
MIT Open Access Articles

Modular Robot Systems From Self-Assembly to Self-Disassembly

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gilpin, Kyle, and Daniela Rus. “Modular Robot Systems.” IEEE Robotics & Automation
Magazine 17.3 (2010): 38-55. Web. 3 Feb. 2012. Gilpin, Kyle, and Daniela Rus. “Modular Robot
Systems.” IEEE Robotics & Automation Magazine 17.3 (2010): 38-55. Web. 3 Feb. 2012. © 2011
Institute of Electrical and Electronics Engineers

As Published: http://dx.doi.org/10.1109/mra.2010.937859

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/69029

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/69029

© LUSHPIX ILLUSTRATION

IEEE Robotics & Automation Magazine38 1070-9932/10/$26.00ª2010 IEEE SEPTEMBER 2010

From Self-Assembly to Self-Disassembly

BY KYLE GILPIN AND DANIELA RUS

O
ur long-term goal of creating program-
mable matter will be achieved when
we have the ability to build objects
whose physical properties, such as shape,
stiffness, optical characteristics, acoustics,

or viscosity, can be programmed on demand. In this
article, we survey the history of modular robotics
and their connections to programmable matter
systems capable of realizing arbitrarily shapes on
demand. The goal shape may be a robot built for
a specific task (a snake to pass through a tunnel or
a rolling belt to quickly cover open ground) or an
object designed for a particular job (such as a
wrench, hammer, or bridge). When the task is
complete, the modules in the structure can discon-
nect and be reused to create a different object. This
type of self-reconfiguration leads to versatile robots
that can support multiple modalities of locomotion,
manipulation, and perception. Such variable archi-
tecture robots have been studied in the context of
self-assembling systems, self-reconfiguring systems,

self-repairing systems, and self-organizing systems.
We examine in detail several self-assembling robot

systems and propose self-disassembly as an alternative
for creating task-specific robots. In self-assembling robot
systems, the individual robotic modules aggregate in a

highly constrained way to form a specific shape. In self-
disassembling robot systems, a large block of robot mod-

ules peels off extra modules to form the desired shape,
temporarily abandoning the modules not necessary for the task

at hand. We discuss the trade-offs between shape formation by
self-assembly and by self-disassembly and report on recent algorithmic

Digital Object Identifier 10.1109/MRA.2010.937859

and hardware results for creating a hybrid, self-assembling/
disassembling robot system.

Creating machines capable of changing shape has been our
long-running dream. This dream has been inspired and fueled by
the science fiction community and the movie industry who have
created characters such as the “Barbapapa” family [1], the Change-
lings in “Star Trek” [2], the “Terminator” [3], and “Transformers”
[4]. The Barbapapa creatures are colorful pear-shaped blobs
that can take on any shape: They become tools for gardening,
containers for shopping, toys for playtime, or boats for sailing.

Programmable matter aims to bring machines and materials
closer together by creating machines that become more like
materials and materials that behave more like machines. This is a
considerable challenge with exciting potential for future payoffs:
desktop rapid prototyping of electrically and mechanically active
devices, paper computers, on-demand objects and tools, machines
that can actively change their optical properties to become invisi-
ble or reflective, and machines with programmable acoustic prop-
erties for effective localization or acoustic camouflage.

To achieve programmable matter capabilities, the follow-
ing are the important questions that must be addressed.

1) How do we create hardware capable of programmability
with respect to one or more physical properties?

2) What is the algorithmic base for achieving the desired
machine property?

3) How do we go from theory to practice to build and deploy
systems that achieve the goals of programmable matter?

The robotics community has been addressing some of these
questions in the context of modular, self-assembling, and self-
reconfiguring machines. A sampling of these approaches is
illustrated in Figure 1 that shows four separate approaches to cre-
ating a modular humanoid robot using different hardware and
algorithmic approaches. In Figure 1(d), the Smart Pebble system
can be formed from a loose collection of modules that self-
assemble into a close-packed lattice and then self-disassembly to
remove the extra modules not needed by the humanoid structure.
Even though the scale of each system is not apparent from the
photos, each Superbot module fits within a 168 3 84 3 84 mm3

rectangular box, the CKBot modules fit inside a 60-mm cube,
the Miche modules are 45-mm cubes, and the Smart Pebbles
are 12-mm cubes.

In this article, we survey the history of modular and self-assem-
bling robotics and present recent results in creating shapes using a
two-stage process: 1) self-assembly to create a conglomerate block
of modules without internal gaps and 2) self-disassembly to sculpt
a desired shape from this block. We describe and analyze an effi-
cient self-assembly algorithm and show data from experiments
with a robot system consisting of 1-cm cubic modules.

The field of modular robotics started with a paper presented
by Toshio Fukuda et al. at the IEEE International Conference
on Robotics and Automation (ICRA) in the Spring of 1988
[5], in which he describes the abstract concept of a dynami-
cally reconfigurable robotic system that can assume different
shapes. In that article, Fukuda and Nakagawa envisioned a
robot system composed different types of modules that can
combine to accomplish a variety of tasks. Fukuda et al. refined
this concept in a second paper [6], presented at the IEEE
International Workshop on Intelligent Robots later that Fall,
in which they gave their robot a name, cellular robot (CEBOT).
The CEBOT was composed of wheeled modules with infra-
red photodiodes and ultrasonic transducers. The modules also
contained an active latching mechanism that could be used
to join two modules together, and the first algorithm Fukuda
et al. proposed was aimed at autonomously mating two
CEBOT modules.

Over the past 20 years, modular robotics research devel-
oped many facets: hardware design, planning and control algo-
rithms, the trade-off between hardware and algorithmic
complexity, efficient simulation, and system integration.

Our aim in this article is two-fold. First, we take a long and
detailed look to the past to frame the development of pro-
grammable matter in the history of modular robotics. Then, in
the second half of this article, we present a new system (hard-
ware, algorithms, and experiments) that is capable of realizing pro-
grammable matter through a process called self-disassembly.
Self-disassembly aims to achieve shape in a way analogous to

(a) (b) (c) (d)

Figure 1. (a) Six Superbot modules assembled by hand to form a humanoid. (b) CKBot modules forming a similar structure that is
able to self-repair itself after being damaged. (c) The Miche system lacks internal degrees of freedom, but it was produced
through the self-disassembly of a 3 3 5 block of modules. (d) The humanoid formed by the Smart Pebbles system. (SuperBot
picture courtesy of Polymorphic Robotics Laboratory, University of Southern California, Dr. Wei-Min Shen. CKBot picture courtesy
of Prof. Mark Yim, University of Pennsylvania.)

IEEE Robotics & Automation MagazineSEPTEMBER 2010 39

sculpting. The modular system starts as a contiguous block. Mod-
ules subtract or peel themselves off to reveal the desired shape.

A Modular Robot Perspective
Modular robotic systems can be described and classified using
several axes and properties. In what follows, we choose the
traditional route of classifying these systems by the geometry
of the system. In particular, we organize the prior work in four
main categories: chains, lattices, trusses, and variable shape sys-
tems. Chain-type systems are composed of modules that are
arranged to form single- or multibranched linkages. Both snakes
and multilegged walkers are possible configurations of a chain-
type system. Unlike chain systems that generally allow modules
to be positioned arbitrarily in space, lattice systems generally
require that modules occupy discrete locations. To allow for
reconfiguration, this constraint does not preclude a module from
transitioning from one location to another. Additionally, the lat-
tice system can be made to look like a chain-based system if the
only modules present form a chain. We define a third class of
truss-based systems that have some similarities to both chain and
lattice systems. The primary identifying characteristic of truss sys-
tems is that they create scaffold-type objects and use the linkages
or struts between rigid nodes to reconfigure the system’s shape.
Finally, to account for a few unique systems that elude the above
categorization, we define a class of free-form systems. This article
is not the first to attempt to summarize past and ongoing work in
the modular robotics field, and for details see [7].

The general approach for creating all existing modular
robot systems has been to design the unit module of the system
and develop algorithms that enable a group of unit modules to
coordinate their degrees of freedom to control their motion
for the goal of creating a shape, generating a locomotion gait,
or interacting with the environment.

Chain Systems
There have been a number of chain-like modular robot systems
that combine many modules, each with a low degree of freedom,
to form complex structures with significantly more flexibility.
One of the first was the Polypod system developed by Yim [8],
[9]. This system was composed of two types of modules: seg-
ments and nodes. The nodes were passive cubic modules with
one connector on each face. The segments were two degree of
freedom linkages able to expand or contract in length as well as
angle to the left or right. Each segment contained an 8-b micro-
processor in addition to angle and force sensors. The nodes con-
tained batteries to power the system. Segments could be
connected to other segments or nodes. The connectors were
four-way symmetric, allowing the system to operate in three
dimensions. These two features allowed the system to assume
a wide variety of forms including rolling loops and hexapods.
The Polypod was remarkably advanced for its time, and it went
on to inspire many future chain-type systems.

Castano et al. developed a chain–type modular robotic sys-
tem called CONRO that is detailed in [10]–[12]. Each mod-
ule in the CONRO system was composed of two orthogonal
servomotors that control the module’s pitch and yaw. The
modules had gendered connectors that required neighboring

modules to lie in the same plane. Additionally, there were only
three female connectors and one male connector integrated
into each module. The CONRO system was able to assume
forms that resemble snakes and multijointed walkers. In [11],
Shen and Will used the CONRO modules to attack the prob-
lem of autonomously docking chain-type modular robots in
two-dimensional (2-D)—an unsolved problem at the time.

Murata et al. developed the M-TRAN modular robotic
system [13]–[16], Murata-IROS06, which has undergone
multiple revisions and improvements. The modules contain
processing and battery power, along with two parallel rota-
tional degrees of freedom. Multiple modules can be mated
together in a variety of ways: end to end with 0 or 90� rota-
tions between modules, side by side so that their actuators
operate in parallel, or side to end. The system has been used to
perform a wide variety of experiments. Kamimura et al. [14]
employ a set of interconnected, out-of-phase oscillators (cen-
tral pattern generators) to achieve walking gaits in the M-
TRAN system. By optimizing the phase relationships between
the oscillators, they can be used to drive the modules’ motors
in a coordinated fashion that leads to forward locomotion.
The M-TRAN robot relies on evolutionary algorithms to
perform this optimization process. The optimization process
can occur in simulation before being implemented in hard-
ware or it can be performed in real time to allow the robot to
adapt to a changing environment. Murata et al. [15] developed
a simulator based on the M-TRAN system to experiment
with the system’s ability to self-reconfigure. Murata et al. [16]
expanded on this by adding cameras to the system so that a set
of M-TRAN modules could separate, perform independent
tasks, and then rejoin into a larger structure.

Marbach and Ijspeert improved upon the ability of sys-
tems such as M-TRAN to generate gaits in real time by using
their modular system, YaMoR [17]. YaMoR is composed of
single degree of freedom chain-type modules. By using
Powell’s method for function optimization instead of genetic
algorithms, they claim YaMoR will converge to an optimal
gait much more quickly. The risk is that the resulting gait
may not be globally optimal, but, in practice, this only hap-
pens infrequently.

