
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2012-003
CBCL-306

January 31, 2012

GURLS: a Toolbox for Regularized Least
Squares Learning
Andrea Tacchetti, Pavan S. Mallapragada, Matteo
Santoro, and Lorenzo Rosasco

GURLS: a Toolbox for Regularized Least Squares Learning

Andrea Tacchetti�, Pavan K. Mallapragada�,Matteo Santoro�,§, Lorenzo Rosasco�,§
�CBCL, McGovern Institute for Brain Research, MIT, Cambridge (MA) USA

§ IIT@MIT Lab, Istituto Italiano di Tecnologia, Genova, Italy
atacchet,pavanm msantoro, lrosasco@mit.edu

January 22, 2012

Abstract
We present GURLS, a toolbox for supervised learning based on the regularized least squares algo-

rithm. The toolbox takes advantage of all the favorable properties of least squares and is tailored to
deal in particular with multi-category/multi-label problems. One of the main advantages of GURLS
is that it allows training and tuning a multi-category classifier at essentially the same cost of one single
binary classifier.

The toolbox provides a set of basic functionalities including different training strategies and rou-
tines to handle computations with very large matrices by means of both memory-mapped storage and
distributed task execution. The system is modular and can serve as a basis for easily prototyping new
algorithms. The toolbox is available for download, easy to set-up and use.

1 Introduction

The Regularized Least Squares (RLS) algorithm is one of the simplest algorithms for supervised learning
and yet it has been reported to consistently achieve state of the art performances in a large number of
learning tasks [8]. Based on solid theoretical foundations, RLS has connections with estimation, Gaussian
processes [6] and Fisher discriminant analysis [2]. From a computational point of view it reduces to
solving a linear system (in fact several, if parameter tuning is needed), and this fact allows to exploit
the latest mathematical, as well as software, tools in numerical linear algebra. In particular, this allows
to handle large, and potentially massive, data-sets. The above observations make RLS classification an
interesting alternative to other learning methods such as SVM. The software we present in this paper is
an easy to use toolbox that fully exploits all the favorable properties of least squares.

RLS can naturally handle both scalar and multi-output supervised learning problems. The GURLS
toolbox, whose name is an acronym for Grand Unified Regularized Least Squares, has been specifically
tailored to solve multi-category classification problems and related extensions, such as multi-label clas-
sification, where one input can belong to more than one category. In this work we consider a one vs all
(OVA) strategy. Even though more complex approaches have been proposed, the OVA strategy is often
reported to perform as well as more sophisticated methods [7]. While the computational complexity of
training OVA classifiers with other regularization algorithms, such as support vector machines (SVM)
or regularized logistic classification, typically grows linearly in the number of categories, the training
complexity of OVA with RLS is independent on the number of classes [7]. While RLS does not produce
sparse solutions like SVMs, its properties make it competitive to SVM. Computing the classifiers corre-
sponding to different regularization parameter values does not increase the computational complexity

1

with respect to training a single classifier, so that parameter selection is essentially free. The output of a
RLS classifier on a test point is proportional to the conditional probability of the sample belonging to a
certain class. Like SVMs, RLS allows for easy implementation of primal and dual formulation of the op-
timization problem. The linear system induced by RLS can be solved with different batch strategies, as
well as incremental and online approaches. Above all, simplicity often makes RLS an ideal benchmark
in a variety of learning applications.

GURLS is a toolbox that takes full advantage of all the above properties. The package is available
for download at http://cbcl.mit.edu/gurls and is developed entirely in MATLAB, providing an
easy to use tool to quickly prototype solutions for supervised learning applications. A basic C++ version
is also available and will be further developed. The package includes utilities that allow for automatic
optimal parameter selection, fast training of multiclass classifiers with a variety of coding schemes, test-
ing of the predictor function on a new test set as well as routines to compute and display various perfor-
mance measures. All these functionalities are wrapped in a common and intuitive interface that makes
GURLS a modular package which is fast, easy to use and trivial to expand. The rest of the paper is
organized as follows: in Section (2) we briefly recall some facts and definitions about RLS Classification,
in the following section we provide some details on the implementation and software engineering of
the toolbox itself and in the last Section we present some experiments to show the performance of RLS
classification on publicly available datasets.

2 Basic Background on RLS

We recall some basic facts on RLS and refer to [8] for further details and references. We focus our discus-
sion on classification.

