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Quantum Private Queries: Security Analysis
Vittorio Giovannetti, Member, IEEE, Seth Lloyd, Fellow, IEEE, OSA, and Lorenzo Maccone, Life Fellow, IEEE

Abstract—A security analysis of the recently introduced
Quantum Private Query (QPQ) protocol is presented. The latter is
a cheat sensitive quantum protocol to perform a private search on
a classical database. It allows a user to retrieve an item from the
database without revealing which item was retrieved, and at the
same time it ensures data privacy of the database (the information
that the user retrieves in a query is bounded). The security analysis
is based on information-disturbance tradeoffs which show that
whenever the provider tries to obtain information on the query,
the query (encoded into a quantum system) is disturbed so that the
person querying the database can detect the privacy violation. The
security bounds are derived under the assumption that a unique
answer corresponds to each query. To remove this assumption,
some simple variants of the protocol are illustrated, and it is
conjectured that analogous security bounds apply to them.

Index Terms—Privacy, quantum algorithm, quantum communi-
cation, quantum information theory, security.

I. INTRODUCTION

I N its most basic form, the scenario we consider can be
described as follows. On one side we have a provider,

Bob, who controls an ordered classical database composed of
memory cells. Each cell of the data-base contains

an bit string, so that the database consists of strings
. On the other side, we have the person

querying the database, Alice, who wants to recover the string
associated with a memory cell (say the th one) but at the same
time does not want Bob to know which cell she is interested in
(user privacy). In a purely classical setting, the simplest strategy
for Alice consists in placing a large number of decoy queries,
i.e., she “hides” her query among a large number of ran-
domly selected queries. In this case, she will be able to get the
information she is looking for, while limiting Bob’s intrusion
in her privacy. (In fact, the mutual information between Alice’s
true query and Bob’s estimate of such value is upper bounded
by ). The
drawbacks associated with such procedures are evident. First
of all, the method does not allow Alice to check whether Bob
is retaining information on her queries. Moreover, to achieve a
high level of privacy Alice is forced to submit large amounts
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of fake queries, increasing the communication cost of the
transition: in particular, absolute privacy is obtained only for

, i.e., by asking Bob to send all his database. This may
not be acceptable if the database is huge or if it is an asset for
Bob (data privacy).

User and data privacy are apparently in conflict: the most
straightforward way to obtain user privacy is for Alice to
have Bob send her the entire database, leading to no data
privacy whatsoever. Conversely, techniques for guaranteeing
the server’s data privacy typically leave the user vulnerable
[1]. At the information theoretical level, this problem has been
formalized as the Symmetrically-Private Information Retrieval
(SPIR) [1] generalizing the Private Information Retrieval (PIR)
problem [2]–[7] which deals with user privacy alone. SPIR is
closely related to oblivious transfer [8]–[10], in which Bob
sends to Alice bits, out of which Alice can access exactly
one—which one, Bob does not know. No efficient solutions
in terms of communication complexity [11] are known for
SPIR. Indeed, even rephrasing them at a quantum level [12],
[13], the best known solution for the SPIR problem (with a
single database server) employs qubits to be exchanged
between the server and the user, and ensures data privacy only
in the case of honest users (i.e., users who do not want to
compromise their chances of getting the information about
the selected item in order to get more). Better performance is
obtained for the case of multiple nonmutually communicating
servers [2] (although the user cannot have any guarantee that
the servers are not secretly cooperating to violate her privacy),
while sub-linear communication complexity is possible under
the some computational complexity assumption, e.g., [7]. PIR
admits protocols that are more efficient in terms of communi-
cation complexity [2]–[7].

The Quantum Private Queries (QPQ) protocol we have in-
troduced in [14] (a more didactical explanation is given in [15])
is a cheat sensitive strategy [16] which addresses both user
and data privacy while allowing an exponential reduction in
the communication and computational complexity with respect
to the best (quantum or classical) single-server SPIR protocol
proposed so far. Specifically QPQ provides a method to check
whether or not Bob is cheating and does not need the exchange
of the whole database (i.e., qubits): in its simplest form it
only requires Bob to transfer two database elements, identified
by qubits, for each query. It also requires that each
query has a single answer that Alice can verify (although we
argue that by slightly modifying the proposed scheme this
assumption can be dropped without compromising the security,
see Section VI). The QPQ protocol is ideally composed by a
preliminary signaling stage where the user and the database
provider exchange some quantum messages (specifically Alice
addresses Bob receiving some feedback from him) and by
a subsequent retrieval&check stage where Alice performs

0018-9448/$26.00 © 2010 IEEE
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some simple quantum information processing on the received
messages to recover the information she is interested in and
to check Bob’s honesty. The user security relies on the fact
that if Bob tries to infer the query Alice is looking for, she has
a nonzero probability of discovering it. A similar trick was
also exploited in [17] with the purpose of obtaining secure
computation from a remote server. Such proposal, however, did
not involve any sort of data security which instead is explicitly
enforced in our scheme by limiting the number of exchanged
signals between Alice and Bob—see Section II.

The main idea behind the QPQ protocol is the following.
Alice submits her request to Bob using some quantum infor-
mation carrier, so that she can either submit a plain query
or a quantum superposition of different queries .
Alice randomly alternates superposed queries and nonsuper-
posed queries. Thus, Bob does not know whether the request
he is receiving at any given time is a superposition of queries
or not, so that he does not know which measurement will leave
the information carrier unperturbed: he cannot extract informa-
tion without risking to introduce a disturbance that Alice can
detect. Bob can, however, respond to Alice’s request without
knowing which kind of query was submitted. Depending on the
form of Alice’s queries, his response will be correspondingly
either of the form or , where the
first ket is the register that Alice had sent him, the second ket
is a register that contains Bob’s answer ( being the answer to
the th query), and which may be entangled with the first. From
these answers Alice can both obtain the reply to her query and
check that Bob has not tried to breach her privacy.1 This enforces
user privacy, while data privacy follows from the limited (loga-
rithmic) number of qubits Alice obtains by Bob in the process.

