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We consider a stable open queuing network as a steady non-equilibrium system of interacting
particles. The network is completely specified by its underlying graphical structure, type of inter-
action at each node, and the Markovian transition rates between nodes. For such systems, we ask
the question “What is the most likely way for large currents to accumulate over time in a network
?”, where time is large compared to the system correlation time scale. We identify two interesting
regimes. In the first regime, in which the accumulation of currents over time exceeds the expected
value by a small to moderate amount (moderate large deviation), we find that the large-deviation
distribution of currents is universal (independent of the interaction details), and there is no long-
time and averaged over time accumulation of particles (condensation) at any nodes. In the second
regime, in which the accumulation of currents over time exceeds the expected value by a large
amount (severe large deviation), we find that the large-deviation current distribution is sensitive
to interaction details, and there is a long-time accumulation of particles (condensation) at some
nodes. The transition between the two regimes can be described as a dynamical second order phase
transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with
feedback.

Keywords: Statistics of Non-Equilibrium Currents, Open Queueing Networks, Condensation phenomenon,
Birth-Death Processes

I. INTRODUCTION

A. Non-equilibrium statistical physics and queueing networks

The concept of statistical equilibrium is extremely powerful. Once detailed balance (which is
synonymic to the equilibrium) is established, one can shortcut a discussion of dynamics and just
consider the Gibbs distribution that governs simultaneous correlations in the steady state. On the
other hand, if detailed balance is broken no free lunch is guaranteed, and one generally does need
to dive into dynamics, even to describe just the steady state. This is an infamous and principal
difficulty at the very core of non-equilibrium statistical physics. It is thus of interest to identify a
class of non-equilibrium steady systems where the steady state, distinctly different from the Gibbs
distribution, can be derived in a straightforward way.

The problem discussed in this manuscript belongs to this class - it is a non-equilibrium statistical
physics problem with the steady state known explicitly. More precisely, we study the model generally
known as an open queueing network. A general (Markovian) open queueing network, the so-called
Jackson network [1], can be described as a random walk of particles (jobs, vehicles, people, computer
packets, etc) on a directed graph. The directed links label the transitions between stations/nodes,
each of the Poissonian type and thus characterized by a single number (the rate). Each node is
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FIG. 1: Example of an open finite queueing network represented by a directed graph. The sample graph consists of four
vortexes/stations, labeled 1, 2, 3, 4, with label 0 is reserved for an external (out) node. Transitions between the stations are
shown as directed edges. Loops (self-loops), as 1 → 1, are allowed. Each graph edge is equipped with a transition rate.
Throughout the manuscript all transitions in the network are assumed memoryless, i.e. 0-degree Markovian - Poisson. We also
focus on the case of the infinite waiting room, i.e., no particles/jobs are lost, and thus the number of particles accumulated at
a node may reach +∞. Another important characteristic of a station/note is the number of tellers/servers. For the sake of
simplicity, we assume the jobs/particles to be identical (single-class), and all tellers at any given station processing with the
same time-independent Poisson rate.

characterized by the number of equivalent servers. Collectively this defines a many-particle prob-
lem, whose non-equilibrium nature (no detailed balance) follows immediately from the definitions.
Adopting the terminology of the Queueing Theory community (a subset of the Operations Research
community), the type of service at a node is provided by the M/M/m/∞ queue, which is translated
as Markovian input, Markovian output with m servers, and infinite waiting room. (Throughout the
manuscript we use the shorter notation M/M/m.) An example of such a network is shown in Fig. 1,
and more information will be provided below. Note that a similar, and to a degree more general,
model is known in statistical physics as the zero range model [2].

In spite of the generally pessimistic non-equilibrium assessment, the stable (i.e. achieving a statis-
tical steady state) open Jackson network allows an explicit and simple solution for the steady state
[3]. Similar statements apply to the zero range model [2]. The solution for the steady state is the
so-called product form [2–4], where the joint distribution function of the occupation numbers at all
the nodes/stations is factorized into a product of marginal probabilities at the separate nodes. Some
new and physics-based exposition of this factorized solution is due to [5], and will also be a part of
our construction below. We note that a different factorization has also led to the solution of the
related Asymmetric Exclusion Processes (AEP) Models, see [6–9] and the references therein 1.

On the other hand, in recent years the quest for universality in non-equilibrium statistical problems
has turned to the analysis of currents generated over time, long compared to the system correlation
time scale. This route became fruitful and helped to establish some fundamental relations about
the symmetry of the currents distribution, known as fluctuation theorems [10–12]. In spite of this
partial success, the full description of the currents distribution for a general many-particle and open

1 The general AEP models are significantly different from the Jackson-network models discussed in this manuscript - they can be viewed
as a special case of an M/M/1/1 queuing model (waiting room with one slot and no particles lost) in contrast with the Jackon network
of M/M/m/∞ (infinite waiting room) queues. In the case of a simple one-dimensional chain the AEP model is reducible (with a proper
redefinition of the phase space) to the Jackson network model (and other way around) [6–9], and then both models show product-state
form solution [2–4]. However, the product-state solvability, which holds for the Jackson network generally, does not extend to the AEP
model on general graphs.
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non-equilibrium problem was (and is) deemed too difficult 2.

B. Large deviations, queueing networks, and condensation phenomenon

One of the central questions in the Queueing Theory community is the probability of rare events in
queueing networks (large deviations) [15]. A central tool in understanding such events is the notion
of the so-called ‘fluid-limit’ of a queueing network [16], which was originally developed to understand
certain questions related to the stability (existence of steady state) for certain complicated networks
[17, 18]. We now describe this fluid-limit in greater detail. For a fixed queueing network, one scales
both time and the initial number of particles in system by some large integer n, and then
normalizes the set of queue lengths by n. Note the important difference with the standard notion
of hydrodynamic limit - here, the number of nodes in the network is fixed - only time and the
initial number of particles are scaled. It is proven in [15, 16] that for a broad class of networks,
this scaling has a non-trivial limit (the fluid limit). It is then standard in the Queueing Theory
literature to perform the large deviations analysis in the setting of this fluid limit, as opposed to
the original (unscaled) network. There has been great progress in understanding all aspects of
these large deviations [19–23]. However, driven by applications to describing buffer overloads in
communications systems, most of these results have been geared towards understanding how large
queue lengths accumulate over time (see for example [22]). Much less is known about how large
currents build up in a queueing network over time, especially for the unscaled (not fluid limit)
network.

The statistical physics community has developed several tools ( e.g. the fluctuation theorems
[10–12] ) that are well-suited to studying the large-deviations properties of currents in a network. In
light of the aforementioned gap in our understanding of the large deviations of currents in queueing
networks and related network models, several researchers in the statistical physics community have
recently begun to apply the fluctuation theorems to the study of currents in a variety of network-
related models [24–27]. Most of these results have been for models such as the zero-range process,
which are tangential (although closely related) to the networks studied by the Queueing Theory
community. We bridge this gap by directly applying such an analysis to the canonical model of
queueing theory - namely the Jackson network. We note that although the potential application
of these tools to Jackson networks is mentioned in [24], the paper closest in spirit to our own
is [25]. Indeed, for the 1-D zero-range process the authors identify several regimes in which the
model may operate, characterized by the large-deviations properties of currents, and whether or
not there is an accumulation of particles at sites over time (so-called condensation phenomenon).
Their analysis proceeds by formalizing the system dynamics in a quantum-mechanical / operator-
theoretic framework, and then studying the relevant spectral properties and Crámer (large deviation)
functions. Our own analysis will very-much parallel that of [25], but for the Jackson network model
on general graphs. Other related work can be found in [28], in which the zero-range model on regular
lattices is studied in the hydrodynamic limit, as well as [29] where the closely related stochastic lattice
gas model is studied.

We also note that the Queueing Theory community has already had some success in applying

2 We would like to emphasize here the principal difficulty arising from the fact that the system is both (a) many-particle and (b) open.
The analysis of such systems is often limited to the setting in which there are few degrees of freedom. An example is a recent paper of
three of us with Puliafito [13] that discusses an explicit expression for the distribution of currents associated with a polymer stretched by
external shear flow. In another paper (two of us with Malinin and Teodorescu [14]) considered a setting with multiple degrees of freedom
and analyzed the statistics of so-called topological currents. The statistics of currents have also been studied for the aforementioned
AEP models over one-dimensional chains, which typically have multiple degrees of freedom [8].
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some of these tools [30–32]. Indeed, these analyses (and our own) rely on the interpretation of
queueing systems as interacting particle systems, which (historically) helped lead to many of the
great breakthroughs in the understanding of queueing networks (e.g. product-form solution [33]).
However, these analyses have been for either an infinite 1-D chain of queues [30, 32] or only in the
hydrodynamic limit [31]. In either case, their findings parallel our own, in the existence of certain
phase transitions in which condensation may (or may not) occur.

