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Abstract 

The importance and pervasiveness of naturally occurring regulation of RNA function in 

biology is increasingly being recognized.  A common mechanism uses inducible protein–

RNA interactions to shape diverse aspects of cellular RNA fate. Recapitulating this 

regulatory mode in cells using a novel set of protein–RNA interactions is appealing given 

the potential to subsequently modulate RNA biology in a manner decoupled from 

endogenous cellular physiology.  Achieving this outcome, however, has previously 

proven challenging.  Here, we describe a ligand–responsive protein–RNA interaction 

module, which can be used to target a specific RNA for subsequent regulation.  Using the 

Systematic Evolution of Ligands by Exponential Enrichment method, RNA aptamers 

binding to the bacterial Tet Repressor protein (TetR) with low– to sub–nanomolar 

affinities were obtained.  This interaction is reversibly controlled by tetracycline in a 

manner analogous to the interaction of TetR with its cognate DNA operator.  Aptamer 

minimization and mutational analyses support a functional role for two conserved 

sequence motifs in TetR binding.  As an initial illustration of using this system to achieve 

protein–based regulation of RNA function in living cells, insertion of a TetR aptamer into 

the 5'–UTR of a reporter mRNA confers post–transcriptionally regulated, ligand–

inducible protein synthesis in E. coli.  Altogether, these results define and validate an 

inducible protein–RNA interaction module that incorporates desirable aspects of a 

ubiquitous mechanism for regulating RNA function in Nature, and which can be used as 

a foundational interaction for functionally and reversibly controlling the multiple fates of 

RNA in cells. 
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Introduction 

Many molecular mechanisms underlying post–transcriptional regulation have 

been described in recent years, and their direct relevance in controlling various cellular 

processes is being realized.  An especially common regulatory scheme is built on the 

interaction of RNA–binding proteins to unique sequences located within the target 

transcript (1, 2).  Once bound to a transcript, these RNA–binding proteins can directly or 

indirectly mediate specific functions.  In the latter case, accessory proteins are recruited 

to the foundational RNA–protein interaction site via specific protein–protein contacts.  

Collectively, these mechanisms regulate diverse aspects of mRNA fate within the cell, 

including its translation, degradation and subcellular localization (3-5).  Modulating RNA 

translation and degradation via small molecule–RNA interactions has been recently 

emphasized (6).  However, these approaches cannot readily take advantage of 

endogenous RNA regulatory networks that mainly utilize protein–based interactions to 

achieve, for example, regulated mRNA subcellular localization.  Therefore, achieving 

exogenously controlled protein–based RNA regulation which simultaneously exploits the 

diverse endogenous mechanisms evolved to achieve fine–tuned regulation over multiple 

facets of RNA biology can be advantageous. 

 

The biological utility of naturally occurring protein–based RNA regulation is 

inextricably linked to its reversibility.  Despite some notable efforts (7-10), orthogonally 

controlled and directly inducible protein–based RNA regulation has not previously been 

fully reconstituted in living cells.  The objective of the present work is to broaden the 

landscape of approaches available for manipulating multiple aspects of RNA cell biology. 
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A model prominently motivating this work is the system underlying mammalian iron 

storage and metabolism.  This mechanism is based on the interaction between a specific 

RNA sequence, the iron responsive element  (IRE), and an IRE–Binding Protein (IRE–

BP) (11).  An IRE is found within the 5′–UTR of ferritin mRNA, and under low 

intracellular iron conditions, the IRE–BP associates with the IRE and represses 

translation initiation and, consequently, ferritin protein synthesis.  When intracellular iron 

concentrations increase, the IRE–BP binds iron and undergoes a conformational change 

(12), thus lowering its affinity for the IRE.  In the absence of bound IRE–BP, translation 

initiation and ferritin protein synthesis occur more efficiently. 

 

This system can be dissected into three critical biochemical components, namely: 

(i) an RNA element “marking” a given transcript for regulation; (ii) a sensor protein that 

can reversibly interact with the RNA element; and (iii) an appropriate chemical stimulus 

controlling the RNA–protein interaction.  With this framework in mind, a strategy we 

refer to as transcription factor reprogramming was implemented.  As part of this 

approach, a ligand–inducible DNA–binding transcription factor is effectively converted 

into a ligand–inducible RNA–binding protein to achieve post-transcriptional control over 

a target RNA.  This efficiently achieves the three key requirements outlined above.  For 

this study, the bacterial transcription factor TetR was selected as a sensor protein.  This 

choice was influenced by several considerations.  First, this protein has been extensively 

characterized and is easily recombinantly expressed and purified (13, 14).  Second, it can 

be expressed at suitable levels and functions in a broad variety of prokaryotic and 

eukaryotic contexts (15-17).  Third, TetR specifically interacts with several cell–
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permeable tetracycline (Tc) analogs with high affinity, permitting regulation that is 

independent of cellular metabolites.  Last, TetR undergoes a conformational change in 

response to Tc binding, which significantly decreases its affinity for its cognate DNA 

operator tetO (18).  Thus, by discovering RNA aptamers capable of reversibly interacting 

with TetR in a Tc–dependent manner, a system analogous to the IRE/IRE–BP can be 

attained. 