To provide a rigorous security proof for the QPQ protocol
we will focus on its simpler version. Namely we will consider
the case where Alice always prepares her superposed queries by
coherently mixing them with a given reference query 0 (dubbed
rhetoric query) which has a known standard answer . As dis-
cussed in [14], this assumption is not fundamental, but it is very
useful since it allows us to minimize the amount of exchanged
signals in the protocol (as a matter of fact alternative versions
of the QPQ protocol with higher security level can be devised
which do not employ the rhetoric query or which employ mul-
tiple rhetoric queries). An assumption which on the contrary
appears to be rather important for our derivation is that, for
each database entry , there exists a unique answer string .
In other words, we restrict our analysis to the case of determin-
istic databases, i.e., databases whose outcomes are determinis-
tically determined by the value of (This, however, does not
prevent different queries from having the same answer: indeed
we do admit the possibility to have for ). Ex-
amples are provided for instance by a database that associates
to each Social Security Number the (legal) name of its owner,
or by the one which associates to each national lottery ticket the
name of the town where it was sold. As extensively discussed

1Note that, since Bob’s cheats are detected only probabilistically, it is prefer-
able that the whole database record is transferred during a single query (if the
database elements are composed of more than one bit). In contrast, in an ideal
PIR protocol the security is unvaried if Alice accesses a single bit of the data-
base record at a time.

in Section VI, for the versions of the QPQ protocol we analyze
here, the hypothesis of dealing with deterministic database is
fundamental: by removing it, Bob will be able to spy on Alice
with zero probability of being caught. This follows from the fact
that for nondeterministic databases Bob needs not to commit on
a given answer during the signaling process: instead he is al-
lowed to construct quantum superpositions of the various cor-
rect answers, letting Alice’s measurements to randomly pick up
one of them. As will be evident in the following, such freedom
is sufficient to circumvent Alice’s honesty test. In the final sec-
tions of the paper, we will present some variants of the QPQ
protocol which, to some extent, allow one to relax the determin-
istic-database constraint. Essentially, this is done by admitting
the possibility that Alice or some external third party (a referee)
which is monitoring Bob’s activity on her behalf, submits se-
quences of random queries on the same database items. If we
require that Bob should always answer the same way to such
repeated queries, we force him to consider each query as effec-
tively having a unique answer, as required by the protocol ver-
sions analyzed here. Then he is restricted by the protocol in not
being able to cheat, if he wants to keep his record clean also in
the face of possible future queries. Even though the rigorous se-
curity bounds we derived under the uniqueness assumption are
not valid if it is dropped, we conjecture that similar bounds can
be analogously derived also for nondeterministic databases.

The paper is organized as follows. In Section II, we describe
the rhetoric version of QPQ in its basic form and introduce the
notation. This is followed by the technical Section III, where
we analyze in detail the most general transformations Bob can
perform on Alice’s queries. Section IV contains the main result
of the paper: here, we introduce the trade-off between Bob’s in-
formation on Alice’s query and the success probability of him
passing her honesty test. In Section V, we present some varia-
tions of the QPQ protocol discussed here, one of which exploits
entanglement as a resource to strengthen Alice’s privacy. Fi-
nally, in Section VI, we analyze what happens when relaxing
some of the assumptions adopted in the security proof. In par-
ticular, we show that the basic version of the QPQ described
here does not guarantee privacy if the database queries admit
multiple answers, and we point out some possible solutions.

II. QPQ WITH RHETORIC QUESTION:
PRELIMINARIES AND NOTATION

In the rhetoric version of the QPQ protocol (see Fig. 1), Alice
uses two quantum registers each time she needs to interrogate
Bob’s database. The first register contains , the address of the
database memory cell she is interested in; the other register is
prepared in a quantum superposition of the type ,
“0” being the address of the rhetoric query. Alice then secretly
and randomly chooses one of the two registers and sends it to
Bob. He returns the register Alice has sent to him, together with
an extra register in which the corresponding answer is encoded.
In order to reply to Alice’s query without knowing whether it is
the superposed query or not, Bob needs to employ the quantum
random access memory (qRAM) algorithm [18]–[20]. This al-
gorithm permits to coherently interrogate a database. It requires
an address register as input, and it returns the same address
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Fig. 1. Scheme of the QPQ protocol with rhetoric questions. Alice wants to find out the �th record of Bob’s database (composed of � � � records). She then
prepares two �-qubit registers. The first contains the state ��� , while the second contains the quantum superposition ���� � ��� ��

�
� between her query and

the rhetoric question “0”, to which she knows the standard answer � . She then sends, in random order (i.e., randomly choosing either scenario a or scenario �),
these two registers to Bob, waiting for his first reply before sending the next register. Bob uses each of the two registers to interrogate his database using a qRAM
device [18]–[20], which records the reply to her queries in the two “reply” registers �. At the end of their exchange, Alice possesses the states ��� �� � and
���� �� � � ��� �� � ��

�
�, where the� is the content of the �th record in the database. By measuring the first she obtains the value of� , with which she

can check whether the superposition in the second state was preserved. If this is not the case, then she can be confident Bob that Bob has violated her privacy, and
has tried to obtain information on what � was.

register together with a “reply” register which contains the
unique value of the requested database element. Since the
algorithm is coherent, it works also on superposed address reg-
isters, namely the state is evolved into .
The important aspect of the qRAM algorithm is that it can be
executed without having knowledge of the state of the address
register.

After Alice has received Bob’s first reply, she sends her
second register and waits for Bob’s second reply. Again Bob
applies the qRAM and returns her the result.

