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Abstract:

Previously, we described a coarse-graining method for creating local density-dependent
implicit solvent (DDIS) potentials that reproduces the radial distribution function (RDF)
and solute excess chemical potential across a range of particle concentrations [E.C. Allen
and G.C. Rutledge, J. Chem. Phys. 128, 154115 (2008)]. In this work, we test the
transferability of these potentials, derived from simulations of monomeric solute in
monomeric solvent, to mixtures of solutes and to solute chains in the same monomeric
solvent. For this purpose, “transferability” refers to the predictive capability of the
potentials without additional optimization. We find that RDF transferability to mixtures
is very good, while RDF errors in systems of chains increase linearly with chain length.
Excess chemical potential transferability is good for mixtures at low solute concentration,
chains, and chains of mixed composition; at higher solute concentrations in mixtures,
chemical potential transferability fails due to the unique nature of the DDIS potentials.

With these results, we demonstrate that DDIS potentials derived for pure solutes can be



used effectively in the study of many important systems including those involving

mixtures, chains and chains of mixed composition in monomeric solvent.

I. Introduction

Coarse-graining techniques have received growing interest as methods to extend the time
and length scales of molecular simulations. In its most essential form, a coarse-graining
algorithm is a statistical fitting process that systematically reduces the number of degrees
of freedom from that of an all-atom simulation. This reduction is achieved either by
aggregating multiple atomic coordinates into a single coarse-grained (CG) particle or by
the deletion of particles, as in an implicit solvent simulation. A coarse-graining scheme
usually starts with a short simulation in which every particle is explicitly included; this is
used to generate descriptive “data” about the exact system. This simulation is followed
by a matching procedure in which the coarse-grained potential is created and applied to a
system involving a reduced number of particles to reproduce the data of the underlying
all-particle simulation. Various types of data have been used for CG potential fitting,
including forces'”’, reversible work®, radial distribution functions’'? (RDFs), and

experimental results'>'>. Additionally, a wide variety of fitting procedures have been

16-18 19-31

proposed, including simplex optimization ~, radial distribution function inversion =,

wavelet transform>>>

, and semi-grand canonical Monte Carlo"’.
The value of a coarse-grained potential is determined in large part by its utility, or
“transferability”, to situations outside of the one to which it was fit, because

transferability is the only way that the upfront cost of performing the fit can be recouped.



As suggested by Johnson ef al.**, transferability can be classified as one of two types:
“observable transferability”, and “state point transferability”. Observable transferability
(called “representability” by Johnson et al) refers to the ability of a CG potential that is fit
to one set of simulation observables to reproduce accurately another set of simulation
observables. State point transferability, by contrast, refers to ability of a CG potential
that is fit at one thermodynamic state point (temperature, density, system size, and
composition) to predict the same observables at other thermodynamic state points. Both

types of transferability have been previously addressed in the literature.*®*’

Lyubartsev’” examined the observable transferability of a CG potential for lipid
molecules in water. The potential utilized RDF matching, and was subsequently shown
to reproduce reasonably well the density profile of a lipid bilayer. Noid ef al.® showed
that for isotropic, homogeneous materials a force-matched potential will also reproduce
the system RDF. Frequently, however, CG algorithms are used to simulate systems on
time scales that are inaccessible via all-atom simulation®. In these cases, demonstrating
observable transferability with respect to an underlying molecular simulation is
impossible, since the all-atom simulation cannot be performed for purposes of
comparison. Further, theoretical study by Louis®® demonstrated that observable
transferability breaks down even in simple cases; for example, he showed that potentials
fit to system RDFs do not reproduce system energy, and vice-versa. As aresult, he
suggested that only more complex potential forms, incorporating density dependence or
many-body interactions, may overcome these representability problems. Indeed, Merabia

and Pagonabarraga >’ have demonstrated that density dependent potentials avoid some
g g y dep p



theoretical representability problems. In previous work®® we demonstrated that a coarse-
grained implicit solvent potential containing density dependent one-body and two-body
interactions can replicate both the system RDF and a measure of system energy across a

range of solute concentrations.

State point transferability has been studied many times as well. Henderson’s®” seminal
theoretical work indicates that the pairwise potential that generates a given RDF is unique
to within an additive constant for systems with only pairwise interactions. However, the
RDF of a system depends on the state point; it does not follow that the potential obtained
by RDF inversion at one state point will generate the correct RDF at other state points.
Recent simulations of polymers*’ by this approach have exhibited limited state-point
transferability of such potentials. Louis’® has suggested that state point transferability
may be improved in systems containing a local density dependence, since these systems
contain an extra parameter based on the local environment that a CG particle experiences.
It is worth noting that improving one type of transferability is no guarantee of improving

the other.