 

The isolation and characterization of RNA aptamers that bind TetR in a Tc–

dependent manner are reported here.  These aptamers bind TetR with low– or sub–

nanomolar affinity, and share conserved sequence and predicted structural motifs.  We 

demonstrate that the in vitro discovered TetR–aptamer system can be adapted to function 

in vivo to post–transcriptionally control prokaryotic protein synthesis in an 

anhydrotetracycline (aTc) inducible manner.  The experiments described here define both 

the approach and requisite elements for recreating the fundamental interaction underlying 

a biologically pervasive RNA regulatory mechanism.  Furthermore, our system consists 

of cell–orthogonal components, which should enable experimenter control over specific 

RNA–related processes. 



6 
 

RESULTS AND DISCUSSION 

Discovering RNA aptamers binding TetR in a Tc–dependent manner.  RNA 

aptamers with these desired properties were obtained using in vitro SELEX (19, 20).  

Recombinantly expressed His6–tagged TetR was immobilized on Ni–NTA magnetic 

beads, and the starting library contained ~1013 distinct RNA molecules.  First, aptamers 

having affinity for TetR were enriched by eluting His6–tagged TetR–RNA complexes 

during the first four selection rounds with imidazole.  Next, the aptamer subset binding 

TetR in a Tc–dependent manner was eluted using a low Tc concentration during the fifth 

and final selection round.  The rationale for this approach is based on knowledge that Tc 

induces a significant conformational change in TetR that abolishes its affinity for its 

cognate DNA operator sequence, tetO (16).  We reasoned that some fraction of the RNA 

surviving earlier selection rounds could be binding TetR via critical molecular contacts 

that are disrupted by the Tc–induced conformational change.  Therefore, eluting with Tc 

would selectively enrich this RNA subset. 

The Tc–dependent binding properties of the bulk Round 5 selected library were 

qualitatively assessed by measuring whether His6–tagged TetR bound to Ni–NTA beads 

could extract RNA aptamers from bulk solution.  As a positive control, tetO binding to 

TetR in this format was tested.  About 48 % of the incubated tetO bound in the absence 

of Tc, and adding Tc caused a significant decrease in the fraction of bound tetO to ~14 % 

(Figure 1), consistent with the fact that Tc will induce tetO release.  Extending this 

analysis to the bulk Round 5 library showed that 55 % bound TetR in the absence of Tc, 

and adding Tc significantly reduced the fraction of bound library to ~18%.  These data 

confirm that the Round 5 library contains aptamers capable of binding TetR, and that this 
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binding is Tc–dependent.  Interestingly, TetR–binding aptamers have recently been 

reported, but Tc–dependent binding was not demonstrated (21). 

 

Characterizing individual TetR–binding aptamers.  Individual aptamers (twenty six 

clones) from the Round 5 selected library were characterized (Figure 2a). Sequence 

analysis revealed that eleven distinct aptamers were represented in this group.  Several 

aptamers were represented multiple times, indicating that the selection strategy very 

efficiently led to convergence on a library having the desired binding properties in only 

five rounds.  To better understand the TetR-binding properties of the eleven isolated 

aptamers, qualitative binding assays were performed as before.  The majority of these 

aptamers exhibited Tc–dependent binding (Figure 2b).  For aptamer 5–2, while detectable 

binding is observed, its interaction with TetR appears to be poorly modulated by Tc.  For 

aptamer 5–29 binding could not be unambiguously established, which might indicate that 

it is a weaker binder relative to the other aptamers or its level of binding cannot be 

discerned using this assay.  Thus, overall, while the selected library is comprised mostly 

of aptamers binding TetR in a Tc–dependent manner, both non–inducible but strong 

binders and poor binders are present at some frequency. 

For a more quantitative assessment of aptamer binding affinity for TetR, a 

cytometry–based binding assay was used.  We first established the suitability of this 

assay to our experimental purposes by determining the Kd for TetR binding to tetO.  A Kd 

= 0.92 ± 0.17 nM for this interaction was measured (Figure 2a and Supplementary Figure 

1), which compares favorably with the previously reported Kd = 0.17 nM obtained using 

untagged TetR and surface plasmon resonance (22).  The discrepancy between the 
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reported Kd and that measured in this study may reflect inherent differences between the 

binding assays used and/or the tetO–binding properties of untagged versus the tagged 

TetR used in this study.  Kd values for selected TetR binding aptamers in the absence of 

Tc were determined for those exhibiting unambiguous Tc–inducible binding.  These were 

all in the sub– to low– nanomolar range (Figure 2a).  Overall, we concluded that our 

selection strategy had permitted efficient recovery of high affinity RNA aptamers 

exhibiting Tc–dependent binding to TetR. 