If Bob has followed the protocol without trying to cheat, Alice
now should possess a state which encodes the information she is
looking for and an entangled state involving the rhetoric query,
whose coherence can be tested to check Bob honesty, i.e., the
two states and . Alice recovers
the value of by measuring the second register in the first
state and validates it to make sure that what she got is indeed
the correct answer connected to the th query (see below for
the validation procedure). Then she uses this value to prepare a
measurement to test whether the superposition has been retained
in the second state (“honesty test”). (This is simply a projective
measurement on ). If either the vali-
dating stage or the honesty test fails (i.e., if she finds out that
is not the correct answer or if she found that the state Bob has
sent her back in reply to is orthogonal to the one
she is expecting), she can be confident that Bob has cheated and
has violated her privacy. If, instead, the validating and the test
pass, she cannot conclude anything. In fact, suppose that Bob
has measured the state and collapsed it to the form or
to the form , it still has a probability 1/2 to pass Alice’s
test of it being of the form . So Alice’s
honesty test allows her to be confident that Bob has cheated if
the test fails, but she can never be completely confident that Bob
has not cheated if the test passes.

As mentioned above, before performing the honesty test
Alice needs to validate the received message. Namely, Alice
has to check whether the answer she received from Bob
is the unique one connected to the th query (of course this
can be done at any time during the protocol). Such test is
mandatory in order to make sure that the received message

originated from the deterministic database she is addressing.
If not, Bob could have still cheated along the lines detailed in
Section VI. In practice there are two scenarios which allows for
such validation. If the relation is determined by some
computable function, she should be able to verify that the value

is the correct one a posteriori by direct computation.2 If on
the contrary is not computable (e.g., as in the cases
of the Social Security Number and national-lottery database
discussed in the previous section), then she should at least be
able to consult an external trusted party that certifies the reply

. It is important to note that, since she catches a cheating
Bob only probabilistically, it is not necessary for her to validate
every single answer she receives from him. She can verify only
a random subset of them (otherwise one could argue that Bob’s
intervention would be useless, as Alice could refer only to the
trusted third party).

As anticipated, another important aspect of the QPQ protocol
is data privacy. Since Alice has access to any of Bob’s database
elements, data privacy should be intended in the sense that the
amount of information that Bob is willing to release is limited.
In the rhetoric version we discuss here this is automatically en-
forced by the fact that Alice and Bob exchange a number of bits
logarithmic in the database size: Alice sends qubits,
and receives from Bob the same qubits she had sent,
plus two copies of the reply register . Through the Holevo
bound [21], this implies that she receives no more information
on the database than twice the number of bits contained in the
register . This is a logarithmic quantity of information with
respect to the database size: data privacy is strongly enforced.
User privacy, on the other hand, is only enforced through cheat
sensitivity, namely through the fact that Bob does not want to
be caught cheating.

A. Notation

We now introduce the notation which will be used. We define
the source space which contains the ad-

dresses of the memory cells which compose Bob’s determin-

2Note that this does not necessarily mean that she could have calculated the
value of � from � in the first place (as in the NP complexity class problems
[18]).
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istic database, identifying with the address of the rhetoric
query. For each we define to be the information associ-
ated with the th address. As mentioned in the introduction the

are classical messages composed of bits, and they need
not to represent distinct messages (i.e., we allow the possibility
that for ), but they are uniquely determined
by the value of . In this context, Bob’s database is defined as
the ordered set formed by the strings .
We define the two quantum registers Alice uses
to submit her queries; according to the protocol, she will first
send , wait for Bob’s answer and then send . In this nota-
tion, for , the vector is the state of the th register
which carries the address of the th database memory. For all

we use the vector to represent the superposition
of the th query and the rhetoric query, i.e.,

(1)

(for , we set ). We define
the registers which Bob is supposed to use for communicating
the database entries. After having received from Alice, Bob
encodes the necessary information on and sends back to her
both and . Analogously, after having received , he will
encode information on and send her back both and .
It is useful to also define the vectors

(2)

(3)

[as in (1) for we set ]. Ac-
cording to the protocol, the vectors or are
the states that an honest Bob should send back to Alice when
she is preparing into the states or , respec-
tively. In fact, the states and are the result
of the qRAM transformation [18]–[20] when it is fed and

, respectively.3 We also introduce an ancillary system
to represent any auxiliary systems that Bob may employ when
performing his local transformation on the Alice queries, plus
(possibly) an external environment.

Let us use this notation to better formalize the QPQ protocol
described above. Suppose then that Alice wants to address the
th entry of the database. The protocol goes as follows.
1) Alice randomly chooses between the two alternative sce-

narios a and b (see Fig. 1). In the scenario , she prepares
the qubits in and the qubits in . In-
stead, in the scenario b she prepares the states and

. This means that, in the scenario a, she first sends the
plain query and then the superposed query. On the contrary,
in the scenario b, she first sends the superposed query and
then the plain query. Consequently, the input state of the
system is described by the vectors

for
for

(4)

3In particular, �� � is associated with the unique string � which on
Alice side will pass the validation stage.

where the index refers to the selected scenario and
is the fiducial initial state of the systems

and (it is independent on because
Bob does not know which scenario Alice has chosen).

2) Now Alice sends and waits until Bob gives her back
and . Then, she sends and waits until she gets back

and .
3) Honesty Test: Alice checks the states she has received.

If she had selected scenario a, she performs a von
Neumann measurement to see if is in the state

—see (3). Of course, this can be
done in two steps: first she measures to learn ;
then, after having validated it, she uses such value to
prepare an appropriate measurement on . If the
measurement fails, then Alice can definitely conclude
that Bob was cheating, otherwise she can assume he was
honest (although she has no guarantee of it). If she had
chosen scenario b, she proceeds analogously, using a von
Neumann measurement to check if is in the state

.

