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Abstract

Recent advances in medicine and healthcare allow people to live longer, increasing the need for the number of
organ transplants. However, the number of organ donors has not been able to meet the demand, resulting in an
organ shortage. The field of tissue engineering has emerged to produce organs to overcome this limitation. While
tissue engineering of connective tissues such as skin and blood vessels have currently reached clinical studies,
more complex organs are still far away from commercial availability due to pending challenges with in vitro
engineering of 3D tissues. One of the major limitations of engineering large tissue structures is cell death resulting
from the inability of nutrients to diffuse across large distances inside a scaffold. This task, carried out by the
vasculature inside the body, has largely been described as one of the foremost important challenges in
engineering 3D tissues since it remains one of the key steps for both in vitro production of tissue engineered
construct and the in vivo integration of a transplanted tissue. This short review highlights the important challenges
for vascularization and control of the microcirculatory system within engineered tissues, with particular emphasis
on the use of microfabrication approaches.
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Introduction
Progress in the development of large tissue-engineered
organs has so far been limited by the inability to gener-
ate sophisticated three dimensional (3D) structures com-
prised of a functional vasculature. The vascular system
is a dynamic environment comprised of a variety of cell
types that constantly remodels itself under the influence
of endothelial, immune, nervous and endocrine cells [1].
Vascular growth and remodeling are coupled with devel-
opmental and wound healing processes as well as the
progression of various pathologies such as inflammation,
cardiovascular diseases and cancer. Most of these pro-
cesses depend on endothelial cells, which line the inter-
ior of blood vessels and form the endothelium. This
interface between circulating blood and the surrounding
tissues is responsible for proper solute transport and
molecular exchange. It ensures the delivery of sufficient
oxygen and nutrients to cells to maintain tissue homeos-
tasis. Cells in vivo are found to be at most a few

hundred microns away from the nearest capillary or
blood vessel. Beyond this distance, diffusion is not effec-
tive and tends to reduce cell survival and function.
Therefore, the inability to adequately vascularize engi-
neered tissues results in inefficient transport of nutrients
and metabolites and often leads to cell death and tissue
necrosis. Moreover, vascularization of engineered tissues
plays an important role in graft perfusion and is also
crucial in facilitating the integration of the implanted
material with the host vasculature [2,3].
The fabrication of tissue constructs often requires

cell seeding of 3D scaffolds. These scaffolds are gener-
ally made of gels, foams or fibrous meshes and usually
have basic macroscale properties that enable cell adhe-
sion, migration and proliferation [4]. Although these
properties are often sufficient to allow the formation
of functional connective tissues such as skin [5,6],
bladder [7] and cornea [8,9] and 3D tubular structures
like blood vessels [10,11] and urinary tract [12], most
tissue engineering approaches still lack the capability
to sustain the growth of thick engineered organs [13].
Skin and cartilage have been among the first engi-
neered tissues ready for clinical applications since they
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do not require extensive internal vasculature to survive
in vivo. However, the fabrication of complex organs
such as the heart or liver requires adequate vascular
supply to ensure the survival of specialized cells within
their 3D structure. To achieve this level of functional-
ity, it is necessary to integrate a network of vessels
ranging from a few microns to several millimeters
within engineered tissues. The incorporation of this
microcirculation into tissues and organs represents a
considerable challenge which includes the engineering
of vascular conduits having micron scale dimensions.
It also requires a functional endothelium to improve
vascular activity and avoid thrombosis, as well as other
specialized cell types performing the physiological tis-
sue function of interest. Various approaches have been
proposed to design scaffolds comprised of a vascular
network analogous to capillaries. These approaches
rely on the release of growth factors [14,15] from the
scaffolding material, the seeding of endothelial cells in
the scaffold to promote angiogenesis [16] (Figure 1) or
the use of microfabrication technologies to engineer
branched microfluidic channels inside biocompatible
materials [17]. Regardless of the application, these
technologies all aim at improving mass and fluid trans-
port as well as oxygen diffusion in engineered tissues
produced in vitro.