C. Currents in a queueing networks with feedback

We now discuss the nature of the currents in a Jackson network in steady state, a topic that has
generated much research in the queueing literature [34–38]. Although currents over the entering links
are Poissonian by construction, those which leave the system are not obviously Poissonian. However,
if the system is stable, these exiting flows are in fact Poissonian [33, 35]. More generally, the flow
is Poissonian along all arcs that may not be revisited by a particle, and these flows enjoy several
nice properties (such as asymptotic independence) [38]. It was recognized early on in the queueing
literature that the statistics of the internal currents with feedback are rather difficult to analyze [35].
The source of these difficulties is the complicated feedback mechanism that arises when particles may
revisit an arc. Thus, even for the simple single-node feedback system (which will serve as an enabling
example in this manuscript), the statistics of the feedback current are rather complicated [39–41].
Although several properties of the currents in a multi-server feedback queue and its generalizations
have been studied in the literature [42–47], most of these results involve showing that in certain
limiting regimes the flows are close to Poissonian under some metric [43, 48–50] - the precise nature
of these flows remains poorly understood. Furthermore, it seems that an operator-theory/generating-
function approach has not yet been applied to the study of these feedback currents. We will take
this approach to derive new understanding of these currents.

D. Our main results

The main results of our manuscript can be described as follows:

• We present an explicit, detailed operator-theoretic description of a Jackson network in the Doi-
Peliti formalism. This expands on the description given in [5], with an eye towards introducing
a larger set of the statistical physics community to standard queueing models.

• We identify an “uncongested” regime in Jackson networks, w.r.t. the large-deviation behavior
of current. This regime is universal, i.e. interaction-independent, and non-Poissonian. Further-
more, in this regime there is no infinite accumulation of particles at any node (condensation).
This universality can be qualitatively explained as follows. In this regime, the given deviation
is driven by sample paths in which the number of particles does not diverge. This will generally
occur when the given deviations are somewhat mild, and a deviation can be attained without
a massive buildup of particles. Then, the impact of one particle ‘blocking’ another does not
contribute asymptotically to the deviation, and thus the system is equivalent asymptotically to
one in which all nodes have an infinite number of servers (particles do not interact). We confirm
the existence of this regime by demonstrating that the single-node network with feedback falls
into this regime for certain parameters, which we compute explicitly.

• We also identify a second, “congested” regime, which is interaction-dependent. In this regime,
a given deviation is driven by system primitives that are dependent on the number of servers
and service times. This will generally occur when the given deviations are more severe, and the
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only way to attain the given deviation is to have all, or at least some, servers busy for essentially
the entire time horizon. In this regime the time-averaged queue length diverges for at least one
node, marking the dynamical phase transition between the two regimes as second-order.

• We observe that statistics of time-averaged (over the large observational interval) queue and
queue measured at the last moment of time, both conditioned to an atypical (large or small)
values of currents, are not identical. The difference is particularly striking in the “congested”
regime of the largest currents, where all moments of the former object (queue at the last
moment of time) saturate to finite values while all moments of the later object (time-averaged
queue) diverge with time. Quite generally this phenomenon can be classified as a breakdown
of ergodicity in cases which are atypical with respect to currents.

E. Outline

The manuscript is organized as follows. In Section II, we present a technical introduction to the
dynamics of the Jackson network in terms of the physics-native Doi-Peliti (“quantum” or “second-
quantized”) technique [51–53]. There we formally characterize the Master Equation (ME) that
governs the system evolution and steady state, as well as the joint distribution of densities (occu-
pation numbers). We customize this description to the M/M/∞, M/M/1, and general M/M/m
models in Sections II A, II B, and II C, respectively. In Section III, which represents the core of the
manuscript, we adopt the Doi-Peliti technique to analyze the ME for the joint distribution function
of densities (that reside at the nodes) and currents (that reside at the links). We also show how the
coherent-state technique provides a complete description of the ground state (eigen-value and eigen-
function) in terms of the relevant evolution operator. Section III is partitioned into three Subsections
and an Appendix. In Section III B, we discuss the universal (and statistically typical) “uncongested”
regime. We also describe the boundary of the “uncongested” region in the space of currents, and
comment on the associated dynamical phase transition. Our analysis procedes by invoking an auxil-
iary construction for the left eigen-function of the evolution operator, which is discussed in Appendix
A. The transitions between the “uncongested” and (partially) “congested” regimes are discussed in
Section III C. The general theory is illustrated in Section III D for a single-node system with feed-
back. In Section IV, to validate the theory, we describe a full spectral solution for this single-feedback
problem. In Section V we draw several conclusions and discuss future directions for research.

II. THE DOI-PELITI-MASSEY OPERATOR TECHNIQUE FOR A GENERIC BIRTH-DEATH
PROCESS

This Section introduces notation and describes the main operational rule of the Jackson network
in terms of the statistical physics native Doi-Peliti technique [51–53]. We note that a very similar
(but less explicit) formulation was derived in [5].

As we will see, in this context the Doi-Peliti technique is closely related to the operator-theoretic
framework formulated by Massey [54, 55] in the Queueing Theory community. We start by introduc-
ing the quantum-mechanics based bra(c)ket notation. We then discuss the product-form solutions
for the stationary problems associated with the M/M/∞, M/M/1, and generic M/M/m networks
in Sections II A,II B, and II C, respectively.

The network ( e.g. the one shown in Fig. (1) ) is represented by the directed graph, (G0,G1), where
G0,G1 marks the set of vertices and directed edges of the graph (respectively). If at some instance t,
node j has a queue of size n, one says that the node is in the state represented by the ket-vector |n〉,
where n = 0, 1, · · · . Then, any “pure” state of the network will be denoted by the ket-vector |n〉,
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where the components ni of a vector n = (ni|i ∈ G0) are labeled by the network nodes (vertices). If
a state |n〉 is realized with the probability P (n), we say that the entire network is in the following
“mixed” state

|s〉 =
∑
n

P (n)|n〉,
∑
n

P (n) = 1, (1)

where the last condition reflects the fact that the total probability equals unity. Here and below we
formally assume that P (n) = 0 whenever any component of the vector n is negative.

It is convenient to introduce a Hilbert space of G0-dimensional analytic functions of the vector
variable z = (zi|i ∈ G0)

P(z) =
∑
n

P (n)
∏
i∈G0

zni , (2)

which is also known as the generating function in the theory of birth-death processes [56, 57].
The “quantum” (pure) states are transformed by the following creation and annihilation operators:

â+
j | · · · , nj, · · · 〉 = | · · · , nj + 1, · · · 〉, âj| · · · , nj, · · · 〉 = nj| · · · , nj − 1, · · · 〉. (3)

The normalization condition in Eq. (1), i.e. conservation of probability, reads

〈0| exp

(∑
j∈G0

âj

)
|s〉 = 1, (4)

where the vacuum state |0〉 ≡ |0, · · · , 0〉 corresponds to the empty queue over the entire network.
In these notations ME becomes

∂t|s〉 = Ĥ|s〉 , (5)

where Ĥ is the Hamiltonian operator of the Q-network. In an integrated form, Eq. (5) is equivalent
to

|s(t)〉 = Û(t)|s(0)〉, Û(t) ≡ T exp

(∫ t

0

dt′Ĥ

)
, (6)

where T exp is defined as a time-ordered exponential, i.e. the product of time-discretized operators.
Furthermore, it becomes normal exponential if the parameters of Ĥ (i.e. transition rates) do not
carry explicit time dependence.