This paper examines the state point transferability of the density-dependent implicit
solvent (DDIS) potentials reported in our previous work’®, hereafter referred to as Paper
1. There, the relative merits of density-dependent potentials parameterized on either the
local or global solute density were explored; in this work, we focus primarily on the local
density-dependent implicit solvent potential, abbreviated as DDIS unless noted

otherwise. The fitting process used in generating the DDIS potentials guarantees the



transferability across a range of solute concentrations. This paper examines their
performance in other situations. Specifically, we create DDIS potentials generated from
simulations of pure monomeric solute particles in monomeric solvent, and then examine
the transferability of these potentials to two other cases — mixtures involving more than
one type of solute particle and solutes comprising chains particles — in the same implicit
solvent. These cases are of particular relevance for the study of surfactants, because
transferability would imply that one need parameterize CG potentials only for the head
and tail solute particles individually, thereby greatly extending their utility. Therefore,
we examine here the limits of transferability of density dependent potentials for these

cases.

II. Theory

Density Notation Conventions

In this work, ps refers to the fotal density of solute particles, where the subscript “S”
stands for solute, and may include contributions from different solute types. p4, o5, and
Pc, respectively, are the densities of A, B, and C-type solute particles only. Finally, p
without subscript refers to the state point density, considering all particles (solute and
solvent). A superscript L indicates that the density is the /ocal density of solute particles;

otherwise, the density refers to the global average density.

DDIS Potential Review
In Paper 1, we proposed a density-dependent, implicit solvent (DDIS) potential with the

form
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where E; is the effective energy of particle i, """ is a pairwise potential between solute
particles that is an explicit function of solute particle density in the vicinity of particle i,

ps ;> and u is a “self-interaction” term that is also a function of solute particle density.

We also proposed a method to fit such potentials, such that the solute-solute RDF and
solute excess chemical potential, w4, are reproduced across all solution compositions.
We present here only a brief sketch of the solution algorithm. For further details, the

reader is referred to Paper 1.%*

The algorithm first involves generating pairwise potentials as a function of the global
solute density by performing RDF-inversion for a number of solute compositions.
Assuming that the distribution of local densities is centered about the global density in
these first simulations, the RDF-inversion potential obtained for a given global solute
density can then be taken as representative of the potential to be applied for a particle that
experiences a comparable local solute density, regardless of the actual global density of
the system in which the particle is found. Once the pairwise potentials are determined, an
iterative procedure is used to determine the self-interaction as a function of local solute
density such that the solute excess chemical potential is reproduced across all

compositions. The method does not guarantee fit to an arbitrary accuracy.

The measure of error in the RDF is given by the solute-solute energy, defined as:



'c
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where p, is the density of solute type A, V44 is the exact interaction potential between A
particles, and g4 is the A-A RDF. The difference between E; for a coarse-grained
system and that for the all-atom simulation provides a measure of the error in g(r,04,05),
relative to the exact g(,04,08,0) for the explicit system, in units of energy. The error in
the excess chemical potential, w4, is the difference (in units of &, the Lennard-Jones
parameter of the solvent) between the target (all-atom) and measured (coarse-grain)
values. In this text, both error measurements are presented in terms of the standard error
over all simulations. Additionally, we supply figures where appropriate comparing the
all-atom and coarse-grained chemical potentials and RDFs, as these offer an intuitive

sense of the closeness of fit.
Solute Enhancement Ratio

One way to characterize the local environment is to calculate the local number of solute

particles, <N;>, defined as:
RC

<N, >= p; [ g(rips)4mdr 3)
0

We define the solute enhancement ratio as the number of solute particles within a sphere

of radius R, divided by the average number of particles in such a volume. A ratio near



1.0 indicates that the local solute environment is very similar to the global average
environment. We find this metric particularly useful in the discussion of chain

molecules.