The Superbot system [18] improves on the mechanical
design of M-TRAN by adding an additional degree of rota-
tional freedom between the two existing rotation axes. The
Superbot system was designed to be a more robust modular
robot capable of operating in real-world situations—specifi-
cally, planetary exploration. The Uni-Rover [19] developed
by Hirose et al. was another modular robot developed for
planetary exploration. The Uni-Rover consists of a number of
identical wheels connected to a larger body through a four-
degree of freedom linkage. Each of these linkages can detach
from the body. As a separate unit, the wheel/linkage combina-
tion could use the wheel as a base and the linkage as a manipu-
lator. Alternatively, a single wheel/linkage unit could roll
independently or join with other modules to roll over rougher
terrain (Figure 2).

The PolyBot, developed by Yim et al. [20], [21], is a chain-
type reconfigurable modular robot: chains of modules, each

IEEE Robotics & Automation Magazine40 SEPTEMBER 2010

with a single degree of freedom, connect to form structures
such as loops, legs, or tendrils. The active modules consist of
two connectors arranged on opposite sides of a cube. The
module itself has a single rotational degree of freedom around
an axis perpendicular to two of the faces without connectors.
Passive modules that include six mating faces but lack the abil-
ity to rotate may also be integrated into the system to form a
wider variety of structures. The PolyBot system has the ability
to achieve locomotion through any number of configurations.
For example, a number of segment and node modules can
form a loop that rolls across smooth terrain. If confronted with
more challenging terrain, the robot can reconfigure itself as a
multilegged walking robot.

PolyBot evolved into CKBot that has been used more
recently in many interesting ways. Yim et al. [22] show that a
robot built from CKBot modules is able to reassemble itself
after being accidentally or intentionally destroyed. The mod-
ules cannot repair their internal workings, but groups of mod-
ules are able to locate other modules, crawl toward them,
align, and connect to restore and initial shape and functionality
of the system before it was broken. Additionally, Yim et al.
studied the ability of a closed chain of CKBot modules to effi-
ciently roll across a surface [23]. They found that more ellipti-
cal shape achieves higher velocities, while circular shapes are
more energy efficient (Figure 3).

The Molecube system [24], developed by Lipson et al., is
another example of a chain-type modular system with only one
degree of freedom but still able to achieve interesting three-
dimensional (3-D) configurations. The single rotational joint in
each Molecube module is located on the cube’s longest diagonal
between opposite corners. Given a one-dimensional (1-D) chain
of Molecubes, rotating one joint will transform the chain into a
2-D L-shaped structure. Rotating a second joint will create an
additional L-shape that extends in the third dimension, making
the entire structure 3-D. Lipson et al. have shown that a short
chain of Molecube modules, along with some free modules, can
self-replicate. After executing a preprogrammed sequence of
moves, the chain of modules can assemble the free modules into
another identical chain that could, in turn, replicate itself again.

Lattice Systems
Chirikjian et al. developed one of the first lattice-based modular
robotic systems [25], [27] in which the modules are deformable
hexagons capable of bonding with their neighbors. Each joint
in the hexagonal modules is driven by a motor that can change
the joint angle by at least 120�. By deforming and employing
latches on each of its faces, a single module may traverse
around the perimeter of a neighboring hexagon without ever
losing contact. Chirikjian et al. also analyzed their system to
produce bounds on the minimum and maximum number of
single module traversals required to reconfigure from an initial
shape to a goal formation. Others such as Walter et al. [28]
have further analyzed these hexagonal type systems to create
distributed motion planners capable of reconfiguring the sys-
tem from one state to another.

Murata et al. were also early contributors to the develop-
ment of lattice-based modular robotic systems, with their

development of a roughly hexagonal module capable of roll-
ing around its neighbors in 2-D [29], [30]. Kurokawa et al.
expanded on this 2-D system with a 3-D version [31] com-
posed of cubes with six protruding arms capable of rotation.
The six arms were driven by a common timing belt, but each
could be disconnected from the belt using a clutch mecha-
nism. The end of each arm was fitted with a connector capable
of mating with matching connector on a neighboring module.
By latching to a neighbor, rotating one or more arms, and then
unlatching, the system could reconfigure itself in 3-D.

Yoshida et al. improved on this system with a new design
that used shape-memory alloy actuators to rotate one robot
module around the perimeter of a neighbor [32]. The smallest
of these modules fits inside a 2-cm cube and weighs only 15 g.
Yoshida et al.’s system, which is currently confined to 2-D,
consists of square modules that include two male connectors
(on opposing vertices) and two female connectors (on the
opposite set of opposing vertices). The male connectors can
swing through an 180� arc and bond with their female coun-
terparts. This design allows one module to traverse around the
exterior of a number of other connected modules. One draw-
back to the system is the amount of power it consumed. The

Figure 2. The Superbot modules have three rotational degrees
of freedom and are designed to operate in real-world scenarios.
Each Superbot module fits within a 168 3 84 3 84 mm3

rectangular box. (Picture courtesy of Polymorphic Robotics
Laboratory, University of Southern California, Dr. Wei-Min Shen.)

(a) (b)

Figure 3. The CKBot modules each contain one rotational
degree of freedom and are capable of mating with other
modules in a variety of configurations. Each module fits within
a 60-mm cube. (Picture courtesy of Prof. Mark Yim, University
of Pennsylvania.)

IEEE Robotics & Automation MagazineSEPTEMBER 2010 41

system’s connectors do not dissipate power in their static state,
whereas actuation requires 1 A. Consequently, the modules
do not contain their own power supplies. Furthermore, all of
the processing required for the system’s motion planning is
performed on a separate computer, after which control com-
mands are transmitted to the individual modules.

In [32] and a separate article [33], Yoshida et al. describe a 3-
D adaptation of this system. Additionally, [33] presents a recur-
sive method for describing the structures formed by modular
robots. This recursive representation uses multiple layers of
abstraction to separate the low-level details of the structure from
the structure’s general shape. For example, eight modules could
be arranged to form a cube, which is then viewed as a single,
indivisible node by higher level descriptions of the system as a
whole. The authors state that using such a recursive representa-
tion enables one to describe sizable, complicated shapes that
would be impossible to characterize otherwise.

Rus et al. also explored the idea of 3-D modules capable of
reconfiguration through a series of latchings, rotations, and un-
latchings with the molecule system [34], [36]. Each molecule
module, two of which are shown connected in Figure 4, was
composed of two identical halves called atoms. These atoms were
attached to each other with a rigid 90� connector. Each atom
had two rotational degrees of freedom so that a molecule had a
total of four—two less than Kurokawa et al.’s system addressed in
the previous paragraph. The molecules initially attached to their
neighbors using magnetic forces, but the system was later rede-
signed to use mechanical latches. Kotay et al. proved that the
molecule system, despite its unique motion constraints, was capa-
ble of performing a wide array of reconfiguration tasks.

In [37] and [38], Vona and Rus describe a different type of
deformable lattice system. The crystal system, as shown in
Figure 5, is composed of square modules able to expand and
contract by a factor of two in the x–y plane. The crystal modules
are composed of four movable faces arranged in a square. Two

of these faces contain active connectors, and two contain passive
connectors. The active connectors can mate with passive con-
nectors. By selectively latching and unlatching from their neigh-
bors, a collection of crystals is able to arbitrarily modify its
structure in 2-D. The authors also present algorithms to accom-
pany the crystal hardware. These algorithms prove that compos-
ite crystal structures can assume arbitrary configurations and that
any individual module can relocate to any position in the struc-
ture. Suh et al. expanded on the crystal concept with the tele-
cubes [39]. Like the crystal system, the telecubes were able to
expand their dimensions by a factor of two. Additionally, the
telecubes could move in 3-D by expanding all six of their faces.

Chiang and Chirikjian described how to perform motion
planning in a lattice of rigid cubic modules able to slide past each
other [40]. Their approach, which begins with a description of
the initial and final configurations of the system, consists of repeat-
edly finding the bisecting configuration (i.e., midpoint) between
the start and end configuration. By recursively bisecting each new
pair of configurations, they are able to produce an ordered set of
simple, single-module motions that transform the initial configu-
ration to the final configuration in an efficient manner.

The CHOBIE robot developed by Koseki [41] is able to
actually perform the sliding motion assumed by Chiang and
Chirikjian in [40]. The modules in the CHOBIE system, which
are rectangular, are able to move by sliding in two planes relative
to one another. A module cannot only slide horizontally across
the top of another module but vertically down a module’s side as
well. This ability allows one robot to climb up and over another.
Although the CHOBIE robots contain only basic processing
power, they are self-contained and able to operate untethered.
The system is confined to 2-D.

More recently, An developed the EM-Cube system [42]
that is also capable of sliding motion. The 60-mm cubic mod-
ules in An’s system rely on permanent magnets to keep neigh-
boring modules in contact (without consuming power) and

Figure 4. The Molecule system, developed by Kotay and Rus
[35], uses a series of latching, rotation, and unlatching to self-
reconfigure. Each module has four degrees of rotational
freedom and mates with its neighbors using gendered
connectors. (Picture courtesy of Daniela Rus, Distributed
Robotics Laboratory at MIT.)

(a) (b)

Figure 5. The Crystal module, developed by Rus and Vona
[38], is a 2-D lattice system that uses dimensional compression
to reconfigure. Each module can expand its linear dimensions
by a factor of two. (Picture courtesy of Daniela Rus, Distributed
Robotics Laboratory at MIT.)

IEEE Robotics & Automation Magazine42 SEPTEMBER 2010

electromagnets to induce both linear and rotational motion.
The modules themselves are tethered to a power source and
rely on a centralized controller, but their lack of moving parts
is noteworthy. The system is capable of movement sequences
that allow a module to move through both concave and convex
configurations. Additionally, by introducing the ability to rotate
one module with respect to its neighbor, the system allows for
transitions from one plane to another. The magnets in the sys-
tem are not quite strong enough to lift modules against gravity,
so existing experiments have been confined to the x–y plane.

Another unique lattice is the I-Cube developed by Khosla
et al. [43], [44]. The 3-D I-Cube system consists of passive cubes
that are connected by active links with three rotational degrees
of freedom that are able to grab, reposition, and release the
cubes. By passing the cubes from one link to another and by
directing the links to traverse over a stationary lattice of cubes,
the system can reconfigure. To complement their hardware,
Khosla et al. developed a hierarchical motion planner that pre-
scribes how to move from an initial configuration of cubes and
links to a desired configuration. They do so by defining and
planning over larger groups of cubes and links termed meta-
cubes. Each metacube consists of eight modules and 16 links.
The planner first generates a motion plan for the metacubes.
Once this is complete, it generates a plan for each individual I-
Cube. Finally, using the motion plan for each I-Cube as a guide,
it generates a motion plan for each link in the system. The I-
Cubes may also be thought of as a special case of a truss-based
system in which cubes (nodes) are connected by links or struts.
In the I-Cube system, all nodes reside on a cubic lattice.

The 3-D I-Cube system was an improvement of the 2-D
system [45] developed by Hosokawa et al. for rearranging
cubic modules in a vertical plane. The authors relied on robots
with attached arms that were able to pivot as well as extend
and mate with the arms of a neighboring module. When two
modules linked arms, one module could lift the other above
and overhead. The stationary module could deposit the mov-
ing module either on top of a neighbor or itself.