Microvascularization of Engineered Tissues through
Angiogenesis and Inosculation
The need for adequate solute transport in cell-seeded
scaffolds is essential for tissue survival and function. A
key approach in attempting to induce the growth of a
vascular network within 3D engineered tissue has been
the incorporation of growth factors into the scaffolding
material. It was shown that a macroporous scaffold,
obtained by particle leaching, freeze drying or other
pore forming technologies and functionalized with
growth factors such as vascular endothelial growth fac-
tor (VEGF), basic fibroblast growth factor (bFGF) and
platelet-derived growth factor (PDGF), can trigger the
formation of vascular structures following in vivo
implantation [18-22].
Both natural and synthetic scaffolding materials have

been loaded with these pro-angiogenic molecules, lead-
ing to the sprouting of capillary beds within the con-
structs. However, the lack of directed growth of blood
vessels to enable interconnectivity between the capillary
networks still remains the biggest challenge of this
technology.
Microvascular structures incorporated in tissue engi-

neering scaffolds prior to their implantation can also be
obtained by the co-culture of endothelial cells with the
cell types of interest regarding tissue function. This cell-
based approach uses the ability of endothelial cells to
release growth factors and promotes the formation of
capillaries in vitro. The resulting angiogenesis phenom-
enon can be explained by the remodeling that occurs
within the construct, which is driven by the endothelial
network that activates the release of pro-angiogenic fac-
tors in the construct. The remodeling of the extracellu-
lar matrix (ECM) allowing the formation of vasculature
is driven by matrix-metalloproteases (MMPs), regulating
cell proliferation and migration within the tissue [2].
Using a skin model, it has been originally demonstrated
that a capillary network can be successfully produced by
culturing human umbilical vein endothelial cells
(HUVECs) into the dermal part of the engineered sub-
stitute leading to the formation of long-lasting and per-
fused blood vessel networks following in vivo
transplantation [3,16,23-25]. This inosculation enabled
the perfusion of the tissue engineered capillary network
by the vasculature of the host following implantation.
The cell-based approaches have led to many interesting
results including vascularized muscle [26], cardiac tissue
[27], bone [28] and blood vessel [29], all of which have
been implanted in animal models and have shown
improved perfusion and inosculation with the host vas-
culature. Similar results were obtained when HUVECs
were cultured in a 3D collagen ECM in vivo, where a
stable tree-like structure of a branched network was
observed for an extended period of time [30]. Several

Figure 1 Co-culture of fibroblasts and endothelial cells for one
month in a collagen-GAG porous construct, resulting in a 3D
capillary system within the biomaterial. Confocal imaging of the
full thickness of the scaffold showing green fluorescent protein
(GFP)-labeled endothelial cells forming vascular channels
throughout the 3D structure of the biomaterial.
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other recent studies also suggested that mesenchymal
stem cells and endothelial cells have the ability to inter-
act together to form a stable vascular network of capil-
laries both under in vitro and in vivo conditions [31,32].
In vivo studies also demonstrated that the presence of

vascular structures formed in vitro greatly accelerated
inosculation of the implanted tissue with the host vascu-
lature. Results from L’Heureux et al. have shown that
the formation of a vasa vasorum in the wall of a tissue
engineered blood vessel (TEBV) occurred 3 months fol-
lowing implantation in vivo [33].
Similarly, Guillemette et al. showed that a TEBV com-

prised of a vasa vasorum engineered in vitro
(TEBVwVV) allowed for complete tissue integration and
functional vasa vasorum activity after only 2 weeks in
vivo [3]. These studies have provided evidence for the
need to incorporate a capillary network into engineered
tissues prior to implantation, showing improved and
accelerated tissue integration and capillary-like structure
formation which enabled connections with the host vas-
culature in vivo. Therefore, rapid formation of a vascular
network between the engineered tissue and the host at
the transplanted site, similar to the process observed
during wound healing, represents a promising solution
to provide implanted cells with adequate supply of oxy-
gen and nutrients. However, this strategy does not pro-
vide a sustainable solution that can enable both
perfusion in vitro and inosculation in vivo. In addition,
these approaches did not result in the creation of organ
scale constructs in vitro. In an attempt to engineer vas-
culature into engineered tissues and organs, microscale
technologies and microfluidics systems have emerged as
efficient tools to create easily perfusable channels in bio-
compatible and biodegradable 3D scaffolding materials.