III. BOB’S TRANSFORMATIONS

In the QPQ protocol, Alice’s privacy relies essentially on the
fact that Bob is not allowed to operate jointly on and .
This a fundamental constraint: without it, Bob would be able
to discover the index without Alice knowing it. In fact, the
subspaces spanned by the two vectors and

(associated to the two different scenarios a and
b for the query ) are mutually orthogonal. Thus, such vec-
tors (and then the corresponding queries) could be easily distin-
guished by performing on a simple von Neumann mea-
surement defined by the projectors associated with the spaces

. This is a measurement that would allow Bob to recover
Alice’s query without disturbing the input states of . To
prevent this cheating strategy, the QPQ protocol forces Bob to
address and separately (i.e., he has to send the register

back, before Alice provides him the register ).
Bob’s action when he receives Alice’s first register can be

described by a unitary operator which acts on the first
register , on , and on (and not on the second
register which is still in Alice’s possession). Analogously,
Bob’s action when he receives the second register is described
by the unitary operator which acts on , and
(and not on and which are now in Alice’s possession).
[Note that the above framework describes also the situation in
which Bob is employing nonunitary transformations (i.e., com-
pletely positive, trace preserving maps), since the space can
be thought to contain also the Naimark extension [22] that trans-
forms such operations into unitaries]. The above transforma-
tions cannot depend on the selected scenario (as Bob does not
know which one, among and , has been selected by
Alice). Therefore, within the th scenario, the global state at the
end of the protocol is described by the vectors

(5)

with given in (4).
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A. Some Useful Decompositions

Consider the transformation . In the scenario a for all
we can always split the state as a vector
which contains the unique correct answer (2) plus an orthogonal
contribution, i.e.,

(6)

where stands for the separable state

and where is a vector whose
components are orthogonal to , i.e.,

(7)

The separability of with respect to the bipar-
tition follows from the assumption that Bob’s an-
swer is unique: he does not have any degree of freedom he
can use to correlate the space with anything else. If this
hypothesis is dropped the component does not
need to be separable as there are different possible “correct” an-
swers to Alice’s query. We will see in Section VI that when this
happens, the QPQ scheme we are discussing here does not guar-
antee user privacy: in this case, Bob can in fact recover partial
information on Alice’s query undetected (i.e., with zero prob-
ability of being caught) by replying with quantum superposi-
tions of the possible correct answers. This is the reason behind
the necessity of the validation stage in which Alice (perhaps
probabilistically) verifies that the she is reading is indeed
the unique correct answer to the query .

From condition (7), it is clear that is the probability that
the state (6) will be found in . In the scenario b, in-
stead, for , we can write

(8)

As before (where
again the separability is granted by the uniqueness of )

and is a vector orthogonal to the “check state”
Alice is expecting, i.e.,

(9)

Consequently is the probability that the state (8) will pass
the test of being in . The state on the first line of (8)
can be expanded on a basis of which the state on the first line
of (6) is a component. Therefore, and must be related.
The security analysis given in the following sections is based on
the study of this relation.

Analogous decompositions can be given for : in this case,
however, it is useful to describe them not in terms of the input
states, but in terms of the state of the system after it has passed
the test on the subsystems . For , in the scenario a
this gives

(10)

Here , and

is a vector orthogonal to of (3), i.e.,

Thus, is the probability that the state (10) will pass the test

of being in . Notice that the vector in the
first line of (10) is the state of one obtains in the scenario
a if, after the first round, the state passes the test of being

—see (6). In the scenario b, instead, we have

(11)

where stands for , and

is a vector orthogonal to the state , i.e.,

and is the probability that the state (11) will be found in
.

The case has to be treated separately: indeed, if Alice
sends this query then both and will be prepared into .
In this case, it is then useful to define by considering its
action on the vector with defined as
in (6), i.e.,

(12)

where again one has ,
and
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From the above equations, it follows that for the final
state (5), after Bob has finished his manipulations, can be written
as follows for scenario a:

(13)

where all the terms in the second and third line are orthogonal
to . Analogously, we have for scenario b

(14)

where, again, the states in the last two lines are orthogonal to
the state in the first. Instead, for , we have

(15)

IV. INFORMATION-DISTURBANCE TRADEOFF

AND USER PRIVACY

In this section, we present an information-disturbance anal-
ysis of the QPQ protocol. This will yield a trade-off which shows
that, if Bob tries to get some information on Alice’s queries, then
she has a nonzero probability of detecting that he is cheating.
The same analysis can be easily reproduced for more compli-
cated versions of the protocol. For instance Alice may hide her
queries into superpositions of randomly selected queries. In this
case, the derivation, although more involved, is a straightfor-
ward generalization of the one presented here.

According to (5), to measure Bob’s information gain, it is suf-
ficient to study how the final state of the ancillary subsystem
depends upon Alice’s query . Exploiting the decompositions
introduced in Section III we can then show that one can force

to keep no track of Alice’s query by bounding the success
probabilities that Bob will pass the QPQ honesty test. Specif-
ically, indicating with the success probability associated

with Alice’s query in the th scenario and defining the
corresponding output state of , in Section IV-A, we will prove
the following theorem

Theorem: Choose so that for all
and . Then there exists a state of and a positive constant

such that the fidelities [23], [24] are
bounded as follows:

(16)

for all all and .
This implies that, by requiring Bob’s probabilities of passing

the honesty test to be higher than a certain threshold , then
the final states of will be forced in the vicinity of a common
fixed state , which is independent from the choice of and
. This in turn implies that, for sufficiently small values of ,

