly implies that the effective charge of quasiparticles is —e and therefore they carry
ev, current, not zev,. So we conclude that in the pair condensation scenario, quasiparticles
carry the whole current and therefore & = 1 in this case.

In the single condensation scenario, the diagonal part of the holons Green’s function is
also ign (k,w) = |(R)[* & (k) 3 (w) + iGh (k,w). However the first term does not respond to
the gauge field, like the offdiagonal part of the electrons Green’s function and we have
igan (k,w) = [(h) |2 8 (k)6 (w) + 2gn (b — € (Aint + Aext) /c,w). After convolution it can
be verified that the coherent part of the real electrons Green’s function is g%, hk,w) =
gg"h( — eAjnt/c,w). In the previous section we showed that in the SC state and at very
low temperatures, Ain: ~ —2Aezt, SO We have g¢ Fe h(k,w) = = gooh (k + veAegt/c,w). This
results o = z and therefore quasiparticles carry only z fraction of the ev, current. So the
single holon condensation scenario gives z? dependence for the linear temperature depen-

dence of the superfluid density, which is far from experimental observations.
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Chapter 8

Isotope effect on T, and the
superfluid density of

high-temperature superconductors

In this chapter, the oxygen isotope effect (OIE) in cuprates is studied. We introduce a
simple model that can explain experiments both qualitatively and quantitatively. In this
theory, isotope substitution only affects the superfluid density, but not the pseudo-gap.
Within the spin-charge separation picture, we argue that the spinon-phonon interaction
is in the adiabatic limit, and therefore within the Migdal-Eliashberg theory, there is no
isotope effect in the spinon mass renormalization. On the other hand, we show that the
holon-phonon interaction is in the non-adiabatic limit. Therefore, the small polaron picture
is applicable and there is a large mass enhancement in an isotope-dependent way. Our the-
ory explains why upon '60/!80 substitution, the superconducting transition temperature
changes only in underdoped cuprates, while there is no considerable OIE at the optimal
doped as well as the overdoped cuprates. Additionally, in contrast to the conventional su-
perconductors, we obtain OIE on the superfluid density for whole superconducting region

in agreement with the experimental observations.
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8.1 Introduction

Finding the underlying mechanism of the high temperature superconductivity in cuprates [13]
is one of the most challenging and outstanding problems in theoretical physics. Observation
of strong isotope effect on both the transition temperature and the superfluid density in
cuprates [91, 39, 61, 90}, indicates the importance of the'electron-phonon interaction in
understanding the physics of high Tc [67, 12]. Experiments show strong OIE on T, only
in underdoped cuprates (see Fig. 8-1), while there is no considerable OIE in overdoped
cuprates. On the other hand OIE on the London penetration depth (Ag (0)) (in-plane
penetration depth) has been reported for both sides [28, 37, 73, 40]. In both cases the
isotope exponent decreases as we approach the optimal doping from the underdoped side.
There is also an unusual correlation between isotope effect on T, and Ag (0) [38](See Fig.
2). It is impossible to explain such effects using BCS theory [11] or its extensions such
as Migdal-Eliashberg [54] theory. The reason is that within BCS theory which is based
on the adiabatic electron-phonon approximation [39], the isotope exponent of /. which is
defined as o = —%ﬁ—ﬁ, is around 1/2 [11]. On the other hand, the electron effective mass
is m* = m (1 + \) [71], where X is the dimensionless phonon mediated attraction coupling,
and is isotope independent. Therefore, theories based on the adiabatic approximation, pre-
dict absence of the isotope effect on the superfluid density (ns/m*) which is inconsistent
with experiments. Therefore, we have to look for other theories of superconductors. In this
chapter we start from Anderson theory of high Tc [8] which is based on the strong correla-
tion physics and the spin fluctuation pairing mechanism. This theory is very successful in
explaining many aspects of cuprates but it does not take phonons into account. It is very
important to explain the oxygen isotope effect within this successful theory. Here we use
this general framework and then by adding electron phonon interaction, it is shown that

the observed unusual isotope effects on T, as well as A\qp (0) can be explained.