The ATRON system [46], [47] was developed to improve
upon the M-TRAN system. Lund et al., who developed the
ATRON system, wanted to keep M-TRAN’s ability to form
dense lattices from inherently anisotropic modules using con-
nectors in addition to those at the head and tail of each module.
Additionally, they wanted to take advantage of the two orthog-
onal degrees of freedom (pitch and yaw) found in the CONRO
system. Unlike M-TRAN, the CONRO system could not
form tightly packed lattices. To accomplish these goals, Lund
et al. developed the ATRON module that is spherical in shape,
driven by a single rotational degree of freedom about its equa-
tor, and employs eight-gendered connectors. In an ensemble,
the ATRON modules are arranged so that the rotational axes
of neighboring modules are perpendicular. Christensen et al.
[48], [49] have worked to combine collections of ATRON
modules into virtual metamodules that can be used to simplify
the planning and execution of self-reconfiguration much like
Khosla et al. did for the I-Cube system.

As shown in Figure 6, Rus et al. developed the Miche sys-
tem [50], [51] that is capable of 3-D shape formation through

a process of self-disassembly, a process that removes excess
modules from an initial structure to reveal the desired shape.
Like a sculptor that chips extra stone from a block of marble to
form a figure, the Miche system (short for Michelangelo)
removes extra modules from an initial collection to realize a
goal shape. Each module in the system is a completely autono-
mous 45-cm cube with three active and three passive faces.
The intermodule latching mechanism only consumes power
when connecting or disconnecting. The algorithms control-
ling the shape-formation process only transmit the minimal
amount of information needed to each module in the system.
At no point is the entire shape to be formed transmitted to any
single module, much less all modules.

One of the newest lattice-type modular robotics is an aerial
system composed of identical, hexagonal, single-rotor mod-
ules [52]. A group of modules may connect to form a flying
platform with an arbitrary arrangement of multiple rotors. In
addition to the ability to fly, each module contains wheels so
that the system may self-reconfigure on the ground for the
specific task at hand.

To date, almost all modular robotic systems have been
limited to a few dozen hardware units. Hardware is expensive
and time consuming to build, difficult to program and debug,
and challenging to maintain. These realities have not pre-
vented researchers from developing algorithms and software
systems capable of simulating enormous number of modular
robots cooperating to accomplish meaningful tasks. Fitch and
Butler present one solution [53], [54] for reconfiguring hun-
dreds of thousands of modules in a distributed manner. They

Figure 6. The Miche system consists of 45-cm cubic modules
capable of forming 3-D structures. The modules contain batteries,
two microprocessors, IR communication, and switchable
permanent magnets for bonding with neighboring modules [51].
(Picture courtesy of Daniela Rus, Distributed Robotics Laboratory
at MIT.)

IEEE Robotics & Automation MagazineSEPTEMBER 2010 43

parallelize the process of planning a path
for each module from its current position
to a goal location by framing the task of
planning each module’s path as a Markov
decision process. By including randomness
in the planning model, each module may
act using only local information without
regard for the actions of other modules in
the system. To find an optimal set of paths,
Fitch and Butler use dynamic program-
ming combined with a local cycle search.
The search for a cycle in the modules
ensures that by moving a module serving
as an articulation point does not break
connectivity of the system as a whole.

Truss Systems
Unlike the lattice-based systems just described, the truss-based
system does not need to operate on a cubic or any regular lat-
tice. Most truss-based systems under development employ
struts that expand or contract to achieve structural deforma-
tion. One of the first such systems to employ these telescoping
links was Tetrobot [55]. Because all the links in the system may
change their length, the resulting structure can easily deform its
shape in a variety of ways.

The Odin system, conceived by Lyder et al. [56], [57], con-
sists of three physically different types of modules: active strut
modules capable of changing their length, passive strut mod-
ules of fixed length, and joint modules with 12 connection
points. The joints are designed such that they may form the
basis of a cubic close-packed structure. They are responsible
for transferring power and communication signals between
the strut modules. The strut modules may be reconfigured to
perform a variety of tasks. Some are configured as telescoping
modules capable of changing their length. Others may be con-
figured as battery modules and others as camera modules. The
two male connectors integrated into each strut module are
spring-loaded and able to deflect 23� in any direction from
their neutral position. The ability to deflect imbues the entire
structure with its ability to deform.

The biologically inspired Morpho system [58] developed
by Nagpal et al. is similar to Odin. It also uses active links, pas-
sive links, and connector cubes. The Morpho system adds the
concept of membranes that can cover 2-D and 3-Dcurves
formed by the links in the system. The authors present two
interesting applications of these membranes. First, they show
that a series of deformations of the membrane can transport an
object from one side of the membrane to the other. Second,
they show that the system could be configured as bridge (the
membrane as the bridge surface) that is able to adapt to rough
terrain to keep the surface of the bridge level.

Not all truss-based systems have relied on changing the
length of the linkages that compose the system. One alterna-
tive system created by Amend and Lipson [59] employs link-
ages that are capable of changing their rigidity. The linkages
are formed from tubular elastic membranes filled with granular
material that jams when compacted but flows smoothly when

pressure is removed. By applying a vacuum
to the elastic membrane, the authors were
able to transition each strut from a limp,
easily deformable shape to a more rigid
cylinder capable of supporting weight.
The authors demonstrate that that six such
deformable links can be arranged to form
a tetrahedron capable of changing its
shape, but they make no attempt to auto-
mate or systematically control the struc-
ture. The authors also present the larger
vision of creating programmable matter
using the phenomenon of jamming. They
envision macroscale objects (e.g., furniture)
that are able to modify their shape or mate-
rial properties on demand.

Free-Form Systems
Several research groups have developed modular robotic sys-
tems that defy characterization as either a chain or a lattice.
These free-form systems have the ability to aggregate modules
in at least semiarbitrary positions. One such system is the micro-
electromechical systems (MEMS) robot developed by Donald
et al. [60], [61]. The system, as shown in Figure 7, consists of
thin (7–20 lm), rectangular (approximately 260 3 60 lm2),
scratch-drive robots capable of moving on an insulating sub-
strate embedded with electrodes. By pulsing the voltage applied
across the substrate electrodes, the rectangular body of the robot
is driven up and down creating forward motion. Additionally,
the authors designed the robots with elevated tails that, with
sufficient electrode voltage, are attracted to the substrate and
serve as pivot points that transform what would be forward
motion into curved trajectories. The authors have used four of
these robots to build larger composite structures [61]. By vary-
ing the design parameters of the four robots so that each
responds to a different set of actuation voltages, the authors are
able to drive each module independently of the others so that
multiple modules, if initially separate, can be driven together to
form an assembly. Remarkably, Donald et al. are able to achieve
an accuracy of 5 lm when docking two modules.

Another example of a system without a regular lattice struc-
ture is the Slimebot [62], [63] created by Shimizu et al. The sys-
tem consists of identical vertical cylindrical modules that move
on a horizontal plane. The perimeter of each module is covered
by six genderless hook and loop patches used to bond with
neighboring modules. These patches are not rigidly fixed to the
module body, but each diametric pair oscillates radially in and
out from the center of the body. Each module has one addi-
tional degree of freedom, allowing it to increase or decrease its
friction with the surface on which it sits. Each module in the
system acts as an oscillator that is lightly coupled to its neighbor-
ing oscillators. While oscillating, the module alternates between
an active and passive state. In the active state, the module
attempts to move itself by decreasing its friction and moving its
connectors. In the passive state, the module acts as an anchor
against which active modules may push. It does so by increasing
its friction while leaving its connectors stationary. External

100 µm

B
A

Figure 7. Donald et al. [60] developed
this scratch-drive robot that is driven
forward when voltage pulses are
applied to the electrodes embedded in
the substrate on which it operates.
(Picture courtesy of Daniela Rus,
Distributed Robotics Laboratory at MIT.
The Scratch Drive Actuator was
developed at Dartmouth College.)

IEEE Robotics & Automation Magazine44 SEPTEMBER 2010

stimuli, such as light, may be used to create a phase gradient
across the oscillators in the system. As the result of such a
gradient, the system as a whole will move toward the light
source. The Slimebot system is unique, because it does not
rely on traditional algorithms or careful planning to achieve
coordinated movement. Instead, it relies on analog processes
that mimic nature.

Around 2005, Goldstein et al. [64] and Goldstein and
Mowry [65] published several articles describing what they
termed claytronic atoms or catoms. These vertically oriented
cylindrical robots, which were incapable of independent motion,
used 24 electromagnets around their perimeters to achieve rolling
locomotion about their neighbors. While the Catom system
could be considered a lattice-type system, we have categorized
it as a free-form system because its modules do not need to
form a regular lattice structure to function.

Goldstein et al. [64] envisioned a system in which millions
of smaller catoms could form arbitrary shapes using a random-
ized algorithm that avoided conveying a complete description
of the shape to each module in the system. Instead, the algo-
rithm only distributed shape information to the modules at the
boundary of the collection. By creating or absorbing void
pockets (areas without any modules), the edge catoms could
expand or contract the edge in their own proximity. Although
not explicitly demonstrated in their article, the authors claimed
that their shape-formation algorithm could be distributed across
all modules in the system and that each module only required
local information to execute it successfully.

One of the newest catoms systems is one envisioned by
Karagozler et al. in [66]. The system that still appears to be
under heavy development employs hollow cylinders rolled
from SiO2 rectangles patterned with aluminum electrodes.
The authors hope that two of these cylinders, termed Catoms,
when placed in close proximity with their axes aligned, will be
able to rotate with respect to one another using electrostatic
forces. Specifically, the electrodes (which reside on the inside
of each cylinder and are electrically isolated by the SiO2) will
be charged, so that they attract and repel mirror charges on the
neighboring cylinder in a way that causes rotation. For the pur-
poses of our classification, it appears that single Catoms are able
to move independently of their neighbors if they are placed on
an insulating, unbroken conducting substrate. In its current
instantiation, the Karagozler’s system appears to be constrained
to form 2-D structures. The authors claim the completed sys-
tem will have a yield strength similar to that of plastic and that
the modules will be able to transfer power and communication
signals capacitively from neighbor to neighbor.

Self-Assembling Systems
In an attempt to simplify the process of creating intricate
modular robotic systems, researchers have attempted to mimic
and improve upon natural self-assembling systems. Self-assem-
bling systems are common in nature: Geologic forces crystal-
lize polygonal columnar basalts with remarkable regularity,
and DNA in all living organisms uses a soup of free nucleotides
to self-replicate during cell division. Scientists and engineers
have long been interested in these types of self-assembling

systems because they display the ability to spontaneously create
complex structures from simple components.

Whitesides et al. have investigated a wide variety of engi-
neered self-assembling systems [67], [68]. In one system, they
employed truncated octahedra covered in electrical contacts
to form 3-D electrical networks [69]. They found that if
these 5-mm octahedra were placed in a liquid at a tempera-
ture above the melting point of the solder covering the
electrical pads and gently agitated, the modules would self-
align to form structures as large as 12 units. The main draw-
back of this system is that one cannot control the final shape
of the assembled structure: the modules may form a chain, a
cube, or a more irregular shape.