Bob will not be able to distinguish reliably between different
values of using the states in his possession at the end of the
protocol. In particular, if , i.e., if Bob wants to be sure that
he passes the honesty test, then the final states for any choice of
will coincide with , i.e., they will be completely independent
from : he cannot retain any memory of what Alice’s query was.
It is also worth noticing that since the total number of queries, as
well as the number of scenarios , is finite and randomly selected
by Alice, then the requirement on in the theorem can be
replaced by a similar condition on the average probability of
success.4

In Section IV-B, we will employ the above theorem to bound
the mutual information [25] that connects the classical vari-
able , which labels Alice’s query, and Bob’s
estimation of this variable. Assuming that initially Bob does not
have any prior information on the value of that Alice is inter-
ested in, we will determine the value at the end of the protocol,
showing that this quantity is upper-bounded by the parameter
of (16). Specifically, we will show that by requiring that Bob
passes the honesty test with a probability greater than ,
then Alice can bound Bob’s information as

(17)

being the number of database entries: his information is upper
bounded by a quantity that depends monotonically on a lower
bound to his probability of passing the honesty test. Thus,
if he wants to pass the honesty test with high probability, he must
retain little information on Alice’s query.

The bounds (16) and (17) are rather weak as implied by the
fourth root of in these equations. However, as is clear from the
subsequent proof, the security parameters we derive are only
loose (i.e., nontight) lower bounds to the actual values: to avoid
further complicating the proof, we have not derived the op-
timal bounds. In other words, already the simple variant of the
protocol discussed here is certainly more secure than the num-
bers we derive suggest. Furthermore, as discussed in Section V,
better performance is expected by relaxing some of the hypoth-
esis we have assumed on Alice’s encodings. Finally we stress

4Since the number � of entries � is finite, the condition � � � � � can
be imposed by requiring a similar condition on the average probability � �

� �����. Indeed, assume � � �� � and let � be the minimum of

the � for all � and �. Since there are �� terms each contributing to � with
probability ���� , we have

�� � � � � � ��� � ��� � �����

that gives � � �� ��� . The condition � � �� � then follows by taking
� � ��� .
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that the while (16) and (17) refers to the information that Bob
recovers on Alice’s query (i.e., to the user privacy), the protocol
entails also a strict data privacy due to the limited number of
qubits Alice receives from the database, i.e., .

A. Proof of the Theorem

Assume that Alice randomly chooses the scenarios a and b
with probability . From (13) and (14), it is easy to verify
that the success probability that Bob will pass the honesty test
when Alice is submitting the th query is

(18)

where and refer to the suc-
cess probabilities in the scenarios a and b, respectively (these
expressions hold also for by setting ). The
corresponding output density matrix of the ancillary system
is given by

(19)

where, for and , the state are obtained by partial
tracing on Alice’s spaces the output vectors of (13) and (14),
i.e.,

(20)

where (21)

(22)

and where the state contains the contribution to the par-
tial trace coming from the last two lines of (13) and (14). The
quantities (for and ) are the density matrices
obtained by projecting into the state of which
allows Bob to pass the honesty test (i.e.,
for and for ).

In accordance with the theorem’s hypothesis, we consider the
case in which the probability of passing the test (18) for an ar-
bitrary is higher than a certain threshold, i.e.,

(23)

with . We will then prove (16) by identifying the den-
sity matrix with the pure state defined as in (12) and
showing that the following condition holds:

(24)

where is the fidelity [23], [24]. Such inequality is a conse-
quence of the fact that we want Bob to preserve the coherence

of the superposition , and at the same time to answer cor-
rectly to query . To derive it we use (20) and the condition
(23) to write

(25)

To prove (24), it is then sufficient to verify that for all one has

(26)

(the label on the vectors has been dropped for ease of nota-
tion). This part of the derivation is similar to the one used in
[26] and can be split in two parts, which will be derived in the
following:

i) First we use (23) and the definitions (6) and (8) to show
that for all one has

(27)

(28)

ii) Then we use (27), (28), and the definitions (10) and (11)
to verify that for one has

(29)

(30)

which implies (26) and hence the theorem with
.

Derivation of Part i): The condition (23) implies the fol-
lowing inequalities:

(31)

for all . To obtain inequality (27), we
compare (6) and (8) under the constraint imposed by (31). In
particular, we notice that for (6) gives

(32)

with

(33)
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According to (31), the vector has a norm of the
order . This implies that in the limit the vector (32)
tends to . Analogously, (8) and the second inequality
of (31) tell us that in the limit , the state

converges to the vector . Com-
bining these two observations, it follows that for the
vectors and coincide. According

to definition (3), this implies that and

must converge for . To make this statement
quantitatively precise, evaluate the scalar product between (32)
and (8), and obtain the identity

(34)

It can be simplified by using the following inequalities:

which can be easily derived from (33) by invoking the orthogo-
nality conditions (9). Replacing the above expressions into (34),
we get

(35)

and thus

which provides a bound for the average of and

. Therefore, we can conclude that

(36)

(37)

where the second follows by using the fact that and

can both be maximized by 1. We are almost there:
indeed (28) follows via simple manipulations by squaring both
terms of (37). To derive (27) we apply the triangular inequality5

to the vectors and . This yields

(38)

where the last inequality follows from (36) and (37).
Derivation of Part II: The main difference between the set

of (6), (8), and the set of (10), (11) is the fact that, in the former,
acts on vectors with fixed component, while, in the

latter, operates on vectors whose components may
vary with . We can take care of this by replacing

and with the constant vector . This is,
of course, not surprising, given the inequalities of (27) and
(28). To see it explicitly, evaluate the scalar product between

and . For
it gives

(39)

From the inequalities (31) and (28), it then follows that the mod-
ulus of must be close to one. An
estimation based on (37) yields the following bound:

(40)

Proceeding analogously for the vectors and
, we obtain

(41)

For all we can then write the following decompositions:

(42)

(43)

where and are vectors orthogonal to and

respectively. The inequality (30) can now be de-

5This is the triangular inequality associated to the trace distance
������ ���� � ��������������� � �������	 � �� ������� .
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rived by taking the scalar product between (43) and (12), re-
membering that is orthogonal to and using (31) and
(41). To derive (29), instead, we first evaluate the scalar product
between (42) and (43) obtaining

and then, as in (38), we impose the triangular inequality between
the vectors and .