We start from t-J-Holstein model as our model Hamiltonian. In our model for simplicity,
electrons are only coupled to a single Einstein phonon mode (w,). Then we use the spin-
charge separation picture and we implement it by the slave boson method. Our idea is as
follows: in underdoped cuprates, the superconducting transition temperature is controlled
by the superfluid density (ns/m*), which is mostly determined by that of holons, in our

theory. On the other hand in overdoped cuprates, T, is controlled by the pseudo-gap
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Figure 8-1: Isotope effect on cuprates.— Measured oxygen isotope coefficient of 1} ()
for doped YBCO as a function of the reduced transition temperature (TC = Tc/Te maz) from
different samples. After|[3]

which is equal to pairing order parameter of spinons A, in our theory. Electron-phonon
interaction affects the superfluid by holon mass renormalization in an isotope-dependent
way, while it does not affect the pseudo-gap much. In our theory, we argue that holons
are strongly coupled to phonons and therefore, we are in the non-adiabatic limit, while
spinons are weakly coupled to phonons and we should use the adiabatic limit calculation
(Migdal-Eliashberg theory) for them. Therefore, K, < w, < k5, where k, and £ are
typical energies of holons and spinons respectively. It is also shown that in the presence of
spinon pairing (pseudo-gap), the holon-phonon coupling constant,y, renormalizes to Asy.

These facts together can explain the observed OIE on T as well as on A~% (0) o< 2=

8.2 Method

Let us start from the t-J[46, 47, 15] model which is defined as:

Hyy=-t Y. Pgcl,cjoPe+J 5.5 (8.2.1)

(i,3).0 i,
where Pg is the Gutzwiller projection operator which removes doubly occupied states.
Within the slave boson formalism, electrons can be decomposed as c;fﬂ = f{ -hi along with
the physical constraint on each site: h:.r i+, f;r’ Jic=1 which implements the Gutzwiller
projection. Now if we decouple spinons (spin sector) from holons (charge sector), we can

write two following effective Hamiltonians for each sector:
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Figure 8-2: Oxygen isotope effect on T. vs the penetration depth.— A color plot
of the OIE shift AXg (0) /Agp (0) versus the OIE shift —A1./T, for Y _,Pr;BasCuzO7_s,
YBayCuyOg, and Lay . SrxCuQy. Squares are the uSR data obtained in the present study.
Circles are bulk xSR data for Y, _,Pr,Ba;CuzO7_s (Refs. 4 and 12 ) and LE pSR data for
optimally doped Y;_,Pr;BasCuzO7_s (Ref. 10 ). Triangles are torque magnetization and
Meissner fraction data for La2-xSrxCuO4 (Refs. 6 and 9). Different lines are discussed in
Ref. 13

Hy =~ ) txshihj =Y unhlh; (8.2.2)
<i,j> i
Hs: — 2 (tXh+jX3) fiafj,a_zy'sf;,afi,a
<i,j>,0 i
= 2. 2JA4(id) (f:,rf},J, _fitlf;,T) the. (8:2.3)
<i,j>

where the following notations have been used:

Kh= <h:.+ghi> =p (8.2.4)

Xf= <E f;_g,afi,a> (825)
1

Ay Gd) = 5 { sl =SSt (8:2.6)

Form the t-J model one may expect that J = J/4 but in literature it has been discussed
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that the best choice is J = 3J/8[46]. This model has been extensively studied in the
literature and it is well known that this model leads to the d-wave pairing symmetry for
spinons[46], i.e. A, (£2) = A; and Ag (£§) = —A,.

Now let us consider the electron-phonon interaction. Since the typical energy of electrons
is around J and is much larger than w, we can apply the BCS theory in our case. Within

BCS theory, electron phonon interaction, leads to the following pairing term:

~S Vi <l > E ks (8.2.7)
k&

where &, is the Fourier components of Pgc;,Po = fi,ghz. By translating the above
term to the slave boson language in real space, and using the mean-field approximation, we

can substitute ¢; |G+ = fiy fj,Th;fh} by the following terms:

An (5,5) figFin + As (i,5) hIBY — Ay (6,5) An (5, 5) (8.2.8)

where Ay, (¢, 7) = (hih;) ~ p (doping). Now assuming a very short range interaction, we

obtain the following effective interaction:

