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T. AALTONEN et al.

A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton
collisions at center-of-mass energy +/s = 1.96 TeV collected with the CDF II detector. Events
are selected from a sample of candidates for production of ¢f pairs that decay into the lepton + jets
channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event
probability density functions are calculated using signal and background matrix elements, as well as a set
of parametrized jet-to-parton transfer functions. The likelihood function is maximized with respect to the
top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration
of the calorimeter jets. The simultaneous measurement of the JES correction (Ajzg) amounts to an
additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson.
Using the data sample of 578 lepton + jets candidate events, corresponding to 3.2 fb~! of integrated
luminosity, the top-quark mass is measured to be m, = 172.4 * 1.4(stat + Ajpg) * 1.3(syst) GeV/c%.

DOI: 10.1103/PhysRevD.84.071105

The top-quark mass, m,, is an intrinsic parameter of the
standard model (SM) of particle physics and is of particular
importance due to its strikingly large value. As a result, the
top quark has a large effect on radiative corrections to
electroweak processes and has a Yukawa coupling to the
Higgs field of O(1), which may provide insight into the
mechanism of electroweak symmetry breaking [1].

The Higgs boson mass, my, is not predicted by the SM,
but constraints on its value can be derived from the calcu-
lation of radiative corrections to the W boson mass, myy,
and from the values of other precision electroweak varia-
bles [2]. These corrections depend primarily on Inmy and
m?, and thus precision measurements of my, and m, pro-
vide important constraints on my.

The dominant top-quark production process is pair pro-
duction via the strong interaction. At Fermilab’s Tevatron
this process is initiated by pp collisions at center-of-mass
energy /s = 1.96 TeV. Because of its large mass, the top
quark decays rapidly with lifetime 7, ~ 1072° s [3]—fast
enough that it has essentially no time to interact and may
be considered as a free quark. This allows a direct mea-
surement of its mass from the daughter particles from its
decay, and as a result m, has the lowest relative uncertainty
of all of the quark masses [4].

In the SM top quarks decay via the weak interaction,
predominantly to W bosons and b quarks as ¢ —
WTbW~b. W bosons decay into lower-mass fermion-
antifermion pairs: a charged lepton and a neutrino (W* —
Cvyor W~ — £7,), “leptonic decay”’; or an up-type quark
and a down-type quark (W™ — gg’ or W~ — Gq'), “had-
ronic decay.” The result presented here uses the lepton +
jets decay channel (with ¢g'b€¢ b or €v,bgq'b in the final
state), where one of the two W bosons decays leptonically
into an electron or a muon, and the other decays hadroni-
cally. All the quarks in the final state evolve into jets of
hadrons. Events with tau leptons are not selected directly,
but may contribute a few percent of the total sample via

PACS numbers: 14.65.Ha, 12.15.Ff, 13.85.—t

leptonic cascade decays or fake jets. The most recent m,
measurements obtained at the Tevatron using the lepton +
jets topology are reported in Ref. [5], while the results of an
earlier version of the present analysis using 955 pb~! of
integrated luminosity are reported in Ref. [6]. The distinc-
tive feature of this analysis is the use of matrix element
calculations to describe the dominant background contri-
bution. The result presented here uses a more than 3 times
larger data sample than the earlier version, and employs a
more detailed likelihood function.

The leptons and jets resulting from the top-antitop quark
pair (tf) decay are detected in the CDF II general-purpose
particle detector that is described in detail elsewhere [7].
Azimuthally and forward-backward symmetric about the
beam line, the detector contains a high precision particle
tracking system immersed in a 1.4 T magnetic field and
surrounded by calorimetry, with muon detectors on the
outside. A right-handed spherical coordinate system is
employed, with the polar angle § measured from the proton
beam direction, the azimuthal angle ¢ in the plane per-
pendicular to the beam line, and the distance r from the
center of the detector. Transverse energy and momentum
are defined as £y = E'sinf and py = psinf, where E and
p denote energy and momentum. Pseudorapidity is defined
as 7 = — Intan(6/2).