B. Bound on Bob’s Information

Here, we give an upper bound to Bob’s information on the
variable . This can be done by noticing that we can treat
as a quantum source which encodes the classical information
produced by the classical random source . Specifically, this
quantum source will be characterized by the quantum ensemble

, where is Alice’s proba-
bility of selecting the th query, and is given by (19). We
can then give an upper bound to Bob’s information by consid-
ering the mutual information associated with the ensemble .
From the Holevo bound [21], we obtain

(44)

where is the average state of , as-
suming that each of Alice’s queries is equiprobable. To simplify
this expression, it is useful to express as

(45)

where is the average probability (18) that Bob will pass the
test while Alice is sending the th query, and where and
are the density matrices

(46)

This allows us to write also

(47)

with

(48)

where is Bob’s average probability of passing
the honesty test, which, according to (23), must be greater than

. Equations (45) and (47) can then be exploited to produce
the following inequalities [18]:

(49)

where is the binary
entropy. Therefore, (44) gives

where is the Holevo information associated

with a source characterized by probabilities . This
quantity can never be bigger than (the same applies to

, but we are not going to use it). Therefore, we
can write

(50)

which shows that, in the limit in which , the upper
bound is only given by . For (i.e., )
this quantity vanishes. In fact, according to (26) we know that
for the density matrices converge to the fixed state

; hence, . More generally, we now
show that can be bounded from above to any value for
sufficiently close to 1.

In order to exploit the above relations to give a bound on ,
let us introduce the probabilities

(51)

(52)

[the inequalities simply follow from (26)]. We can then write

(53)

where are density matrices formed by vectors orthog-
onal to are traceless operators containing off-diag-
onal terms of the form , and .
We now introduce a unital, completely positive trace preserving
(CPT) map6 which destroys the off-diagonal terms
while preserving the corresponding diagonal terms, and observe
that the von Neumann entropy always increases under the action
of a unital map [27]. Therefore

(54)

6A Unital CPT map by definition preserves the identity operator � , i.e.,
� ��� � � .
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Now, since is a density matrix in , the quantity can
always be upper bounded by with the dimension
of . This is not very useful, as can be arbitrarily large.
However, a better solution can be obtained. Indeed, we can show
that the following inequality holds:

(55)

To verify this, we note that the ensemble is composed
by density matrices of the form (46) where and are
pure vectors satisfying the conditions given in (26) which, for

becomes parallel. Since the density matrices and

for are pure states, they span at most a
-dimensional subspace of the Hilbert space . Then there

exists a partial isometry connecting to a Hilbert space
of dimension which maintains their relative distances intact.
Applying such an isometry to all elements of we ob-
tain a new ensemble of , whose elements satisfy
to the same relations as the original one. In particular, the two
ensembles possess the same value of (in fact, is an entropic
quantity, whose value depends only on the relations among the
ensemble elements), i.e.,

(56)

We can now apply to the inequalities (54): the
only difference being that now is a density matrix of , and,
hence, it satisfies the condition (55). Therefore, we can conclude

Replacing this into (50), we finally find

(57)

which thanks to (52), for sufficiently large yields (17). This
means that Alice can limit Bob’s information , by employing
in her tests a value of sufficiently small.

V. QPQ VARIANTS AND ENTANGLEMENT ASSISTED QPQ

In this section, we discuss some simple variants of the QPQ
protocol that can be used to improve the privacy of Alice. In par-
ticular we describe an entanglement assisted QPQ [28] in which
Alice entangles her registers with a local ancilla before
sending them to Bob. As before, we will focus for simplicity on
rhetoric versions of such variants, even though similar consider-
ations can be applied also to other (nonrhetoric) QPQ versions.

An example of cheating strategy will allow us to put in evi-
dence the aspects of QPQ that these variants are able to improve.
Specifically, suppose that Bob performs a projective measure on
all of Alice’s queries to determine the value of the index . As
we have seen in the previous section, he will be by necessity
disturbing Alice’s state in average, so that she will have some
nonzero probability to find out he is cheating. However, if she
had chosen scenario a [see (4)], then Bob’s first measurement

on will return . Now, suppose that his second measurement
on Alice’s second request returns the value “0” (this hap-
pens with probability ), then Bob will know that Alice had
chosen scenario a and that her query was . In this particular
case, he will be able to evade detection if he re-prepares the
system in the state . (Of course, this does not mean
that he will evade detection in general, as this is a situation that
is particularly lucky for him, but that has only a small chance of
presenting itself). A simple variant of the QPQ protocol can be
used to reduce the success probability of this particular cheating
strategy and in general to strengthen the security of the whole
procedure. It consists in allowing Alice to replace the superpo-
sition with states of the form ,
the phase being a parameter randomly selected by Alice. Since
Bob does not know the value of , it will be clearly impossible
for him to re-prepare the correct reply state after his measure-
ment: as a result his probability of cheating using the simple
strategy presented above will be decreased.7 Furthermore, since
for each given choice of , the results of Section IV apply, one
expects that the use of randomly selected s will result in a gen-
eral security enhancement of the QPQ protocol.

