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In equilibrium, forces induced by fluctuations of the electromagnetic field between electrically polarizable
objects (microscopic or macroscopic) in vacuum are generically attractive. The force may, however, become
repulsive for microscopic particles coupled to thermal baths with different temperatures. We demonstrate that
this nonequilibrium repulsion can be realized also between macroscopic objects, as planar slabs, if they are kept
at different temperatures. It is shown that repulsion can be enhanced by (i) tuning of material resonances in the
thermal region and by (ii) reducing the dielectric contrast due to “dilution.” This can lead to stable equilibrium
positions. We discuss the realization of these effects for aerogels, yielding repulsion down to submicron distances
at realistic porosities.
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I. INTRODUCTION

Forces induced by electromagnetic (EM) field fluctuations
of quantum and thermal origin act virtually between all matter
that couples to the EM field, since the interacting objects need
not be charged [1,2]. Under rather general conditions (e.g.,
for nonmagnetic objects in vacuum), the Casimir potential
energy does not allow for stable equilibrium positions of the
interacting objects [3]. This can be a practical disadvantage
in systems where external (nonfluctuation) forces cannot
be applied or fine-tuned to establish stability, especially in
dynamic systems where the distance, and, hence, the Casimir
force, changes in time. Nanomechanical devices with closely
spaced components fall into this class of systems [4]. Repulsive
Casimir forces are known to exist if the space between the
objects is filled by a dielectric with suitable contrast [5], but
this is impractical in many situations.

Repulsion can occur also in response to the preparation of
particles in distinct internal states, e.g., by optical excitation or
coupling to heat baths of different temperatures. In particular,
Cohen and Mukamel [6] predicted a nonequilibrium repulsive
force between molecules generated by suitable detuning of
the resonance frequencies. This suggests that for macroscopic
objects held at different temperatures similar repulsive effects
should exist close to material resonances in the thermal region.
However, for macroscopic condensates the dielectric contrast
is usually strong and nonequilibrium effects are comparatively
less significant than the equilibrium attraction. One should,
thus, focus on sufficiently optically diluted materials to gen-
erate resonant Casimir repulsive forces between macroscopic
bodies. The general formalism for dealing with nonequilibrium
fluctuation effects between macroscopic bodies has been
developed recently in Refs. [7–11].

The aim of the present work is to explore theoretically
if and to what extent the above expectation can be realized
and whether it can lead to stable equilibrium positions. We
considered two dielectric slabs held at different temperatures
and computed the pressure between them using the nonequilib-
rium extension of the Casimir-Lifshitz formula [7]. Employing
a Lorentz-Drude dielectric response, we find that resonances
and optical dilution indeed amplify repulsion sufficiently so

the total interaction can become repulsive and equilibrium
positions exist. We show that aerogels could be used to realize
resonant repulsion in practice since porosity can be used to tune
reflectivity and resonances. The use of aerogels was indeed
previously proposed to reduce the Casimir force [12] but not
to generate repulsion.

II. NONEQUILIBRIUM PRESSURE

We consider two infinite parallel planar slabs Sα, α =
1,2, each consisting of a nonmagnetic dielectric layer of
thickness δ and permittivity εα(ω), deposited on a thick glass
substrate of dielectric permittivity εsub(ω). The slabs are held
at temperatures T1 and T2, separated by a (vacuum) gap of
width a. The Casimir pressure1 acting on the inside faces of
the plates is given by [7]

Pneq(T1,T2,a) = P̄eq(T1,T2,a) + �Pneq(T1,T2,a)

+ 2σ

3c

(
T 4

1 + T 4
2

)
, (1)

where σ is the Stefan-Boltzmann constant. The last term in
this equation is simply the classical thermal radiation result,
which is independent of distance and material properties. In
Eq. (1), P̄eq(T1,T2,a) = [Peq(T1,a) + Peq(T2,a)]/2 denotes the
average of the equilibrium Casimir pressures at T1 and T2; with
Peq(T ,a) given by the Lifshitz formula [13], which for brevity
is not reproduced here. The novel nonequilibrium contribu-
tions are captured by the term �Pneq(T1,T2,a), which vanishes
for T1 = T2 (it also contains a distance independent part).
On decomposing �Pneq = �P PW

neq + �P EW
neq into propagating

waves (PW) and evanescent waves (EW), one finds

�P PW
neq = h̄

4π2

∑
P=M,N

∫ ∞

0
dω [n(T1) − n(T2)]

×
∫ ω/c

0
dk⊥k⊥ kz

∣∣r (2)
P

∣∣2 − ∣∣r (1)
P

∣∣2

|DP |2 , (2)

1We use a sign convention opposite to Ref. [7] such that negative
pressures represent attraction between the slabs.
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�P EW
neq = − h̄