Mixing Rule

Simulations of solute particle types A and B in solvent Z require a mixing rule to govern
A-B interactions. We propose here a simple yet physically intuitive mixing rule for the
two-body portion of the DDIS potential, which has the benefit of requiring no additional
simulation. The one-body portion of the potential is left unmodified. There are certainly
more complex mixing rules that one could propose; some of these choices are discussed
in Appendix A. We begin by decomposing the A-A coarse-grained potential, V", into

two terms:

L;pﬁ) (4)
O

where V,, is the all-atom potential, and AV,]" incorporates all modifications to the all-
atom potential. A similar equation can be written for the B-type solute. We then assume
that the modification of the A-B potential upon coarse-graining follows a simple mixing

rule, such that

AVEF(r/o,;ph AVEF(rlo,:pk
VAIZFF(L, L)=VAB(L)+€A;B( AA ( ApS)+ BB ( BpS) (5)

o
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where pj is the local solute density comprising both A and B, and V3 is the A-B all-
atom potential. Whereas in the single solute system, V,|" and the one-body term are
both parameterized on the local density of A particles, in the combined system both are
now assumed to be parameterized based on the total solute density p¢. Equation (5)

includes explicit reference to V5, and therefore does not assume a particular mixing rule

for the all-atom potential.

Limits of Transferability

Even if the mixing rules presented above were to produce the correct RDFs for every
system composition, this does not in general guarantee the transferability with respect to
the excess chemical potential. To see this, we extend the analytical framework of Paper
1, demonstrated in Figure 1, to mixtures of two solute particles. Here, the excess
chemical potential of particle type A in an implicit solvent simulation with global solute

densities p4 and pgp (ps=p4+ps), 1s given by:

s (0,05) = AF, 4 (04:05) + AF,  (0,4.05) (6)

where AF 4 is the free energy change associated with pairwise interactions between the

inserted particle(s) and the system,
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AFZ,A(pA’pB) = MA(pé = ps) + (nA _1)
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r IV EF (1 ot
[AA(pé =Ps= 3)] = éngA (r’pA’pB)%étmzd” (8)
0

AB( pSL) and BB( 0% ) are defined by equations similar to Equation (8). The excess

chemical potentials calculated by particle insertion for both the all-atom and coarse-
grained potentials contain free energy contributions associated with the pairwise
interactions between the inserted solute particle and the other particles in the system
(denoted AF;’ and AF, respectively, in Figure 1). The correction term, Equation (7), is
unique to the DDIS framework, and arises because insertion of a solute particle changes
the density (and hence energetic interactions) of the system. This small change in solute
density introduces a differential change in the interactions between existing particles in
the system, which nonetheless produces a significant impact on the excess chemical
potential for high solute densities. The first three terms on the right-hand of Equation (7)
address one-body energy changes, while the last three terms (AA, AB, and BB) address
the change in existing pairwise interactions due to the differential change in density.

Further details can be found in Paper 1.**

10



Because Equation (7) has a dependence on uz“(ps), transferability cannot be assured,
since the A potential was fit without knowledge of B-type particles. There are, however,
situations in which transferability with respect to u“* can be expected, as will be

discussed next. These special cases cover a large number of relevant simulations.

Special Cases

Transferability with respect to excess chemical potential is more likely for solutions at
low total solute concentration. Equation (7) for AF, o shows that as nz becomes small,
those terms involving B-type particles will vanish. As these terms vanish, u,“ depends
only on terms involving A particles. Since these are the conditions under which the A
potential was fit, u,* should be accurately reproduced. A similar argument can be made

for B-type particles.

A second special case arises when A-type and B-type particles are inserted
simultaneously, in proportion to their existing ratios in the system. The most common
example of such a system is insertion of an A;B; chain into a system of identical chains.
We assume here that the free energies of insertion are additive. In that case, the average

chemical potential of each inserted particle is:

ex n ex n ex
u = _A.uA + _BAUB ©)
n n
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where n4 and np are the number of A-type and B-type particles in the system,

respectively, and n = n4+ np. By analogy to Equation (6)-(8), Equation (9) can be written

as:
ex n n n n
= —LAF, 4 (04,05) + =2 AF, 4 (04,05) + =2 AF, 4 (04505) + =2 AF, 4 (04.05) (10)
n n n n
with
AF2,A(pA’pB)= MA(pS)+(nA _1)0?MA(pS)+”B a‘uB(pS) + (nA _1) AAZ +(” )nB AB| % |1+ 5| BB
on on 2 %4 \% 2 \%
(1T)
and

AFZ.B(pAva) = [,LLB(pS)+ (nB _1) a,u};(nps) on, &M;ips)}+

= (2 -] 25 o]

(12)
If we assume first that A4(n/V) and BB(n/V) are not greatly different from their pure

component values, and second that AB(n/V) is an average of AA(n/V) and BB(n/V), then

Equations (10)-(12) can be simplified to

__AFlA(pA’pB) " lB(pA’pB)

)+ (r ) (0L

n 5 ) + (13)

’%B_MB(Ps) +(n-1) oH Zip s) + ( ;1)2 :33(3)-
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The bracketed terms in Equation (13) are simply the correction terms derived for pure
solute system, AF> a(0s) and AF>g(ps). Therefore, in this special case, the average excess

chemical potential will be correct.