In the previous example, the parameter is a secret parameter
whose value, unknown to Bob, prevents him from sending the
correct answers to Alice. Another QPQ variant employs entan-
glement to enhance security. Suppose that, instead of presenting
Bob with the states and ,
as requested by the QPQ protocol, Alice uses the states

and (58)

where the system is an ancillary system that Alice does not
hand over to Bob. The protocol now follows the same procedure
as the “canonical” QPQ described previously, but employing the
state in place of the state . Of course, Alice’s honesty
test must be appropriately modified, as she has to test whether
Bob’s actions have destroyed the entanglement between the an-
cillary system and the register. The main difference with
the canonical QPQ is that here half of the times Bob has only
access to a part of an entangled state: he is even more limited in
re-preparing the states for Alice than in the canonical QPQ. It is
easy to see that the security proof given in the previous sections
can be straightforwardly extended to this version of the protocol,
and that the security bounds derived above still apply: indeed
they can be made even more stringent as Bob has only a lim-
ited capacity in his transformations on Alice’s queries, since he
does not have access to the ancillary space . In the situations in
which the information carriers employed in the queries can be
put in a superposition of traveling in different directions [28],
this version of the protocol can easily be reduced to the canon-
ical QPQ by simply supposing that Alice is in the possession of
the database element corresponding to the rhetoric ques-
tion, while, obviously, Bob is in possession of all the remaining
database elements.

7Analogous improvements are obtained by allowing Alice to replace the states
�� �� with superposition of the form ��������� with randomly selected com-
plex amplitudes � and �.
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VI. WHAT IF ALICE CANNOT CHECK THE ANSWER TO HER

QUERIES INDEPENDENTLY FROM BOB?

In deriving the security thresholds of the QPQ protocol we
have assumed the database to be deterministic, i.e., that for each
query there is a unique possible answer
(notice, however, that two distinct queries can have the same
answer—i.e., can coincides with ). Such hypothesis ex-
plicitly enters our derivation at the very beginning of the proof:
namely in the writing of the rhs of (6) where the correct answer
component is assumed to be separable with re-
spect to the bipartition . As mentioned in the intro-
ductory sections, one way to enforce the deterministic-database
condition in a realistic scenario is to require that Alice can inde-
pendently validate the value of Bob’s answer after its recep-
tion (either by direct computation or by contacting an external
referee). In this section we will show that if this is not the case,
then the simple version of QPQ we have analyzed here does
not prevent Bob to cheat without being discovered by Alice. In
fact, in this case Bob is no longer forced to commit to a specific
answer during the whole querying procedure, meaning that the

separability of the component is
no longer guaranteed. On the contrary, he can exploit the ex-
istence of multiple queries to create quantum superposition of
“correct” answers that allow him to pass Alice’s honesty test
with probability one while gathering some extra information on
her query. In Section VI-B, we will discuss some methods one
can apply to overcome these limitations by increasing the com-
plexity of the protocol, e.g., allowing Alice (or third parties that
collaborate with her) to reiterate her query at random times.

A. Successful Cheating Strategies for a Database With
Multiple Valid Answers

Here, we drop the deterministic hypothesis on the database
and give two examples of successful cheating strategies that
allow Bob to spy on Alice’s query, and pass the honesty test
with probability 1.

Example 1: Let us start by considering the case of a nonde-
terministic database with possible entries in which both
the query and the query admit two distinguishable
answers. In particular let be the answers for
and those for .

Now, suppose that the unitary of (5) that Bob applies
to performs the following mapping:

where is the answer to the rhetoric query and where

(59)

with and being orthonormal states of Bob’s
space . By a comparison with (6) it immediately follows that
in this case when the vectors
are no longer separable with respect to the bipartition

. Analogously define as the unitary
operator which performs the following transformation:

for all of
and

(60)

According to the above assumptions, if Alice’s query is the
rhetoric one (i.e., ) the final state (5) of the QPQ pro-
tocol is . In this case Bob passes
the test and gets as output state. For , instead, we
have two possibilities. In the scenario the final state will
be

while in the scenario it will be

This means that independently from the selected value of Alice
will receive the answer half of the times and the answer

in the other half of the times, while Bob will always pass
the honesty test. Moreover in the case in which Alice receives
the answer , Bob will get the state while in the case

in which Alice receives the answer Bob will get the state
. In average the state is .

In conclusion, using and as in the previous para-
graphs, Bob will always pass the honesty test. Furthermore, the
output state of he gets at the end of the protocol will be par-
tially correlated with the query as follows:

(61)

Therefore, by performing a simple von Neumann measurement
on , Bob will be able to extract some information on , without
Alice having any chance of detecting it.
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Notice that, in the example presented here, Bob’s info is lim-
ited by the partial overlap between the states

and . However, this is not a
fundamental limitation as one can construct more complex ex-
amples (e.g., databases with more than two possible answers for
a single query) for which the amount of info that Bob acquires
on can be arbitrarily high. It is also important to stress that the
above example can be used also to show that Bob will be able
to cheat also in the case in which Alice adopts QPQ strategies
more sophisticated then the simple rhetoric version discussed
in this paper (e.g., instead of sending superpositions of the form

she sends arbitrary superpositions
with and arbitrary amplitudes that only she knows).

Example 2: Here we analyze how multiple valid answers may
affect the performance of a nonrhetoric version of the QPQ pro-
tocol (i.e., where Alice is not using the rhetoric question ).
Again we give an example of a successful cheating strategy for
a database with queries. For the sake of simplicity, we
will assume that have single answers and re-
spectively, but that is associated with two distinguishable
answers . As an example of a nonrhetoric QPQ protocol
we consider the case in which Alice, to get the information as-
sociated with the query, chooses another query (say the th
one) and sends sequentially, in random order, states of the form

and ( and being amplitudes that only
she knows).