The use of Microtechnologies to Engineer Vascularization
in vitro
The application of microtechnologies to biomaterials
can be used to reproduce the capillary network and
allow the flow of culture medium through a construct
during in vitro studies. Unlike angiogenesis and inoscu-
lation approaches, microfabricated devices with inte-
grated microvasculature can be optimized to provide a
uniform distribution of flow and mass transfer across
the scaffolding material and thus provide the cells with
an adequate supply of nutrients.
Soft lithographic and micromolding processes have

been used to create microfluidic devices consisting of
branched networks that can be connected to perfusion
systems in vitro [17]. These technologies have been
applied to polymers such as poly(dimethyl siloxane)
(PDMS), poly-lactic (co-glycolic acid) (PLGA) and poly-
glycerol sebacate (PGS) in which channel networks can
be perfused and seeded with vascular cells [34-37].

These techniques have been shown to be useful to regu-
late the formation of vascular networks in a precise and
efficient manner. The design of functional microvascular
networks involves the integration of multiple parameters
such as the geometry of branching and bifurcations,
fluid mechanics, mass transport and structural rigidity.
These properties are of utmost importance since they

greatly influence the stability, oxygen and nutrient distri-
bution and therefore the functionality of engineered tis-
sues. Microfluidic systems can effectively transport
solutes in capillary channels ranging from a few milli-
meters down to micrometers [38]. The control of fluid
mechanics and mass transport over this wide range of
dimensions has been used to study bioactive molecules
and therapeutics in cardiovascular research and tissue
engineering [39]. Sophisticated devices have recently
been fabricated to reproduce a lung assist apparatus
allowing the blood being perfused within the micro-
channels to be oxygenated by flowing through many
parallel capillary-like channels analogous to the native
lung architecture [40]. Although optimization of the gas
transfer membrane and characterization of the blood
flow in the device are still needed, this is a good exam-
ple demonstrating the potential of microfabrication
technologies to generate vascularized platforms for tis-
sue engineering. Similarly, it was shown that microvas-
cular cells could be seeded in the device to form a
confluent endothelium on the walls of the vascular
channels [41]. These studies demonstrated that micro-
fabricated devices comprised of a fluidic network mod-
eled on human vasculature can be successfully
inosculated in vivo [41].
Even though previous work has shown that microscale

channels can be engineered in vitro, there is actually no
available method to consecutively branch multi-dimen-
sional channels inside a scaffold [42]. Top-down fabrica-
tion processes are inherently planar in nature and
therefore 3D structures mostly result from stacked 2D
structures which are comprised of channels having rec-
tangular cross sections [43]. Moreover, most microfabri-
cation techniques have been developed for materials
that are unable to sustain cell encapsulation, which
represents a limitation of this approach to generate
large vascularized tissues [36,44,45]. Few attempts were
made to engineer perfused microfluidic devices in which
two different cell types can be cultured [36,46], but a
vascularized tissue with parenchymal cells has yet to be
created and there are still no methods to build sustain-
able large cell-laden structures with multi-dimensional
branched networks. Other microscale fabrication
approaches such as bioprinting and stereolithography
are currently being investigated to create 3D branching
vascular networks [47-50]. However, these methods not
only require specialized facilities and expensive
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equipment, but the fabrication processes involved are
usually time consuming.

Biomimetic Approaches for Engineering Tissue
Vascularization
Cells in the body are in contact with a complex 3D
environment comprised of a combination of soluble fac-
tors as well as the ECM and basement membrane pro-
teins found in the tissue in which they reside. Most
tissues consist of multiple cell types organized into hier-
archical structures that allow them to regulate their
function. Modular tissue engineering, or bottom-up
approaches, have recently emerged as powerful fabrica-
tion methods to generate 3D structures that mimic this
organization and that recapitulate tissue structure and
spatial resolution [51-54]. These techniques aim to gen-
erate biomimetic mesoscale structures by engineering
microscale components and by using them as building
blocks to fabricate larger tissue structures [55]. This
approach has been used to control the cell microenvir-
onment and the macroscale properties of relatively large
and complex engineered tissues [56,57].
Microgels are microscale hydrogels fabricated by mer-

ging microscale fabrication and hydrogel chemistry.
They exhibit properties similar to native ECM, can sus-
tain cell encapsulation and have tunable geometrical,
mechanical and biological properties which make them
excellent candidates for tissue engineering applications.
Based on these characteristics, cell-laden microgels were
fabricated and then assembled into 3D tissue constructs
to create precise
microarchitecture containing repeated functional units