III. Simulation Protocol

Simulation protocols for all-atom and coarse-grained simulations of monomeric solute
are given in Paper 1. . All-atom simulations were performed using the GROMACS
(Version 3.3)*! molecular dynamics simulation software, whereas the coarse-grained
(DDIS) simulations were performed using a Monte Carlo code of our own design.

As in that paper, all simulation were carried out in the NVT ensemble at 7*=kpT/e,~1.35
and p*=po,=0.55, where &, and 0y are the Lennard-Jones parameters of the solvent Z.
Each simulation consisted of 1000 total particles. The cutoff radius for interactions was

set to 50z unless otherwise indicated

All-atom simulations of solute mixtures and of chains were carried out in the same
manner as the molecular dynamics simulations of Paper 1, with the exception of
intramolecular degrees of freedom for the chain simulations. Bond lengths and angles
were held fixed at the minimum energy values using the LINCS* algorithm, while
torsion angles were allowed to rotate freely. Chains of length two and four were
simulated. Free energy calculations in the all-atom simulation were performed using
thermodynamic integration (TI)*. The standard GROMACS A switching function was

used to integrate between an initial state in which the test particle interactions with the

13



remaining system were switched off and a final state in which the test particle
interactions were fully enabled. Switching was applied to nonbonded interactions only,
with soft core interactions to avoid singularities and using a soft core interaction
parameter a=0.51. A total of 31 A values were used (A =1[0.00 0.03 0.07 0.10 .... 0.93

0.97 1.00]).

Implicit solvent Monte Carlo simulations were carried out in the same manner as the
monomeric density dependent, implicit solvent simulations. Nearest bonded neighbor
particles were included in the calculation of local density. In addition to the chain
translation moves used for monomeric simulations, simulations of dimers included rigid
body rotation moves as well, in the proportion 80% translation:20% rotation. For
tetramers, we also included rotation moves about individual bonds, in the proportion 50%
translation:20% rigid body rotation:30% bond rotation. Simulations of monomeric
solutes were equilibrated for 10* cycles, followed by sampling for 3 x 10* cycles.
Sampling of dimers was performed for twice as many cycles, or 6 x 10*, and chains of
length four were sampled for 1.2 x 10° MC cycles. Free energy was calculated using the
Bennett Acceptance Ration method** Two A values were used (A = [0.00,1.00]) with an
initial state comprising a non-interacting test particle and a final state having a fully
interacting test particle. Sampling was performed every two MC cycles, which was
sufficient to generate statistically independent samples, as determined by the
autocorrelation function of the measured energy difference. RDF sampling was

performed every 100 MC cycles.

14



IV. Results and Discussion

Particle Types Used in this Work
In the all-atom simulations described in this work, particles interact via the truncated and

shifted Lennard-Jones potential, where the potential between particles i and ; is described

by:
Vi (ryiep0yRey) = {(‘)/ 7 (r8500) = Vi (Reigo0) rr;fecc (14)
ij Jij
with
12 6
Vi (ryiepoy) = 4, (%) _(%) (15)
v ij

where ¢; and oy are the Lennard-Jones parameters for jj interactions. Equations (14) and
(15) allow for the possibility of different cut-off radii (R¢ ;) for interaction between
different particle types. € and o values of unlike particles are governed by Lorentz-

Berthelot mixing rules.

In Paper 1, we examined the behavior of a single solute type (hereafter referred to as
“A”) in solvent (“Z”) at reduced temperature and density 7*=1.35 and p*=0.55. Because
the A-type particles were identical to the solvent Z, the behavior of A-Z mixtures was

identical for all compositions of A. For the work presented here, we find it useful to

15



introduce two additional solute types, which display “solvent-philic” and “solvent-

phobic” behavior, respectively.