Miyashita et al. performed a more theoretical analysis of
self-assembly using pie-shaped pieces to form complete circles
[70]. The authors performed analysis, simulations, and experi-
ments to better quantify how angular size of the pie-shaped
pieces affected the yield rate of completely assembled circles.
In the process, they followed Hosokawa et al.’s lead [71] and
modeled the system as chemical reaction. For their experi-
ments, the authors used floating modules with permanent
magnets to bond with their neighbors and vibrating pager
motors to induce stochastic motion. By varying the voltage
applied to all motors, the authors could affect what types of
structures were formed even though the modules lacked any
intelligence or communication capabilities. Other researchers
have proposed equally simple system in which the modules do
not have any innate actuation ability. Shimizu and Suzuki have
developed a system of passive modules capable of self-repair
when placed on a vibrating table [72]. The vibrations of the
table cause rotational motion in the modules that wind in a
string attaching each to the other modules in the system.
When all the strings are wound in and taut, the system assumes
an ordered configuration.

Some computer scientists have also investigated theoretical
aspects of self-assembly in the context of 2-D tiles that selec-
tively bond with their neighbors to form simple well-defined
shapes, such as squares [73]–[75]. Typically, these tiles are
allowed to translate but not rotate when moving randomly in
the plane. Each side of every tile in the system has an associated
bonding strength (different edges may have different strengths).
When two tiles collide, they remain attached only if their
cumulate bond strength exceeds a globally defined system
entropy. The shape formed by this type of tile system is dic-
tated by both the system entropy (which can be adjusted
dynamically) and the types of tiles involved. To form a specific
shape, one needs to undertake the relatively complicated task
of designing a set of tiles with appropriate bonding strengths.
Once this design step is complete, the tiles themselves do not
need to display more than the minimal amount of intelligence
necessary to determine when to bond.

Klavins et al. have worked to develop a more intelligent
self-assembling system that employs triangular modules driven
by oscillating fans on an air table to self-assemble different
shapes [76]. The modules in the system can communicate and
selectively bond using mechanically driven magnets. In addi-
tion to developing this hardware platform, the authors employ

IEEE Robotics & Automation MagazineSEPTEMBER 2010 45

knowledge of the module’s local topology and internal mod-
ule state information to execute a set of rules, (called a graph
grammar) to form arbitrary shapes. The practical result of this
approach is that each module can decide, in a distributed fash-
ion, when to maintain or break a connection with its immedi-
ate neighbors. Global knowledge of the complete structure is
not required. In additional work [77], Klavins et al. show that
one can define a continuous time Markov process describing
how a specific graph grammar will cause a particular system to
behave. Using this model, they argue that one can quickly
evaluate the performance of the grammar without running
physical simulations or experiments. Griffith et al. have also
worked with intelligent modules capable of selective bonding
to show that self-assembling systems may self-replicate [78] if
given an original configuration of modules to be duplicated,
an excess of free modules, and a simple set of local rules.

Matari�c et al. [79] have also presented rule-based approach
to self-assembly termed transition rule sets. In particular, they
present a method that, given a goal structure, produces a set of
rules shared among all modules that govern when and where
new modules are allowed to attach to the growing structure.
Zhang et al. [80] have expanded on this work by optimizing the
size of the rule sets used to form a specific shape. Werfel [81] also
applied the idea of a transition rule set when studying the use of
swarms to assemble complex structures from passive materials.

White et al. have developed hardware and algorithms for
several 2-D stochastically driven self-assembling systems [82].
One of the hardware instantiations uses triangular modules with
mechanically driven permanent magnets. The other uses square
modules with electromagnets for connectors. Both systems lack
batteries, and the modules only receive power after they connect
to the structure being self-assembled. To form specific shapes,
each module is provided with a representation of the desired
shape and decides, based on its location in the structure, whether
to allow other modules to bond to its faces. As the authors high-
light, this approach leads to holes or concavities in the finished
structure. These imperfections arise when free modules are
blocked from attaching to potential bonding sites by other,
already attached modules. To rectify this problem, the authors
propose assembly of the structure in a layered fashion—one layer
must be completed before the next can begin. The problem with
this approach is that it requires global communication so that all
modules in the outer layer know when the layer is complete.

Lipson et al. extended their 2-D system to 3-D [83], [84] by
using cubic modules suspended in turbulent fluid to achieve
self-assembly and reconfiguration. The modules themselves are
unable to move on their own. As the free modules circulate in
the fluid, they pass by a growing structure of assembled mod-
ules. When they come close enough, they are accreted onto the
structure. The authors present two different systems: one that
latches using electromagnets and the other that relies on the suc-
tion forces that result from fluid flow through a restrictive ori-
fice. By activating valves on specific faces of each module, the
authors can control the flow of the liquid and hence where
unattached modules are allowed to bond to the growing struc-
ture. The main advantage of the fluidic system is that it could be
scaled down to produce microscale modules.

Simplifying Self-Assembly
The majority of existing self-assembly systems aim to form
structures in one of two ways. Some systems such as [70], [72]–
[75] use a collection of application-specific differentiated mod-
ules that are only capable of assembling in a particular fashion to
form a specific shape. To self-assemble interesting structures, this
type of system requires considerable initial design effort, may be
time consuming to fabricate given the different types of mod-
ules required, and is challenging to reuse if one wants to form a
different goal shape. The advantage to this type of system is that
the modules may be less complex or completely passive.

In contrast, other systems such as [76], [77], [79]–[84] use
completely generic modules with more computation and
communication ability embedded in each module. As a result,
these generic modules are likely to cost more and be more
prone to failure. The advantage is their universality that allows
for the same system to form a wide variety of structures by sim-
ply changing the software rules that govern when and where
modules are allowed to bond. Both types of systems aim to
form complex shapes in a relatively direct manner. As these
structures grow from a single module, new modules are only
allowed to attach to the structure in specific locations. By care-
fully controlling these locations and waiting for a sufficiently
lengthy period of time, the desired structure is formed.

We propose a new approach that eliminates many of the
complexities of shape formation by active assembly. Our
Smart Pebble system employs a set of distributed algorithms to
perform two discrete steps: 1) rely on stochastic forces to self-
assemble a close-packed crystalline lattice of modules and 2)
use the process of self-disassembly to remove the extra material
from this block leaving behind the goal structure. By approach-
ing shape formation in this manner, we hope to speed up the
entire process, eliminate any global information that must be
distributed throughout the system, and simplify the computing
requirements of each module.

As the individual modules in self-reconfiguring and pro-
grammable matter systems continue to shrink in size, it will
become increasingly difficult to actuate and precisely control
the assembly process. In particular, designing modules capable
of exerting the forces necessary to attract their neighbors from
significant distances will be challenging. Instead, these systems
may find assembly and disassembly much simpler when driven
by stochastic environmental forces. The Pebble modules pre-
sented in the “Hardware for Self-Assembly and Disassembly”
section, which are able to latch together from distances approx-
imately 20–35% of the module dimensions, could easily take
advantage of these stochastic assembly mechanisms to form an
initial structures. Our particular system also relies on external
forces to carry the unused modules away from the final shape.
In our system, this force is often gravity, but it could also be
vibration, fluid flow, or the user reaching into the bag of smart
sand particles to extract the finished object.

Another advantage of our Smart Pebbles system is the
mechanical simplicity. The Pebbles contain no moving parts,
making them simpler to manufacture, less expensive, more
reliable, and easier to miniaturize than more traditional modu-
lar robotic systems which often rely on complex, gendered

IEEE Robotics & Automation Magazine46 SEPTEMBER 2010

mechanical latches to connect neighboring modules. The
simplicity of their shape also ensures that the modules pas-
sively self-align eliminating the need for precision sensing
and motion control.

Figure 8 illustrates the process the system must undergo to
form a shape. Starting from a collection of loose modules, the
system self-assembles to form an initial block of material. Once
this initial close-packed block is large enough to enclose the
goal shape, the system undergoes self-disassembly, leaving the
finished structure behind. To form another shape, the finished
structure disintegrates and the unbonded modules can again
self-assemble into a close-packed lattice.

During the initial formation of the close-packed lattice, we
make only limited attempts to restrict which modules or faces
are allowed to bond with the growing structure. Unlike the
graph grammar and transition rule set approaches of [76], [77],
[79], [80], we make no attempt to encode the final shape to be
formed in a set of local rules. The only rules enforced by our
self-assembly algorithm are designed to ensure that we achieve a
close-packed structure to serve as the basis of the self-disassembly
process. As illustrated in Figure 9, after we form this initial block
of material, we complete the shape-formation process through
self-disassembly and subtraction of the unwanted modules.

For a more concrete application of our system, consider an
isolated situation, like interplanetary spaceflight or a research
station at the South Pole, where weight and space are severely
limited, a bag of Smart Sand could serve as a universal toolkit
capable of forming task-specific tools with a high degree of
precision on demand. An astronaut would convey the shape of
the desired tool to a bag full of loose modules and then begin
to gently shake the bag. As the modules inside came into con-
tact and naturally aligned with their neighbors, they would
selectively bond and unbond to form the desired tool. The
astronaut would then open the bag, reach inside, grab the
finished form, brush off the extra grains, remove and use the
tool. Once finished with the tool, the astronaut could drop it
back into the bag where it would immediately disintegrate so
that the modules could be reused to form a different structure.

In particular, our Smart Pebbles are a modular system in
which each module is an identical cube with planar faces. In
our model of the system, we make two basic assumptions: 1)
modules are able to communicate with their immediate neigh-
bors and 2) modules can mechanically bond with and release
their immediate neighbors. Additionally, the modules each
contain some limited processing power and memory. The
modules themselves lack any mechanical degrees of freedom,
and the structures that the system forms are rigid.

Hardware for Self-Assembly and Disassembly
To realize a self-disassembling system in hardware, we need unit
modules capable of performing two basic tasks: selectively latch-
ing and unlatching with their neighbors and communicating
with their immediate neighbors. These two tasks also imply that
each module contain some limited degree of intelligence that
may be realized in a microprocessor or hard-coded in an ASIC.
One additional requirement on the latching mechanism is that,
when deactivated, it does not protrude beyond the face of the

module. This ensures that modules can be removed from the
structure to create concavities even if they are surrounded by
neighbors on all but one side. We have realized these require-
ments in two different hardware systems: first Miche [50] and then
the Pebbles [85]. Both types of module are shown in Figure 10.

The Miche modules are 45-cm cubes fabricated from a set of
six PCBs that are joined together through a combination of
interdigitated fingers and dual in line pluggable connectors.
Each module in the Miche system is powered by rechargeable
batteries powered and relies on an ARM7 processor to execute
all of the self-disassembly algorithms. The modules communi-
cate with their six immediate neighbors at 9,600 b/s using an
infrared (IR) light-emitting diode (LED)/photodiode pair.