Given a training set of input-output pairs S = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and yi ∈
{1, . . . , T} for i = 1, . . . , n, and a Reproducing Kernel Hilbert Space (RKHS) H induced by a kernel
function k(xi,xj), RLS corresponds to Tikhonov regularization with the square loss. Let K the n × n
matrix with entries Kij = k(xi,xj) and Y the n× T output matrix whose entries Yij are equal to 1 if the
ith training example belongs to the jth class and −1 otherwise. The associated optimization problem is

min
C∈Rn×T

{
1
n
‖Y −KC‖2F + λCTKC

}
, (1)

where ‖ · ‖F if the Frobenius norm. The optimal solution C∗ to the above problem can be computed in
closed form, C∗ = (K + λnI)−1Y. If we consider a linear model and let X be the n× d matrix whose ith

row is xiT , the problem becomes,

min
W∈Rd×T

{
1
n
‖Y −XW‖2F + λ‖W‖2F

}
(2)

and its minimizer is

W∗ = (XTX + λnI)−1XTY. (3)

These two formulations are equivalent when we use a linear kernel and therefore the problem’s com-
plexity depends on the smallest between n and d.

2

Algorithm 1: Stochastic gradient descent algorithm
Initialization: λ > 0; τ0 = d‖x0‖∞/λe
for τ = 1, 2, . . . , t do

η = 1/[λ(τ + τ0)];
Wτ = (1− λη)Wτ−1 + ηxτ (Yτ − xTτ Wτ−1);
if ‖Wτ‖ >

√
T/λ then

Wτ = Wτ
‖Wτ‖

√
T/λ;

end
end
W = 1

t

∑t
τ=1 Wτ

2.1 Training and Tuning RLS

A fast and numerically stable method to compute the solution to (1) and (2) is to solve the linear system
after doing a Cholesky decomposition of the regularized kernel matrix. Such decomposition requires
O(min(n, d)3) operations and the subsequent matrix multiplication has complexity O(Tn2) for OVA and
O(n2) for the binary case (for which the Y matrix only has one column). Since n > T , (i.e. several exam-
ples per class) the leading term remains unchanged: training a OVA T -category classifier has essentially
the same complexity as training a single binary classifier. The generalization ability of the classifier de-
pends on the choice of the regularizer λ. For RLS, training several classifiers by changing λ, has roughly
the same order of complexity as computing a single solution to (1). To see why this is true, it is sufficient
to reformulate the inversion of G = (K + λnI) in terms of the eigen-decomposition of K = QΛQT . We
can write: (K + λnI)−1Y = Q(Λ + λnI)−1QTY. Hence, the solutions corresponding to different regu-
larization parameter values can be easily computed once the eigen-decomposition of the kernel matrix
is available.

Both the Cholesky decomposition of a matrix and its eigen-decomposition require O(n3) operations,
thus the leading term of the problem complexity remains unchanged [8]. In fact, even though the con-
stant for the eigen-decomposition is worse, we have observed in practice that peforming single eigen-
decomposition may be preferable to computing the Cholesky decomposition many times. Further, com-
putations can be sped up considering a randomized singular value decomposition of the data matrix1.
The above observation allows us to perform training and tuning of RLS at essentially the same com-
putational cost of a binary classifier with fixed regularization parameter. This fact is one of the main
advantages of RLS over other learning algorithms such as SVM for which the regularization path is hard
to obtain [4].

Besides the above numerical routines the linear system associated with the RLS problem can be
solved considering other methods. GURLS features a recursive training scheme, based on the rank-one
update of the Cholesky decomposition [9], that allows to update the solution when a new point becomes
available (without re-training on the whole data-set). Moreover GURLS is provided with an implemen-
tation of a stochastic gradient descent algorithm (pseudo-code in Algorithm 1), related to the PEGASOS
algorithm [10] and can therefore deal with scenarios where n and d are so large that one cannot store in
memory neither an n-by-n nor a d-by-d matrix.

1http://cims.nyu.edu/˜tygert/software.html

3

(a) A schematic view of the most important components in the GURLS
pipeline.

(b) Task specification format.

3 The GURLS Toolbox

In this section we illustrate some implementation details and design patterns that were employed while
building the GURLS Toolbox. This information is targeted to the end user as well as to a potential
developer, interested in expanding the GURLS package. We further refer to the documentation on the
website for details and examples.

The GURLS Toolbox is primarily a collection of functions which share a common I/O signature. A
standard computational learning pipeline can be broken down into a number of simple tasks which can
in turn be completed using different methods. While designing the GURLS toolbox we singled out eight
task categories (pre-processing, data-splitting, computation of the kernel matrix, model-selection, clas-
sifier training, classifier prediction on a test set, performance assessment, visualization and comparison)
and organized the toolbox accordingly (see Fig. 1(a)). The function names are composed of two parts,
separated by an underscore, the first part indicates the type of task the function is meant to carry out,
while the second specifies which method is used to complete the computation. All functions that belong
to a given category can be interchanged with each other so that the user can easily decide how each task
is performed. All tasks are executed, in the order specified by the user, via an interface function (using
the convention presented in Fig. 1(b)) , options and results are automatically stored in a single structure;
this allows the user to easily skip some steps and include the desired results as options.