A solute’s relative preference for the solvent can be measured by the free energy of
transfer, AGs(Z—S), defined as the free energy change associated with transferring a
single solute particle from a bath of solvent particles Z to a bath of solute particles S.
The free energy of transfer can be calculated from the excess chemical potential of solute

particles:
AGS(Z—>S)=;,¢§"(%=1)—M§X(%=O) (16)

By varying particle ¢;’s and R ;’s, we created a “solvent-philic” particle (type B) and a
“solvent-phobic” particle (type C), with interaction parameters given in Table 1. Solute
type B is distinguished by its reduced &5 of 0.5, compared to &z of 1.0. Solute type C
interacts with the solvent Z via a reduced cutoff radius of 1.840z, with C-C and Z-Z

interactions maintaining the usual 5.00; cutoff.

Table 1 shows the solute enhancement ratio for all three types of solute particles at
ps/p=0.5. The specific ¢;’s and R¢;’s used were selected such that B-type and C-type
solute enhancement ratios were close to 1.0 for all compositions. This indicates that both
solute types, while expressing relative preference for like or unlike interactions, are

completely miscible in solvent at all compositions, and validates the use of Equations (6)-

(8).

16



DDIS Potentials

Paper 1 previously reported the DDIS potential for the coarse-graining of A-type particles
in solvent Z, where the A and Z particles were identical. Here, we followed the same
fitting procedures to produce DDIS potentials for B-type and C-type particles in the same
solvent Z. Figure 2 shows the fitted values of the excess chemical potential compared to
the all-atom simulations. Figure 3 shows the worst fit RDFs for each system. In general,
the accuracy of fit achieved for the B-type particles is comparable to the results for A-
type particles reported in Paper 1, and both are superior to that obtained for the C-type
potentials. The standard error in u® for B-type particles was 0.04¢, versus 0.11¢; for C-
type particles. Similarly, the £; standard error for B-type particles was 0.005¢z, versus
0.06¢; for C-type particles. The worst case RDFs for the B-type and C-type particles are
shown in Figure 3. The lower quality of fit attained for the C-type particles is perhaps
because of the large discrepancy in cut-off radii between like and unlike particles. In

both cases, however, the visual examination suggests the fit is quite good.

Figure 4 compares the two-body portion of the coarse-grained potentials for the A-type,
B-type, and C-type potentials at a local density of p;/0=0.5. All three potentials display
the same general form, with a secondary local maximum in the potential. The “solvent-
philic” B-type particles show a shallower attractive well when compared to the A-type
particles, while the “solvent-phobic” C particles have a deeper well. This is consistent
with the form of the pairwise implicit solvent potentials used in the Effective Energy

Function®.

17



Figure 5 shows the one-body portion of the DDIS potential for A,- B-, and C-type
particles. As with the two-body portion, all the potentials share certain general
characteristics. As solute density goes to zero, the value of the one-body term approaches
us“(ps/p=0). The profile is relatively flat for low solute densities, before rising rapidly as

the solute fraction approaches 1.

The potentials used in this work can be found in tabular format in the Supplemental

Information section.

Mixtures

We investigated the behavior of A/B and A/C mixtures in implicit solvent Z. The
analysis of this system is simplified by the fact that the A and Z particles are identical,
which means that the system can be expressed solely as a function of pp for the A/B
system, and of p¢ for the A/C systems. Considering A/X/Z systems, where X=B or C, is

equivalent to considering A/X systems with partially coarse-grained A.

In this work we performed simulations in increments of 10% in solute concentration. As
a result, there were 55 possible combinations of A/X/Z mixtures. To reduce
computational time, we simulated only a representative fraction of these systems. That
subset consisted of systems in which the total solute density, ps, was 20%, 50%, or 90%

of the total particle density, and constitutes 13 of the 55 mixture fractions possible.

18



Additionally, we measured only uy™(04,0x) (and not u,“(p4,0x)) for each system, to

further reduce computational time.

The ability of the DDIS potential to reproduce the all-atom RDF’s for both systems was
very good. For the A/B/Z mixtures, the standard errors in E;, were E7, 44=0.013 ¢z and

E; 55=0.005¢z which compare favorably with the pure-component errors of

E; 44=0.015¢z and E1 35=0.005¢z. In other words, the RDF accuracy of the coarse-
grained mixtures is comparable to the accuracy of the coarse-grained pure systems.
Results were similar for the A/C/Z mixtures. Here, the standard errors were

E; 44=0.010&z and E,cc=0.06&z compared to the pure component errors of £z 44=0.015¢;
and E;,cc=0.06¢z. Figure 6 shows the worst reproductions of all-atom RDFs by the DDIS
potentials for the A/B/Z and A/C/Z potentials, which demonstrates visually the similarity

of RDFs.