Though sequence analysis indicated no discernible similarities between the RNA 

aptamers and tetO, we examined whether tetO competed with selected RNA aptamers 

binding to TetR.  Previously, RNA aptamers to DNA binding proteins such as NF–κB, 

Heat Shock Factor (HSF) and TATA Binding Protein (TBP) have been shown to interact 

with the nucleic acid binding domains in competition with their cognate DNA binding 

sequence (23-25).  Using the cytometry–based binding assay, we confirmed that 

unlabeled tetO competed with fluorescently labeled tetO for binding to TetR in a positive 

control experiment (Figure 2c).  Similarly, unlabeled tetO competed with the labeled 

RNA aptamers 5–1, 5–11 and 5–12 for binding to TetR.  However, an unlabeled 

oligonucleotide corresponding to the lac operator sequence, which does not bind TetR, 

did not compete with binding of labeled tetO.  These results suggest that the tested 

aptamers likely interact with the TetR nucleic acid binding domain to interfere with tetO 

binding, and that TetR induction by Tc disrupts this interaction. 

 

Defining minimal aptamers retaining Tc–inducible TetR binding.  To obtain 

compact, functional aptamers, the sequence elements indispensable to binding were 
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defined.  In silico sequence motif searching and secondary structure predictions were 

used in combination with quantitative binding experiments to efficiently explore the 

possibilities.  Using MEME (26, 27), two highly conserved sequence motifs (Motif #1 

and Motif #2) were detected (Figure 3a).  Motif #1 is present in all of the sequenced 

aptamers, and is heterogeneous in base composition.  Motif #2 is also prevalent, but 

purine rich.  Neither motif shared significant MEME–detected sequence homology with 

tetO, indicating that the molecular interactions responsible for DNA operator and RNA 

aptamer binding are distinguishable at the nucleotide sequence level.  However, the 

consensus regions do not share common position, order, or spacing within the aptamer 

sequences, which might suggest that binding is less dependent on primary structure, and 

perhaps more so on factors such as relative positioning of the motifs within the aptamers’ 

secondary and/or tertiary structures. 

To explore this possibility further, Mfold (28, 29) was used to predict the 

secondary structures of the RNA.  Three representative aptamers were predicted to fold 

into stem–loop structures (Figure 3b).  In each case, the conserved MEME–detected 

motifs were predicted to occur predominantly in the single stranded loop regions of these 

stem–loop structures.  Together, these findings suggested that preserving both the overall 

predicted stem–loop structure and the relative positioning of the conserved motifs could 

be a straightforward approach for defining minimal aptamers. 

To test this, aptamers 5–1, 5–11 and 5–12 were selected for further analysis.  

These aptamers were minimized, while retaining the following regions from the 

respective parent aptamers: 5–1 (bases 36–74); 5–11 (bases 34–68) and 5–12 (bases 19–

68). Furthermore, the stem base sequence was altered while retaining base–pairing in 
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order to explore dispensability of the parental stem sequence.  The predicted secondary 

structures indicated that the respective parental conserved motif locations and stem–loop 

structures were retained after these modifications (Figure 3c).  These minimized aptamers 

bound TetR with low nanomolar dissociation constants, albeit ~5–10 fold higher than the 

respective full–length parent aptamers.  Minimized aptamers 5–1 and 5–12 retained Tc–

inducible binding to TetR, comparable to that of the parents. However, the 5–11 

truncation displayed significantly lower induction efficiency than its parent (Figure 3d).  

The decrease in affinity could arise due to less favorable folding thermodynamics of the 

truncated aptamers, as indicated by diminished calculated folding ΔG values for two of 

the three tested truncations (Figures 3a and 3b).  Alternatively, it is possible that poorly 

conserved aptamer elements outside the conserved regions interact weakly with TetR to 

provide important stabilization, and removal negatively affects binding and Tc–

dependent binding in the case of 5–11 min.  Identifying such putative elements will likely 

require detailed structural analysis of the TetR–TetR aptamer complex. 

 To further assess the contribution of the two conserved motifs to the TetR 

interaction, each was mutated individually and both simultaneously within the context of 

aptamer 5–1 (Figure 4a).  Motif  #1 was scrambled, whereas Motif #2 was replaced with 

a randomly generated sequence of the same length due to its high purine content.  

Mutating one or both of these conserved regions completely abolished aptamer binding to 

TetR (Figure 4b), suggesting that these regions contribute significantly to the TetR–RNA 

aptamer interaction.  This contrasts significantly with the minimal impact that swapping 

the stem sequence within the truncation has on binding to TetR.  Overall, by using in 

silico primary sequence motif identification and secondary structure predictions in 
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conjunction with quantitative binding assays, minimal TetR binding aptamers retaining 

high affinity binding to TetR were efficiently defined.  Given the Tc–inducible 

interaction of these aptamers with TetR and their minimization to more compact sizes, we 

next investigated whether a TetR/TetR aptamer module could be used to functionally 

modulate the activity of a target mRNA in cells in a post–transcriptional and Tc–

responsive manner. 

 

Using a TetR aptamer for Tc–dependent post–transcriptional regulation.  

Translation in E. coli was selected as a model process for evaluating the TetR/TetR 

aptamer module.  Chloramphenicol acetyl transferase (CAT) was used as a reporter gene.  