H) ,=-VALS " AG5) Fliff, + he. (8.2.9)
<£,5>

Hy_p=-VAZS" Aphlhl + hee (8.2.10)
<i,j>

Let us assume that VA2 ~ Vp? <« J, so we can neglect this phonon mediated pairing
term and therefore, the d-Wave nature of the spinons does not change. From the above we
see that the coupling constant of phonon mediated spinon spinon attraction is renormalized
by A% factor and that of holons by A2 due to strong correlation effects. It is easy to
show that, V' o 42, where v is the electron phonon coupling constant. Therefore, we
can interpret these renormalization factors as the renormalization of the coupling constant
of spinon-phonon interaction to Apyg 4 and that of holon-phonon interaction to Asvyg,g-

Therefore, we can substitute the electron phonon interaction term by sum the following two
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terms:

Apvk, t
Hy—pn = Z \/W;[— ( q d_q) f,1+q,afk,a (8.2.11)

Tk
H B/ T I (dg+dty) bl gh 8.2.12
hph = Z AN Mo, kot (8.2.12)
Now let us consider spinon-phonon interaction. The typical energy of spinons is around
J. Jis around 1500 Kelvin while the typical energy of optical phonons (w) is a few hundred
kelvin. Therefore, spinon-phonon interaction is in the adiabatic limit and therefore, we can
apply Migdal-Eliashberg theory. In this regime the mass renormalizes as: m* = m (1 + }),

where:

A_zfd“’ o2 (w) F (w) (8.2.13)

From our simple model it can be shown that A\ x 7, and since wy ox —2—, A is

P M, 5 X VM
isotope independent. Therefore, oxygen isotope substitution does not enhance the effective
mass of spinons. This agrees with experiment where there is no isotope effect on Fermi

velocity by Laser ARPES, while there is shift in kink energy [33].

On the other hand, holons are hard-core bosons. They usually condense at the bottom
of their energy band. So their effective band-width is much smaller than their actual band-
width. To have a better idea, for the moment let us assume that they are fermions. In
that case their Fermi energy will be around 4xytp, where p is doping. Therefore, their
effective bandwidth is at most of the order of tpxs. Now if wy is larger than the typical
kinetic energy of holons, the electron phonon interaction is in the non-adiabatic limit. In
summary if tpxs <€ wy < J then spinon-phonon interaction is in the adiabatic limit and
holon-phonon interaction is in the non-adiabatic limit. For this limit it is easier to rewrite

H}y, + Hph + Hp_ph, in the following way:

H= - tx:hlh —ZuhhTh +ZwE

<i,j>
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Agynghlhn (d*_q + dq) (8.2.14)

1
4+ —
V2NMw,
q,n,g

The above model has been extensively studied. In the non-adiabatic regime, we can use

the results for a single polaron theory [4, 17]. Therefore, we can do the powerful Lang-Firsov

) ; ; [T — e~SHeS L g 1 1 t
transformation [29],1.e. H - H = e He” where: S = on NI Zq,n Vo D ghi Ry (d_q dq).
As an approximation let us assume that < v, 4 >= 7o emp\;qﬁﬁ“). Doing Lang-Firsov trans-

Y04 ( di—d; )

wpy/2NMuwg

formation on h; operators, we have: e Sh;e® = hjexp ( ) If we replace the

exponential factor by its average, we finally have:

H=- Z (4txs (cos kg + cos ky) + fin) thk

k
+ Z wg (d};dq + 1/2)
q
—4t/\oAf (T) Z h’:rh h:gg hqxh—th—fm—lm (8-2-15)

q1,92,93

where, we have used the following notations:

Xs (T) = e 9@y, (T) (8.2.16)
g*(T) =~ %ﬁm (8.2.17)
E
%
o=V =315 (8.2.18)

in which M is the ion mass. Now if we expand the energy of holons around E=0we

have:

k2
h
1
(L) = gy = ¢ (8:2.20)
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Figure 8-3: Theoretical isotope effect on T, vs experiment.— The oxygen isotope
effect on ;. (a) vs. 1./, maz- Red square are the data extracted from Fig. 1 and the blue
line is our theoretical calculation