This measurement makes use of CDF II data collected
between February 2002 and August 2008, representing
approximately 3.2 fb~! of integrated luminosity. The event
selection criteria (Table I) are tuned to select the lepton +
jets final-state particles, requiring that each event must
have exactly one high-E; electron or high-p; muon, ex-
actly four high-E jets, and a significant amount of missing
Er, Er [8], characteristic of the undetected neutrino. Jets
are reconstructed using a cone algorithm [9], with the cone

radius AR = /(An)> + (Ag)> = 0.4. At least one of the

four jets must be identified as originating from a b quark
via the SECVTX algorithm [10], which detects displaced
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TABLE 1. Event selection criteria.
Electron E; > 20 GeV [nl < 1.1
or Muon pr>20 GeV/c nl < 1.0
Er E; >20 GeV [n] <3.6
Jets E; > 20 GeV [n] <20

Four jets; at least one from a b quark

secondary vertices characteristic of the decay of long-lived
b hadrons. A total of 578 events are selected, of which 76%
are expected to be t7 events (Table II). Of the 24% of events
expected to be background, it is predicted that 69% arise
from the production of a W boson in conjunction with 4 jets
(W +jets), 19% come from multijet QCD production
(non-W), while the remaining 12% are from sources such
as diboson and single-top-quark production. These frac-
tions are estimated using theoretical cross sections,
Monte Carlo (MC) simulated events, and data. The 7
events are generated using the Lund Monte Carlo program
PYTHIA [11], with a top-quark mass of 175 GeV/c? and a tf
production cross section of 6.7 = 0.8 pb [12]. The W +
jets and Z + jets events are generated using the ALPGEN
generator [13] while the single-top-quark events are gen-
erated using the MADEVENT package [14], in both cases
also using PYTHIA to perform the parton showering and
hadronization. Diboson events are also generated using
PYTHIA. In addition, data are used for non-W events [15].

This analysis employs an unbinned maximum likelihood
method [6,16,17]. The m,-dependent probability density
function (p.d.f.) is calculated for each event in the data
sample:

P (k) = VsigPs(k) + (- Vsig)Pb(k), (D

where k = (E;, p;) represents the measured kinematic
quantities of the event, P, and P, are, respectively, the
normalized p.d.f.s for signal and background events, and
Vge 1s the signal fraction parameter (constrained 0 =
v, = 1). Signal events are defined as events consistent
with gg — tf production and ¢f decay into the lepton + jets
channel, as described by the leading-order (LO) matrix

TABLE II.
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element evaluated by Mahlon and Parke [18].
Background events are assumed to be described by a
matrix element for W + jets production, which is calcu-
lated using a sum of 1286 W + 4-partons amplitudes for
592 subprocesses encoded in the VECBOS MC event gen-
erator [19]. This approximation does mean that there are
some events that, in principle, are not described by either
P or P, including non-W, single top, diboson, Z + jets,
and W + bb + 2-partons events, as well as W + jets
events from W + 0-, 1-, 2-, and 3-partons processes.
However, studies with MC simulated events show that
the ratio P,/P; calculated for all of these event types is
similar to that for W + 4-partons events, and that, in prac-
tice, such events mostly contribute to the likelihood func-
tion via the P, term and do not add any more bias than the
W + 4-partons events or than the poorly reconstructed 7
events themselves [20]. Any residual bias in the measured
top-quark mass is removed at the end, as described later in
the paper.

The signal and background p.d.f.s, P, and P,, are con-
structed in analogous fashions, starting with the appropri-
ately normalized parton-level differential cross section [4],
d& or ddy,, which is then convolved with parton distribu-
tion functions (PDFs) and a jet-to-parton transfer function
W(k, »). P, is thus given by

1 Mjp 1 1
Py(k;my, Ajgg) = —
(ks my, Ajgs) Z o.(m,) A,(m, Agg)

JP jet perm

X jd&s(%;mt)dx}sjdszjW(k, %5 Aggs) f (g (xgy), (2)

where » = (g;, 77;) represents the actual event parton-level
kinematic quantities corresponding to the measured quan-
tities k, and parameter A g is defined in a later paragraph.
The PDFs f(xg;) define the probability density for a collid-
ing parton to carry a longitudinal momentum fraction xg;
and are given by CTEQSL [21]. A, is the mean acceptance
function for signal events, a normalization term that is the
consequence of the constriction of the phase-space of the
integral by the event selection cuts and by the detector

acceptance. The average over the jet permutations, n;),, is

Number of expected signal and background events, corresponding to the total

integrated luminosity of 3.2 tb~!. The percentages are used when generating Monte Carlo

simulated experiments.

Sample Number of events Percentage of total Percentage of background
1t signal 425.0 = 58.9 76.0% Tt

W + jets 92.6 = 15.9 16.6% 69.0%

Non-W 25.0 = 12.5 4.5% 18.7%
Single-top quark 6.6 = 0.4 1.2% 4.9%

Diboson 6.0 = 0.6 1.1% 4.5%

Z + jets 3.9x0.5 0.7% 2.9%

Total 559.2 £ 67.0 100% ce

Observed 578
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due to ambiguity in assigning final-state jets to partons.
The fact that the two light quarks in the final state are
indistinguishable allows the reduction from the original 24
permutations to 12 in the expression for P,, and the
b-tagging information allows a further reduction to 6 as-
signments for events with one identified b jet and 2 for
events with both b jets identified. In the similar expression
for P, all 24 permutations are averaged.