3.1 Large datasets: bGURLS and GDM

The GURLS package features a number of routines and a separate interface function to deal with large
datasets. These methods, which constitute the bGURLS Toolbox, use an ad-hoc implementation of a
memory-mapped file as core data structure to handle large data sets. This data structure, called bigarray,
extends a MATLAB array and allows to handle data matrices as large as a machine’s hard drive (instead
of its central memory). Furthermore, bigarrays allow for parallel and distributed computations via the
internally developed simple GURLS’ distributed manager (GDM) which provides a very simple interface
to distribute matrix-matrix multiplications.

4

4 Experiments

In this section we present experiments to compare the performance of the GURLS package with popular
implementations of SVM based learning solutions on publicly available datasets. While a thorough
comparison of RLS classification and SVMs remains well beyond the scope of this paper, we wish to
show how the favourable properties of RLS often lead, in practice, to comparable performance with
significantly less computational burden. We considered two datasets. The MNIST dataset2, composed
of 60000 training images of digits 1 to 10 and 10000 corresponding test images. For this dataset we
considered a linear kernel using raw pixel values as features. The second is the PubFig83 dataset3. This
dataset contains images of real-world faces. For this dataset we considered a linear kernel computed on
a set of biologically inspired features [5] as well as the Gaussian kernel on the same features.

Package Kernel Accuracy Time
MNIST

GURLS Linear 84.8% 1m31s
LIBLNEAR Linear 84.5% 3m55s

PubFig83
GURLS Linear 86% 00h53m
GURLS Gaussian 88% 24h40m
LIBSVM Linear 76% 05h20m
LIBSVM Gaussian 76% 05h36m

Table 1: Benchmark of classification accuracy and training time on two publicly available datasets.

We compared RLS to SVM for which we used the MATLAB interface to LIBLINEAR [3] and the
SHOGUN [11] python modular interface to LIBSVM [1]. Results are reported in Table 4 and refer to the
average classification accuracy over classes.

For SVM, all parameters were set to default values while for RLS we performed parameter tuning
on a validation set (80% training and 20% validation for both MNIST and PubFig83). Note that this was
done to keep training times comparable. As expected RLS remains faster even though it performs model
selection. When using the Gaussian kernel the complexity grows linearly in the number of considered
Gaussian widths σ. It is worth noting that a simple heuristic choice of σ (e.g. the 25th percentile of the
non-zero pairwise distances between training points) followed by a fine tuning of λ gives only slightly
worse results.

Acknowledgements

We would like to thank Tomaso Poggio and the rest of CBCL for useful comments and insights. This
report describes research done at the Center for Biological & Computational Learning, which is in the
McGovern Institute for Brain Research at MIT, as well as in the Dept. of Brain & Cognitive Sciences, and
which is affiliated with the Computer Sciences & Artificial Intelligence Laboratory (CSAIL). This research
was sponsored by grants from DARPA (IPTO and DSO), National Science Foundation (NSF-0640097,

2http://yann.lecun.com/exdb/mnist/
3http://www.eecs.harvard.edu/˜zak/pubfig83/

5

NSF-0827427), AFSOR-THRL (FA8650-05- C-7262) Additional support was provided by: Adobe, Honda
Research Institute USA, King Abdullah University Science and Technology grant to B. DeVore, NEC,
Sony and especially by the Eugene McDermott Foundation.

References

[1] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000.

[3] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. Liblinear: A library for large linear
classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning Theory.
Springer, 2009.

[5] N. Pinto, Z. Stone, T. Zickler, and D.D. Cox. Scaling-up biologically-inspired computer vision: A
case-study on facebook. In Proc. of Workshop on Biologically Consistent Vision. CVPR, 2011.

[6] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
MIT Press, 2006.

[7] R. Rifkin and A. Klautau. In defense of one-vs-all classification. The Journal of Machine Learning
Research, 5:101–141, 2004.

[8] R.M. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine Learning.
PhD thesis, Massachusetts Institute of Technology, 2002.

[9] Matthias Seeger. Low rank updates for the Cholesky decomposition. Technical report, Department
of EECS - University of California at Berkeley, 2008.

[10] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm.
In Proceedings of the 24th international conference on Machine learning, pages 807–814. ACM, 2007.

[11] S. Sonnenburg, G. Raetsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl,
and V. Franc. The shogun machine learning toolbox. Journal of Machine Learning Research, 11:1799–
1802, 2010.

6