Plasmids encoding TetR (IPTG inducible) and the CAT reporter were co–transformed 

into E. coli.  The CAT reporter transcript contained a TetR–binding aptamer seven bases 

upstream of the ribosome binding site (RBS) within the 5′–UTR (Figure 5a).  This 

configuration was selected based on previous work demonstrating that naturally 

occurring or synthetic post–transcriptional regulation is achievable using this relative 

positioning between small molecule– or protein– binding RNA elements and the RBS 

(30-32).  A model of how this system might work involves TetR binding to the aptamer 

region within the reporter transcript to inhibit CAT synthesis (Figure 5a).  This could 

occur if the assembled TetR–TetR aptamer complex sterically hinders ribosome access to 

the RBS (31, 32), induces changes in the target mRNA turnover kinetics (33), or causes 

both simultaneously (33, 34).  Since aTc disrupts the interaction of TetR with its aptamer, 

adding aTc is expected to increase CAT synthesis and allow cells to grow in media 

containing chloramphenicol (Cm).  To evaluate this, CAT levels and bacterial growth in 
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the presence of Cm were measured, both as a function of TetR expression and the 

presence or absence of aTc. 

Several full length and truncated aptamers were inserted between the NheI and 

PstI sites within the 5′–UTR of the CAT gene (Figure 5a).  Screens identified a truncated 

version of aptamer 5–1 (5–1t; Kd = 14 nM) as exhibiting the anticipated behavior in E. 

coli.  This relatively low yield of functional candidates was not surprising given the 

challenges associated with preventing misfolding when adapting in vitro derived 

aptamers for intracellular applications (35, 36).  During growth experiments in Cm–

containing media, cells co–expressing TetR and the CAT reporter construct (+ TetR/– 

aTc) grew significantly more slowly, exhibiting a lag time ~5 h longer than that for 

control cells (– TetR/± aTc) (Figure 5b).  Adding aTc to TetR–expressing cells (+ TetR/+ 

aTc) significantly reduced this lag time to ~1 h relative to the controls.  Importantly, aTc 

had no effect on growth in the absence of TetR, indicating that there was no observable 

regulatory outcome mediated by interaction of aTc with the TetR aptamer element, or 

aTc toxicity.  Mutating both conserved motifs individually or simultaneously restored 

growth to wild–type levels, independent of TetR co–expression and aTc status.  Cells 

grown under repressed conditions (+ TetR/– aTc) eventually grew to saturation.  A 

mutation(s) deleterious to the TetR–TetR aptamer interaction were ruled out as an 

explanation by sequencing the 5′-UTR region of reporter plasmids rescued from these 

cells.  Instead, it is likely that the low residual CAT levels permit some growth, albeit at 

rates lower than the induced (+ TetR/+ aTc) condition.  Once a threshold cell density is 

attained, these cultures are able to overcome the applied bacteriostatic Cm pressure. 
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CAT activity measurements in cell lysates followed the trend predicted from the 

growth assay results.  Specifically, TetR expression in the absence of aTc decreased CAT 

activity levels to ~37 % of that measured in the –TetR/± aTc control cells (Figure 5c).  

While aTc induction did not fully restore CAT activity to control levels, there was a 

reproducible and statistically significant (p = 0.006) increase in CAT activity to ~55 % of 

that detected in control cells.  In accordance with the results of the growth experiments, 

all three aptamer mutants exhibited similar relative CAT activity profiles independent of 

the presence or absence of TetR and aTc.  Thus, the interaction between TetR and 

aptamer 5–1t modulated CAT activity level in response to aTc, and the ~48 % increase in 

CAT activity between the repressed and aTc–induced condition is sufficient to directly 

mediate a significant change in growth phenotype. 

As TetR is a transcriptional regulator, it is important to establish that the 

measured changes in CAT expression and growth phenotype are not arising 

transcriptionally.  To exclude this possibility, we first determined that TetR did not 

specifically interact with the DNA encoding the aptamer sequence.  While the measured 

Kd for the TetR/tetO interaction is 0.92 nM, the Kd for the interaction between TetR/5–1t 

aptamer DNA is >500 nM.  This suggested that an interaction between TetR and the 5–1t 

DNA might be too weak to directly mediate robust transcriptional repression. 

To further support this reasoning, a hybrid 5–1t/tetO reporter was constructed by 

replacing both conserved aptamer motifs and the intervening sequence in the CAT 

reporter construct with tetO (Figure 6a).  This construct placed a high affinity DNA 

sequence with known transcriptional regulation function in the exact location as the 

conserved MEME-detected motifs.  Thus, a lack of transcriptional regulation using the 5–
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1t/tetO (high affinity TetR binding) construct would argue strongly against the possibility 

that the 5–1t aptamer DNA (low affinity TetR binding) can do so.  Co–expressing the 5–

1t/tetO CAT reporter construct with TetR in experiments identical to those described 

above revealed no differences in growth phenotype as a function of either TetR 

expression or aTc (Figure 6b).  Altogether, these results support a model whereby TetR 

interacts specifically with the 5–1t aptamer within the CAT reporter mRNA, and a 

significant role for transcriptional regulation is ruled out. This strongly supports the 

conclusion that our TetR/Tc/TetR aptamer module represents a chemically controlled, 

foundational protein–RNA interaction capable of regulating a biologically important 

process directly at the level of the target RNA. 