The jet-to-parton transfer function W(k, %) is a p.d.f.
describing the probability density for an event with out-
going partons and charged lepton with % to be measured as
reconstructed k. The charged lepton is assumed to be well
measured, allowing the use of a Dirac 6 function to repre-
sent the mapping between its parton-level momentum, 7,
and its reconstructed momentum, p,. For the four jets, the
function is obtained by parametrizing the jet-to-parton
mapping observed in fully simulated PYTHIA tf events.
These events contain all of the information about the
original partons as well as the measured jets. The simula-
tion includes physical effects, such as radiation and hadro-
nization, as well as the effects of measurement resolution
and of the jet reconstruction algorithm. The parametriza-
tion is made in two parts that are assumed to be indepen-
dent: the energy transfer function W, describing the jet
energies E, and the angular transfer function Wy, describ-
ing the mapping for the jet angles. The jet-to-parton trans-
fer function is thus given by

W(k, %; AJES)

L =SV D
= 8 (pe — FIW, n(f WE(E; &3 AJES))- 3)

i=1 iri

The reconstructed jet energies, E;, used in the function
W are not just the raw calorimeter energy deposits, but are
first calibrated so that they represent the combined energies
released in the calorimeter by the many particles constitut-
ing each jet. This is achieved using the CDF jet energy
scale (JES) calibration [22], which is subject to a signifi-
cant systematic uncertainty. The uncertainties of individual
jet energy measurements, o (E;), are therefore correlated,
and their fractional JES uncertainty, o(E;)/E;, is typically
~3%. If this were included as a systematic uncertainty on
the measured m, it would reduce the measurement preci-
sion drastically; in fact, each 1% of fractional JES uncer-
tainty would add about 1 GeV/c?> uncertainty to the
measured m, [23]. However, such a treatment overesti-
mates the uncertainty because the energies of the two
daughter jets of the hadronically decaying W boson can
be constrained based on the known W boson mass.
Applying this constraint to all events in the data sample
while allowing the jet energies to be shifted results in the
in situ measurement of the JES correction, Ajgg, defined as
the number of o(E;) values by which the energy of each jet
is shifted in the likelihood fit. This effectively recalibrates
the measured jet energies based on the known W boson
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mass and replaces a large component of the JES systematic
uncertainty with a much smaller statistical uncertainty on
the Ajgg. The Ajgg dependence of the jet energies is
included in the parametrization of the function Wy. This
parametrization is made in eight bins in pseudorapidity | 7],
separately for light and b jets, using a sum of two
Gaussians as a function of the difference between the
parton energies and the corrected jet energies as measured
in a sample of PYTHIA #7 events that pass the same selection
criteria as the data.

In an earlier version of this analysis [6], the jet-to-parton
transfer functions for all jet angles were approximated by
Dirac 6 functions. The introduction of the function W, was
motivated by a discrepancy noticed in simulated 7 events
in the 2-jet effective invariant mass of the hadronically
decaying W boson, my,. Even when the true simulated
parton-level jet energies are used, instead of the corre-
sponding reconstructed detector-level values, the use of
the measured jet angles rather than their parton-level val-
ues causes a significant shift of the reconstructed my, from
its nominal value, as illustrated in Fig. 1.

There is also a negative skewness in the distribution for
measured angles, and since parton-level jet energies are
used, the observed effects are due to the differences
between the measured angles and the parton-level angles
alone. The peak of the my, distribution, when fit by a Breit-
Wigner distribution, corresponds to a W boson pole mass
of 79.5 GeV/c?,a —0.9 GeV/c? shift from its parton-level
value of 80.4 GeV/c2. This is found to be a result of a
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FIG. 1. The reconstructed 2-jet invariant mass of the hadroni-
cally decaying W boson, my,, for measured jet angles (solid line)
and for parton-level angles (dotted line), obtained after assuming
the primary parton energy as jet energy. For ease of comparison,
the parton-level distribution is normalized so that the maxima of
the two distributions are the same.