Note that the Hamiltonian Ĥ is always real, as it represents probabilities which are positive and
bounded. Thus the normalization conditions (4) and Eq. (5), which should be enforced by the theory
for any feasible n, result in

〈0| exp

(∑
j

âj

)
Ĥ = 0, (7)

where we have used standard bra-vector notations. Recall that an operator acting on the bra-vector
from the right generates a bra-vector, and all the features of left operations can be extracted directly
from the normal definition of the bra-(c)-ket scalar product, ∀n,m : 〈n|m〉 = δ(n,m). Stating it

differently, 〈0| exp
(∑

j âj

)
is the left eigen-vector of the Hamiltonian with zero eigen-value.
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The expectation value of a (dummy) operator •̂ over a state |s〉 is

〈•̂〉 ≡ 〈0| exp

(∑
j∈G0

âj

)
•̂|s〉, (8)

and according to Eq. (7), the corresponding Heisenberg (evolution) equation becomes

∂t〈•̂〉 = 〈[•̂, Ĥ]〉. (9)

Here we have assumed that •̂ does not have an explicit time dependence, and [Â, B̂] is the standard
notation for a commutator.

A. M/M/∞ network

The generic form of the ME for a network of M/M/∞ queues is

∂

∂t
P (n; t) =

i,j 6=0∑
(i,j)∈G1

λij ((ni + 1)P (· · · , ni + 1, · · · , nj − 1, · · · ; t)− niP (· · · , ni, · · · , nj, · · · ; t))

+
∑
i∈G0

λ0i (P (· · · , ni − 1, · · · ; t)− P (· · · , ni, · · · ; t))

+
∑
i∈G0

λi0 ((ni + 1)P (· · · , ni + 1, · · · ; t)− niP (· · · , ni, · · · ; t)) . (10)

Here (i, j) stands for the directed edge of the network corresponding to a job transfer from site i to
site j, with Poisson rate λij; and λ0j,λj0 are the Poisson rates for job injection and removal to/from
the network at site j (respectively). Applying summation over properly weighted n-states to both
sides of Eq. (10), and using the relations Eq. (5,6), one arrives at the following Hamiltonian:

Ĥ∞ =

i,j 6=0∑
(i,j)∈G1

λij(â
+
j − â+

i )âi +
∑
i∈G0

(
λ0i(â

+
i − 1) + λi0(1− â+

i )âi
)
, (11)

which was first derived for the problem in [52].
We further introduce a path-integral representation. The analytic structure of the theory is as

follows:

P(z; t) =

∫
dζdζ ′

(2πi)|G0|
W (z, ζ)P(ζ ′; 0) exp(−ζζ ′), (12)

W (z, ζ) =

∫ η′(t)=z

η(0)=ζ

DηDη′ exp

(
zη(t)−

∫ t

0

dt′ (η′(t′)η̇(t′)−H∞(η′(t′),η(t)))

)
, (13)

where H∞(η′,η) corresponds to Ĥ∞ expressed as a polynomial over the creation/annihilation oper-
ators, so that the creation operators are all positioned on the left from the annihilation operators
(normal ordering), and â+

j ,âj are replaced by η′j and ηj (respectively). Thus, for a general birth-death
model (11) over a network G, one derives

H∞(η′,η) =

i,j 6=0∑
(i,j)∈G1

λij(η
′
j − η′i)ηi +

∑
i∈G0

(λ0i(η
′
i − 1) + λi0(1− η′i)ηi) . (14)



8

As usual, the path-integrals in Eq. (13) should be understood as the continuous limit of the following
discretized multiple integral (see [52] for explanations and accurate validation of the proper discrete-
time regularization):

W (z, ζ) = lim
N→∞

∫ N−1∏
l=1

dηldη
′
l

(2πi)|G0|
(15)

× exp

(
zηN−1 + ∆H(z,ηN−1) +

N−1∑
l=1

(−η′l(ηl − ηl−1) + ∆H(η′l,ηl−1))

)
,

where ∆ = t/N .
Finally, one finds that the creation-annihilation (11) and the path-integral (13,15) formulations

of the birth-death process also allow for the following simple “differential” interpretation for the
analytic function defined in (2):

∂tP(z; t) = Ĥ∞(z)P(z; t), (16)

Ĥ∞(z) = H∞(z, ∂z) =

i,j 6=0∑
(i,j)∈G1

λij(zj − zi)∂zi
+
∑
i∈G0

(λ0i(zi − 1) + λi0(1− zi)∂zi
) . (17)

Thus the mapping from the creation-annihilation operators to the poly-differential operators (holo-
morphic representation) is (

â+, â
)
→ (z, ∂z) . (18)

Looking for a steady state (time-independent) solution of Eq. (17) in the exponential form

P∞(z) = exp

[∑
i∈G0

hi(zi − 1)

]
, (19)

and substituting the ansatz into Eq. (16), one arrives at the following set of conditions on h:∑
i∈G0

(λ0i − λi0hi) = 0, (20)

∀i ∈ G0 : − hi

(i,j)∈G1∑
j 6=0

λij +

(j,i)∈G1∑
j 6=0

λjihj + λ0i − λi0hi = 0. (21)

Although it seems that there is one more condition than the number of variables, the conditions
are dependent (sum Eq. (21) over all vertices of the graph). Therefore, solving the system of
inhomogeneous linear equations Eq. (21), which we restate for convenience as

Λ̂h = λin, λin ≡ (−λ0i|i ∈ G0), Λ̂ = (Λij|i, j ∈ G0), Λij =

{
−λi0 −

∑(i,k)∈G1
k λik, i = j

λji, i 6= j,
,(22)

consists in evaluating

h = Λ̂−1λin. (23)

Here the existence of the steady state solution requires that: (a) Λ̂ is not singular, and (b) all
components of the h vector that solves Eq. (23) are positive.
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Note that the form of Eq. (19) is fully factorized. Thus once the valid solution of Eq. (21) is
found, the full probability of observing the system in any given state is decomposed into a product
of probabilities, each evaluated at the relevant graph vertex. Recall that this occurs in spite of the
fact that to find the re-normalized rates hi one must solve a graph-global linear problem. This strong
symmetry of the Poisson-In-Poisson-Out process, observed in spite of the fact that the DB is broken,
is referred to (in the Queuing Theory literature) as “quasi”-DB [15, 33].

The special feature (memoryless property) of the exponential distribution is also very transparent in
the creation-annihilation language. Indeed, one observes that the exponential (in quantum mechanics
also referred to as “coherent” ) state exp(hâ+)|0〉 is the eigen-function of the annihilation operator
â, with the eigen-value h

â|coh∞(h)〉 = h|coh∞(h)〉, |coh∞(h)〉 ≡ exp(hâ+)|0〉. (24)

Therefore,

Ĥ∞|coh∞(h)〉 =

 i,j 6=0∑
(i,j)∈G1

λij(â
+
j − â+

i )hi +
∑
i∈G0

(
λ0i(â

+
i − 1) + λi0(1− â+

i )hi
) |coh∞(h)〉, (25)

and the stationarity condition Ĥ∞|coh∞(h)〉 = 0 translates exactly into Eqs. (21), where the i-th
equation correspond to the condition that the c-factor in front of the corresponding â+

i is zero.

B. M/M/1 network

Consider a network of M/M/1 processes. In this case the ME adopts the following form:

∂

∂t
P (n; t) =

i,j 6=0∑
(i,j)∈G1

λij

(
P (· · · , ni + 1, · · · , nj − 1, · · · ; t)− P (· · · , ni, · · · , nj, · · · ; t)

)
+
∑
i∈G0

λ0i (P (· · · , ni − 1, · · · ; t)− P (· · · , ni, · · · ; t))

+
∑
i∈G0

λi0 (P (· · · , ni + 1, · · · ; t)− P (· · · , ni, · · · ; t)) . (26)

Here θ(x) is the characteristic function of the logical condition x, i.e. it is unity when the condition
is satisfied and zero otherwise. The corresponding Hamiltonian operator in Eq. (5,6) is of the form

Ĥ1 =

i,j 6=0∑
(i,j)∈G1

λij(â
+
j − â+

i )b̂i +
∑
i∈G0

(
λ0i(â

+
i − 1) + λi0(1− â+

i )b̂i

)
. (27)

Here b̂i is a “skewed” annihilation operator (see e.g. [5] for a similar operational rule), such that

b̂i|ni〉 = θ(ni > 0)|ni − 1〉, and in both Eq. (26) and Eq. (27) we keep the same notation as in
Eqs. (10,11) (respectively).