 

Discussion.  In this work, we have demonstrated a straightforward approach for 

effectively converting the transcription factor TetR into a tetracycline–inducible RNA 

binding protein by selecting for RNA aptamers capable of binding TetR in a Tc–

dependent manner.  Using in silico sequence and secondary RNA structure analyses in 

combination with quantitative binding assays provided an efficient strategy for rapidly 

defining functional minimized RNA aptamers considered more desirable for 

intracellular–based applications.  We have shown that the in vitro–selected aptamers can 

be functionally implemented in cells to achieve regulation of protein synthesis as a model 

process, and that the Tc–inducible interaction between TetR and its RNA aptamer 

directly mediates the observed regulation. 

The inducible protein–RNA interaction we report is an important culmination of 

significant prior efforts towards the goal of discovering such a system that can be 
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implemented in a manner orthogonal to host cell metabolites.  In earlier work, 

bifunctional tobramycin–biotin compounds were used to force a bridging interaction 

between a tobramycin–binding aptamer in a target transcript and streptavidin as the 

repressor protein (7).  While this approach could be used to regulate translation in vitro, 

its effectiveness in cells was not demonstrated, probably due to the inherent cell–

impermeability of the tobramycin–biotin compounds.  A more recent alternative 

approach used a mutant FKBP as a “presenter” protein designed to interact with a 

bifunctional and cell–permeable ligand, AP1867–guanine (8).  RNA aptamers that 

selectively bound the mFKBP–AP1867–guanine complex with high affinity were 

obtained.  However, the functionality of this system in cells has not been reported.  In this 

present work, we have emphasized using a naturally evolved and efficient transcription 

factor–ligand pair, an approach that can be readily extended by taking advantage of the 

many examples of these naturally occurring pairs.  Indeed, discovering RNA aptamers 

capable of interacting with transcription factors with high affinity is not an incidental 

occurrence for TetR, as other examples, both naturally occurring and synthetic have been 

reported for NF–κB (23), TFIIIA (37) and bicoid from Drosophila (38, 39), for example.  

Therefore, the selection strategy used in our study can potentially be used to take 

advantage of other ligand–regulated transcription factors in expanding the functional set 

of orthogonally regulated protein–RNA interactions. 

Natural and synthetic aptamers can bind small molecules or proteins to effect 

post–transcriptional regulation in E. coli (6, 40).  In comparing the regulation achieved 

using these systems with that using the TetR/TetR aptamer system, it is important to 

distinguish two regulatory steps.  The first is regulation resulting from the primary 
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interaction of the small molecule or protein with the aptamer target.  All these systems 

can be directly compared at this level.  In this study, the interaction of TetR with its 

aptamer repressed reporter protein synthesis ~ 3–fold.  This compares favorably with the 

previously reported 3–4 fold regulation achieved using the theophylline aptamer (30), and 

3–6 fold regulation of the thrS transcript by its tRNAThr ligase (41) protein product.  In 

these cases, a single regulatory aptamer were presented in contexts similar to that in 

Figure 5a.  Thus, the primary interaction of TetR with its aptamer achieves expected 

regulation levels.  The second regulation step is induction achieved by reversal of the 

TetR–TetR aptamer interaction by aTc.  To the best of our knowledge, the present work 

is the first report of this being achieved in cells, and thus, a published benchmark is 

unavailable.  The incomplete induction seen here could arise if under intracellular 

conditions the TetR–aTc complex retains some affinity for the TetR aptamer.  

Alternatively, at the aTc concentrations used, some free TetR may still be present leading 

to partial repression.  Higher aTc concentrations were avoided to completely circumvent 

any direct aTc–induced cell toxicity.  Non–toxic tetracycline mimetics capable of 

potently inducing TetR have been recently synthesized (42).  Such compounds could 

therefore be extremely useful in the future for improving the induction dynamic range 

attainable with TetR–based systems in bacteria.  In extending this system to eukaryotes 

that are less susceptible to tetracycline-induced toxicity, this is expected to be less of a 

challenge. 