The Miche modules have three active faces and three pas-
sive faces that are composed of ferromagnetic steel plates.
Active and passive faces latch together using switchable perma-
nent magnets embedded in the active faces. These magnetic
connectors consist of two permanent magnets. One is fixed,
and the other can rotate to align or oppose the magnetic field of
its fixed counterpart. This rotation is affected by a small dc motor
driving a worm gear that turns a spur gear attached to the mag-
net. When the two magnets are aligned north to north, their
fluxes add and the two act as a single magnet to attract the passive
steel face of the neighboring module. When the two magnets
are arranged north to south, the fluxes effectively cancel each

Self-Assembly

Self-Disassembly

Close-Packed Lattice

Loose Modules

Finished Shape

Disintegration

Figure 8. The Smart Sand system. This can be reused to form
wide variety of solid shapes.

(a) (b) (c) (d)

Figure 9. (a) To form shapes through subtraction, modules
initially assembly into a regular block of material. (b) Once this
initial structure is complete and all modules are fully latched to
their neighbors, (c) the modules not needed in the final
structure detach from the neighbors. (d) Once, these extra
modules are removed, we are left with the final shape.

IEEE Robotics & Automation MagazineSEPTEMBER 2010 47

other, very little flux passes through the
neighboring steel plate, and the two
modules are not attracted to each other.
When a connector is on, it can support
20 N—the weight of 17 other modules.
One disadvantage of the system of
active and passive faces is that all mod-
ules in an ensemble must be oriented in
the same way. If they are not, some pas-
sive faces will be adjacent to other pas-
sive faces, and these modules will be
unable to bond.

The Smart Pebbles are a much im-
proved version of the Miche hardware.
The Smart Pebbles are 50 times smaller by
volume (as shown in Figure 10), about
five times stronger when normalized by
module weight, use gender-less con-
nectors, and do not require recharging.
The only significant drawback to the Pebble system is that it
can only be used to form 2-D structures. More specifically,
each module in the Pebble system is a 12-mm cube capable of
autonomously communicating with and latching to four neigh-
boring modules in the same plane to form 2-D structures. Each
completed module weighs 4.0 g and may be rotated any one of
four ways on the assembly plane and still mate with its neigh-
bors. The major functional components of each cube are power-
regulation circuitry, a microprocessor, and four electropermanent
(EP) magnets, which are responsible for latching, power transfer,
and communication.

The Pebbles are formed by wrapping a two-layer flexible
printed circuit around an investment-casted brass frame. The flex-
ible circuit is reinforced with polyimide sections that stiffen the

faces of the cube and serve as a solid
mechanical foundation for the surface
mount components mounted on the
top of the circuit. All components are
mounted on the top side of the flex cir-
cuit so that they end up on the inside of
the cube. The four active faces contain
cutouts so that the two poles of each EP
magnet are able to protrude from the
interior of the cube. The other two
faces are occupied by the microproces-
sor responsible for controlling each mod-
ule and the power conditioning and
regulation circuitry. All the major com-
ponents of a single Pebble, in addition
to several fully assembled modules, are
shown in Figure 11.

The Pebbles do not contain bat-
teries. So, power is injected into the sys-

tem through contacts on the bottom of one-root module and
then distributed through the system from one module to the
next through the poles (which are electrically isolated from
each another) of the EP magnets. As a result, the EP magnet
poles of neighboring modules must be arranged north to
south, the voltage seen from the North Pole referenced to the
South Pole in a particular cube may be positive or negative. A
full-wave bridge rectifier is used to convert this to a known
polarity before it is used to charge a 150-lF capacitor that pro-
vides local, low-impedance energy storage. The electrical
resistance of each module is only 0.3 X. Given that each mod-
ule consumes only 15 mA, more than 3,000 modules may be
chained to a single root module supplied with 20 V before the
resulting voltage drop at the end of the chain begins to
approach the drop-out voltage of the 5 V regulator supplying
power to the microprocessor in each module. In any real-
world structure, a more reasonable aspect ratio would ensure
many parallel electrical paths from the root to any other mod-
ule, lowering the effective resistance.

In addition to transferring power, the EP magnets serve as
the latching mechanism for neighboring modules. Each EP
magnet consists of one rod of low-coercivity Alnico V and
one rod of NeFeB, a high coercivity material. These two rods
are placed side by side, capped with soft-iron poles, and
wrapped with an 80-turn copper coil. The coil is energized
with a 20-V, 300-ls pulse that completely reverses the mag-
netic polarization of the Alnico while leaving the NeFeB unaf-
fected. When the remnant fluxes of the Alnico and NeFeB are
opposed (so that the two rods are aligned north to south), the
flux circulates from one rod to the other and never leaves the
greater EP structure. As a result, the EP does not attract ferro-
magnetic materials and the connector is effectively off. Alter-
natively, when the fluxes align (so that both North Poles are
adjacent), the combined flux flows out the structure’s nearer
pole piece, through the EP magnet of any adjacent module,
and back into the EP magnet structure through the other pole
piece. In this configuration, the connector is on, and two
modules will attract with an empirically measured force of

Figure 10. The Pebble modules are 50
times smaller by volume (12 versus 45
mm per side) and five times stronger by
weight. (Picture courtesy of Daniela Rus,
Distributed Robotics Laboratory at MIT.)

1 cm

Figure 11. Each programmable matter Smart Pebble is a cube
with 12-mm sides. A collection of Smart Pebbles are able to
form complex 2-D shapes using four EP magnets that are able
to hold 85 times the individual module weight. The Pebbles
are formed by wrapping a flexible circuit around a brass frame.
An energy storage capacitor hangs between two tabs occupies
the center of the module. (Picture courtesy of Daniela Rus,
Distributed Robotics Laboratory at MIT.)

IEEE Robotics & Automation Magazine48 SEPTEMBER 2010

3.2 N—enough to support more than 80 other modules. Once
the connector is on or off, no additional energy is required to
maintain its state.

Each module also uses its EP magnets to communicate with
its neighbors at 9,600 b/s. When connected, two adjacent EP
magnets form an effective 1:1 isolation transformer. By sending
a short pulse of current through the coil of one EP magnet, we
induce a similar pulse in the coil of the neighboring module.
These pulses are only 1-ls long and polarized such that they
always strengthen the bond between neighboring modules. To
save space inside each module, the four EP magnets share some
circuitry so that only a single EP magnet may latch, transmit, or
receive at a given time. We overcome this limitation with algo-
rithms for handshaking and multitasking. All of the software
executes on an Atmel ATMega328, an 8-b processor with 2
KB RAM, and 32-KB flash running at 8 MHz. For more infor-
mation about all aspects of the Pebble hardware, see [85].

Algorithms for Self-Assembly and Disassembly
Self-disassembling systems require two high-level capabilities:
1) the ability to aggregate the initial block autonomously and 2)
the ability to virtually sculpt the block into the desired shape. In
this article, we present a solution for 1), and algorithms for 2)
have been presented in [51]. The two capabilities are interre-
lated. When the utility of an object is exhausted, its modules are
returned to the collective system. The self-assembly operation
will create the new block, which, in turn, will be sculpted into
the next object by self-disassembly. Thus, to ensure the creation
of a wide range of objects, it is important that the result of self-
assembly be a solid block without internal holes. The rest of this
section describes a decentralized algorithm that guarantees the
formation of a block without internal holes.

By initially aiming to form a close-packed lattice during the
self-assembly phase, we eliminate the need to transmit a descrip-
tion of the goal shape, of any form, to every module in the
structure. Previously, this blueprint has been necessary so that
modules on the boundary of the structure know whether to
allow new neighbors to bond. Without a need for this blue-
print, the intermodule communication requirements are signifi-
cantly reduced as are the storage and processing requirements of
each module. Additionally, the fact that the self-assembly process
is forming a close-packed lattice will help to guide free modules
into alignment with their neighbors. Following the assembly
process, we employ a set of self-disassembly algorithms that only
transmit the minimal amount of shape-description information.
These algorithms avoid transmitting the entire shape description
to the structure as a whole.

Self-Assembly of Initial Block
During the self-assembly process, we want to ensure that no
gaps are formed in the growing structure. Gaps weaken the
structure and reduce the available communication paths. If we
allow new modules to be accreted at any location on the
growing structure, it is easy to create gaps in the structure that
are theoretically difficult and practically impossible to fill. To
be more specific, a loose module will never fill a lattice posi-
tion that is already surrounded on three sides. Therefore, our

goal is prevent the creation gaps surrounded by neighboring
modules on more than two sides. Doing this also guarantees
that we do not create holes in the structure.

To avoid holes in the self-assembled structure, we propose
a simple distributed algorithm that only requires local informa-
tion. Based on this information, each free module coming into
contact with a potential bonding site on the solidified structure
must decide whether to permanently bond with the structure
or move on and look for another bonding site. The algorithm
we describe is similar to the self-assembly rule set generated by
Matari�c et al. in [79] for forming a rectangular structure. Mata-
ri�c et al.’s work focuses on the broader question of how to
generate a set of rules to assemble arbitrary structures and, as a
result, generates a larger, more complex set of rules that depends
on each module knowing in which of eight potential sectors it
resides. In contrast, our work focuses on developing a minimal
complexity, easy to implement algorithm that guarantees the
assembly of a close-packed lattice. By following the self-assembly
process with self-disassembly, we eliminate the need for complex
sets of rules that govern when and where modules may attach to
the growing structure.

Our self-assembly algorithm makes two assumptions. First, all
modules correctly assume the location of the root module. This is
easy to hard code into each module’s process as location (0,0).
Second, once each module is added to the structure, it can deter-
mine its (x,y) position. This requirement is also easy to meet. The
user informs the one module anchored to the assembly platform
that it is the root and therefore at location (0,0) and that it is
rotated 0�. Using this information, the root can inform the mod-
ule added to its right that the new module’s location is (1,0). Like-
wise, the module added below the root is at location (0,�1).
Based on which of its faces the new module receives this message,
it can determine its orientation. Now that the root’s neighbors
know their locations and orientations, they inform their newest
neighbors of their locations. More details and a proof that this
algorithm is correct are proved in [51]. Note that the algorithm
only requires neighbor-to-neighbor communication, and it does
not rely on any global information being communicated within
the structure. All modules in the structure are able to determine
their coordinates without any concept of the structure as a whole.

The entire self-assembly algorithm, shown as pseudocode
in Algorithm 1, begins as the free module receiving power
when it comes into contact with a module that is already a part
of the crystallized structure. Immediately, the module queries
its neighbor to determine its location. Based on this location,
the module then constructs a root vector pointing back to the
root module. The vector may have x and y components. The
new module permanently bonds with the structure—by call-
ing the LatchAllFaces() function—if it detects that it
has neighbors in both the x- and y-directions of the root vec-
tor (if they exist). For example, consider a new module that
determines its location (10,2). As shown in Figure 12, the root
vector is then (�10,�2) that has both x and y components. As
a result, the module only bonds with the structure if it has
neighbors at (9,2) and (10,1). Instead, if the new module were
located at (0,�5) and the root vector was (0,5), the module in
question would only bond if it detected a neighbor at (0,4).

IEEE Robotics & Automation MagazineSEPTEMBER 2010 49

If the new module does not detect neighbors in the appro-
priate locations, it informs whatever neighbors it is contacting,
and they deactivate their connectors releasing the module.
The module will lose power, so when it next contacts the
structure, the self-assembly algorithm will restart.