As in the case of the rhetoric version of the protocol, Bob’s
action can be described by unitaries. In this case, they are

and . Notice that the first acts on the second on
and the third on , with obvious choice of the

notation for the subspaces involved. For our present purpose, it
is sufficient to assume that for acts nontriv-
ially only on (this is a particular instance of the general
case). We can also assume that , and are identical.
We then define such operators according to the following rules:

if while, for

where are defined in (59). If initial state of the is
, one can easily verify that Bob will always pass Alice’s

honesty test (no matter which superposition she is
using) and that he can recover part of the information associated
with the query. In this simple example, for instance, he has a
not null probability to identify the query . As before, this
counterexample can be easily generalized and improved.

B. Possible Solutions for Nondeterministic Databases

The case of nondeterministic databases in which different an-
swers may correspond to the same query is, of course, quite rel-

evant, so that it is natural to ask if the QPQ protocol can be
modified to apply also to this situation. At present, we do not
have a formal security proof for a QPQ strategy that works if
one drops the deterministic-database assumption. However, we
suspect that this is only due to the complexity of the problem
which makes the analysis technically cumbersome. Indeed we
believe that secure QPQ strategies for nondeterministic database
exist and conjecture that the uniqueness assumption for the
could be dropped without affecting the security. In support to
the above conjecture, in this section we present some ideas that
allow Alice to foil the cheating strategies described in the pre-
vious section temporarily, for as long as Bob is expecting further
queries.

In the case in which Alice can independently check how many
different replies correspond to the each query (and which they
are), then there is a simple solution that prevents Bob from
cheating: we must require Bob to provide all possible replies
in a pre-established order (e.g., alphabetically) when he is pre-
sented the th query. In this way, each query has again a unique
composite answer (composed by the ordered succession of all
the possible answers), so that we are reduced to the canonical
QPQ protocol, and Bob is prevented from cheating.

If, however, Alice cannot independently establish the total
number of different replies to each query, then a different
strategy is necessary. First of all, we must require that each
of the possible replies to the th query is uniquely indexed by
Bob. This means that there should be a unique answer to the
question “What is the th possible reply to the th query?”
Of course, this by itself is insufficient to guarantee that Bob
cannot employ the cheating strategies of the previous section,
as Alice cannot independently check the uniqueness of Bob’s
indexing. However, she can check whether Bob will always
answer in the same way to repeated queries. From (60) and
(61), it follows that, as soon as Bob measures his system ,
he might gain information on the value of , but at the same
time he loses information on which one (among all the possible
answers to the th query) he had presented to Alice. If he wants
to be sure that he keeps on providing always the same answer
to repeated queries on Alice’s part, he must preserve his system

(in order to prepare subsequent replies) without trying to
extract information from it. He can measure the system only
when he is confident that Alice will not be asking him the same
query anymore. In a multiparty scenario, we can also think
of a situation where multiple cooperating parties ask Bob the
same queries and compare the replies they receive from him.
If they find that his answers when he is asked the th reply to
the th query to do not match, then they can conclude that he
has been cheating: he has not assigned a unique index to all the
possible replies to the th query, and he has taken advantage of
the cheating strategies detailed in the previous section.

Note that it might seem that Bob can cheat undetected when
he replies to the first query, since at that point the ordering has
still not been established. (He cannot cheat in any of the suc-
cessive queries since it could be a repeat of the first, and he
cannot risk changing the order). However, the cheating strategy
detailed in the previous section is probabilistic: if he is unlucky,
he will not be able neither to determine which was Alice query,
nor which among the possible answers was the one he provided
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her. In this case, he will risk getting caught if that query is re-
peated: he cannot provide the same answer again. Hence, if he
does not want to risk getting caught, even at the first query he
cannot use the cheating strategy of the previous section.

In conclusion, by requiring that Bob should answer in the
same way to repeated queries, we can drop the requirement
that Alice has to be able to independently check each answer.
(Clearly, since Bob’s cheats are only probabilistically revealed,
she should not repeat her queries too often). Bob is thus placed
in the awkward situation that he may be possessing information
on Alice’s query in the system entirely in his possession, but
he is prevented from accessing such information. This is a tem-
porary solution, since, as soon as Bob is certain that he will not
be asked the th query anymore, he can measure the system
and extract the information stored on it. He is kept honest only
as long as he is in business (and, of course, he is in business only
as long as he is honest).

VII. CONCLUSION

In conclusion, we have given a security proof of the QPQ pro-
tocol introduced in [14]. In particular we focused on the sim-
plest variant of such scheme, i.e., a rhetoric version of QPQ
with a single rhetoric answer where to each query there cor-
responds a unique, testable reply (deterministic database as-
sumption). The proof is based on quantitative information-dis-
turbance tradeoffs which place an upper bound on the informa-
tion Bob can retain on Alice’s query in terms of the disturbance
he is producing on the states that he is handing back to her (see
Sections III and IV). A nonzero information retained by Bob im-
plies a nonzero disturbance on Alice’s states, which she can de-
tect with a simple measurement (the “honesty test”). If the hon-
esty test fails, she can conclude that Bob has certainly cheated.
If, on the other hand, the test passes, she can tentatively con-
clude that Bob has not cheated (although she cannot be certain
of it).

In addition, we have discussed some variants of the basic
scheme which yields an increase Alice’s security by reducing
Bob’s probability of evading detection when cheating. These
variants either exploit secret parameters, or exploit entangle-
ment with an ancillary system Alice retains in her possession
(see Section V).

Finally, we have seen that Bob can successfully cheat without
being detected if we drop the assumption that to each query there
can be associated only a single answer (see Section VI-A).
In fact, if we assume that there exist two (or more) different
replies to the query , then Bob can find out the
value of , evading detection by Alice with certainty. We dis-
cussed some strategies that allow Alice to protect herself also in
this situation, at least as long as Bob can expect further queries
from her or from other parties who may cooperate with her (see
Section VI-B).
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