that mimic the in vivo structure of tissues and organs
[52,54,58,59]. The directed assembly of microgels can be
driven by simple thermodynamic processes in a two-
phase oil-aqueous reactor [54,57]. Recent work has also
shown the potential of modular assembly to produce
vascularized tissues in vitro [60,61]. Arrays of microgels
with precisely defined structures and channels have
been produced by photolithography and were assembled
in a controlled manner resulting in 3D structures with
multidimensional interconnected lumens resembling
native vasculature (Figure 2) [61]. The validation of this
biofabrication process was assessed by placing endothe-
lial and smooth muscle cells inside the microgels follow-
ing a precise and concentric fashion mimicking the
organization of blood vessels. The complete assembly
was later strengthened by a secondary crosslinking step
and it was shown that these assemblies could be per-
fused with fluids [61].
One of the challenges of directed self-assembly tech-

nology resides in the difficulty to scale-up the tissue
produced. Larger structures have recently been built
using lock-and-key principles and modular assembly

[56]. Ongoing work is currently focusing on long-term
perfusion aiming at developing mature and functional
vasculature in vitro. Maintaining physiological function-
ality and blood flow in a high-density vascular network
with optimized oxygen transfer conditions is critical to
keep the tissue in an appropriate state of homeostasis.
This biomimetic approach can also be utilized in the
design of organ-on-a-chip technologies aiming at the
fabrication of precise and reliable small scale models
that can later be used for drug screening and physiologi-
cal in vitro studies [62].

Figure 2 Directed assembly of microgels using a modular
approach. Schematic representation of a high-throughput
photolithographic method (A). Design image of microgel arrays
assembled into tubular structures embedded with 3D branching
lumens and actual phase image of the microgel assembly after
secondary crosslinking (B). Phase image of microgels following a
sequential and directed assembly process (C). Scale bar: 500 μm.
(Adaptation from Du et al., Sequential assembly of cell-laden
hydrogel constructs to engineer vascular-like microchannels,
Biotechnol Bioeng, 2011, Copyright Wiley-VCH Verlag GmBH&Co.
KGaA. Reproduced with permission.)
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Conclusions
One of the major limiting factors in the field of tissue
engineering is the difficulty to generate functional 3D
tissues due to the inability to integrate vascular struc-
tures into scaffolds. Building networks of vessels
branched together into a complex interconnected struc-
ture connecting across multiple length scales remain
one of the greatest challenges in tissue engineering.
Most cells in the human body are within a few hundred
microns from a capillary, allowing the delivery of ade-
quate nutrients and supplies to the tissues and organs.
Since most tissue engineering scaffolds are unable to
provide such proximity for continuous solutes and oxy-
gen flow, the engineering of large tissues severely lacks
from diffusion and transport properties. The methods
currently investigated to generate vasculature in scaf-
folds mainly involve the use of proangiogenic growth
factors and cell-based approaches, which have shown
promising results in vivo, but still cannot provide inlet
and outlet vessels for in vitro perfusion. Despite all the
advances in microfluidics, the use of microengineered
3D structures comprised of rationally designed and
microfabricated channels offer limited functionality.
These platforms do not provide a parenchymal space for
cell types other than endothelial cells to grow within the
constructs and present an integration problem with the
host tissue. Modular and bottom-up approaches have
recently emerged as promising biofabrication approaches
in which functional microscale tissue building blocks
can be assembled into 3D macroscale tissue constructs.
These are relatively simple methods that allow the pro-
duction of perfusable tissue, with precise control over
the microscale features in a 3D construct. They are par-
ticularly promising in the case of organ engineering,
where tissue requires perfusion and needs to perform a
specialized physiological function. The precise design of
microscale components in a high-throughput fashion
combined with the capability to link these components
together to generate larger structures represents a pro-
mising way to build vascularized 3D structures. There-
fore, combining modular assembly methods with
microfabrication technologies to engineer tissues and
organs represent an effective method to control tissue
architecture both at the micro and macroscale. This will
be a major step forward in the field of tissue engineering
that will not only result in the production of functional
engineered tissues, but will also greatly help the transla-
tion of the technology from in vitro studies to in vivo
applications.
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