Once a module decides that should permanently bond to
the growing structure, it enters a loop in which it simply lis-
tens for disconnect request messages on its faces. When a new
module decides that it cannot connect to the structure, it
sends one of these disconnect request messages—using the
UnlatchAllFaces() function—to all of its neighbors.
When the previously solidified module receives one of these
messages on a particular face, this module keeps the connec-
tor on that face deactivated for a fixed period of time to allow
the rejected module to move out of range of its attractive
force. This is the purpose of the DisableFace() function
in the pseudocode. Eventually, the connector is reactivated
in hopes that the bonding site will have become valid.

Algorithm 1
The self-assembly algorithm uses the existence or absence of
two of a module’s neighbors to determine whether it is
allowed to bond with its neighbors and become a part of the
self-assembling structure.
1: procedure Self-Assemble()
2: myPos

����! Localize()
3:
4: root

���! (0,0)� myPos
����!

5:
6: if root

���!
:x 6¼ 0 then

7: neighPos
�������! (myPos:�����!

x
þsgn(root:���!

x),myPos:�����!
y)

8: if NeighExists(neighPos
�������!

) ¼ FALSE then
9: UnlatchAllFaces()

10: return
11: end if
12: end if
13:
14: if root

���!
:y 6¼ 0 then

15: neighPos
�������! (myPos:

�����!
x,myPos:
�����!

yþsgn(root:
���!

y))
16: if NeighExists(neighPos

�������!
) ¼ FALSE then

17: UnlatchAllFaces()
18: return
19: end if
20: end if
21:
22: LatchAllFaces()
23:
24: loop
25: for face 1 to 4 do
26: if DisconRqstd(face) ¼ TRUE then
27: DisableFace(face,LockoutTime)
28: end if
29: end for
30: end loop
31: end procedure

Theorem 1
The self-assembly algorithm (Algorithm 1) prevents the
formation of gaps in the lattice structure that are surrounded
by more than two neighbors.

Proof
Guaranteeing that the algorithm never creates a gap that is sur-
rounded on more than two sides is equivalent to ensuring that,
on any vertical or horizontal line of the lattice, an unpopulated
gap between two distant modules is not formed. Consider, for
illustrative purposes, any unoccupied position on the lattice and
the horizontal (or vertical) line extending to positive and negative
infinity from this point. If this line intersects solidified modules
(arbitrarily far away) in both the positive and negative directions,
one could imagine working from the solidified modules inward
to fill this gap. Eventually, enough modules will be attached so
that the initial unoccupied position has immediate neighbors to
its left and right. Once this occurs, the empty position will be
impossible to fill. As a result, if the algorithm avoids creating a
gap, no matter how wide, along any horizontal or vertical
transect of the lattice, it will avoid creating gaps in the lattice
that are surrounded by more than two immediate neighbors.

The self-assembly algorithm, if it does not detect immedi-
ate neighbors along both the x and y components of a vector
pointing from the potential bonding site to the root module,
assumes that other, more distance modules may exist along
those transects. As a result, by not connecting a module to
the structure, the algorithm does not risk creating gaps along
these transects.

Finally, the algorithm is guaranteed not to create gaps along
the x and y vectors originating at the potential bonding site
but pointing away from the root module. For this type of gap
to be created, a solidified module would have existed farther
away from the root in either than x- or y-direction than the
bonding site in question. Conveniently, this is impossible. As
explained in the earlier paragraph, a module will never bond if
there is any potential for an empty position in the lattice along
either component of the module’s root vector, which, in this
scenario, there would have been. n

(1,0)

(0,1)
(2,1)

(0,–2)

(0,0)(0,–1)

(2,0)
(0,0)(–1,0)

ROOT

Bond Formed Bond Not Formed

Figure 12. During self-assembly, modules only permanently
attach to the already assembled structure if they detect
immediate neighbors along a vector that points back to the
root module.

IEEE Robotics & Automation Magazine50 SEPTEMBER 2010

Theorem 2
The self-assembly algorithm prevents the formation of holes in
the lattice.

Proof
By Theorem 1, the self-assembly algorithm never creates gaps
with more than two neighbors, so the algorithm can never cre-
ate a gap with four neighbors—the definition of a hole. n

While the algorithm presented here has pertained to a 2-D
system, the extension to 3-D is straightforward. Instead of a 2-
D vector pointing back to the root module, each module will
have a 3-D vector and will need to check for neighbors in
three directions. Likewise, the 3-D algorithm guarantees that a
gap with more than three neighbors will never be created,
which implies that holes will never be created.

Self-Disassembly
Once the initial block of material has been assembled, self-dis-
assembly by subtraction proceeds through four basic stages:
model formation, virtual sculpting, shape distribution, and dis-
assembly. After self-assembly is complete, each module knows
its location within the initial structure. In the first stage, model
formation, each module, as evidence of its existence in the
initial structure, sends a reflection message containing its posi-
tion back to the root module. The root does not store these
messages but forwards them to a graphical-user interface (GUI)
running on a PC. The GUI builds a virtual model representing
the initial arrangement of modules in the physical structure.
Using this GUI model, the user drives the virtual-sculpting stage
by selecting which modules should be included in the final
shape. During the entire shape-formation process, the PC is the
only entity that stores the entire shape description. After this
sculpting process is complete, the PC program generates a
sequence of inclusion messages. During the shape-distribution
stage, the GUI transmits these inclusion messages to the root
module. The structure then propagates these inclusion mes-
sages to their proper destinations. As with the localization
process, the messages only contain local information. During
the disassembly phase, the modules not designated to be in the
final structure disconnect from their neighbors to reveal the
shape the user sculpted previously. Each of the self-disassembly
phases is dependent on a distributed, localized message passing
algorithms executing on each module. Figure 13 shows a dog

being formed through the self-disassembly of a block of 27
Miche modules. As shown by the progression of time in the
frames, most modules disconnect quickly and fall away under
gravity’s influence in less than 5 s. Others get stuck or discon-
nect but still rest on top of other modules. These must be
removed by vibrating the structure or by hand.

When self-assembly and self-disassembly are combined to
form structures, the resulting shapes cannot contain internal
cavities. Not only does the self-assembly algorithm, in its mis-
sion to form a close-packed lattice, avoid introducing holes, the
self-disassembly process has no way to remove unnecessary
modules from the interior of a structure if no exit hole exists.
Additionally, as one may suspect, if the modules being removed
from an initial block to form the final structure have a narrow or
convoluted exit path, it is unlikely that they will be able to exit
from the structure. In future work, we plan to examine how
the self-assembly process can be modified to accommodate the
formation of holes in the finished structure through a series of
repeated self-assembly and self-disassembly iterations.

Experiments
We have experimentally tested both the self-assembly and
self-disassembly algorithms. We use a collection of 17 modules
that was described in the “Hardware for Self-Assembly and
Disassembly” section. In 3-D, we imagine shaking a bag full of
modules to drive the self-assembly process. The 2-D analog is
an inclined vibration table. As shown in Figure 14, we built a
custom-vibration table that provides the stochastic forces nec-
essary to move and align the modules. The frequency and
amplitude of the vibration can be controlled, as can the tilt of
the table. The perimeter of the table is surrounded by a low
barrier that prevents modules from falling off.

In our experiments, we anchored one module, the root, in
a corner of the vibration table at coordinates (0,0). The root
module provides the power and communication link between
the system and the user. Then, we tilted the table 4� in both
the x- and y-directions to bias the movement of all free mod-
ules toward the root module located at (0,0).

Using 16 randomly arranged modules (in addition to the
fixed-root module), we first tested the self-assembly algorithms
in a series of 13 trials. A progression of still images from one of
these trials is shown in Figure 15. Initially, the connectors on
each module are deactivated, and they are only turned on when

0:00 0:01 0:03 0:05 0:37

(a) (b) (c) (d) (e)

Figure 13. A dog-shaped structure can be self-disassembled from an initial configuration of 27 suspended Miche modules (each
45-mm per side). (Picture courtesy of Daniela Rus, Distributed Robotics Laboratory at MIT.)

IEEE Robotics & Automation MagazineSEPTEMBER 2010 51

a module successfully communicates with
the growing structure. The last frame shows
that all modules bond together to form a
solid shape that can then be used for self-
disassembly. After the modules have coa-
lesced and have been given sufficient time
to latch with their neighbors, the structure
can be removed from the test fixture
without falling apart.

Figure 16 shows how the 17 modules
tended to be distributed after all modules
had settled into discrete grid positions.
Not surprisingly, the experiments show
that the modules tend to form an isosceles
right-triangular configuration. In addition
to determining the most likely distribution
of initial modules, we wanted to ensure
that all modules were able to bond with
their neighbors and communicate with
the system’s PC-based user interface. In a series of 15 trials,
each using 17 modules, we observed a total of only 22 instan-
ces in which a module failed to localize and send a message
back to the user interface through the root module—a failure
rate of 8.2% vector but not the other. In most of these cases,
one or more modules were clearly not in contact with one
more of its neighbors. In one particularly bad trial, one of the
modules adjacent to the root was about 45� out of alignment,
resulting in the 13 of the 17 modules in the system not localizing.

This was the only trial of the 15 in which
the vibration table was unable to align all
of the modules. The average time taken
to self-assemble the 17 modules was 1 min,
47 s. The self-assembly process worked
most efficiently when the table vibration
was swept up and down several times
through varying frequencies.

We also tested the system’s ability to
self-disassemble. We performed a set of
25 experiments in which we hand-
assembled a 3 3 5 block of modules.
Our goal was to then self-disassemble the
initial block to a humanoid robot as
shown in Figures 9 and 17. The initial
3 3 5 block contains 22 bonds between
neighboring modules and the completed
humanoid structure contains nine. There-
fore, 13 bonds must be broken to form

the completed structure. To provide some measure of the self-
disassembly algorithm’s success, we kept track of how many of
these bonds were correctly severed in each trial. There were
only errors in four of the 25 trials, and each of these errors only
affected a single module. In two of the four cases, a single mod-
ule did not detach. In the third case, a module that was supposed
to be in the final structure was detached. In the fourth case, a
module that was supposed to be in the final structure detached,
and it also remained bonded to a single neighbor that was sup-
posed to detach. This amounts to a total of five bonding errors.
Given there were a total of 330 (15 3 22) bonds that need to
be maintained or broken over the course of all 25 experiments,
the error rate is only 1.5%.

The self-assembly and self-disassembly experiments show
that the system is capable starting with a random scattering of
modules, forming an initial close-packed block of material,

0:00 0:02 0:04

0:06 0:08 0:10

0:12 0:14 1:22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. A collection of 16 randomly distributed Smart
Pebble modules (each a 12-mm cube), and one fixed root
module (back right of each video frame), self-assemble when
placed on an inclined vibration table. (Picture courtesy of
Daniela Rus, Distributed Robotics Laboratory at MIT.)

1 2 3 4 5 6 7 8

12345678

0

0.2

0.4

0.6

0.8

1

x−Axis

Self-Assembly Module Distribution (17 Modules, 13 Trials)

y−Axis

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d

Figure 16. When 17 modules are placed on a vibration table
included so that the (0,0) location is the table’s low point, the
modules self-assembly into a close-packed lattice. The
likelihood that a particular position in the lattice is filled is
shown in this plot.