2π2

∑
P=M,N

∫ ∞

0
dω [n(T1) − n(T2)]

×
∫ ∞

ω/c

dk⊥k⊥Im(kz)e
−2aIm(kz)

× Im
(
r

(1)
P

)
Re

(
r

(2)
P

)−Re
(
r

(1)
P

)
Im

(
r

(2)
P

)
|DP |2 , (3)

where n(T ) = [exp(h̄ω/kBT ) − 1]−1, kz = √
ω2/c2 − k2⊥,

DP = 1 − r
(1)
P r

(2)
P exp(2ikz a), and P = M,N for the two

polarizations. The reflection coefficients r
(α)
P (ω,k⊥) are given

by the well-known formulas for a two-layer slab

r
(α)
P = rP (1,εα) + rP (εα,εsub) e2iδqα

1 + rP (1,εα) rP (εα,εsub) e2iδqα
, (4)

where rP (εa,εb) are the Fresnel reflection coefficients

rN (εa,εb) = εb(ω)qa(ω,k⊥) − εa(ω)qb(ω,k⊥)

εa(ω)qb(ω,k⊥) + εb(ω)qa(ω,k⊥
, (5)

where qa = √
εa(ω)ω2/c2 − k2⊥, and rM (εa,εb) is obtained by

replacing the εa and εb in Eq. (5) by 1 (but not in qa). There
is also an external pressure acting on the outside face of
each plate which depends on the reflectivity of this face and
the temperature of the environment Tenv. In our numerical
computations we assume that the external face of the glass
substrate has been blackened, in which case the total pressure
on plate α is given by

P̃ (α)(T1,T2,Tenv,a) = Pneq(T1,T2,a) − 2σ

3c

(
T 4

α + T 4
env

)
. (6)

It is worth emphasizing that for T1 �= T2, P̃ (1)(T1,T2,Tenv,a) �=
P̃ (2)(T1,T2,Tenv,a). Moreover, in equilibrium, all distance-
independent terms vanish.

The structure of the nonequilibrium force in Eq. (1) suggests
that repulsion should exist out of thermal equilibrium. While
the first term P̄eq(T1,T2,a) in Eq. (1) is bound to be attractive,
this is not so for the second term �Pneq(T1,T2,a). As can
be seen from Eqs. (2) and (3), the quantity �Pneq(T1,T2,a)
changes sign if the temperatures T1 and T2 are exchanged,
and, therefore, its sign can be reversed by simply switching the
temperatures of the plates. One notes also that �Pneq(T1,T2,a)
is antisymmetric under the exchange r

(1)
P ↔ r

(2)
P , and vanishes

for r
(1)
P = r

(2)
P . Therefore, in order to take advantage of this

term to control the sign of the Casimir force it is mandatory to
consider plates made of different materials. For real materials,
both P̄eq(T1,T2,a) and �Pneq(T1,T2,a) diverge as a−3 if a → 0.
In the following, we show that the sign of this asymptotic
behavior can be made repulsive in certain cases.

Motivated by the resonance-induced repulsion for micro-
scopic particles, we consider electric permittivities εα(ω) of the
dielectric layers, described by a Lorentz-Drude-type model, as

εα(ω) = 1 + Cα ω2
α

ω2
α − ω2 − iγαω

+ Dα 
2
α


2
α − ω2 − i�αω

. (7)

(An analogous two-oscillator model was used also for the
permittivity εsub of the glass substrate, with the parameters
quoted in Ref. [2], p. 312.) The first oscillator term (∼Cα) de-
scribes low-lying excitations of the materials; such low-lying

polariton excitations in numerous dielectrics account for sharp
peaks in their dielectric functions in the far-infrared region.
Typical values for the resonance and relaxation frequencies
are ωα = 1013–1014 rad/s and γα = 1011–1012 rad/s [14]. The
second oscillator term in Eq. (7), proportional to Dα , describes
the contribution of core electrons. Excitation energies of
core electrons are much larger, and characteristic values of

α are in the range 1015–1016 rad/s. At and around room
temperature core electrons are not thermally excited (for
T = 300 K the characteristic thermal frequency ωT = kBT /h̄

is 3.9 ×1013 rad/s) and, therefore, their contribution to the
thermal Casimir force �Pneq is very small. However, core
electrons are important, as they strongly contribute to the
average equilibrium Casimir force P̄eq, especially at submicron
separations.

Since the thermal Casimir force between two macroscopic
slabs should reduce in the dilute limit to the pairwise
interaction between their atoms, one expects that the resonant
phenomena reported in Ref. [6] should be recovered if the
material of the plates is sufficiently diluted. In order to
determine how large a dilution is necessary for this to happen,
we investigated the behavior of the Casimir force under a
rescaling of the amplitudes of the resonance peaks, i.e., Cα →
Cα/τ , Dα → Dα/τ , by an overall optical dilution parameter
τ � 1.