Note that b̂ is expressed in terms of â and â+ in an extremely nonlinear way. However, the
representation allows a simple “analytic” interpretation [5]:

b̂
∑
n

pn|n〉 →
p(z)− p(0)

z
, where p(z) =

∑
n

pnz
n. (28)
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For the introduced generating function representation, the analog of Eqs. (16,17) becomes

∂tP(z; t) =

i,j 6=0∑
(i,j)∈G1

λij(zj − zi)
P(z; t)− P(z∼i; t)

zi
+
∑
i∈G0

λ0i(zi − 1)P(z; t)

+
∑
i∈G0

λi0(1− zi)
P(z; t)− P(z∼i; t)

zi
. (29)

Here z∼i ≡ ((1 − δij)zj|j ∈ G0). In words, this is the vector z with the component zi replaced by
zero.

Let us come back to the skewed-creation-annihilation representation, and note that the coherent
states associated with this “skewed” annihilation operator b̂ were discussed in [5]. The approach can
also be traced back in the Queuing Theory literature to the classic papers of Massey [54, 55] on the

operator approach to Jackson networks. The coherent states for b̂ are constructed as follows:

b̂|coh1(h)〉 = h|coh1(h)〉, |coh1(h)〉 ≡ 1

1− hâ+
|0〉. (30)

Then the analog of Eq. (25) becomes

Ĥ1|coh1(h)〉 =

 ∑
(i,j)∈G1

λij(â
+
j − â+

i )hi +
∑
i∈G0

(
λ0i(â

+
i − 1) + λi0(1− â+

i )hi
) |coh1(h)〉. (31)

Furthermore, the condition of stationarity, Ĥ1|coh1(h)〉 = 0, translates exactly into Eqs. (21), where
the i-th equation corresponds to the condition that the c-factor in front of the respective â+

i is zero.
We conclude that the stationary distribution of the M/M/1-network is

P1(z) =
∏
i∈G0

1− hi
1− hizi

, (32)

where h is the solution of Eqs. (21).

C. M/M/m network

The ME in the general case of an inhomogeneous M/M/m-network, with positive integers mi

(number of tellers) assigned to each vertex i of the graph, can be represented by

∂

∂t
P (n; t) =

∑
(i,j)∈G1

λij

(
θmi

(ni + 1)θ(nj > 0)P (· · · , ni + 1, · · · , nj − 1, · · · ; t)

−θmi
(ni)P (· · · , ni, · · · , nj, · · · ; t)

)
+
∑
i∈G0

λ0i (θ(ni > 0)P (· · · , ni − 1, · · · ; t)− P (· · · , ni, · · · ; t))

+
∑
i∈G0

λi0 (θmi
(ni + 1)P (· · · , ni + 1, · · · ; t)− θmi

(ni)P (· · · , ni, · · · ; t)) , (33)

θm(n) = min(n,m). (34)
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The evolution operator (Hamiltonian) becomes

Ĥ =

i,j 6=0∑
(i,j)∈G1

λij(â
+
j − â+

i )b̂
(mi)
i +

∑
i∈G0

(
λ0i(â

+
i − 1) + λi0(1− â+

i )b̂
(mi)
i

)
, (35)

b̂(m)|n〉 = θm(n)|n− 1〉. (36)

Thus the problem of finding the stationary solution is reduced (pretty much like before in the m =∞
and m = 1 cases) to constructing coherent states for the annihilation operator b̂(m):

b̂(m)|cohm(h)〉 = h|cohm(h)〉, |cohm(h)〉 ≡ gm(hâ+)|0〉, (37)

gm(x) ≡
∞∑
k=0

xk∏k
l=1 θm(l)

=
mm

m!

1

1− x/m
+

m−1∑
k=0

xk
(

1

k!
− mm−k

m!

)
. (38)

Finally, the full expression for the generating function of the stationary solution over the general
network becomes

P(z) =
∏
i∈G0

gmi
(hizi)

gmi
(hi)

, (39)

where h is the solution of Eqs. (21). Therefore, by Eq. (2),

P (n) = Z−1
∏
i∈G0

hni
i∏ni

li=1 θmi
(li)

. (40)

Obviously, Eqs. (39,40) are consistent with Eq. (19) and Eq. (32) when m = (mi|i ∈ G0) is set to
m = ∞ and m = 1 (respectively).

Note (for the sake of accurateness) that when deriving Eq. (40) in the operator formalism we
took advantage of the important fact that both left (bra-) and right (ket-) zero eigenvalues of the

Hamiltonian (35), described by 〈0| exp
(∑

j âj

)
and

∏
i∈G0 gmi

(hiâ
+)|0〉 respectively, are explicitly

known.
Note that one can recalculate any moment of n from either Eq. (39) or Eq. (40). In particular, for

the first moment at a station we arrive at

〈ni〉 =
〈0| exp

(∑
j∈G0 âj

)
â+
i âi
∏

k∈G0 gmk
(hkâ

+)|0〉

〈0| exp
(∑

j∈G0 âj

)∏
k∈G0 gmk

(hkâ+)|0〉
=

∂

∂zi

gmi
(hizi)

gmi
(hi)

∣∣∣∣
z=1

, (41)

where gm(x) is taken from Eq. (38) and (as before) h is the solution of Eqs. (21). Note that
the moments are finite only if hi < mi, which thus defines the condition for Q-network stability
(statistical stationarity) [15].

III. STATISTICS OF NETWORK CURRENTS

A (general) queueing network is naturally characterized by the actual current of particles/jobs
going through and being processed at each station according to a certain service discipline

(
e.g. First-

In-First-Out (FIFO)
)
. Here the quasi-current characterizes the activities of tellers, not focusing on

the dynamics of the individual particles at all. In other words, actual current tracks the dynamics of
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the jobs/particles, while quasi-current tracks quasi-particles/jobs assuming that all the jobs waiting
for service at a station are fully equivalent and not prioritized. Actual current and quasi-current
coincide in the case of an M/M/∞ network, when the individual jobs do not interact at all, as well
as any network in which all particles (customers) are identical. With this disclaimer, we will be
discussing quasi-currents for the remainder of the paper, and refer to them as currents to simplify
our exposition.

As shown below, calculating the statistics of the currents in a Jackson network becomes tractable
in the two regimes that we will study: the “uncongested” and “congested” regimes.

In the “uncongested” regime, this arises from the product-form symmetry characterizing the regime
(an extension of the product-form symmetry discussed earlier), as well as the m-independence
property (universality). Note that for networks without feedback, the statement of m-independence
is equivalent to the fact that in steady state, the flow along arcs will be Poisson (with rate independent
of the number of servers). As mentioned previously, this phenomenon was discovered earlier in the
Queueing Theory literature [38, 58, 59]. However (and to the best of our knowledge), the extension
of this statement to the asymptotic (large time) limit for more general networks (unscaled, not in
the fluid limit or hydrodynamic limit) has not been formally explored in the literature.

The remainder of this Section is partitioned into four Subsections. We start from a general dis-
cussion of the current related objects in Section III A. In Section III B we consider the uncongested
regime. We also develop several generalizations of the Doi-Peliti technique to account for currents,
and develop some machinery necessary for the statement of our results. At the end of the Section,
our analysis naturally leads to the identification of the uncongested regime’s breakdown, namely the
identification of a phase transition in the space of currents. We also show that this transition is
second-order, thus translating into smoothness of the Crámer function of currents (continuity of the
first and the second derivatives) at the transition. In Section III C, we extend the coherent state
formalism to the “congested” regime via a simple reduction of the network graph. We note that a
similar decomposition was applied in [25], and is similar in spirit to many such reductions appearing
throughout the Queueing Theory literature [60–66].

Finally, in Section III D we illustrate the general theory using our enabling example of a single
node with feedback.

A. Preliminary General Remarks

We will mainly be interested to evaluate the joint distribution function of the currents and queue
sizes where the latter are averaged over the entire time horizon. In the following we will use P (n̄,J |t)
notation for the main object of interest. However it is technically more convenient to start from
another (and to a degree auxiliary) object defined as a joint distribution function of currents and
queues where the latter are observed at the final moment of time. We will see below that it is
important to differentiate these generally distinct objects.