(a)

(b)

(c)

(d)

Figure 14. A vibration table is used to
drive the self-assembly process. It
consists of (a) a vibrating base, (b) a
universal joint to control tilt, (c) the
assembly surface, and (d) a variac to
control the vibration frequency. (Picture
courtesy of Daniela Rus, Distributed
Robotics Laboratory at MIT.)

IEEE Robotics & Automation Magazine52 SEPTEMBER 2010

and then using self-disassembly to remove
the extra modules to form a specific shape.

Summary and Future Outlook
We have presented a detailed retrospec-
tive on modular robots and discussed con-
nections between modular robots and
programmable matter. This field has seen
a great deal of creativity and innovation at
the level of designing physical systems
capable of matching shape to function and
algorithms that achieve this capability.
The success of these projects rests on the
convergence of innovation in hardware
design and materials for creating the basic
building blocks, information distribution
for programming the interaction between
the blocks, and control. Most current systems have dimensions
on the order of centimeters, yet pack computation, communi-
cation, sensing, and power transfer capabilities into their form
factors. Additionally, these modules operate using distributed algo-
rithms that use a modules ability to observe its current neighbor-
hood and local rules to decide what to do next.

Within this broad space, our own work spans the develop-
ment of several modular self-reconfiguring robot systems.
Building on this experience, we identified self-disassembly as a
way of creating shapes out of smart components using a
subtractive process. The key idea is to create a bag of smart
components that can program their connections in an autono-
mous way to organize different shapes. This simplifies the
mechanics of shape creation by eliminating the need for actively
moving parts. The required actuation mechanism (disconnec-
tion) is generally easier, faster, and more robust than actively
seeking and making connections. The trade-off is two-fold.
First, self-disassembling systems must start from a preassembled
structure of modules. Second, external forces must be employed
to remove unwanted material from the system. Often, these
forces can be found in the surrounding environment. For our
first system prototypes, we used gravity to pull unnecessary
modules away from the final structure.

A key innovation that enabled the miniaturization of the basic
module for self-disassembly from a 4.5-cm cube to the 1-cm scale
module has been the development of a small programmable con-
nector capable of 1) holding state without power; 2) switching
states using very short pulses; 3) encoding, transmitting, and
decoding messages to neighbors in the structure; and 4) transmit-
ting power. The functionality of this robot system is driven by
two important capabilities: a) making shapes autonomously by
disassembly and b) reassembling autonomously a building block.
In this article, we summarized our solution for a) and discuss in
detail our solution for b). We are currently working on complet-
ing a 50-module platform and on using this platform to evaluate
the disassembly and re-assembly algorithms. In the future, we
plan to extend resulting robot system with mobility, so that the
objects formed by this method can function as mobile robots.

Our long-term hope is to create a self-disassembling system
that can function analogous to a bag of Smart Sand that will be

light and compact and that configures
itself into a desired form at fine granular-
ity. Our current system functions as a
Smart Pebbles system. There is a suite of
interesting challenges that have to be
overcome to reduce the size of this sys-
tem further from 1-cm scale to 1-mm
scale and realize the dream of Smart Sand.
New technology will have to be devel-
oped to package computation, sensing,
actuation, communication, and power in
a 1-mm scale module. New fabrication
technology will have to be developed to
fabricate such models rapidly and in cost-
effective ways. New supporting algorithms
that are scalable and matched to the prop-
erties of the hardware would have to be

put in place. Ultimately, these advances will lead to the creation
of desktop-scale 3-D fabrication technology of electrically and
mechanically active recyclable parts for everyday users.

Acknowledgments
This work is supported by the Defense Advanced Research
Projects Agency (DARPA) Programmable Matter and Chem-
bots programs (Dr. Mitch Zakin, PM) and the U.S. Army
Research Office under grant numbers W911NF-08-1-0228
and W911NF-08-C-0060, National Science Foundation (NSF)
Emerging Frontiers in Research and Innovation (EFRI), Intel,
and the National Defense Science and Engineering Graduate
(NDSEG) fellowship program. We also thank Prof. Rob Wood
and Dr. Ara Knaian.

Keywords
Modular robots, self-assembling robots, self-disassembling robots,
metamorphic robots.

References
[1] A. Tison and T. Tayor, Barbapapa, Les Livres du Dragon D’Or, 2003.
[2] I. S. Behr, R. H. Wolfe, and R. D. Moore, “Star trek: Deep space nine,”

1994, episode 47 & 48: The Search.
[3] J. Cameron and W. Wisher, Jr., Terminator 2: Judgment Day, 1991.
[4] B. Mantlo, B. Budiansky, J. Shooter, M. Higgins, R. Macchio, B. Sienkiewicz,

F. Springer, K. DeMulder, N. Yomtov, and R. Parker, The Transformers.
New York: Marvel Comics, 1984.

[5] T. Fukuda and S. Nakagawa, “Dynamically reconfigurable robotic
system,” in Proc. IEEE Int. Conf. Robotics and Automation, Apr. 1988,
pp. 1581–1586.

[6] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Self organizaing
robots based on cell structures—cebot,” in Proc. IEEE Int. Workshop on
Intelligent Robots, Oct. 1988, pp. 145–150.

[7] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems: Chal-
lenges and opportunities for the future,” IEEE Robot. Automat. Mag.,
vol. 14, no. 1, pp. 43–52, Mar. 2007.

[8] M. Yim, “A reconfigurable modular robot with many modes of locomotion,”
in Proc. JSME Int. Conf. Advanced Mechatronics, 1993, pp. 283–288.

[9] M. Yim, “New locomotion gaits,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 1994, pp. 2508–2514.

[10] A. Castano and P. Will, “Mechanical design of a module for reconfigura-
ble robots,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), 2000, pp. 2203–2209.

Figure 17. A initial 3 3 5 block of
modules was used to form this
60-mm-tall humanoid through the
self-disassembly process.

IEEE Robotics & Automation MagazineSEPTEMBER 2010 53

[11] W.-M. Shen and P. Will, “Docking in self-reconfigurable robots,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Oct. 2001,
pp. 1049–1054.

[12] A. Castano, A. Behar, and P. Will, “The conro modules for reconfigurable
robots,” IEEE Trans. Mechatron., vol. 7, no. 4, pp. 403–409, Dec. 2002.

[13] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S.
Kokaji, “M-tran: Self-reconfigurable modular robotic system,” IEEE/
ASME Trans. Mechatron., vol. 7, no. 4, pp. 431–441, Dec. 2002.

[14] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and S.
Kokaji, “Automatic locomotion design and experiments for a modular
robotic system,” IEEE/ASME Trans. Mechatron., vol. 10, no. 3, pp. 314–

325, June 2005.
[15] H. Kurokawa, K. Tomita, A. Kamimura, E. Yoshida, S. Kokahji, and S.

Murata, “Distributed self-reconfiguration control of modular robot m-tran,”
in Proc. IEEE Int. Conf. Mechatronics and Automation, July 2005, pp. 254–259.

[16] S. Murata, K. Kakomura, and H. Kurokawa, “Docking experiments of a
modular robot by visual feedback,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), Oct. 2006, pp. 625–630.

[17] D. Marbach and A. J. Ijspeert, “Online optimization of modular robot
locomotion,” in Proc. IEEE Int. Conf. Mechatronics and Automation, July 2005,
pp. 248–253.

[18] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in Proc. IEEE
Int. Conf. Intelligent Robots and Systems (IROS), Oct. 2006, pp. 3636–3641.

[19] A. Kawakami, A. Torii, K. Motomura, and S. Hirose, “Smc rover: Plane-
tary rover with transformable wheels,” in Proc. 41st Annu. Society of Instru-
ment and Control Engineers Conf., Aug. 2002, pp. 157–162.

[20] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: A modular reconfigur-
able robot,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Apr.
2000, pp. 514–520.

[21] M. Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw, “Connecting
and disconnecting for self–reconfiguration with polybot,” IEEE/ASME
Trans. Mechatron. (Special issue on Information Technology in Mechatronics),
pp. 442–451, 2003.

[22] M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, and C. Tay-
lor, “Towards robotic self-reassembly after explosion,” in Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, Nov. 2007, pp. 2767–2772.

[23] J. Sastra, S. Chitta, and M. Yim, “Dynamic rolling for a modular loop
robot,” Int. J. Robot. Res., vol. 28, no. 6, pp. 758–773, 2009.

[24] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and
designed self-reproducing modular robotics,” IEEE Trans. Robot., vol. 23,
no. 2, pp. 308–319, Apr. 2007.

[25] G. S. Chirikjian, “Kinematics of a metamorphic robotic system,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), May 1994, pp. 449–455.

[26] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff, “Evaluating efficiency
of self-reconfiguration in a class of modular robots,” J. Robot. Syst.,
vol. 13, no. 5, pp. 317–388, 1996.

[27] A. Pamecha, I. Ebert-Uphoff, and G. S. Chirikjian, “Useful metrics for
modular robot motion planning,” IEEE Trans. Robot. Automat., vol. 13,
no. 4, pp. 531–545, 1997.

[28] J. E. Walter, E. M. Tsai, and N. M. Amato, “Algorithms for fast concur-
rent reconfiguration of hexagonal metamorphic robots,” IEEE Trans.
Robot., vol. 21, no. 4, pp. 621–631, Aug. 2005.

[29] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 1994, pp. 441–448.

[30] E. Yoshida, S. Murata, K. Tomita, H. Kurokawa, and S. Kokaji, “Distributed
formation control for a modular mechanical system,” in Proc. IEEE Int. Conf.
Intelligent Robots and Systems (IROS), 1997, pp. 1090–1097.

[31] H. Kurokawa, S. Murata, E. Yoshida, K. Tomita, and S. Kokaji, “A 3-d
self-reconfigurable structure and experiments,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Systems (IROS), Oct. 1998, pp. 860–865.

[32] E. Yoshida, S. Murata, S. Kokaji, A. Kamimura, K. Tomita, and H. Kur-
okawa, “Get back in shape! A hardware prototype self-reconfigurable
modular microrobot that uses shape memory alloy,” IEEE Robot. Automat.
Mag., vol. 9, no. 4, pp. 54–60, 2002.

[33] E. Yoshida, S. Kokaji, S. Murata, K. Tomita, and H. Kurokawa, “Micro
self-reconfigurable robot using shape memory alloy,” J. Robot. Mechatron.,
vol. 13, no. 2, pp. 212–219, 2001.

[34] K. Kotay, D. Rus, M. Vona, and C. McGray, “The self-reconfiguring
robotic molecule,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
1998, pp. 424–431.

[35] K. Kotay and D. Rus, “Motion synthesis for the self-reconfiguring robotic
molecule,” in Proc. IEEE Int. Conf. Intelligent Robots and Systems, Oct. 1998,
pp. 843–851.

[36] K. Kotay and D. Rus, “Algorithms for self-reconfiguring molecule motion
planning,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),
Oct. 2000, pp. 2181–2193.

[37] D. Rus and M. Vona, “A basis for self-reconfiguring robots using crystal
modules,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS),
Oct. 2000, pp. 2194–2202.

[38] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with
compressible unit modules,” Int. J. Robot. Res., vol. 22, no. 9, pp. 699–

715, 2003.
[39] J. W. Suh, S. B. Homans, and M. Yim, “Telecubes: Mechanical design of

a module for self-reconfigurable robotics,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), May 2002, pp. 4095–4101.