In a broader context, defining this small molecule inducible protein–RNA 

interaction offers a unique opportunity for recapitulating and dynamically controlling 

fundamental aspects of RNA biology, including its translation, processing, subcellular 
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localization and turnover.  Fusing TetR to trans–activating domains such as VP16 has 

been extensively used for inducibly regulating transcription based on the interaction 

between TetR and tetO at the DNA level (43, 44).  Similarly, we envision that the TetR–

aptamer module developed here will be an important foundational interaction through 

which experimentally controllable regulation of fundamental and diverse RNA biology 

can be directly achieved.  This potentially permits obtaining a deeper understanding of 

how regulation of these processes shape basic cellular responses to biologically relevant 

stimuli.  Additionally, in design–oriented disciplines such as synthetic biology this work 

provides an additional option for directly and controllably regulating intracellular RNA 

networks.  Here, we have illustrated this inducible foundational RNA–protein in a 

prokaryotic context.  However, we anticipate that analogous to the non–inducible, 

bacterially–derived MS2 coat protein–RNA interaction, which retains functionality in 

several eukaryotic contexts including yeast, Drosophila and mammalian cells (45-47), the 

work described here has the potential to be developed into an important platform for 

more extensively and flexibly regulating various aspects of RNA biology in different 

organisms. 
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METHODS 

Oligonucleotides were purchased from Integrated DNA Technologies.  All chemicals 

used were analytical or molecular biology grade. 

 

Initial aptamer binding and Tc-induction assays.  TetR (200 pmol) was immobilized 

on Ni-NTA magnetic beads (QIAGEN) in BB.  Refolded RNA (100 pmol) was added to 

the protein-bead mixture (to a final volume of 500 µL) and incubated for 1 h.  

Supernatant aliquots (20 µL), removed both before and after Tc addition (100 µM for 15 

minutes), was mixed with 200 µL SYBR Gold solution (1:10,000 dilution SYBR Gold 

(Invitrogen) in 10 mM Tris-HCl, pH 8.0).  Fluorescence signal was measured (excitation 

= 490 nm, emission = 537 nm) on a Fluoromax-2 fluorometer. Binding to TetR is 

indicated by a decrease in RNA levels in the supernatant. 

 

Cytometric bead-binding affinity assays.  Aptamers were transcribed in vitro (48), and 

fluorescently labeled at the 3' end using fluorescein-5-thiosemicarbazide (Marker Gene 

Technologies) as described previously (49).  Labeled RNA was purified by 

LiCl/isopropanol precipitation and desalted with a Micro Bio-Spin P-30 column (Bio-

Rad).  RNA integrity and purity were verified by denaturing Urea-PAGE analysis.  

Labeling efficiency and RNA concentration were determined from A260 and A492 

measurements. 

 Quantitative affinity measurements of aptamer interactions with TetR were 

performed as described previously (50, 51).  Dynabeads TALON (Invitrogen) (1 µL) 

were washed with Affinity Binding Buffer (ABB) (BB + 10 µg mL-1 BSA) and 
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centrifuged at 250 × g for 2 mins.  Beads were resuspended in ABB and incubated with 

60 µg of purified His6-tagged TetR for 1 h at room temperature. TetR-coated beads were 

washed twice and resuspended in ABB.  Beads were counted by microscopy, and 70,000 

beads were mixed with fluorescein-labeled RNA in ABB in a 96–well microplate.  

Nonspecific RNA interactions were reduced by adding 10 µg mL-1 yeast tRNA.  The 

binding reaction proceeded with moderate shaking for 4 h at room temperature. Beads 

were washed once and resuspended in ABB.  Cytometric analysis was performed on an 

Accuri C6 flow cytometer (Accuri Cytometers Inc.).  The median fluorescence intensities 

of the samples were plotted against RNA or DNA concentration using GraphPad Prism 5 

(GraphPad Software, Inc.).  Dissociation constants were determined by fitting these data 

using nonlinear regression to Equation 1. 
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where Bmax is the upper limit of the specific binding signal; Kd is the dissociation constant 

between TetR and the oligonucleotide; [L]o is the initial oligonucleotide concentration; 

[P]o is the initial TetR concentration; NS is the nonspecific binding constant; and A is the 

background signal intensity of the beads. 

 For tetO competition experiments, TetR was initially incubated with 1 µM 

unlabeled competitor oligonucleotide for 30 minutes.  Fluorescently labeled probe (10 

nM) was then added and the binding reaction continued for 4 hours before cytometric 

analysis. 

For induction experiments with minimized aptamers, saturating levels of labeled 

RNA were incubated with TetR for 4 hours prior to incubation with aTc (333 nM) for 30 

minutes and subsequent cytometric analysis. 
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E. coli growth assays.  E. coli HB101 cells harboring both the repressor and reporter 

vector were grown to saturation.  These cells were diluted 1:400 and grown for four hours 

at 37 oC in LB supplemented with 100 µg mL-1 ampicillin and 50 µg mL-1 kanamycin for 

plasmid selection, 0.2 % arabinose (w/v), and 1 mM IPTG (to induce TetR expression) 

and/or 300 nM aTc where appropriate.  OD600 readings were taken for each culture, and 

all were diluted 1:500–1:1000 in LB, keeping cell number the same across all 

inoculations.  This LB was supplemented with antibiotics for plasmid selection, 0.2 % 

arabinose (w/v), 10 µg mL-1 chloramphenicol (Cm) (or 5 µg mL-1 with 5–1t mutant #1 to 

preserve comparable growth rates), and 1 mM IPTG and/or 300 nM aTc where 

appropriate.  Growth rate was measured by taking OD600 readings over time.  