Let P (n(t),J |t) denote the joint probability distribution function of the queue size at the final
moment of time t, n(t) = (ni(t)|i ∈ G0), and currents accumulated over the [0; t] interval of time,
J = (Jij|(i, j) ∈ G1), where the latter are defined on all edges of the graph and the former are defined
(as before) on vertices. The ME for this object is the natural generalization of Eq. (33), which we
now present in operator form (to allow for more compact notations). In particular, the operator
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form of the ME for P (n(t),J |t) is

∂t|s(n(t);J)〉 =

Ĥ +
∑

(i,j)∈G1

Ĵ ij

 |s(n(t);J)〉, (42)

∀i, j 6= 0 : Ĵij = λij(â
+
ij − 1)â+

j b̂
(mi)
i , (43)

Ĵ0i = λ0i(1− â+
0i)â

+
i , Ĵi0 = λi0(â+

i0 − 1)b̂
(mi)
i , (44)

where Ĥ is defined in Eq. (35). Here we have assumed that the currents are discrete and positive,
and the respective ket-vector is related to the joint PDF of n(t) and J as follows:

|s(n(t);J)〉 = P (n(t);J)|n;J〉. (45)

Ĵij
(

in Eq. (43)
)

is the operator for the amount of current from site i to site j, and â+
ij is the newly

introduced creation operator
(

at edge (i, j)
)

acting on the space of discrete positive currents. We
define operators for incoming and outgoing currents in Eq. (44) similarly. Formal solution of Eq. (48)
is

|s(n(t);J)〉 = exp

t
Ĥ +

∑
(i,j)∈G1

Ĵij

 |s(n(0);J)〉, (46)

where the ket-state on the rate correspond to the “initial” steady distribution of queues, described by
Eq. (40), and zero initial current: |s(n(0);J)〉 = |s〉⊗|J = 0〉, where we follow notations introduced
in the introduction and |s〉 =

∑
n P (n)|n〉.

It follows that the generating function over the currents (i, j) ∈ G1, accounting for the incoming(
(0, i) ∈ G1

)
and outgoing

(
(i, 0) ∈ G1

)
arcs, is

|sq(n(t))〉 =
∑
J

∏
(i,j)∈G1

q
Jij

ij |s(n(t);J)〉. (47)

According to our standard birth-death [creation/annihilation] rules, the object described by Eq. (47)
satisfies

∂t|sq(n(t))〉 = Ĥq|sq(n(t))〉, |sq(n(t))〉 = exp(tĤq)
∑
n

P (n)|n〉 = exp(tĤq)|s〉, (48)

Ĥq =
∑

(i,j)∈G1

λij(â
+
j − â+

i )b̂
(mi)
i

+

i 6=0,j 6=0∑
(i,j)∈G1

λij(qij − 1)â+
j b̂

(mi)
i +

∑
(0,i)∈G1

λ0i(q0ia
+
i − 1) +

∑
(i,0)∈G1

λi0(qi0 − a+
i )b̂

(mi)
i . (49)

Note that even though our evaluation in Eq. (48) applies to the general object, namely to the joint
distribution function of currents over the entire network, one may compute the relevant marginals
(say the distribution function for the current over a single edge) in a straightforward manner. We

also note that the operator Ĥq can be obtained by modifying/twisting the evolution operator Ĥ,

given by Eq. (36), as follows. One weights the off-diagonal terms of Ĥ in the space of populations |n〉,
namely λij â

+
j b̂

(mi)
i , λ0ia

+
i , and λi0b̂

(mi)
i , with the factors qij, q0i, and qi0 respectively. This corresponds

to viewing the underlying stochastic process as a Markov chain on an infinite graph, whose nodes
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are labeled by pure states |n〉, whereas links represent the set of processes allowed by the evolution

operator Ĥ. Within such a picture, the set of q parameters plays the role of discrete gauge fields
(vector potentials), and Ĥq is interpreted as the evolution operator, “twisted” by the gauge field q,
as described in [67]. Since here we are dealing with oriented graphs, no constraints are imposed on
q.

It is also useful to consider the distribution function of queue at the finite moment of time,
conditioned to specific value of the current generating parameter q. This object, and the respective
first moment of queue size, become

Pq(n(t)) ∝ 〈n(t)| exp
(
tĤq

)
|s〉, (50)

〈ni(t)〉q =
〈0| exp

(∑
j∈G0 âj

)
â+
i âi exp

(
tĤq

)
|s〉

〈0| exp
(∑

j∈G0 âj

)
exp

(
tĤq

)
|s〉

. (51)

Returning back to our main object of interest (the joint distribution function of the current and
of the queue averaged over the time horizon) and following the same formalism/notations, we derive
the analogs of Eqs. (50,51)

Pq(n̄) ∝ t−1

∫ t

0

dt′〈0| exp

(∑
j∈G0

âj

)
exp

(
(t− t′)Ĥq

)
|n(t′)〉〈n(t′)| exp

(
t′Ĥq

)
|s〉, (52)

〈n̄i〉q =

∫ t
0
dt′〈0| exp

(∑
j∈G0 âj

)
exp

(
(t− t′)Ĥq

)
â+
i âi exp

(
t′Ĥq

)
|s〉∫ t

0
dt′〈0| exp

(∑
j∈G0 âj

)
exp

(
tĤq

)
|s〉

. (53)

B. Uncongested Regime

We are now in a position to introduce the “uncongested” regime on a formal level. We will
characterize this regime in terms of the existence of a special “universal” product-form solution
to Eq. (48), as well as the finiteness of a particular expectation value (capturing the fact that no
condensation of particles occurs at any nodes), at sufficiently large observational time t. Note that in
the spirit of our operator-theoretic framework, we define the regime in terms of both the queueing
network and the vector q on which one evaluates the generating function for occupation numbers
in the network. Thus a given queueing network may be in the regime for some evaluations of its
generating function (certain values of q) but not for others. This will then be related to belonging (or
not belonging) to the regime for different types of large deviations (of current) through the standard
Legandre transform, which maps the generating function (evaluated at different q) to the Crámer
function (evaluated at different-sized deviations).

We say that a given queueing network is in the “uncongested” regime for a given vector q if the
ket vector |sq(n) is dominated by the ground state of Ĥq, i.e. at sufficiently large time, |sq(n)〉 ∼
exp(−∆(q)t)|cohm(h(q)), holds. In other words, the spectrum of Ĥq is such that its ground state is
separated from the excited states by a finite gap, and thus at the times much large than inverse value
of the gap the solution is completely described by the ground state only, thus providing respective
universality. We also require that 〈n̄i〉q < ∞ for all nodes i of the network in the “uncongested”
regime, ensuring that the expected number of particles (size of the queue averaged over time) does
not diverge at any nodes as t→∞.
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The statistics of queueing networks in the “uncongested” regime may be analyzed using the tech-
niques from Section II. In particular, we substitute |sq(n)〉 by ∼ exp(−∆(q)t)|cohm(h(q)) in
Eq. (48) to arrive at∑

i∈G0

(q0iλ0i − λi0qi0hi(q)) = ∆(q), (54)

∀i ∈ G0 : −hi(q)

(i,j)∈G1∑
j∈G0

λij +

(j,i)∈G1∑
j∈G0

qjiλjihj(q) + λ0i − λi0hi(q) = 0. (55)

This set of relations generalizes the stationary (q = 1 ) relations (20,21), and are thus consistent
with ∆(1) = 0. Eqs. (54,55) describe the right (ket) eigen-function of the ground-state of the
evolution operator/Hamiltonian (49), while the corresponding left (bra)-eigenfunction is described
in Appendix A.

Note that, replacing all internal q-variables by unity, the basic set of equations for h does not
depend on the remaining q0i and qi0 components. It follows that the respective h are identi-
cal to the one derived before for the stationary h(0) (no currents) setting. Moreover, ∆(q0) =∑

i ((q0i − 1)λ0i − λi0(qi0 − 1)hi(0)). This observation translates (after the obvious Legandre trans-
form) into the statement that all the currents entering and leaving the network are asymptotically
Poisson, which (as already mentioned) was known previously in the Queuing literature [33, 59].