Oxygen isotope effect on T,

The oxygen isotope effect on T, is determined by the « isotope exponent which is defined

(8.2.21)

In the underdoped region, T, is determined by the Bose-Einstein condensation (BEC)
transition temperature of holons. If treat holons as a free 2D Bose gas, then the BEC

transition temperature is:

2mt
T. =Tgec = :T = (8.2.22)
5 (1e)
Therefore, we have:
_ 1wy dmj (L) (8.2.23)

2 my (Tz)  dwg

1

2
2 * _ .G 2 "
Since mj, = e9omy, and g o p HE have:
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Figure 84: Isotope effect on i, and the penetration depth.— The OIE on 1, o
(dashed blue line) and the OIE on the London penetration depth, |3]| (black line) versus
doping.

1
azéﬁau (8.2.24)

From the definition of g%, we have:

a:m%Ayn)

Wo.E

(8.2.25)

Since A; (T3) is a decreasing function of doping and at the optimal doping it becomes
very small, isotope exponent dies off as we approach the optimal doping and it finally
becomes negligible. On the overdoped cuprates however, pseudo-gap controls T, and as
we discussed before, if Vp? = 4t ogp? < J, electron phonon interaction does not affect
pseudo-gap much and therefore, we do not expect isotope effect in overdoped side of the
superconducting phase diagram. In our numerical calculation we have studied the phase
diagram of the t-J for J = t/3. We have also chosen Ay = 3w/t ratio. We obtain a very

good fitting between our theoretical calculations and the experimental data (see Fig. 8-3).
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the OIE —%‘ (percent). Red squares are extracted data from Fig. 2. The black line is
our theoretical calculation and the dashed blue line is the shifted black line. OIE on the
thickness of the superconducting sheet can cause this shifting.

Oxygen isotope effect on the London penetration depth

The oxygen isotope effect on the superfluid density or equivalently on the London pen-

etration depth, is defined as:

Mo day _ 1wy A (8.2.26)

8= Aab AMo AN dw

According to the JToffe-Larkin formula [32] the physical superfluid density is related to

the superfluid density of spinons and holons in the following way:

Oph =Pt + 03" (8.2.27)

Since condensation fraction of holons and spinons at zero temperature are p and 1 —p

respectively, and from p = ¢ we have:

s (8.2.28)

For small values of p, we have p, (0) ~ —% On the other hand A 2 (0) = 4—’;§3pph.

m

Therefore, we have:
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(8.2.29)

Therefore, we have:

_ A2 (0)

O,E

B(T =0)= (8.2.30)

For the whole superconducting region, A, (I' = 0) > 0, therefore, |3 is always nonzero
though it is a decreasing function of the doping. Despite the fact that both « and 8 depend
on A? and we may expect |B] = 0.5a, but we should note that they depend on A, at
two different temperatures (see Fig. 8-4 and 8-5). From Egs. (26) and (31), we have:
18| /o = 0.5 (ﬁ:&%)z > 0.5.

8.3 Discussion

Our theoretical curve for A}\)‘:?(()())) versus —%ﬁ has two important features. Firstly it

has a nonzero inception since at the optimal doping, I, does not change upon isotope
substitution, but A, (0) does. Secondly it has the same slope(0.42) as the empirical data
but our curve is shifted down by a constant amount (see Fig. 5). In literature the cause
of this shift has been discussed [38]. One possible scenario is the change in the thickness
of the superconducting sheet d,, due to 180/180 substitution. Note that the 2D density of
holons is related to the 3D one by: n,, = n,,d,. Thus A2 237% and finally we have:

A)\)‘“”(O) =0.5 A—":z‘ — 845 ) Tf we assume 0.52% — _1.6 then our theoretical curve fits the
ab(o) my ds ds

experimental data very well. So our theory predicts OIE shift of the lattice spacing in the
z direction.

We have studied the oxygen isotope effect in cuprates. We have shown that within the
spin-charge separation formalism, the unusual isotope effect on 7, as well as the superfluid
density can be explained by t-J-Holstein model. It is shown that 60/'80 substitution only

affects the superfluid density and it does not affect the value of the pseudo-gap energy.
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