 

CAT activity assays.  Cells were grown overnight and diluted 1:1000 into LB containing 

100 µg mL-1 ampicillin and 50 µg mL-1 kanamycin for plasmid selection, 0.2% arabinose 

(w/v), and either 1 mM IPTG and/or 300 nM aTc where appropriate.  Cultures were 

incubated at 37 oC for 6 h until harvesting.  CAT activity was assayed using the 

fluorescent FAST–CAT substrate (Invitrogen).  After extraction, products were separated 

on silica TLC plates, which were imaged using a Gel Logic 2200 (Kodak) and 

quantitated using the Kodak Molecular Imaging Software. 

 

Information on vector construction, TetR expression and purification, and SELEX 

procedure are detailed in Supporting Information. 
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Figure Legends 
 

Figure 1 The bulk, Round 5 selected library binds TetR in a Tc–dependent manner.  tetO 

is the dsDNA corresponding to the tet operator sequence.  Error bars show standard 

deviation from three independent experiments. 

 

Figure 2 Individual aptamers bind TetR with high affinity and in a Tc–dependent 

manner, and compete with tetO binding to TetR.  a) Sequence alignment of the variable 

regions of TetR–binding aptamers.  Conserved sequence motifs are highlighted in orange 

(Motif #1) and blue (Motif #2) (see Figure 3a).  Dissociation constants with standard 

deviations are shown for selected aptamers.  N.D. = not determined. b) Tc–dependence of 

individual aptamers binding toTetR.  A threshold of ≥ 20% was used to define a positive 

binding interaction based on the residual signal observed during tetO binding 

experiments done in the presence of Tc. c) Excess (1 µM) competitor tetO reduces TetR-

binding of fluorescently–labeled probe (10 nM).  A control oligonucleotide (lacO) does 

not interrupt the specific TetR–nucleic acid interaction. 

 

Figure 3 Conserved sequence motifs are predicted to occupy the loop regions of stem–

loop structures, and are indispensable to the interaction between the TetR aptamers and 

TetR. a) Sequence logos for Motifs #1 and #2 identified using the MEME algorithm. b) 

Secondary structure predictions using Mfold for the parent aptamers 5–1, 5–11 and 5–12; 

and c) Minimized versions of aptamers 5–1, 5–11 and 5–12.  In both b) and c), Motif #1 

(orange) and Motif #2 (blue) are highlighted.  The predicted folding free energies and 

experimentally determined dissociation constants are also shown. d) Minimized aptamers 



27 
 

bind TetR in an aTc–dependent manner.  Error bars show standard deviations from three 

independent experiments. 

 

Figure 4 Mutating the conserved motifs abrogates aptamer binding to TetR. a) Variable 

region sequences of the original and mutated 5–1 aptamers.  The original motifs are 

highlighted as in Figure 2, while mutated regions are shown in grey. b) TetR binding 

curves are shown for the parent 5–1 aptamer and three variants.  mut #1 = Motif 1 

mutated; mut #2 = Motif #2 mutated; and mut #1,2 = Motif # 1 and Motif #2 co–mutated.  

Curves were fit to Equation 1 in the Methods. 

 

Figure 5 A TetR–aptamer interaction post–transcriptionally regulates protein synthesis in 

E. coli. a) Schematic of the reporter construct used to test functionality of the TetR–TetR 

aptamer module.  TetR binding to the aptamer element in the 5′–UTR of the reporter 

mRNA can sterically interfere with ribosome access and/or affect mRNA turnover rates 

(see text), thereby inhibiting CAT synthesis and bacterial growth in Cm–containing 

media. Reversal of the TetR–aptamer interaction with aTc is expected to induce CAT 

synthesis and favor bacterial growth in Cm–containing media. The DNA sequence 

encoding the CAT transcript 5′–UTR is shown. The 5–1t aptamer is underlined, the RBS 

and CAT start codon are highlighted in green and yellow, respectively. Restriction sites 

used for cloning are also indicated. b) Cm–dependent growth curves for E. coli 

expressing the CAT construct with the 5–1t aptamer (parental Motifs #1 and #2 present) 

and 5–1t variants:  mut #1 = Motif 1 mutated; mut #2 = Motif #2 mutated; and mut #1,2 

= Motif # 1 and Motif #2 co–mutated. c) CAT activity measurements in E. coli cell 
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lysates derived from cells co–expressing the various reporter constructs and TetR.  Data 

is relative to the –TetR/–aTc condition for each construct tested. Error bars represent 

standard deviation from three independent experimental replicates. * p–value = 0.006. 