071105-6

RAPID COMMUNICATIONS



MEASUREMENT OF THE TOP-QUARK MASS

correlation between the measured jet directions: the mea-
sured angle, «,, between the two jets is, on average,
reduced so that the two jets appear closer together than
their parent partons, which can be seen in Fig. 2. Since the
apparent W boson mass is utilized to measure A;gg and
thus calibrate the measured jet energies, a jet-to-parton
transfer function describing the change in the angle «,
is important in making an accurate measurement of Ajgg
and thus the top-quark mass. The function W, also de-
scribes a much smaller correlation effect seen in the angle
ay;, between the hadronic-side b jet and the hadronically
decaying W boson. The function W, is thus parametrized
using two different functions, W}? and W}'?, describing the
mappings for the angles «;, and ay,. The remaining
angles describe resolution effects rather than the correla-

200
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100

number of events / 0.0025

50

200

150

100

number of events / 0.0015

50

A [ P i L

-0.2 0 0.2
Acos(o. )
Wb’

FIG. 2. Examples of parametrization of the functions W}? and
WY¥? in the bins where 0.2 <cos(ap,) <0.4 and 0.2 <
cos(ay;) < 0.4. The histograms show MC simulation events
and the curves represent the parametrization.
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tions and, due to computational constraints, are assumed to
be well measured with their contributions to W, approxi-
mated by Dirac delta functions.

The functions W}? and W}'* are both fit using a sum of a
skew-Cauchy distribution and two Gaussians, describing
the change in the cosine of the relevant angle, A cos(a,)
and A cos(ayy,), from partons to measured jets. Since the
correlation effects are stronger in jets that are closer to-
gether, the functions are parametrized in bins of cos(a,)
and cos(ay;), respectively; one example for each function
is shown in Fig. 2.

The my, distribution after convolution with the function
W, is shown in Fig. 3. The skewness is removed and the
mean value agrees well with the parton-level distribution.

The 20 integration variables (3 for each final-state par-
ticle and the xg; for each initial state parton, assuming zero
transverse momentum for the ¢7 pair) in the expression for
the signal and background p.d.f.s [Eq. (2)] are reduced to
16 by integrating over the 4-momentum conservation Dirac
6 function inherent in the expression for dé . The charged
lepton 3-momentum integration and all but two of the jet
angular integrations are made trivial by the Dirac 6 func-
tions in the function W(k, »), leaving 7 integration varia-
bles. In Pg, this is further reduced to 5 variables via a
change of variables to the squared masses of the top quarks
and by using the narrow-width approximation for the Breit-
Wigner distributions of both top-quark decays in the #7
matrix element. The integral is then evaluated using the
VEGAS [24] adaptive Monte Carlo integration algorithm

LU B L L L BN BRI
1600

1400
1200
1000
800
600

400

number of events per 0.3 GeV/c?

200

0 R |'| P TR et WP, I

60 70 80 90 100 110
m,, (GeV/c?)

FIG. 3. The my distribution for measured angles from Fig. 1 is
plotted (solid line) after convolution with the function W,. For
ease of comparison, the parton-level distribution (dotted line) is
normalized so that the maxima of the two distributions are the
same.
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[6], which uses importance sampling, which means that the
sample points are concentrated in the regions that make the
largest contribution to the integral.

The treatment of P, is unchanged since the previous
version of this analysis [6], except for the updated energy
transfer function Wy. The integrand in the expression for
P, is much more computationally intensive than for P, and
a simplified Monte Carlo method of integration is em-
ployed, giving reasonable convergence with an execution
time comparable to that of P,. The simplifications used in
this computation of P, include setting the function W, to a
Dirac 6 function for all angles, using a narrow-width
approximation for the W boson decay, and neglecting the
Ajgs dependence of the function Wp. Therefore, the value
of P, for each event does not depend on the likelihood
parameters m, and Ajgg, while P, is a two-dimensional
function of those parameters [6]. In this approximation, the
product of the background p.d.f. normalization terms [cor-
responding to the variables &, - A, in Eq. (2)] is set to a
constant, whose value is chosen to optimize the statistical
sensitivity of the method, effectively providing an appro-
priate relative normalization with respect to P,.