III. NUMERICAL RESULTS

We next report on numerical results based on the above
model for dielectrics, in which we set ω1 = 1013, γ1 =
γ2 = 1011, 
1 = 
2 = 1016, and �1 = �2 = 5 × 1014 (all
in rad/s). In Fig. 1 we plot the nonequilibrium normalized
Casimir pressure P (2)

neq/P̄eq on slab 2 versus the ratio of the
resonance frequencies ω2/ω1 for a = 300 nm, δ = 5 μm,
C1 = 3, C2 = 1.5, D1 = 1, and D2 = 0.5. (Negative values
of P (2)

neq/P̄eq correspond to repulsion.) For these parameters
the nonequilibrium force is dominated by evanescent waves,
whose skin depth is comparable to the separation a. This
implies that for separations a � δ the force is practically

ω ω

FIG. 1. (Color online) The normalized nonequilibrium Casimir
pressure P (2)

neq/P̄eq on slab 2 as a function of the ratio of the resonance
frequencies ω2/ω1, for a = 300 nm, δ = 5 μm, C1 = 3, C2 = 1.5,
D1 = 1, and D2 = 0.5. The red dashed curves are for T1 = Tenv =
300 K and T2 = 600 K, while blue solid curves are for T1 = Tenv =
300 K and T2 = 150 K. Three values of the dilution parameter τ are
displayed: τ = 1 (×), τ = 10 (+), and τ = 20 (∗). Negative values
of P (2)

neq/P̄eq correspond to repulsion.
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independent of δ, but for a � δ the features of the substrate
influence the magnitude of the force significantly. The red
dashed curves in Fig. 1 are for T1 = Tenv = 300 K and
T2 = 600 K, while blue solid curves are for T1 = Tenv = 300 K
and T2 = 150 K. Three values of the dilution parameter τ are
displayed: τ = 1 (×), τ = 10 (+), and τ = 20 (∗). We see
that for sufficiently high dilution, the Casimir force is strongly
dependent on the ratio ω2/ω1 of the resonance frequencies of
the plates, displaying features analogous to those reported in
Ref. [6] for the van der Waals interaction between two “atoms”
coupled to baths at different temperatures. In particular, the
Casimir force becomes repulsive if this ratio is suitably tuned
to a value close to unity. We also find that the equilibrium force
is rather insensitive to the tuning of resonances and that the
total force hardly depends on 
1/
2.

In Fig. 2 we plot the dependence of the nonequilibrium
normalized Casimir pressure P (2)

neq/P̄eq on slab 2 as a function
of plate separation a at T1 = Tenv = 300 K, T2 = 600 K, for
τ = 1 and ω2/ω1 = 1.1 (×); τ = 10 and ω2/ω1 = 1.05 (+);
τ = 20 and ω2/ω1 = 1.04 (∗), all other parameters being the
same as in Fig. 1. The dashed curves do not include the
distance independent part of the pressure and are included to
indicate that this component also changes sign on dilution. We
see that without dilution (τ = 1) the nonequilibrium Casimir
force is attractive for all displayed separations. By contrast,
for large-enough dilutions and for suitable values of ω2/ω1,
the force becomes repulsive in a wide range of separations.
The curve for τ = 10 exhibits two points of zero force, one
at a = 15 nm and another for a = 4.1 μm, corresponding to
an unstable equilibrium point (UEP) and a stable equilibrium
point (SEP), respectively. For τ = 20 there is a single turning
point corresponding to a SEP at a = 3.3 μm. There is no UEP
point in this case as the ratio P (2)

neq/P̄eq approaches a negative
value in the limit a → 0, signifying that repulsion persists for
arbitrarily small plate separations less than the SEP.

As a means of achieving the dilution levels required
to observe the resonance phenomena described above, we
consider aerogels: highly porous materials fabricated by sol-

μ

FIG. 2. (Color online) The nonequilibrium normalized Casimir
pressure P (2)

neq/P̄eq on slab 2 as a function of plate separation (in
microns) for δ = 5 μm, T1 = Tenv = 300 K, T2 = 600 K, τ = 1 and
ω2/ω1 = 1.1 (×); τ = 10 and ω2/ω1 = 1.05 (+); and τ = 20 and
ω2/ω1 = 1.03 (∗). All other parameters are the same as in Fig. 1.
Dashed curves do not include the distance-independent part of the
pressure. Stable equilibrium positions are marked as SEP and unstable
ones as UEP. The curve for τ = 20 approaches a negative value for
a → 0.