[40] C.-J. Chiang and G. S. Chirikjian, “Modular robot motion planning
using similarity metrics,” Auton. Robots, vol. 10, no. 1, pp. 91–106, 2001.

[41] M. Koseki, K. Minami, and N. Inou, “Cellular robots forming a
mechanical structure (evaluation of structural formation and hardware
design of “chobie ii”),” in Proc. 7th Int. Symp. Distributed Autonomous
Robotic Systems (DARS04), June 2004, pp. 131–140.

[42] B. K. An, “Em-cube: Cube-shaped, self-reconfigurable robots sliding on
structure surfaces,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
May 2008, pp. 3149–3155.

[43] C. €Unsal and P. K. Khosla, “Mechatronic design of a modular self-recon-
figuring robotic system,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), Apr. 2000, pp. 1742–1747.

[44] K. C. Prevas, C. €Unsal, M. €Onder Efe, and P. K. Khosla, “A hierarchical
motion planning strategy for a uniform self-reconfigurable modular
robotic system,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
May 2002, pp. 787–792.

[45] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda,
and I. Endo, “Self-organizing collective robots with morphogenesis in a
vertical plane,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
May 1998, pp. 2858–2683.

[46] E. H. Østergaard and H. H. Lund, “Evolving control for modular robotic
units,” in Proc. IEEE Int. Symp. Computational Intelligence in Robotics and
Automation, July 2003, pp. 886–892.

[47] M. W. Jørgensen, E. H. Østergaard, and H. H. Lund, “Modular atron:
Modules for a self-reconfigurable robot,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Sept. 2004, pp. 2068–2073.

[48] D. J. Christensen and K. Stoy, “Select a meta-module to shape-change
the atron self-reconfigurable robot,” in Proc. IEEE Int. Conf. Robotics and
Automation, May 2006, pp. 2532–2538.

[49] D. Brandt and D. J. Christensen, “A new meta-module for controlling
large sheets of atron modules,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, Oct. 2007, pp. 2375–2380.

[50] K. Gilpin, K. Kotay, and D. Rus, “Miche: Modular shape formation by
self-disassembly,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
Apr. 2007, pp. 2241–2247.

[51] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: Modular shape
formation by self-disassembly,” Int. J. Robot. Res., vol. 27, no. 1, pp. 345–

372, 2008.
[52] R. Oung, F. Bourgault, M. Donovan, and R. D’Andrea, “The distrib-

uted flight array,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
May 2010, pp. 601–607.

[53] R. Fitch and Z. Butler, “Scalable locomotion for large self-reconfiguring
robots,” in Proc. IEEE Int. Conf. Robotics and Automation, Apr. 2007,
pp. 2248–2253.

[54] R. Fitch and Z. Butler, “Million module march: Scalable locomotion for
large self-reconfiguring robots,” Int. J. Robot. Res., vol. 27, no. 3–4, pp. 331–

343, Mar./Apr. 2008.
[55] G. J. Hamlin and A. C. Sanderson, “Tetrobot: A modular system for

hyper-redundant parallel robotics,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), May 1995, pp. 154–159.

IEEE Robotics & Automation Magazine54 SEPTEMBER 2010

[56] A. Lyder, R. F. M. Garcia, and K. Stoy, “Mechanical design of odin, an
extendable heterogeneous deformable modular robot,” in Proc. IEEE Int.
Conf. Intelligent Robots and Systems (IROS), Sept. 2008, pp. 883–888.

[57] A. Lyder, H. G. Peterson, and K. Stoy, “Representation and shape
estimation of odin, a parallel under-actuated modular robot,” in Proc. IEEE
Int. Conf. Intelligent Robots and Systems (IROS), Oct. 2009, pp. 5275–5280.

[58] C.-H. Yu, K. Haller, D. Ingber, and R. Nagpal, “Morpho: A self-
deformable modular robot inspired by cellar structure,” in Proc. IEEE Int.
Conf. Intelligent Robots and Systems (IROS), Sept. 2008, pp. 3571–3578.

[59] J. John Amend and H. Lipson, “Shape-shifting materials for program-
mable structures,” in Proc. Int. Conf. Ubiquitous Computing: Workshop on
Architectural Robotics, Sept. 2009.

[60] B. Donald, C. G. Levey, C. D. McGray, I. Paprotny, and D. Rus, “An
untethered, electrostatic, globally controllable mems micro-robot,” J.
Microelectromech. Syst., vol. 15, no. 1, pp. 1–15, Feb. 2006.

[61] B. R. Donald, C. G. Levey, and I. Paprotny, “Planar microassembly by
parallel actuator of mems microrobots,” J. Microelectromech. Syst., vol. 17,
no. 4, pp. 789–808, Aug. 2008.

[62] M. Shimizu, A. Ishiguro, and T. Kawakatsu, “A modular robot that
exploits a spontaneous connectivity control mechanism,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Aug. 2005,
pp. 1899–1904.

[63] M. Shimizu, T. Mori, and A. Ishiguro, “A development of a modular
robot that enables adaptive reconfiguration,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Oct. 2006, pp. 174–179.

[64] S. Goldstein, J. Campbell, and T. Mowry, “Programmable matter,”
IEEE Comput., vol. 38, no. 6, pp. 99–101, 2005.

[65] S. C. Goldstein and T. C. Mowry, “Claytronics: An instance of program-
mable matter,” in Proc. Wild and Crazy Ideas Session of ASPLOS, Boston,
MA, Oct. 2004.

[66] M. E. Karagozler, S. C. Goldstein, and J. R. Reid, “Stress-driven mems
assembly þ electrostatic forces ¼ 1mm diameter robot,” in Proc. IEEE
Conf. Intelligent Robots and Systems (IROS), Oct. 2009, pp. 2763–2769.

[67] G. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science,
vol. 295, pp. 2418–2421, Mar. 2002.

[68] G. M. Whitesides and M. Boncheva, “Beyond molecules: Self-assembly
of mesoscope and macroscopic components,” Proc. Natl. Acad. Sci., vol. 99,
no. 8, pp. 4769–4774, Apr. 2002.

[69] D. H. Garcias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides,
“Forming electrical networks in three dimensions by self-assembly,” Sci-
ence, vol. 289, no. 5482, pp. 1170–1172, Aug. 2000.

[70] S. Miyashita, M. Kessler, and M. Lungarella, “How morphology affects
self-assembly in a stochastic modular robot,” in Proc. IEEE Int. Conf.
Robotics and Automation, May 2008, pp. 3533–3538.

[71] K. Hosokawa, I. Shimoyama, and H. Miura, “Dynamics of self-assem-
bling systems: Analogy with chemical kinematics,” Artif. Life, vol. 1, no. 4,
pp. 413–427, 1994.

[72] M. Shimizu and K. Suzuki, “A self-repairing structure for modules and
its control by vibrating actuation mechanisms,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), May 2009, pp. 4281–4286.

[73] P. W. K. Rothemund and E. Winfree, “The program-size complexity of
self-assembled squares,” in Proc. 32rd Annu. ACM Symp. Theory of Comput-
ing, 2000, pp. 459–468.

[74] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, “Running time and
program size for self-assembled squares,” in Proc. 33rd Annu. ACM Symp.
Theory of Computing, 2001, pp. 740–748.

[75] G. Aggarwal, M. H. Goldwasser, M.-Y. Kao, and R. T. Schweller,
“Complexities for generalized models of self-assembly,” in Proc. 15th Annu.
ACM-SIAM Symp. Discrete Algorithms, 2004, pp. 880–889.

[76] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp,
and T. Nguyen, “Programmable parts: A demonstration of the grammati-
cal approach to self-organization,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS), Aug. 2005, pp. 3684–3691.

[77] N. Napp, S. Burden, and E. Klavins, “The statistical dynamics of
programmed self-assembly,” in Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA), May 2006, pp. 1469–1476.

[78] S. Griffith, D. Goldwater, and J. M. Jacobson, “Robotics: Self-replication
from random parts,” Nature, vol. 437, p. 636, Sept. 2005.

[79] C. Jones and M. J. Matari�c, “From local to global behavior in intelligent
self-assembly,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2003,
pp. 721–726.

[80] J. Kelly and H. Zhang, “Combinatorial optimization of sensing for rule-
based planar distributed assembly,” in Proc. IEEE Int. Conf. Intelligent
Robots and Systems, 2006, pp. 3728–3734.

[81] J. Werfel, “Anthills built to order: Automating construction with artificial
swarms,” Ph.D. dissertation, MIT2006.

[82] P. White, K. Kopanski, and H. Lipson, “Stochastic self-reconfigurable
cellular robotics,” in Proc. IEEE Conf. Robotics and Automation, Apr. 2004,
pp. 2888–2893.

[83] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimensional sto-
chastic reconfiguration of modular robots,” in Proc. Robotics Science and Sys-
tems, June 2005, pp. 8–10.

[84] M. Tolley, J. Hiller, and H. Lipson, “Evolutionary design and assembly
planning for stochastic modular robots,” in Proc. IEEE Conf. Intelligent
Robotics and Systems (IROS), Oct. 2009, pp. 73–78.

[85] K. Gilpin, A. Knaian, and D. Rus, “Robot pebbles: One centimeter robotic
modules for programmable matter through self-disassembly,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), May 2010, pp. 2485–2492.

Kyle Gilpin received his B.S. and M.Eng. degrees in electrical
engineering and computer science from the Massachusetts
Institute of Technology (MIT). He is currently a Ph.D. student
in the Distributed Robotics Laboratory at MIT. He works to
improve communication and control in large distributed robotic
systems. His past projects include developing ultrawideband
radios, real-time image processing systems, reconfigurable sensor
nodes, chain robots with compliant actuators, and a collection of
1.7-in cubes capable of shape formation through self-disassembly.
Before beginning his Ph.D., he spent two years working as a
senior electrical engineer at Proteus Biomedical, developing
ultralow-power hardware and software for several implantable
personalized medicine products. He is the recipient of both
NSF and NDSEG fellowships.

Daniela Rus received her Ph.D. degree in computer science
from Cornell University. She is a professor of electrical engi-
neering and computer science, where she is associate director
of MIT’s Computer Science and Artificial Intelligence Lab
(CSAIL) and codirects the MIT Center for Robotics at CSAIL.
Her research interests include distributed robotics and mobile
computing, and her application focus includes transportation,
security, environmental modeling and monitoring, underwater
exploration, and agriculture. She is the recipient of the NSF
Career Award and an Alfred P. Sloan Foundation Fellow. She is
a Fellow of the IEEE, a class of 2002 MacArthur Fellow, and a
fellow of Association for the Advancement of Artificial Intelli-
gence. Before receiving her appointment at MIT, she was a
professor in the Computer Science Department at Dartmouth,
where she founded and directed two laboratories in robotics
and mobile computing.

Address for Correspondence: Kyle Gilpin, Computer Science
and Artificial Intelligence Lab, MIT, 32 Vassar St., Cambridge,
MA 02139, USA. E-mail: kwgilpin@csail.mit.edu.

IEEE Robotics & Automation MagazineSEPTEMBER 2010 55

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