Figure 7 examines the transferability with respect to excess chemical potential for the
A/B/Z and A/C/Z mixtures at the three total solute concentrations. As expected, the
transferability with respect to excess chemical potential is not as good as that with respect
to the RDF, for the reasons laid out in the theory section. The standard error in

s (04,0p) for the A/B/Z system is 0.47¢,, and the standard error in uc”(0.4,05) for the
A/C/Z system is 0.63 &z, which are both substantially higher than the pure-component
errors of 0.04¢z and 0.11¢z. Nevertheless, the performance of the DDIS potentials at low
solute concentration is quite good. The chemical potential errors for ps/0=0.2 are 0.01¢;

and 0.21¢&z which are comparable to the error in the pure component systems.

19



Chains

To study the transferability of DDIS potentials to systems of chains, we examined the
behavior of dimers and tetramers of A, B, and C solutes in solvent Z. These simulations
were performed over a range of solute densities from ps/p=[0.1,1.0] in increments of 0.1,
which were the same solute densities at which the potential was fit. Bond lengths were
held fixed at 1.220z, which is equal to the average separation between particles in the
monomeric simulations. We selected this bond length so that the total local density of
particles (solute and solvent) remained close to the fitting density. For shorter chain
lengths, total local density was higher than in the monomeric case. Angles were held
fixed at 112 degrees. Errors in u“ were measured on a per-particle basis for chain
simulations, to permit comparison to the errors measured in monomeric solute

simulations.

We first examined the all-atom and DDIS errors in £; for monomers, dimers and
tetramers of A, B, and C. These results are summarized in Table 2. For all three particle
types, the errors in the reproduction of all-atom RDFs increased with increasing chain
length. It appears that, for the systems studied here, each doubling of the chain length
results in an approximate doubling in the error of £z, although the progression is not
entirely smooth. For example, the accuracy appears nearly equal for dimers and
tetramers of B. Figure 8 shows the worst case reproductions of all-atom RDFs by the
DDIS potentials for tetramers for each particle type. At the tetramer level, one can begin

to see visual disagreement between the all-atom and coarse-grained RDFs. In general,
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the locations of the peaks in the RDF remain correct. Errors arise in maxima and minima

of g(r) that are systematically too high or too low.

Figure 9 compares the all-atom and DDIS results for u® per particle for monomers,
dimers and tetramers of A, B, and C. The standard errors are given in Table 3. For all
particle types, the errors increased with increasing chain length. As is the case in
mixtures, chemical potential transferability is better at low solute concentrations. The
reason that transferability breaks down at higher solute concentrations is related to the
two-body correction factor, Equation (8), which contains the solute-solute RDF. As
chain length increases, the solute-solute RDF becomes less similar to the RDF at the
fitting conditions, and as a result transferability degrades. At low solute densities, the

influence of the two-body correction is smaller, and u* transferability is better.

In Paper 1, we demonstrated that a potential with local density dependence performed
better in reproducing the RDF behavior of a system with solute aggregation than did a
potential with a global density dependence. We hypothesized that this was because the
local density dependence permitted the potential to be responsive to local variations in
the environment around the solute at every time point of the simulation. In this work, we
tested if this result was applicable to other systems with solute aggregation, namely
dimers and tetramers of C-type solute in solvent Z. As discussed previously, C-type
particles are completely miscible in solvent Z in the monomer state. However, longer
chains of C-type particles aggregate substantially. At ps/0=0.5, the solute enhancement

ratio for monomers is 1.01, indicating a nearly homogeneous dispersion. For dimers, the
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solute enhancement ratio rises to 1.09, and to 1.21 for tetramers. This solute
enhancement cannot be attributed to the presence of solute particles held in close
proximity by bonding, as chains of A-type particles do not experience an equivalent
increase in solution enhancement ratio. Instead, the local composition is more
concentrated in solute than is the system in which the coarse-graining was performed due
to chain aggregation. Aggregation is expected because increasing the chain length
reduces molecular entropy, and thus the driving force for solute particle dispersion in

solution.