For the sake of simplicity, hereafter we exclude the incoming and outgoing currents from consider-
ation, which is achieved by setting qi0 = q0i = 1. The consistency of Eqs. (54) and Eqs. (55) (the two
are just generalized versions of Eqs. (21,20)) translates into the following expression for the lowest
eigenvalue:

∆(q) = −
i,j∈G0∑

(i,j)∈G1

hi(q)λij(qij − 1). (56)

For sufficiently large t (it is our Large Deviation Parameter and thus should at least be significantly
larger than the correlation time of the system) we obtain the following asymptotic expression for
Pq(t) =

∑
n Pq(n̄),

Pq(t) = Ψ(q) exp(−t∆(q)) ∼ exp

t i,j∈G0∑
(i,j)∈G1

hi(q)λij(qij − 1)

 , (57)

Ψ(q) ≡ 〈0| exp

(∑
i∈G0

h̄i(q)âi

)
|cohm(h(q)〉. (58)

Here, in evaluating the pre-exponential factor Ψ(q), we have used the assumption that the main
contribution into Eq. (52) originates from t′, t− t′ � 1/∆(q). Thus, 〈0| exp(

∑
i h̄i(q)âi) in Eq. (58)

is the bra-vector defined as the left eigenvector of Ĥq with the same eigenvalue ∆(q) (see Appendix A
for more details) 3. Here certain time-independent pre-factors (which do not impact the asymptotics
up to exponential order) are ignored on the rhs. As we are interested in the statistics of the currents

3 Note that expression for the analog of Ψ(q) correspondent to Pq(n(t)) is significantly different: 〈0| exp
(∑

i∈G0 âi

)
|cohm(h(q)〉.
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that scale (grow) linearly with t, one can replace the sum in Eq. (47) by an integral, invert the
relation, and arrive at the following saddle-point (large-deviation) expression:

P (J |t) ∼
∫
Pq(t)

i,j∈G0∏
(i,j)∈G1

q
−Jij

ij ∼ exp (−tS(J/t)) ,

S(j) =

i,j∈G0∑
(i,j)∈G1

(
jij ln(q∗ij) + hi(q

∗)λij(1− qij)
)
, (59)

∀(k, l) ∈ G1 &k, l ∈ G0 : jkl/q
∗
kl =

i,j∈G0∑
(i,j)∈G1

∂hi(q
∗)

∂qkl
(q∗ij − 1)λij + hk(q

∗)λkl, (60)

where S(j) is a convex function of its argument, also called the Crámer (or large-deviation) function.
The dependence of the Crámer function on the current production j is defined implicitly via Eqs. (60)
and Eqs. (55).

Since ∆ is fully defined by the solution of Eqs. (55), which is independent of m, the resulting
expression for the Crámer function is also m-independent in the “uncongested” regime. This can-
celation is quite remarkable. We note that the degeneracy is especially interesting, since it does
not seem to extend to the time-independent pre-factor in P (J |t), Ψ(q)

(
defined in Eq. (58)

)
.

A Queueing Theory interpretation is that in this regime the large deviations are not caused by
the interactions of different particles in the network, and thus the same kind of deviations would
have occured even if all nodes in the network were of M/M/∞ type (as opposed to M/M/m with
m <∞), in which different particles cannot interact and delay one-another in the network. 4.

As explained above, the qualitative assumption that allowed us to extend the product-form ansantz
to statistics of currents in Eqs. (54-60) was that the number of particles in the system (size of the
queue averaged over time) did not diverge with time. For this assumption to hold, it must be the
case that

∀i ∈ G0 : 〈n̄i〉q =
〈0| exp

(∑
j∈G0 h̄j(q)âj

)
â+
i âi
∏

k∈G0 gmk
(hk(q)â+)|0〉

〈0| exp
(∑

j∈G0 h̄j(q)âj

)∏
k∈G0 gmk

(hk(q)â+)|0〉
<∞, (61)

where h(q) and h̄(q) are solutions of Eqs. (54, 55) and Eqs. (A2, A3) (which describe consistently
the right/ket and left/bra ground state eigen-function of the evolution operator/Hamiltonian (49) ).

We now comment on the phase transition which takes us from the uncongested to the congested
regime. Picking a direction in the vector space of currents (dimensionality of the space is equal to
the number of internal directed edges of the graph) and increasing the length of the vector in this
direction, gradually (starting from the domain of values belonging to the “uncongested” regime) we
will eventually reach the regime where congestion occurs, i.e. the condition (61) breaks down and
particles accumulate over time at some nodes (condensation). To see this heuristically, we note that
for large values of q, the main contribution to the generating function will be highly skewed towards
very large values of current (due to the fact that q is raised to a power equal to the current), and the
most likely way to attain such large values of currents will be for the queueing network to remain
totally occupied over the entire time horizon, causing the number of particles in the network to

4 Similar “mysterious” cancelation of the vorticity dependence was reported in [13] in the Crámer function of the entropy production for
a polymer stretched by shear-vorticity flow.
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diverge over time. Put in the context of large deviations, the most likely way to attain very large
values of currents is to have an accumulation over time of the number of particles in the network
(condensation), leading to the system being overloaded over the entire time horizon, enabling all
links in the network to generate current continuously over the entire time horizon. We focus in
particular on the setting where the “breakdown” of the regime occurs initially at some particular
unique node of the network, the expected number of particles in the system diverges at that node
(over time), and a certain spectral condition holds at this breakdown point ( described in some detail
below ). We will use these characteristics to formally define our “congested” regime.

We now elaborate on the aforementioned spectral condition. In particular, the transition point
from the “uncongested” to the “congested” regime has an interpretation in terms of the closing of
the gap between the ground state and the low boundary of the continuous spectrum of Eq. (49).
This “closing the gap” picture also assumes that other excited discrete states (which are present
already in the case of a single station with feedback and m > 1, see the discussion in Section IV)
do not cross the factorized ground state found above. This spectral interpretation also leads to
an immediate conclusion/consequence in terms of the Crámer function shape at the values of the
current that correspond to the considered uncongested-to-congested transition. Indeed, this “closing
the gap” scenario translates into continuity of the Crámer function and its first derivatives at the
transition. Stated differently (in the jargon of phase transition theory), the dynamical uncongested-
to-congested transition with respect to the currents is second-order, and 1/〈n̄i〉q plays the role of
the order parameter at the congested node.

Our final remark is about comparison of the distribution of queue averaged over time with respec-
tive distribution measured at the final moment t. It is straightforward to check that 〈ni(t)〉q is finite
at any value of q and t → ∞, in particular for q = qc where 〈n̄i〉q = ∞. Moreover, one finds that
the two distribution functions, Pq(n̄) and Pq(n(t)), are different at any values of q except the special
one correspondent to the minimum of the Crámer function achieved at J = 〈J̄〉. This statement
may be interpreted as a breakdown of ergodicity for any current but the special one correspondent
to the steady distribution.
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FIG. 2: Transformation of the “overloaded” node, discussed in the text. The component of the graph, associated with the node,
before and after the transformation are shown in the left-upper and low-right corners respectively. Dashed node on the modified
graph correspond to new injections and departures with the Poisson rates exactly equivalent to the respective transition rates
on the original graph.
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C. Congested Regime

We now consider a heuristic decomposition approach to extend the product-form description,
utilized above in the uncongested regime, beyond the domain bounded by Eqs. (61). We note that
similar decomposition techniques have been considered throughout the Queueing theory literature
to understand how networks become congested [60–66, 68, 69].

Consider, for example, crossing the boundaries of Eq. (61) along a direction in the q-space, and
thus violating the condition at some q∗ at a single node, say i. Then, exactly at the point of crossing
we can simply assume that the node is always congested (has an infinite queue in the waiting room),
and thus the tellers at the node stay busy over the entire time horizon. This translates into the
following obvious modification of the network graph: remove the node, and associate all the in/out
edges for the node of the old graph to the new open-system in/out nodes with exactly the same rates.
The transformation is shown in Fig. (2). In the new domain the Eqs. (54-55) should be considered
on the modified graph, and one needs to add the appropriate constant to ∆(q) from Eq. (56) to
guarantee its continuity at q∗. Equivalently, one must compensate all probabilities to reflect the rare
event that the given node remained busy over the entire duration.

The general construction is illustrated in Fig. (3), and will also be illustrated in the next Subsection
on our enabling example of a single node system with feedback. We note, of course, that in general
the most likely way for rare events to occur in queueing networks may be quite complicated (see for
example [22]), and what was explained above should be considered as an approximation which is
not proven rigorously.

We conclude this general construction by explaining the formal status of our derived results. All
the asymptotic derivations so far, discussed in both the congested and uncongested cases, have
relied on several important assumptions. The most important of these is the equivalence of the
coherent state solution to the lowest eigen-value (ground state) solution. We have assumed that this
(physically very plausible) assumption holds, and focused primarily on constructing the coherent
state solution explicitly. We note, however, that our derivations have generally been non-rigorous
in nature, and this assumption was not justified in any particular case. A considerable difficulty
associated with formalizing our results (and justifying this assumption) lie in the fact that the
coherent state approach does not allow us to analyze the entire spectrum of the operator. In view
of the above, we find it important to validate this assumption, at least for a special case. We now
proceed along these lines by studying the aforementioned case of a single station with feedback.