The log-likelihood function is given as a sum over the
578 events in the sample:

578
InL(k; m,, Ajgs, vig) = Zln[VsigPs(kiZ my, Ajgs)

i=1

+ (1 - Vsig)Pb(ki)} 4)

It is calculated on a two-dimensional 31 X 17 grid in m,
and Ajgg, spanning 145 < m, < 205 GeV/c? and —4.8 =
Ajgs = 4.8, with a spacing between grid points of
2 GeV/c? in m, and 0.6 in Ajgg. To optimize computa-
tional time, the bin size is chosen to be as large as possible
without appreciably affecting the fit result. The third like-
lihood parameter, the signal fraction parameter v, is
allowed to vary continuously (within the constraint 0 =
Vg = 1), and the likelihood function is maximized with
respect to v, at each point on the grid using the MINUIT
program [25]. The resulting surface described on the grid is
the profile log-likelihood, maximized for vg,. The top-
quark mass, m;,, and the jet energy scale correction, Ajgg,
are measured by making a two-dimensional parabolic fit to
the surface, consistent with the expectation for the like-
lihood function to be Gaussian near its maximum. The
maximum of the parabola gives the measured m, and
Ajgs, while the measured v, is taken from its value at
the grid point of maximum likelihood. The estimated
one-o statistical uncertainty of the measurement is repre-
sented by the ellipse corresponding to a change in
log-likelihood AInL = 0.5 from the maximum of the
fitted parabola. The values of m, and Agg are anticorre-
lated (Fig. 4). No correlation is observed between v, and
m; or Ajgs.
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FIG. 4. The measurement result and the contour ellipses of the
parabolic fit corresponding to the one-, two-, and three-o con-
fidence intervals for the statistical uncertainty on m, and Ajgg.

The accuracy of the measured m; and Ajgg, and their
uncertainties, are checked using ensembles of MC simu-
lated experiments, using the MC samples previously men-
tioned with the addition of 22 ¢7 samples generated with
values of m, between 161 and 185 GeV/c?. The numbers of
tf events and those of the various backgrounds are Poisson
fluctuated around the values shown in Table II. Studies of
the relationships between the known input simulation pa-
rameters and their corresponding measurements show no
evidence of bias when a clean sample of MC simulated #7
events is used, containing only lepton + jets events with
correct jet-parton matching. However, the presence of sig-
nal events with jets which are poorly or incorrectly matched
to partons and events which do not match the decay hy-
pothesis biases the likelihood fit result and increases the pull
width. The presence of background events also biases the
fit, due to the backgrounds that are not well described by P,,
and the approximations in P,. The bias is removed using a
set of functions obtained from a fit to the MC simulation and
parametrized in terms of the measured Ajpg and v, [20].
This amounts to adding 1.1 GeV/c? to the m, value pro-
duced by the likelihood fit and multiplying the uncertainty
by 1.26 so that the pull width is consistent with unity. The
systematic uncertainty due to this measurement calibration
1s small, as shown in Table III.

Despite the reduction from the in situ Ajgg calibration,
the remaining uncertainty from JES obtained by varying
the parameters in JES [22] is among the largest systematic
uncertainties of the measurement (Table III). Other signifi-
cant systematic uncertainties are mainly a result of as-
sumptions made in the simulation of the events that are
used in the tuning and calibration of the measurement
method. In most cases, they are evaluated by varying
different aspects of the MC simulation, such as signal
MC generator (PYTHIA versus HERWIG [26]), color
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TABLE III. Contributions to the total expected systematic

uncertainty.
Systematic (GeV/c?)
MC generator 0.70
Residual JES 0.65
Color reconnection 0.56
b-jet energy 0.39
Background 0.45
ISR and FSR 0.23
Multiple hadron interactions 0.22
PDFs 0.13
Lepton energy 0.12
Measurement calibration 0.12
Total 1.31

reconnection model tune (Apro versus ACRpro [27-29]),
and parameters of initial and final-state radiation (ISR and
FSR). A detailed description of the systematic effects has
been published elsewhere [30]. The systematic uncertain-
ties for each effect are added in quadrature, resulting in a
total estimated systematic uncertainty of 1.3 GeV/c?
(Table III).

The measurement is made using the data sample of 578
events, yielding

m, = 172.4 + 1.4(stat + Ajgg) * 1.3(sys) GeV/c?,

5
172.4 = 1.9(total) GeV/c?, ©®)

m;

with Ajgg = 0.3 * 0.3(stat). The central value and the
contour ellipses corresponding to the one-, two-, and
three-o statistical confidence intervals of the measurement

PHYSICAL REVIEW D 84, 071105(R) (2011)

are illustrated in Fig. 4. The overall statistical uncertainty
on the measured top-quark mass is labeled “stat + Ajgg”
because it includes the uncertainty on m, due to the statis-
tical uncertainty on the measured Ajgg; i.e., the uncertainty
is given by half of the full width of the one-o contour of
Fig. 4.

In conclusion, a precise measurement of the top-quark
mass has been presented using CDF lepton + jets candi-
date events corresponding to an integrated luminosity of
3.2 fb~!. Using an improved matrix element method with
an in situ jet energy calibration, the top-quark mass is
measured to be m, = 172.4 + 1.9 GeV/c>.
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