Figure 10 compares the performance of the local DDIS potential of C-type solutes
dispersed in Z to the equivalent global density-dependent potential. The global potential
was tuned to fit the RDF of monomeric solute particles at a given solute density, and then
tested on chains at the same solute density. The local potential shows superior RDF
transferability when compared with the global potential. The slope of the standard error
line as a function of chain length is smaller for the local potential, and for tetramers the

absolute value of the error is smaller than for the global potential.

Figure 11 examines the all-atom RDF at a given solute density, and compares the results
to those obtained using the local and global potentials. The results demonstrate that the
global density-dependent potential does not correctly capture the solute aggregation
effect. The value of g(r) is systematically too high for all r. For the composition shown
in Figure 11, the all-atom ratio is 1.47, and the local potential yields a ratio of 1.43. By

contrast, the global potential yields a solute enhancement ratio of 1.76.
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Chains of Mixed Composition

Finally, we examined a system of chains of mixed composition. This system invokes a
combination of mixture and chain transferability. The surfactants studied here are A;B;
molecules in solvent Z. The bond length is set to 1.2207, as in the foregoing section on

chains, and is held constant throughout the simulation.

Transferability with respect to u“ was quite effective, with a standard error in u* of
0.13¢&z, as shown in Figure 12. This value is substantially below the errors found in
mixtures of monomeric A and B (0.47¢z) and validates our predictions from the
theoretical section. The RDF transferability is also good, with standard errors in £z 44
and E; gz of 0.012¢z and 0.008 ¢, respectively. These results are comparable to the

standard error at the state point of fit.

V. Conclusion

In this work, we developed coarse-grained DDIS potentials for pure solute particles, and
investigated their transferability to solute mixtures and chains in the same solvent. For
mixtures, transferability with respect to the solute-solute RDF is very good. For the
mixture systems studied in this work, the RDF standard errors were equal to those at the
state point of fitting, indicating no loss of accuracy. The transferability with respect to
u” in mixtures is good for low solute concentrations, but at high solute concentrations the
transferability breaks down. This breakdown is due to the unique nature of the DDIS

potential, in which particle insertion causes a change in local density for some fraction of
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the existing system particles. The parameters of the DDIS potential are carefully tuned to
account for this energy change at the state point of fitting. At other compositions, the
energy change is different; as a consequence, the predictions of excess chemical potential

are less accurate.

For the systems of chains studied, we found that errors in RDF fitting increased linearly
with chain length. Increasing chain length was also associated with increases in the u®
error. Additionally, we find that the local DDIS potential produced superior RDF
transferability when compared to comparable global density-dependent implicit solvent
potentials for a chain system with solute aggregation. The most likely reason for this
improved transferability is that the local density dependence captures solute enhancement
effects more accurately than the global potential. Finally, we found that chains of mixed
composition had u™ transferability that was superior to mixtures of monomers of
equivalent composition. This is because the simultaneous insertion of both particle types

removes the biases inherent in mixed systems.

The transferability characteristics described in this paper indicate that DDIS potentials
can function effectively for a wide variety of systems, including mixed composition chain
molecules at low concentrations. Given these results, we feel confident in suggesting that
the potentials would be useful in the simulation of surfactant systems. We intend to

report results for such systems in the near future.
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Appendix
The performance of the basic mixing rule described in this work is generally good. The
lone exception is in its performance with respect to u in systems of mixtures. We

discuss here a more complex mixing rule that can improve transferability of potentials.

Equations (6)-(8) provide a framework to predict the excess chemical potential,

w4 (04,08), based on the self-interaction energies, w4 and uz. Therefore, Equations (6)-
(8) can be used to optimize the values of the self-interaction energies based on any
number of parameterizations. Here, we show that MA(pAL,pBL) and MB(pAL,pBL) can be
parameterized as a two-dimensional function of both p,4" and ps". To do so, we propose

adding a cubic correction term to the pure component one-body terms, so that

pure cub

w05 ) = 12 (05 + oy ) + 1 (5. 05) (A1)

with
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cub

w5 Ptk ) = ot +eaph + ey (k) +euptph +es(ph) +eo(k) + (k) ok +espt(ph) +co(pk)
(A2)

A similar equation can be written for the us’s. If values of tex”, tier’, AF; 4, and AF; 5 can
be measured or estimated across as range of densities (04,05); then the resulting system of
18 unknowns can then be optimized without the use of additional molecular simulations.
We elected to use a cubic correction instead of the simpler quadratic because

optimization over Equations (6)-(8) indicated a slightly superior fit with the cubic
correction. However, quadratic correction would likely provide adequate results in many

casces.