gel techniques, starting from a variety of materials such as
SiO2, carbon, Al2O3, platinum, and so on. Aerogels with levels
of porosity exceeding 99% can be realized nowadays [15]. In
order to study the Casimir force between two aerogel plates
we need an expression for the dielectric function ε̂(ω) of the
aerogel, valid in the wide range of frequencies relevant for
the Casimir effect. For separations a larger than the pore size
(typically of the order of 100 nm or less), an effective medium
approach can be used in which the aerogel permittivity ε̂(ω) is
obtained from the Maxwell-Garnett equation [16] as

ε̂ − 1

ε̂ + 2
= (1 − φ)

ε − 1

ε + 2
, (8)

where ε(ω) is the permittivity of the solid fraction of the
aerogel and 0 � φ � 1 is the porosity. Equation (8) is justified
if the solid fraction is well separated by the host material (air),
i.e., when φ is sufficiently close to 1. Using again a model
of the form in Eq. (7) for εα(ω), one finds that ε̂α(ω) has a
resonance at the frequency

ω̂α ≈
(

1 + φα Cα

φα Dα + 3

)1/2

ωα, (9)

where we assumed ωα � 
α . According to Eq. (9), the
frequency of the aerogel resonance is blueshifted with respect
to ωα , and as φα is varied from zero to 1, ω̂α sweeps the range
from ωα to [1 + Cα/(Dα + 3)]1/2ωα . The dependence of the
resonance frequency ω̂α on the porosity is welcome, because
it gives us the possibility of tuning the ratio of the resonance
frequencies for the two plates by simply choosing appropriate
values for the porosities φ1 and φ2 of the plates.

As an example, we consider two aerogel layers of thickness
δ = 5 μm, deposited on a thick glass substrate, with a
blackened outer surface. The dielectric functions εα(ω) of
the host materials are as in Eq. (7), with C1 = 1, C2 = 3,
D1 = D2 = 0.5, ω2/ω1 = 0.84. In Fig. 3 we plot the ratio
P (2)

neq/P̄eq as a function of the porosity φ1 of the first plate. The
porosity φ2 of the second plate is 0.95 (+), 0.9 (×), and 0.8
(∗). All curves in Fig. 3 are for a separation of 200 nm at
T1 = Tenv = 300 K and T2 = 600 K. The force can indeed be
made repulsive by suitably adjusting the porosities of the two

φ

FIG. 3. (Color online) The pressure ratio P (2)
neq/P̄eq for two aerogel

layers (δ = 5 μm) on a glass substrate as a function of the porosity φ1

of plate 1. The porosity φ2 of plate 2 is 0.95 (+), 0.9 (×), and 0.8 (∗).
The dielectric functions εα(ω) of the host materials are as in Eq. (7),
with C1 = 1, C2 = 3, D1 = D2 = 0.5, ω2/ω1 = 0.84. All curves are
for a separation of 200 nm and for T1 = Tenv = 300 K, T2 = 600 K.
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μ

FIG. 4. (Color online) The pressure ratio P (2)
neq/P̄eq for two aerogel

layers (δ = 5μm) on a glass substrate as a function of plate separation
(in microns) for φ1 = 0.95 and φ2 = 0.95 (+), 0.9 (×) and 0.8 (∗).
All parameters for the aerogel plates are same as in Fig. 3. The dashed
lines do not include the separation-independent part of the pressure.
The stable equilibrium position is marked by SEP.

plates. In absolute terms, the Casimir force is small; e.g., for
φ1 = 0.77 and φ2 = 0.8 we find P (2)

neq = 0.55 × 10−3 Pa.
In Fig. 4 we plot the dependence of the ratio P (2)

neq/P̄eq on
the separation (in microns), for φ1 = 0.95 and φ2 = 0.95 (+),
φ2 = 0.9 (×), and φ2 = 0.8 (∗). All parameters for the aerogel
plates are the same as in Fig. 3. The dashed lines do not include

the separation-independent part of the pressure. We find that
for φ1 = φ2 = 0.95 a stable equilibrium point exists (marked
as SEP in Fig. 4).

While fluctuation-induced forces are generally attractive,
repulsive forces can be obtained between atoms prepared in
different excited states. Coupling of atoms to thermal baths at
different temperatures can, in principle, produce population
of states that lead to repulsion. We show that a similar
nonequilibrium repulsive contribution to pressure also arises
from the interplay of resonances for two macroscopic slabs
held at appropriate distinct temperatures. However, to observe
a net repulsion between slabs one must overcome an ever-
present attractive force arising from the dielectric contrast of
the condensed bodies from the intervening vacuum. The latter
can be reduced by dilution, and we have shown that aerogels
provide a material where a net repulsion at submicron separa-
tions can be achieved, leading to a stable equilibrium point.
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