D. Single station with feedback

Perhaps the simplest example of a (non-trivial) queueing network (as discussed in Section I C)
consists of a single station, one incoming channel/edge, one outgoing channel/edge, and one self-
loop, all characterized by Poisson processes with rates λ, µp and µ(1− p) respectively. The network
is shown in the upper left corner of Fig. (3).

In this example, the only interesting current is associated with the self-loop (as the others are
Poissonian in the steady-state, see Section I C). We thus focus exclusively on the analysis of the
current along the feedback arc, and the associated generating function (evaluated for the scalar q
and corresponding current j).

We start by considering the “uncongested” regime. Then Eqs. (54,56) become

h =
λ

µ(1− (1− p)q)
, ∆ = −λ(q − 1)(1− p)

1− (1− p)q
. (62)
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FIG. 3: Original graph and transformed graph correspondent to uncongested and congested regimes for example of the single
station with the feedback.

According to Eqs. (59, 60), this results in

j < jc : S(j) = λ(1− p/2)−
√
pλ(4j + pλ)

2
+ j ln

(
2j + pλ−

√
pλ(4j + pλ)

2j(1− p)

)
. (63)

To identify the “uncongested” regime breakdown we calculate h̄, according to Eq. (A3):

h̄ =
p

1− (1− p)q
. (64)

Substituting into Eqs. (58) results in

Ψ(q) = gm(h̄(q)h(q)), 〈n̄〉q =
∂

∂z

gm(h̄(q)h(q)z)

gm(h̄(q)h(q))

∣∣∣∣
z=1

. (65)

From the above and Eq. (38), we find that the expected queue length remains bounded over time iff
hh̄ < m, and thus the critical value of congestion at which point one shifts regimes is

qc =
1−

√
λp
mµ

1− p
. (66)
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FIG. 4: Crámer function, S(j), of the feedback current shown for λ = m = 1, p = 1/2 and µ = 3. Thick red and thick blue
curves describe the uncongested and congested domains respectively. Dashed black line marks the value of jc.
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The congested regime that occurs at q > qc and j > jc corresponds to the situation when the single
server is always occupied, and thus (conditioning on this event) jobs continually feedback over time
as a mµ(1− p) standard Poisson process. Therefore, in the congested regime

q > qc : ∆ = −µ(1− p)m(q − 1) +
(√

λ−√pµm
)2

. (67)

Here the
(√

λ−√pµm
)2

term (a constant with respect to q) is found in accordance with Eq. (62)

and the condition of ∆-continuity at q = qc. Alternatively, in the congested regime ∆ can be
identified with the lower edge s− of the continuous spectrum of Ĥq, given by Eq. (74). The spectrum

of Ĥq for a simple model under consideration is analyzed in some detail in Section IV. Performing
the Legendre transform on Eq. (67), we arrive at the following expression for the Crámer function
of the feedback current in the congested regime

j > jc : S(j) =
(√

λ−√pµm
)2

+mµ(1− p) + j ln(
j

emµ(1− p)
). (68)

Comparing Eq. (63) with Eq. (68) we also observe that the Crámer function is smooth (first derivative
is continuous) at j = jc, thus confirming that the dynamical phase transition described here is of the
second order (continuous). The change of the Crámer function shape across the transition is shown
in Fig. 4.

The obtained expression for the Crámer function in the congested regime Eq. (68) has a very
simple and transparent interpretation. Since the server is always occupied, the feedback current
generation is a standard Poisson process, so that S(j) = µm(1 − p) + j ln(j/(emµ(1 − p))), where
e−tS0 is the probability to keep the server busy, presented with exponential accuracy. The latter
is given by the probability e−tS0(ω) of creating the incoming and outgoing currents of the same
value ω to provide the marginal stability of the server, maximized with respect to ω. Since both
currents are generated by independent Poisson processes with the rates λ and pµm, respectively,
we have S0(ω) = λ + pmµ + ω ln(ω2/(λpµm)e2), and minimization with respect to ω results in

S0 = (
√
λ−√pµm)2, which reproduces Eq. (68).

IV. DIRECT ANALYSIS OF THE SINGE-STATION FEEDBACK SYSTEM

As shown in the previous Sections, an understanding of the evolution operator ground state struc-
ture is essential for predicting long-time statistics of currents. We have also argued that the ground
state can be described analytically for networks with general graphical structure. However, these
arguments were indirectly dependent on certain information about the rest of the spectrum - specif-
ically on the fact that the ground state is separated from the continuous spectrum by a gap which
collapses at the dynamical phase transition. In general, information on the entire spectrum is dif-
ficult to obtain. The main point of this Section is to gain a broader understanding of the simple
single-node network with feedback along these lines. Therefore in this Subsection we analyze the
full spectrum of the problem with the single feedback and we confirm the general picture of the ‘gap
emergence’, and collapse at the phase transition point suggested above on the basis of only partial
(ground state) analysis.

Our starting point is the dynamical equation Pq(n; t) =
∑∞

j=0 q
jP (n, j; t) for the generating func-

tion of current j via the feedback arc. Here P (n, j; t) is the joint probability distribution function
of the number of particles, n standing at the queue at the time t, and the number of particles, j,
that have passed through the feedback loop by time t. Following directly the proper generalization,
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FIG. 5: Spectrum of the evolution operator as a function of q for m = 5, λ = 0.5, µ = 2.0, p = 0.5 and N = 50. The lower
bottom line corresponds to the ground state solution ∆(q).

according to Eqs. (43-49) of the ME (33) we derive:

∂

∂t
Pq(n; t) = λ (Pq(n− 1; t)− Pq(n; t)) + µp (θm(n+ 1)Pq(n+ 1; t)− θm(n)Pq(n; t))

+µ(1− p)(q − 1)θm(n)Pq(n; t), (69)

where the last term on the r.h.s. accounts for the current. Performing the Laplace transform of
Pq(n; t) over time, Ps;q(n) ≡

∫∞
0

exp(st)Pq(n; t)dt (with s considered as a spectral parameter), we
arrive at the following spectral equation:

(s− λ− µpθm(n) + µ(1− p)(q − 1)θm(n))Ps;q(n) = −λPs;q(n− 1)− µpθm(n+ 1)Ps;q(n+ 1). (70)

Here the inhomogeneous part, dependent on the initial condition at t = 0, is ignored.
The “boundary” conditions over n for Eq. (70) read Ps;q(−1) = 0 and Ps;q(n → ∞) = 0. We

will relax the last condition, assuming the following natural finite waiting room regularization:
Ps;q(N +m) = 0 for some sufficiently large value of N . We will study the spectrum at finite N , and
show towards the end of the calculations that the N → ∞ limit is well defined. We note that the
particular choice of regularization turns out to be unessential for the limits we consider. In order to
find the eigenvalues (spectrum) we solve the recurrence relation (70) for general values of s, and use
the aforementioned boundary condition, and the normalization condition Ps;q(0) = 1. To summarize,
the set of conditions that complement Eq. (70) to provide the full description of the spectrum are

Ps;q(−1) = 0, Ps;q(0) = 1, Ps;q(N +m) = 0, (71)

and we are mainly interested in studying the N →∞ limit.
A numerical solution of the eigenvalue problem is illustrated in Fig. (5) for m = 5, λ = 0.5, µ =

2.0, p = 0.5 and N = 50. The simulations show emergence at q = 1 of three discrete eigenstates well
separated from the (still discrete) band of states. We tested numerically as one increases N , the
q = 0 value of the ground state s (top line in Fig. 5) approaches 0. We observed that the asymptotic
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dependence of the ground state eigen-value on s is fully consistent with the prediction of the ground-
state coherent-state theory explained above in Section III D, specifically with Eq. (62). Moreover,
our prediction of qc (where the gap between the ground state and the continuous band collapses),
as given by Eq. (66), is fully consistent with the respective dependencies of the gap collapse in our
computations. Let us also mention that the two non-ground state eigen-values observed at q = 1
never cross with each other or with the ground state at q > 1, and merge into the continuous band
(consequently one after another) at values of q smaller than qc. Experimenting with larger m, we
observe that the discrete spectrum becomes equidistant in the m→∞ limit, which is fully consistent
with the interaction-free nature of the limit.