We examined the performance of this new algorithm in A/B/Z mixtures, and compared
the results to the original mixing rule. A subset of the results is shown in Figure Al. It
indicates that the two-dimensional density dependence improves transferability
substantially. The standard error with respect to u“ is 0.18¢; for the 13 points studied,

compared to 0.47¢; for the original mixing rule.
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Figure 1: Comparison of free energy changes upon particle insertion in the (a) all-
particle and (b) density-dependent, implicit solvent cases. The density-dependent
potential introduces a secondary free energy change due to the change in energy models

associated with a change in global average solute density of the system.

Figure 2: Comparison of excess chemical potential in all-atom (solid line) and coarse-
grained (circles) simulations. Left: B-type particles in solvent Z. Right: C-type particles
in solvent Z. The dashed lines demarcate errors of 0.06¢&z, and are provided as a guide to

compare the relative errors between the two coarse-grained potentials.
Figure 3: Comparison of worst-fit solute RDF in all-atom (solid line) and coarse-grained
(circles) simulations. Left: B-type particles in solvent Z. Right: C-type particles in

solvent Z.

Figure 4: Coarse-grained two-body term for local solute density pi/0=0.5 (—A,--

Figure 5: Coarse-grained one-body term as a function of local solute density (Circles: A-

type particles, Squares: B-type particles, Crosses: C-type particles)

Figure 6: Worst case RDF reproduction for mixtures. Left Side: A/B/Z mixture, Right

Size: A/C/Z mixture (Solid Line — all-atom results; Circles —DDIS results).
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Figure 7: Comparison of coarse-grained and all-atom excess chemical potential for
mixtures, broken down by total solute density, ps. Left Side: uz“(0.4,05) in A/B/Z
mixtures. Right Side: uc™(04,0c) in A/C/Z mixtures. (Solid Line — All-atom values;

Circles — ps/p=0.2; Squares — ps/p=0.5; Crosses — ps/0=0.9).

Figure 8: Worst case RDF reproduction for tetramers of solute particles (a) A-type, (b)

B-type, (c) C-type. (Solid Line — All-atom; Circles — DDIS results).

Figure 9: Comparison of coarse-grained and all-atom excess chemical potential for
monomers, dimers, and tetramers as a function of solute density, ps. (a) A-type, (b) B-
type, (c) C-type. (Solid Line — All-atom; Circles — Monomers; Squares — Dimers;

Crosses — Tetramers).

Figure 10: £, standard error (units of &z) as a function of chain length for local DDIS and

global density-dependent potentials. (Circles — Local potential; Squares — Global

potential).

Figure 11: Comparison of C-C particle RDFs for all-atom, local potential, and global

potential for C-type tetramers in solvent Z at pc/p=0.2 (Solid Line — all-atom; Circles —

global potential; Squares — local potential).

Figure 12: All-atom (solid line) and coarse-grained (circles) u“(ps) for A;B; molecule.
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Figure A1: Comparison of measured ..’ (04,05) transferability with and without mixture
correction function for ps/p=0.9. Results indicate that parameterizing the self-interaction
energy on the density of both particle types improves transferability, and that allowing
the pure-component values to vary improves transferability even more (Straight line —

All-atom values; Squares — original mixing rule; Circles — modified mixing rule).
Table 1: Parameters for solute types used in this work. B-type solute is “solvent-philic”,
as indicated by the positive free energy of transfer. C-type is “solvent-phobic”, as

indicated by a negative free energy of transfer.

Table 2: Values of E; for systems of monomers (N=1), dimers (N=2), and tetramers

(N=4) for chains of A, B, and C type solute particles.

Table 3: Values of u for systems of monomers (N=1), dimers (N=2), and tetramers

(N=4) for chains of A, B, and C type solute particles.
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Figure 11
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Figure A1l
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Particle &i Oy R0 R0y AGs(Z—S) <N >/<N>PEAL
Type (Like) (Unlike)
A 1.0 1.0 5.0 5.0 0.0 1.00
B 05 1.0 5.0 5.0 1.29+0.05¢; 1.00
C 1.0 1.0 5.0 1.84 -2.71x0.08¢; 1.01
Table 1
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Eiles N=I N=2 N=

A 0.015 0.04 0.06

B 0.005 0.010 0.011

C 0.06 0.14 0.28
Table 2
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ez N= N= N=4

A 0.04 0.19 0.27

B 0.04 0.06 0.11

C 0.09 0.13 0.23
Table 3
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