 

Figure 6 TetR–mediated transcriptional regulation is not responsible for the observed 

growth phenotype. a) Schematic of the 5′–UTR for reporter constructs with 5–1t and 5–

1t/tetO. The asterisk indicates the transcription start site. b) Cm–dependent growth curves 

for E. coli co–expressing TetR and the 5–1t/tetO construct. 
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SUPPORTING METHODS 
 
Recombinant TetR expression and purification.  The TetR gene was cloned into 

pET24a(+) (EMD Chemicals) vector between the EcoRI and HindIII sites, and this 

construct used to produce recombinant TetR–His6 with an N–terminal T7 tag.  Briefly, 

BL21(DE3) cells harboring the pET24a–TetR–His6 plasmid were grown to an OD600 = 

0.5–0.7 in Terrific Broth media containing 50 µg mL–1 kanamycin before induction with 

1 mM IPTG and further growth at 37 ºC for 5 hours.  Cells were harvested by 

centrifugation, resuspended in lysis buffer (50 mM Tris–HCl, 100 mM NaCl, 5% 

glycerol (v/v), 5 mM β–mercaptoethanol, 1 mM imidazole, pH 8 and Protease Inhibitor 

Cocktail VII (Research Products International Corp.)) and lysed using sonication. The 

lysate was cleared by centrifugation and the supernatant loaded onto a Ni–NTA column 

pre–equilibrated in lysis buffer. The column was washed with 20 column volumes of 

washing buffer (10 mM imidazole in lysis buffer) before eluting TetR with 500 mM 

imidazole in lysis buffer.  Suitably pure fractions (> 90%) TetR, as determined by SDS–

PAGE analysis, were pooled, concentrated and buffer exchanged using 10,000 MWCO 



Amicon Ultra spin concentrators (Millipore) into 20 mM Tris–HCl (pH 8), 200 mM 

NaCl, 5 mM DTT and 50% glycerol (v/v) and stored at –20 ºC. 

 

Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The single 

stranded DNA library used has the sequence: 

CCGAAGCTTAATACGACTCACTATAGGGAGCTCAGAATAAACGCTCAA[N50]T

TCGACATGAGGCCCGGATCCGGC, where N indicates a randomized base. The 5′– 

and 3′– primers used for RT and PCR amplification of this library are 

CCGAAGCTTAATACGACTCACTATAGGGAGCTCAGAATAAACGCTCAA and 

GCCGGATCCGGGCCTCATGTCGAA, respectively. This dsDNA library was made 

using PCR and, after agarose gel purification, used as template for RNA synthesis using 

the AmpliScribe T7–Flash Transcription Kit (Epicentre Biotechnologies). 

RNA (500 –700 pmol) in diethyl pyrocarbonate (DEPC)–treated water was denatured (70 

°C × 5 min), allowed to cool to room temperature, and refolded in binding buffer (BB): 

50 mM Tris–HCl pH 8.0, 50 mM KCl, 5 mM MgCl2, 5 mM β–mercaptoethanol, 5% 

glycerol (v/v), and 0.05% Tween–20 (v/v). For negative selection, RNA in 500 µL of BB 

was added to ~15 µL pre–washed Ni–NTA magnetic beads (QIAGEN) and incubated at 

ambient temperature with gentle mixing for 30 min. The supernatant was added to Ni–

NTA magnetic beads pre–bound with TetR (19–25 pmol) for positive selection, and 

incubated for 1 hr at ambient temperature with gentle agitation. These beads were washed 

5 times with 500 µL of BB. During the first four SELEX rounds, RNA was eluted with 

500 mM imidazole in 20 µL BB incubated with the selection beads for 5 minutes. For the 

fifth and final SELEX round, 100 µM tetracycline in 20 µL BB for 10 minutes was used 



for elution. RNA was amplified using 4 × 50 µL Ready–To–Go RT–PCR tubes 

(Amersham) and ~300 pmol each of the 5′– and 3′– primers. RT was carried out at 42 °C 

for 40 min. The reverse transcriptase was inactivated at 95 °C × 5 min, followed by 18 

PCR cycles (94 °C × 30 s, 57 °C × 60 s, 72 °C × 60 s) and a 7 min final extension. The 

RT–PCR products were pooled, concentrated, and purified using 4% agarose gel 

electrophoresis, and the desired length product was extracted and ethanol precipitated. 

DNA was resuspended in DEPC–treated H2O for the next round of in vitro transcription. 

After the fifth round of SELEX, the evolved library was cloned into the pCR2.1–TOPO 

vector (Invitrogen) and transformed into DH5α E. coli. Single colonies were used for 

mini–prep cultures from which plasmid encoding a single aptamer was isolated for 

sequencing and archiving. 

 

TetR expression and CAT reporter vector construction for E. coli growth assays. 

The pET24a–TetR vector was modified by replacing the T7 promoter–lacO fragment 

between the BglII and XbaI sites with an IPTG–inducible PLlacO promoter fragment (1). 

The reporter construct was assembled in the pBAD30 vector by inserting the aptamer 

constructs and CAT gene between the NheI/PstI and PstI/HindIII sites, respectively.  The 

AraC on the vector was truncated at C280 to minimize crosstalk with IPTG (2).  All 

vectors were sequence verified (Massachusetts General Hospital DNA Sequencing Core). 
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Figure S1. Example data from cytometric binding assay. Representative data for interactions of 

a) tetO and TetR and b) 5-12 aptamer and TetR.  Data represent raw median values of 

histograms measured on cytometer. Curve fit to Equation 1 in Methods. c) Fit parameters of 

data from a) and b). 
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