We now analyze the spectrum analytically. Let us begin by making some preliminary observations.
First, the linear dependence on s implies that the function Ps;q(n) is an n-th order polynomial in
s, suggesting that there are always exactly N + m solutions of the last condition in Eq. (71),
Ps;q(N + m) = 0. Second, at n > m the factor θm(n) becomes constant and the recursive relations
(70) can be solved analytically. Thus, looking for solution of Eqs. (70) at n > m in the Ps;q(n) =
c+ρ

n
+ + c−ρ

n
− form, one obtains the following expression for ρ± (which depends on q, s and the rates):

ρ± =
1

2µpm

(
λ+ µpm− µ(1− p)(q − 1)m− s±

√
(λ+ µpm− µ(1− p)(q − 1)m− s)2 − 4λµpm

)
.

(72)
The boundary condition Ps;q(N + m) = 0 translates into the following condition

(
dependent on

Ps;q(m) and Ps;q(m− 1)
)
:

Ps;q(N +m) =
(Ps;q(m)− ρ−Ps;q(m− 1))ρN+ + (Ps;q(m)− ρ+Ps;q(m− 1))ρN−

ρ+ − ρ−
= 0. (73)

The above has different types of solutions dependent on the values of s with respect to the following
two threshold values:

s± = λ+ µpm+ µ(1− p)(q − 1)m±
√

4λµpm =
(√

λ±√µpm
)2

− µ(1− p)(q − 1)m. (74)

At s < s−, both eigenvalues ρ± are real and ρ+ > ρ−. In this case, as we are interested in the
N → ∞ limit, one can simply ignore the ρN− contributions in (73), thus leading to the following
relation: Ps;q(m) − ρ−Ps;q(m − 1) = 0. This then replaces the last condition in Eq. (71), w.r.t.
describing Ps;q(n) at 0 ≤ n ≤ m. We were not able to solve this reduced system of equations
analytically at any values of m, and thus to find the spectrum in its full glory. However, the
information just provided is already sufficient for a heuristic derivation of the lowest eigenvalue, and
the value of the gap between it and the continuous band.

We focus on a particular single form solution of the reduced system of equations for Ps;q(n) with
0 ≤ n ≤ m, corresponding to s = ∆ and Ps;q(n) = hn/n! for n ≤ m, with h and ∆ from Eq. (62). In
this case, one has ρ+ = λ/(µph) and ρ− = h/m, so this is indeed the ground state solution. However,
let us note for the sake of accurateness that we have not formally proven that this special solution
always corresponds to the lowest eigenvalue (the ground state). However, this is exactly what we
observed in our numerical experiments with different values of m.

Eq. (73) also allows the continuous spectrum of the operator to be identified. At s− < s < s+ we
have |ρ+| = |ρ−|, and one has to keep both terms in Eq. (73). As long as |Ps;q(m+1)−ρ−Ps;q(m)| =
|Ps;q(m) − ρ+Ps;q(m − 1)|, Eq. (73) has at least N solutions. At N � 1 this region turns into the
continuous band of the spectrum. We conjecture that the system of equations does not have any
solutions for s > s+. (Once again, this is confirmed in simulations but we do not have an explicit
way of proving it.)
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Finally, we conclude that the transition between the uncongested regime and congested regime
takes place at ∆ = s− which corresponds exactly to q = qc

(
from Eq. (66)

)
. As one can easily see,

the value of h at this point is equal to h =
√
λ/µp < 1, so the queue length in the final moment

does not diverge.

V. CONCLUSIONS AND PATH FORWARD

Let us briefly recall the highlights of this manuscript. Our analysis was focused on the the gen-
erating function of currents over a Jackson (queueing) network, with an eye towards analyzing how
large currents accumulate over time. We began by giving some relevant background in Queueing
Theory, and discussing some tie-ins with recent work in statistical physics. We then adopted the
Doi-Peliti technique for describing the dynamics of the Jackson network. We used this formalism to
show that the ground state of the respective evolution operator has a well-defined and analytically
tractable product/coherent state form in a particular regime. These results were translated into
an implicit analytical expression for the Crámer function of currents in this “uncongested” regime,
where the ground state was well separated by a gap from the continuous spectrum. We also observed
that crossing the surface in the phase space of observed currents, where the spectral gap collapses,
corresponds to the congestion of a node in the network. We suggested a heuristic graph-reduction
scheme which allows the statistics of currents to be described in this partially congested setting.
Finally, we validated the general results using the example of a single node feedback system, where
many of our assumptions could be verified directly by performing an explicit analysis of the evolution
operator spectrum.

We consider this study more like an opening for further exciting research along the following lines:

• Following the discussion in Section III C, we naturally conjecture that in a large network,
gradually increasing the observed current(s) will lead to a transition from the uncongested
to the fully congested regime via a number of steps, each characterized by an increase in
the number of congested nodes. It would be interesting and important to explore the specific
sequence of phase transitions separating the space of observed currents into cells. A particularly
interesting question concerns the algorithmic complexity of identifying these cells and exploring
their geometric structure (e.g., possible convexity).

• We have considered a queuing model with the transition rates independent of the node occupa-
tion numbers. This condition can be relaxed and such an extension of our theory should allow
for non-uniform dependence of the rates on the occupation numbers.

• Extensions of the current-statistics theory to the so-called multi-class networks, where different
classes of particles are treated differently at the stations (for example having different priorities)
are less trivial, yet we anticipate such a generalization is still possible.

• In this manuscript we have considered solely open queuing networks. It would be interesting
and instructive to generalize the theory of current statistics to the case of closed (particles are
not leaving or entering the network) and semi-open (particles are injected into the system and
leaving it, but in such a way that the total number of particles is conserved) networks.

• We may also consider networks of fixed structure, yet with rates changing in time, for example
in a periodic fashion. To describe statistics of currents in this case, and especially in the
regime where the typical correlation time of the rate changes are comparable to the inverse
rates, constitutes another interesting future challenge. (Note that an approach blending the
techniques described in this manuscript with the ones discussed recently in the context of the
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so-called Jarzynski equality [70] and work relations [71, 72], both closely related to the subject
of fluctuation theorems [10–12], may prove fruitful for this task.)

• The assumption of infinite waiting room was crucially important for advancing the prod-
uct/coherent state decomposition to the statistics of currents. Analyzing the current statistics
in the regimes when all or some waiting rooms are of a finite capacity is yet another challenging
task, as this finiteness brings in a new type of inter-particle interaction.

• It would be an interesting challenge to put the ideas presented in this paper on a more rigorous
mathematical foundation. This would aid greatly in understanding the formal relationship
between the regimes identified in this paper and the sample path large deviations properties
of queueing networks. We note that the authors are currently undertaking preliminary work
along these lines, with the work directed more towards the Queueing Theory community.

• Our analysis suggests that in large queuing networks one may expect emergence of multiple
transitions as one increases the current. More generally, and in the spirit of [73, 74], it would
be interesting to explore the field of the so-called qualitative queuing network theory via the
methods/techniques discussed in this manuscript.

• Finally, all of the above should be used not only to study existing (man- or nature- made)
networks, but also to guide construction of future technological networks with desired properties.
In other words, we suggest to use this analysis for control and optimization of networks in new
areas such as power, and even more generally energy, distribution.
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APPENDIX A: LEFT GROUND STATE OF THE HAMILTONIAN

In this Appendix we construct the left ground state of the Hamiltonian (49). We start by recalling
that according to Eq. (7), the bra-vector 〈0| exp(

∑
i âi) is the left zero eigen-function of the Hamil-

tonian (49) at q = 1. However, it ceases to be an eigen-vector at q 6= 1. On the other hand, it
is easy to check that the “exponential” bra-vector 〈0| exp(h̄â) is in fact a left eigen-vector of the
creation operator â+, with the eigen-value h, 〈0| exp(hâ)â+ = h〈0| exp(h̄â). This suggests searching
for a left eigen-vector of the Hamiltonian (49), in the exponential form:

〈sq| = 〈0| exp

(∑
i

h̄iâi

)
. (A1)
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Then, from 〈sq|Ĥq = −∆̄(q)〈sq| and Eq. (49) (combined with utilizing the aforementioned feature
of the creation operators) one derives the following set of conditions on the h̄ vector (of c-numbers):∑

i

(q0i − h̄i(q))λ0i = ∆̄(q) (A2)

∀i : λi0
(
qi0 − h̄i(q)

)
+

(i,j)∈G1∑
j

λij(qijh̄j(q)− h̄i(q)) = 0. (A3)

It is straightforward to verify that the resulting ∆̄(q) and ∆(q) from Eq. (54) are identical, ∆̄(q) =
∆(q).
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